
Faulty isogenies: a new kind of leakage

Gora Adj1, Jesús-Javier Chi-Domínguez2, Víctor Mateu2, and Francisco
Rodríguez-Henríquez2

1 Departament de Matemàtica, Universitat de Lleida, Spain
gora.adj@gmail.com

2 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
{jesus.dominguez,victor.mateu,francisco.rodriguez}@tii.ae

Abstract. In SIDH and SIKE protocols, public keys are defined over
quadratic extensions of prime fields. We present in this work a projective
invariant property characterizing affine Montgomery curves defined over
prime fields. We then force a secret 3-isogeny chain to repeatedly pass
through a curve defined over a prime field in order to exploit the new
property and inject zeros in the A-coefficient of an intermediate curve
to successfully recover the isogeny chain one step at a time. Our results
introduce a new kind of fault attacks applicable to SIDH and SIKE.

Keywords: isogeny-based cryptography · fault injection attack

1 Introduction

In a seminar held in 1997, Couveignes proposed an isogeny-based scheme for
mimicking the Diffie-Hellman key exchange protocol [22]. Couveignes notes were
later posted in [7]. The first published isogeny-based cryptographic primitive
was by Charles, Lauter and Goren in [3], where they proposed a hash func-
tion whose collision resistance was extracted from the problem of path-finding
in supersingular isogeny graphs. As early as 2006, Rostovtsev and Stolbunov
introduced in [21] isogeny-based cryptographic schemes (this was followed by
Stolbunov in [23]) as potential candidates for post-quantum cryptography. In
his 2010 paper [23], Stolbunov proposed a Diffie-Hellman-like protocol whose se-
curity guarantees were based on the difficulty of finding smooth-degree isogenies
between ordinary elliptic curves.

Jao and De Feo [15] proposed in late 2011 a Diffie-Hellman key-exchange
scheme, which has as underlying hard problem the difficulty of constructing
isogenies between supersingular elliptic curves defined over quadratic extension
prime field Fp2 . Within the context of the NIST standardization process [17], it
was proposed in [1] an isogeny-based key exchange protocol named SIKE, which
can be seen as an SIDH variant equipped with a key encapsulation mechanism.
SIKE was selected as one of the five third-round alternate KEM candidates of
the NIST contest.

As we will see in Section 2.3, SIDH and SIKE public keys include not only the
image curve of a secret isogeny, but also the auxiliary images of the other party’s



2 G. Adj et al.

two torsion basis points. It has been long suspected that this extra information
can help SIKE cryptanalysis, but until now no efficient passive attack has been
found for SIKE, in spite of several potentially promising results [18,19]. 3

On the contrary, in 2016, Galbraith, Petit, Shani and Ti [11] presented an
active attack against SIDH, which exploits the additional torsion-point infor-
mation included in Alice’s public key. The attack in [11] consists of sending to
Bob a tuple of manipulated torsion points that appears to be Alice’s legitimate
public key 4. Then, the attacker observes if her public key manipulation pro-
duces (or not) errors in the protocol and by doing so, starting from the least
significant bit, she can guess one bit at a time. This allows recovery of the secret
key after a linear number of queries with respect to the size of Bob’s exponent
e3 (cf. Section 2).

As a countermeasure to their attack, the authors of [11] recommended ap-
plying a variant of the Fujisaki-Okamoto transform [10]. Obviously, this miti-
gation entailed a significant performance cost and SIKE was submitted to the
NIST post-quantum cryptography standardization program as the combination
of SIDH along with the Hofheinz–Hövelmanns–Kiltz transform [14] (a variant
of [10]), for enabling a key encapsulation mechanism.

In 2017, Ti [25] proposed a fault attack that allows to recover Alice’s secret
isogeny φA exploiting the fact that if the image of a random point S ∈ E[p+ 1]
under φA is revealed, then with high probability, the attack is successful [24,
Remark 3]. To accomplish this, the attacker must succeed injecting a fault before
Alice starts computing her public key. Recall that in a normal execution of
Alice’s key generation procedure, she must compute the images of fixed basis
points of degree three under her secret isogeny φA. The attacker’s goal is to try
to perturb any of these points by injecting a fault in a timely manner. Recently,
the authors of [24] reported a real implementation of Ti’s attack that obtained
a small effectiveness (mainly due to the difficulty of producing electromagnetic
injections at the right moment).

