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Abstract. The cube attack is one of the most important cryptanalyt-
ic techniques against Trivium. As the method of recovering superpolies
becomes more and more effective, another problem of cube attacks, i.e.,
how to select cubes corresponding to balanced superpolies, is attracting
more and more attention. It is well-known that a balanced superpoly
could be used in both theoretical and practical analyses. In this paper,
we present a novel framework to search for valuable cubes whose super-
polies have an independent secret variable each, i.e., a linear variable not
appearing in any nonlinear term. To control online complexity, valuable
cubes are selected from very few large cubes. New ideas are given on the
large cube construction and the subcube sieve.

For the verification of this new algorithm, we apply it to Trivium.
For 815-round Trivium, using one cube of size 47, we obtain more than
200 balanced superpolies containing 68 different independent secret vari-
ables. To make a trade-off between the number of cubes and computation
complexity, we choose 35 balanced superpolies and mount a key-recovery
attack on 815-round Trivium with a complexity of 247.32. For 820-round
Trivium, using two cubes of size 52, we obtain more than 100 balanced su-
perpolies, which contain 54 different independent secret variables. With
30 balanced superpolies, we mount a key-recovery attack on 820-round
Trivium with a complexity of 253.17. Strong experimental evidence shows
that the full key-recovery attacks on 815- and 820-round Trivium could
be completed within six hours and two weeks on a PC with two RTX3090
GPUs, respectively.

Keywords: Cube Attacks· Key-Recovery Attacks· Division Property·
Trivium.

1 Introduction

Cube Attack: The cube attack is a new method of analyzing symmetric-key
cryptosystems proposed by Dinur and Shamir in [1], which absorbs the ideas
of higher-order differential attacks, saturation attacks, and chosen IV statis-
tical attacks. The basic idea of a cube attack is as follows. The output bit
of a stream cipher can be regarded as a tweakable polynomial f(x,v), where
x = (x1, x2, ..., xn) are secret key variables and v = (v1, v2, ..., vm) are public
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IV variables. For a randomly chosen set I = {vi1 , vi2 , . . . , vid} ⊂ {v1, v2, ..., vm},
f(x,v) can be represented uniquely as

f(x,v) = tI · pI(x,v)⊕ qI(x,v),

where tI = vi1 · · · vi|I| , and qI misses at least one variable in I. The IV variables
in I are set as active, that is, all possible combinations of 0/1 are taken, and the
rest of the IV variables are inactive and set to constants. The set of these values
is called a cube, and the sum of f(x,v) over all values of the cube is evaluated,
which is the value of pI(x,v) for a given secret key. The polynomial pI(x,v)
is called the superpoly of the cube, and it is much simpler than f(x,v). Once
an attacker recovers a certain number of superpolies, he could build a system of
equations on secret key variables x by inquiring the values of all the superpolies.
Then some information about the secret variables can be retrieved. It can be
seen that the critical step of cube attacks is to recover a bundle of nonconstant
superpolies.

In [1,2], f(x,v) is regarded as a blackbox polynomial and analyzed experi-
mentally because the algebraic normal form of f(x,v) is too complicated. How-
ever, such experimental analysis has significant drawbacks, e.g., the cube size is
limited to the experimental range.

Division Property: In [3], the division property was proposed, which en-
ables cube attacks to analyze cryptographic algorithms as a non-blackbox poly-
nomial, and thus significantly improves the analytical ability of cube attacks.
The division property is a generalization of integral property, originally for block
ciphers. It can exploit the algebraic structure of block ciphers to construct in-
tegral distinguishers even if the block cipher has non-bijective or bit-oriented
structures. In [4], the division property was first introduced to cube attacks on
stream ciphers, and it could be used to identify the secret variables not involved
in the superpoly efficiently. To improve the effectiveness of cube attacks based
on division property, some new techniques were given in [5,6].

However, the traditional division property only confirms that a specific mono-
mial does not appear in the superpoly if the division property cannot propagate
to the output bit. If the division property can propagate to the output bit, it is
not clear whether the corresponding monomial appears. This inaccuracy of the
traditional division property makes many previous key-recovery attacks, e.g.,
[7,5], degenerate to distinguishing attacks [8,6]. This was finally resolved by Hao
et al. in [9], where the model for three-subset division property without unknown
subset was proposed.

Trivium: Trivium [10] is a bit-oriented synchronous stream cipher designed
by De Cannière and Preneel, which is one of the eSTREAM hardware-oriented
finalists and an International Standard under ISO/IEC 29192-3:2012. Because
of its simple structure and high level of security, Trivium has attracted extensive
attention.

When the cube attack was first proposed, a key-recovery attack on 767-round
Trivium was given, in which 35 linear superpolies were recovered by linearity tests
[1]. Next, key-recovery attacks on 784- and 799-round of Trivium were given in
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[2]. Recently, an effective method to construct cubes for linear superpolies was
proposed in [11], and a practical attack against 805-round Trivium was given. On
the other hand, cube attacks based on division property theoretically evaluate
the security of Trivium by targeting a very high round number. In [9], Hao et
al. accurately recovered the superpolies of 840-, 841-, and 842-round Trivium
by using three-subset division property without unknown subset. Meanwhile,
Hu et al. in [12] described the propagation of monomials from a pure algebraic
perspective and proposed monomial prediction technique, and thus accurately
recovered the superpolies of 840-, 841-, and 842-round Trivium. Very recently, Hu
et al. [13] combined the monomial prediction technique with the backtracking
method in [8] and presented a new framework for recovering the exact ANFs
of massive superpolies, recovering the superpolies for 843-, 844- and 845-round
Trivium. At FSE 2021, Sun proposed a new heuristic method in [14] to reject
cubes without independent secret variables from a preset of candidate cubes.
Using the heuristic algorithm, the author of [14] recovered a balanced superpoly
for 843-round Trivium and presented practical attacks against 806- and 808-
round Trivium.

