
Your Reputation’s Safe with Me:
Framing-Free Distributed Zero-Knowledge Proofs

Carmit Hazay
Bar-Ilan University

carmit.hazay@biu.ac.il

Muthuramakrishnan Venkitasubramaniam
Georgetown University
vmuthu@gmail.com

Mor Weiss
Bar-Ilan University

mor.weiss@biu.ac.il

Abstract

Distributed Zero-Knowledge (dZK) proofs, recently introduced by Boneh et al. (CRYPTO‘19),
allow a prover P to prove NP statements on an input x which is distributed between k verifiers
V1, . . . ,Vk, where each Vi holds only a piece of x. As in standard ZK proofs, dZK proofs guar-
antee Completeness when all parties are honest; Soundness against a malicious prover colluding
with t verifiers; and Zero Knowledge against a subset of t malicious verifiers, in the sense that
they learn nothing about the NP witness and the input pieces of the honest verifiers.

Unfortunately, dZK proofs provide no correctness guarantee for an honest prover against a
subset of maliciously corrupted verifiers. In particular, such verifiers might be able to “frame”
the prover, causing honest verifiers to reject a true claim. This is a significant limitation, since
such scenarios arise naturally in dZK applications, e.g., for proving honest behavior, and such
attacks are indeed possible in existing dZKs (Boneh et al., CRYPTO‘19).

We put forth and study the notion of strong completeness for dZKs, guaranteeing that true
claims are accepted even when t verifiers are maliciously corrupted. We then design strongly-
complete dZK proofs using the “MPC-in-the-head” paradigm of Ishai et al. (STOC‘07), provid-
ing a novel analysis that exploits the unique properties of the distributed setting.

To demonstrate the usefulness of strong completeness, we present several applications in
which it is instrumental in obtaining security. First, we construct a certifiable version of Ver-
ifiable Secret Sharing (VSS), which is a VSS in which the dealer additionally proves that the
shared secret satisfies a given NP relation. Our construction withstands a constant fraction of
corruptions, whereas a previous construction of Ishai et al. (TCC‘14) required k = poly (t). We
also design a reusable version of certifiable VSS that we introduce, in which the dealer can prove
an unlimited number of predicates on the same shared secret.

Finally, we extend a compiler of Boneh et al. (CRYPTO‘19), who used dZKs to transform a
class of “natural” semi-honest protocols in the honest-majority setting into maliciously secure
ones with abort. Our compiler uses strongly-complete dZKs to obtain identifiable abort.

Keywords: Distributed Zero Knowledge, Secure Multiparty Computation, MPC-in-the-head, Ver-
ifiable Secret Sharing, Identifiable Abort.

1

Contents

1 Introduction 2
1.1 Our Contribution . 4

1.1.1 Strongly-Complete dZK Proofs . 4
1.1.2 Applications . 6

1.2 Highlights of Our Techniques . 7
1.2.1 dZK Proofs From MPC-in-the-Head . 8
1.2.2 Certifiable VSS (cVSS) and Reusable cVSS . 11

1.3 Open Problems and Future Directions . 12
1.4 Paper Organization . 12
1.5 Related Works . 12

2 Preliminaries 16
2.1 Distributed Zero-Knowledge (dZK) Proofs . 17
2.2 Secure Multi-Party Computation (MPC) Protocols . 19

3 Checking Membership in a Robust Code 20
3.1 A Batched Verifiable Secret Sharing (VSS) Scheme . 24

4 dZK Proofs from Secure MPC Protocols 25
4.1 Instantiations and Extensions . 33

4.1.1 Revisiting [IKOS07] in the Distributed Setting 33
4.2 The Case of dZK Without Strong Completeness . 36

5 Applications 38
5.1 Certifiable Verifiable Secret Sharing . 38
5.2 Reusable cVSS . 44
5.3 From Semi-Honest Security to Identifiable Abort Via dZK Proofs 50

5.3.1 Security With Identifiable Abort . 50
5.3.2 MPC Terminology and Notation . 51
5.3.3 The Compiler . 52
5.3.4 Comparison With Previous Works . 56

6 Ideal dZK and Connections with Verifiable Relation Sharing 57
6.1 The Ideal dZK Functionality . 57
6.2 Connection between dZK and VRS . 60

1 Introduction

Zero-Knowledge (ZK) Proofs, namely proofs that yield nothing but their validity, are an essential
component of many cryptographic systems. Recently, [BBC+19b] introduced a distributed model
for ZK proofs which captures the types of proof systems that appear in many existing applica-
tion scenarios such as anonymous messaging [CBM15], verifiable function secret sharing [BGI16],
and systems for privately computing aggregate statistics [CB17]. This distributed model proved
particularly suited for proving honest behaviour in Multi-Party Computation (MPC) protocols
[BBC+19b, BGIN19, BGIN20, BGIN21].

ZK proofs. A standard ZK proof [GMR85] is a 2-party protocol between a prover P and a verifier
V . Both parties are Probabilistic Polynomial Time (PPT), and have a joint input x. The prover’s
goal is to convince V that x ∈ L for some language L (i.e., a subset of strings). When L is an NP
language, P is additionally given a witness for the membership of x in L. A ZK proof guarantees
the following properties. (1) Correctness, meaning if x ∈ L and both parties honestly follow the
protocol, then V outputs accept (with high probability). (2) Soundness, namely if x /∈ L then any
(possibly malicious and computationally unbounded) P∗ can only cause V to accept x with small
probability. (3) Zero Knowledge (ZK), guaranteeing that even a (possibly malicious and computa-
tionally unbounded) V∗ learns nothing from the execution, except that x ∈ L. In particular, V
learns nothing about the corresponding witness. This is formalized by requiring the existence of
a PPT simulator SimV∗ who on input x can simulate the entire view of V∗ – consisting of x, the
random coin tosses of V∗, and the messages it received from the honest P .

Distributed ZK (dZK) proofs [BBC+19b] generalize standard ZK proofs to a distributed setting
with multiple verifiers V1, . . . ,Vk, where the input statement x is distributed among them but no
verifier knows x in full. (For example, x could be a secret sharing of some secret, and each Vi
holds a share).1 Parties are connected via secure point-to-point channels as well as a broadcast
channel. In fact, our protocols have the additional feature that following the first round in which
the prover sends a single message to each verifier, all communication is over the broadcast channel
and private point-to-point channels are not needed (except in the first round).

The standard properties of completeness and soundness naturally extend to the distributed
setting, where completeness should hold when all parties are honest, and soundness should hold
against a cheating prover P∗ that colludes with a subset of at most t verifiers. As for zero knowl-
edge, in the distributed setting one would generally wish to hide not only the witness w, but also
the parts of the input statement held by the honest parties. More specifically, assume the input
statement x is distributed between the verifiers, where each verifier Vi holds an input piece x(i).
Then we require that a subset T ⊆ [k] , |T | ≤ t of possibly malicious verifiers learn nothing ex-
cept

(
x(i)

)
i∈T and the fact that x ∈ L, in the sense that there exists a PPT simulator Sim that can

simulate their entire view in the protocol given only
(
x(i)

)
i∈T .

Boneh et al. [BBC+19b] constructed such dZK proofs for NP whose communication is linear in
the size of the verification circuit, and additionally presented sublinear dZK proofs for structured
languages. (See Section 1.5 for further details.) A main feature of the dZKs of [BBC+19b] —
which is crucial to their applications for designing efficient MPC protocols — is having sublinear
communication between the verifiers. Notice that while generic MPC protocols could be used to
achieve dZK, they would not generally have this feature (see Section 1.1 for further details).

1Various works have considered other models, e.g., when security is only computational, or when the input state-
ment is known in full to all verifiers. These models are discussed in Section 1.5, but similar to [BBC+19b] our focus is
on information-theoretic security when the input statement is distributed between the verifiers.

2

Several recent works [BBC+19b, BGIN19, BGIN20, BGIN21] have demonstrated the usefulness
of dZK proofs towards constructing maliciously-secure MPC protocols, i.e., ones which guarantee
correctness of the outputs and privacy of the inputs of the honest parties, even when some parties
deviate from the protocol specification. This is done by transforming an MPC protocol Π with
semi-honest security – namely whose security only holds when all parties follow the protocol,
though corrupted parties might still try to learn information about the inputs of honest parties –
into a maliciously secure protocol Π̃. The high-level idea is to execute Π except for its final round (in
which the outputs are revealed), and use dZK proofs to prove honest behavior in this execution.2

In this context, “honest behaviour” of a party Pi roughly means that there exist an input xi and
random coins ri for which the messages that Pi sent to the other parties are consistent with xi, ri,
the messages Pi received from the other parties, and Π. This is an NP statement (with witness
xi, ri) which is distributed between the parties Pj , j ̸= i because Pj knows (only) the messages
exchanged between Pi,Pj , and is known in full to Pi.

“Framing-Free” dZK Proofs. In the 2-party setting, the properties of standard ZK proofs capture
all possible corruption models, namely no corruptions (completeness), corrupt prover (sound-
ness), or corrupt verifier (ZK). However, the corresponding properties of dZK proofs do not cap-
ture all possible corruption models in the distributed setting. Indeed, there is no guarantee for
an honest P when the dZK is executed in the presence of maliciously corrupted verifiers, and
in particular, such corrupted verifiers could potentially frame the prover, i.e., cause the proof
of a correct claim to fail. This corruption model was not explored in previous works on dZK
proofs [BBC+19b], and in fact maliciously corrupted verifiers can frame the prover in their con-
structions. We note that the dZKs of [BBC+19b] do implicitly provide a partial guarantee in this
case, since P is able to identify cheating verifiers.3 However, the best one can do in this case is to
identify a pair of parties – namely P and one of the verifiers Vi – such that at least one of them
is corrupted, but it is impossible to determine which one. In particular, one cannot deduce that
x ∈ L, otherwise this would lead to a successful soundness-violating cheating strategy for P col-
luding with a verifier Vi: “sacrifice” Vi by causing an inconsistency between P and Vi, which will
lead the other verifiers to (falsely) conclude that x ∈ L.

A “framing-free” guarantee is desirable since such situations naturally arise in applications of
dZK, e.g., when using dZK proofs to prove honest behavior in MPC protocols as discussed above,
and more generally in distributed systems over shared data. Indeed, when an MPC protocol
Π is executed with a subset T of corrupted parties, the dZK proof of an honest Pi, i /∈ T will
be executed in the presence of corrupted verifiers (namely, the parties in T). In previous works
applying dZK to prove honest behavior [BGIN20, BGIN21], the “solution” is to have the prover
identify a cheating verifier whenever the proof fails, and then disqualify both parties from the
next protocol execution. This “player elimination” techniques is standard in protocol design (and
can even be used to obtain guaranteed output delivery), but it gives no indication as to which of
the eliminated parties is corrupted. For an honest party who was eliminated from the execution in
this manner, the fact that the computation can be successfully completed without it might provide
little consolation.

In particular, a protocol in which framing is possible encourages attacks where the adversary
targets honest parties and disqualifies them, thus excluding their inputs from the computation and
consequently biasing the outcome. This is of particular importance in settings – such as voting,

2More specifically, this paradigm applies to a class of natural protocols which guarantee, among other things, that
privacy is preserved up to the final round even in the presence of malicious corruptions; see Section 5.3.2.

3Roughly, this holds in their protocols because the verifiers do not have any private coins, and P knows the entire
input statement x.

3

auctions, and secure aggregation – in which elimination harms the reputation of the eliminated
party, or when a biased outcome has severe consequences. Moreover, player elimination is only
useful when there are repeated executions (or multiple phases) of the protocol, which is not the
case in some of the application scenarios in which framing arises (see further discussion in Sec-
tion 5).

Thus, “framing-free” dZK proofs are motivated not only by the goal of guaranteeing security
against all possible corruption patterns, but also because such attacks naturally arise in many
application scenarios of dZK.

1.1 Our Contribution

We put forth a strong completeness notion for dZK proofs which guarantees that honest provers
cannot be framed. More specifically, we define t-strong completeness which guarantees that when
the prover is honest and the verifiers hold pieces of an x ∈ L then all honest verifiers accept the
proof, even in the presence of a subset of t maliciously-corrupted and computationally-unbounded
verifiers. In terms of communication, we distinguish between the proof generation phase in which
the prover distributes the proof among the verifiers (with no communication between the veri-
fiers), and the verification phase in which the proof is verified. Our goal is for the total communica-
tion complexity during verification to be independent of the computation size (ideally, polynomial
in the number of verifiers, the security parameter, and log |x|). We call such protocols verification
efficient. This feature is especially important when verifiers are lightweight devices and stable
communication between a large number of verifiers in not available. A related attractive fea-
ture that our protocols provide (in certain settings) is that verifiers require small space to process
and verify the proofs. Our protocols will have the added feature that all communication during
verification is only through broadcasts.

1.1.1 Strongly-Complete dZK Proofs

We construct strongly-complete dZK proofs by employing the so-called “MPC-in-the-head”
paradigm [IKOS07]. Specifically, we construct strongly-complete dZK proofs from an MPC proto-
col Π with t-privacy – namely, in which secrecy of the honest parties’ inputs holds in the presence
of t semi-honest corruptions – and t-robustness (which, roughly, guarantees correctness of the
honest parties’ outputs in the presence of t malicious corruptions, see Definition 2.8).

Our construction is informally summarized in the following theorem, where an uncondition-
ally secure t-dZK is a dZK proof system with completeness, strong completeness, soundness, and
zero-knowledge (as informally defined above) in the information-theoretic setting in the presence
of t corruptions; L̂ for an NP-language L consists of all robust encodings of x ∈ L (e.g., encod-
ing x using an error correcting code with good distance);4 and a dZK proof system is verification
efficient if the total communication complexity during verification if poly (k, κ, log |x|) where k
denotes the number of verifiers and κ is a security parameter.

Theorem 1.1 (dZK from MPC-in-the-head – informal statement of Theorem 4.1). Let t, k ∈ N such
that k > 6t+ 2. Let L be an NP-language, and let Π be a perfectly correct, t-private and perfectly t-robust
k-party protocol verifying membership in L̂. Then assuming ideal coin-tossing, there exists a 2-round
unconditionally-secure verification-efficient t-dZK for L̂.

4Notice that the dZK proof is for input statements that are distributed between the verifiers using a robust encoding.
[BBC+19b] make the same assumption. The reason to focus on such languages is because they show [BBC+19a, Sec.
6.3.2] limitations on the existence of dZK proofs for languages that are not robustly encoded.

4

Moreover, the total proof length in our dZK proof system is qusilinear in the size of the circuit
verifying membership in L, and can be reduced to linear by increasing the round complexity to
3 (see Corollaries 4.3 and 4.5). Furthermore, we define the ideal dZK functionality and show that
our constructions realize it (see Section 6).

We note that while strong completeness can be obtained fairly easily in the computational set-
ting using standard tools such as commitments and signatures, obtaining it in the information
theoretic setting seems significantly harder. Specifically, in the computational model the prover
can commit to its messages to the verifiers, and parties can then prove consistency with respect to
these commitments. (This is exactly the method used to obtain strong completenss in the GMW
compiler [GMW87].) Achieving strong completeness information theoretically is much harder
since the prover is not committed to its messages to the verifiers.

Theorem 1.1 gives an alternative approach towards designing dZK proofs (even with-
out strong completeness) compared to previous works [BBC+19b], who relied on fully-linear
probabilistically-checkable proofs and fully-linear interactive oracle proofs. One advantage of our
approach is that the general construction of Theorem 1.1 can be instantiated with various MPC
protocols to obtain dZK proofs with different tradeoffs between the parameters. This is partic-
ularly appealing since one could potentially leverage the major research effort devoted towards
optimizing MPC protocols, and employ it to obtain dZK proofs whose parameters are optimized
for specific applications. We demonstrate this versatility of our approach by instantiating our
general transformation with two different MPC protocols, obtaining dZK proofs with different
parameters. See Section 4.1 for further details.

The proof of Theorem 1.1 uses a novel analysis for MPC-in-the-head, exploiting the distributed
setting, as well as a novel protocol for batched verifiable secret sharing. Both of these might be of
independent interest. See Sections 1.2, 3, and 4 for further details.

dZK Proof Systems Without Strong Completeness. As noted above, our construction gives an
alternative approach towards designing dZK proof systems. To demonstrate this, we describe a
scaled-down variant of our construction without strong completeness (i.e., in the same security
model as that considered in [BBC+19b], and relying on the same assumption of ideal coin tossing)
with an improved corruption threshold. This gives an alternative approach towards designing
dZK proofs without strong completeness.

Theorem 1.2 (dZK Without Strong Completeness – informal statement of Corollary 4.6). Let t, k ∈
N such that k > 2t + 2. Let L be an NP-language, and let Π be a perfectly correct, t-private and perfectly
t-robust k-party protocol verifying membership in L̂. Then assuming ideal coin-tossing, there exists a
2-round unconditionally-secure verification-efficient t-dZK for L̂without strong completeness.

dZK from Generic MPC Protocols. An alternative route towards designing dZK protocols is
to view dZK as an ideal functionality (see Section 6 for further discussion of this functionality),
and then use generic fully-secure MPC protocols to instantiate it. In slightly more details, such a
functionality would take as input each verifier’s input piece, as well as all input pieces and the
witness from the prover. Then, it will check that: (1) for at least k − t of the verifiers, the input
pieces they provided are consistent with the input pieces the prover provided; and (2) the input
pieces define an instance in the relation. While this gives a generic mechanism for constructing
strongly-complete dZK proofs, unfortunately, it does not yield verification efficient dZKs. Indeed,
even when the most communication-efficient protocols (e.g., [DI06]) are used to instantiate the
ideal dZK functionaility, the total communication between the verifiers will be proportional to the
size of the circuit verifying the relation. In contrast, in our protocol, following the initial proof

5

generation phase, the communication between the verifiers is independent of the circuit size. (See
Section 1.5 for further details and comparison with generic MPC protocols.)

1.1.2 Applications

We demonstrate the usefulness of strong completeness by showing several applications of dZK
proofs in which strong completeness is crucial.

Verifiable Secret Sharing (VSS) and Extensions. A (robust) t-private secret sharing scheme al-
lows an honest dealerD to distribute a secret x between a k parties P1, . . . ,Pk, such that any t par-
ties learn nothing about x, but when all parties come together they can reconstruct x even in the
presence of t maliciously corrupted parties. a Verifiable Secret Sharing (VSS) scheme additionally
guarantees soundness against a corrupted dealer colluding with t parties. Specifically, it guaran-
tees that the secret shares define some secret x∗ which the honest parties will reconstruct regardless
of the shares that the corrupted parties provide during reconstruction. Ishai and Weiss [IW14] put
forth the notion of Certifiable VSS (cVSS) which additionally guarantees that x is in some NP lan-
guage L (and, when the dealer is corrupted, that x∗ ∈ L). They construct such schemes based on
zero-knowledge probabilistically checkable proofs of proximity, in which t = kε for a small ε < 1.

We use strongly-complete dZK proofs to construct cVSS schemes, in which the corruption
threshold is “inherited” from the underlying dZK. Specifically, using the dZKs of Theorem 1.1, we
obtain t < (k− 2)/6. Very roughly, the high-level idea is for the dealer to share x using a standard
secret sharing scheme, and then have all parties engage in a dZK proving that the input pieces
held by the parties share an x ∈ L. We note that strong completeness is essential for obtaining
correctness, which in VSS and cVSS is required to hold for an honest dealer even if t parties are
maliciously corrupted. Indeed, if the underlying dZK does not have strong completeness then
corrupted parties who actively cheat during the dZK proof can cause it to fail, thus violating
correctness. See Section 5.1 for further details.

We also introduce a reusable variant of cVSS, in which the dealer can prove that x ∈ Li for
a sequence of NP-languages Li. In particular, there is no bound on the number of languages Li,
which are determined (i.e., provided to the dealer and all other parties) in an online fashion, and
all membership claims are proven with relation to the same secret x. We construct reusable cVSS
schemes from strongly-complete dZK proofs in Section 5.2.

MPC with Identifiable Abort (IA-MPC). Aborts pose a major obstacle in the malicious corruption
setting, or even when parties are honest but have poor network connections. Indeed, a deviat-
ing/crashed party could potentially cause the entire computation to fail. The natural mitigation
against such “denial-of-completion” attacks is to support Identifiable Abort (IA), i.e., when the exe-
cutions fails to complete, the parties can (publicly) identify at least one malicious/crashed party.

We use strongly-complete dZK proofs to transform a class of “natural” protocols that are secure
in the semi-honest setting (in which even corrupted parties follow the protocol) to protocols that
guarantee security with identifiable abort in the presence of malicious corruptions. This class of
“natural” protocols was introduced by [BBC+19b], who used dZK proofs without strong complete-
ness to transform such protocols into maliciously-secure protocols with (non-identifiable) abort.
Thus, our compiler shows that strong completeness can be used to obtain identifiable abort. This
result is summarized in the following theorem (see Theorem 5.4 for the formal statement and
Definition 5.4 for the definition of a natural protocol):

Theorem 1.3 (IA-MPC from Natural Protocols – Informal). Let t, k ∈ N such that k > 6t + 3, and
let Πnat be a natural k-party protocol computing a function f in the presence of t semi-honest corruptions.

6

Then assuming ideal coin tossing, there exists a protocol Π which securely computes f with identifiable
abort in the presence of t malicious corruptions.

Our compiler is very similar to the compiler of [BBC+19b]. Their main observation is that dZK
proofs can be used to replace the standard ZK proofs used in GMW-style compilers [GMW87],
and in fact seem to be a more natural tool in this context. Indeed, the ZK proofs are used to prove
honest behavior in an execution of a semi-honest protocol, and this task exactly requires running
a zero-knowledge proof on a distributed input.

More specifically, the high-level idea of our compiler is to execute all rounds of Πnat except
the final round, then run dZK proofs attesting to the honest behavior of all parties during this
execution, before executing the final round of Πnat to reveal the output. One notable property of
our compiler is that the compiler itself does not use any broadcasts. In particular, all broadcasted
messages in Π are either broadcasts of Πnat or of the underlying dZK proofs. When instantiated
with our dZK proofs of Theorem 1.1, the number of broadcast bits introduced by the dZK proofs
could be as low as k2polylog (CC (Πnat)), where CC (Πnat) denotes the communication complexity
of Πnat. We note that the use of broadcasts is inherent to obtaining identifiable abort [CL14].
Previous works obtaining identifiable abort either built on specific maliciously-secure protocols
that use a broadcast channel for every multiplication gate, or increased the number of broadcasts
to equal the number of multiplication gates. This includes the generic compiler from [IOZ14]
discussed next.

Our compiler gives an alternative, conceptually simple, approach towards transforming pro-
tocols with semi-honest security into maliciously-secure protocols with identifiable abort in the
information-theoretic setting, compared to an existing compiler of Ishai, Ostrovsky and Zikas
[IOZ14]. These approaches result in incomparable compilers. Specifically, the compiler of [IOZ14]
works in the correlated randomness setting, transforming any semi-honest secure protocol into
a maliciously-secure protocol with identifiable abort, by broadcasting every message of the semi-
honest protocol (and proving honest behavior with relation to the broadcasted messages). Our
compiler works only for “natural” protocols, but uses much fewer broadcasts. See Sections 1.5
and 5.3.4 for further discussion and comparison of these compilers.

“Framing-Free” Proofs on Committed or Secret-Shared Data. [BBC+19b] use dZK proofs to con-
struct proofs on secret shared data. Special cases of such proofs have been considered in several
recent works, e.g., [BGI16, CB17]. Roughly, they allow a client to secret share a (potentially large)
input x among multiple servers, and then prove to the servers that x satisfies various NP state-
ments. The construction from dZK is conceptually simple: the client plays the role of the dZK
prover, and the servers play the role of the verifiers. The client first shares x using a robust secret
sharing scheme, and distributes the shares between the servers. The client and servers can then
engage in multiple dZK executions to prove various NP statements on x. Instantiating this con-
struction with our strongly complete dZK proofs yields “framing-free” proofs on secret shared data,
namely in which a subset of corrupted servers cannot cause the proof of a true statement to fail.
This strengthens the proofs obtained in [BBC+19b] (based on dZKs without strong completeness),
which do not provide this guarantee.

1.2 Highlights of Our Techniques

In this section we highlight the main techniques used to obtain our results.

7

1.2.1 dZK Proofs From MPC-in-the-Head

Our dZK proofs are based on the MPC-in-the-head paradigm, introduced by [IKOS07] in the con-
text of constructing (standard) ZK proofs. The high-level idea of the paradigm is that an MPC
protocol Π computing a predicate “x ∈ L” for some NP language L and some public x (where
the corresponding NP witness w is secret-shared between the parties executing Π), can be used
to design a ZK proof for the membership of x ∈ L. Indeed, an honest execution of Π on x will
result in output 1 if and only if x ∈ L. Moreover, a main observation made in [IKOS07] is that
verifying that Π was honestly emulated – i.e., that the views of all parties participating in Π are
globally consistent – can be done by checking pairwise consistency of the views. (The view of a
party consists of its input, random coins tosses, and the messages it received from other parties in
the execution.) That is, if the set of all parties’ views does not correspond to an honest execution
of Π on x, then there is a pair of parties whose views are inconsistent with each other.

This observation immediately gives rise to the following proof system: the prover P emulates
“in its head” the entire execution of Π on x (and the shares of w), and commits to the views of all
parties in this execution. The verifier V then picks a pair of parties whose views P opens, and V
accepts if these views are pairwise consistent, and these parties output 1 in the execution. Thus,
soundness follows from the (perfect) correctness of Π, whereas if Π is private against semi-honest
corruptions then the proof is also ZK, because the verifier learns only a pair of views in Π, and
these reveal only two secret shares of the witness w which, in turn, reveal no information about w.

The resultant proof system has a large soundness error, i.e., the probability that V accepts false
claims is large. [IKOS07] then show how to reduce the soundness error by relying on a stronger
correctness guarantee – known as robustness – which holds even in the presence of malicious cor-
ruptions. Roughly, robustness means that if x /∈ L then even maliciously-corrupted parties cannot
cause honest parties to output 1 in Π. In particular, while V might not open a pair of inconsistent
views during verification (since V opens only a small subset of views), still robustness guarantees
that cheating that occurred in the un-opened views cannot “propogate” and cause honest parties
to accept a false claim in the execution. Consequently, if x /∈ L then the output reported in the
honest parties’ views which V opened will be 0, and so V will reject. This should be contrasted
with the basic construction described above – using Π that is only secure against semi-honest cor-
ruptions – in which V rejects only if it opened a pair of inconsistent views, namely the view of a
corrupted party.

Novel Verification for MPC-in-the-Head in Distributed Settings. Our dZK proofs employ the
MPC-in-the-Head paradigm, using a novel verification procedure that exploits the properties of
the distributed setting.5 Specifically, the proof is executed between a prover P that knows x and
a corresponding NP witness w, and k verifiers V1, . . . ,Vk, where each Vi holds a piece x(i) of the
input x (and P knows all input pieces). To simplify the presentation, we describe here a simplified
dZK proof in the correlated randomness model, in which an honest party samples ahead of time a
random string R = (R1, . . . , Rk) from a pre-defined distribution D, and gives Ri to Vi. We explain
below how to remove this assumption. We stress that the final dZK proof (Figure 3 in Section 4) is
in the plain model and does not use correlated randomness.

The dZK proof proceeds as follows. The correlated randomness consists of (long) random
masks rij for every pair of verifiers Vi,Vj , where Ri = (rij)j ̸=i,j∈[k]. The prover emulates “in its
head” a k-party protocol Π computing the predicate

(
x(1), . . . , x(k)

)
∈ L as in the 2-party ZK proof

described above. However, instead of committing to the views, P sends the i’th view to Vi. The

5See Section 1.5 for a comparison between our construction and other constructions using this technique in the
two-party and in other distributed settings.

8

parties then jointly execute the following verification procedure:

1. Each Vi checks local consistency of its view, namely that the input reported in the view is x(i),
and that the output of the ith party given this view is 1. If the view is not locally consistent
then Vi broadcasts a complaint against the prover. Let C1 denote the set of verifiers that
complained against the prover.