Since Ti’s attack only deals with injecting a fault in the key generation pro-
cedure, it works equally well for SIDH and SIKE. However, Ti’s attack always
produces an error in the SIDH/SIKE shared secret computation. Hence, the re-
covered secret key can only be useful if the key generation procedure commits
the sin of using the same private key, something that should not happen in any
proper implementation of SIDH or SIKE.5 Further, there exist a simple and in-
expensive countermeasure to prevent Ti’s attack, which is checking the order or
correctness of the auxiliary points before to their publication [25,24,4].

3 See [4, §7] for a compelling argument about why is unlikely that these torsion point
attacks will ever dent the security provided by SIDH and SIKE.

4 There is no known efficient approach for validating public keys in SIDH or SIKE. In
fact, key validation is so problematic in SIDH or SIKE that if an effective algorithm
for validating public keys would ever be found, then such procedure could also be
used to efficiently recover secret keys from public keys [22,12]

5 In [24] the authors suggest multipartite SIDH key exchange as a more plausible
scenario for Ti’s attack.



Faulty isogenies: a new kind of leakage 3

Generic fault injection and side-channel attacks against the Fujisaki-Okamoto-
based key encapsulation mechanism were presented in [29,26]. In [26, §4.3], the
authors applied the attack of [11] to SIKE. To do so, the authors implemented a
plaintext-checking oracle by means of a side-channel exploitation. The attacker
compares the side-channel leakage output by the SIKE decapsulation block when
processing a valid ciphertext with a modified one. The combination of the active
attack of [11] with the plaintext-checking oracle, allows to have a full SIKE key
recovery by invoking less than 500 oracle accesses (see [26, Table 2]).

In [2], Campos, Krämer and Müller presented a safe-error attack against
SIKE and CSIDH protocols. They launched a real attack against the SIKEp434
instantiation of SIKE implemented on a Cortex-m4 processor. The attack achieved
almost 100% of full key recovery at the price of five fault injections per single
bit for a total of some 1, 090 injections. We stress that the attack in [2] does not
exploit any potential vulnerability on the isogeny computations of SIKE.

Recently, De Feo, El Mrabet, Genêt Kaluđerović, Guertechin, Pontié, and
Tasso showed SIKE is vulnerable to zero-value attack [9].

Our Contributions.We present a new fault-injection adaptive attack on SIDH,
which could apply to SIKE under the same plaintext-checking oracle as in [26].
Our analysis centers on Bob’s 3-isogeny chain computation and relies on the
following:

– A new Fp-invariant property to characterize Montgomery projective curves
defined over Fp.

– Using this Fp-invariant, force Bob’s 3-isogeny chain computation to pass
through an Fp-curve.

With these results, our fault-injection adaptive attack flow can be summa-
rized as follows:

1. Send an altered version of Alice’s public key to Bob. By using an
appropriate choice of points for Alice’s public key, the attacker can force
Bob to return to the curve E : y2 = x3 + 6x2 + x when processing the ith
3-isogeny.

2. Inject a fault in the (i+1)th 3-isogeny output, such that the imag-
inary part of the Montgomery A-coefficient is zeroed. This action
allows us to guess the (i+ 1)th trit of Bob’s private key.

As a proof of concept, we additionally provide a C-code implementation that
simulates the injection and verifies the correctness of the analysis. The code is
freely available at https://github.com/FaultyIsogenies/faulty-isogeny-code .

The reminder of this paper is organized as follows. Section 2 presents some
basic definitions of elliptic curves and their isogenies. In Section 3, we give a
detailed description of the new fault injection attack. In particular, Section 3.1
and Section 3.2 detail the Fp-invariant property and the core of the attack,
respectively. Section 4 illustrates an actual proof-of-concept implementation of
the attack. We also discuss in Section 4 potential countermeasures to thwart or
mitigate the attack. Finally, we draw our concluding remarks in Section 5.

https://github.com/FaultyIsogenies/faulty-isogeny-code


4 G. Adj et al.

2 Preliminaries

In this section we present some basic mathematical definitions for elliptic curves
and isogenies. These definitions are extended and discussed in more detail in [28].
Furthermore, we briefly describe the SIDH key agreement protocol (see [15,8]).