Motivation: Our work aims to enhance the ability of a practical key-recovery
attack on Trivium. Firstly, in our attacks, we use a special class of balanced
superpolies. It is well known that a balanced superpoly could recover 1-bit key
information. However, n balanced superpolies do not always provide n-bit key
information. For a superpoly p, if p could be decomposed into p(k) = p′(k)⊕ ki,
where ki does not appear in p′, then we say that p has an independent variable
ki. To facilitate the key recovery process, we only consider superpolies with an
independent variable. This is because a superpoly with an independent variable is
balanced. If we obtain many such superpolies, it is easy to select n superpolies to
provide n-bit key information. In the following paper, we say a cube is valuable if
its superpoly has at least one independent secret variable. Secondly, to reduce the
complexity of the online phase, the existing practical attacks [11,14] all selected
a large cube I and searched the subcubes of I to recover balanced superpolies.
So, the attacker only needs 2|I| times to query the encryption oracle. In the
following paper, a desirable large cube is called a mother cube. Therefore, a
good mother cube and a method of searching for valuable subcubes are critical
for practical attacks. This is different from the theoretical attack on high-round
Trivium.

Our work is motivated by the heuristic method of rejecting useless cubes in
[14]. When the attacker recovers the superpoly, the whole system can be split
into several subsystems based on the divide-and-conquer strategy. The algorithm
proposed in [14] simultaneously solves a set of cubes in a subsystem. Sun consid-
ered that for a cube, if the subsystem is solved to obtain the high-degree term,
the whole system will obtain the term with a high probability, so it can be con-
sidered that the superpoly of the cube does not contain the independent secret
variables appearing in the term. Therefore, for a given secret variable ki, useless
cubes can be rejected from a preset of candidate cubes by solving a subsystem.
When multiple subsystems are tested in this way, the remaining cubes are more
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likely to have independent secret variables ki. There are two obvious drawbacks
of this search algorithm. On one hand, both rejection and acceptance of this
method may be wrong, and it is difficult for practical attacks to control the size
of cube if some valuable cubes are rejected. On the other hand, when there are
too many subcubes in the test, it cannot terminate within an acceptable period
of time. The reason why the search cannot be completed in a short time may be
that some complicated subcubes are difficult to solve.

Instead of rejecting useless cubes, we consider choosing cubes that are more
likely to be valuable. Our work is based on two observations. Firstly, we observe
that low-degree superpolies are easier to recover and more likely to contain inde-
pendent variables. Moreover, for many low-degree balanced superpolies, it is easi-
er to select n balanced superpolies to provide n-bits of key information.Therefore,
we consider giving a batch of subcubes with low-degree superpolies through the
algebraic degree evaluation. For simplicity, the degree of a cube refers to the
degree of the superpoly corresponding to the cube, and a cube with a low-degree
superpoly is called a low-degree cube. Secondly, we note that the existence of
linear terms is necessary for a superpoly to have independent secret variables.
We find that many superpolies do not have linear terms in experimental tests. It
is obvious that these superpolies without linear terms cannot contain indepen-
dent secret variables. Based on this observation, we can determine whether the
cube was rejected by recovering the linear terms.

Our Contribution: This paper is devoted to full key-recovery attacks a-
gainst Trivium. We present a novel framework to search for valuable subcubes
from a mother cube, which is experimentally verified to be quite effective. It
consists of the following three aspects.

1. We modify the algorithm for constructing cubes targeting linear super-
polies presented in [11]. We aim to construct a mother cube with many
low-degree subcubes rather than several low-degree cubes unrelated to each
other. Therefore, we modify the end of the first stage in order to construct
a potentially good mother cube.

2. We propose an efficient method to search for low-degree subcubes. For a
mother cube, it is not practical to enumerate the algebraic degrees of all
subcubes. We use a deep-first-search strategy. We first enumerate the degrees
of all the subcubes with one less variable for a given mother cube. Then, for
the subcubes with degree less than 5, we continually enumerate the subcubes
with one less variable until there is no subcube with degree less than 5. As
a result, we can identify most of the low-degree subcubes efficiently.

3. We propose a method for searching for valuable subcubes. We note that the
existence of linear terms is necessary for a superpoly to have independent
secret variables. Moreover, since linear terms account for only a small part of
the superpoly, it is efficient to recover all linear terms of a cube. Therefore, we
recover the linear terms of the low-degree subcubes and reject the subcubes
without linear terms, or all the linear terms have been covered by some
simple superpolies. Experimental data on 820-Trivium show that only about
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20% of the superpolies are left after the rejection. Finally, we recover the
superpolies of the remaining cubes by solving the subsystem.
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Fig. 1. The sketch of our idea

As an illustration, we apply our methods, whose sketch is shown in Fig. 1, to
Trivium. The new algorithm successfully finds many valuable cubes for 815- and
820-round Trivium, and we also recover all their superpolies. Practical attacks
on 815- and 820-round Trivium are given. As a comparison, we summarize full
key-recovery attacks against the round-reduced Trivium in Table 1.

