
Pattern Matching in Encrypted Stream
from Inner Product Encryption

Élie Bouscatié1,2, Guilhem Castagnos2, and Olivier Sanders1

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 Université de Bordeaux, INRIA, CNRS, IMB UMR 5251, F-33405 Talence, France

Abstract. Functional encryption features secret keys, each associated
with a key function f , which allow to directly recover f(x) from an en-
cryption of x, without learning anything more about x. This property
is particularly useful when delegating data processing to a third party
as it allows the latter to perfom its task while ensuring minimum data
leakage. However, this generic term conceals a great diversity in the cryp-
tographic constructions that strongly differ according to the functions f
they support.

A recent series of works has focused on the ability to search a pattern
within a data stream, which can be expressed as a function f . One of
the conclusions of these works was that this function f was not sup-
ported by the current state-of-the-art, which incited their authors to
propose a new primitive called Stream Encryption supporting Pattern
Matching (SEPM). Some concrete constructions were proposed but with
some limitations such as selective security or reliance on non-standard
assumptions.

In this paper, we revisit the relations between this primitive and two
major subclasses of functional encryption, namely Hidden Vector En-
cryption (HVE) and Inner Product Encryption (IPE). We indeed first
exhibit a generic transformation from HVE to SEPM, which immedi-
ately yields new efficient SEPM constructions with better features than
existing ones. We then revisit the relations between HVE and IPE and
show that we can actually do better than the transformation proposed
by Katz, Sahai and Waters in their seminal paper on predicate encryp-
tion. This allows to fully leverage the vast state-of-the-art on IPE which
contains adaptively secure constructions proven under standard assump-
tions. This results in countless new SEPM constructions, with all the
features one can wish for. Beyond that, we believe that our work sheds a
new light on the relations between IPE schemes and HVE schemes and in
particular shows that some of the former are more suitable to construct
the latter.

Keywords: Pattern Matching · Functional Encryption · Hidden Vector
Encryption · Inner Product Encryption

1 Introduction

Outsourcing IT services has become very common worldwide3 for multiple rea-
sons ranging from costs reduction to improved services. Whatever the actual
reason is, the concrete consequence for the company that delegates such services
is that a third party ends up with its data in clear because of the well-known
limitations of standard encryption.

Ideally, this third party should only learn the minimal information neces-
sary for performing the requested processing, which has motivated the design of
countless encryption schemes compatible with specific processing. Such schemes
belong to the realm of functional encryption [BSW11], where the third party
recovers a function f(x) from an encryption of x without learning anything else
about x, with minimal interaction. Of course, the function f , and hence the en-
cryption scheme, strongly depends on the considered application, which explains
the profusion of papers related to this topic.

1.1 Related Works

As functional encryption schemes supporting a large set of functions (e.g. [JLS21,
AMVY21]) tend to be quite complex, a variety of schemes have been tailored
to a specific function and therefore to the requirements of specific use-cases.
In this paper, we will focus on the ability to detect specific patterns within an
encrypted string (also called pattern matching), which is very useful for many
scenarios such as Intrusion Detection Systems (IDS) or search on genomic data.

At first glance, this problem seems to be directly related to the area of search-
able encryption (e.g. [BDOP04,DPP18]) where one can decide if a ciphertext C
encrypts some data x provided that it has received a trapdoor Tx specific to x.
Unfortunately, as noted in [DFOS18], this does not solve the problem of pat-
tern matching because there is a huge difference between deciding whether C
encrypts x or whether C encrypts a string y that contains x as a substring.
One could try to follow the tokenization approach of [SLPR15], which consists
in splitting the encrypted string into many overlapping substrings that will be
individually encrypted using searchable encryption. However, this only works if
all searched patterns are strings of a unique same length, which is not true in
practice4. Adaptations of this approach are possible but lead to other problems,
as also discussed in [DFOS18]. We also note that techniques tailored to use-cases
related to external storage (e.g. [CS15,LL18]) do not work in our context as, in
the latter, the entity performing the test is the data owner which allows to re-
veal more information. In our case, the test is performed by a third entity which
should only learn the result of the pattern matching.

Similarly, previous papers on pattern matching (e.g. [SLPR15, DFOS18],
[BCC20,BCS21]) dismissed so-called predicate encryption [KSW08], a sub-class

3 https://sumatosoft.com/blog/it-outsourcing-2019-overview-trends
4 See e.g. the length distribution of Snort rules https://snort.org/downloads#rules

2

https://sumatosoft.com/blog/it-outsourcing-2019-overview-trends
https://snort.org/downloads# rules

of functional encryption where f is essentially a boolean function, as they no-
ticed, here again, that this primitive does not exactly answer our problem. More
specifically, they considered two related primitives, namely Inner Product En-
cryption (IPE) [KSW08] and Hidden Vector Encryption (HVE) [BW07] that
seem to provide the kind of features one needs for pattern matching. The former
allows to test if the inner product of some vector associated with the ciphertext
and some other vector associated with the secret key is zero whereas the latter
allows to test if a ciphertext is associated with a vector of attributes, poten-
tially with wildcards. However, they noted that using such schemes for pattern
matching on data streams require to provide, for each searched pattern, a secret
key linear in the size of the stream, which quickly becomes cumbersome. This
is truly unfortunate as this area of cryptography has been extensively studied,
with very impressive results. For example, if we focus on the specific case of In-
ner Product Encryption (e.g. [KSW08,OT11,OT12a,OT12b,Ram16,CGW18]),
one can find schemes with remarkable features such as adaptive security, proofs
under standard assumptions, etc.

This state of affairs led very recent papers [DFOS18,BCC20,BCS21] to define
a new primitive called Stream Encryption supporting Pattern Matching (SEPM),
directly tailored to the pattern matching use-case. Conceptually, this primitive is
close to predicate encryption but aims at providing constant size secret keys that
yet allow to search the patterns anywhere in the stream. As this feature seemed
incompatible with IPE or HVE, the authors of these papers started from scratch
with constructions only achieving selective security and, for most of them, under
very strong interactive assumptions.

1.2 Our Contributions

In this paper we completely revisit SEPM by identifying generic and efficient
transformations linking IPE and SEPM through HVE. The direct consequence
of our work is that it allows to leverage all the state-of-the art related to IPE and
HVE to directly build SEPM with new features. More specifically, we proceed
in two main steps, as follows.

Our natural starting point is HVE for two reasons. Firstly, by identifying the
caracters of our data streams with the attributes of HVE, one gets the ability to
search patterns while ensuring data privacy. Secondly, HVE supports wildcards,
that is, a special caracter ⋆ that matches all caracters. This allows to detect
more advanced patterns such as ab ⋆⋆ cd, meaning ab followed by cd with an
offset of 2. This kind of patterns is necessary in many applications such as IDS,
as illustrated by the Snort data rules mentionned above. Moreover, when it
comes to data sream, this allows to test the presence of some pattern abc at any
position within the stream by providing secret keys for the patterns abc ⋆ ⋆ . . . ,
⋆ abc⋆. . ., etc. Obviously, the natural downside of this approach is that one must
issue secret keys for any possible position of the pattern, which quickly becomes
cumbersome. This is actually the reason why [DFOS18] dismissed HVE as a
potential solution. The latter paper managed to have constant-size secret keys

3

allowing to search a pattern everywhere in the data stream but at the cost of a
very large public key.

In a follow-up work, [BCC20] addressed the problem of the large public key
through a technique called fragmentation which consists in splitting the stream
into overlapping and redundant substrings. The same technique was used in
[BCS21] to construct a scheme with better complexity and security.

In this work we show that this fragmentation technique is actually much more
powerful than initially thought because, intuitively, it allows to reduce the prob-
lem of finding a pattern anywhere in a stream to the one of searching this pattern
within fixed-length substrings, called fragments, which limits the consequences
of the problem mentioned above. This allows us to propose a generic transfor-
mation from HVE to SEPM which automatically improves the state-of-the-art
of SEPM.

Once this is done, we try to further improve our result by trying to connect
SEPM to IPE, which has been much more studied than HVE.