2.1 Supersingular elliptic curves and their isogenies

Let p > 3 be a prime number, Fp the finite field with p elements, and Fp2 its
quadratic extension. In this paper, we consider only elliptic curves E defined over
Fp2 that are supersingular of order #E(Fp2) = (p+ 1)

2 and in Montgomery form
given by

E : By2 = x3 +Ax2 + x, (1)

for some A,B ∈ Fp2 . If A,B ∈ Fp, we say that E is defined over Fp.
The order d of a point P ∈ E(Fp2) is the smallest positive integer such that

[d]P = P + · · ·+ P︸ ︷︷ ︸
d times

= O.

The d-torsion subgroup, denoted by E[d], is the set of points {P ∈ E(Fp2) |
[d]P = O}. If gcd(p, d) = 1, then E[d], as a subgroup of E, is isomorphic to
Z/nZ × Z/nZ. The j-invariant of an elliptic curve E in Montgomery form is
defined as

j(E) =
256(A2 − 2)

3

A2 − 4
. (2)

Two elliptic curves have the same j-invariant if and only if they are isomorphic
over some extension field of Fp. An isogeny φ : E → E′ over Fp2 is a non-
zero rational map satisfying φ(O) = O. Every isogeny is a surjective group
homomorphism with finite kernel. Two elliptic curves E and E′ are said to be
isogenous over Fp2 if there exists an isogeny φ : E → E′ defined over Fp2 , and
this happens if and only if #E(Fp2) = #E′(Fp2).

Let φ be an isogeny defined over Fp2 , then it can be represented as

φ = (r1(X), r2(X) · Y ),

where r1, r2 ∈ Fp2(X), and is said to be separable if r′1(X) 6= 0, and insep-
arable otherwise. Now, let r1(X) = p1(X)/q1(X), where p1, q1 ∈ K[X] with
gcd(p1, q1) = 1. Then the degree of φ is max(deg p1,deg q1), and φ is separable
means that #kerφ = deg φ. All the isogenies considered in this work will be
separable. For brevity, we say d-isogeny for a degree-d isogeny.

The dual of a d-isogeny φ : E → E′ is the unique d-isogeny φ̂ : E′ → E such
that φ̂ ◦ φ = [d] and φ ◦ φ̂ = [d]. If φ has cyclic kernel 〈P 〉 and E[d] = 〈P,Q〉,
then 〈φ(Q)〉 is the kernel of φ̂.

Isogenies of small prime degree d are computed in time O(d) by means of
Vélu’s formulas. For a degree de, one splits a de-isogeny as the composition of e
small d-isogenies.



Faulty isogenies: a new kind of leakage 5

2.2 Montgomery x-only point arithmetic

We introduce here the notation x(P ) to refer to the x coordinate of an elliptic
curve point P . The Montgomery curve model is especially amenable for perform-
ing x-only differential point addition as detailed in [6].

Following the SIDH and SIKE notation, we denote:

– x([2]P )← xdbl(x(P ), A), and x([2e]P )← xdble(x(P ), A, e)
– x([3]P )← xtpl(x(P ), A), and x([3e]P )← xtple(x(P ), A, e)

where A is the constant coefficient of a Montgomery curve E. Given two points
P,Q on E and a positive integer k, the x-coordinate x(P + [k]Q) is efficiently
computed by means of an (log2 k)-step Montgomery three point ladder procedure
at a per-step cost of one xdbl, and one differential point addition.

Computing 2-, 3-, and 4-isogenies can be done efficiently by applying Vélu’s
formulas [27], but there is a more efficient way. Indeed, the idea of x-only point
addition can be extended to x-only isogenies, which are computed from the x-
coordinates of the kernel points [5,20]. Let K be a point of order d ∈ {2, 3, 4},
and let φ : E → E′ be the isogeny with kernel 〈K〉. There are two isogeny built-in
functions:

– Isogeny construction: A′, coeff← xisog(x(K))
– Isogeny evaluation: x(φ(Q))← xeval(x(Q), coeff).

The xisog function computes the A-coefficient of the codomain curve E′, to-
gether with some data coeff that is needed in the xeval function and related to
the kernel points. In xeval, one pushes the point Q through the isogeny.

From now on, when we take points as inputs and outputs of xisog and xeval
in order to alleviate the notation, it should be understood the x-coordinate of
these points. As well, for a curve point P , writing P ∈ Fp means here x(P ) ∈ Fp.
For d-isogenies, we will have xisogd(), xevald().