1. For 815-round Trivium, we construct a mother cube I1, whose size is 47.
Then, we search subcubes with one less variable of 16 46-dimensional and
more than 100 45-dimensional subcubes. Using low-degree subcubes with
linear terms, we obtain more than 200 balanced superpolies containing 68
different independent secret variables. Through linearization, we chose 35
superpolies that excluded enough illegal keys to leave only 245 possible keys.
The total online complexity for attacking 815-round Trivium is 247 + 245,
which can be done practically.

2. For 820-round Trivium, we construct two mother cubes I2 and I3, both of
which have size 52. Initially, we consider I2 and search for its subcubes.
However, after obtaining some independent secret variables, we found that
the recovered linear terms are frequently repeated. We guess most of the
independent secret variables related to I2 have been recovered. Therefore, we
construct another mother cube I3. Finally, we obtain more than 100 balanced
superpolies containing 54 different independent secret variables using I2 and
I3. After choosing 30 balanced superpolies, we can enumerate the values of
50 secret variables and obtain the values of the remaining 30 secret variables
within constant time. The total online complexity for attacking 820-round
Trivium is 253+250. This attack on 820-round Trivium improves the previous
best practical cube attacks by 12 more rounds.

The source codes of the proposed algorithm, including those searching for
valuable cubes and recovering superpolies, were released at https://github.com/
LLuckyRabbit/search-for-valuables-cubes.

This paper is organized as follows. Section 2 introduces necessary notations
and some preliminaries. The new search algorithm is reported in Section 3, and
its applications to Trivium are in Section 4. Conclusions are drawn in Section 5.

2 Preliminaries

In this section, we introduce some related concepts and definitions.

https://github.com/LLuckyRabbit/search-for-valuables-cubes
https://github.com/LLuckyRabbit/search-for-valuables-cubes
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Table 1. A summary of key-recovery attacks on Trivium

Attack type # of rounds Off-line phase On-line phase Total time ref.cube size # of key bits

Practical

672 12 63 217 218.56 [1]
767 28-31 35 245 245.00 [1]
784 30-33 42 238 239.00 [2]
805 32-38 42 238 241.40 [11]
806 33-37 45 235 239.88 [14]
808 39-41 37 243 244.58 [14]
815 44-46 35 245 247.32 Sect. 4.1
820 48-51 30 250 253.17 Sect. 4.2

Theoretical

799 32-37 18 262 262.00 [2]
802 34-37 8 272 272.00 [15]
805 28 7 273 273.00 [16]
832 72 1 279 279.01 [6,4,17]
832 72 > 1 279 < 279.01 [18]
835 35 5 275 275.00 [16]
840 75 3 277 277.32 [12]
840 78 1 279 279.58 [9]
841 78 1 279 279.58 [9]
841 76 2 278 278.58 [12]
842 76 2 279 278.58 [12]
842 78 1 279 279.58 [19]
843 54-57,76 5 275 276.58 [13]
843 78 1 279 279.58 [14]
844 54-55 2 278 278.00 [13]
845 54-55 2 278 278.00 [13]

We take 260 as the boundary between practical attack and theoretical attack.
Because computations within 260 can be completed in a limited time with limited
resources.

2.1 Boolean functions and algebraic degree

A Boolean function on n variables is a mapping from Fn
2 to F2, where F2 is the

finite field with two elements and Fn
2 is an n-dimensional vector space over F2.

A Boolean function f can be uniquely represented as a multivariable polynomial
over F2,

f(x1, x2, . . . , xn) =
⊕

c=(c1,c2,...,cn)∈{0,1}n
ac

n∏
i=1

xci
i ,

which is called the algebraic normal form (ANF) of f , where ac ∈ F2. In the
following paper,

∏n
i=1 x

ci
i is called a term of f . One important feature of a

Boolean function is its algebraic degree which is denoted by deg(f) and defined
as

deg(f) = max{wt(c)|ac ̸= 0},
where wt(c) is the Hamming Weight of c, i.e., wt(c) =

∑n
i=1 ci.
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2.2 Trivium

Trivium is a bit-oriented synchronous stream cipher that was one of the eS-
TREAM hardware-oriented finalists. The main building block of Trivium is a
Galois nonlinear feedback shift register, and its internal states are 288 bits in to-
tal. For every clock cycle, three bits of the internal state are updated by quadratic
feedback functions, and all the remaining bits of the internal state are updated
by shifting. In the initialization phase, an 80-bit secret key and an 80-bit IV
are loaded in the internal state of Trivium. After updating the internal state
iteratively for 1152 rounds, Trivium starts to output keystream bits. Algorithm
1 describes the pseudo-code of Trivium. For more details, please refer to [10].