Here, we do not start from scratch as Katz, Sahai and Waters [KSW08]
already showed a relation between IPE and HVE. More specifically, they noted
that if one encrypts a vector (xr,−r) ∈ F2n

p with an IPE scheme, where xr
denotes the element-wise product of the vector x and some random vector r, then
one can test if x = k (and thus get an HVE scheme) given an IPE secret key for
(1, . . . , 1,k) ∈ F2n

p . Indeed, one can note that the scalar product between these
two vectors is 0. Obviously, the opposite must be true and this is the purpose
of the vector r. Without this randomness r in the ciphertext, one could indeed
easily construct another secret key that would cancel x without being equal to x.
This, combined with the way it handles wildcards, described in the body of this
paper, explains why this transformation doubles the size of the original vectors.
We stress the importance of r being hidden in the ciphertext by the security of
the IPE scheme. Surprisingly, this fact is not mentioned by [KSW08] to prove
the security of their transformation. Actually, the arguments they provide still
apply to our next transformation but we show a counterexample in this case, i.e.
an secure IPE scheme whose conversion is not secure. As a warm-up, we provide
a complete proof of security for their transformation, which allows to identify
the subtleties that arise in the process.

As the KSW transformation entails a doubling of the ciphertext size, we
propose in this paper a new conversion with a ratio very close to 1. Our core
idea, which allows us to handle wildcards with fewer coordinates, is to move
the randomness r to the secret key in the following way. We set our ciphertext
as (x,−1) ∈ Fn+1

p whereas the secret key is (r, ⟨k, r⟩). Here again, we get an
HVE scheme that allows to test whether k = x, but with a better efficiency.
However, proving security of the resulting transformation is much more complex.
Intuitively, the problem stems from the fact that security inherently depends
on the secrecy of r. When r is embedded in the ciphertext, as in the KSW
transformation, one can rely on the security of the encryption scheme itself. In
our case, this is no longer possible as there is no equivalent property for the
secret key itself. Theoretically, one could learn r from the secret key and thus

4

break security of the conversion. We study this problem more thoroughly and
show that it actually depends on the exact model we consider.

In the case of selective security, we show that an adversary is unable to
exploit this problem and so that our conversion IPE to HVE remains secure for
all schemes.

In the adaptive case, we cannot prove such a result in general, and actually
show a counterexample with an IPE scheme from the litterature. Fortunately, we
show that we can circumvent this problem if the underlying IPE scheme satisfies
a new property that we formalize. This property concerns the secret keys of
the IPE schemes and we show that many such constructions naturally achive it
under the discrete logarithm assumption. With this additional property, we are
at last able to prove adaptive security of the HVE schemes resulting from this
conversion. This allows to leverage the whole state-of-the-art of IPE schemes
with a better efficiency than with the KSW conversion. Besides that, this shows
that some IPE schemes are more suitable to design HVE schemes, which clarifies
the relation between these two primitives.

In a last section, we draw the consequences of our generic conversions. Where
as all known SEPM proposals only achieved selective security under strong as-
sumptions, we show that it is possible to achieve adaptive security under DLIN
by loosing only a constant factor on efficiency.

2 Definitions

In this section, we first give useful notations for the context of pattern matching
and then review notions of functional encryption still in this context. In partic-
ular, we consider Hidden Vector Encryption and Inner Product Encryption, two
primitives that we will use to construct Stream Encryption supporting Pattern
Matching. As we shall see, we will consider predicate only versions of these two
primitives, viewing attributes as messages.

Notations and vocabulary. We denote by N the set of positive integers and

for any n ∈ N, we note JnK := {1, . . . , n}. For any set A, we write x
$←− A to say

that x is chosen uniformly at random in A, we note A∗ :=
⋃

i≥1 A
i where Ai is

the usual Cartesian product A × · · · × A and for an element a ∈ A∗, we note
len(a) the non negative integer such that a ∈ Alen(a) and call the length of a.
Let ⋆ be the wildcard symbol and Σ a finite alphabet that does not contain ⋆.
An element x ∈ Σ∗ is called a string, an element k ∈ (Σ ∪ {⋆})∗ a pattern and
the set supp(k) := {1 ≤ i ≤ len(k) : ki ̸= ⋆} is called the support of k.
We say that the pattern k matches the string x if len(k) = len(x), and

∀i ∈ supp(k), ki = xi.

More generally, if len(k) ≤ len(x), then for any 1 ≤ i ≤ len(x) − len(k) + 1, we
say that the pattern k matches the string x at position i if

∀j ∈ supp(k), kj = xi+j−1.

5

Other notations are differed to the beginning of section 4 where the choice of Σ
becomes more specific.

2.1 Functional Encryption

Syntax. We recall the general definition of functional encryption as introduced
in [BSW11]. A functionality F defined over (K,X) is a function F : K ×X −→
{0, 1}∗ described as a (deterministic) Turing Machine. The set K is called the
key space and the set X is called the plaintext space.

A functional encryption scheme for the functionality F enables one to eval-
uate F (k,x) given the encryption of x and a secret key skk for k. The al-
gorithm for evaluation F (k,x) using skk is called decrypt. More precisely, a
functional encryption scheme is defined as a tuple of four PPT algorithms
(setup, keygen, enc, dec) as follows:

– (pp, pk,mk) ←− setup(1λ), generates public parameters that are implicit in-
puts of the other algorithms, a public key and a master secret key;

– skk ←− keygen(mk,k), generates a secret key for k;

– c←− enc(pk,x), encrypts the message x ;

– y ←− dec(skk,k, c), uses sk to compute y ∈ {0, 1}∗ from c.

Correctness. As we are essentially interested in pattern matching applications,
the definition of correctness that we give will be associated with the notion of
false positive (a pattern is mistakenly detected). However, for all the schemes
that we consider there is no false negative, patterns that are present, will always
be detected. Moreover, although we could provide a generic definition of correct-
ness, we choose to distinguish two relevant cases in our context, the one where
the output of F is 0 or 1 and the one where this output can be parsed as some
finite subset of N. It will lead to more intuitive definitions. These definitions are
similar to those in [ABC+08] but we consider a slightly weaker notion of false
positive.
A functional encryption scheme with functionality F such that F (k,x) ∈ {0, 1}
is correct if for all k ∈ K,x ∈ X,

– F (k,x) = 1 =⇒ dec(keygen(mk,k),k, enc(pk,x)) = 1.

– F (k,x) = 0 and dec(keygen(mk,k),k, enc(pk,x)) = 1 (i.e. a false positive)
occurs with negligible probability µ(λ) over the coins of all the algorithms.

A functional encryption scheme with functionality F such that F (k,x) is a finite
subset of N is correct if for all k ∈ K,x ∈ X, i ∈ N,

– i ∈ F (k,x) =⇒ i ∈ dec(keygen(mk,k),k, enc(pk,x)).
– i /∈ F (k,x) and i ∈ dec(keygen(mk,k),k, enc(pk,x)) (i.e. a false positive)

occurs with negligible probability µ(λ) over the coins of all the algorithms.

6

Security. We here recall the classical IND−CPA security for functional encryp-
tion schemes.

Definition 1 (IND−CPA for functional encryption). A Functional Encryp-
tion scheme is IND − CPA secure if no probabilistic polynomial time adversary
A has a non-negligible advantage in the following game, ExpIND−CPA

A :

Setup: run (pp, pk,mk)← setup(1λ) and give pp, pk to A.
Query Phase 1: A submits queries k ∈ K and gets skk ← keygen(mk,k)
Challenge: A submits two messages m(0),m(1) ∈ X such that every queried
pattern k follows the natural restriction:

F (k,m(0)) = F (k,m(1)). (1)

The challenger chooses β
$←− {0, 1} and gives c← enc(pk,m(β)) to A.

Query Phase 2: A can issue key queries as before but subject to restric-
tion (1).
Guess: A eventually outputs a bit β′ in {0, 1}.

The advantage of A is defined as

∣∣∣∣Pr[β = β′]− 1

2

∣∣∣∣.
This definition is sometimes called adaptive IND − CPA security. In a weaker
model, selective security, the adversary A has to choose m(0),m(1) at the begin-
ning of the game, before seeing the public key and public parameters and before
Query Phase 1.

2.2 Some classes of Functional Encryption

Hidden Vector Encryption. This primitive, HVE for short, was introduced
in [BW07]. The original definition follows the paradigm of predicate encryption.
A secret key encapsulates a key pattern (a string with possible wildcards) while
a ciphertext encrypts both an attribute string and a payload message. A first
security notion, called payload hiding, ensures that a ciphertext hides all infor-
mation about the payload message unless one has a secret key for a key pattern
that matches the attribute string, in this case, he recovers the payload message.
An additional security notion, called attribute hiding (cf. [KSW08]), ensures that
a ciphertext hides all information about the attribute string and decryption does
not reveal any information about the attribute string other than the fact that it
matches the key pattern or not.