2. Each pair Vi,Vj check pairwise consistency of their views by comparing the messages ex-
changed between parties i, j in Π.6 This pairwise consistency check is done publicly, by
having Vi,Vj broadcast the values to be compared, masked using rij .

3. The prover broadcasts complaints against verifiers who broadcasted incorrect messages in
Step 2. Let C2 denote the set of verifiers against whome the prover complained.

4. Finally, each verifier Vi determines its output as follows. If |C1 ∪ C2| > t, or there exist
i, j /∈ C1 ∪ C2 who broadcasted inconsistent messages in Step 2, then reject. Otherwise,
accept.

We note that while this describes the main steps in the dZK proof, the actual construction
is more involved, in several respects. First, to reduce the communication complexity, instead of
sending in Step 2 all the messages exchanged in Π, the verifiers send information-theoretic MACs
of these values. More specifically, the messages exchanged between i, j are interpreted as the
of coefficients of a univariate polynomial, and the MAC is the evaluation of this polynomial at
a random point (see Step 3 in Figure 3). This requires the verifiers to jointly sample a random
element of a sufficiently large field. The resultant protocol therefore uses an ideal coin-tossing
functionality as in [BBC+19b] (and makes minimal use of it). Second, by using MACs we can
eliminate the correlated randomness and have the prover provide random masks as part of the
proof, and moreover each mask will consist of a single field element. Since the random masks are
chosen before the MAC key is sampled, inconsistent views will, with overwhelming probability,
result in inconsistent MACs, even when the prover chooses the masks.

Finally, the input pieces held by the verifiers should constitute an encoding of the underly-
ing input x in some robust code, and the parties need to verify that their input pieces are in-
deed “close” to a valid encoding. This is done using a standard technique for batch-testing
of code membeship. Specifically, the verifiers broadcast a random linear combination of the
codeword symbols they hold, which they also mask with a random codeword (masking is
needed to guarantee ZK). Soundness of this test has been studied in several previous works
[AHIV17, BBHR18, BCI+20] (and plays an important role in improving the concrete efficiency
of succinct ZK arguments). However, relying on the analysis directly in our distributed setting
will not guarantee strong completeness (only identifiable abort). We refine this soundness anal-
ysis to apply in the distributed verification setting while guaranteeing strong completeness. See
Section 4 for further details and the full construction.

We note that the dZK proofs of [BBC+19b] also require the input pieces to form a robust encod-
ing, and they show [BBC+19a, Sec. 6.3.2] some limitations on the existence of dZK proofs when
the input statement is not robustly encoded, at least when security should hold against collusions
of the prover and verifiers, as we consider in this work.

The Security Analysis. Proving security of our dZK proof is more complex than in standard (in
particular, 2-party) settings of MPC-in-the-Head, and requires a novel analysis which combines

6The messages sent from party i to party j appear explicitly in the view of party j, and the messages it sent to party
i can be computed from its view.

9

techniques from the VSS literature. Intuitively, this is because while in the analysis of ZK proofs
such as those of [IKOS07] the verifier can safely reject if an inconsistency is detected, we cannot
immediately reject because inconsistencies might be due to corrupted verifiers trying to “frame”
an honest prover (and so rejecting in this case would violate strong completeness). Thus, the
strong completeness guarantee leads to a much more intricate soundness analysis.

Proving strong completeness is fairly simple, and it follows from the fact that all complaints
arise from the corrupted parties. That is, either a corrupted party falsely complaining that its view
is not locally consistent, or a corrupted verifier broadcasting an incorrect MAC in Step 2, causing
the prover to complain against it. Thus, we will have |C1 ∪ C2| ≤ t in Step 4, and all other parties’
views will be pairwise consistent, so all honest verifiers will accept.

The soundness analysis, however, is much more involved. At a high level, it proceeds by show-
ing that if

(
x(1), . . . , x(k)

)
/∈ L then there exists a subset H of parties which constitutes an honest

majority in the execution of Π with input pieces
(
x(1), . . . , x(k)

)
, and therefore their outputs in Π

would be 0. Thus, the checks performed in Step 4 would fail and all honest verifiers would reject.
More specifically, in the analysis we gradually eliminate verifiers (alternatively, parties in Π, since
there is a correspondence between the dZK verifiers and the parties in Π) until we are left with
the set H. We stress that unlike MPC applications employing the “player elimination” technique,
we do not actually eliminate any verifier from the computation, but rather this “elimination” is only
done in the analysis. Moreover, an “eliminated” verifier is not necessarily corrupted – for example,
it might be an honest verifier who received an incorrect view from the prover – but rather these
are verifiers whose views in Π might not correspond to honest strategies, and therefore cannot be
relied on for verification.

More specifically, the set H is obtained as follows. First, since the verifiers check that their
input pieces are close to a valid codeword, if the test passes then we are guaranteed that the input
pieces of the honest verifiers are at most t-far from the code, in the following sense. There exists a
subset T, |T | ≤ t of honest verifiers, and a valid codeword, such that the input pieces of all honest
verifiers i /∈ T are identical to the corresponding pieces of the codeword. (Intuitively, the parties
in T hold “incorrect” input pieces.) We then eliminate the verifiers in T .

Next, in the remaining set of ≥ k − t verifiers, there are at most t corrupted verifiers (i.e.,
corrupted in the dZK), and we eliminate them as well. These verifiers need to be eliminated
because they cannot be relied on to honestly check their views. In particular, they might not
complain against the prover, even if their output in Π is 0, or they might cheat in Step 2, sending
messages which are not actually consistent with their views. We note that the existence of such
corrupted verifiers in the dZK execution is also the reason that we need to rely on robust MPC
protocols even though we seemingly check all views in Π (indeed, the views held by the corrupted
verifiers are never checked). Finally, we eliminate the (at most t) verifiers in C1 ∪ C2.

We thus remain with ≥ k − 3t honest verifiers, whose views are both locally and pairwise
consistent. Their views therefore correspond to an execution of Π on

(
x(1), . . . , x(k)

)
with an honest

majority (when k > 6t+2), and so the robustness of Π guarantees that the outputs of these parties
must be correct. (This description is a gross over simplification of the actual analysis, see Section 4
for further details, and for a clarification why we need k > 6t+ 2 instead of k > 6t.)

Finally, our verification procedure provides a strong ZK guarantee – verifiers learn nothing
beyond the view of the corresponding party in Π (whereas in [IKOS07] the verifier learns multiple
views).

10

1.2.2 Certifiable VSS (cVSS) and Reusable cVSS

Certifiable VSS (cVSS) schemes follow naturally from strongly-complete dZK proofs, using a stan-
dard robust secret sharing scheme. Specifically, in a t-robust secret sharing scheme, reconstruction
succeeds even if t parties provide incorrect shares. We note that many standard VSS schemes em-
ploy robust secret sharing as a building block. Moreover, as discussed in Section 1.2.1, robustly
encoding the input seems necessary in dZKs with security against coalitions of the prover and a
subset of verifiers.

Our cVSS scheme for an NP-language L consists of a dealer D and k parties P1, . . . ,Pk. The
dealer shares its secret x using the robust secret sharing scheme, and distributes the shares among
the parties. The parties then run a “code membership” test to check that their shares are “close”
to a valid secret sharing of some secret. Then, the parties execute a dZK, in which Pi’s input
piece is its share, attesting to the fact that the shared secret is in L. If the dZK fails then the
parties revert to some fixed sharing of an arbitrary x∗ ∈ L. Reconstruction is performed by simply
running the reconstruction procedure of the underlying secret sharing scheme (and correcting
errors if necessary). The strong completeness of the dZK guarantees that when the dealer is honest,
corrupted parties cannot “frame” the dealer during the dZK test. Since the code membership
test has a similar strong completeness guarantee, the cVSS is correct (in the presence of t active
corruptions).

Our cVSS scheme is incomparable to the cVSS of [IW14]. Specifically, the communication dur-
ing the verification part of their sharing phase (i.e., the part corresponding to executing the code
test and the dZK in our cVSS) is polylogarithmic in the total number of parties, and the total
communication during sharing is linear. In contrast, when instantiated with the dZK proofs of
Theorem 1.1, the communication of our cVSS scheme during sharing would be at least quadratic.
However, to contend with t corruptions, the number of parties in the cVSS of [IW14] must be a
(large) polynomial in t, whereas our cVSS has k = O (t). Therefore, in many settings, our cVSS
might have lower overall communication complexity due to the smaller number of parties it em-
ploys. Moreover, our cVSS can be generalized to the reusable setting, as we now discuss.

Reusable cVSS. We generalize the notion of cVSS to allow the dealer to prove multiple NP state-
ments – which are determined in an online fashion – on the same shared secret, using the same
secret shares. In particular, the scheme now includes a Prove phase that can be executed following
the Sharing phase an unlimited number of times. In each Prove phase the parties are given an
NP language L, and D is additionally given a corresponding witness, and the dealer proves to the
parties that the secret their shares encode is in L.

We note that several subtleties arise when defining reusability, and in particular, reusabe cVSS
is not a strict strengthening of cVSS. The main reason for this is that since during the Sharing phase
the parties still do not know all the NP languages which will be used during the Prove phases, we
cannot generally guarantee that the secret x which the shares will reconstruct to will be in all NP
languages (and in fact, it might be the case that there exists no such x). Instead, binding only
guarantees that when the Sharing phase terminates, even a malicious dealer D∗ is committed to
some secret x, but there is no further guarantee on x. Binding additionally guarantees that D∗
cannot prove false claims about x, namely if x /∈ L then an execution of the Prove phase with
language L will fail. This should be contrasted with standard cVSS which isn’t reusable, i.e., it
can be executed only for a single NP language L, but whose binding property guarantees that the
secret x which will be reconstructed, satisfies x ∈ L. Further subtleties are discussed in Section 5.2.

Our reusable cVSS scheme operates similarly to the cVSS scheme described above. Specifically,
to share x the dealer secret shares it using a robust secret sharing scheme, and the parties then run
a code membership test on the shares. Each Prove phase with NP language L consists of running

11

a dZK for the claim that the shares reconstruct to a secret in L, and reconstruction is by running
the reconstructor of the underlying secret sharing scheme. See Section 5.2 for further details.

1.3 Open Problems and Future Directions

Our work gives rise to many interesting questions in the context of dZK and MPC-in-the-Head.
First, we did not explore the possibility of obtaining more efficient constructions for simple NP
languages, e.g., with low degree. In particular, using an appropriate MPC instantiation, it might
be possible to design special-purpose dZKs for simpler languages, with sublinear communication
complexity and improved computational complexity. Round complexity is another important
complexity measure. Our construction achieves a 2-round dZK assuming ideal coin-tossing, and
leaves open the question of proving this is optimal, or further improving the round complexity as
in the computational setting for related proof systems [AKP22]. Finally, it would be interesting to
find further applications of dZK proofs, and in particular of strongly-complete ones.

1.4 Paper Organization

In Section 2 we introduce basic preliminaries. In Section 3 we analyze our batch code membership
test. In Section 4 we present our dZK proof construction. In Section 5 we present applications of
strongly-complete dZK, and in Section 6 we discuss the connection between dZK and Verifiable
Relation Sharing (VRS).

1.5 Related Works

Zero-Knowledge Proofs in Distributed Settings. The notion of ZK in distributed settings has
been extensively explored in a recent sequence of works [CBM15, CB17, BBC+19b, BGIN20,
BGIN21]. The motivation for such models is that they present a useful abstraction that captures
many scenarios naturally arising in distributed computation. The first two works discussed how
to embed distributed ZK into real-world applications such as anonymous broadcast messaging
practical at a large scale [CBM15], and a federated learning system, denoted by Prio, with input
certification to securely compute aggregate statistics [CB17]. The latter system has been deployed
in various real world scenarios. For instance, Mozilla uses a modified version of Prio to privately
collect web usage statistics, and Apple and Google use Prio for their exposure notifications express
(ENX) system. Nevertheless, the model considered for both [CBM15, CB17] is limited because they
assume that the verifiers are semi-honest, and moreover they only consider a specific functionality.
On the other hand, their dZKs achieve information-theoretic security.

Different settings have been considered in this context, depending on whether the input state-
ment is known in full to all verifiers (starting with the work of [BD91], and more recently in, e.g.,
[GO07, YW22, BJO+22, AKP22]), or distributed between them (as in the distributed ZK proofs
discussed below); and whether the resultant scheme is information-theoretically, or only compu-
tationally, secure while optimizing different parameters of the proof system.

Another related model is that of Verifiable Relation Sharing (VRS) [GIKR02], which is similar
to the model of dZK proofs considered in this work, in the sense that the input statement is dis-
tributed between the verifiers, but differs from it because the prover chooses the statement and
the verifiers’ shares (whereas in dZK proofs the prover has no control over the input statement).
Works on VRS [GIKR02, AKP20a, AKP22] consider both the information theoretic [GIKR02] and
the computational setting [AKP20a, AKP22], with progressively improving corruption thresholds.

12

Specifically, the VRS of [GIKR02] is for k ≥ 6t, which the latter pair of works improved by mov-
ing to the computational setting. More specifically, [GIKR02] obtain a 2-round perfectly-secure
VRS protocol whose communication complexity (and in particular, the communication between
the verifiers) scales with the circuit size. This protocol can be made to be verification efficient
(i.e., where the communication between the verifiers is independent of the circuit size) using the
MAC-based verification techniques used in our dZK proofs. This requires coin tossing, and also
relaxing security to statistical. [AKP22] obtain a 2-round VRS with computational security against
t < (k − 1)(1/2 − ε) for an arbitrarily small ε > 0, assuming non-interactive commitments (their
protocol is not verification-efficient).7 Their result extends to any single input functionality, resolv-
ing the round complexity of such functionalities. (As noted in Section 1.3, the round complexity
of dZK – which is not a single input functionality – is not yet resolved for optimal thresholds.)

It is instructive to note that this difference in who chooses the input statement makes VRS
and dZK incomparable. Indeed, dZK can be used to prove correctness “after the fact” (namely,
after the parties already have their inputs fixed), while in VRS the prover chooses the inputs.
Therefore, when used in settings when parties already hold their inputs, VRS necessitates some
external mechanism for verifying consistency of the parties’ inputs, and the inputs provided by
the prover.8 On the other hand, both primitives can be useful in constructing similar applications,
such as the certified VSS primitive discussed above. We note that while VRS can also be used
to obtain IA-MPC, the construction from dZK is conceptually simpler and more efficient (only
additively increases the round and communication complexities). Using VRS complicates the
protocol (as it requires sending the protocol messages as part of the VRS), and also increases the
round and communication complexities by a multiplicative factor that grows with the respective
complexities of the underlying VRS. See Section 6 for further discussion of the connection between
the two primitives.

Distributed Zero-Knowledge Proofs. Out of the multitude of distributed models for ZK, the fo-
cus of this work is on the “distributed zero-knowledge” (dZK) proofs presented in [BBC+19b]. In
dZK, the input statement is distributed between the verifiers (where no verifier knows it in full),
and security is unconditional. [BBC+19b] consider two possible corruption models in the context
of soundness: a malicious prover interacting with honest verifiers (“setting I”), and a malicious
prover colluding with a subset of verifiers (“setting II”). (In this work we consider only the lat-
ter corruption model.) They design dZK systems based on fully-linear probabilistically checkable
proofs or fully-linear interactive oracle proofs. Specifically, assuming ideal coin tossing, they con-
struct dZKs for “low-degree languages” in which the communication and round complexities are
logarithmic in the size of the statement.

Assuming ideal coin-tossing, they also provide a 2-round construction for arbitrary circuits in
which the communication complexity is proportional to the circuit size, and ZK (soundness, re-
spectively) holds against t corrupted verifiers (t− 1 corrupted verifiers colluding with the prover,
respectively), where k > 2t. We note that their constructions do not achieve strong complete-
ness. In Section 4.2 we adapt our techniques to obtain a 2-round dZK scheme (assuming ideal
coin tossing) without strong completeness with ZK (soundness, respectively) against t corrupted
verifiers (t corrupted verifiers colluding with the prover, respectively) for k > 2(t+ 1), where the

7[AKP22] also obtain a fully information-theoretically secure VRS assuming ideal non-interactive commitments, as
well as a computationally sound and statistically ZK (statistically sound and computationally ZK, respectively) VRS
based on computationally binding and statistically hiding (statistically binding and computationally hiding, respec-
tively) non-interactive commitments [App22].

8In the computational setting one can use standard tools such as commitments to help resolve disputes between par-
ties, but in the information theoretic setting this seems to require a more sophisticated dispute-resolution sub-protocol.

13

communication complexity is quasi-linear in the circuit size, and can be reduced to linear with one
additional round. See Section 4.2 for further details and comparison with the results of [BBC+19b].

Following the formalization of [BBC+19b], several follow-up works [BGIN19, BGIN20,
BGIN21] explored the applicability of dZKs in the context of MPC, starting with [BGIN19] that
focused on the three-party setting with an honest majority. This simpler case excludes the cor-
ruption model of a prover colluding with a verifier, and therefore only requires a simpler dZK.
Building on [BGIN19], the protocol introduced in [BGIN20] works in the honest majority setting
for a constant number of parties by applying the sublinear dZK from [BBC+19b]. [BGIN21] ex-
tends the techniques from [BGIN20] to the dishonest majority setting with preprocessing.

dZK as an ideal functionality As mentioned before, our notion of dZK can be specified as an
ideal functionality (See Section 6.1), and such a functionality can be realized generically using a
fully secure MPC protocol against active adversaries. Starting from the works of [BGW88, CCD88],
we have known that against a threshold of up to t < n/3 active corruptions, any functionality can
be realized where the round complexity is proportional to the “depth” of the computation.9 If we
are willing to assume exponential communication (in the depth and/or number of parties), several
works have shown how to achieve this in constant rounds [IK02, ABT19, ACGJ18, ACGJ19]. Since
the dZK functionality can be expressed as a constant-depth function (specifically, a depth-2 func-
tion), the most relevant works are [AKP20a, AKP20b], who show how to achieve tight threshold
and round complexity with perfect and statistical security (respectively). Specifically, [AKP20a]
show how to achieve 3-round actively-secure MPC with statistical security against t < n/3 active
corruptions where the communication is exponential in the number of parties (for constant depth
circuits), and [AKP20b] show how to achieve 4-round perfect security against t < n/3 active cor-
ruptions that is fully polynomial time (for constant-depth circuits). Both these results are tight up
to corruption thresholds and security level (perfect or statistical). However, all these works will
result in communication between the verifiers that is proportional to the circuit size, so they are
not verification efficient.

MPC-in-the-head is a powerful technique, originally introduced in [IKOS07] as a novel ap-
proach towards designing zero-knowledge proofs, based on MPC protocols. The high level
idea is to mimick the environment for which the MPC was designed to run, and essentially
emulate its execution. This approach gives a generic construction of zero-knowledge proofs
from general MPC protocols with certain properties, and compliments the prevalent use of
zero-knowledge proofs in designing MPC protocols. Informally, the prover emulates “in its
head”, on shared inputs, the MPC protocol that validates the relation to be proven, and com-
mits to the internal view of each party (which includes their secret inputs and randomness,
and incoming messages). The verifier then asks the prover to open a subset of these views,
which the verifier checks for pairwise consistency. ZK of the proof system follows from the
privacy property of the underlying MPC, whereas soundness follows from the MPC robust-
ness (or correctness). Following this seminal work, this approach has been improved and opti-
mized [GMO16, AHIV17, CDG+17, KKW18, BFH+20, GSV21], leading to different MPC protocols
and optimizations. More specifically, [GMO16, CDG+17] followed the line of work from [IKOS07]
based on semi-honest MPC protocols. The Ligero proof system [AHIV17] showed a sublinear
zero-knowledge protocol based on an honest majority MPC protocol, where the proof complex-
ity grows with

√
|C| (where C is the circuit verifying the relation), which was later optimized

in [BFH+20, GSV21]. Finally, [KKW18] considered an instantiaition based on a semi-honest pro-

9Depth of a circuit is the maximal number of sequential multiplications (in the corresponding field/ring) from any
input to any output in the circuit.

14

tocol in the preprocessing model.
COMPARISON WITH OUR MPC-IN-THE-HEAD CONSTRUCTION. Our novel verification tech-

nique for the distributed setting has several advantages over MPC-in-the-head techniques used
in the 2-party setting. First, it does not require commitments, and in particular gives information-
theoretic security. Commitments are not needed because sending the views in Π to the verifiers
effectively commits the prover to these views (at least, to the ones given to honest verifiers). More-
over, usually (e.g., this is the case in [IKOS07]) the soundness error depends on the number of par-
ties. Indeed, the soundness error depends on the size of the challenge space, namely the number
of possible subsets of views which the verifier opens, where obtaining negl (s) soundness error
requires opening Ω (s) views. Since a single verifier receives all the opened views, the privacy
parameter of the system, and consequently the total number of parties, increases proportionally
to s, and the communication complexity of Π (i.e., the view size) increases accordingly. In con-
trast, in our verification procedure all views are simultaneously checked, but each verifier sees a
single view. Thus, the privacy parameter, and the total number of parties in Π, is independent of the
security parameter. Instead, the soundness error is roughly proportional to the ratio between the
communication complexity of Π and the size of the field used to generate the MACs. Obtaining
negl (s) soundness error thus requires the field size to be super-polynomial in s and the commu-
nication complexity CC (Π) of Π. Therefore, the overall communication in Step 2 (Section 1.2.1)
would be only polylogarithmic in s.

COMPARISON WITH OTHER MPC-IN-THE-HEAD CONSTRUCTIONS IN A DISTRIBUTED SET-
TING. [AKP22] employ the MPC-in-the-head paradigm in the distributed computational setting.
Similar to [IKOS07], the prover in their construction commits to the views in the MPC. However,
instead of opening a subset of views (and checking their consistency), [AKP22] exploit the dis-
tributed setting to simultaneously check consistency of all views. Nonetheless, their method of
doing so differs significantly from ours. Specifically, they check local consistency of each view
(roughly, verifying that the party honestly generated its messages given its input and random-
ness), by running an appropriate MPC with a “committee” (i.e., a subset) of the parties. In con-
trast, we check pairwise consistency between views by revealing a view in full to a single party
and have the parties compare their messages in the clear (i.e., without any MPC computation). We
are thus able to avoid using commitments and get information-theoretic security.

Identifiable Abort MPC (IA-MPC). Secure computation in the dishonest majority setting has a
significant limitation: it inherently cannot prevent even a single deviating party from causing the
protocol to fail [Cle86]. While guaranteed output delivery is possible when there is an honest ma-
jority, aborts still create substantial obstacles. In particular, obtaining guaranteed output delivery
often incurs a large overhead in rounds and communication complexity due to the player elim-
ination technique. A natural solution to the problem of parties repeatedly failing the protocol is
to support identifiable abort. That is, if the protocol fails to complete, it must provide a method to
(publicly) identify at least one malicious / crashed party. Identifying cheaters is highly non-trivial
for concretely efficient protocols [IOZ14, SF16, BOS16, CFY17, BOSS20, BMMM20, Bra21, SSY22]
since the parties must reach consensus on the cheater’s identity. This property is very useful for
deterring malicious behavior; in particular, when penalties are used against malicious parties, as is
the case with smart contracts that run on distributed ledgers and realize a bulletin board.

Amongst these works, only [IOZ14] introduces a generic compiler from any semi-honestly se-
cure MPC protocol which uses correlated randomness into a similar protocol which is secure with
identifiable abort against malicious adversaries. This compiler works by broadcasting each semi-
honest message, together with a zero-knowledge proof of consistency with that party’s committed
input and correlated randomness obtained from the setup phase. It therefore increases the broad-

15

cast complexity of the semi-honest protocol proportionally to the size of the computation. More
recent works (e.g., [BOS16, SF16, BOSS20]) on identifiable abort have refined this approach but
the overall communication complexity of these approaches is Ω(κ · |C|) to generate correlated
randomness in the offline phase, and Ω(|C|) in the online phase, where κ the (computational) se-
curity parameter and |C| is the circuit size. While the more recent works achieve identifiable abort
property for specific protocols (e.g., SPDZ-type protocols), the work of [IOZ14] presents a generic
compiler for any semi-honest protocol in the correlated-randomness model. In this work, we use
dZKs to provide a compiler in similar vein to achieve identifiable abort, but for a class of protocols
in the honest-majority setting.

Verifiable Secret Sharing (VSS) is an extension of standard secret sharing, and an important
building block in designing secure MPC protocols. A large body of works have studied VSS in dif-
ferent settings, e.g., synchronous vs. asynchronous networks, and information-theoretic vs. com-
putational security. The complexity of VSS has likewise been extensively analyzed (see [CCP21]
for a survey).

In this work we consider VSS in two settings: batch VSS in the synchronous setting, where a
single dealer shares a batch of secrets; and certifiable VSS where in addition to sharing a secret the
dealer proves membership of the secret in some language. The round complexity of VSS in the
synchronous setting was studied in [GIKR02], who constructed two-round VSS for k > 4t and
3-round VSS for k > 3t, where k is the total number of parties, and t is the number of corruptions.
These schemes are both optimal, up to the usage of broadcasts. [KKK09] improved the 3-round
protocol to additionally get optimal usage of broadcast (specifically, it is used in a single round). In
the batched setting, [BGR98] design a protocol to batch-verify degrees of polynomials over large
fields, assuming all verifiers are honest. Although they do not obtain all the properties of a VSS
scheme, their construction is essentially the blueprint for our batched VSS. Implicit in [DI06] is
a batch VSS scheme for t = Ω(k) in which the dealer can share multiple (packed) secrets over
constant-sized fields.

2 Preliminaries

Notation. F denotes a finite field. A language L over F is a subset L ⊆ F∗. For a pair of vec-
tors v, u ∈ Fk, we denote their Hamming distance by d (u, v) = |{i : ui ̸= vi}|. We associate
with a code C ⊆ Fk an encoding procedure Enc and a decoding procedure Dec such that for every x,
Dec (Enc (x)) = x. We will also allow for encoding to be randomized (this would be useful for our
applications of dZK, see Section 5.1). We use PPT to denote probabilsitic polynomial time com-
putation. For a distribution D, sampling according to D is denote by X ← D, or X ∈R D. For a
pair of random variables X,Y , we use X ≡ Y to denote that X,Y are identically distributed. For
random variables X and Y over a finite domain Ω, the statistical distance between them is defined
as

SD (X,Y) =
1

2

∑
w∈Ω

∣∣Pr[X = w]− Pr[Y = w]
∣∣.

X and Y are ε-statistically close if their statistical distance is at most ε. Ensembles {Xs}s , {Ys}s are
statistically close, denoted Xs ≈ Ys, if there exists an ϵ(s) = negl (s) such that Xs, Ys are ϵ (s)-close
for every s.

The Ideal Coin-Tossing Functionality. For modularity, our construction will employ an ideal
implementation of coin-tossing, a standard primitive that generates unpredictable, public ran-

16

domness. Specifically, for a field F we define FF
coin to be a randomized functionality that takes no

input, and outputs to all parties a uniformly random r ∈R F. We omit F from the notation when it
is clear from the context, and abuse notation by allowing the functionality to toss multiple coins in
parallel. That is, we will write “the parties call Fcoin to generate r ∈ Fm” to denote that the parties
make m parallel calls to FF

coin.

Coding notation. For a code C ⊆ Fk and vector v ∈ Fk, denote by d(v, C) the minimal distance
of v from C, namely d (v, C) = minu∈C d (v, u), and denote by ∆(v, C) the set of positions in which
v differs from such a closest codeword (in case of ties, take the lexicographically first closest code-
word). We further denote, for a vector set V ⊆ Fk and a code C, ∆(V, C) =

⋃
v∈V {∆(v, C)},

and denote by d(V,C) the minimal distance between a V and the code C, namely d(V, C) =
minv∈V {d(v, C)}. Our constructions will employ robust codes which, intuitively, are error cor-
recting.

Definition 2.1 (Robust Code). A code C ∈ Fk is (ε, t)-robust if for every u ∈ C and for every v ∈ Fk

such that d (u, v) ≤ t, Pr [Dec (u) = Dec (v)] ≥ 1− ε. C is perfectly t-robust if it is (0, t)-robust.