Algorithm 1 Pseudo-code of Trivium
1: (s1, s2, . . . , s93)← (k1, k2, . . . , k80, 0, . . . , 0);
2: (s94, s95, . . . , s177)← (v1, v2, . . . , v80, 0, . . . , 0);
3: (s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1);
4: for i from 1 to N do
5: t1 ← s66 ⊕ s93 ⊕ s91s92 ⊕ s171;
6: t2 ← s162 ⊕ s177 ⊕ s175s176 ⊕ s264;
7: t3 ← s243 ⊕ s288 ⊕ s286s287 ⊕ s69;
8: if i > 1152 then
9: zi−1152 ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288;

10: end if
11: (s1, s2, . . . , s93)← (t3, s1, . . . , s92);
12: (s94, s95, . . . , s177)← (t1, s94, . . . , s176);
13: (s178, s179, . . . , s288)← (t2, s178, . . . , s287);
14: end for

2.3 Cube attacks

The cube attack was first proposed by Dinur and Shamir in [1]. In a cube
attack, the output bit of the cryptographic algorithm can be regarded as a
Boolean function in the secret variables k = (k1, k2, . . . , kn) and the public
variables v = (v1, v2 . . . , vm), expressed as f(k,v). For a randomly chosen set
I = {vi1 , vi2 , . . . , vid}, f(k,v) can be represented uniquely as

f(k,v) = tI · pI(k,v)⊕ qI(k,v),

where tI = vi1 · · · vid , and qI misses at least one variable in I. The public vari-
ables in I are called cube variables, while the remaining IV variables are called
non-cube variables. The IV variables in I are set as active, that is, all possible
combinations of 0/1 are taken, and the rest of the IV variables are inactive and
set to constants. The set of these values is denoted as a cube, and the poly-
nomial pI is called the superpoly of CI in f . For convenience, we also call pI
the superpoly of I in f . It can be seen that the summation of the 2d functions
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derived from f by assigning all the possible values to d variables in I equals to
pI , that is, ⊕

(vi1 ,vi2 ,...,vid
)∈Fd

2

f(k,v) = pI(k,v).

Therefore, in the online phase, it takes 2d requests (that is, 2d calls to the
initialization function) to get the value of the superpoly pI(k,v).

Obviously, pI(k,v) is much simpler than f(k,v). Once an attacker recovers
a certain number of superpolies, he could build a system of equations on secret
key variables k by inquiring the values of all the superpolies. Then some infor-
mation about the secret variables can be achieved. In particular, if a superpoly
is balanced, namely |{k ∈ Fn

2 | f(k) = 0}| = |{k ∈ Fn
2 | f(k) = 1}| = 2n−1,

then 2n−1 illegal keys will be filtered out. However, in a key recovery attack,
it is difficult to obtain ℓ-bits of information about the key even if there are ℓ
balanced superpolies. Moreover, when ℓ is large, it is almost impossible. We use
the following toy example to illustrate this problem.

Example 1. Let f1 = x1x2 ⊕ x3 ⊕ x4 and f2 = x2x3 ⊕ x1 ⊕ x4 be balanced
polynomials on the variables x = (x1, x2, x3, x4). It is easy to verify

|{x ∈ F4
2 | f1(x) = 0, f2(x) = 0}| = |{x ∈ F4

2 | f1(x) = 1, f2(x) = 1}| = 6,

|{x ∈ F4
2 | f1(x) = 1, f2(x) = 0}| = |{x ∈ F4

2 | f1(x) = 0, f2(x) = 1}| = 2.

When f1 = f2 = 0 or f1 = f2 = 1, there are 6 possible variables left, not
24−2 = 4. It can be seen that the two balanced superpolies do not provide 2-bits
of information.

2.4 The division property

In the following paper, we use the conventional bit-based division property to
evaluate the algebraic degree and the three-subset division property without
unknown subset to recover superpoly.

The bit-based division property. In [20], the authors proposed the con-
ventional bit-based division property whose definition is as follows.

Definition 1 (Conventional Bit-Based Division Property [20]). Let X
be a multi-set whose elements take a value of Fn

2 . Let K be a set whose elements
take an n-dimensional bit vector. When the multi-set X has the division property
D1n

K , it fulfills the following conditions:

⊕
x∈X

xu =

{
unknown if there exists α in K s.t. u ≽ α,
0 otherwise,

where u ≽ α if and only if ui ≥ ki for all i and xu =
∏n−1

i=0 xui
i .
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The division property depends on some vectors, and the propagation of the
division property for every round function is actually the transformation of vec-
tors. Based on this observation, Xiang et al. in [21] first introduced the concept
of division trails, a set of ordered vectors describing the propagation of division
property. Based on the concept of division trails, a linear inequality system is
proposed to describe the propagation of division property. For all feasible solu-
tions of the linear inequality system to correspond precisely to all division trails,
the authors described the propagation rules for AND, COPY, and XOR with
MILP models, see [21] for the details. Therefore, they could build an Mixed In-
teger Linear Programming (MILP) model to cover all the possible division trials
generated during the propagation.

The division property based degree evaluation. Since Todo et al. in-
troduced division property into cube attack [4], the process of cube attack was
converted into an MILP problem, and mathematical software was used for calcu-
lation, which significantly improved the power of the cube attacks. The algebraic
degree of superpolies is also an important feature, which can be used for searching
the cube and other attacks. In the following paper, we use the degree evaluation
algorithm proposed in [5], which was based on the following proposition.

Proposition 1 ([5]). Let f(x,v) be a polynomial, where x and v denote the se-
cret and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vI = tI = vi1vi2 · · · vi|I| . Let kΛ be an n-dimensional bit vector.

If there is no division trail such that (kΛ||kI)
f−→ 1, then the monomial xkΛ is

not involved in the superpoly of the cube CI .

According to Proposition 1, for a positive integer d, if all the division property
xkΛ with wt(kΛ) > d cannot propagate to the output bit, then it is shown that
d is an upper bound on the algebraic degree of the superpoly. Therefore, the
attacker can evaluate the algebraic degree of a stream cipher by solving the
MILP model that maximizes the objective function

∑n
j=1 xj . For more details,

please refer to Section 4 of [5].
The three-subset division property. The set of u is divided into two

subsets in the conventional division property, where one is the subset such that⊕
x∈X xu is unknown, and the other is the subset such that the sum is 0. Three-

subset division property extends the number of subsets from 2 to 3, and its
definition is given below.