It was noted in [DFOS18] that an attribute hiding HVE can be used for pat-
tern matching on the attribute without revealing extra information about it but
with the strong limitations recalled in our introduction. While other applications
may not consider attribute hiding or weaker versions of it, this notion is crucial
to achieve this purpose.

In many works on HVE (e.g. [KSW08,DIP13]) a first building block is pre-
sented, called a predicate-only HVE. This focuses on the attribute, not consid-
ering the payload message. The reason behind this is that attribute hiding is

7

the hardest part to achieve (especially when adaptive security is targeted as
in [OT10]) and the full-fledged HVE is then obtained using a key encapsula-
tion mechanism. In the following, we will abuse the terminology of [KSW08],
as in [DIP13], and simply refer to predicate-only HVE as HVE. Thus what we
called an attribute will be seen as the message and the attribute hiding security
notion will coincide with the classical IND− CPA security notion for functional
encryption.

This gives the following definition.

Definition 2 ((Predicate-Only) Hidden Vector Encryption). An n-HVE
scheme for some integer n is formally described as a functional encryption
scheme where:

1. The key space K is (Σ ∪ {⋆})n.
2. The plaintext space X is Σn.

3. The functionality is FHVE : K ×X −→ {0, 1}

(k,x) 7−→ FHVE(k,x) =

{
1 if k matches x,

0 otherwise.

Inner Product Encryption. We will also consider Inner Product Encryption
(IPE), a primitive introduced by [KSW08] who additionally noted a relation to
HVE (we will review and improve this result in Sections 4 and 5). Here keys and
attributes are vectors and one tests whether their inner product is zero, instead
of testing matching. Again we consider a predicate-only version of this primitive
which is sufficient for our purposes. We adapt the definition from [BSW11] that
uses the vector space Fn

p to define an IPE.

Definition 3 ((Predicate-Only) Inner product Encryption). An n-IPE
scheme for some integer n is formally described as a functional encryption
scheme where:

1. The setup algorithm defines a randomly chosen prime p of length λ, where
λ is the security parameter.

2. The key space K and plaintext space X are Fn
p .

3. The functionality is FIPE : K ×X −→ {0, 1}

(u,v) 7−→ FIPE(u,v) =

{
1 if ⟨u,v⟩ = 0,

0 otherwise.

Stream Encryption supporting Pattern Matching. This primitive has
been recently considered in [BCC20,BCS21]. It can be formalized as a functional
encryption scheme as follows. A plaintext x is a stream, an element of Σ∗. Given
a pattern k of length upper bounded by n, the functionality returns all the
integers i such that k matches x at position i.

8

Definition 4 (Stream Encryption supporting Pattern Matching). An n-
SEPM scheme for some integer n is formally described as a functional encryption
scheme where:

1. The key space K is
⋃n

i=1(Σ ∪ {⋆})i completed by the empty key ϵ.
2. The plaintext space X is Σ∗.
3. The functionality is defined as

FSEPM : (K \ {ϵ})×X −→ {S ⊂ N : S is finite}
(k,x) 7−→ FSEPM(k,x) = {i : k matches x at position i}.

And we let FSEPM(ϵ,x) = len(x) to leak the length of the message intentionally.

3 From HVE to SEPM through fragmentation

There are several ways of designing a public key encryption scheme supporting
pattern matching but, as explained in [DFOS18], they usually lead to systems
suffering from very concrete limitations, such as the restriction of the set of pos-
sible patterns to strings of a unique same length, secret keys (called trapdoors
in [DFOS18]) whose size is linear in the maximum size of the encryption stream,
etc. The authors of [DFOS18] proposed an alternative primitive that theoret-
ically addresses these issues but with rather poor performance. Two follow-up
works [BCC20] and [BCS21] improved this by introducing SEPM schemes. They
both extensively rely on a technique called fragmention that enables to circum-
vent the need for shiftable trapdoors identified in [DFOS18] by splitting the
stream into fragments with some redundancy.

We first recall this technique and then show, as a first contribution, that
fragmentation creates a strong relation between SEPM and HVE: we expose a
generic conversion from a 2d-HVE scheme to a n-SEPM with n = d+ 1 and its
security.

3.1 Fragmentation

Let n be an upper bound on the length of the patterns supported by the SEPM
scheme. To enable pattern matching for string x of any length, the fragmentation
technique splits the latter into overlapping substrings xi of size 2d, where d :=
n− 1, as follows

xi = (x(i−1)d+1, . . . , x(i+1)d) for i = 1, . . . ,

⌈
len(x)

d

⌉
.

This leads to this decomposition of x :

x =

x1³¹¹¹·¹¹¹µ
x1, . . . , xd, ´¹¹¸¹¹¹¶

x2

xd+1, . . . , x2d,

x3³¹¹¹·¹¹¹µ
x2d+1, . . . , x3d, ´¹¹¹¸¹¹¹¶

x4

x3d+1, . . . , x4d, x4d+1, . . . , x5d, . . .

9

Our first contribution in this paper is to revisit this notion of fragmentation
to show that it actually creates a strong relation between SEPM and HVE.
More specifically, we show that once a string has been fragmented in this way,
one can divert the use of any 2d-HVE scheme to build an SEPM scheme. This
observation allows to leverage the work that has already been done on Hidden
Vector Encryption and even on Inner Product Encryption as we will explain in
Section 4. In particular, it avoids the need to build a new system from scratch, as
was done in [BCC20] and [BCS21]. Actually, one can show that the constructions
of these works implicitly define a 2d-HVE scheme.

Remark 1. Note that if d does not divide len(x), the last fragment is not com-
pletely defined. A generic solution is to complete it with padding but this could
create a problem if the streaming resumes. However, in the latter case, one can
simply retransmit this last fragment, completed with the new data. Alterna-
tively, several HVE schemes, such as the ones implicitly used in [BCS21], allow
to produce the encryption of an incomplete message that may later be completed
consistently. Our point here is that incomplete fragments can easily be handled
and so that we can, from now on, assume that d divides len(x).

3.2 Conversion

We first remark that fragmentation reduces the problem of encrypting a string
of arbitrary length into the one of encrypting several substrings of fixed length.
We can therefore run the encryption algorithm of any fixed-length primitive such
as a 2d-HVE scheme. However, this is true for any splitting of x. The specificity
of fragmentation is that it avoids the problem of patterns straddling fragments
by ensuring that any searchable pattern will always be entirely contained in at
least one fragment. Thanks to this feature, and by appropriately generating the
secret keys of the underlying HVE system, one can ensure that any pattern will
be detected.

We depict in Fig. 1 our generic conversion from a 2d-HVE scheme to a n-
SEPM with n = d+ 1.

Correctness of the SEPM scheme of Fig. 1. Suppose that a pattern k matches
x at some position ℓ, meaning that ℓ ∈ FSEPM(k,x) where FSEPM is defined
in Def. 4. Let i = ⌈ ℓd⌉. By construction, k is fully contained inside xi =
(x(i−1)d+1, . . . , x(i+1)d). We indeed have both:

1. (i− 1)d+ 1 ≤ ℓ
2. ℓ+ len(k)− 1 ≤ ℓ+ n− 1 = ℓ+ d ≤ (i+ 1)d

where the last inequality stands as ℓ ≤ i · d, by definition of i. Therefore, within
the fragment xi, k starts at some position 1 ≤ j ≤ d and will be detected by
skj with probability 1 by correctness of EHVE. We thus have that ℓ ∈ S with
probability 1 where S is the output of decSEPM(sk, c).

Conversely suppose that ℓ ̸∈ FSEPM(k,x), but ℓ ∈ S. This means that
decHVE(skj , ci) has returned 1. By correctness of EHVE, this can occur only

10

with negligible probability as the pattern is not present in the fragment xi. Con-
sequently, the probability of false positives of ESEPM is the same as the one of
EHVE. ⊓⊔

– Let n ∈ N, n ≥ 2, d = n− 1.
– Let EHVE := (setupHVE, keygenHVE, encHVE, decHVE) be a 2d-HVE scheme.
– setupSEPM is setupHVE.
– keygenSEPM(mk,k) takes as input a pattern k with len(k) ≤ n and computes

skj ←− keygenHVE(mk,kj)

for all j ∈ JdK, where kj is the 2d long pattern (

j−1³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹µ
⋆, . . . , ⋆,k, ⋆, . . . , ⋆).