Distributed Inputs, Distributed Relations, and Distributed Languages. Let n ∈ N be a length
parameter, F be a finite field, and C ⊆ Fk be a robust code with encoding procedure Enc and
decoding procedure Dec. The following notions are defined for a fixed n, but naturally extends to
a family of length parameters by using families of codes. For an input x ∈ Fn, a corresponding
k-distributed input X ∈ Fk×n is a matrix such that for every i ∈ [n], the i’th column X[i] of X
satisfies xi = Dec (X[i]) (intuitively, the i’th column of X encodes the i’th symbol xi of x, possibly
with some errors).10 We will write X =

(
x(1), . . . , x(k)

)
, where for every i ∈ [k], the input piece x(i)

is the i’th row of X (i.e., it is the list of i’th symbols in the codewords encoding x1, . . . , xn).

Definition 2.2 (Distributed Languages and Relations). For a language L ⊆ Fn over F, the correspond-
ing k-distributed language L̂C over F with relation to C is defined as

L̂C =
{
X =

(
x(1), . . . , x(k)

)
: (x1, . . . , xn) ∈ L,

where xi = Dec (X[i]) for all 1 ≤ i ≤ n} .

For an NP-relation R = R (x,w) ∈ Fn × F∗ over F, the corresponding k-distributed relation R̂ with
relation to C is defined as

R̂C =
{((

x(1), . . . , x(k)
)
, w

)
: ((x1, . . . , xn) , w) ∈ R,

where xi = Dec (X[i]) for all 1 ≤ i ≤ n} .

We call L̂C , R̂C the k-distributed language and the k-distributed relation that correspond to L,R,
respectively. When C is clear from the context, we omit it and simply write L̂, R̂. For a (distributed)
NP-relationR, we denote L (R) = {x : ∃w s.t. (x,w) ∈ R}.

2.1 Distributed Zero-Knowledge (dZK) Proofs

Following Boneh et al. [BBC+19b], we consider a distributed setting in which a single prover P
interacts with k verifiers V1, . . . ,Vk. Each verifier Vi holds a piece x(i) ∈ F∗ of a distributed input

10Notice that if Enc is randomized then x might have several corresponding k-distributed inputs X .

17

(
x(1), . . . , x(k)

)
encoding some input x ∈ F∗, and the prover’s goal is to convince the verifiers that(

x(1), . . . , x(k)
)
∈ L̂ for some language L. We assume that

(
x(1), . . . , x(k)

)
is known to the prover.

When L is an NP language, the prover additionally knows a witness w for the fact that x ∈ L. The
parties can communicate over point-to-point channels, as well as a broadcast channel.

Similar to standard (i.e., 2-party) ZK proofs, the system should satisfy completeness (when all
parties are honest), zero knowledge (against a subset of corrupted verifiers), and soundness. The
two latter properties have several possible interpretations in the distributed setting, as we now
explain.

In terms of ZK, following [BBC+19b] we require that a subset of corrupted verifiers learn noth-
ing on the NP witness, as well as on the input pieces of the honest verifiers. This is formalized by
requiring, as in the standard setting, the existence of an efficient simulator that can simulate the
corrupted verifiers’ views given only their input pieces. This provides a strong ZK property which
is meaningful also for languages and relations in P . There are also two possible interpretations of
the soundness property. We choose to consider the stronger requirement of soundness against a
corrupted prover colluding with a subset of verifiers, namely for

(
x(1), . . . , x(k)

)
/∈ L̂, the honest

verifiers should reject with high probability. ([BBC+19b] consider also a weaker notion in which
soundness is only required to hold when all verifiers are honest.)

Another concern naturally arises in this distributed setting: that of corrupted verifiers trying
to “frame” an honest prover, namely trying to cause the honest verifiers to reject a true claim(
x(1), . . . , x(k)

)
∈ L̂. We require that they succeed only with small probability. This property,

which we call strong completeness, was not required in the distributed model of [BBC+19b] (and
their dZK proofs do not obtain it), but will be needed for the applications discussed in Section 5.
This discussion is summarized in the following definition:

Definition 2.3 (Distributed Zero-Knowledge Proofs). Let R̂ = R̂
((
x(1), . . . , x(k)

)
, w

)
be a k-

distributed relation over a finite field F. A k-verifier (εp, εr, tp, tr) distributed Zero-Knowledge proof
((εp, εr, tp, tr)-dZK) Πdist forRk consists of a prover P and verifiers V1, . . . ,Vk satisfying the following:

• Syntax. The input of each Vi is an input piece x(i), and the input of P is
(
x(1), . . . , x(k)

)
and a

witness w such that
((
x(1), . . . , x(k)

)
, w

)
∈ R̂.11 The parties interact in rounds over point-to-point

channels and a broadcast channel, where the messages sent by a party in round i are determined
given a next-message function, and depend on its input, randomness, and messages it received in
previous rounds. The protocol terminates after a fixed number of rounds, and each verifier outputs
either accept or reject, based on its view (which consists of its input and the messages it received
throughout the execution).

• Completeness. For every
(
x(1), . . . , x(k), w

)
∈ R̂, when all parties are honest then all verifiers

accept in the execution of Π on
((
x(1), . . . , x(k)

)
, w

)
with probability 1.

• (εr, tr)-Strong Completeness. For every
(
x(1), . . . , x(k), w

)
∈ R̂, in an execution of Π on((

x(1), . . . , x(k)
)
, w

)
with an honest prover, except with probability at most εr all honest verifiers

accept, even if tr verifiers are corrupted, computationally unbounded, and may arbitrarily deviate
from the protocol.

• (εr, tr)-Soundness. For every (possibly malicious and unbounded) prover P∗, and any(
x(1), . . . , x(k)

)
/∈ L̂

(
R̂
)

, even if a subset C of at most tr verifiers are maliciously corrupted, compu-
tationally unbounded and colluding with P , then except with probability εr all honest verifiers reject
in the execution of Πdist on input

(
x(1), . . . , x(k)

)
with prover P∗ colluding with the verifiers in C.

11We note that w may also be the empty string, e.g., if R̂ corresponds to a language in P.

18

• (εp, tp)-Distributed Zero Knowledge (dZK). For every adversary A corrupting a subset T of at
most tp verifiers, there exists a PPT simulator Sim such that for every

((
x(1), . . . , x(k)

)
, w

)
∈ R̂, it

holds that
SD

(
Sim

((
x(j)

)
j∈T

)
,ViewΠ,A

((
x(1), . . . , x(k)

)
, w

))
≤ εp

where ViewΠ,A
(
x(1), . . . , x(k), w

)
denotes the view of the adversary A in an execution of Π with an

honest prover on inputs
(
x(1), . . . , x(k), w

)
.

The following notation will be useful.

Notation 1 (t-dZK). We say that a protocol between a prover P and k verifiers is a t-dZK proof, if it is a
(negl (s) , negl (s) , t, t)-dZK proof, where s is a statistical security parameter.

Next, we describe a special structure of dZK proofs, which the systems constructed in this
work satisfy. Specifically, the execution is divided into a proof generation phase in which the
prover sends a proof share to each verifier, and a verification phase in which the proof shares
are verified. We are particularly interested in dZK proofs in which the communicated during the
verification phase is independent of the size of the verification circuit.

Definition 2.4. We say that a dZK proof is verification efficient if it is a dZK between the prover and k
verifiers, whose execution can be divided into a proof generation phase in which the prover sends a message
to each verifier, and a verification phase in which all parties interact, and moreover, the communication
complexity during the verification phase is poly (k, s, log n), where s is a statistical security parameter, and
n is the input length. In particular, the communication complexity during verification is independent of
the size of the computation.

Remark 2.1 (Round Complexity of dZK Proofs). Our dZK proofs are designed in the coin-tossing
hybrid model, in which parties can obtain truly random coins by calling an ideal coin-tossing oracle. Calls
to this oracle are done separately from communication rounds, namely parties do not exchange any messages
in rounds during which the oracle is called. When counting the round complexity of a dZK proof, the rounds
in which the oracle is called are not counted towards the round complexity of the system. Thus, if the coin-
tossing oracle is replaced with a secure MPC implementation of coin-tossing, the round complexity of the
resultant system will be the sum of the round complexity of the dZK and of the secure coin-tossing.

2.2 Secure Multi-Party Computation (MPC) Protocols

Secure Multi-Party Computation (MPC) protocols allow a set of parties to jointly compute a func-
tion of their inputs while guaranteeing correctness of the outputs, and preserving privacy of the
inputs, even in the presence of (maliciously) corrupted parties. In this section we set some notation
and terminology relating to MPC protocols, which will be used in subsequent sections.

Let Π be an MPC protocol between parties P1, . . . , Pk. The view Viewi of party Pi consists of its
input, random coin tosses, and all the messages it received throughout the protocol execution.

We will need a notion of pairwise consistency between a pair of views, requiring that the mes-
sages which the corresponding pair of parties exchanged during the protocol (as reported in the
views) are consistent. This is formalized in the following definition:

Definition 2.5 (Pairwise Consistent Views). A pair of views Viewi,Viewj of parties Pi, Pj in an MPC
protocol Π is pairwise consistent if the outgoing messages from Pi to Pj implicit in Viewi are identical to
the incomming messages from Pi to Pj reported in Viewj , and vice versa.

19

Definition 2.6 (ε-Correctness). We say that a k-party protocol Π realizes a deterministic k-party func-
tionality f

(
x(1), . . . , x(k)

)
with ε-correctness if for every x(1), . . . , x(k),

Pr
[
∃i ∈ [k] : yi ̸= f

(
x(1), . . . , x(k)

)]
≤ ε

where yi denotes the output of Pi in Π.
We say that Π is perfectly correct if it is ε-correct for ε = 0.

Definition 2.7 ((ε, t)-Privacy). Let 1 ≤ t < k. We say that a protocol Π realizing a k-party functionality
f is (ε, t)-private if for every subset C ⊂ [k] of size |C| ≤ t there exists a PPT simulator SimC such that
for every x(1), . . . , x(k),

SD
(

ViewC

(
x(1), . . . , x(k)

)
,SimC

({
x(i)

}
i∈C

, f
(
x(1), . . . , x(k)

)))
≤ ε

where ViewC

(
x(1), . . . , x(k)

)
denotes the joint view of the parties in C (including their inputs, random coin

tosses, and the messages they received) in a semi-honest execution of Π in which the parties have inputs
x(1), . . . , x(k).

We say that Π is perfectly t private if it is (0, t)-private.

Definition 2.8 ((ε, t)-Robustness). Let f be a k-party functionality whose outputs are in {0, 1}, and let
1 ≤ t < k. We say that a protocol Π realizing f is (ε, t)-robust if for every subset C ⊂ [k] of size |C| ≤ t
and for every x(1), . . . , x(k), the following holds. If there exist no x(1′), . . . , x(k′) such that: (1) x(i) = x(i′)

for every i /∈ C, and (2) f
(
x(1′), . . . , x(k′)

)
= 1, then except with probability ε, all parties i /∈ C output 0 in

an execution of Π in which the honest parties have inputs
{
x(i)

}
i/∈C, even if the parties in C are maliciously

corrupted, colluding, and computationally unbounded.
We say that Π is perfectly t robust if it is (0, t)-robust.

3 Checking Membership in a Robust Code

In this section, we describe and analyze a batch code membership test. As we show in Section 3.1
below, this test yields a batched Verifiable Secret Sharing (VSS) scheme – which allows the dealer
to share multiple secrets simultaneously – in which the complexity of verifying the shares is inde-
pendent of the batch size. First, we establish some notations.

Our test pertains to Reed-Solomon (RS) codes, defined next. We recall that a [k, δ, d] code refers
to a linear code over some underlying field F where k is block length, δ is the message length
(dimension) and d is the minimal distance.

Definition 3.1 (Reed-Solomon Code). For positive integers k, δ, finite field F, and a vector η =
(η1, . . . , ηk) ∈ Fk of distinct field elements, the code RSF,k,δ,η is the [k, δ, k − δ + 1] linear code over F
that consists of all k-tuples (p(η1), . . . , p(ηk)) where p is a polynomial of degree < δ over F.

Since we are interested in batch code-membership testing, it will be convenient to view m-
tuples of codewords in a linear code L as codewords in an interleaved code Lm. We formally
define this notion below.

Definition 3.2 (Interleaved code). Let L ⊂ Fk be a [k, δ, d] linear code over F. We let Lm denote the
[mk,mδ, d] (interleaved) code over F whose codewords are all k × m matrices U such that every column
U [i] of U satisfies U [i] ∈ L. For U ∈ Lm and j ∈ [k], we denote by Uj the jth symbol (row) of U .

20

Definition 3.3 (Encoded message). Let L = RSF,k,δ,η and ζ = (ζ1, . . . , ζℓ) be a sequence of distinct
elements of F for ℓ ≤ δ. For u ∈ L we define the message Decζ(u) to be (pu(ζ1), . . . , pu(ζℓ)), where pu is
the polynomial (of degree < δ) corresponding to u (i.e., pu (x) =

∑δ−1
i=0 uix

i). For U ∈ Lm with columns
U [1], . . . , U [m] ∈ L, we let Decζ(U) be the length-mℓ vector x = (x11, . . . , x1ℓ, . . . , xm1, . . . , xmℓ) such
that (xi1, . . . , xiℓ) = Decζ(U [i]) for i ∈ [m]. Finally, when ζ is clear from the context, we say that U
encodes x if x = Decζ(U).

Private (Interleaved) RS Codes. We will in fact use a private variant of the (interleaved) RS code.
Intuitively, in a t-private code encoding is randomized, and any subset of t codeword symbols
reveals no information about the encoded message (when the codeword was randomly gener-
ated).12In particular, privacy requires a randomized encoding procedure Enc. We will sometime
explicitly state the randomness r used for encoding, denoted by Enc (·; r). Formally,

Definition 3.4 (Private Code). Let t, k ∈ N, and ε ∈ [0, 1]. A code C ⊆ Fk with a randomized encoding
procedure Enc is (ε, t)-private if for every x, x′, and every subset I ⊆ [k] of size |I| ≤ t, it holds that
SD (Enc (x) |I ,Enc (x′) |I) ≤ ε, where Enc (x) |I denotes the restriction of Enc (x) to the coordinates in I,
and the distance is over the randomness used to encode x, x′. We say that C is perfectly t-private if it is
(0, t)-private.

Intuitively, to guarantee that the RS codeword reveals no information about the underlying
secret, we rely on a randomized version of the code which concatenates the message with random-
ness before encoding it. Specifically, we use the following private version of RS codes (for our
purposes, ℓ = 1 suffices; but the notion easily extends to larger ℓ).

Definition 3.5 (Randomized Reed-Solomon (RRS) Code). For positive integers k, δ, finite field F,
and a vector η = (η1, . . . , ηk) ∈ Fk of distinct field elements, the code RRSF,k,δ,η is defined by the following
encoding and decoding procedures.

• Enc is a PPT procedure that on input x ∈ F samples r ← Fδ−1 and applies the encoding procedure
of the RS code RSF,k,δ,η (Definition 3.1) to (x, r). That is, it computes (p(η1), . . . , p(ηk)) where
p (y) = x+

∑δ−1
i=1 riy

i.

• Dec is a deterministic procedure that on input a purported codeword c ∈ Fk applies the decoding
procedure of the RS code RSF,k,δ,η and (if decoding succeeds) outputs the first symbol of the decoded
message.

We will need the following simple fact regarding the RRS code, which follows from the prop-
erties of Shamir’s secret sharing.

Fact 3.1 (RRS is Robust and Private). For every positive integers k, δ such that k > 3 (δ − 1), any finite
field F, and any vector η = (η1, . . . , ηk) ∈ Fk of distinct field elements, the code RRSF,k,δ,η is (0, δ − 1)-
private and (0, δ − 1)-robust.

Moreover, the code is (0, δ − 1)-private for any k ≥ δ.

Batch Verification of RS Codewords. We describe a simple procedure for batch verification of
membership in the (randomized) RS code, namely membership in the Interleaved RS (IRS) code
RSmF,k,δ,η. First, we recall a Lemma from [BCI+20] regarding IRS codes.

12We note that a private (robust) code is equivalent to a (robust) secret-sharing scheme – to share, simply randomly
encode the message, to robustly reconstruct, decode it while correcting errors if needed.

21

Lemma 3.2. [BCI+20, Theorem 1.2] Let L = RSF,k′,δ,η be a Reed-Solomon code with minimal distance
d = k′ − δ + 1 and e a positive integer such that e < d/2. Suppose d(U ′, Lm) > e. Then, for a random w∗

in the column-span of U ′, we have
Pr[d(w∗, L′) ≤ e] ≤ k′/|F|.

The IRS Test

Let L = RSF,k,δ,η and δ = t + ℓ − 1. The IRS test is executed between a prover P and k verifiers
V1, . . . ,Vk. Let x ∈ Fℓ×m (we think of x as a batch of m length-ℓ secrets), and let U ∈ Lm such
that Decζ(U) = x. In the protocol, P has input U , and each verifier Vi has as input the ith row Ui

of U . The protocol proceeds as follows.

1. P samples a random vector rb ∈ Fℓ and a random codeword U∗ ∈ L such that Decζ(U∗) =
rb. It sends U∗

i to Vi.

2. The verifiers call Fcoin to obtain a random r ∈R Fm.

3. Each verifier Vi computes wi =
∑m

j=1 rj · Ui,j + U∗
i and broadcasts wi.

4. Denote w = (w1, . . . , wk). The verifiers accepts iff d(w,L) ≤ t.

Figure 1: Verifying Membership in the IRS Code with t Corruptions

Our batched code-membership test, which we call the IRS test, is described in Figure 1. Its
properties are summarized in the following theorem.

Theorem 3.1 (IRS Test, Figure 1). Let k > 4δ where δ = t + ℓ. Then, the protocol described in Figure 1
satisfies the following properties, even if t verifiers are maliciously corrupted.

• Correctness. If U ∈ Lm (i.e. the shares held by the parties form a valid codeword), and the prover is
honest, then all honest verifiers accept with probability 1.

• Soundness/Commitment. If U /∈ Lm, then except with probability (k − t + 2)/ |F| one of the
following hold even if the prover and t verifiers are maliciously corrupted and colluding.

– All honest verifiers reject.

– Let H denote the set of honest parties, and let L′ and L′m denote the restrictions of the codes L
and Lm (respectively) to the coordinates corresponding to the parties in H . Let U ′ denote the
restriction of U to the coordinates held by the parties in H . Then d(U ′, L′m) ≤ t, and there
exists a unique codeword Ũ ∈ L′m that agrees with U ′ on H −∆(U ′, L′m).

• Secrecy. For every x, x′, and any subset T ⊆ [k] , |T | ≤ t, we have ViewT (x) ≡ ViewT (x′), where
ViewT (x) denotes the view of the parties in T in an execution of the protocol on a random encoding
U of x (i.e., U is random subject to Decζ (U) = x), in which the prover and the verifeirs Vi, i /∈ T are
honest.

Proof: We prove that our scheme satisfies each of the properties:

Correctness (U ∈ Lm): In this case, the verifiers hold a valid codeword. Since we have at most t
malicious verifiers, d(w,L) ≤ t where w is the result of the test computed in Step 3. There-
fore, the honest verifiers will output accept w.p. 1.

22

Soundness (U /∈ Lm): Let H denote the set of honest parties. We consider the restrictions L′ and
L′m of the codes L and Lm (respectively) to the coordinates corresponding to the parties in
H . Let U ′ denote the restriction of U to the coordinates held by the parties in H , and w′ be
the restriction of w to the shares held by H . We consider two cases:

• Case 1: d(U ′, L′m) > t. Let V denote the matrix containing U and the masking code-
word U∗. Since d(U,Lm) > t, we have d(V,Lm+1) > t. Using Lemma 3.2 it holds
that, except with probability (k − t)/ |F|, the codeword obtained via a random linear
combination of V ’s rows has distance > t from a valid codeword. If w were a random
linear combination of the rows of V , then we would be done. However, recall that in
the actual IRS test, U∗ has multiplier 1 in the random linear combination (instead of a
random multiplier). Observe that if – except with probability (k − t)/ |F| – a random
linear combination of V ’s rows has more than t errors, then by an averaging argument,
there exists a fixed r∗ ̸= 0 such that conditioned on U∗’s multiplier being r∗, the result-
ing linear combination has more than t errors except with probability (k − t + 2)/ |F|.
Scaling-down these linear combinations by r∗, the number of errors in the resultant
codeword does not change, and U∗’s multiplier becomes 1. Since this distribution of
random combinations is identical to the IRS test we can conclude that the soundness of
the IRS test will be (k − t+ 2)/|F|.

• Case 2: d(U ′, L′m) ≤ t. If the test fails, then soundness holds. Otherwise, there is a
unique codeword U∗ ∈ L′m that agrees with U ′ on H −∆(U ′, L′m). This is because the
distance of the code L′m is bigger than 2t.

Secrecy: Recall that the malicious verifiers in T holds at most t rows of U , and in the test they
obtain a linear combination of the form w = (r||1)T U ′′, where U ′′ ∈ Fk×(m+1) is a matrix
whose columns are codewords in L, and the last column of U ′′ encodes a random value. In
particular, w encodes a random value. At a high-level, secrecy follows from a combination of
the t-privacy of the underlying Reed-Solomon code (which guarantees that the shares given
to the parties in T reveal no information about x) and the use of a blinding vector rb (which
guarantees that the codeword symbols revealed during verification reveal nothing about x,
because the encoded messages are blinded by rb).

More formally, when Ux, Ux′
are random encodings of x, x′ respectively, then any t rows of

Ux, Ux′
are identically distributed (see Fact 3.1 above). Therefore, we can condition on the

codeword symbols (U∗i)i∈T which the prover sent to the verifiers in T in the first round of the
IRS test. Under this conditioning, the following is a perfect simulation for ViewT (x): sample
a codeword wb ∈ L (encoding a random value rb) which is random subject to agreeing with
(U∗i)i∈T , and provide

(
wb
i

)
i∈T to the verifiers in T as the messages from the prover in Step 1.

The proof of perfect simulation proceeds by a sequence of hybrids, where H0 is ViewT (x),
H1 replaces the codeword w generated during verification with an encoding w′′ of a random
value, where the encoding is random subject to being consistent with the shares of the par-
ties in T . (That is, for every i ∈ T , w′′i =

∑m
j=1 rj · Ux

i,j + wb
i .) The hybrids are identically

distributed because distinguishability implies that for a fixed x one can distinguish between
random encodings of x||rb and x||r′b, given only the shares of the parties in T . This contra-
dicts the privacy of the RRS code. Next, the hybrid H2 is obtained by replacing (Ux[i])i∈T

with
(
Ux′

[i]
)
i∈T

. ThenH1,H2 are identically distributed because (Ux[i])i∈T ,
(
Ux′

[i]
)
i∈T

are

identically distributed, and the other values in the distributions are independent of these
shares. Finally, H3 is ViewT (x′), and is identically distributed to H2 using the same argu-

23

ment as the one used to show thatH0,H1 are identically distributed.

Extension for Constant-Sized Fields. The protocol and analysis above relies on the field size
|F| being sufficiently large. In order to accommodate secret sharing over small fields, such as
Algebraic-Geometric codes [CC06], we extend our protocol and analysis to holds for small fields
as follows:

First, we modify the protocol where we will have the verifiers obtain σ = k+κ random vectors
r1, . . . , rσ in {0, 1}m for a statistical security parameter σ, and execute Steps 3 and 4 for each of the
σ random vectors. Let w1, . . . , wσ be the vectors collected in Step 4. We modify Step 4 to have the
verifiers accept only if | ∪σi=1 ∆(wi, L)| ≤ t. Completeness and zero-knowledge essentially follow
using the same argument as above (when independent blinding vectors are used in each of the
σ iterations.) Soundness on the other hand requires a different analysis. To argue soundness, we
essentially follow the argument presented in [DI06]. More formally, it suffices to show that the
probability that | ∪σi=1 ∆(wi, L)| ≤ t and all the honest parties not in ∪σi=1∆(wi, L) do not have a
valid codeword in L′m is small.

In more detail, consider an arbitrary subset H of the honest parties and suppose that for some
column i in U , the parties in H do not have shares consistent with L. Denote by v1(H) the re-
striction of the ith column to the shares held by H . Consider any one of the σ random vectors rj
and fix all of its values except its value in column i. Denote the codeword obtained by combining
all the columns except column i by v′. Now we have that either v′(H) or v′(H) + v1(H) must be
inconsistent with L. Therefore, w.p 1/2 over the rj , H ∩∆(wj , L) is not empty. This implies that
except with probability 1/2σ, H ∩∪σi=1∆(wi, L) is not empty. Taking a union bound over all possi-
ble subsets H , we get that, except with probability 1/2σ ·2k = 1/2κ, if a subset of the honest parties
H has a column inconsistent with L, then H ∩ ∪σi=1∆(wi, L) is not empty. This implies that except
with probability 1/2κ, we have that the codeword held by all honest parties not in ∪σi=1∆(wi, L) is
a valid codeword in L′.

Therefore, we have the following corollary:

Corollary 3.2 (IRS Test, Small Fields). Let k > 4δ where δ = t+ ℓ− 1 and let κ be a statistical security
parameter. Then, the modified protocol described above satisfies correctness, secrecy as in Theorem 3.1 and
the following soundness guarantee.
Soundness: If U /∈ Lm, then except with probability 1/2κ one of the following hold even if the prover and
t verifiers are maliciously corrupted and colluding.

• All honest verifiers reject.

• Let H denote the set of honest parties, and let L′ and L′m denote the restrictions of the codes L and
Lm (respectively) to the coordinates corresponding to the parties in H . Let U ′ denote the restriction
of U to the coordinates held by the parties in H . Then ∆(U ′, L′m) ≤ t, and there exists a unique
codeword Ũ ∈ L′m that agrees with U ′ on H −∆(U ′, L′m).

3.1 A Batched Verifiable Secret Sharing (VSS) Scheme

In this section, we show that the IRS test of Figure 1 easily gives rise to a batched VSS scheme.
This construction is implicit in [BGR98, DI06], and our main contribution is in refining the anal-
ysis for large fields to obtain better thresholds t (using recent advances on testing Reed-Solomon
codes [BCI+20]), as well as showing that the test satisfies all the properties of VSS.

24

Roughly, our batch VSS allows the dealer to VSS-share multiple secrets simultaneously by
encoding the secrets using the RS code, and then all parties run the IRS test to verify that the
sharing was honestly generated.

Batch Verifiable Secret Sharing (VSS) using the IRS Test

Let L = RRSF[k, δ, η] with encoding procedure Enc and decoding procedure Dec, where δ =
t+ ℓ− 1. The batch VSS is executed between a dealer D and k verifiers V1, . . . ,Vk.

Sharing Phase. On input a vector x ∈ Fℓ×m (we think of x as a batch of m length-ℓ secrets),
the dealer encodes U ← Enc (x), and sends the row Ui to Vi. Then, the parties execute the IRS
test of Figure 1. If the test passes then each Vi sets Ui to be its share, otherwise the verifiers use
an arbirary (fixed) sharing U∗.

Reconstruction Phase. The verifiers broadcast their shares Ui. Then, each verifier locally runs
x = Dec (U) and outputs x.

Figure 2: A batch VSS protocol for t corruptions

4 dZK Proofs from Secure MPC Protocols

In this section we describe our dZK proofs and prove Theorem 1.1. We first describe the generic
construction from MPC protocols. Then, in Section 4.1 we instantiate the generic cosntruction
with specific MPC protocols which yield a dZK with short proofs. Finally, in Section 4.2, we
describe a variant of our dZK protocol which obtains only the standard notion of completeness
(i.e., does not guarantee strong completeness), with an improved corruption threshold compared
to our strongly-complete dZK.