2.3 The SIDH protocol at a glance

SIDH is a key agreement scheme based on computations of isogenies between
supersingular montgomery curves. The protocol consists of 2 algorithms: keygen
and derive. It also provides the setup information required by the two parties,
Alice and Bob, to run the algorithms:

– A prime p = 2e23e3 − 1 and Fp2 = Fp[i]/(i2 + 1).
– The starting curve E/Fp2 : y2 = x3+6x2+x with #E(Fp2) = (2e23e3)2 and
j-invariant j(E) = 287496.

– The points PA, QA, DA = PA −QA of order 2e2 .
– The points PB , QB , DB = PB −QB of order 3e3 .

The first algorithm keygen allows both Alice and Bob to generate their re-
spective public and private keys. Alice:

1. Randomly selects her private key sk2 from J1 . . 2e2−1 − 1K.



6 G. Adj et al.

2. Computes RA = PA + [sk2]QA.
3. Finds the 2e2 -isogeny φA generated by RA.
4. Pushes PB , QB , and DB through the isogeny φA to get her public key

pk2 = (φA(PB), φA(QB), φA(DB)).

Likewise, Bob:

1. Randomly selects his private key sk3 from J1 . . 3e3−1 − 1K.
2. Computes RB = PB + [sk3]QB .
3. Finds the 3e3 -isogeny φB generated by RB .
4. Pushes PA, QA, and DA through the isogeny φB to get his public key pk3 =

(φB(PA), φB(QA), φB(DA)).

The second algorithm derive receives, as input, a public key and a pri-
vate key, and computes, as output, the shared j-invariant. Alice would run
derive(pk3, sk2) which would perform the following operations:

1. Compute φB(RA) as P ′A + [sk2]Q′A.
2. Find 2e2-isogeny ψA generated by φB(RA).
3. Obtain the codomain curve EAB from ψA.
4. Compute the j-invariant of EAB .

Similarly, Bob would run derive(pk2, sk3) to obtain the same j-invariant. In
this case, the algorithm would:

1. Compute φA(RB) as P ′B + [sk3]Q′B .
2. Find 3e3-isogeny ψB generated by φA(RB).
3. Obtain the codomain curve EBA from ψB .
4. Compute the j-invariant of EBA.

Alice and Bob have now created a shared secret by computing the j-invariant
of their respective isomorphic curves EAB and EBA.

3 New leakage on Fp-isogenies

Most of the known active attacks on SIDH and SIKE focus on the public ellip-
tic curve points. For example: following the same notation as Section 2.3, Ti’s
attack [25] is centered on the output points φ(P ′), φ(Q′), and φ(D′) of keygen,
where it changes the point φ(D′) by a random point φ(T ) on the curve E′.

In contrast, our attack to SIDH injects faults on the curve coefficients by
building public trapdoor instances. In this section we show how injecting zeros
on the A-coefficient of Montgomery curves allows deciding whether A belongs
to Fp or not. Besides, that, we show how to build inputs that allow us to trigger
these fault injections in order to fully recover Bob’s private key.



Faulty isogenies: a new kind of leakage 7

3.1 An Fp-invariant on projective representations

For efficiency reasons, SIDH performs 3-isogenies using a projectivized coefficient
A ∈ Fp2 that can be described as, (α : β) = (Ã+2C : Ã−2C) such that, A = Ã/C

for some Ã, C ∈ Fp2 . This representation allows the computations to minimize
the number of divisions. Let us write α = a+ ib and β = c+ id with i2 = −1 and
a, b, c, d ∈ Fp. We want to focus on determining when does the quotient Ã/C
belong to Fp.

If we extend the equations we have

A =
Ã

C
=

2(α+ β)

α− β
=

2(a+ c) + 2(b+ d)i

(a− c) + (b− d)i

=

(
2(a+ c) + 2(b+ d)i

)(
(a− c)− (b− d)i

)
(a− c)2 + (b− d)2

=

(
2(a2 − c2) + 2(b2 − d2)

)
+
(
2(b+ d)(a− c)− 2(a+ c)(b− d)

)
i

(a− c)2 + (b− d)2

=

(
2(a2 + b2)− 2(c2 + d2)

)
+ 4
(
ad− bc

)
i

(a− c)2 + (b− d)2

(3)

From Equation 3 we have that A belongs to Fp if and only if 4
(
ad− bc

)
= 0

A trivial way to have A in Fp would be if b = d = 0. In that case we would
obtain the projective A-coefficient (a : c). The following lemma ensures that we
can always take b = d = 0.