It then returns sk := (sk1, . . . , skd).
– encSEPM(pk,x) takes a string x of length f · d for some f ∈ N (see Remark 1)

and computes

ci ← encHVE(pk, (x(i−1)d+1, . . . , x(i+1)d))

for all i ∈ JfK, to return c := (c1, . . . , cf).
– decSEPM(sk, c) parses sk as (sk1, . . . , skd) and c as (c1, . . . , cf) for some f ∈ N.

Then it sets S = ∅ and, for every i ∈ JfK and j ∈ JdK, it tests whether
1 = decHVE(skj , ci), in which case it updates S ← S ∪ {(i− 1)d+ j}.
Finally, it outputs S.

Fig. 1. Generic construction of an n-SEPM scheme ESEPM from a 2d-HVE scheme

Remark 2. Our conversion described in Fig.1 leads to secret keys sk whose size
is independent of the length of x. Technically, our conversion would also work
for symmetric HVE schemes but in such a case we would have to change the
encryption key, and therefore the secret keys, for each fragment, which would be
rather cumbersome.

3.3 Security

Theorem 1. The conversion in Fig.1 transforms an IND−CPA secure 2(n−1)-
HVE scheme EHVE into an IND− CPA secure n-SEPM ESEPM scheme.

Proof. For the sake of clarity, we slightly adapt ExpIND−CPA
A (ESEPM) for SEPM

by defining ExpIND−CPA−0
A (ESEPM) (resp. ExpIND−CPA−1

A (ESEPM)) as the original
experiment where the challenger always choose β = 0 (resp. β = 1). We must
then show that∣∣Pr[ExpIND−CPA−0

A → 0]− Pr[ExpIND−CPA−1
A → 0]

∣∣ is negligible.

In other words, the behaviour of A must be the same in both games.

11

Let x0 and x1 be the challenge messages submitted by the adversary A
and x0

1, . . . ,x
0
f and x1

1, . . . ,x
1
f their respective fragments. In this proof we will

proceed through a sequence of games where we will progressively replace x0
i by

x1
i in the challenge ciphertext. Any discrepancy in the behaviour of A would

then imply that it has been able to distinguish two HVE ciphertexts, and so an
attack against the IND− CPA security of the HVE scheme.

More formally, we define the following sequence of games:

– game0 is ExpIND−CPA−0
A (ESEPM),

– for i = 1, . . . , f , gamei is the same game as gamei−1 except that,

c =
(
encHVE(pk,x

1
1), . . . , encHVE(pk,x

1
i),

encHVE(pk,x
0
i+1), . . . , encHVE(pk,x

0
f)
)
,

so gamef is exactly ExpIND−CPA−1
A (ESEPM).

For i = 0, . . . , f , let Zi be the event that the adversary outputs 0 in gamei.
We thus have,

∣∣Pr[ExpIND−CPA−0
A (ESEPM)→ 0]− Pr[ExpIND−CPA−1

A (ESEPM)→ 0]
∣∣

≤
f∑

i=1

∣∣Pr[Zi]− Pr[Zi−1]
∣∣.

Let us assume that there exists i∗ ∈ JfK such that
∣∣Pr[Zi∗] − Pr[Zi∗−1]

∣∣ is
not negligible. We describe an adversary B that uses A against the IND − CPA
security of EHVE. Let C(EHVE) be the challenger of ExpIND−CPA(EHVE).

Setup. B runs C(EHVE) to get the public parameters and keys of the system and
forwards them to A.

Query Phase 1. When A makes a query for a pattern k, B proceeds as in Fig. 1
and then queries d times C(EHVE) to build the associated secret key sk.

Challenge. The algorithm B uses the public key to set the ciphertext elements

ci ← encHVE(pk,x
1
i) for i = 1, . . . , i∗ − 1,

and ci ← encHVE(pk,x
0
i) for i = i∗ + 1, . . . , f .

It then submits x0
i∗ and x1

i∗ to C(EHVE) as challenge messages which returns a
ciphertext element used by B as ci∗ . The algorithm B can then send (c1, . . . , cf)
to A as the challenge ciphertext.

Query phase 2. The algorithm B proceeds as in the first phase.

12

Guess. B finally forwards the bit β′ issued by the adversary to C(EHVE).

First note that the restrictions placed on pattern queries in the SEPM ex-
periment implies that all key queries to C(EHVE) are valid. In other words, if a
pattern k matched x0

i∗ but not x1
i∗ in the HVE game, then the same would be

true for x0 and x1 in the SEPM game, which is not possible.
Finally, the challenge ciphertext returned by C(EHVE) is either an encryption

of x0
i∗ or x1

i∗ . In the first case, we are playing gamei∗−1. In the second case,
this is exactly gamei∗ . Any adversary such that

∣∣Pr[Zi∗] − Pr[Zi∗−1]
∣∣ is non-

negligible can then be used against the IND− CPA experiment of HVE. ⊓⊔

Remark 3. This proof readily adapts to the case of selective security.

4 Hidden Vector Encryption from Inner Product
Encryption

In the previous section, we have shown that any HVE scheme could be used
to construct an SEPM scheme. However, we note that there is not many HVE
schemes in the literature, in particular when one wants specific properties such
as adaptive security. This stands in sharp contrast with a related primitive,
Inner Product Encryption, for which countless constructions exist. Actually, the
relatively low number of publications on HVE can perhaps be explained by
a subsection of [KSW08] where the authors explain how one can generically
build a n-HVE scheme from a 2n-IPE scheme (referred as KSW conversion
in the following). To our knowledge, this result has not been formally proven
and [KSW08] seems to only consider selective security. In this section, we first
show, as a warm-up that this conversion is secure, even in the adaptive case,
although the proof is not that straightforward. In particular, we will see that
subtleties appear in the proof, concerning the conversions of valid key queries
made by an HVE adversary to valid key queries for an IPE adversary.

As this conversion doubles ciphertext size, we then revisit the links between
these two primitives to show that one can achieve a much better ratio (almost 1)
through a new conversion that we introduce. We then show that one can prove
that this construction is secure in the selective case, using similar information
theoretic arguments than in the proof of the KSW conversion. We defer the case
of adaptive security to Section 5.

Notations. In the following conversions, we suppose Σ = F×
p and ⋆ = 0 which

implies Σ ∪ {⋆} = Fp. For two vectors of same length u = (u1, . . . , un) and
v = (v1, . . . , vn), we denote by uv the vector of same length obtained by element-
wise product

uv := (u1v1, . . . , unvn)

For a vector k ∈ Fn
p , we denote by 1k the vector (s1, . . . , sn) where for all i ∈ JnK,

si = 1 if i ∈ supp(k) and si = 0 if i /∈ supp(k).

13

4.1 KSW Conversion

In [KSW08, Subsection 5.2], Katz, Sahai and Waters give the following conver-
sion from a 2n-IPE scheme to an n-HVE scheme. We define the applications

f : Σn × Fn
p −→ F2n

p

(x , r) 7−→ (xr , −r)

g : Fn
p −→ F2n

p

k 7−→ (1k , k)

where we have put the coordinates in a different order than [KSW08], simplify-
ing our notations without fundamentally changing the original conversion. The
construction of Katz, Sahai and Waters is depicted in Fig. 2.

– Let EIPE := (setupIPE, keygenIPE, encIPE, decIPE) be a (2n)-IPE scheme.
– setupHVE(1

λ, n) is setupIPE(1
λ, 2n).

– keygenHVE(mk,k) returns skk ← keygenIPE(mk, g(k)).

– encHVE(pk,x) chooses r
$←− Fn

p and returns c← encIPE(pk, f(x, r)).
– decHVE(skk, c) is decIPE(skk, c).

Fig. 2. KSW construction of an n-HVE scheme EHVE from a 2n-IPE scheme

Correctness. Let us remark that ⟨f(x, r), g(k)⟩ = ⟨(xr,−r), (1k,k)⟩ = ⟨xr,1k⟩−
⟨r,k⟩ = ⟨1kx, r⟩ − ⟨k, r⟩ = ⟨1kx − k, r⟩. Moreover, if a pattern k matches x,
then with the notations that we have just introduced, we have 1kx− k = 0.

As a result, if k matches x, this inner product in 0 for all choices of r. By
correctness of EIPE, with probability 1 decryption of a ciphertext for x with skk
will return 1.