Overview of the dZK Proof System. Let R = R (x,w) be a relation over F. Our dZK proves
membership in the corresponding k-distributed relation R̂RRS (see Definition 2.2 in Section 2, and
Definition 3.5 in Section 3). Roughly, we employ the MPC-in-the-head paradigm in the following
way. The prover generates the proof by emulating “in its head” an MPC protocol Π which checks
membership in R̂RRS. More specifically, Π is a (k+1)-party protocol between P0, . . . ,Pk, in which
every Pi, i > 0 has input x(i) and P0 holds a corresponding witness w, and the protocols checks
whether

((
x(1), . . . , x(k)

)
, w

)
∈ R̂RRS. The emulation of Π results in views View0, . . . ,Viewk of

the parties, and the prover sends Viewi, i ∈ [k] to Vi (notice that View0 is not given to any veri-
fier). The verifiers then verify the proof by performing the following. First, they run the IRS test
(Figure 1) to verify that their input pieces are close to an RRS codeword. If so, the verifiers call
Fcoin to sample a public random value r which will be used when checking pairwise consistency
of the views. More specifically, every pair of verifiers exchange short authentication tags which
are computed from their views using r. The proof is accepted if these checks pass, allowing for
a small (at most t) number of “errors”. This “error tolerance” is essential to guaranteeing strong
completeness, namely that corrupted verifiers cannot “frame” an honest prover. We note that
this “error tolerance” significantly complicates the soundness analysis. Indeed, even if an incon-
sistency was revealed, the verifiers cannot immediately reject because that might violate strong
completeness. The soundness analysis thus needs to show that a malicious prover cannot exploit
the error tolerance to convince verifiers of false claims.

25

dZK from Secure MPC Protocols

For an NP relation R over F, let R̂RRS be the corresponding k-distributed relation (see Defini-
tion 2.2, and Definition 3.5), and let L̂ := L̂

(
R̂RRS

)
.a The dZK proof system is executed between

a prover P and k verifiers V1, . . . ,Vk. It employs a (k+1)-party MPC protocol Π for R̂RRS, and is
parameterized by a bound t < (k − 2)/6 on the number of corrupt verifiers.

Proof Generation. The prover P on input
((
x(1), . . . , x(k)

)
, w

)
∈ R̂RRS operates as follows:

1. Runs Π “in its head” with parties P0, P1, . . . , Pk holding inputs w, x(1), . . . , x(k) (respec-
tively).b That is, it honestly emulates the operations of all parties in Π. Let View1, . . . ,Viewk

denotes the views of P1, . . . , Pk in this execution, excluding their inputs. That is, Pi’s view
consists of its coin tosses, and all the messages it received throughout the execution.

2. For every pair i < j of verifiers, picks rij ← F.

3. Emulates the prover in Step 1 of the IRS test of Figure 1 (with ℓ = 1) to generate the
messages m1, . . . ,mk which the prover sends to V1, . . . ,Vk.

4. For every i ∈ [k], sends Viewi, {rij}i<j , {rji}j<i ,mi to Vi.

Verification.

1. The verifiers execute the IRS test of Figure 1 (with ℓ = 1) on their input pieces x(1), . . . , x(k),
using m1, . . . ,mk as the messages from P . For each Vi, if the i’th verifier rejects in the IRS
test then Vi outputs reject.

2. The verifiers call Fcoin to obtain a random r ∈R F.

3. Every Vi performs the following, for every j ̸= i. Let zj1, . . . , z
j
l denote the field elements

exchanged between Pi, Pj in the execution of Π, as they appear in Viewi. (The messages
from Pj to Pi appear in Viewi. The messages from Pi to Pj can be computed from Viewi.)
Let r′ij := rij if i < j, otherwise r′ij := rji. Then Vi broadcasts mij := pij (r) where
pij (x) :=

∑l
f=1 z

j
f · xf + r′ij .

4. Every Vi checks local consistency of Viewi, by checking that the output of Pi given input
x(i) and the messages reported in Viewi is 1. If Viewi is not locally consistent then Vi broad-
casts a complaint against P and rejects. Let C1 denote the set of verifiers who broadcasted
a complaint against P .c

5. P broadcasts a set C2 of parties which it claims are corrupted (i.e., broadcasted false mij

values). Let C := C1 ∪ C2.

6. Every verifier Vi checks that:

(a) |C| ≤ t.

(b) for every j, l /∈ C2, mjl = mlj .

If one of the tests failed, then Vi outputs reject. Otherwise, it outputs accept.

aWe note that L̂ is a subset of the code obtained by instantiating Definition 3.2 with the RRS code; this is
because in L̂, not only is every column a RRS codeword, but the underlying encoded message is also in L.

bWe note that if R is a relation in P then Π can be a protocol for k parties P1, . . . , Pk; see Remark 4.3.
cWe note that Steps 3 and 4 can be implemented in a single round.

Figure 3: A t-dZK Protocol for k > 6t+ 2

26

Our dZK proof is described in Figure 3. The following theorem (which is a formal statement
of Theorem 1.1) summarizes its properties.

Theorem 4.1 (dZK from MPC-in-the-head). Let tp, tr, k ∈ N such that k > 6tr + 2. Let R̂RRS be a
k-distributed relation over a field F, and let Π be a perfectly correct, (εp, tp)-private and perfectly (3tr + 1)-
robust k-party protocol for R̂RRS. Then the proof system Πdist of Figure 3 is an (εp, εr, tp, tr)-dZK for
L̂
(
R̂RRS

)
, for

εr = max

{
ε′,

(
k

2

)
N

|F|

}
where ε′ denotes the error of the IRS test (specified in Theorem 3.1), and N bounds the total number of field
elements exchanged between a pair of parties in Π.

Proof: Denote L̂ := L̂
(
R̂RRS

)
. We show that the proof system is complete, strongly complete,

sound and has ZK.

Completeness. Follows directly from the completeness of Π and the perfect correctness of the IRS
test. In particular, if Π has perfect correctness then Πdist also has perfect completeness, whereas if
the statistical correctness error of Π is at most ϵΠ then so is the completeness error of Πdist.

Strong Completeness. Let
(
x(1), . . . , x(k)

)
∈ L̂, and assume that a set C′ of at most t verifiers are

corrupted. We show that all honest verifiers output accept (with probability 1). Notice first that
by the correctness of the IRS test (Theorem 3.1), the check in Step 1 of the verification phase in
Figure 3 passes (with probability 1). Secondly, since P is honest then the views View1, . . . ,Viewk

are the views in an honest execution of Π on inputs
(
x(1), . . . , x(k)

)
. Therefore, all parties output 1

in Π, so no honest party broadcasts a complaint against P . Moreover, mi,j = mj,i for every honest
i, j, and since P can compute all the values mi,j , then if a (corrupted) verifier Vi broadcasts an
incorrect value, the prover will broadcast a complaint against Vi. Consequently, C1 ∪ C2 ⊆ C′, so
|C1 ∪ C2| ≤ t and mi,j = mj,i for every i, j /∈ C′. Consequently all honest verifiers accept the proof.

Soundness. Let
(
x(1), . . . , x(k)

)
∈ L̂ denote the input pieces of the verifiers in an execution of Πdist,

and assume that a corrupted prover P colludes with a set C′ of at most tr corrupted verifiers. Since(
x(1), . . . , x(k)

)
∈ L̂, then either the decoding of

(
x(1), . . . , x(k)

)
fails, or it decodes to x /∈ L. We

show that except with probability εr := max
{
ε′,

(
k
2

)
N
|F|

}
, all honest verifiers output reject, where

ε′ denotes the soundness error of the IRS test (Figure 1), and N bounds the total number of field
elements exchanged between a pair of parties in Π.

We say that the input pieces
{
x(i)

}
i/∈C′ of the honest parties are compliant with a valid encoding

of some x′ if there exists an
(
x′(1), . . . , x′(k)

)
which is a valid encoding of x′, and x′(i) := x(i) except

for i ∈ C′ and at most tr parties i /∈ C′. (That is, using the notation of Theorem 3.1, if X̃ ′ denotes
the restriction of X ′ =

(
x′(1), . . . , x′(k)

)
to the parties not in C′, then the distance between X̃ ′, and

the restriction of the interleaved RS code to the parties not in C′, is at most tr.) We consider two
possible cases.

Case (1): there exists no x′ (even an x′ /∈ L) such that the input pieces
{
x(i)

}
i/∈C′ are complaint

with a valid encoding of x′. Then by the soundness of the IRS test (Theorem 3.1) executed in Step 1
of the verification phase in Figure 3, except with probability ε′ all honest verifiers output reject.

Case (2): there exists an x′ such that the input pieces
{
x(i)

}
i/∈C′ are complaint with some valid

encoding of x′. Let
(
x′(1), . . . , x′(k)

)
denote this encoding of x′. Notice that in this case the dis-

tance d
((
x(1), . . . , x(k)

)
,
(
x′(1), . . . , x′(k)

))
between the input pieces

(
x(1), . . . , x(k)

)
of the parties

27

and
(
x′(1), . . . , x′(k)

)
is at most 2tr. Since the RS decoder can correct (k − 1)/2 ≥ 2tr errors, then

Dec
(
x(1), . . . , x(k)

)
= x′. Since

(
x(1), . . . , x(k)

)
/∈ L̂, this implies that x′ /∈ L.

Notice that the views {Viewi}i/∈C′ which P sent to the honest verifiers effectively information-
theoretically commit P to these values. We will show that there exists a subset H of at least k− 3tr
honest verifiers such that their views are: (1) pairwise consistent (i.e., for every pair Vi,Vj ∈ H, the
messages sent from Vi to Vj according to Viewj are the messages which an honest Vi in Π would
send given its view Viewi and input xi; and (2) H ⊆ [k] \ (C2 ∪ C′). In particular, H constitutes an
honest majority in Π with inputs

{
x(i)

}
i∈H and so by the robustness of Π, all parties in H output

0 in Π. Indeed,
(
x(1), . . . , x(k)

)
/∈ L̂, and moreover there exists no choice of input pieces x′′(i) for

the parties not in H for which the resultant distributed input is in L̂. This means that H ⊆ C1,
and so all honest verifiers output reject in Step 6 of the verification phase in Figure 3 (because
tr < k − 3tr ≤ |H| ≤ |C1|, so the check in Step 6a fails). We proceed with the formal argument.

As noted above, the messages which P sent to the verifiers commit P to the views of the
honest verifiers i ∈ [k] \ C′, and this is done before the random value r is sampled in Step 2 of
the verification phase of Figure 3. By Lemma 4.1, for every i, j /∈ C′ such that Viewi,Viewj are
inconsistent, except with probability ni,j/ |F| it will hold that mi,j ̸= mj,i, where ni,j is the number
of field elements exchanged between Pi, Pj in Π (see Lemma 4.1). Let bad denote the event that for
some i, j /∈ C′, Viewi,Viewj are inconsistent but mi,j = mj,i. Then, using the union bound (over
all pairs of honest verifiers),

Pr
r←F

[bad] = Pr
r←F

[
∃i, j /∈ C′ s.t. Viewi,Viewj are inconsistent but mi,j = mj,i

]
≤

(
k − |C′|

2

)
·maxi,j {ni,j}

|F|
.

Let ε′′ :=
(
k−|C′|

2

)
· maxi,j{ni,j}

|F| . In the following, we condition on bad.
We note first that we can assume that for every i, j /∈ C′, if Viewi,Viewj are inconsistent then at

least one of i, j is in C2. Indeed, since we have conditioned on bad, if Viewi,Viewj are inconsistent
then necessarily mi,j ̸= mj,i. Therefore, if i, j /∈ C2 then the check in Step 6b of the verification
phase of Figure 3 fails, and so all honest verifiers output reject, and soundness holds. We note that
this assumption implies that for every i, j /∈ C′ ∪ C2, their views Viewi,Viewj are consistent.

Second, we can further assume that |C2| ≤ tr. Indeed, if |C2| > tr then all honest verifiers
output reject because the check in Step 6a of the verification phase in Figure 3 fails. Therefore,
the set H′ := [k] \ C2 has size at least k − tr, and it contains at most tr corrupted verifiers. Let H′′

denote the set of honest verifiers in H′ (i.e., H′′ = H′ \ C′), then |H′′| ≥ k − 2tr. Moreover, by the
case assumption,

{
x(i)

}
i/∈C′ are complaint with a valid encoding

(
x′(1), . . . , x′(k)

)
of x′. Therefore,

there exists a subset H ⊆ H′′ of at least |H′′| − tr ≥ k − 3tr verifiers such that for every i ∈ H: (1)
x(i) = x′(i), and (2) Vi is honest.

Recall that we have shown above that Viewi,Viewj are consistent for every i, j ∈ H (this holds
for all i, j /∈ C′ ∪ C2, and H ⊆ [k] \ (C′ ∪ C2)). Therefore, the views of the verifiers in H correspond
to an execution of Π in which at most 3tr + 1 parties are corrupted (these include the corrupted
verifiers, as well as the parties in C2, the parties in H′′ \ H – whose input pieces are inconsistent
with the encoding of x′ – and P0),13 and where the inputs of the honest parties are consistent
with

(
x(1), . . . , x(k)

)
. (Here, we use the fact that Vi determines its view using also its input piece

x(i).) Since
(
x(1), . . . , x(k)

)
/∈ L̂, but

{
x(i)

}
i∈H are complaint with

(
x′(1), . . . , x′(k)

)
– which is a valid

encoding of x′ /∈ L – then because k − 1 ≥ 6tr then the error-correction of the RS code guarantees

13We note that if the dZK is run for a relation in P, then P0 is not needed, and the prover can use an MPC protocol
with k parties. In this case, the corruption threshold improves to k > 6tr , and Π is only required to be (εr, 3tr)-robust
see Remark 4.3 below.

28

that any 3tr errors in
(
x(1), . . . , x(k)

)
can be corrected. In particular, this implies that regardless of

the choice
(
x′′(i)

}
i∈[k]\H of inputs for the parties in [k] \ H, the resultant “codeword” will decode

to x′, meaning
(
x′′(1), . . . , x′′(k)

)
/∈ L̂ (where x′′(i) := x(i) for every i ∈ H). Therefore, the perfect

(3tr + 1)-robustness of Π guarantees that the parties in H output 0 in Π with probability 1.

Zero-Knowledge. Let I denote a set of at most tp corrupted verifiers in an execution of Πdist with
an honest prover. Since the rij ’s for honest Vi,Vj are random and unknown to the corrupted veri-
fiers, they serve as one-time pads, so mij ,mji reveal no information about Viewi,Viewj . Moreover,
for every i ∈ I, and every j ∈ [k], mj,i is computable from rij and Viewi, which are both known
to Vi. Moreover, when P is honest, all complaints (either of verifiers against the prover, or of the
prover against verifiers) originate from the corrupted verifiers. Finally, the ZK property of the IRS
test (Theorem 3.1) guarantees that the messages which the verifiers in I receive during the execu-
tion of the IRS test (Step 1 of the Verification phase) are perfectly simulatable given only

{
x(i)

}
i∈I .

Therefore, the entire view of the corrupted verifiers can be efficiently simulated from their input
pieces

{
x(i)

}
i∈I and views {Viewi}i∈I . We proceed to formally describe the simulator.

The simulator Sim uses as the simulator SimΠ for the parties in I in an execution of Π, and the
simulator SimRS of the IRS test. Sim on input

(
x(i)

)
i∈I operates as follows:

• Runs SimΠ

((
x(i)

)
i∈I

)
to obtain simulated views

(
ViewS

i

)
i∈I

.

• For every i ∈ I and every j ̸= i, picks a random mask r′ij .

• Provides
(

ViewS
i

)
i∈I

and
(
r′ij

)
i ∈ I, j ̸= i to the corrupted verifiers as the proof shares sent

from the prover.

• Executes the IRS test with the corrupted verifiers (Step 1 of the Verification phase), using
SimRS

((
x(i)

)
i∈I

)
to simulate the messages which they obtain from the honest parties.

• Picks a random r′ ← F and sends it to the corrupted verifiers as the output of Fcoin.

• Executes Step 3 of the Verification phase with the corrupted verifiers, providing random
values mij as the ones broadcasted by honest i, j, and honestly computing the values mji for
honest j and i ∈ I.14 In particular, Sim obtains from the corrupted verifiers the values mij

they would have broadcasted.

• Uses the messages mij , i ∈ I, j ̸= i to determine the set C2 of parties against which the
prover complained.

• Outputs the simulated views of the parties in I, consisting of:
(
x(i),View′i

)
i∈I ,

(
r′ij

)
i∈I,j ̸=i

,

r′, all the messages mij ,mji, the set C2, and the simulated messages which the honest parties
sent to the verifiers in I during the IRS test.

We now show that the simulated and actual views are εp-statistically close, though a sequence

of hybrids. Notice that r′, (mij ,mji)i,j /∈I and
(
r′ij

)
i∈I,j ̸=i

are identically distributed in both distri-

butions, so we can condition on these values.

H0: This is the real world views of the parties in I.
14This can be done because Sim knows the messages sent from Pj to Pi, since they appear in ViewS

i , and it can use
the next message function of Pi to compute which message an honest Pi would have sent to Pj .

29

H1: H1 is obtained from H0 by replacing the real views of the corrupted parties during the IRS
test with the simulated views generated by SimRS.

Then SD (H0,H1) = 0 by the perfect ZK of the IRS test. Indeed, all other values included inH0,H1

can be computed from these views, the real views of I in Π, and the values we have conditioned on,
and applying a function (that has the views in Π, and the values we have conditioned on, hard-wired
into it) to the random variables does not increase the statistical distance.

H2: H2 is obtained from H1 by replacing the real views of the corrupted parties in the execution
of Π with the simulated views generated by SimΠ.

Then SD (H1,H2) = εp by the (εp, tp)-privacy of Π. Indeed, the (εp, tp)-privacy of Π guarantees
that the views of the corrupted parties in a (semi-honest) execution of Π can be efficiently simulated
– up to εp statistical distance – from

{
x(i)

}
i∈I . Moreover, all other values included in H1,H2 can

be computed from these views and the values we have conditioned on, and applying a function to the
random variables does not increase the statistical distance.

We conclude that Πdist has (εp, tp)-dZK.

The proof of Theorem 4.1 used the following lemma, which bounds the probability that for a
pair of inconsistent Viewi,Viewj of honest verifiers Vi,Vj it holds that mi,j = mj,i.

Lemma 4.1. Let Vi,Vj for 1 ≤ i < j ≤ k be honest verifiers in the dZK protocol Πdist of Figure 3, and
assume that in Step 4 of the proof generation phase of Πdist a corrupted prover P sent inconsistent views
Viewi,Viewj to Vi,Vj (respectively). Let ni,j denote the number of field elements exchanged between Pi, Pj

in Π.15 Then the following holds for the values mi,j ,mj,i broadcasted in Step 3:

Pr
r←F

[mi,j = mj,i] ≤
ni,j

|F|
.

Proof: The lemma follows immediately from the Schwartz–Zippel Lemma. Indeed, let zi1, . . . , z
i
ni,j

(respectively, zj1, . . . , z
j
ni,j) denote the field elements exchanged between Pi, Pj in Π according to

Viewi (respectively, Viewj). Then by the assumption of the lemma,
(
zi1, . . . , z

i
ni,j

)
̸=

(
zj1, . . . , z

j
ni,j

)
.

Let riij , r
j
ij denote the random masks which P sent to Vi,Vj (respectively) in Step 4 of the proof

generation phase in Figure 3 (notice that if the prover is corrupted then it might be the case that
rii,j ̸= rjij). Then the polynomial gi,j (y) :=

(
riij − rjij

)
+
∑ni,j

f=1

(
zif − zjf

)
· yf is not identically zero

over F, so by the Schwartz-Zipple lemma,

Pr
r←F

[gi,j (r) = 0] ≤ ni,j

|F|
.

The lemma now follows because mi,j = mj,i if and only if gi,j (r) = 0 for the random r ← F
generated in Step 2 of the verification phase of Πdist. (In particular, r was chosen after gi,j was
fixed.)

Remark 4.2. We note that in Theorem 4.1, we could make due with an MPC protocol Π which is robust
against a maliciously corrupted P0 colluding with a subset of at most 2tr maliciously corrupted parties

15The field elements exchanged between Pi, Pj can be computed from the views. For example, the messages which
Pi obtained from Pj appear explicitly in Viewi, and the messages which Pi sent to Pj can be efficiently computed from
Viewi. We note that since Viewi,Viewj are inconsistent, it might be the case that the number of field elements exchanged
according to Viewi is different from the number of elements exchanged according to Viewj . In this case we set ni,j to
be the larger of the two.

30

(instead of robustness against arbitrary subsets of 2tr + 1 parties). Indeed, in the proof of Theorem 4.1, at
most 2tr of the parties P1, . . . , Pk might be considered “corrupted”, and the the additional 2tr+1 corrupted
party is always P0 (see the proof of the soundness property).

Remark 4.3 (Improved Corruption Threshold for Relations in P). When the dZK proof of Figure 3
is executed on a k-distributed relation R̂ corresponding to a relation R in P, then the party P0 is not
needed. Indeed, in this case the protocol Π could be between k parties P1, . . . , Pk, each holding an input
piece. Consequently, in the soundness proof the number of possibly corrupted parties in the execution of Π
reported in the views (which P sent to the verifiers in Step 4 of the proof generation phase in Figure 3) is at
most 3tr, so in this case it suffices for Π to be 3tr-robust, and that k > 6t.

Remark 4.4 (Reducing the Round Complexity). For simplicity of the presentation, we chose to separate
different parts of the dZK proof of Figure 3 into separate communication rounds. However, we note that the
round complexity of the dZK can be easily reduced, by executing the batched VSS verification test of Step 1
in parallel to the tests performed in Step 3 onward. Batched VSS verification (Figure 1) consists of a call
to Fcoin, and a single communication round of broadcasts. Moreover, the braodcasts of Step 3 and Step 4
can be executed in a single communication round. Therefore, except for the messages from the prover, the
dZK will consist of a single communication round of broadcasts from the verifiers. Reducing the number
of rounds in this manner preserves the security of the scheme. Indeed, soundness is preserved because the
verifiers have no private inputs or coins, so their entire view in the dZK is known to the prover. (This is
proved formally in Corollary 4.2 below.) ZK is preserved because both the secrecy of the IRS test, and the
ZK of the dZK of Figure 3 (without reducing the rounds) hold with straight-line black-box simulators, and
so ZK is preserved under general concurrent composition [KLR06]; see also Remark 4.5 below. For this
reason, strong completeness is also preserved. (Indeed, ZK implies full simulation, since the outputs of the
honest parties in this case is 1; therefore security holds under general concurrent composition by [KLR06].)

The complexity of our scheme. The communication complexity of our scheme grows with the
communication and randomness complexities of the underlying MPC protocol Π. In particular,
the prover’s first message corresponds to the collections of all views introduced by the emulated
MPC, whose accumulated size is exactly the sum of the communication and randomness complex-
ities of Π, while the verification phase is proportional to O(k2 ·log |F|) and is independent of the NP
circuit evaluated in Π. As we demonstrate below, the communication complexity depends on the
actual MPC instantiation. The round complexity of our dZK is 3 for protocols with perfect robust-
ness where the first message is sent by the prover, followed by the broadcasted message from the
verifiers (these include the broadcasts of Steps 3 and 4, and the broadcasts of the batch VSS verifi-
cation), where the second message from the prover concludes the protocol. In terms of broadcast
complexity, the number of broadcast bits is O

(
k2 log |F|

)
, and depends on the desired error for the

resultant scheme. Specifically, it could be as low as k2polylog (CC (Π)), where CC (Π) denotes the
communication complexity of Π. Indeed, obtaining negligible error requires that N/ |F| is negli-
gible, where N is the number of field elements exchanged between a pair of parties in Π. Setting,
e.g., |F| = 2log

2 CC(Π), the number of broadcasted bits would be O
(
k2 log |F|

)
= k2 · poly logCC (Π).

In particular, our dZK scheme is verification efficient (see Definition 2.4).

Strongly-Complete dZK Proofs in 2 Rounds. The round complexity of our dZK proofs can be
further reduced to 2 rounds by only slightly increasing the communication complexity during
verification. However, the (asymptotic) communication complexity remains unchanged, and in
particular the system is still verification efficient. This is summarized in the following corollary.

31

Corollary 4.2 (2-Round dZK Proofs (using Ideal Coin-Tossing)). Let tp, tr, k ∈ N such that k > 6tr+

2. Let R̂RRS be a k-distributed relation over a field F, and let Π be a perfectly correct, (εp, tp)-private and
perfectly (3tr + 1)-robust k-party protocol for R̂RRS. Then there exists a 2-round, verification-efficient
(εp, εr, tp, tr)-dZK for L̂

(
R̂RRS

)
, for

εr = max

{
ε′,

(
k

2

)
N

|F|

}
where ε′ denotes the error of the IRS test (as specified in Theorem 3.1), and N is a bound on the total number
of field elements exchanged between a pair of parties in Π. Moreover, the verification phase consists only of
broadcasting of O

(
k2
)

field elements.

The high-level idea is to compress the rounds during the verification phase of Figure 3 by
collapsing the verifier complaint round (Steps 3 and 4 of the verification phase) and the prover
complaint round (Step 5 of the verification phase). This can be done by having the prover broad-
cast all the MAC values that should have been sent in Step 3.

Proof of Corollary 4.2: We explain how to compress the rounds of the protocol of Figure 3 into
two rounds. The proof generation phase is identical to that of Figure 3, and the first interaction
round consists of the prover sending the proof shares, and the prover messages in the IRS test, as in
Step 4 of the proof generation of Figure 3. Following this step, the parties execute the verification
phase, during which the verifiers call the coin tossing oracle to generate the coins needed for the
IRS test, as well as the random r used to generate the messages of Step 3. In the second (and final)
interaction round, the parties perform the following:

1. Each verifier Vi sends his broadcasted messages of Step 3 of the IRS test (Figure 1).

2. Each verifier Vi sends the MACs it sends in Step 3 of the verification phase in Figure 3, as
well as the message it broadcasts in Step 4.

3. The prover P broadcasts, for every pair Vi,Vj , i < j of verifiers, the MAC value r′i,j which
these verifiers should have broadcasted.

4. Each verifier Vi computes the set C1 as in Figure 3. Additionally, it computes the set C2

as the set of all verifiers Vi such that there exists a verifier Vj ̸= Vi for which rij ̸= r′i,j if
i < j (rij ̸= r′j,i if j < i). Vi then makes its decision based on these sets (instead of the ones
computed in Figure 3).

Clearly, the protocol has 2 rounds, and the communication complexity during verification is as
specified in the corollary’s statement (see paragraph above about the complexity of our dZK
scheme). We now prove the protocol is a strongly-complete dZK.

Completeness follows identically to the proof of Theorem 4.1.
Strong completeness. When the prover is honest and at most t servers are corrupted, then

the IRS test is executed on a valid codeword, and the corrupted verifiers can only affect t of its
symbols. This holds regardless of the random challenge used in the test, and any other information
available to the corrupted servers. Therefore, the IRS test passes even when it is executed in
parallel to the rest of the protocol. Moreover, C contains only corrupted verifiers (by definition,
and this is regardless of the fact that rushing corrupted verifiers can first see the MACs sent by the
prover) and therefore |C| ≤ t so all honest verifiers accept.

32

Zero-Knowledge. There are two differences in this context between the 2-round protocol and
the protocol of Figure 3: (1) the messages of the IRS test are broadcasted in parallel to the broad-
casts checking the validity of the MPC in the head execution; and (2) the prover broadcasts are
sent in parallel to the broadcasts of the verifiers. Regarding (2), when the prover is honest then the
MACs he broadcasts are identical to the ones sent by the honest verifiers, so this does not affect
the simulation. As for (1), the messages broadcasted by the honest parties during the IRS test and
when verifying the MPC in the head execution are independent pf each other, and independent of
the operations of corrupted parties (since corrupted verifiers only communicate with the honest
parties in the final communication round). Since the IRS test and the MPC in the head verification
can be simulated using straight-line simulators, zero-knowledge holds even when these two tests
are performed in parallel.