Definition 2 (Three-Subset Division Property [20]). Let X be a multi-set
whose elements take a value of Fn

2 . Let K be a set whose elements take an n-
dimensional bit vector. When the multi-set X has the division property D1n

K,L, it
fulfills the following conditions:

⊕
x∈X

xu =

unknown if there exists α in K s.t. u ≽ α,
1 else if there exists β in L s.t. u = β,
0 otherwise,
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where u ≽ α if and only if ui ≥ ki for all i and xu =
∏n−1

i=0 xui
i .

Wang et al. [6] adopted the concept of three-subset division property and de-
veloped an algorithm to recover superpolies, which reduced the time complexity
of the algorithm. Hao et al. [9] found that recovering superpolies based on three
subsets is not always effective because of the large size of L. Therefore, the con-
cept of three-subset division property without unknown subset and a new MILP
modeling method which could be used to recover the exact superpoly for a given
cube are proposed, see [9] for details. In Section 4, we will recover superpolies
using three-subset division property without unknown subset.

2.5 A heuristic algorithm of constructing cubes targeting linear
superpolies

In [11], Ye et al. combined the division property based degree evaluation method
with some greedy strategies to construct cubes targeting linear superpolies. The
author heuristically gave a small set of cube variables and then extended it
iteratively. In order to construct cubes targeting linear superpolies, the extension
phase is subdivided into two stages. Before reviewing the two stages, we shall
first give the following definitions.

Definition 3 (Steep IV Variable [11]). Let I = {vi1 , vi2 , . . . , viℓ} be a set
containing ℓ cube variables. Then, an IV variable b ∈ B = {v0, v1, . . . , vm−1} \ I
is called a steep IV variable of I if ds(I ∪ {b}) = min{ds(I ∪ {v})|v ∈ B}, where
ds(I) is the degree of the superpoly of I in key variables.

Definition 4 (Gentle IV Variable [11]). Let I = {vi1 , vi2 , . . . , viℓ} be a set
containing ℓ cube variables. Then, an IV variable b ∈ B is called a gentle IV
variable of I if ds(I ∪{b}) = max{ds(I ∪{v})|ds(I ∪{v}) ≤ ds(I), v ∈ B}, where
B = {v0, v1, . . . , vm−1} \ I and ds(I) is the degree of the superpoly of I.

In the first stage, selecting a steep IV variable in each extension can quickly
reduce the degree of the superpoly corresponding to the cube. However, it may
fail to construct cubes with linear superpolies by only adding steep IV variables.
The goal of the second stage is to ensure that the degree of the superpoly could
be close to 1 rather than suddenly dropping to 0. Therefore, Ye et al. proposed
selecting a gentle IV variable in each extension, which slowly decreases the su-
perpoly degree. It is more hopeful to construct cubes with linear superpolies.

3 A Search Algorithm for Valuable Cubes

To mount key-recovery attacks, enough valuable cubes need to be collected. A
modified algorithm for constructing mother cubes and an efficient method for
searching low-degree subcubes are introduced in Sections 3.1 and 3.2, respective-
ly. In Section 3.3, we present a method for rejecting useless cubes. Combining the
new methods given in these three sections, we present a novel general framework
for making key-recovery attacks.
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3.1 A modified algorithm of constructing mother cubes

In [11], Ye et al. completed a practical key-recovery attack on 805-round Trivi-
um using linear superpolies. As the number of rounds increases, the size of the
candidate cube increases, and the number of linear superpolies decreases. Conse-
quently, recovering linear superpolies is not enough to mount a practical attack.
We aim to extend linear superpolies to low-degree superpolies in a practical
attack. To reduce the number of requests in the online phase, we construct a
mother cube and then search its subcubes. When constructing the mother cube,
we want a cube that has many low-degree subcubes and is as small as possible.
Therefore, we do not need to add some gentle IV variables that make the degree
of cube approach 1, and we only need the first stage of the algorithm in Section
2.5.

We modify the beginning and the end of the first stage. In [11], the authors
gave a method for determining starting cube sets. In fact, many starting cubes
meet the criteria. We consider selecting the cube with the smallest degree as a
starting set. In the end, because the iteration only adds a steep IV variable, the
degree of the cube drops to 0 quickly. Then, in the last iteration, the resulting
cubes with a non-zero degree are low-degree cubes. However, we want a mother
cube that contains many low-degree subcubes, not some cubes whose last vari-
able is different. Therefore, for the results of the last iteration, we select several
IV variables to add to the cube to get a large cube. Then, how many IV variables
to choose and which IV variables to choose is a matter for us to consider.

We focus on IV variables that reduce the cube to a lower degree, such as
IV variables with a cube degree less than five after being added. For example,
assuming there are five such IV variables, we will get ten new large cubes if we
combine the three and add them to the original cube. The algebraic degrees of all
subcubes with one less variable are evaluated for the ten large cubes. The large
cube is selected as the mother cube if it has the most subcubes of degree less
than 5. In particular, if the degrees of all subcubes are not small, for example,
greater than 4, it is considered that more IV variables are needed to reduce the
degree of the whole.