Lemma 1. For any Montgomery curve E with affine A-coefficient in Fp, if
(a + ib : c + id), for some a, b, d, c ∈ Fp, is a projective curve coefficient of E,
then also is (a : c).

Proof. From Equation 3 we have the formula to compute the affine coefficient A
from the projective coefficient (a : c) is:

A =
Ã

C
=

2a2 − 2c2

(a− c)2
.

The same equation applied to the affine coefficient A′ from the projective coef-
ficient (a+ ib : c+ id) results in:

A′ =
Ã′

C ′
=

2(a2 + b2)− 2(c2 + d2)

(a− c)2 + (b− d)2
.

Hence



8 G. Adj et al.

A = A′ ⇐⇒ 2a2 − 2c2

(a− c)2
=

2(a2 + b2)− 2(c2 + d2)

(a− c)2 + (b− d)2

⇐⇒
(
2a2 − 2c2

)(
(a− c)2 + (b− d)2

)
=
(
2(a2 + b2)− 2(c2 + d2)

)
(a− c)2

⇐⇒
(
2a2 − 2c2

)
(b− d)2 =

(
2b2 − 2d2

)
(a− c)2

⇐⇒ 2(a− c)(a+ c)(b− d)2 = 2(b− d)(b+ d)(a− c)2

⇐⇒ (a+ c)(b− d) = (b+ d)(a− c)
⇐⇒ bc = ad.

ut

Remark 1. Notice, the Fp-invariant given by Lemma 1 easily extends to projec-
tive points (X : Z) such thatX,Z ∈ Fp2 and x(P ) = X/Z for some point P on E.
To be more precise, any projective point (x0 : z0) describes the same affine point
in Fp as another projective point (x0 + ix1 : z0 + iz1) for all x0, x1, z0, z1 ∈ Fp if
and only if x0z1 = z0x1.

3.2 Faulting 3-isogenies

At the beginning of a SIDH key agreement phase, Bob receives from Alice her
public key pk2 = {φA(PB), φA(QB), φA(PB−QB)}. A malicious Alice may send
to Bob another set of image points that may help her to [partially] guess Bob’s
secret key sk3. Another possibility is that an active attacker Eve launches a
man-in-the-middle attack by intercepting Alice image points and relaying to
Bob a different set of points of her choice. Either way, according to the SIDH
specifications, Bob has little defense to distinguish legitimate image points from
[carefully chosen] fake ones 4.

Furthermore, our security model assumes that Eve has the ability of injecting
faults during the execution of 1. Let us assume that Bob is executing the i + 1
iteration of 1, and that he is in the process of computing the degree-3 isogeny
φi : Ei → Ei+1. Then, by carefully timing her attack, Eve can inject zeroes
into the registers b 7→ 0 and d 7→ 0 of Ai+1 in the i-th iteration of 1. By
zeroing the imaginary part of the coefficient Ai+1, Eve can infer if it belongs
to Fp or to Fp2 \ Fp. In fact, the series of point triplings performed in line 6
could produce degenerated outputs, and from these degenerated outputs arise
non-supersingular curves, which are easy to detect. If the supersingularity is
preserved, then the attacker can infer that the injection affected one A-coefficient
in Fp, otherwise, Ai+1 cannot possibly live in Fp as proven in Lemma 1.

In the following lines, we discuss in detail how to take advantage of this
simple but powerful observation given the public information from the NIST
candidate SIKE.

The current public SIKE parameters corresponding to the third round of
the NIST standardization process have A = 6 and B = 1, implying that the



Faulty isogenies: a new kind of leakage 9

Algorithm 1 Strategy evaluation for computing 3e3 -isogenies with cyclic kernel
generated by a order-3e3 point R (for more details see Algorithms 19-20 of SIKE
specifications [1])
Inputs: Point R ∈ E of order-3e3 . The A-coefficient of E, and a strategy S consisting

of e3 − 1 positive integers
Output: Codomain curve E/〈R〉 of the 3e3 -isogeny with kernel 〈R〉
1: K ← []
2: k ← 0
3: for i = 0 to e3 − 2 do
4: while R is not an order-3 point do
5: K.push(R)
6: R← xtple(R,A, Sk)
7: k ← k + 1
8: end while
9: A, coeff← xisog3(R)
10: for j = 0 to k do
11: Kj ← xeval3(Kj , coeff)
12: end for
13: R← K.pop()
14: end for
15: A, coeff← xisog3(R)
16: return A

Montgomery coefficient of the initial curve E is purely defined over Fp. In ad-
dition, the public order-3e3 points P and Q have x-coordinates over Fp, but
x(D) = x(P −Q) lives in Fp2 \ Fp (see SIDH specifications from [1]).