Soundness. We show the protocol is sound by reduction to the security of the dZK of Figure 3.
The high-level reason is that the prover has full knowledge in the execution, namely it knows
all the input pieces, the witness, and the outcomes of the coin tosses. Therefore, if there were a
winning strategy for the prover in the compressed protocol, causing the honest verifiers to accept
with probability > εr, then this strategy could have been used by the prover in the protocol of
Figure 3, contradicting Theorem 4.1. If the prover had the same knowledge throughout the exeuc-
tion of the protocol in both protocols, then the reduction would have been immediate. The only
difference here is that the random coins used to check the MPC in the head execution (Step 2 of
the verification phase of Figure 3) are known to the adversary in the compressed protocol before
the messages of the IRS test are sent. However, the main point here is that the coins are revealed after
the prover has “committed” (by sending messages to the honest parties in the first round) to his
messages in the IRS test, as well as to the codeword symbols to be used in the test. Once these
values have been committed, the outcome of the IRS test is determined solely by the coin toss and
is independent of how the corrupted parties operate. Therefore, soundness is preserved.

4.1 Instantiations and Extensions

We first note that our dZK proofs remain secure under parallel composition. This observation will
be used in Section 5.3 when our dZK proofs are used to build maliciously-secure protocols with
identifiable abort.

Remark 4.5 (Parallel Composition for dZK). Notice that we prove zero-knowledge of our dZK protocol
(Theorem 4.1) via a straight-line black-box simulator. [KLR06] prove that if security is proved via a straight-
line simulator, where all honest parties receive their inputs before the protocol begins, then the protocol is
secure under general concurrent composition. Since in the context of parallel composition, the inputs are
indeed fixed for the honest parties before the execution begins, our dZK protocol is secure under parallel
composition.

4.1.1 Revisiting [IKOS07] in the Distributed Setting

The seminal work of [IKOS07, IKOS09] has shown how to use secure Multi-Party Computa-
tion (MPC) protocols to construct ZK argument systems, where different instances of MPC
protocols imply different proof lengths and soundness analyses. This so-called “MPC in the
head” paradigm has attracted much attention lately due to its broad applicability and practical-
ity [GMO16, AHIV17, CDG+17, KKW18, BFH+20, GSV21]. In this section we instantiate our pro-
tocol with two information theoretic protocols from [DI06] and [DIK10]. The former instantiation
requires coping with statistical robustness (and further requires revisiting a claim from [IKOS07]),

33

while the latter one is perfectly robust (and so we can directly use the soundness analysis of The-
orem 4.1 and Corollary 4.2). In more details, let L be a language in NP, and let R(x,w) be the
corresponding NP-relation. Let f be the following k-argument function (for k ≥ 3), correspond-
ing toR:

f(x,w1, . . . , wk) = R(x,w1 ⊕ . . .⊕ wk).

Namely, f is a k-party functionality, where the first argument x is a public input known to all k
parties, wi is a private input of player Pi, and all parties receive the output.

An Instantiation Based on Perfectly Robust MPC. Our first instantiation is based on the per-
fectly secure MPC protocol of [DIK10, Thm. 1]. The communication complexity of the protocol is
O(log k · log |C| · |C|) + d2 · poly(k, log |C|) field elements, where C is the computed circuit, |C| is
the number of multiplication gates in C and d is the depth of C. The corruption threshold of this
protocol is t < k/3. Then [DIK10] implies the following corollary (see Notation 1 for the definition
of t-dZK).

Corollary 4.3. Let k ∈ N, and let Fk be a field of size kl for a sufficiently large l ∈ N. Then the following
holds for any k-distributed relation R̂RRS that can be verified by a circuit C over Fk. Assuming ideal
coin-tossing, there exists a 2-round Ω (k)-dZK proof with (total) proof length O(log k · log |C| · |C|) +
d2 · poly(k, log |C|) field elements, where |C| denotes the number of gates in C, and d denotes its depth.
Furthermore, the communication complexity during verification of the proof shares is k2 field elements.

Coping with Statistical Robustness. Recall that Theorem 4.1 requires perfect robustness which
implies that if there exist no choice of inputs for the corrupted parties, which – together with the
inputs of the honest parties – satisfies the relation, then for every set of random strings the outcome
would indeed be 0. To contend with statistical robustness error, [IKOS07] needed to refine their
soundness analysis. This is due to the fact that the malicious prover knows all the randomness
selected for the emulated parties, including the random coins of the honest parties, which are
unknown to an adversary attacking the protocol (who only knows the inputs and randomness of
corrupted parties). In such a case, even a single corrupted party may potentially cause an incorrect
output. Moreover, using a coin tossing oracle to choose the randomness used by the prover would
not help here since upon seeing the entire randomness, a corrupted prover may still coordinate an
attack on the protocol, leveraging the fact that it knows all inputs and randomness.

They therefore revised their soundness analysis, requiring that the underlying protocol has
a two-phase structure and the prover can therefore likewise “corrupt” the MPC parties in two
phases, where corruptions in the second phase take place adaptively. The verifier’s challenge in
this proof is divided into two parts, where in the first step the verifier engages in a coin-tossing
protocol with the prover to fix the randomness of the MPC parties. (Since we work in the Fcoin-
hybrid model, we can instead call Fcoin to generate these coins.) The challenge of the second step
is required to sample the set of parties whose views will be opened for the consistency check. For
the MPC-in-the-head instantiation, [IKOS07] defined a topology with a single input client I and k
output parties P1, . . . , Pk. We adopt their definition of two-phase protocols.

Definition 4.1 (Adaptively robust two-phase protocol). Let tr ∈ N and let Π be a k + 1-party two-
phase MPC protocol (involving an input client I and k parties Pi), and let f be a function computed by
an input client I and k parties P1, . . . , Pk. We say that Π realizes f with adaptive (εr, tr)-robustness if
any computationally unbounded adversary can only win the following game with probability εr. First, the
adversary picks a false statement x (such that (x,w) /∈ R for all w), a set T1 of at most tr corrupted parties,

34

and random inputs ri for all uncorrected parties. Now the adversary runs Phase 1 of Π, arbitrarily control-
ling I and the parties in T1. Once Phase 1 terminates, Fcoin is invoked, generating a random challenge r.
Based on r, the adversary can corrupt at most tr−|T1| additional parties, and continues to interact with the
honest parties during Phase 2 of the protocol. The adversary wins if some party that was never corrupted
outputs 1.

If εr is negligible, then we say that Π is tr-adaptive statistical robust. Adapting this instantia-
tion to the distributed setting can be done as follows. The proof generation phase stays the same
except that it only captures Phase 1 from [IKOS07]. In Step 2, the parties call Fcoin to generate
the coins r used by the emulated MPC parties in Phase 2. The prover then runs another phase
of proof generation in which it generates the parties’ views in Phase 2 of the MPC protocol when
using randomness r. The check of Step 4 additionally verifies consistency with r for the compu-
tations performed during Phase 2 of the protocol. Note that the round complexity has increased
by one round due to the additional MPC phase (whereas in [IKOS07] this modification requires
two additional rounds). This gives the following theorem, where R̂RS is defined in Definition 2.2
(Section 2).

Theorem 4.4. Let s ∈ N be a statistical security parameter, and let tp, tr, k ∈ N such that k > 6tr + 2.
Let R̂RRS be a k-distributed relation over a field F, and let Π be a perfectly correct, (εp, tp)-private and
tr-adaptive statistical robust k-party protocol for R̂RRS. Then the proof system Πdist of Figure 3 (subjected
to the revisions described above), is a 3-round (εp, εr, tp, tr)-dZK for L̂

(
R̂RRS

)
, for

εr = max

{
ε′,

(
k

2

)
N

|F|
+ negl (s)

}
where ε′ denotes the error of the IRS test (as specified in Theorem 3.1), N is a bound on the total number of
field elements exchanged between a pair of parties in Π, and negl (s) is the robustness error of Π.

Constant rate dZK. Based on the statistically-robust MPC instantiation from [DI06], [IKOS07]
constructed a constant rate zero-knowledge protocol where the proof length is a constant multiple
of the circuit size |C| used to verify the underlying NP relation. We shall discuss next how to adapt
this result to the distributed setting. Note first that the network topology in [DI06] is defined by a
constant number of input clients who secret share their inputs to a large set of servers. The servers
securely evaluate the circuit layer by layer, while ensuring robustness using correctness tests that
are carried out with the clients (which will imply statistical robustness). If all the tests are verified
successfully, then the servers reveal to the clients the output sharing. Finally, to get constant
rate, [IKOS07] embedded the computation in [DI06] over small fields, instantiated with Algebraic-
Geometric codes [CC06]. For that we need to consider a modified IRS test whose analysis holds
for such small fields (see Corollary 3.2). Finally, the overall size of the views generated in both
phases is O(|C|) + poly(k, log |C|). This yields the following corollary.

Corollary 4.5. Let F be a constant-sized field. Then assuming ideal coin-tossing, any k-distributed relation
R̂RRS that can be verified by a circuit C over F has a 4-round Ω (k)-dZK proof. Moreover, the (total) proof
length is O(|C|) + poly(k, log |C|) field elements, where |C| denotes the number of gates in C, and the
communication complexity during verification is O

(
k2 + s

)
field elements, where s is a statistical security

parameter.

35

4.2 The Case of dZK Without Strong Completeness

In this section we describe a dZK protocol without strong completeness – but with a better corrup-
tion threshold – based on the techniques employed to construct our strongly-complete scheme
(Figure 3). This protocol achieves all properties of Definition 2.3 except for strong completeness,
and in particular it is a secure dZK in “setting II” of [BBC+19a] (i.e., where soundness holds against
corrupted prover and verifiers). Thus, this gives an alternative construction to the ones presented
in [BBC+19a]. Specifically, we prove the following, where we refer to a dZK protocol without
strong completeness as a weak dZK.

Corollary 4.6 (2-Round Weak dZK (using Ideal Coin-Tossing)). Let tp, tr, k ∈ N such that k > 2tr+2.
Let R̂RRS be a k-distributed relation over a field F, and let Π be a perfectly correct, (εp, tp)-private and
perfectly (tr + 1)-robust k-party protocol for R̂RRS. Then there exists a 2-round, verification-efficient
weak (εp, εr, tp, tr)-dZK for L̂

(
R̂RRS

)
, for εr = O

((
k
2

)
N
|F|

)
, where N is a bound on the total number of

field elements exchanged between a pair of parties in Π. Moreover, the verification phase consists only of
broadcasting of O

(
k2
)

field elements.

The high-level idea is that if strong completeness is not required then verifiers can immediately
reject if an inconsistency is identified, namely there is no need for dispute resolution, as we do
in Figure 3. This allows us to remove some of the checks performed in Figure 3, and to use a
simplified IRS test to check the inputs. As a result, we can handle a higher corruption threshold.

Proof of Corollary 4.6: We first describe the weak dZK system, which is a variant of the dZK
system of Figure 3. The protocol consists of 2 rounds. In the first round, the prover executes
the proof generation phase as in Figure 3. In the second round, the parties execute the following
verification phase (all messages are broadcasted in a single communication round):

1. Each verifier Vi sends his broadcasted messages of Step 3 of the IRS test (Figure 1, here ℓ = 1).

2. Each verifier Vi sends the MACs it sends in Step 3 of the verification phase in Figure 3, as
well as the message it broadcasts in Step 4.

3. Each verifier accepts if and only if the following tests pass:

(a) All MAC pairs are consistent, i.e., that for every i ̸= j it holds that rij = rji.

(b) No verifier broadcasted a complaint against the prover.

(c) The messages broadcasted by the verifiers as part of the IRS test form a valid codeword.
In particular, here we modify Step 4 of the IRS test of Figure 1, where the verifier accept
if and only if w ∈ L (using the notations of Figure 1), otherwise it rejects.

Clearly, the protocol has only 2 rounds and the communication complexity during verification is
as stated (the proof is similar to that of Corollary 4.2). We now prove that the protocol satisfies the
properties of a dZK proof (except for strong completeness).

Completeness follows identically to the proof of Theorem 4.1.
Zero-Knowledge follows identically to the proof of Corollary 4.2 (because the same messages

are sent in the dZK described above, and the dZK proof of Corollary 4.2).
Soundness. Let C, |C| ≤ t denote the set of corrupted verifiers, and H = [k] \ C denote the

honest parties. We say that the input pieces
{
x(i)

}
i/∈C of the honest parties are compliant with a

valid encoding of some x′ if there exists an
(
x′(1), . . . , x′(k)

)
which is a valid encoding of x′, and

x′(i) := x(i) for every i ∈ H.

36

We first show that the modified IRS test described above (in which the verifiers reject if the
broadcasted word is not a codeword) satisfies the following soundness guarantee. Assume that
k > 2tr. (Using the notation of Section 3, we have ℓ = 1 and δ = tr) If there exists no x′ such
that the input pieces

{
x(i)

}
i∈H of the honest parties are compliant with a valid encoding of x′, then

except with probability 1/|F| all honest verifiers reject the test, even when the prover colludes
with the parties in C. This is because when k > 2tr then the RS code has distance at least k − tr +
1 > tr. Therefore, except with probability 1/ |F|, the linear combination computed by the honest
parties is not compliant with any valid codeword. Consequently, the word broadcasted in Step 3
of Figure 1 would not be a codeword, regardless of the messages broadcasted by the corrupted
verifiers during the modified IRS test (see, e.g., [DI06, Lemma 2] for a full proof).

We consider two possible cases.
Case (1): there exists no x′ (even an x′ /∈ L) such that the input pieces

{
x(i)

}
i∈H are complaint

with a valid encoding of x′. Then by the soundness of the modified IRS test (discussed above), all
honest verifiers output reject except with probability 1/|F|.

Case (2): there exists an x′ such that the input pieces
{
x(i)

}
i∈H are complaint with some valid

encoding of x′. Let
(
x′(1), . . . , x′(k)

)
denote this encoding of x′. Notice that in this case the dis-

tance d
((
x(1), . . . , x(k)

)
,
(
x′(1), . . . , x′(k)

))
between the input pieces

(
x(1), . . . , x(k)

)
of the parties

and
(
x′(1), . . . , x′(k)

)
is at most tr. Since the RS decoder can correct (k − 1)/2 ≥ tr errors, then

Dec
(
x(1), . . . , x(k)

)
= x′. Since

(
x(1), . . . , x(k)

)
/∈ L̂, this implies that x′ /∈ L.

Notice that the views {Viewi}i∈H which P sent to the honest verifiers effectively information-
theoretically commit P to these values. Since this is done before the random coin toss (used to
compute the MACs) Lemma 4.1 guarantees that for every i, j ∈ H such that Viewi,Viewj are
inconsistent, except with probability ni,j/ |F| their MACs will be different, where ni,j is the number
of field elements exchanged between Pi, Pj in Π (see Lemma 4.1). Let bad denote the event that
for some i, j ∈ H, Viewi,Viewj are inconsistent but their MACs are equal. Then, using the union
bound (over all pairs of honest verifiers),

Pr
r←F

[bad] = Pr
r←F

[∃i, j ∈ H s.t. Viewi,Viewj are inconsistent but their MACs are equal]

is at most
(
k−|C|

2

)
· maxi,j{ni,j}

|F| . Let ε′′ :=
(
k−|C|

2

)
· maxi,j{ni,j}

|F| .
Conditioned on bad, if the honest verifiers accept, then the views {Viewi}i∈H are all pair-

wise consistent, and therefore they correspond to an execution of Π with at least k − tr − 1
honest parties (i.e., an honest majority), in which the inputs of the honest parties are consistent
with

(
x(1), . . . , x(k)

)
(because the view of every honest verifier is also locally consistent). Since(

x(1), . . . , x(k)
)

/∈ L̂, but
{
x(i)

}
i∈H are complaint with

(
x′(1), . . . , x′(k)

)
– which is a valid encod-

ing of x′ /∈ L – then because k − 1 ≥ 2tr then the error-correction of the RS code guarantees
that any tr errors in

(
x(1), . . . , x(k)

)
can be corrected. In particular, this implies that regardless of

the choice
(
x′′(i)

}
i∈C of inputs for the corrupted parties, the resultant “codeword” will decode to

x′, meaning
(
x′′(1), . . . , x′′(k)

)
/∈ L̂ (where x′′(i) := x(i) for every i ∈ H). Therefore, the perfect

(tr + 1)-robustness of Π guarantees that the parties in H output 0 in Π with probability 1.

By instantiating Theorem 4.6 with the protocols of [DIK10] and [DI06] as in Section 4.1, we
obtain the following corollaries:

Corollary 4.7 (2-Round weak dZK, Quasilinear Communication). Let k ∈ N, and let Fk be a field of
size kl for a sufficiently large l ∈ N. Then the following holds for any k-distributed relation R̂RRS that can
be verified by a circuit C over Fk. Assuming ideal coin-tossing, there exists a 2-round weak t-dZK proof for
k > 2(t+ 1), with (total) proof length O(log k · log |C| · |C|) + d2 · poly(k, log |C|) field elements, where

37

|C| denotes the number of gates in C, and d denotes its depth. Furthermore, the communication complexity
during verification of the proof shares is k2 field elements.

Corollary 4.8 (2-Round weak dZK, Linear Communication). Let F be a constant-sized field. Then
assuming ideal coin-tossing, any k-distributed relation R̂RRS that can be verified by a circuit C over F has
a 4-round weak t-dZK proof for k > 2(t+1). Moreover, the (total) proof length is O(|C|)+poly(k, log |C|)
field elements, where |C| denotes the number of gates in C, and the communication complexity during
verification is O

(
k2 + s

)
field elements, where s is a statistical security parameter.

Comparison with [BBC+19a]. Theorem 4.6 gives a dZK proof without strong completeness for any
language encoded using the RRS code. However, it extends to languages encoded using any ro-
bust linear code, as long as the code is t-private in the sense that any t codeword symbols reveal no
information about the underlying message. Boneh et al. [BBC+19a, Thm. 6.16] design a dZK proof
for encoded languages, based on fully-linear IOPs. To obtain a 2-round dZK (in the coin-tossing
hybrid model), their construction needs to be instantiated with a fully linear PCP. They construct
such a PCP for general circuits (see [BBC+19a, Thm. 4.3], where the G-gates are simply multi-
plication gates). The proof size is then linear in the size of the circuit verifying the relation, the
communication complexity during verification is O (k) field elements, and the proof is ZK against
k− 1 verifiers, and sound against a prover colluding with t < k/2 verifiers. In comparison, we get
ZK and soundness against t < (k − 2)/2 verifiers with proof length which is quasi-linear in the
circuit size and O

(
k2
)

field elements communicated during verification. Thus, our dZK obtains
comparable corruption thresholds (for soundness) and slightly worse communication complexity.
This might indicate that the reason for the lower corruption threshold in our strongly-complete
verification-efficient dZK (roughly k/6 compared to k/2 in dZKs without strong completeness)
could be due to the strong completeness property, and not the use of MPC in the head.

5 Applications

5.1 Certifiable Verifiable Secret Sharing

In this section we describe our construction of a certifiable VSS (cVSS) scheme. We first recall the
definition of cVSS [IW14]. Intuitively, cVSS is a certifiable variant of VSS, in which the dealer D
not only commits to some secret x, but also proves that it satisfies some predicate, namely that
x ∈ R for some (NP) language L. similar to standard VSS, cVSS is a (k + 1)-party two-phase
protocol consisting of a Sharing phase in which D commits to x by distributing shares between
the parties P1, . . . ,Pk, and a Reconstruction phase in which the parties reconstruct x from their
shares. cVSS guarantees correctness and secrecy as in standard VSS, i.e., if the dealer is honest
then the shares will reconstruct to x even if t parties are corrupted, and any subset of t corrupted
parties learn nothing about x during the Sharing phase. cVSS guarantees a stronger notion of
binding compared to VSS. Indeed, VSS guarantees that when the Sharing phase terminates, there
exists some x∗ which will necessarily be reconstructed during the Reconstruction phase, even if
D and a subset of t of the parties P1, . . . ,Pk maliciously cheat throughout the protocol execution.
cVSS additionally guarantees that x∗ ∈ L. Finally, cVSS has a zero-knowledge guarantee which
extends the secrecy property of standard VSS. Specifically, any subset of t parties learn nothing
about the NP witness (in cases where it exists, namely if L is an NP language) throughout the
execution, namely not even when x is revealed in the Reconstruction phase. This is formalized in
the following definition.

38

Definition 5.1 (cVSS). Let ε ∈ [0, 1], let tp, tr, k ∈ N, and let R = R (x,w) be an NP relation with
a corresponding NP-language LR. We say that a 2-phase protocol Π between a dealer D and k parties
P1, . . . ,Pk is an (εp, εr, tp, tr)-Certifiable Verifiable Secret Sharing ((εp, εr, tp, tr)-cVSS) scheme for
R if it satisfies the following.

• Syntax. The protocol has two phases: a Sharing phase and a Reconstruction phase. In the sharing
phase, the dealer D has input x and a corresponding witness w, and the parties P1, . . . ,Pk have no
input. The output of Pi in this phase is a share Sharei, and D has no output. In the reconstruction
phase, the input of each Pi is Sharei, and D has no input. The output of the Reconstruction phase is
an x′ ∈ L (R).16

• Strong Correctness. For every (x,w) ∈ R, in an execution of Π with an honest dealer D that has
input (x,w), except with probability εr the output of the reconstruction phase is x, even if t parties
are corrupted, computationally unbounded, and may arbitrarily deviate from the protocol.

• Binding. For every subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ tr, the following holds except with εr
failure probability over the randomness of the sharing phase. At the end of the sharing phase of Π in
which the parties in {P1, . . . ,Pk} \T are honest, there exists a unique x∗ ∈ LR such that the output
of the parties in {P1, . . . ,Pk} \ T in the reconstruction phase will be x∗, regardless of the messages
sent by D and the parties in T during the reconstruction phase. This holds even if D and the parties
in T are corrupted, computationally unbounded, and arbitrarily deviate from the protocol throughout
the computation (including during the sharing phase).

• Secrecy. For every subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ tp, there exists a simulator SimT such
that for every (x,w) ∈ R, SD (SimT (|x|) ,ViewT (x,w)) ≤ εp, where ViewT (x,w) denotes the
joint view of the parties in T in an execution of the sharing phase of Π with an honest dealer D that
has input (x,w), and in which the parties in T may be corrupted, computationally unbounded, and
may arbitrarily deviate from the protocol.

• Zero Knowledge. For every subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ tp, there exists a simulator
Simf

T such that for every (x,w) ∈ R, SD
(

Simf
T (x) ,Viewf

T (x,w)
)
≤ εp, where Viewf

T (x,w)

denotes the joint view of the parties in T in a full execution of Π (including the sharing and recon-
struction phases) with an honest dealer D that has input (x,w), and in which the parties in T may
be corrupted, computationally unbounded, and may arbitrarily deviate from the protocol.

When εp = εr and tp = tr we say that the scheme is an (ε, t)-cVSS, or simply that it is a t-cVSS.

Overview of Our cVSS Scheme. At a high level, our cVSS scheme – described in Figure 4 –
works by having the dealer encode its secret x using the Randomized RS (RRS) code of Defini-
tion 3.5, and distribute the shares between the parties. Then, the parties verify their shares by
running the IRS test of Figure 1 to check the validity of the encoding, then running a dZK proof
attesting to the fact that the encoded secret satisfies the predicate.

The following theorem summarizes the properties of the cVSS scheme of Figure 4.

Theorem 5.1 (cVSS from dZK). Let t ∈ N, and RRS = RRSF,k,t+1,η for k > max {3(t+ 1), 4t} and
some η ∈ Fk. Let R be an NP relation, and let Πdist be k-verifier (εp, εr, t, t)-dZK for R̂RRS. Then the
cVSS scheme of Figure 4, when instantiated with C and Πdist as the underlying building blocks, is an
(max {εr, ε′} , εp, t, t)-cVSS forR, where ε′ is the soundness error of the IRS test (Theorem 3.1).

16We assume that L (R) is not empty, in which case a description of such an x′ can be included in the description of
the protocol.

39

A Certifiable Verifiable Secret Sharing Scheme

Building Blocks. The scheme is used to prove membership of the secret shared value in an
NP relation R. It employs a dZK proof system Πdist for the relation R̂RRS (see Definition 2.2 in
Section 2, and Definition 3.5 of the RRS code), between a prover P and verifiers V1, . . . ,Vk.

Sharing Phase. Sharing is executed between the dealer D with input a secret x and a witness
w such that (x,w) ∈ R, and k parties P1, . . . ,Pk that have no input. The output of each Pi is a
share Sharei. This phase is executed as follows.

1. D picks a random string r for the encoding procedure Enc of the RRS code, encodes(
x(1), . . . , x(k)

)
← Enc (x; r), and sends x(i) to Pi for every 1 ≤ i ≤ k.

2. The parties run the IRS test of Figure 1 using the inputs x(1), . . . , x(k).a

3. The parties emulate the dZK Πdist, where D plays the role of the dZK prover P with input(
x(1), . . . , x(k)

)
and witness w, and each Pi emulates Vi with input x(i).

4. When the emulation of Πdist terminates, Pi determines its share Sharei as follows. If at most
t parties reject in Step 2, and Vi accepted in Πdist, then Sharei := x(i). Otherwise, Sharei is
set to the i’th share in a pre-determined (and fixed) encoding an arbitrary x′ ∈ L (R).

Reconstruction Phase. Each Pi operates as follows.

1. Broadcasts its share Sharei. Let Share′1, . . . ,Share
′
k denote the broadcasted shares.

2. Locally computes x′ = Dec
(
Share′1, . . . ,Share

′
k

)
(where Dec is the decoding procedure of

the RRS code) and outputs x′.

aWe note that if Πdist is the dZK proof of Figure 3 then this step can be skipped, because the dZK itself
internally runs the IRS test.

Figure 4: A t-cVSS Scheme

Proof: We prove that the cVSS scheme of Figure 4 satisfies the properties of Definition 5.1.

Strong correctness. If (x,w) ∈ R and D is honest, then
((
x(1), . . . , x(k)

)
, w

)
∈ R̂RRS so the correct-

ness of the IRS test (Theorem 3.1) guarantees that all honest parties accept in Step 2. Therefore,
only the corrupted parties may reject in this phase, so there are at most t rejections in that step.
Moreover, the strong completeness of Πdist guarantees that except with probability εr, Step 3 of
the sharing phase passes, so every honest Pi outputs Sharei = x(i) in Step 4 of the sharing phase.
Since at most t parties are corrupted during the reconstruction phase (and the shares generated by
D form a valid encoding of x), then the shares broadcasted in Step 1 of the Reconstruction phase
are t-close to an encoding of x, and so the robustness of the RRS code guarantees that all honest
parties output x during the Reconstruction phase.

Binding. The analysis here is somewhat similar to (though much simpler than) the analysis of our
dZK system (Theorem 4.1). Let D be a corrupted dealer colluding with a subset T ⊆ {P1, . . . ,Pk}
of size |T | ≤ t, and let

(
x(i)

)
i/∈T denote the shares which D sent to the honest parties in Step 1 of

the sharing phase. We say that the input pieces
{
x(i)

}
i/∈T of the honest parties are compliant with

a valid encoding of some x′ if there exists an
(
x′(1), . . . , x′(k)

)
which is a valid encoding of x′, and

x′(i) := x(i) except for i ∈ T and at most t parties i /∈ T . We consider two possible cases.

40

Case (1): there exists no x′ such that the input pieces
{
x(i)

}
i/∈T are compliant with a valid encoding

of x′. Then by the soundness of the IRS test (Theorem 3.1), except with probability ε′ Step 2 of the
Sharing phase fails, and so all honest parties output a fixed encoding of some arbitrary x∗ ∈ L (R).
Therefore, the shares broadcasted in the Reconstruction phase are t-close to a valid encoding of x∗

(all errors are concentrated in the shares of the parties in T , who may use incorrect shares), so the
robustness of the RRS code guarantees that x∗ will be reconstructed.

Case (2): there exists an x′ such that the input pieces
{
x(i)

}
i/∈T are compliant with some valid

encoding
(
x′(1), . . . , x′(k)

)
of x′. In this case, if the IRS test fails then the binding holds as in case (1).