Conversely, if k does not match x, then 1kx − k ̸= 0. The probability for
a random vector r in Fn

p of being orthogonal to a non-zero vector is 1/p. So
decryption will return 1 with negligible probability 1/p+ (1− 1/p) · µ(λ) where
µ(λ) is the probability of false positive for EIPE. This proves the correctness of
the conversion. ⊓⊔

As we explain above, the authors of [KSW08] do not prove the security of this
conversion but only provide a very informal argument to support this claim from
correctness and seem to consider only selective security. Below, we show that this
conversion indeed results in an adaptively (resp. selectively) secure HVE scheme
if the IPE scheme is adaptively (resp. selectively) secure but also that this result
is not that straightforward. Intuitively, the problem stems from the fact that
there is some discrepancy between the restriction on key queries in an HVE
experiment and the one in the IPE experiment. More concretely, an adversary

14

in the HVE experiment may submit a key query for a vector k that does not
match any of the challenge messages of the HVE experiment (this is thus a valid
query) but that yet results, through this conversion, in an illicit query for the IPE
experiment. The status of a query (illicit or not) will depend on the randomness
r that is included in the challenge ciphertext. Before the challenge ciphertext
is revealed, this randomness is still unknown and, as suggested in [KSW08],
one can use the same argument that we saw when we proved correctness, for
stating that false positives are unlikely. However, this argument does not hold
in phase 2. Once the challenge ciphertext has been revealed, the randomness
is no longer perfectly hidden. Fortunately, we can rely on another information
theoretic argument as we explain in the proof.

4.2 Security Analysis of KSW Conversion

We prove in this section the following theorem.

Theorem 2. The KSW conversion transforms a selective (resp. adaptive) IND−
CPA secure 2n-IPE scheme EIPE into a selective (resp. adaptive) IND − CPA
secure n-HVE EHVE scheme.

Proof. Consider an adversary A against the IND − CPA security of EHVE. Let
C(EIPE) be the challenger of the IND − CPA experiment for EIPE. We build an
adversary B against the IND − CPA security of EIPE, using A. An overview of
the adversary B is given in Fig. 3.

C(EIPE) B A
pp,pk−−→ Setup

g(k)←−−−−−−−−−−−−−− k←−−−−−−−−−−−−−− Query
skg(k)−−→ Phase 1

f(x0,r0),f(x1,r1)←−−−−−−−−−−−−−− r0, r1
$←− Fn

p
x0,x1

←−−−−−−−−−−−−−−
Challenge

β
$←− 0, 1

c−−→
g(k)←−−−−−−−−−−−−−− Test

k←−−−−−−−−−−−−−− Query
skg(k)−−→ Phase 2

β′
←−− Guess

α

Test checks if conditions (2) and (3) are met in which case it returns the value α of
condition (3) and stops the simulation.

Fig. 3. Overview of the adversary B in the proof of Theorem 2.

15

Setup. The adversary B simply forwards the public parameters and public key
from C(EIPE) to the adversary A.

Query Phase 1. As there is no restriction on the possible queries in this phase
in either security game, B simply answers a query k of A by submitting g(k) as
a query to C(EIPE) and forwards the secret key to A.

Challenge. In this phase, A submits two messages x0 and x1. We only have to
handle the case where this pair satisfies the restriction of the HVE game. In this
case, B chooses r0, r1 ∈ Fn

p , submits the messages f(x0, r0) and f(x1, r1) and
forwards the resulting challenge ciphertext to A.

However a problem can occur if f(x0, r0) and f(x1, r1) do not satisfy the
restriction of the IPE game. Let k be a pattern queried byA. From the restriction
of the HVE game, there are two cases.

First, k matches both x0 and x1. In this case, as we have seen for correctness,
∀α ∈ {0, 1}, ⟨f(xα, rα), g(k)⟩ = 0, for all choices of randomness. As a result the
messages f(x0, r0) and f(x1, r1) always satisfy the restriction of the IPE game.

The second case is a little more complex. The problematic conditions are

∀α ∈ {0, 1},k does not match xα, and,

∃α ∈ {0, 1}, ⟨f(xα, rα), g(k)⟩ = 0 and ⟨f(x1−α, r1−α), g(k)⟩ ≠ 0.

As seen before, this can be rewritten as follows:

∀α ∈ {0, 1},1kx
α − k ̸= 0 (2)

∃α ∈ {0, 1}, ⟨1kx
α − k, rα⟩ = 0 and ⟨1kx

1−α − k, r1−α⟩ ≠ 0 (3)

At this stage, we can still rely on the correctness argument as in [KSW08] because
r0 and r1 were still unknown at the time of the queries. As a result, if equation (2)
holds, equation (3) holds with negligible probability 2·

(
1
p ·
(
1− 1

p

))
= 2

p−
2
p2 < 2

p .

Query Phase 2. Unlike in phase 1, we can no longer argue that r0 and r1

are unknown to the adversary and this is where we cannot rely only on the
arguments developed for correctness as suggested in [KSW08]. Concretely, the
HVE adversary A could get information on one of these random values from the
challenge ciphertext and so submit a query k satisfying conditions (2) and (3). It
might perhaps be possible to exclude such cases by assuming some appropriate
computational assumption but this could only be done on a case-by-case basis
and so would be irrelevant for this generic conversion.

Fortunately we can proceed differently: if the adversary A submits a query k
that does not match either challenge message but such that ⟨1kx

α − k, rα⟩ = 0
for some α ∈ {0, 1}, and ⟨1kx

1−α−k, r1−α⟩ ≠ 0, then B returns α to C(EIPE) and
stops. The intuition here is that the probability that A submits such a query with
α = 1−β is negligible because it has no information about r1−β . Formally, for any
query k that does not match either challenge message, ⟨1kx

1−β − k, r1−β⟩ = 0
happens with probability 1

p and in the other case, B wins the security game.

16

Guess. Finally, B forwards the guess of A to C(EIPE). ⊓⊔

4.3 Our conversion

A clear downside of the previous approach is that it requires a 2n-IPE scheme to
build a n-HVE scheme, which does not seem optimal. In this section, we propose
a new generic transformation that halves this cost. We keep the same overall idea,
of testing if a pattern k matches x by testing if the inner product ⟨1kx − k, r⟩
is 0 for a random r, but we add this randomness during key generation instead
of encryption which allows us to handle the wildcards of k without doubling the
coordinates. However, as we will see, this change has profound consequences on
the security proofs.

f : Σn −→ Fn+1
p

x 7−→ (x , −1)

g : Fn
p × Fn

p −→ Fn+1
p

(k , r) 7−→ (1kr , ⟨k, r⟩)

We depict in Fig. 4 our generic conversion from an (n+ 1)-IPE scheme to a
n-HVE scheme.

– Let EIPE := (setupIPE, keygenIPE, encIPE, decIPE) be a (n+ 1)-IPE scheme.
– setupHVE(1

λ, n) is setupIPE(1
λ, n+ 1).

– keygenHVE(mk,k) chooses r
$←− Fn

p and returns skk ← keygenIPE(mk, g(k, r)).
– encHVE(pk,x) returns c← encIPE(pk, f(x)).
– decHVE(skk, c) is decIPE(skk, c).

Fig. 4. Our construction of an n-HVE scheme EHVE from a (n+ 1)-IPE scheme

Correctness. Let x = (x1, . . . , xn) ∈ Σn be a message and c be an encryption
of x. Let k = (k1, . . . , kn) ∈ (Σ ∪ {⋆})n be a pattern and skk be the secret key
of k generated as keygenIPE(mk, g(k, r)) for some vector r ∈ Fn

p . A calculation
similar to the one we did before gives ⟨f(x), g(k, r)⟩ = ⟨1kx − k, r⟩. This leads
to one the following two cases:

– If k matches x, then 1kx − k = 0, and ⟨f(x), g(k, r)⟩ = 0 for all choices of
r. By correctness of the IPE scheme, with probability 1, decHVE(skk, c) will
return 1.

– If k does not match x, then 1kx− k ̸= 0 and we only have ⟨1kx− k, r⟩ = 0
with probability 1/p from the uniformity of r. As the probability of a false
positive for EIPE is some negligible function µ(λ), the probability of a false
positive for the HVE scheme is less than 1/p+ µ(λ) which is negligible. ⊓⊔

17

4.4 Selective Security

We now make a first assessment of the security of our new conversion. Unlike
the KSW conversion, we need to distinguish the case of selective security from
the case of adaptive security. Indeed, as we shall see, in the selective case, there
is no problem of conversion of key queries from the HVE scheme to the IPE
scheme: as the adversary chooses the challenge message at the beginning of the
security game, the choice of the randomness will be always made after the choice
at these messages and the choice of the query k. As a result, the randomness
is independent of the choices of the HVE adversary and we can still rely on
an information theoretic argument. However for full adaptive security, this will
no longer be the case. In the next section, we will show that we can rely on a
computational argument related to the IPE scheme in order to go through the
proof.