3.2 A method for searching low-degree subcubes

For the mother cube obtained in Section 3.1, the next step is to search for
valuable subcubes. In [14], Sun directly dealt with candidate subcubes to recover
the terms containing the secret variable ki in the subsystem to select the cube
that is more likely to have independent variable ki. However, when attacking
820-round Trivium, a mother cube of size 52 has many subcubes. If we deal
with them together and then judge, the time is unacceptable. One of the most
straightforward solutions is to divide the whole system into smaller subsystems,
making the search algorithm more inaccurate. Also, all subsystems have to be
tested, which can be time-consuming.

Among all subcubes, there will be some complicated cubes, which occupy
most of the solving time. Naturally, we tend to choose subcubes that are more
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likely to be valuable and solve faster. The algebraic degree is the most common
way to measure the complexity of a cube. It is generally agreed that low-degree
superpolies are easier to recover. In particular, low-degree superpolies are also
more likely to have independent variables. Therefore, we first evaluate the degree
of a subcube and then judge whether the subcube is valuable. Since the subcubes
are contained in a large cube, we can strategically evaluate algebraic degrees.
Our strategy is based on the following observation.

Observation 1. For a given cube I, the degree of most subcubes is higher than
the degree of I.

We do a simple experimental test and select ten large cubes. In all the sub-
cubes with one variable less, about 90% of the subcubes have higher degrees
than the original cube. Therefore, we use a deep-first-search strategy to evaluate
degrees.

Taking 815-round Trivium as an example, for a 47-dimensional cube, we
first enumerate the degrees of 46-dimensional subcubes. Then enumerate the
subcubes with one less variable for the cubes whose degrees are less than 5 in the
46-dimensional subcubes. Because of observation 1, it is difficult to get some low-
degree subcubes in a cube whose degree is greater than 5. Therefore, we always
enumerate subcubes with one less variable for low-degree cubes until there is
no cube whose degree is less than 5. Using this strategy, we can enumerate a
small number of subcubes and obtain the vast majority of low-degree subcubes,
effectively speeding up the search for low-degree subcubes.

3.3 A method for searching valuable subcubes

A large number of low-degree subcubes can be obtained using the method in
Section 3.2. The problem to be solved here is how to search for valuable cubes
among many low-degree subcubes. The natural idea is to test whether a spe-
cific secret variable ki is independent. This method only needs to compute the
monomials that involve the variable ki and is more efficient. However, Trivium,
for example, has 80 secret variables. If each secret variable is tested, it can be
more complicated than recovering the superpolies directly, so verifying all secret
variables for a cube is impractical.

Instead of pointlessly verifying all secret variables, we consider which vari-
ables need to be verified for a given cube. We note that the independent secret
variable is a linear term, and the existence of linear terms is necessary for a
superpoly to have independent secret variables. Therefore, if a superpoly does
not contain linear terms, we can reject it without error. If a superpoly contains
linear terms, we only need to verify that these variables are independent. Based
on this consideration, we give the criteria for the primary filtration of candidate
cubes.

The primary filtration. If the superpoly corresponding to a cube has no linear
term, then we can reject the cube.



An Experimentally Verified Attack on 820-Round Trivium (Full Version) 13

Table 2. Statistics the remaining cubes after filtering for 820-round Trivium

Dim #Cubes #Cubes with linear terms #Remaining cubes

51 31 7 3
50 78 30 17
49 364 157 77
48 195 96 54

total 668 290 151

Linear terms account for only a small part of the superpoly, so it is efficient
to recover all the linear terms of a cube. We make simple statistics on the low-
degree cubes of 820-round Trivium, and the cube with linear terms accounts for
about 40%. The specific data are listed in Table 2.

After we recover the superpolies of many subcubes, we find that these super-
polies have complex algebraic relations, that is, one superpoly may be generated
by the combination of other superpolies. Therefore, some linear terms occur fre-
quently in superpolies. We only need one superpoly containing the independent
secret variable for a linear term that occurs frequently. Therefore, we can also
do secondary filtering for cubes that contain the same linear term.

The secondary filtration. If the linear terms of the superpoly corresponding
to a cube have been recovered in linear or quadratic balanced superpolies, then
we can reject the cube.

For independent variables appearing in balanced superpolies of degree three
or more, we expect to obtain simpler superpolies. Therefore, we reject only the
independent variables previously obtained in linear or quadratic balanced super-
polies. In particular, to perform the secondary filtration more efficiently, we first
recover the cube with the lowest degree for all cubes with the same linear term.
In the fourth column of Table 2, we also list the remaining cubes filtered twice
during the practical recovery process. The details of our idea are described in
Algorithm 2.

When recovering the remaining cubes, we can use the observation given in
[14] that the higher-degree terms obtained by the subsystem will appear in the
superpoly with high probability. Therefore, we divide the whole system into
several subsystems to solve the superpoly. If the high-degree term related to
the linear term is obtained in a subsystem, then we can reject the cube. In the
practical recovery, the superpolies that we fully recover are all balanced.