Otherwise, the IRS test passes. Moreover, in this case for every choice x′′(i), i ∈ T of input pieces
for the corrupted parties, we have d

((
x′′(1), . . . , x′′(k)

)
,
(
x(′(1), . . . , x′(k)

))
≤ 2t, where x′′(i) = x(i)

for every i /∈ T . Since the RRS decoder can correct (k−1)/2 ≥ 2t error, then Dec
(
x(1), . . . , x(k)

)
= x′

regardless of the input pieces which the parties in T provide to the decoder.
We consider three sub cases. First, if x′ /∈ L (R) then there exists no choice of input pieces for

the parties in T , for which the resultant distributed input will be in R̂RRS. Therefore, the soundness
of Πdist guarantees that except with probability εr, the execution in Step 3 of the Sharing phase fails,
and so as in case (1) all honest parties output shares of x∗ ∈ L (R), and x∗ will be reconstructed.
Second, if x′ ∈ L (R) but the execution of Πdist failed, then similarly to the previous sub case, x∗

will be reconstructed during the Reconstruction phase. Thirdly, if x′ ∈ L (R) and the execution of
Πdist succeeded, then since x′(i) := x(i) except for i ∈ T and at most t parties i /∈ T , the input pieces
used during reconstruction are at most 2t ≤ (k−1)/2 far from a valid encoding of x′ (here, we use
the fact that k > 4t). Since the RRS decoder can correct (k − 1)/2 errors, x′ will be reconstructed.
In summary, since cases (1) and (2) are disjoint, the binding error is max {εr, ε′}.

Secrecy. Let T be a subset of corrupted parties of size |T | ≤ tp. We describe a simulator SimT

that simulates the view of the parties in T during the sharing phase. The simulator uses the
simulator Simdist

T (SimRS
T , respectively) for an execution of Πdist (the IRS test, respectively) in which

the parties in T are corrupted. Intuitively, Sim will simulate the shares of parties in T using a
random encoding of the all-0 string, and then emulate SimRS

T and Simdist
T on these shares. Formally,

SimT (|x|) operates as follows:

• Encodes
(
x̃(1), . . . , x̃(k)

)
← Enc

(
0|x|

)
, and provides

(
x̃(i)

)
i∈T to the corrupted parties as the

messages sent by the dealer in Step 1 of the Sharing phase.

• Executes the IRS test (Step 2 of the Sharing phase) with the parties in T , using
SimRS

T

((
x̃(i)

)
i∈T

)
to determine the messages which the honest parties send to the parties

in T in the test. Let
(

Ṽiew
RS

i

)
i∈T

denote the views of the parties in T during this step.

• Executes Πdist with the parties in T , using Simdist
T

((
x̃(i)

)
i∈T

)
to determine the messages

which the honest parties send to the parties in T in the dZK. Let
(

Ṽiew
dist

i

)
i∈T

denote the

views of the parties in T during this step.

• Outputs
(
x̃(i), Ṽiew

RS

i , Ṽiew
dist

i

)
i∈T

as the views of the corrupted parties during the Sharing

phase.

We now show that for every (x,w) ∈ R it holds that SD (SimT (|x|) ,ViewT (x,w)) ≤ εp + ε′p,
through a sequence of hybrids.

41

H0: This is the real-world view ViewT (x,w).

H1: InH1, we replace the views of the parties in T during the execution of Πdist with the simulated
views generated by Simdist

T (in particular, the input pieces given to Simdist
T are the actual

shares generated by D in the real execution).

Then SD (H0,H1) ≤ εp by the (εp, tp)-ZK of Πdist. Indeed, the ZK of Πdist guarantees that the real
and simulated views of the parties in T during an execution of Πdist are εp-statistically close, and the
entire hybrid distributions can be generated from the real/simulated views in Πdist by the function
that has the real views during the IRS test hard-wired into it.17

H2: In H2, we replace the views of the parties in T during the execution of the IRS test with the
simulated views generated by SimRS

T (in particular, the input pieces given to SimRS
T are the

actual shares generated by D in the real execution).

Then SD (H1,H2) = 0 by the perfect ZK of the IRS test. This holds because the simulated views
in Πdist can be computed from

(
x(i)

)
i∈[k], and applying a function to the random variables does not

increase the statistical distance.

H3: In H3, we replace the shares sent to the parties in T in Step 1 of the Sharing phase with the
corresponding input pieces in a random encoding

(
x̃(1), . . . , x̃(k)

)
of 0|x| (and, in particular,

the inputs given to Simdist
T ,SimRS

T are
({

x̃(i)
}
i∈T

)
). Notice thatH3 is identical to SimT (|x|).

Then SD (H2,H3) = 0 by the perfect tp-privacy of the code. (Indeed, all values in the hybrids can be
efficiently generated from the input pieces of the parties in T .)

Zero Knowledge. The proof of the ZK property is similar to the secrecy proof, except that now
the simulator is given the input x and can therefore generate an encoding of x to be used in the
simulation. We proceed with the formal argument. Let T be a subset of corrupted parties of size
|T | ≤ tp. The simulator Simf

T uses the simulator Simdist
T (SimRS

T , respectively) for an execution
of Πdist (the IRS test, respectively) in which the parties in T are corrupted. Simf

T (x) operates as
follows:

• Encodes
(
x̃(1), . . . , x̃(k)

)
← Enc (x).

• Executes the IRS test (Step 2 of the Sharing phase) with the parties in T , using
SimRS

T

((
x̃(i)

)
i∈T

)
to determine the messages which the honest parties send to the parties

in T in the test. Let
(

Ṽiew
RS

i

)
i∈T

denote the views of the parties in T during this step.

• Executes Πdist with the parties in T , using Simdist
T

((
x̃(i)

)
i∈T

)
to determine the messages

which the honest parties send to the parties in T in the dZK. Let
(

Ṽiew
dist

i

)
i∈T

denote the

views of the parties in T during this step.

• Outputs
(
x̃(i)

)
i∈T as the shares sent by D to the parties in T in Step 1 of the Sharing phase,(

Ṽiew
RS

i

)
i∈T

as the views of the parties in T in the IRS test (Step 2 of te Sharing phase),

17In particular, we note that replacing the views in Πdist (from real to simulated) cannot affect the behaviour of the
parties in T during the IRS test, which occurs before the execution of Πdist.

42

(
Ṽiew

dist

i

)
i∈T

as the views during the execution of Πdist in Step 3 of the Sharing phase, and(
x̃(i)

)
i/∈T as the shares broadcasted in Step 1 of the Reconstruction phase.

We now show that for every (x,w) ∈ R it holds that SD
(

Simf
T

((
x(i)

)
i∈T

)
,Viewf

T (x,w)
)
≤ εp,

using a sequence of hybrids. Since the input pieces are identically distributed in the real execution
and the simulation (in both cases these are random encodings of x), then we can condition on
these values. Therefore, we can repeat the hybrid argument from the secrecy case, showing that
SD (H0,H2) ≤ εp. This proves ZK since in this caseH2 is identical to Simf

T (x).

Remark 5.1 (Equivocal cVSS). We note that if the code C is equivocal, then our cVSS is also equivocal.
Specifically, we say that C is equivocal if there exists an efficient resampling algorithm S such that for
every

(
x(1), . . . , x(k)

)
∈ C, and every subset I ⊆ [k] , |I| ≤ tp it holds that S

(
I, x′,

(
x(i)

)
i∈I

)
outputs an

encoding
(
x′(1), . . . , x′(k)

)
which is random subject to the constraint that x′(i) = x(i) for every i ∈ I.

Given such a code, our cVSS scheme of Figure 4 has the following equivocation property which is
a strengthening of the ZK property of Definition 5.1: for every subset T of at most t parties there ex-
ists a simulator Sime

T such that for any x, and any input shares
(
x′(i)

)
i∈T generated by the secrecy

simulator SimT (|x|), the simulated views generated by Sime
T

(
x,

(
x′(i)

)
i∈T

)
are ε′p-statistically close to

Viewf
T (x,w), and moreover the shares which the parties in T obtained from D in Step 1 of the Sharing

phase in Sime
T

(
x,

(
x′(i)

)
i∈T

)
are

(
x′(i)

)
i∈T .

Complexity of Our cVSS Scheme. The dealer can send to the parties in Step 1 of the Sharing
phase, also the prover messages in the IRS test (Step 2) and the dZK (Step 3). Then, the parties can
execute in parallel the remaining steps of the IRS test and the dZK. (This does not affect security,
see Remark 4.4) Using our dZKs of Corollary 4.3, the cVSS sharing phase will have 3 rounds, and
except for the dealer messages, all communication is through the broadcast of O(log k · log |C| ·
|C|) + d2 · poly(k, log |C|) field elements, where C is an arithmetic circuit of depth d that verifies
membership in R̂RRS. This gives the following corollary.

Corollary 5.2. Let k ∈ N, and let Fk be a field of size kl for a sufficiently large l ∈ N. Let R be a relation,
and let C be a circuit over Fk verifying membership in R̂RRS. Assuming ideal coin-tossing, R̂RRS has
a 3-round Ω (k)-cVSS scheme, in which O(log k · log |C| · |C|) + d2 · poly(k, log |C|) field elements are
broadcasted during the Sharing phase, where |C| denotes the number of gates in C, and d is its depth.

Comparison with the cVSS of [IW14]. Ishai and Weiss [IW14] design a cVSS scheme based on
Zero-Knowledge Probabilistically Checkable Proof of Proximity (ZK-PCPP).18 They separate the
Sharing phase into two phases, a sharing phase in which the dealer distributes shares between the
parties (this corresponds to Step 1 of the Sharing phase in Figure 4) and a verification phase in
which the parties interact to determine the validity of the sharing. This is done to capture the fact
that their verification phase requires only polylogarithmic communication in the total number of
parties (whereas the communication during this part of our cVSS is at least linear in k, and in fact

18Their cVSS scheme is defined in the plain model in a system which includes a designated receiver who determines
the outcome of the cVSS, but the receiver is only used to generate random coin tosses, so in the Fcoin-hybrid model it
can be replaced with a call to Fcoin.

43

quadratic when using the dZK of Section 4). However, the total number of parties in their scheme
is a (large) polynomial in the corruption bound t and the input length n, whereas in our cVSS the
number of parties is only a constant times larger than the corruption bound. In particular, due to
this relationship between k, t, in many natural scenarios the communication required to verify the
sharing might actually be smaller in our cVSS.

5.2 Reusable cVSS

In this section we describe a generalization of cVSS with the attractive feature of reusability.
Roughly, a reusable cVSS scheme consists of an initial sharing phase in which the dealer dis-
tributes secret shares between the parties, following which the dealer can prove – in an online
fashion – an unlimited number of claims on these secret shares. These proofs are guaranteed to
all hold with respect to the same secret shares distributed in the initial sharing phase. Finally, a
reconstruction phase allows the parties to reconstruct the shared secret. This is formalized in the
following definition.

Definition 5.2 (Reusable cVSS). Let ε ∈ [0, 1], and tp, tr, k ∈ N. We say that protocol Π between a dealer
D and k parties P1, . . . ,Pk is an (εp, εr, tp, tr)-reusable cVSS scheme if the following holds.

• Syntax. The protocol has a Sharing phase, followed by any number of Prove phases, and finally a
Reconstruction phase. In the Sharing phase, D has input x, and the parties P1, . . . ,Pk have no
input. The output of Pi in this phase is a share Sharei, and D has no output. Following the Sharing
phase, there could be multiple invocations of a Prove phase. In each invocation all parties are given
the description of an NP relation R, and D is given a witness w such that (x,w) ∈ R. The output
of Pi in this phase is either accept or reject, and D has no output. In the Reconstruction phase,
the input of each Pi is its outputs in all previous phases, and D has no input. The output of the
sharing phase is an x′ as well as accept or reject (intuitively, this additional output indicates whether
x′ satisfies all the predicates of the Prove phase).

• Strong Correctness. For every x, every sequence R1, . . . ,Rm of NP relations, and every sequence
w1, . . . , wm of witnesses such that (x,wi) ∈ Ri for every 1 ≤ i ≤ m, the following holds except with
probability m · εr. In an execution of Π with an honest dealer D that has input x, where the Prove
phase is executed m times with relations R1, . . . ,Rm and witnesses w1, . . . , wm, the output of the
reconstruction phase is x, accept, even if t parties are corrupted, computationally unbounded, and
may arbitrarily deviate from the protocol.

• Binding. For every subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ tr, the following holds except with εr
failure probability over the randomness of the Sharing phase. At the end of the Sharing phase of Π in
which the parties in {P1, . . . ,Pk} \ T are honest, there exists a unique x∗ such that the output of the
parties in {P1, . . . ,Pk} \ T in the Reconstruction phase will be x∗, regardless of the messages sent
by D and the parties in T during the Reconstruction phase. Moreover, if the prove phase is executed
with some R such that x∗ /∈ L (R) then the honest parties will output reject in the Reconstruction
phase. This holds even if D and the parties in T are corrupted, computationally unbounded, and
arbitrarily deviate from the protocol throughout the computation (including during the sharing and
prove phases).

• Secrecy. For every subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ tp, there exists a simulator SimT such
that for every x, every sequence R1, . . . ,Rm of NP relations, and every sequence w1, . . . , wm of
witnesses such that (x,wi) ∈ Ri for every 1 ≤ i ≤ m,

SD (SimT (|x| ,R1, . . . ,Rm) ,ViewT (x,w1, . . . , wm,R1, . . . ,Rm)) ≤ m · εp

44

where ViewT (x,w1, . . . , wm,R1, . . . ,Rm) denotes the joint view of the parties in T in an execution
of the Sharing phase of Π with an honest dealer D that has input x, followed by m execution of the
Prove phase for relations R1, . . . ,Rm in which the honest D has inputs w1, . . . , wm (respectively).
This holds even if the parties in T are corrupted, computationally unbounded, and arbitrarily deviate
from the protocol.

• Zero Knowledge. For every subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ tp, there exists a simula-
tor Simf

T such that for every x, every sequence R1, . . . ,Rm of NP relations, and every sequence
w1, . . . , wm of witnesses such that (x,wi) ∈ Ri for every 1 ≤ i ≤ m,

SD
(

Simf
T (x,R1, . . . ,Rm) ,Viewf

T (x,w1, . . . , wm,R1, . . . ,Rm)
)
≤ m · εp

where Viewf
T (x,w1, . . . , wm,R1, . . . ,Rm) denotes the joint view of the parties in T in a full execu-

tion of Π (including the Sharing phase, any number of Prove phases, and the Reconstruction phase)
with an honest dealer D that has input x, and the Prove phase is executed m times with relations
R1, . . . ,Rm and the honest D has inputs w1, . . . , wm (respectively). This holds even if the parties in
T are corrupted, computationally unbounded, and arbitrarily deviate from the protocol.

When εp = εr and tp = tr we say that the scheme is an (ε, t)-reusable cVSS, or simply that it is a
t-reusable cVSS.

Discussion and Comparison with cVSS. A few remarks are in order. First, notice that the no-
tions of cVSS and reusable cVSS are incomparable. Indeed, cVSS offers the additional property
of reusability, which allows the dealer D to prove membership of its secret shared x in multiple
NP languages which are determined in an online fashion. That is, D does not need to know the
identity of these NP languages ahead of time, and following the initial sharing phase it will be
able to successfully perform the Prove phase for every L such that x ∈ L (provided it is given an
appropriate witness). On the other hand, cVSS is not reusable – the dealer can only prove mem-
bership in a single NP language, whose identity is known in advance – but it provides a stronger
binding guarantee. Indeed, at the end of the Sharing phase, the parties hold a sharing of an x∗ ∈ L.
This should be contrasted with the binding guarantee of reusable cVSS, which guarantees that D
is committed to some secret x′, but guarantees nothing more (in particular, x′ is not guaranteed
to be in any specific NP language). Thus, reusable cVSS does not capture cVSS as a special case,
even if during the execution a single Prove phase is executed for some NP language L (because
the secret x′ that will be reconstructed in the Reconstruction phase might not be in L).

Second, we note that this weaker binding guarantee of reusable cVSS is nonetheless inher-
ent. Indeed, since the relations used during the Prove phase are unknown during the Sharing
phase, one cannot guarantee that the unique secret determined in the Sharing phase will satisfy
them. One could alternatively allow for the secret to change following the execution of the Prove
phases, so that the final secret determined following the Sharing and all Prove phases will satisfy
all the relations, but this would be inconsistent with the general spirit of VSS which requires that
a single secret is committed to by the dealer, and cannot later be changed.19 Moreover, additional
complications arise in this case, since it might be the case that there exists no secret that simultane-
ously satisfies all relations (and even if there is, it might not be feasible for the parties to find one).
We stress, however, that though the reconstructed secret might not satisfy any of the relations used

19In particular, allowing for such “adjustments” of the secret might lead to possible attacks by a corrupted dealer,
that could purposely cause a Prove phase to fail as a method of changing the secret that would be reconstructed.

45

in the Prove phase, still the binding guarantee is meaningful since in this case the dealer cannot
convince the parties that the secret satisfies the relations.

Third, notice that the error in the protocol accumulates with the number of invocations of the
Prove phase, except for the binding property. Intuitively, this is because for binding once the dealer
is identified as corrupted then all parties can reject and use a fixed sharing of an arbitrary value,
regardless of the outcome of consequent Prove phases. This should be contrasted, for example,
with the strong correctness property - in which as long as the dealer is still considered honest, each
invocation of the Prove phase might have a small failure probability (i.e., incorrectly identifying
the dealer as corrupted), and these errors accumulate.

Finally, the definition of reusable cVSS can be naturally extended and generalized in several
respects. First, it can be strengthened to guarantee that the parties know, at the end of the prove
phase, exactly which of the relations used during the Prove phase are satisfied by the secret that
will be reconstructed. Second, reusable cVSS can be used in settings in which the entity sharing
the secret, and the entity proving it satisfied certain predicates, are different entities. In fact, the
Prove phase can be executed by different entities, and these entities do not need to share a state
or any information, other than that all proving entities must know the entire secret sharing gener-
ated during the Sharing phase. We note that our reusable cVSS scheme of Figure 5 satisfies these
stronger notions.

Comparison with the cVSS of [IW14]. We note that the cVSS scheme of [IW14] is not reusable,
and does not seem to easily extend to the reusable setting. Indeed, their construction roughly
works as follows. The dealer encodes its secret using a private and robust code, and generates a
Zero-Knowledge Probabilistically Checkable Proof of Proximity (ZK-PCPP) for the claim that the
encoding is close to an encoding of an x which satisfies the relation, i.e., that the encoding is in
L
(
R̂RRS

)
. Each party is then given either a symbol of the encoding or of the ZK-PCPP. The parties

then check that their shares indeed encode an x ∈ L (R) by jointly running the ZK-PCPP verifier,
namely they call Fcoin to obtain randomness r for the verifier, and determine the queries q1, . . . , qm
which the verifier makes to its input (i.e., the encoding) and the ZK-PCPP. The parties holding
these symbols broadcast them, and each party can locally verify that the ZK-PCPP verifier would
accept. In particular, this verification phase reveals to all parties some symbols of the encoding of
x, which were not part of their secret share of x. Therefore, this encoding can only be used to prove
an (a-priori bounded) number of relations. Once this bound is reached, the dealer must refresh
the encoding, which requires an elaborate proof to show that the refreshed encoding encode the
same secret x.

Overview of Our Reusable cVSS. Our reusable cVSS scheme follows roughly the structure of
our cVSS scheme of Figure 4. Specifically, during the Sharing phase the dealer randomly encodes
x and distributes the codeword symbols between the parties, and the parties then execute the IRS
test (Figure 1) to check that the codeword is a valid encoding. If this phase fails then the parties use
an arbitrary valid encoding as their secret shares. In each Prove phase for a relationR, the parties
use the same input pieces (secret shares) generated during the Sharing phase, and execute a dZK
for the claim that these input pieces are a valid encoding of an x such that x ∈ L (R). Finally,
in the Reconstruction phase all parties broadcast their shares, and each party locally decodes the
secret. Each party additionally outputs either accept or reject based on whether all Prove phases
were successful or not. The scheme is provided in Figure 5.

The following theorem summarizes the properties of the reusable cVSS scheme of Figure 5.

46

A Reusable Certifiable Verifiable Secret Sharing Scheme

Building Blocks. The scheme is run between a dealer D and k parties P1, . . . ,Pk.

Sharing Phase. Sharing is executed between the dealer D with input a secret x, and k parties
P1, . . . ,Pk that have no input. The output of each Pi is a share Sharei. This phase is executed as
follows.

1. D picks a random string r for the encoding procedure Enc of the RRS code, encodes(
x(1), . . . , x(k)

)
← Enc (x; r), and sends x(i) to Pi for every 1 ≤ i ≤ k.

2. The parties run the IRS test of Figure 1 using their inputs x(1), . . . , x(k).

3. When the IRS test terminates, Pi determines its share Sharei as follows. If the IRS test
passed then Sharei := x(i). Otherwise, Sharei is set to the i’th share in a pre-determined
(and fixed) encoding of the all-0 string.

Prover Phase. This phase can be executed repeatedly for different NP relations R, which are
given as input to all parties. The dealer has input x, r, w where r is the random string used during
the Sharing phase, and (x,w) ∈ R. Each Pi has as input its share Sharei from the Sharing phase.
The phase uses a dZK proof ΠR for R̂RRS (see Definition 2.2 in Section 2), and proceeds by having
the dealer emulate the dZK prover with input (Share1, . . . ,Sharek) and witness w, and each Pi

emulates Vi with input Sharei. When the emulation ends, each Pi outputs accept or reject similar
to the output of Vi.

Reconstruction Phase. Each Pi operates as follows.

1. Broadcasts its share Sharei. Let Share′1, . . . ,Share
′
k denote the broadcasted shares.

2. Locally computes x′ = Dec
(
Share′1, . . . ,Share

′
k

)
and outputs x′. Additionally, if all outputs

of Pi in the Prove phase were accept then Pi outputs accept, otherwise it outputs reject.

Figure 5: A t-reusable cVSS for k = 6t+ 2 parties

Theorem 5.3 (Reusable cVSS from dZK). Let t ∈ N, and RRS = RRSF,k,t+1,η for k >
max {3(t+ 1), 4t} and some η ∈ Fk. If for every relation R used during the Prove phase of Figure 5
there exists a k-verifier (εp, εr, t, t)-dZK proof for R̂RRS, then the scheme of Figure 5 is a (εr + ε′, εp, t, t)-
reusable cVSS, where ε′ is the soundness error of the IRS test (Theorem 3.1).

Proof: We prove that the scheme of Figure 5 satisfies the properties of Definition 5.2.
Strong correctness follows from the strong completeness of the underlying dZK proofs, the

correctness of the IRS test, and the error correction of the RRS code. Indeed, the correctness of the
IRS test guarantees that Step 2 of the Sharing phase passes with probability 1, even if t parties are
corrupted, and so Sharei = x(i) for every honest Pi. Conditioned on the Sharing phase passing,
each Prove phase will pass except with probability εr (even if t parties cheat) due to the strong
completeness of the dZK proofs. If the Prove phase is executed m times then using the union
bound, except with probability m · εr, all invocations of the Prove phase pass. Conditioned on
the even that all previous phases passed, the robustness of the RRS code guarantees that x will
be reconstructed (with probability 1) because the shares broadcasted during the Reconstruction
phase have at most t errors. Therefore overall the correctness error is m · εr.

Binding. Let D be a corrupted dealer colluding with a subset T ⊆ {P1, . . . ,Pk} of size |T | ≤ t,

47

and let
(
x(i)

)
i/∈T denote the shares which D sent to the honest parties in Step 1 of the sharing

phase. Similar to the binding proof of our cVSS scheme (Theorem 5.1), we consider two possible
cases based on whether the input pieces

{
x(i)

}
i/∈T of the honest parties are compliant with a valid

encoding of some x′, namely if there exists a valid encoding
(
x′(1), . . . , x′(k)

)
of x′, such that x′(i) :=

x(i) except for i ∈ T and at most t parties i /∈ T .
Case (1): there exists no such x′. Then by the soundness of the IRS test (Theorem 3.1), except

with probability ε′ Step 2 of the Sharing phase fails, so all honest parties output a fixed encoding of
some arbitrary x∗. Moreover, since at most t parties cheat during reconstruction, the broadcasted
shares would be t-close to a valid encoding of x∗, so x∗ will be reconstructed (by the robustness of
the RRS code). If the Prove phase is executed for someR such that x∗ /∈ L (R) then the soundness
of ΠR guarantees that except with probability εr, the output of the honest parties in that Prove
phase (and consequently also in the Reconstruction phase) would be reject. Therefore, overall the
soundness error in this case is ε′ + εr.

Case (2): there exists an x′ such that the input pieces
{
x(i)

}
i/∈T are compliant with a valid

encoding of x′. In this case, if the IRS test fails then the binding holds as in case (1). Otherwise, the
IRS test passes. Moreover, in this case for every choice x′′(i), i ∈ T of input pieces for the corrupted
parties, we have d

((
x′′(1), . . . , x′′(k)

)
,
(
x(′(1), . . . , x′(k)

))
≤ 2t, where x′′(i) = x(i) for every i /∈ T .

Since the RRS decoder can correct (k − 1)/2 ≥ 2t error, then Dec
(
x(1), . . . , x(k)

)
= x′ regardless of

the input pieces which the parties in T provide to the decoder. Furthermore, if the Prove phase is
executed for some R such that x′ /∈ L (R) then the soundness of ΠR guarantees that except with
probability εr, the output of the honest parties in that Prove phase (and consequently also in the
Reconstruction phase) would be reject. Therefore, overall the soundness error in this case is ε′+εr.

Secrecy. Let T be a subset of corrupted parties of size |T | ≤ t. We describe a simulator
SimT that simulates the view of the parties in T during the Sharing and Prove phases. Let
R1, . . . ,Rm denote the relations used in the m Prove phases. The simulator uses the simula-
tors Sim1

T , . . . ,Simm
T for executions of ΠR1 , . . . ,ΠRm in which the parties in T are corrupted, as

well as the simulator SimRS
T for an execution of the IRS test in which the parties in T are cor-

rupted. Intuitively, Sim will simulate the shares of parties in T using a random encoding of
the all-0 string, and then emulate SimRS

T ,Sim1
T , . . . ,Simm

T sequentially on these shares. Formally,
SimT (|x| ,R1, . . . ,Rm) operates as follows:

• Encodes
(
x̃(1), . . . , x̃(k)

)
← Enc

(
0|x|

)
.

• Executes the IRS test (Step 2 of the Sharing phase) with the parties in T , using
SimRS

T

((
x̃(i)

)
i∈T

)
to determine the messages which the honest parties send to the parties

in T in the test. Let
(

Ṽiew
RS

i

)
i∈T

denote the views of the parties in T during this step.

• For every 1 ≤ j ≤ m, executes ΠRj with the parties in T , using Simj
T

((
x̃(i)

)
i∈T

)
to deter-

mine the messages which the honest parties send to the parties in T in ΠRj . Let
(

Ṽiew
j

i

)
i∈T

denote the views of the parties in T during this step.

• Outputs
(
x̃(i), Ṽiew

RS

i , Ṽiew
1

T , . . . , Ṽiew
m

T

)
i∈T

as the views of the corrupted parties during

the Sharing and Prove phases.

We now show that for every x, and every w1, . . . , wm such that (x,wi) ∈ Ri for every 1 ≤ i ≤ m,

48

it holds that SD (SimT (|x| ,R1, . . . ,Rm) ,ViewT (x,w1, . . . , wm,R1, . . . ,Rm)) ≤ m · εp, through a
sequence of hybrids.

H0: This is the real-world view ViewT (x,w1, . . . , wm,R1, . . . ,Rm).

Hi
1, 1 ≤ i ≤ m+ 1: In Hi

1, we replace the views of the parties in T during the executions of
ΠRi , . . . ,ΠRm with the simulated views generated by Simi

T , . . . ,Simm
T (in particular, the in-

put pieces given to the simulators are the actual shares generated byD in the real execution).
Notice thatHm+1

1 := H0.

Then SD
(
Hi−1

1 ,Hi
1

)
≤ εp for every 1 ≤ i ≤ m+1, by the (εp, t)-ZK of Πdist. Indeed, a distinguisher

D betweenHi−1
1 ,Hi

1 implies a distinguisher Di between the simulated and actual views of the parties
in T in an execution of ΠRi . Di has the following values hard-wired into it: the real views of T in
ΠRj for j < i; the simulated views of T in ΠRj for j > i; and the real views of T during the IRS test.
Thus, given the (real or simulated) views of the parties in T in an execution of ΠRi , it can generate
the entire hybrid distribution,20 and run D on it.