Theorem 3. The conversion in Fig. 4 transforms a selective IND−CPA secure
(n+1)-IPE scheme EIPE into a selective IND−CPA secure n-HVE scheme EHVE.

Remark 4. This theorem could actually be slightly extended in the sense that
the result still holds if the adversary has access to the public key at the beginning
of the security game but is not allowed to make key queries before committing
to the challenge messages (i.e., there is no Query Phase 1).

Proof. We denote by Csel(EIPE) the challenger of the selective IND−CPA security
game for EIPE. Again we build an adversary B that interacts with this challenger,
using an adversary A against the selective security of EHVE.

Setup. The adversary B receives the challenge messages x0,x1 ∈ Σn from A
and then forwards f(x0), f(x1) to Csel(EIPE). Then B forwards the public key
received from Csel(EIPE) to A.

Query Phase 1. On key query k ∈ Fn
p , B chooses r at random in Fn

p and submits
the key query g(k, r) to Csel(EIPE) and forwards the secret key to A.

Challenge. The challenger Csel(EIPE) sends a ciphertext c, encrypting either
f(x0) of f(x1), which is forwarded to A.

Query Phase 2. The adversary B proceeds as in the first query phase.

Guess. Finally, B forwards the guess of A to Csel(EIPE).

By construction, the guess of the adversary A can be used straightforwardly
against the selective IND−CPA security of EIPE if B is a valid adversary. The only
issue we need to consider here is the validity of the key queries. We actually face
a situation rather similar to the one of the proof of Theorem 2. The problematic
case is a query by A for a pattern k such that

∀α ∈ {0, 1},1kx
α − k ̸= 0

18

∃α ∈ {0, 1}, ⟨1kx
α − k, rα⟩ = 0 and ⟨1kx

1−α − k, r1−α⟩ ≠ 0.

This corresponds to a valid query for the HVE security experiment but not from
the IPE security experiment. Fortunately, in the case of selective security, we can
easily rule out this scenario. Indeed, in this case, the randomness r is selected
by B after the choice of xα and k by A. We can then rely on the same argument
as in phase 1 of the proof of Theorem 2 to bound the probability of this event
by 2

p , which concludes the proof. ⊓⊔

5 Adaptive Security

A natural question at this stage is how one can extend the previous result re-
garding our conversion to the case of adaptive security. Clearly, the approach
of the selective security proof above cannot be generalised to this setting as
we strongly relied on the fact that the adversary committed to the challenge
messages before requesting any secret keys. Fortunately, we show in this section
that we can prove the adaptive security of this generic conversion at the cost
of imposing an additional requirement on the IPE scheme. We formalize this
requirement as a property that we call key privacy. This notion is related to
function privacy but implies weaker requirements on the secret key itself. This
allows us to circumvent well-known limitations (see e.g. [BRS13]) of function-
privacy for public key encryption, in particular the reliance on the entropy of
the key space. As a consequence, one can decide once and for all if a given IPE
scheme achieves this property, regardless of the distribution of the secret keys
(and so of the context). We then consider some of the most popular constructions
of IPE schemes and show that some of them achieve this property under very
reasonable assumption (e.g. the Discrete Logarithm (DL) assumption) whereas
some others do not. This highlights the fact that all IPE schemes are not equally
suitable to construct HVE schemes.

5.1 Key privacy

Definition 5 (Key privacy for IPE). An IPE scheme has key privacy if no
probabilistic polynomial time adversary A has a non-negligible success in the
following game, Expsk−priv

A :

Setup: Run (pp, pk,mk)← setup(1λ) and give pp, pk to A.
Query Phase 1: A submits queries k ∈ Fn

p and gets skk ← keygen(mk,k)
Challenge: A submits a vector y ∈ Fn

p . The challenger chooses uniformly

at random u
$←− {v ∈ Vect(y)⊥ : supp(v) ⊂ supp(y)} and gives sku ←

keygen(mk,u) to A.
Query Phase 2: This phase is identical to Query Phase 1.

Guess: A eventually outputs a vector z ∈ Fn
p \Vect(y) such that supp(z) ⊂

supp(y) and wins if ⟨z,u⟩ = 0.

19

Intuitively, this notion states the hardness of finding a non-trivial vector z that
is orthogonal to a vector u, given only sku. Obviously, we cannot reveal u to the
adversary but we allow it to take part in the choice of u by submitting a vector
y such that ⟨y,u⟩ = 0. Very concretely, this models the fact that, in practice,
the adversary may have some information about u since it knows (and may even
choose) the pattern y that sku allows to detect. However, for some schemes, this
should essentially be the only information leaking about u from sku. As we do
not want to reason in terms of entropy, we choose to define a computational goal
(output z ∈ Fn

p \ Vect(y)) which is much more convenient and yet sufficient to
prove the adaptive security of our generic conversion. In particular, this allows
us to evaluate this property for a given scheme independently of any application,
as illustrated below.

5.2 Examples of key private IPE schemes

Before showing how this new security notion can be used to prove adaptive
security of our generic conversion, we show in this subsection that it is naturally
satisfied by some of the most popular IPE schemes, namely those from [KSW08]
and [OT12a]. More generally, the technique we use below to prove this fact tends
to show that IPE schemes where the components of the vector u associated with
sku appear as exponents in the latter key should satisfy this property. Intuitively,
this stems from the fact that the vector z returned by the adversary provides a
non-trivial relation between secret exponents, which can be used to solve a DL
problem.

In the following, we use the same notations as in the original papers to
facilitate verification of our claims without having to recall all the description of
these schemes.

Katz-Sahai-Waters IPE Scheme. Our proof does not require the full knowl-
edge of the IPE scheme of [KSW08] but will only use the fact that a secret key sku
associated with u contains two elements K1,i = gr1,ip gf1ui

q and K2,i = gr2,ip gf2ui
q

where r1,i, r2,i, f1, f2 are random scalars. In our proof, the reduction will insert
the DL challenge gaq in gui

q , for i ∈ {i1, i2}, and generate all the other elements as
usual. As gui

q is only involved in the elements K1,i and K2,i above we just have
to explain how the reduction can proceed to construct them without knowing a.
Actually, we only explain it for K1,i as K2,i has exactly the same structure.

More formally, our reduction is given a DL challenge A = gaq in Gq and
will interact with an adversary A against the key privacy of the IPE scheme to
extract a.

In the security experiment, our reduction generates the secret key as usual
and so is perfectly able to answer any query. The adversary will then eventually
output a challenge y that will be managed as explained below.

But first we need to state some facts about y. The goal of the adversary is to
output z such that (1) supp(z) ⊂ supp(y) and (2) y and z are not colinear. There
are therefore at least two indices 1 < i1 < i2 < n such that yi1zi2 ̸= yi2zi1 , which

20

implies that supp(y) contains at least one element. Actually, the latter set must
contain at least two elements, otherwise z could not satisfy both (1) and (2). If
y has only two non-zero components then a simple computation shows that the
only possibility to meet (1) and (2) is when u = 0, which does not occur with
probability greater than 1

q .
So, any adversary succeeding with non-negligible probability must output a

vector y with at least three non-zero components. Let i3 be the index of one of
them, different from i1 and i2 defined above.

Upon receiving y, our reduction chooses si1 , si2 ∈ Fq and implicitly sets

ui1 =si1 + yi2a

ui2 =si2 − yi1a.

For all i ∈ JnK \ {i1, i2, i3}, the reduction explicitly sets ui
$←− Fq if i ∈ supp(y)

and ui = 0 otherwise. Finally it defines

ui3 = −(yi1si1 + yi2si2 +

n∑
i=1

i ̸=i1,i2,i3

yiui).

Thus, we have ⟨y,u⟩ = 0 and the distribution of u generated this way is exactly
the uniform distribution over {v ∈ Vect(y)⊥ : supp(v) ⊂ supp(y)}.

The reduction can then compute K1,i1 as

K1,i1 = g
ri1,1
p (g

si1
q Ayi2)f1

and proceeds similarly for K1,i2 . All the other elements K1,i can be computed
directly as the reduction knows all the involved exponents.