4 Applications

In this section, we apply the new framework to Trivium. Practical attacks on
815- and 820-round Trivium are given. Due to the page limit, superpolies used
in this section can be found at https://github.com/LLuckyRabbit/search-for-
valuables-cubes/tree/main/superpolies/results.

https://github.com/LLuckyRabbit/search-for-valuables-cubes/tree/main/superpolies/results
https://github.com/LLuckyRabbit/search-for-valuables-cubes/tree/main/superpolies/results
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Algorithm 2 The algorithm of searching valuable cubes based on linear terms
Require: a set of low-degree cubes B = {I1, . . . , Ic} and the target round r
1: K ← ∅;
2: for I ∈ B do
3: Recover the linear terms of the superpoly corresponding to cube I;
4: L← linear terms variables;

/* Primary filtration and secondary filtration */
5: if L ̸= ∅ and L ̸⊂ K then
6: Recover the superpoly p corresponding to cube I;
7: if superpoly p is balanced then
8: Record cube I and superpoly p;

/* The independent secret variables corresponding to the simple superpoly is updated,
which can be used for secondary filtering. */

9: if deg(p) ≤ 2 then
10: K ← K∪{independent secret variables};
11: end if
12: end if
13: end if
14: end for

4.1 A practical key-recovery attack on 815-round Trivium

In this subsection, we target 815-round Trivium. According to the modified algo-
rithm for constructing the mother cube in Section 3.1, we obtain a set of indexes
I1, where

I1 = {0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 23, 25, 27, 29, 31, 33, 34, 35, 36,

37, 40, 41, 42, 43, 44, 46, 51, 53, 55, 56, 58, 59, 60, 61, 62, 66, 67, 69, 71, 73, 77, 79}.

The size of I1 is 47, so it only needs 247 requests to obtain all the values of
superpolies whose related cubes are from the subsets of I1.

In I1, there are 13 46-dimensional subcubes of degrees less than 5. In par-
ticular, there are three subcubes whose algebraic degree is evaluated as five and
whose corresponding superpolies are linear or constant. Therefore, we choose the
16 46-dimensional subcubes to continue enumerating their 45-dimensional sub-
cubes. If more balanced superpolies are needed, some 45-dimensional subcubes
are selected to evaluate the algebraic degrees of their 44-dimensional subcubes
until we get enough balanced superpolies. We obtain over 200 balanced super-
polies for 815-round Trivium and picked 35 to attack. These selected valuable
cubes and their corresponding independent secret variables are listed in Table
3, and the specific superpolies can be found on the GitHub website. There are
ten linear superpolies among them. As can be seen from Table 3, among the 35
balanced superpolies selected, 13 are from the 46-dimensional subcube I1\{44},
and 11 are from the 46-dimensional subcube I1\{67}. This shows that the im-
portance of subcubes is different.

To attack 815-round Trivium practically, we need a linearization method to
deal with nonlinear balanced superpolies. Consistent with the method in [14], we
first enumerate some variables to linearize the partial superpolies to obtain the
values of the new independent variables. Once the values of some independent
variables are deduced, they can be used to deduce the values of other independent
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Table 3. Valuable cubes for attacking 815-round Trivium

Cube indices Independent bits Cube indices Independent bits

I1\{58, 67} k23 I1\{44, 71} k33, k42, k51, k62
I1\{43, 67} k35 I1\{41, 44} k33, k38, k42, k49, k60, k65
I1\{19, 58, 67} k48 I1\{2, 42, 44} k4, k54
I1\{2, 44, 60} k35, k49 I1\{33, 67} k12, k39
I1\{35, 43} k35, k56 I1\{19, 67} k12, k31, k39, k40, k47, k67
I1\{2} k58 I1\{14, 41} k5, k14, k41, k42
I1\{41, 44, 67} k60 I1\{56, 58, 67} k25
I1\{58, 59} k62 I1\{58, 67, 71} k44, k53
I1\{3, 18} k43, k70 I1\{19, 44} k10, k19, k28, k37, k46, k55

I1\{3, 60} k43, k47, k70 I1\{33, 44, 66}
k6, k10, k11, k19, k20,
k28, k38, k47, k55, k72

I1\{0, 15, 41} k24, k37, k56 I1\{19, 33, 44} k8, k17, k26, k57, k59
I1\{42, 44, 46} k50, k51 I1\{44, 53, 67} k11, k20, k29, k47
I1\{3, 19, 44} k44, k56, k71 I1\{3, 29} k18
I1\{34, 41, 44} k6, k49 I1\{3, 14, 41} k22

I1\{36, 58} k7, k48 I1\{31}
k2, k24, k29, k47,
k49, k53, k56, k74

I1\{36, 43} k33 I1\{14, 33, 44} k3, k6, k30

I1\{43, 62, 67} k55 I1\{31, 67}
k3, k10, k12, k19, k21,
k27, k28, k66, k75

I1\{0, 2} k34, k47

variables iteratively. A toy example is given to illustrate this iterative deduction
in [14]. Firstly, we need to enumerate the values of 45 variables:

{k0, k1, k2, k3, k8, k9, k10, k11, k13, k14, k15, k16, k17, k19, k21, k27, k28,

k32, k36, k37, k39, k40, k41, k45, k50, k52, k54, k57, k59, k61, k63, k64, k65,

k66, k67, k68, k69, k70, k71, k72, k73, k76, k77, k78, k79},

and the complexity is 245. For each enumeration, the values of the remaining 35
variables can be deduced iteratively in the order:

{k23, k35, k48, k49, k56, k58, k60, k62, k43, k47, k24, k51, k44, k6, k7, k33, k55,

k34, k42, k38, k4, k12, k31, k5, k25, k53, k46, k20, k26, k29, k18, k22, k74, k30, k75},

and this deduction only costs constant time. The total attack complexity is 247+
245. On a PC with two RTX3090 GPUs, we mount a practical key-recovery attack
within six hours. Specifically, we use two GPUs to obtain the corresponding
values of all cubes in 3.2 hours and then use one GPU to guess and enumerate
all possible keys in about 2 hours. Finally, we successfully obtain the 80-bit
key. Comparing 808-round Trivium attack in [14], we increase the number of
attacked rounds by seven by adding only three IV variables. This also shows
that our search algorithm is more efficient.
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4.2 A practical key-recovery attack on 820-round Trivium

In this subsection, we target 820-round Trivium. Firstly, we construct a set of
indexes I2 of size 52, where

I2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 28, 29,

30, 31, 32, 34, 36, 37, 41, 43, 44, 46, 49, 52, 53, 55, 56, 59, 61, 62, 64, 66, 68, 72, 74, 76, 79}.