Using the union bound, it follows that SD
(
H0,H1

1

)
≤ m · εp.

H2: In H2, we replace the views of the parties in T during the execution of the IRS test with the
simulated views generated by SimRS

T (in particular, the input pieces given to SimT are the
actual shares generated by D in the real execution).

Then SD
(
H1

1,H2

)
= 0 by the perfect ZK of the IRS test. This holds because the views during the

Prove phases can be computes given only
(
x(i)

)
i∈[k], and applying a function to the random variables

does not increase the statistical distance.

H3: In H3, we replace the shares sent to the parties in T in Step 1 of the Sharing phase with the
corresponding input pieces in a random encoding

(
x̃(1), . . . , x̃(k)

)
of 0|x| (and, in particular,

the inputs given to the simulators SimRS
T ,Sim1

T , . . . ,Simm
T are

({
x̃(i)

}
i∈T

)
). Notice thatH3 is

identical to SimT (|x| ,R1, . . . ,Rm).

Then SD (H2,H3) = 0 from the perfect tp-privacy of the RRS code. (Indeed, the hybrids can be
efficiently generated from the – real or simulated – input pieces of the parties in T .)

Zero Knowledge. The proof of the ZK property is similar to the secrecy proof, except that
now the simulator is given the input x and can therefore generate an encoding of x to be used in
the simulation. We proceed with the formal argument. Let T be a subset of corrupted parties of
size |T | ≤ t, and let R1, . . . ,Rm denote the relations used in the m Prove phases. The simulator
uses the simulators Sim1

T , . . . ,Simm
T for executions of ΠR1 , . . . ,ΠRm in which the parties in T are

corrupted, as well as the simulator SimRS
T for an execution of the IRS test in which the parties in T

are corrupted. Simf
T (x,R1, . . . ,Rm) operates as follows:

• Encodes
(
x̃(1), . . . , x̃(k)

)
← Enc (x).

• Executes the IRS test (Step 2 of the Sharing phase) with the parties in T , using
SimRS

T

((
x̃(i)

)
i∈T

)
to determine the messages which the honest parties send to the parties

in T in the test. Let
(

Ṽiew
RS

i

)
i∈T

denote the views of the parties in T during this step.

20In particular, we note that replacing the views in ΠRi (from real to simulated) cannot affect the behaviour of the
parties in T in the executions of the IRS test and ΠR1 , . . . ,ΠRi−1 .

49

• For every 1 ≤ j ≤ m, executes ΠRj with the parties in T , using Simj
T

((
x̃(i)

)
i∈T

)
to deter-

mine the messages which the honest parties send to the parties in T in ΠRj . Let
(

Ṽiew
j

i

)
i∈T

denote the views of the parties in T during this step.

• Outputs
(
x̃(i)

)
i∈T as the shares sent by D to the parties in T in Step 1 of the Sharing phase,(

Ṽiew
RS

i

)
i∈T

as the views of the parties in T during the IRS test (Step 2 of the Sharing phase),(
Ṽiew

j

i

)
i∈T,1≤j≤m

as the views during the executions of ΠR1 , . . . ,ΠRm in the Prove phase,

and
(
x̃(i)

)
i/∈T as the shares broadcasted in Step 1 of the Reconstruction phase.

We now show that for every x, and every w1, . . . , wm such that (x,wi) ∈ Ri for every 1 ≤ i ≤
m, it holds that SD

(
Simf

T (x,R1, . . . ,Rm) ,Viewf
T (x,w1, . . . , wm,R1, . . . ,Rm)

)
≤ m · εp, through

a sequence of hybrids. Since the input pieces are identically distributed in the real execution
and the simulation (in both cases these are random encodings of x), then we can condition on
these values. Therefore, we can repeat the hybrid argument from the secrecy case, showing that
SD (H0,H2) ≤ εp. This proves ZK since in this caseH2 is identical to Simf

T (x,R1, . . . ,Rm).

5.3 From Semi-Honest Security to Identifiable Abort Via dZK Proofs

In this section we use dZK proofs to design a generic compiler from Semi-Honest (SH) secu-
rity to malicious security with identifiable abort. This result strengthens the generic compiler
of [BBC+19a, Th. 7.3] to achieve identifiable abort (whereas [BBC+19b] guarantee only abort). Sim-
ilar to their compiler, our compiler works for a class of “natural” protocols (see Definition 5.4
below). Our compiler presents an alternative method – compared to [IOZ14] – of obtaining mali-
cious security with identifiable abort from SH-secure protocols (see discussion below).

This section is structured as follows. We first formally define security with identifiable abort in
Section 5.3.1. Section 5.3.2 contains necessary preliminaries and terminology regarding MPC pro-
tocols – including the definition of natural protocols – used by our compiler, which is described
and analyzed in Section 5.3.3. Finally, we compare our compiler to the compilers of [IOZ14]
and [BBC+19b] in Section 5.3.4.

5.3.1 Security With Identifiable Abort

We define security in the real-ideal paradigm, by comparing the real world execution with an
adversary A to an ideal-world execution with a Simulator, who is restricted to only choose inputs
for the corrupted parties, and to decide whether the execution is aborted, in which case it must
determine a corrupted party whose identity will be revealed to all parties. We proceed to formally
define these notions.

The Real Execution describes the execution of a k-party protocol Π (computing some function
f) in the presence of a (computationally unbounded) adversary A. A corrupts a subset T ⊆ [k]
of parties. Throughout the execution, the honest parties i /∈ T follow the protocol specification,
whereas the parties in T are fully controlled by A and may arbitrarily deviate from the protocol.
For every choice x1, . . . , xk of inputs for the parties in Π, the execution of Π with A defines a

50

random variable REALA,Π (x1, . . . , xk) consisting of the ViewA of A in this execution, and the
outputs (yi)i/∈T of the honest parties.

The Ideal Experiment is executed between a simulator Sim who corrupts a subset T ⊆ [k]
of parties, the honest parties i /∈ T , and an ideal functionality Ff . In this execution, Sim chooses
inputs (x′i)i∈T for the corrupted parties, which it sends toFf . Ff then computes y = f (x′1, . . . , x

′
k),

where x′i = xi for every i /∈ T is the input of the ith party in the execution, and sends y to Sim. Sim
then sends to Ff a message m ∈ {deliver, (abort, i)} where i ∈ T . If m = deliver then Ff delivers
the output y to all honest parties i /∈ T . Otherwise, Ff delivers (abort, i) to all parties.21 For every
choice x1, . . . , xk of inputs for the parties, the ideal execution with Sim defines a random variable
IDEALSim,f (x1, . . . , xk) consisting of the output Sim

(
(xi)i∈T

)
of Sim in this execution, and the

outputs (yi)i/∈T of the honest parties.

Definition 5.3 (Security with Identifiable Abort (IA-MPC)). Let 1 ≤ t < k. We say that a protocol Π
ε-securely realizes a k-party functionality f with identifiable abort if for any adversary A corrupting a
subset T ⊂ [k] of size T ≤ t, there exists a PPT simulator Sim such that for every x1, . . . , xk,

SD
(
REALA,Π (x1, . . . , xk) , IDEALSim,f (x1, . . . , xk)

)
≤ ε.

5.3.2 MPC Terminology and Notation

For an MPC protocol Π, we use Π′ to denote the protocol obtained from Π by removing the last
communication round. For a protocol Π, and a pair of parties i, j ∈ [k], we use Mout,Π

ij (M in,Π
ij ,

respectively) to denote the messages sent from Pi to Pj (from Pj to Pi, respectively) in Π. For

i ∈ [k] we denote Mout,Π
i :=

(
Mout,Π

ij

)
j ̸=i

, M in,Π
i :=

(
M in,Π

ij

)
j ̸=i

, and MΠ
i :=

(
Mout,Π

i ,M in,Π
i

)
.

For a set T ⊆ [k], we denote MΠ
T =

(
MΠ

i

)
i∈T and MΠ

TH :=
(
Mout,Π

ij ,M in,Π
ij

)
i∈T,j /∈T

(these are the

messages sent or received by a party in T from a party outside T). We say that MΠ
TH is compliant

with MΠ
T if for every i ∈ T and every j /∈ T , the outgoing messages fromPi toPj and the incoming

messages from Pj to Pi reported in MΠ
T ,MΠ

TH are identical. When Π is clear for the context, we
omit it from the notation (e.g., writing Mi in stead of MΠ

i).
Similar to [BBC+19b], our compiler is designed for a class of “natural” SH protocols Π which,

roughly, posses the following properties. First, Π′ (i.e., Π without the final round) is private against
malicious corruptions, in the sense that maliciously corrupted parties in Π′ learn nothing about the
honest parties’ inputs. Second, the messages sent (to all parties) by each Pi in each round of the
protocol is in a k-distributed language (see Definition 2.2 in Section 2). Formally:

Definition 5.4 (Natural Protocol). We say that a k-party protocol Π for a function f is natural against
t corruptions if the following holds.

1. Π′ – i.e., Π except the final round – can be interpreted as realizing the empty functionality (which
takes no inputs and given no outputs). Moreover, this realization is with perfect t-privacy against
malicious corruptions.

2. The final round of Π consists solely of broadcasts, and correctness holds against adversaries that
deviate from the protocol description in this final round (as long as they follow the protocol in all
previous rounds).

3. For every i ∈ [k] there exists a k-distributed language L̂i such that:

21If i /∈ T then Ff sends y to all honest parties.

51

(a) Structure of L̂i. Inputs to L̂i are of the form Mi =
(
Mout

i ,M in
i

)
.

(b) L̂i corresponds to executions of Π′. For any T, |T | ≤ t, and any MΠ′
T =

(
MΠ′

i

)
i∈T

, if

MΠ′
i ∈ L̂i for every i ∈ T then there exists a choice of inputs for the honest parties j /∈ T , and

an honest execution of Π′ in which the messages sent and received by the parties in T are given
by MΠ′

T .

(c) Final round messages are simulatable. For any adversaryA corrupting a subset T, |T | ≤ t

of parties, there exists a simulator Sim =
(

Simin,Simout
)

consisting of a deterministic input

extractor Simin and a simulator Simout of the final round broadcasts, such that for any set
xH := (xi)i/∈T , and any MΠ′

TH which is compliant with some MΠ′
T =

(
MΠ′

i

)
i∈T

such that

MΠ′
i ∈ L̂i for every i ∈ T , it holds that:

(x′i)i∈T = Simin
(
MΠ′

TH

)
Simout

(
y,MΠ′

TH

)
: ∀i /∈ T, x′i := xi

y = f (x′1, . . . , x
′
k)

 ≈
{
FinMsg (xH ,A) | prefix MΠ′

TH

}

where ≈ denotes negligible statistical distance, and
{
FinMsg (xH ,A) | prefix MΠ′

TH

}
denotes

the distribution of the messages sent to the parties in T in the final round of Π in an execution
withA in which the honest parties have inputs xH , where the distribution is conditioned on the
transcript of all previous rounds being consistent with MΠ′

TH.22

5.3.3 The Compiler

In this section we describe our compiler. It is almost identical to the compiler of [BBC+19a, Th.
7.3], except that it adds special treatment of abort messages in the underlying SH protocol, and
employs a dZK with strong completeness (whereas the dZK used in [BBC+19a] has no guarantee in
the case that the prover is honest but a subset of verifiers are maliciously corrupted). The strong
completeness property guarantees that when an execution of the dZK fails, we know whether this
occurred due to a corrupted prover, or due to a corrupted verifier.

The properties of the compiler are summarized in the following theorem.

Theorem 5.4 (IA-MPC from Natural Protocols). Let s be a statistical security parameter, and let Πnat be
a natural k-party protocol computing f (as in Definition 5.4). Let L̂1, . . . , L̂k denote the languages whose
existence is guaranteed by Property 3b of Definition 5.4, and let Π1, . . . ,Πk be (k− 1)-verifier (εp, εr, t, t)-
dZK proofs for L̂1, . . . , L̂k which preserve ZK under parallel composition (see Remark 4.5), respectively.
Then the protocol Π of Figure 6 ε-securely realizes f with identifiable abort against t corruptions, for
ε = t · εr + (k − 1) · εp + negl (s). Moreover, Π has the following complexities:

22We note that our definition of a natural protocol slightly differs from the definition considered in [BBC+19a, Def.
7.1]. Specifically, Property 2 did not appear in [BBC+19a], and our formulation of Property 3c is slightly different,
because [BBC+19a] only consider functionalities in which a single party receives the output. This single-output as-
sumption is without loss of generality in the context of security with abort (the single party that obtains the output can
then broadcast it to all parties), but is not the case if we require identifiable abort. Indeed, if the designated party (say,
P1) claims that it cannot reconstruct the output, we generally cannot determine (when using Π as a black box) whether
P1 is corrupted, or whether another party cheated and thus prevented P1 from reconstructing the output. Therefore,
we need to consider a slightly modified simulation guarantee (as we defined here). We note that if Π has the additional
guarantee that it has identifiable abort against adversaries that only actively cheat in the final round, then we could –
similar to [BBC+19a] – restrict ourselves only to functionalities in which P1 obtains the output.

52

IA-MPC Protocol for t Corruptions

The input to the compiler is a k-party natural protocol Πnat (as in Definition 5.4). Let L̂1, . . . , L̂k

denote the languages whose existence is guaranteed by Property 3b of Definition 5.4, and let
Π1, . . . ,Πk be (k − 1)-verifier dZK proofs for L̂1, . . . , L̂k, respectively.
The compiled protocol Π operates as follows:

1. The parties emulate Π′
nat (i.e., all rounds of Πnat except the final round), where each party

Pi plays the role of the corresponding party in Π′
nat. Let Mi =

(
Mout

i ,M in
i

)
denote the

outgoing and incoming messages sent to Pi in this execution.

2. For every 1 ≤ i ≤ k (in parallel), the parties execute Πi where Pi plays the role of the
prover and the other parties play the roles of the verifiers. In this execution, Pi has input
Mi and every Pj , j ̸= i has input piece

(
Mout

ij ,M in
ij

)
.

3. The output is computed in the following way:

(a) If there exists an i such that more than t verifiers output reject in Πi, then let i0 be the
smallest such i, and all parties abort with Pi0 as a corrupted party.

(b) Otherwise, all parties compute and broadcast the messages of the final round of Πnat.
If some party i refuses to broadcast its message then let i0 be the smallest such i, and
all parties abort with Pi0 as a corrupted party.

(c) Otherwise, each party computes its output according to the output of the correspond-
ing party in Πnat.

Throughout the computation, for every pair of parties i, j ∈ [k], if Pi was supposed to send a
message to Pj but failed to do so, then Pj sets that message to be the all-0 string.

Figure 6: Compiler from Semi-Honest Security To Malicious Security with Identifiable Abort

• Rounds (Π) = Rounds (Πnat) + maxi∈[k] Rounds (Πi).

• CC (Π) = CC (Πnat) +
∑k

i=1 CC (Πi).

Proof: The claim regarding the complexities of Π follows directly from its description. We proceed
to prove security, which is similar in spirit to that of [BBC+19a, Th. 7.3], but additionally uses the
strong completeness of the underlying dZK proofs to show that Π has identifiable abort.

LetA be an adversary corrupting a subset T, |T | ≤ t of parties in Π, and assume without loss of
generality thatA is deterministic. We will construct a simulator SimA forA. We can divideA into
3 adversaries A = (A′,AdZK,Afin) that share a state, where A′,AdZK,Afin describe the operations
of A in Steps 1, 2 and 3 of Π respectively (see Figure 6). SimA will likewise consist of 3 simulators
Sim′,SimdZK,Simfin that share state, corresponding to the 3 adversarial entities. Specifically, let
Sim′ denote the simulator for Π′nat whose existence follows from Property 1 of Definition 5.4. Let
MTH =

(
Mout

ij ,M in
ij

)
i∈T,j /∈T

denote the simulated messages sent and received by parties i ∈ T

from honest parties j /∈ T in the simulation of Sim′.
SimdZK simulates Step 2 of Π and operates as follows on input (xi)i∈T ,MTH:

• For every i ∈ T , SimdZK honestly emulates an execution of Πi with AdZK, in which the input
piece of Pj , j /∈ T is x(j) =

(
Mout

ji ,M in
ji

)
(notice that SimdZK knows the input pieces of all

honest parties, since they are determined by
(
Mout

ij ,M in
ij

)
). Specifically, SimdZK honestly

53

emulates the honest parties to generate their messages to the parties in T , and uses AdZK

(with state as determined by (xi)i∈T and MTH) to generate the messages sent by the parties
in T . For every i ∈ T , let MdZK

i denote the messages sent from the honest parties to the
parties in T during the execution, and

(
oij

)
j∈[k]

denote the outputs of the verifiers in this

execution.

• For every i /∈ T , SimdZK uses the simulator Simi that can simulate the views of the parties
in T in Πi (the existence of Simi follows from the ZK property of Πi). More specifically, for
every j ∈ T , SimdZK uses x(j) =

(
Mout

ji ,M in
ji

)
as the input piece of Pj in the execution, and

runs Simi

((
x(j)

)
j∈T

)
to simulate the messages MdZK

i sent from the honest parties to the

parties in T during the execution of Πi, and the outputs
(
oij

)
j∈[k]

of the verifiers.

• Denote MdZK =
(
MdZK

1 , . . . ,MdZK
k

)
, and odZK =

(
oij

)
i,j∈[k]

.

Let A′′ = (A′,SimdZK,Aout) denote the adversary which operates identically to A in Steps 1
and 3 of Π, but in Step 2 it operates by running SimdZK on the view of A′ in Step 1 of Π. By
Property 3c in Definition 5.4, A′′ has a corresponding simulator

(
Simin,Simout

)
.

We now describe the simulator SimA, which on input xT := (xi)i∈T operates as follows.

1. Runs Sim′ (xT) to simulate the messages MTH =
(
Mout

ij ,M in
ij

)
i∈T,j /∈T

exchanged between the

honest and corrupt parties during the execution of Π′.

2. Runs SimdZK

(
(xi)i∈T ,MTH

)
to obtain MdZK, odZK. If there exists an i ∈ [k] such that∣∣∣{oij : oij = reject

}∣∣∣ > t then SimA aborts with the smallest such index i0 as a corrupted
party (notice that in this case, the dZK proof in which Pi0 played the role of the prover has
failed, so i0 is indeed corrupted).

3. Otherwise, it simulates the final round of Π as follows.

(a) Runs Simin (MTH) to obtain effective inputs x′T := (x′i)i∈T for the corrupted parties.

(b) Calls the ideal functionality f with inputs x′T as the inputs of the corrupted parties, and
obtains the output y.

(c) Simulates the final round of Π by running Simout (y,MTH) to simulate the messages
Mfin :=

(
Mfin

i

)
i/∈T broadcasted by the honest parties in the final round of Π. Then, it

uses A to determine whether the parties in T braodcast messages in the final round.
If there exists an i ∈ T that should have broadcasted a message but did not do so,
then SimA aborts with the smallest such index i0 as a corrupted party. (Notice that by
Property 2 of Definition 5.4, if all parties in T broadcast their messages then the output
of the honest parties is necessarily correct, conditioned on the event that A′ behaved
honestly in Π′.)

(d) Outputs
(
xT ,MTH,M

dZK,Mfin
)
.

Let y, y′ denote the outputs of the honest parties in the real execution and in the simulation
(respectively) with adversary A. We now prove that for every choice of inputs x,

SD
((

SimA (xT) , y
′
)
, (ViewA (xT , xH) , y)

)
≤ t · εr + (k − 1) · εp + negl (s)

54

where ViewA (xT , xH) =
(
View′,ViewdZK,Viewfin

)
denotes the view of A in Steps 1, 2 and 3 of Π

(respectively) in which the honest parties have inputs xH and the corrupted parties have inputs
xT . That is, these consist of the messages exchanged between the honest and corrupt parties in
the three stages of the execution. We can assume that even the corrupted parties always send
messages they are supposed to send according to Π. This is without loss of generality, since for
each adversarial strategy A in which a subset m of messages of corrupted parties are not sent,
there exists an alternative adversarial strategyA∗ in which all messages are sent, and these unsent
messages m are fixed to be all-0. This yields the same execution as with A.

We now bound the statistical distance through a sequence of hybrids. Since xT is identical in
both distributions, we will sometimes omit it from the description of the hybrids.

H0: This is the distribution over
(

SimA (xT) , y
′
)

.

H1: InH1, we replace MTH with View′, namelyH1 =
(
xT ,View′,MdZK,Mfin, y′

)
.

SD (H0,H1) = 0 because the simulation of Sim′ is perfect (see Property 1 in Definition 5.4). Specif-
ically, if SD (H0,H1) > 0 then there exists a choice of optimal coins r for SimdZK,Simfin which
maximizes the statistical distance. Define gxH to be the function that on input the messages M ex-
changed between the honest and corrupt parties, operates as follows: (1) applies SimdZK (with the
optimal coins r) to xT ,M , (2) applies Simin to M to obtain effective inputs (x′i)i∈T for the parties in
T , (3) computes y = f (x′1, . . . , x

′
k) where x′i = xi for every i /∈ T (gxH can compute y because it

has xH hard-wired into it), (4) applies Simout (with the optimal coins r) to y and M , and (5) outputs
M , together with the outputs of SimdZK,Simout generated in Steps (2), (4). Then since applying a
function to the random variables does not increase the statistical distance, we have:

0 < SD (H0,H1) ≤ SD (H0|r,H1|r) = SD
(
gxH

(
MTH, gxH

(
View′

)))
≤ SD

(
MTH,View′

)
where H0|r,H1|r denote the distributions obtained by conditioning H0,H1 on the coins r. This is a
contradiction since the simulation of Sim′ is perfect.

H2: in H2, we replace the simulated final round messages Mfin with Viewfin, namely H2 =(
xT ,View′,MdZK,Viewfin, y

′).

We show that SD (H1,H2) ≤ |T | · εr+negl (s) due to Property 2 of Definition 5.4. We consider two
cases. First, if one of the dZK executions failed, then the hybrids abort before the final round of Π is
executed, and moreover the same party is announced as corrupted in both hybrids (this is because the
identity of the corrupted party is determined based on

(
View′,MdZK

)
alone). Therefore, conditioned

on this case, the hybrids are identically distributed. Second, assume that all dZK executions passed.
Notice that for every i ∈ T , the input pieces x(j)i , j /∈ T used by the honest parties in the execution of
Πi are well defined (they are determined by View′). If the execution of Πi succeeded then the sound-
ness of Πi guarantees that except with probability εr there exists a choice x(j)i =

(
M⋆,out

ji ,M⋆,in
ji

)
of

input pieces for the parties j ∈ T such that
(
x
(1)
i , . . . , x

(k)
i

)
∈ L̂i. Using the union bound, except

with probability |T | · εr ≤ t · εr, there exist such choices of input pieces for all i ∈ T which simul-
taneously satisfy that

(
x
(1)
i , . . . , x

(k)
i

)
∈ L̂i. Conditioned on this event, Property 3c guarantees that

SD
(
Mfin,Viewfin|pfix

)
= negl (s) where Viewfin|pfix denotes the distribution Viewfin conditioned

on pfix, and pfix consists of the messages exchanged between all i ∈ T, j /∈ T in the execution of Π′.
Since pfix is determined by View′, which is identically distributed in both hybrids, we conclude that
SD (H1,H2) ≤ |T | · εr + negl (s).

55

H3: inH3 we replace the simulated messages MdZK sent to the corrupted parties in the dZK proofs
with the actual messages ViewdZK, namelyH3 =

(
xT ,View′,ViewdZK,Viewfin, y

′).

Then SD (H2,H3) ≤ (k − |T |) · εp ≤|T |≥1 (k − 1) · εp by the ZK property of the dZK proofs (which
holds under parallel composition, since exactly k − |T | dZK proofs are simulated by SimdZK).

Notice that H3 is distributed identically to (ViewA (xT , xH) , y) =(
xT ,View′,ViewdZK,Viewfin, y

)
, because y is uniquely determined by xH and ViewA (xT , xH).

5.3.4 Comparison With Previous Works

We now compare our compiler of Figure 6 (Section 5.3) with two previous works: the compiler
of [BBC+19a, Th. 7.3] and the compiler of [IOZ14].

Comparison with the Compiler of [BBC+19a]. Boneh et al. [BBC+19a] describe a generic com-
piler from natural protocols with an honest majority to maliciously secure protocols with abort.
They rely on dZK proofs that are not required to have strong completeness, namely their compiler
only relies on the completeness (when all parties are honest), soundness, and ZK under parallel
composition (see [BBC+19a, page 37]), of the underlying dZK. In contrast, our compiler obtains
security with identifiable abort, and crucially relies on the strong completeness of the underlying
dZK proof. Thus, our compiler obtains a stronger security guarantee by leveraging a stronger
security guarantee of the underlying building block. In particular, our compiler cannot be in-
stantiated with the dZK proofs of [BBC+19a] (since they do not have strong completeness). In
particular, while they obtain as a corollary protocols with malicious security with abort in the
honest-majority setting, we get identifiable abort when t < (k − 2) /6. However, since our com-
piler is generic and can use any dZK proof (with strong completeness and ZK which is preserved
under parallel repetition), if better dZK proofs are developed in the future, our compiler could be
instantiated with them to obtain a better ratio between the number of corrupted parties t and the
total number of parties k in the protocol.

Comparison with the Compiler of [IOZ14]. Ishai et al. [IOZ14] describe a generic compiler from
(any) SH-secure protocols in the Correlated Randomness (CR) model to maliciously secure protocols
with identifiable abort in the CR model. (Roughly, in the CR model, (r1, . . . , rk) are sampled
from a specific distribution, and each party Pi obtains ri before the inputs are determined.) Their
compiler is defined and analyzed in the Universally Composable (UC) security framework, and
works in the dishonest majority setting. (In contrast, our compiler works only in the honest majority
setting — and with non-optimal threshold — because strongly-complete dZK is only meaningful
when there is an honest majority.) Their compiler can be applied to any SH-secure protocol ΠSH

in the CR model, where the compiled protocol Π uses correlated randomness of its own (i.e., it
requires the correlated randomness used by ΠSH and some additional correlated randomness).

When applied to a protocol with R rounds, the compiled protocol Π has 4R rounds, since it
emulates ΠSH round by round, adding several rounds of checks after each round of ΠSH. How-
ever, we notice that when ΠSH is a natural protocol (see Definition 5.4) then one can use the tools
developed in [BBC+19b] to modify their compiler such that it runs all but the final round of ΠSH,
then checks the execution of all these rounds, and then runs the final round of ΠSH, in which case
Π will have R + 3 rounds. In comparison, our compiler works in the plain model (assuming an
honest majority) and does not require any correlated randomness; when instantiated with our

56

dZK proofs of Section 4 it only relies on an ideal coin-tossing functionality (which can be realized
in the plain model), and the compiled protocol has R+ 3 rounds. Thus, our compiler provides an
alternative method of obtaining information theoretic security with identifiable abort in the hon-
est majority setting. We note that our compiler is conceptually simple, basically applying parallel
dZK proofs on top of ΠSH before the final round. This should be contrasted with the compiler
of [IOZ14], whose description is much more complex, and is based on several elaborate building
blocks which they develop.

6 Ideal dZK and Connections with Verifiable Relation Sharing

In this section we describe an alternative formulation of dZK proofs via an idealized functionality,
and discuss the connection between dZK and Verifiable Relation Sharing (VRS) [GIKR02, AKP20a,
AKP22]. We first formally define the ideal dZK functionality in Section 6.1, and prove that our
protocols of Section 4 securely realize it (when instantiated with appropriate MPC protocols).
Then, we formally define the notion of VRS in Section 6.2, and discuss its connections to dZK.

6.1 The Ideal dZK Functionality

We define the ideal dZK functionality with respect to robust relations (as noted in Section 1.2.1,
this is inherent to settings in which completeness and/or soundness should hold in the presence
of corrupted verifiers). Moreover, since in dZK (as defined in Section 2.1) the honest prover and
verifiers have consistent input pieces which are valid encodings, we restrict the discussion to such
inputs.