At some stage, the adversary returns a guess z. If the latter is valid, then we
must have:

n∑
i=1

(yi − zi)ui = 0.

If we group the components in i1 and i2 together, we get

(yi1 − zi1)ui1 + (yi2 − zi2)ui2 = K

where K is a known scalar. As yi1ui1 + yi2ui2 = si1 + si2 , we can actually write
the previous equation as

zi1ui1 + zi2ui2 = K ′

where K ′ = K − (si1 + si2) is still a known scalar. We thus have

zi1(si1 + yi2a) + zi2(si2 − yi1a) = K ′.

which can be written as

zi1yi2a− zi2yi1a = K ′′

21

for a known K ′′. This gives

a(zi1yi2 − zi2yi1) = K ′′.

As the factor (zi1yi2−zi2yi1) is assumed to be different from zero, we can recover
a as K ′′(zi1yi2 − zi2yi1)

−1, which concludes the proof. ⊓⊔

Okamoto-Takashima IPE Scheme. We show that the previous proof adapts
very well to the construction of Section 4 of [OT12a]. Here, we use the additive
notation of this paper. The setup of this scheme chooses a groupG of order p and
a generator G ∈ G, so we use a DL challenge A ∈ G where implicitly A = aG for
some a ∈ Fp and the reduction sets the vector u as in the previous proof with
respect to this challenge. This setup also generates a dual orthonormal basis
among which the vectors b∗

i1
and b∗

i2
should be used to encode the positions i1

and i2 of the vector u. These vectors are set as

b∗
i =

4n+2∑
j=1

ϑi,j(

j−1³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, . . . , 0, G,

4n+2−j³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, . . . , 0) for i = i1, i2

where ϑi,j are chosen by the reduction. The vector sku generated by KeyGen is
a sum of vectors that can all be computed regularly by the reduction except the
two vectors σui1b

∗
i1

and σui2b
∗
i2

where σ is chosen regularly by the reduction.
Instead, the reduction computes these two vectors as

σ[si1b
∗
i1 + yi2

4n+2∑
j=1

ϑi1,j(

j−1³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, . . . , 0, A,

4n+2−j³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, . . . , 0)]

and σ[si2b
∗
i2 + yi1

4n+2∑
j=1

ϑi2,j(

j−1³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, . . . , 0, A,

4n+2−j³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0, . . . , 0)]

and sums them together with the other ones to generate the secret key. The rest
of the proof is identical to the previous one. ⊓⊔

5.3 Examples of non key private IPE schemes

Here we show that some techniques used to build IPE with constant secret
keys size in [OT11,CGW18] do not allow key privacy, and in fact do not allow
adaptive security using our conversion. In this case, one must use the KSW
conversion. More specifically, this incompatibility stems from the fact that these
constructions necessitate sharing the coordinates of the key vector inside its
secret key as scalars.

We first show that such a scheme is not key private. In the key privacy game
with n ≥ 3, this allows for a winning strategy which consists in submitting y =
(1, . . . , 1), learning u from sku and solving the linear equation u1z1, . . . , unzn =

22

0 whose space of solutions has at least dimension 3 − 1 = 2 and allows to
successfully return z. ⊓⊔

We now show that using our conversion on such IPE schemes can actually not
give adaptively secure HVE schemes. Indeed, an adversary against the adaptive
security game of the resulting HVE has the following strategy. It first issues
a query with key k = (1, . . . , 1) and receives a secret key skk which is also a
secret key for the vector g(k, r) = (r, ⟨k, r⟩) in the underlying IPE scheme and
contains the coordinates of this vector as scalars. With overwhelming probability,
r1 and r2 are distinct from each other and from 0. Thus an adversary can build
the n long vectors x1 = (r2r1 ,

r1
r2
, 1, . . . , 1) and x0 = (2, . . . , 2). As k does not

match either of these vectors, our adversary can submit them as challenge vectors
and receives c ← encIPE(pk, f(x

β)) for some unkown β ← {0, 1}. However we
have ⟨f(x1), g(k, r)⟩ = 0 ̸= ⟨f(x0), g(k, r)⟩ with overwhelming probability and
running decHVE(skk, c) which is the same as decIPE(skk, c) returns β. ⊓⊔

5.4 Security Result

We now have all we need to state the adaptive security of a HVE scheme resulting
from our conversion applied to an adaptive IPE scheme.

Theorem 4. The conversion in Fig. 4 transforms an adaptive IND−CPA secure
(n+1)-IPE scheme EIPE achieving key privacy into an adaptive IND−CPA secure
n-HVE scheme EHVE.

Proof. We use the same reduction as in the proof of selective security of Theo-
rem 3, using an adversary A against the HVE scheme to attack the security of
the IPE scheme. The core issue is still the discrepancy between the key queries
restrictions of these two primitives. Concretely, compared to the selective proof,
a problem occurs in the reduction if A submits challenge messages x0,x1 ∈ Σ
such that there exists a query for a pattern k in Query Phase 1 satisfying the
two following equations:

∀α ∈ {0, 1},1kx
α − k ̸= 0 (4)

∃α ∈ {0, 1}, ⟨1kx
α − k, rα⟩ = 0 and ⟨1kx

1−α − k, r1−α⟩ ≠ 0 (5)

For Query Phase 2, as the challenge messages have been committed, the
arguments of the selective proof hold again and the reduction can always use
C(EIPE) to obtain the appropriate secret keys except with negligible probability.

Our strategy will then be to consider two types of adversary A. Type 1
adversaries are those that do not output challenge messages satisfying conditions
(4) and (5) for a queried k in phase 1. The selective proof of Theorem 3 readily
adapts in this case. Conversely, Type 2 adversaries output challenge messages
satisfying those conditions and we show in the following that they can be used
to attack the key privacy notion of the IPE scheme contradicting the hypothesis
that the IPE scheme has key privacy.

23

We denote by q a bound on the number of key queries that the adversary A
may submit before the challenge phase. Let Csk(EIPE) be the challenger of the
key privacy game of EIPE. We now explicit a reduction that uses A to solve the
key privacy experiment.

Setup. The reduction simply forwards the public parameters and public key from
Csk(EIPE) to the Type 2 adversary A of the EHVE security game. The reduction
chooses uniformly at random an integer m ∈ JqK.

Query phases 1 and 2. The reduction handles any key query k other than the

mth one by choosing r
$←− Fn

p and submitting g(k, r) to Csk(EIPE) and forwarding
the received secret key.

For the mth key query k ∈ Fn
p , the reduction chooses the vector y = (k,−1)

as the challenge vector for Csk(EIPE) and forwards the received secret key sk
for some implicit vector u ∈ Fn+1

p to the adversary. We show that this secret

key is well distributed as there exists a well distributed vector r(u) such that
u = g(k, r(u)).

By definition, u is a vector from Vect(y)⊥ with supp(u) ⊂ supp(y). Let us

consider a vector r(u) ∈ Fn
p such that r

(u)
i = ui for all i ∈ supp(k), and random

values elsewhere. As ⟨y,u⟩ = 0 and yn+1 = −1, this means that un+1 = ⟨k, r(u)⟩
and we have indeed u = g(k, r(u)). Finally, the distribution of u as defined in
the key privacy experiment implies that r(u) (and so the associate secret key) is
well distributed.

Challenge. When the adversary submits the challenge messages x0,x1 ∈ Σn,
the reduction checks if the mth key query satisfies (4) and (5) for an α ∈ {0, 1}.
If this is the case, the reduction returns z = (1kx

α,−1) otherwise, it returns ⊥.
For a Type 2 adversary, this vector z is indeed a valid answer in the key

privacy security game because:

– supp(z) ⊂ supp(y) by construction.
– zn+1 = yn+1 = −1 but z ̸= y because of (4), which means that these two

vectors are not colinear.
– ⟨z,u⟩ = ⟨f(xα), g(k, ru)⟩ = 0 because of (5).

Therefore, any type 2 adversary against the adaptive IND− CPA security of
the HVE scheme can be converted into an adversary against the key privacy
of the IPE scheme provided that the guess on m is valid, which occurs with
probability at least 1

q . ⊓⊔

6 Consequences

In this section we draw the practical consequences of our generic conversions
which allows to leverage the remarkable results obtained for Inner Product En-
cryption. The most significant results regarding complexity and security are pre-
sented in Fig. 5. Among other things, the latter shows that our conversions lead

24

to the first SEPM schemes with adaptive security under standard assumptions,
without significant performance loss compared to the underlying IPE scheme.
In particular, starting from the IPE scheme of [CGW18, Subsection 3.4], we
obtain, under the DLIN assumption, an adaptively secure SEPM scheme whose
test complexity does not depend on the length of the fragment or the pattern.