Using the search algorithm in Section 3, we obtain over 60 balanced superpolies
by searching some subcubes. In searching for valuable subcubes, we find that
most of the recovered linear terms are repeated, that is, there are very few sub-
cubes left after secondary filtering. Based on this discovery, we think that for the
mother cube, most of the independent secret variables contained in its subcubes
are obtained. It is not worthwhile to continue searching subcubes for the few
possible independent secret variables. However, by selecting superpolies and us-
ing the enumeration method described in Section 4.1, we can only recover about
the values of 20 variables. Therefore, in order to obtain some new independent
secret variables, we construct another set of indexes I3 of size 52, where

I3 = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 34, 36, 38, 39, 40, 41, 42, 46, 49, 51, 52, 53, 54, 55, 58, 61, 63, 66, 69, 72, 74, 76, 78}.

Since some simple balanced superpolies have been obtained in I2, we filter out a
lot of low-degree subcubes with linear terms in I3. Finally, we obtain more than
100 balanced superpolies containing 54 different independent secret variables us-
ing I2 and I3. By selecting 30 balanced superpolies, we can linearize the equation
system and perform a key-recovery attack on 820-round Trivium. These selected
valuable cubes and their corresponding independent secret variables are listed
in Table 4, and the specific superpolies can be found on the GitHub website.

First, for I2 and I3, it takes 253 requests to obtain all the values of these 30
superpolies. Next, we need to enumerate the values of 50 variables:

{k0, k1, k4, k5, k6, k7, k9, k11, k12, k15, k16, k17, k18, k19, k21, k22, k23, k24,

k28, k30, k31, k32, k33, k34, k35, k37, k38, k40, k41, k42, k44, k45, k46, k47, k48,

k49, k50, k52, k57, k59, k62, k64, k67, k68, k69, k71, k73, k76, k77, k78},

and the complexity is 250. For each enumeration, the values of the remaining 30
variables can be deduced iteratively in the order:

{k55, k61, k63, k51, k43, k27, k56, k58, k79, k25, k53, k54, k70, k39,

k29, k2, k36, k10, k72, k26, k13, k14, k60, k65, k74, k3, k75, k8, k20, k66},

and this deduction only costs constant time. The total attack complexity is
253+250. Because this calculation is the same as that in Section 4.1, we estimate
that the attack on 820-round Trivium could be completed in two weeks on the
same computer.
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Table 4. Valuable cubes for attacking 820-round Trivium

Cube indices Independent bits Cube indices Independent bits

I2\{66} k55 I3\{2, 14} k2, k29
I2\{4, 7, 62} k61 I3\{38, 54} k36
I2\{3, 13} k63 I2\{4, 20, 44} k10, k37
I2\{3, 26} k51, k78 I3\{51} k45, k72
I2\{3, 62, 66} k43, k51, k78 I2\{17, 53, 62, 68} k12, k26, k27, k39, k54
I3\{6, 42, 52} k27 I3\{18, 31} k13, k40
I3\{7, 9} k56 I3\{18, 24, 31} k14, k41, k68
I3\{7, 58} k58 I2\{1, 31} k33, k60
I3\{3, 7, 17} k52, k79 I2\{5, 62, 66} k38, k65
I3\{1, 3, 32} k25, k52 I3\{23, 38} k27, k47, k74
I2\{6, 29} k53 I3\{23, 52} k3, k63
I3\{18, 54} k27, k54 I3\{13, 63} k48, k75
I3\{27, 53} k43, k58, k70 I3\{21, 29, 55, 68} k8
I2\{53, 68} k12, k39, k63 I2\{14, 29, 37, 68} k20
I3\{6, 18, 29} k29 I2\{6, 21, 29} k66

5 Conclusion

In this paper, we focus on full key-recovery attacks on Trivium. A cube leading to
a special kind of balanced superpoly is called a valuable cube. We present a novel
framework to efficiently search for valuable cubes in cube attacks so that many
balanced superpolies can be collected. As applications, two attacks on 815- and
820-round Trivium are given with time complexity 247.32 and 253.17, respectively.
It is experimentally verified that the two attacks could be completed in six hours
and two weeks on a PC with two RTX3090 GPUs, respectively. Although the key
recovery process is practical, it seems unpractical to collect so many keystream
bits required in our attacks during online communication. Hence, we call our
attacks on 815- and 820-round Trivium experimentally verified attacks. Since
the idea of this new framework to search for valuable cubes is generic in cube
attacks, we believe that it is also helpful in cube attacks on other NFSR-based
cryptosystems.

When analyzing Trivium with some large number of rounds, e.g., 845, re-
covering only a linear term of a superpoly is already time-consuming because
of the large round number and large cube size. In this case, it is infeasible to
sieve several subcubes. Hence, targeting Trivium with more than 845 rounds is
worthy of working on in the future.
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