Intuitively, the ideal dZK functionality FdZK is parameterized by a distributed relation R̂C . It
takes inputs from the prover P and k verifiers V1, . . . ,Vk, and returns an output to the verifiers.
Each verifier Vi provides its input piece x(i), and the prover provides all input pieces x(i), . . . , x(k)

as well as a witness w. The functionality verifies that: (1) the input pieces provided by the prover
and all verifiers are consistent;23 (2) the input pieces are close to an encoding of some input x; and
(3) (x,w) are in the relation. This is formalized in Figure 7.

Ideal dZK Functionality for distributed relations

FdZK is parameterized by the number of verifiers k, a corruption threshold t < k, and a dis-
tributed relation R̂C for a robust code C with decoding procedure Dec (see Definition 2.1).
Inputs. FdZK takes input x(i) from every verifier Vi, i ∈ [k], and

(
x̃(1), . . . , x̃(k), w

)
from P . (When

the parties are honest then x(i) = x̃(i) for all i ∈ [k].)
Output. Let X be the matrix whose i’th row is x(i), let X[i] denote the i’th column of X , and let ui

denote the closest codeword to X[i]. Let ∆ := ∪i∈[n]∆(X[i], ui),a and T :=
{
i ∈ [k] : x(i) ̸= x̃(i)

}
.

FdZK checks that |∆ ∪ T | ≤ t, and that ((Dec (X[1]) , . . . ,Dec (X[k])) , w) ∈ R, and if so outputs
accept to all verifiers. Otherwise, it outputs reject to all verifiers.

aRecall from Section 2 that for a code C ⊆ Fn, u ∈ C and v ∈ Fn, we denote ∆(u, v) = {i ∈ [n] : vi ̸= ui}.

Figure 7: Ideal FdZK Functionality

23A bit more specifically, since we want to capture strongly complete dZK proofs, the functionality FdZK should tolerate
a small number of inconsistencies between the input pieces provided by P and the verifiers.

57

Definition 6.1 (Securely Realizing FdZK). Let k, t ∈ N such that t < k, and ε ∈ [0, 1]. We say that a
protocol Π between a prover P and k verifiers t-securely realized FdZK for R̂C with error ε if there exists
a PPT simulator Sim that interacts with the real-world adversary, such that the following holds. For any
x(1), . . . , x(k), w, and any adversary A corrupting a subset T, |T | ≤ t of verifiers and possibly also P , we
have

SD
((

ViewA
((

x(i)
)
i∈T

, w′
)
, (yi)i/∈T

)
,
(

Sim
((

x(i)
)
i∈T

, (yi)i∈T

)
, (yi)i/∈T

))
≤ ε

where: w′ = w if P is honest, otherwise w′ =⊥; ViewA denotes A’s view in the execution of Π when
the honest parties have inputs x(1), . . . , x(k), w; and yi is the output of verifier Vi, which in the real world
is determined by the execution of Π, and in the ideal world by the output of FdZK when the inputs of the
corrupted parties are determined by Sim.

We will prove that our dZK of Figure 3 securely realizes the ideal dZK functionality of Fig-
ure 7 when the underlying MPC protocol satisfies an appropriate notion of security. Specifically,
we will use the Micali-Rogaway definition of secure function evaluation [MR91]. Roughly, they
define protocols to have a special commital round R in which the (effective) inputs of all parties
are determined, in the following sense. The protocol is associated with an effective input function I
which at round R can determine each party’s effective input given only the messages that party
sent and received in the protocol so far. The protocol is additionally associated with an effective
output function O which can determine each party’s output in the last round, given only the mes-
sages it sent and received throughout the protocol execution. The main properties we need from
such protocols are the following. First, the outputs (in the real and simulated executions) are
determined by the effective output function O. Second, in the simulated execution the effective
inputs of corrupted parties are determined according to the effective input function I. Third, I
determines the effective input of party i given only the messages party i sent and received. Finally,
the simulation is perfect. We note that natural perfectly-secure MPC protocols satisfy this security
notion, and refer the interested reader to [DM00, Sec. 2.1] for further details.

Notation 2. We say that an MPC protocol Π is t-MR secure if it satisfies the Micali-Rogaway security
definition discussed above, for adversaries corrupting at most t verifiers.

We now prove that when instantiated with a 2t-MR secure MPC protocol, our dZK protocol of
Figure 3 securely realizes the ideal dZK functionality. We stress that we only consider distributed
relations R̂C for robust codes C, otherwise (as discussed in Section 1.2.1) membership of the input
in the relation is not well defined

Theorem 6.1 (Secure Implementation of Ideal dZK). Let t ∈ N such that k > 6t + 2. Let R̂RRS be a
k-distributed relation over a field F, and let Π be a 2t-MR secure protocol for R̂RRS. Then the proof system
Πdist of Figure 3 securely realizes the ideal dZK functionality FdZK for R̂RRS with error

(
k
2

)
N
|F| where N is

a bound on the total number of field elements exchanged between a pair of parties in Π.

Proof (sketch): Let SimΠ denote the simulator for Π whose existence is guaranteed by the 2t-MR
security of Π. We describe the simulator Sim, which interacts with the adversary A, and consider
two possible cases based on whether A corrupts P or not. We denote by T , |T | ≤ t the set of
verifiers which A corrupts and consider two cases.

Case (1): P is honest. In this case, the input pieces used by P are consistent with the input
pieces of the honest verifiers. Since 2t-MR security implies perfect correctness, in this case the proof
of the strong completeness property in Theorem 4.1 shows that all honest verifiers output accept

58

(with probability 1). Therefore, the outputs ŷi, i /∈ T are trivially simulatable. As for the joint view
of the corrupted verifiers, this is simulatable by SimΠ due to the 2t-MR security of Π.

Case (2): P is corrupted. In this case, in the first round of the dZK protocol the adversary A
sends to Sim the prover messages to the uncorrupted verifiers Vi, i /∈ T . These, together with the
inputs of the honest verifiers (which are known to Sim because they are contained in A’s input),
and the outcome of the coin tosses (which Sim chooses uniformly at random) fully determine the
messages that the honest verifiers send in the dZK of Figure 3. Sim then emulates the execution
withA to determine whether the verifiers accept or reject. (We note that in the protocol of Figure 3,
all honest verifiers compute the same public output predicate, and in particular they all have the
same output.) If the honest verifiers reject, then simulation is trivial, since the simulator can simply
provide some invalid witness w′ to FdZK and this would cause the outputs of all honest verifiers
to be reject. Moreover, the view of A can be computed from the messages of the honest verifiers
in this execution.

If, on the other hand, the honest verifiers output accept, then Sim must extract a valid witness
to provide to FdZK (to cause FdZK to output accept to the honest verifiers). For this, Sim uses
the effective input function I for Π, whose existence is guaranteed by the 2t-MR security of Π.
More specifically, since the honest verifiers accept, then there exists a set C of size |C| ≤ t such
that for every i, j /∈ C the MACs mi,j ,mj,i are equal: mi,j = mj,i, and the views of i, j are locally
consistent. We condition on the event that for every honest i, j /∈ C, the views of the corresponding
parties in Π are consistent (according to Lemma 4.1, this happens except with probability

(
k
2

)
N
|F|).

Conditioned on this event, the prover messages (which A sends to Sim in the first round of the
dZK protocol) define an execution of Π in which the parties in [k] \ (T ∪ C) are honest. Moreover,
the prover messages also determine all the messages exchanged between the honest and corrupted parties
in Π. Crucially, this allows Sim to compute the effective inputs of all corrupted parties in Π –
including P0 and all Pi, i ∈ T – using the effective-input function I. In particular, this determines
an effective witness w′ (which is P0’s input in the virtual MPC).

We claim that the 2t-MR security of Π guarantees that w′ is a valid witness (causing FdZK to
output accept to the honest verifiers). This would complete the proof since (as noted above) Sim is
able to determine the messages sent from the honest verifiers in the dZK. To see why w′ is a valid
witness, notice that otherwise we have found an adversarial strategyAΠ (corrupting the parties in
T ∪ C) violating the (perfect) 2t-MR security of Π. Indeed, the adversary AΠ emulates A to obtain
the “MPC in the head” views. It uses these to generate the messages from the corrupted parties
in T ∪ C to the honest parties. With a non-zero probability, the honest parties will respond with
the messages reported in these views24 (otherwise, the adversary AΠ gives up and aborts). If so,
AΠ is able to complete the execution, and the outputs of the honest parties will indeed be 1 (since
we have assumed that the honest verifiers in the dZK accept, and this only happens when the
honest parties in Π output 1). However, since the effective inputs determines by I do not satisfy
the relation R̂RRS then the simulator SimΠ fails to simulate the execution (because the effective
inputs of the corrupted parties in the ideal execution are determined by I), which contradicts the
perfect 2t-MR security of Π.

24Here, we also use the fact that the honest verifiers check local consistency of their MPC views. Therefore, for every
i /∈ T ∪C, the view of the ith party in Π is locally consistent, meaning there exists an execution in which that party does
send the messages which are implicit in its view.

59

6.2 Connection between dZK and VRS

In this section we discuss the connection between dZK and VRS. While these notions are quite
different (for example, VRS is a single-input functionality, whereas dZK takes inputs from all
parties), we show reductions between the two primitives. We first formally define VRS.

Ideal VRS Functionality

FVRS is parameterized by the number of verifiers k, a corruption threshold t < k, and a dis-
tributed relationR.
Inputs. FVRS takes input

(
x(1), . . . , x(k), w

)
from P .

Output. FVRS checks that
((
x(1), . . . , x(k)

)
, w

)
∈ R, and if so outputs

(
x(i), accept

)
to each verifier

Vi. Otherwise, it outputs reject to all verifiers.

Figure 8: Ideal FVRS Functionality

Notation 3. Let R be a distributed relation. We say that a protocol Π between a prover P and verifiers
V1, . . . ,Vk is a (t, ε)-VRS for R if it securely realizes the ideal VRS functionality of Figure 8 with error ε
(a-la Definition 6.1).

Next, we show reductions between the notions of dZK and VRS. We begin with a general con-
struction of VRS from dZK protocols. The reduction preserves the efficiency measures of the dZK
protocol, but increases the round complexity by 1. We stress that the reduction is only for robust
relations (as defined in Definition 2.2 in Section 2). In particular, the outputs of the honest verifiers
may not corresponding to any valid encoding (the only guarantee is that they are sufficiently close
to a valid encoding such that the underlying message is well-defined and can be decoded). This
might not suffice for certain applications of VRS (which might require that the output pieces form
a valid encoding even if the prover is corrupted, a property which VRS can satisfy in general).

Claim 6.1 (dZK ⇒ VRS, for robust relations). Let k, t ∈ N such that t < k, let R̂C be a distributed
relation where C is a perfectly 2t-robust code, and let ε ∈ [0, 1]. If there exists a t-secure realization ΠdZK

of FdZK for R̂C with error ε, then there exists a (t, ε)-VRS ΠVRS for R̂C . Moreover, if ΠdZK has R rounds
and communication complexity CC then ΠVRS has R + 1 rounds and communication CC + n, where n is
the input length. Furthermore, if the first round of ΠdZK consists only of messages from P to the verifiers,
then ΠVRS will have R rounds.

We note that in our dZK of Figure 3, the first round consists solely of messages from P to
the verifiers, so it gives rise to 3-round VRS protocols for relations R̂RRS with security against
t < (k − 2)/6 corruptions.

Proof of Claim 6.1: The VRS protocol ΠVRS operates as follows. In the first round, the prover
P sends to each verifier Vi the input piece x(i). Then, the parties execute the dZK protocol ΠdZK,
where Vi uses x(i) as his input piece. Clearly, the round complexity increases by 1 and the commu-
nication complexity increases by n =

∑
i∈[k]

∣∣x(i)∣∣. In case the first round of ΠdZK consists only of
messages from the prover to the verifiers then the first round of ΠdZK can be executed in parallel
to the prover sending the input pieces to the verifiers, and so ΠVRS will have only R rounds.

We now prove that ΠVRS securely realizes FVRS. Let SimdZK denote the simulator for ΠdZK.
We construct a simulator SimVRS that interacts with an adversary AVRS in ΠVRS. AVRS gives rise
to an adversary AdZK in ΠdZK, which operates exactly as AVRS does after the first round of ΠVRS.

60

Assume that AVRS corrupts a set T , |T | ≤ t of verifiers, then we consider two cases based on
whether AVRS also corrupts the prover.

Case (1): P is honest. Let
(
x(1), . . . , x(k), w

)
denote the prover’s inputs. In this case, the input

pieces which P sent to the verifiers in the first round are exactly the input pieces which she uses
in ΠdZK, and honest verifiers similarly use these input pieces. Because the code is 2t-robust, the
inputs used by the corrupted verifiers do not affect the output of FdZK, and so the output of FdZK

is equal to the output of FVRS. Therefore, since ΠdZK t-securely realizes FdZK with error ε, we have
that ΠVRS is a (t, ε)-VRS.

Case (2): P is corrupted. In this case, an execution of ΠVRS with AVRS corresponds to an exe-
cution of ΠdZK with AdZK in which the input pieces of the honest verifiers are the values

(
x(i)

)
i/∈T

which AVRS sent to them in the first round of ΠVRS. SimVRS emulates the dZK simulator SimdZK,
using the messages from AVRS to generate the messages of AdZK. At some point in its emulation,
SimdZK generates effective inputs for the ideal functionality FdZK, including effective inputs for P
which contain input pieces x̃(1), . . . , x̃(k). SimVRS then completes the simulation by checking the
following condition. Let X̃ denote the matrix whose i’th row is x̃(i), let ũi be the closest code-
word to X̃[i], and let ∆̃ :=

{
i ∈ [k] : x(i) ̸= x̃(i)

}
∪
(
∪i∈[n]∆

(
X̃[i], ũi

))
. Then SimVRS checks that∣∣∣∆̃∣∣∣ ≤ t. If the check passes, then SimVRS uses x̃(1), . . . , x̃(k) as its effective inputs for FVRS. Oth-

erwise, SimVRS provides some invalid inputs (i.e., that don’t satisfy the relation). It outputs the
simulated view generated by SimdZK.

Notice that if the check passes, then by the 2t-robustness of R, the input x =(
Dec

(
X̃[1]

)
, . . . ,Dec

(
X̃[k]

))
encoded by x̃(1), . . . , x̃(k) is well defined regardless of which input

pieces the corrupted verifiers choose to use for the computation. Therefore, the security of ΠdZK

guarantees that the joint distribution of AdZK’s view, together with the outputs of the honest veri-
fiers in ΠdZK, is ε-statistically close to the joint distribution of the outputs of SimdZK and the honest
verifiers in the ideal execution. The former is identical to the joint distribution of AVRS’s view, to-
gether with the outputs of the honest verifiers in ΠVRS. To conclude the proof, we notice that the
output of FdZK is exactly the output of FVRS, except when

∣∣∣∆̃∣∣∣ > t. However, in this case the
output in both the real and simulated execution is reject.

We now show the converse reduction, proving that VRS protocols for robust relations give rise
to dZK protocols. To construct a dZK protocol for a relation R̂C , we will use a VRS protocol for a
related relation R̂e

C (e for exact) which contains only valid encodings of inputs in R. (Recall that R̂C
contains also invalid encodings, as long as they decode to valid inputs inR.) This is formalized in
the following notation.

Notation 4. For a relationR and a code C with encoding procedure Enc, we define the relation:25

R̂e
C =

{((
x(1), . . . , x(k)

)
, w

)
: ((x1, . . . , xn) , w) ∈ R,

where X[i] = Enc (xi) for all 1 ≤ i ≤ n}

Claim 6.2 (VRS⇒ dZK, for robust relations). 26 Let k, t ∈ N such that t < k, let R̂C be a distributed
relation where C is a perfectly 2t-robust code, and let ε ∈ [0, 1]. If there exists a (t, ε)-VRS ΠVRS for R̂e

C ,
then there exists a t-secure realization ΠdZK of FdZK for R̂C with error ε. Moreover, if ΠVRS has R rounds
and communication complexity CC then ΠVRS has R+ 1 rounds and communication CC+ k.

25In the following, recall that X[i] is the ith column of X , and x(i) is the ith row of X .
26We thank Benny Applebaum for pointing out to us this reduction (and the round-preserving one discussed below).

61

Proof: The dZK protocol ΠdZK operates as follows. The parties emulate the VRS protocol ΠVRS.
Once the protocol terminates, if a verifier received an output x̃(i) which is not his input piece x(i)

then he broadcasts a complaint against P (this can be done by sending a single bit). Each verifier
Vi then determines his output as follows. If the output of ΠVRS was reject, or more than t verifiers
broadcasted a complaint, then Vi rejects. Otherwise, he accepts. Clearly, the round complexity
increases by 1 and the communication complexity increases by at most k.

We now prove that ΠdZK securely realizes FdZK. Let SimVRS denote the simulator for ΠVRS.
We construct a simulator SimdZK that interacts with an adversary AdZK in ΠdZK. AdZK gives rise
to an adversary AVRS in ΠVRS, which operates exactly as AdZK does in the first R rounds of ΠdZK.
Assume that AdZK corrupts a set T , |T | ≤ t of verifiers, then we consider two cases based on
whether AdZK also corrupts the prover.

Case (1): P is honest. In this case, the input pieces which P used in ΠVRS are consistent
with the input pieces used by the honest verifiers, and these are valid encodings of some input x.
Because the code is 2t-robust, the inputs used by the corrupted verifiers do not affect the output
of FdZK, and so the output of FdZK is equal to the output of FVRS. Moreover, since only corrupted
verifiers will broadcast complaints in the last round, there will be at most t complaints. Therefore,
since ΠVRS is a (t, ε)-VRS for R̂e

C , then ΠdZK t-securely realizes FdZK for R̂C with error ε.
Case (2): P is corrupted. In this case, SimdZK emulates the VRS simulator SimVRS, using

the messages from AdZK to generate the messages of AVRS. At some point in its emulation,
SimVRS generates effective inputs for the ideal functionality FVRS, consisting of the input pieces
x̃(1), . . . , x̃(k) and witness w′ provided by P . If x(i) ̸= x̃(i) for more than t honest verifiers, or(
x̃(1), . . . , x̃(k)

)
do not form valid encodings, then SimdZK provides some invalid inputs (i.e., that

don’t satisfy the relation) to FdZK. Otherwise, it uses x̃(1), . . . , x̃(k), w′ as its effective inputs for
FdZK. Then, SimdZK outputs the simulated view generated by SimVRS.

Notice that if both checks pass, then by the 2t-robustness of R, the input encoded by
x̃(1), . . . , x̃(k) is well defined regardless of the input pieces of the corrupted verifiers. Therefore,
the security of ΠVRS guarantees that (a) the joint distribution of AVRS’s view, together with the
outputs of the honest verifiers in ΠVRS, is ε-statistically close to (b) the joint distribution of the
outputs of SimVRS and the honest verifiers in the ideal execution. Notice thatAdZK’s view consists
exactly of AVRS’s view, together with the messages broadcasted in the last round. This concludes
the proof for the case that in the simulation

∣∣{i : x̃(i) ̸= x(i) ∧ i is honest
}∣∣ ≤ t and

(
x̃(1), . . . , x̃(k)

)
form valid encodings, since in this case the outputs of FdZK and FVRS are identical, and SimdZK

can perfectly simulate the broadcasts of the last round.
We now consider the case that

∣∣{i : x̃(i) ̸= x(i) ∧ i is honest
}∣∣ > t, or that

(
x̃(1), . . . , x̃(k)

)
do

not form valid encodings. First, if
∣∣{i : x̃(i) ̸= x(i) ∧ i is honest

}∣∣ > t then the outputs of the
honest verifiers (in the real and ideal executions) are reject. Moreover, the view of AVRS is still
ε-statistically close to the output of SimVRS, and SimdZK can perfectly simulate the broadcasts of
the last round. Therefore, the joint distribution of the outputs of SimdZK and the honest verifiers is
ε-statistically close to the joint distribution of AdZK’s view and the outputs of the honest verifiers
in ΠdZK. Finally, if

(
x̃(1), . . . , x̃(k)

)
do not form valid encodings, then by the security of ΠVRS, (a)

is ε-statistically close to (b), and additionally the output of FVRS is reject. Therefore, except with
probability ε, the outputs of the honest verifiers in ΠVRS (and consequently also in ΠdZK) are reject,
as they are in the simulation.

Round-Preserving VRS to dZK Reduction. The reduction of Claim 6.2 increases the round com-
plexity by 1. We note that one can obtain a round-preserving reduction if the VRS protocol satisfies
an additional property (which is satisfied by, e.g., the VRS of [AKP22] for certain thresholds, as

62

well as by other natural VRS instantiations [App22]). Roughly, the property is that in the first
VRS round the verifiers obtain from P “tentative” input pieces which – if P is honest – will be
their final outputs. If the VRS satisfies this additional property then the last round of the dZK
protocol ΠdZK (described in the proof of Claim 6.2) in which verifiers broadcast their complaints
can be performed in parallel to the second VRS round. Alternatively, if at the onset of the protocol
the verifiers already hold public commitments to their input pieces, then consistency with these
committed values can be proven in parallel to running the VRS (without requiring any additional
property from the VRS).

Acknowledgments

We thank Benny Applebaum for helpful discussions and for pointing out to us the reduction from
VRS to dZK. We thank Laasya Bangalore for pointing out an error in Theorem 6.1 in an earlier
version of the paper (following which we revised the acceptance criteria in Step 6 of Figure 3, and
revised the statement and proof of Theorem 6.1).

The first and third authors are supported by the BIU Center for Research in Applied Crypy-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office. The first author is supported by ISF grant No. 1316/18. The first and second
authors are supported by DARPA under Contract No. HR001120C0087. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the United States Government or DARPA. The first author is
supported by the Algorand Centres of Excellence programme managed by Algorand Foundation.
Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of Algorand Foundation.

References

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the round-
complexity of malicious MPC. In EUROCRYPT, Proceedings, Part II, pages 504–531. Springer,
2019.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-optimal
secure multiparty computation with honest majority. In CRYPTO, Proceedings, Part II, pages
395–424. Springer, 2018.

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two round
information-theoretic MPC with malicious security. In EUROCRYPT, Proceedings, Part II, pages
532–561. Springer, 2019.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.

[AKP20a] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The resiliency of MPC with low inter-
action: The benefit of making errors (extended abstract). In TCC, Proceedings, Part II, pages
562–594. Springer, 2020.

[AKP20b] Benny Applebaum, Eliran Kachlon, and Arpita Patra. The round complexity of perfect MPC
with active security and optimal resiliency. In FOCS, pages 1277–1284. IEEE, 2020.

[AKP22] Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and multi-
verifier zero-knowledge in two rounds: Trading NIZKs with honest majority - (extended ab-
stract). In CRYPTO, Proceedings, Part IV, pages 33–56. Springer, 2022.

63

[App22] Benny Applebaum. Private communication. 2022.

[BBC+19a] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. How to prove
a secret: Zero-knowledge proofs on distributed data via fully linear PCPs. Cryptology ePrint
Archive, Report 2019/188, 2019. https://eprint.iacr.org/2019/188.

[BBC+19b] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In CRYPTO, pages 67–97, 2019.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon interac-
tive oracle proofs of proximity. In ICALP, pages 14:1–14:17, 2018.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity
gaps for Reed-Solomon codes. In FOCS, pages 900–909, 2020.

[BD91] Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract). In EURO-
CRYPT, pages 81–95. Springer, 1991.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear IOP. In CCS, pages
2025–2038, 2020.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and exten-
sions. In CCS, pages 1292–1303. ACM, 2016.

[BGIN19] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In CCS, pages 869–886. ACM, 2019.

[BGIN20] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via
distributed zero-knowledge proofs. In ASIACRYPT, pages 244–276, 2020.

[BGIN21] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear GMW-style compiler for MPC
with preprocessing. In CRYPTO, pages 457–485, 2021.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation
and digital signatures. In EUROCRYPT, pages 236–250. Springer, 1998.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10.
ACM, 1988.

[BJO+22] Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. Feta: Effi-
cient threshold designated-verifier zero-knowledge proofs. In CCS, pages 293–306. ACM, 2022.

[BMMM20] Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn Müller-Quade. Constructing se-
cure multi-party computation with identifiable abort. IACR Cryptol. ePrint Arch., page 153,
2020.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty computation
with identifiable abort. In TCC, pages 461–490, 2016.

[BOSS20] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Efficient
constant-round MPC with identifiable abort and public verifiability. In CRYPTO, pages 562–
592, 2020.

[Bra21] Nicholas Brandt. Tight setup bounds for identifiable abort. IACR Cryptol. ePrint Arch., page
684, 2021.

[CB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of
aggregate statistics. In USENIX, pages 259–282, 2017.

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messaging
system handling millions of users. In SP, pages 321–338, 2015.

64

https://eprint.iacr.org/2019/188

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In CRYPTO, pages 521–536, 2006.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols (extended abstract). In STOC, pages 11–19. ACM, 1988.

[CCP21] Anirudh C, Ashish Choudhury, and Arpita Patra. A survey on perfectly-secure verifiable
secret-sharing. IACR Cryptol. ePrint Arch., page 445, 2021.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In CCS, pages 1825–1842, 2017.

[CFY17] Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. Catching MPC cheaters: Iden-
tification and openability. In ICITS, pages 110–134, 2017.

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multi-
party computation. In ASIACRYPT, pages 466–485, 2014.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In STOC, 1986.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages
501–520, 2006.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[DM00] Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically secure
computation. In CRYPTO, Proceedings, pages 74–92. Springer, 2000.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty
computation. In CRYPTO, pages 178–193. Springer, 2002.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for
boolean circuits. In USENIX, pages 1069–1083, 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, pages 291–304. ACM, 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229. ACM, 1987.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In CRYPTO, pages
323–341. Springer, 2007.

[GSV21] Yaron Gvili, Sarah Scheffler, and Mayank Varia. BooLigero: Improved sublinear zero knowl-
edge proofs for boolean circuits. In FC, pages 476–496, 2021.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In ICALP, pages 244–256. Springer, 2002.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In STOC, Proceedings, pages 21–30, 2007.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identi-
fiable abort. In CRYPTO, pages 369–386. Springer, 2014.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In TCC, pages 121–145, 2014.

65

[KKK09] Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the round complexity of
VSS in point-to-point networks. Inf. Comput., 207(8):889–899, 2009.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In CCS, pages 525–537, 2018.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols
and security under composition. In STOC, pages 109–118, 2006.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, Proceedings,
pages 392–404. Springer, 1991.

[SF16] Gabriele Spini and Serge Fehr. Cheater detection in SPDZ multiparty computation. In ICITS,
pages 151–176, 2016.

[SSY22] Mark Simkin, Luisa Siniscalchi, and Sophia Yakoubov. On sufficient oracles for secure compu-
tation with identifiable abort. In SCN, pages 494–515. Springer, 2022.

[YW22] Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs to multiple verifiers. In
ASIACRYPT, Proceedings, Part III, pages 517–546, 2022.

66

	Introduction
	Our Contribution
	Strongly-Complete dZK Proofs
	Applications

	Highlights of Our Techniques
	dZK Proofs From MPC-in-the-Head
	Certifiable VSS (cVSS) and Reusable cVSS

	Open Problems and Future Directions
	Paper Organization
	Related Works

	Preliminaries
	Distributed Zero-Knowledge (dZK) Proofs
	Secure Multi-Party Computation (MPC) Protocols

	Checking Membership in a Robust Code
	A Batched Verifiable Secret Sharing (VSS) Scheme

	dZK Proofs from Secure MPC Protocols
	Instantiations and Extensions
	Revisiting IshaiKOS07 in the Distributed Setting

	The Case of dZK Without Strong Completeness

	Applications
	Certifiable Verifiable Secret Sharing
	Reusable cVSS
	From Semi-Honest Security to Identifiable Abort Via dZK Proofs
	Security With Identifiable Abort
	MPC Terminology and Notation
	The Compiler
	Comparison With Previous Works

	Ideal dZK and Connections with Verifiable Relation Sharing
	The Ideal dZK Functionality
	Connection between dZK and VRS