As a first example illustrating our conversion, we choose to start from [DIP13]
which is, to our knowledge, the only adaptively secure HVE scheme in the lit-
erature. At first glance, it seems to yield the SEPM scheme with the lowest
number of elements in the ciphertext but we stress that one cannot directly
compare this scheme with others as it is defined over bilinear groups of compos-
ite orders which are larger and lead to slow implementations compared to prime
order bilinear groups. Conversion from one setting to another is possible (see
e.g. [Fre10,Lew12]) but has a great impact on the number of group elements.

We showed in Subsection 5.2 that the IPE scheme from [OT12a] satisfies
our key privacy property and can therefore be converted using either the KSW
conversion (Fig. 2) or our shorter conversion (Fig. 4). We highlight the differences
between the schemes resulting from these conversions in the next two columns of
Fig. 5 and show that our conversion gives the adaptively secure SEPM scheme
with the most succinct ciphertext in prime order groups. Moreover, it shows
that our new IPE to HVE conversion decreases complexity by a factor up to 4
compared to the KSW conversion.

Our last example uses the IPE scheme from [CGW18]. This yields the adap-
tively secure SEPM scheme with the most compact public key. Moreover, de-
cryption time in one position is constant.

For completeness, Fig. 5 also recalls the properties of the three most re-
cent SEPM schemes. We stress that the comparison is not very meaningful as
those schemes only achieved selective security under non-standard assumptions,
something that we wanted to avoid with our conversions.

Notations. In Fig. 5, we assume fragments of size 2d and plaintexts containing
elements from an alphabet Σ of size |Σ|. To retain legibility of the table, we only
keep the terms of highest order in d and thus make some minor approximations
in our complexity evaluation. Our first two rows indicate the generic transforma-
tions we apply. PK indicates the number of group elements in the public key to
support fragments of size 2d. CT is the number of group elements to encrypt an
element from Σ. SKk is the number of group elements in the secret key allowing
to search a pattern k at a given position. TEST refers to the number of pairings
necessary to test the presence of a pattern k at a given position. We refer to
the original papers for a definition of the computational assumptions underlying
their security.

25

Existing SEPM schemes New SEPM schemes built by conversions

[BCC20, 3] [BCS21, 4.3] [BCS21, 4.4] [DIP13] [OT12a, 4.2] [OT12a, 4.2] [CGW18, 3.4]

IPE→HVE Fig. 2 Fig. 4 Fig. 2

HVE→SEPM Fig. 1 Fig. 1 Fig. 1 Fig. 1

PK 2d · |Σ| 4d 6d 2d · |Σ| 64d2 16d2 40d

CT 4 2 4 2 16 8 20

SKk 2 2 3 len(k) 16d 8d 8

TEST 2 2 3 len(k) 16d 8d 8

Group Order Prime Prime Prime Composite Prime Prime Prime

Security Selective Selective Selective Adaptive Adaptive Adaptive Adaptive

Assumption i-GDH i-GDH EXDH CSD, CDDH DLIN DLIN DLIN

Fig. 5. Comparison table of SEPM schemes

References

ABC+08. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi
Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Paillier, and
Haixia Shi. Searchable encryption revisited: Consistency properties, rela-
tion to anonymous IBE, and extensions. Journal of Cryptology, 21(3):350–
391, July 2008.

AMVY21. Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota
Yamada. Functional encryption for turing machines with dynamic
bounded collusion from LWE. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 239–269, Virtual
Event, August 2021. Springer, Heidelberg.

BCC20. Anis Bkakria, Nora Cuppens, and Frédéric Cuppens. Privacy-preserving
pattern matching on encrypted data. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 191–220.
Springer, Heidelberg, December 2020.

BCS21. Elie Bouscatié, Guilhem Castagnos, and Olivier Sanders. Public key en-
cryption with flexible pattern matching. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages
342–370. Springer, Heidelberg, December 2021.

BDOP04. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-
siano. Public key encryption with keyword search. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
506–522. Springer, Heidelberg, May 2004.

BRS13. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private
identity-based encryption: Hiding the function in functional encryption. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 461–478. Springer, Heidelberg, August 2013.

26

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Defi-
nitions and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of
LNCS, pages 253–273. Springer, Heidelberg, March 2011.

BW07. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 535–554. Springer, Heidelberg, February 2007.

CGW18. Jie Chen, Junqing Gong, and Hoeteck Wee. Improved inner-product en-
cryption with adaptive security and full attribute-hiding. In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273
of LNCS, pages 673–702. Springer, Heidelberg, December 2018.

CS15. Melissa Chase and Emily Shen. Substring-searchable symmetric encryption.
PoPETs, 2015(2):263–281, April 2015.

DFOS18. Nicolas Desmoulins, Pierre-Alain Fouque, Cristina Onete, and Olivier
Sanders. Pattern matching on encrypted streams. In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272
of LNCS, pages 121–148. Springer, Heidelberg, December 2018.

DIP13. Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully secure
hidden vector encryption. In Michel Abdalla and Tanja Lange, editors,
PAIRING 2012, volume 7708 of LNCS, pages 102–121. Springer, Heidel-
berg, May 2013.

DPP18. Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papaman-
thou. Searchable encryption with optimal locality: Achieving sublogarith-
mic read efficiency. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 371–406. Springer,
Heidelberg, August 2018.

Fre10. David Mandell Freeman. Converting pairing-based cryptosystems from
composite-order groups to prime-order groups. In Henri Gilbert, editor,
EUROCRYPT 2010, volume 6110 of LNCS, pages 44–61. Springer, Heidel-
berg, May / June 2010.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, page 60–73,
New York, NY, USA, 2021. Association for Computing Machinery.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption sup-
porting disjunctions, polynomial equations, and inner products. In Nigel P.
Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162.
Springer, Heidelberg, April 2008.

Lew12. Allison B. Lewko. Tools for simulating features of composite order bilin-
ear groups in the prime order setting. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 318–
335. Springer, Heidelberg, April 2012.

LL18. Iraklis Leontiadis and Ming Li. Storage efficient substring searchable sym-
metric encryption. In Proceedings of the 6th International Workshop on
Security in Cloud Computing, SCC ’18, page 3–13. Association for Com-
puting Machinery, 2018.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional en-
cryption with general relations from the decisional linear assumption. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 191–208.
Springer, Heidelberg, August 2010.

27

OT11. Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts
or short secret-keys for adaptively secure general inner-product encryption.
In Dongdai Lin, Gene Tsudik, and Xiaoyun Wang, editors, CANS 11, vol-
ume 7092 of LNCS, pages 138–159. Springer, Heidelberg, December 2011.

OT12a. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding
(hierarchical) inner product encryption. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–
608. Springer, Heidelberg, April 2012.

OT12b. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded
inner-product and attribute-based encryption. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 349–366.
Springer, Heidelberg, December 2012.

Ram16. Somindu C. Ramanna. More efficient constructions for inner-product en-
cryption. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16, volume 9696 of LNCS, pages 231–248. Springer, Heidel-
berg, June 2016.

SLPR15. Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. In Steve Uhlig,
Olaf Maennel, Brad Karp, and Jitendra Padhye, editors, SIGCOMM 2015,
pages 213–226, 2015.

28

	Pattern Matching in Encrypted Stream from Inner Product Encryption
	Introduction
	Related Works
	Our Contributions

	Definitions
	Notations and vocabulary.
	Functional Encryption
	Syntax.
	Correctness.
	Security.

	Some classes of Functional Encryption
	Hidden Vector Encryption.
	Inner Product Encryption.
	Stream Encryption supporting Pattern Matching.

	From HVE to SEPM through fragmentation
	Fragmentation
	Conversion
	Security

	Hidden Vector Encryption from Inner Product Encryption
	Notations.
	KSW Conversion
	Security Analysis of KSW Conversion
	Our conversion
	Selective Security

	Adaptive Security
	Key privacy
	Examples of key private IPE schemes
	Katz-Sahai-Waters IPE Scheme.
	Okamoto-Takashima IPE Scheme.

	Examples of non key private IPE schemes
	Security Result

	Consequences
	Notations.