Let Bob’s private key sk3 be represented in radix three as,

sk3 =

e3∑
i=0

si3
i.

To recover s0, we focus on the four order-3 points on E : y2 = x3+6x2+x, which
can be generated by linear combinations of P3 = [3e3−1]P and Q3 = [3e3−1]Q.
In other words, any order-3 point is either

P3, Q3, P3 +Q3, or P3 −Q3.

By construction, P3 and Q3 lie on Fp, while (P3 + Q3) and (P3 − Q3) do not.
Given that the secret point of SIDH and SIKE has the form P+[sk3]Q, it implies
that the first 3-isogeny φ1 : E → E1 has as kernel generator either P3, (P3+Q3)
or (P3−Q3). Since the coefficient of the curve E0 lies in Fp, then the coefficient
of E1 will also lie in Fp if and only if φ1 has an order-3 point generator K such
that x(K) ∈ Fp.

In Table 1 we show how given a successful fault in the first iteration of 1
after line 9, an attacker can obtain the value s0 by just knowing the information
about which points are in Fp and which ones are not.



10 G. Adj et al.

As a way of illustration, since P3, Q3 ∈ Fp and (P3+Q3), (P3−Q3) ∈ Fp2 \Fp,
we have that P3 is the one and only kernel living in Fp. So, if the injected fault
produces no error it immediately follows that s0 = 0. Otherwise, if the fault
produces an error, then it is still unclear whether the secret value of s0 is one
or two. In this case, by repeating this attack but this time sending to Bob the
public key

pk′2 = (P +Q,Q,P ),

the attacker can find out the value of s0 as follows. Notice that when Bob executes
once again 1, depending on the value of s0, it will produce as kernel of φ1 either
P + [2]Q = P − Q or P + [3]Q = P . The former point belongs to Fp2 \ Fp,
whereas the latter point lies in Fp. Hence, if the injected fault produces no error,
it immediately follows that s0 = 2. Otherwise, s0 = 1.

Besides the case P3 ∈ Fp and (P3 + Q3), (P3 − Q3) ∈ Fp2 \ Fp, there are
other five possible combinations for these three order-3 points. The analysis of
the other five cases is similar to the one given above (corresponding to the first
row of Table 1). So although the details are omitted here, we report in Table 1
six cases where it is possible to guess the value of s0 at the first attempt using
the public key pk2 = (P,Q, P − Q). Table 1 also shows twelve cases where a
second fault is required. If a second attempt is required, the attacker must send
to Bob the public key pk′2 = (P +Q,Q,P ).

Remark 2. If the trit s0 was uniformly sampled, the attacker will successfully
learn it after an average of 1 + 2

3 = 5
3 attempts. More concretely, as shown

in Table 1, there are six cases where the attacker can learn the value of s0 at the
first attempt, whereas there exist twelve cases that force the attacker to perform
two attempts to fully guess the value of s0.

x(Q3) x(P3) x(P3 +Q3) x(P3 −Q3)
Number of instances

trit s = 0 trit s = 1 trit s = 2

in Fp

in Fp not in Fp not in Fp 1 2 2
not in Fp in Fp not in Fp 2 1 2
not in Fp not in Fp in Fp 2 2 1

not in Fp

not in Fp in Fp in Fp 1 2 2
in Fp not in Fp in Fp 2 1 2
in Fp in Fp not in Fp 2 2 1

Table 1. Number of instances to guess s from two random order-3 points P3 and
Q3 on E : y2 = x3 + 6x2 + x such that 〈P3, Q3〉 = E[3]. The first instance refers to
(P3, Q3, P3 −Q3), while the second instance to (P ′3, Q

′
3, P

′
3 −Q′3) = (P3 +Q3, Q3, P3).

3.3 Forcing Ei : y
2 = x3 + 6x2 + x

In this section, we show how to force Bob’s strategy evaluation (1) to repeatedly
pass at iteration i through the curve E : y2 = x3 + 6x2 + x. This way, an



Faulty isogenies: a new kind of leakage 11

attacker would be able to guess the secret trit si, by simply determining whether
the (i + 1)th curve is either in Fp or not. As illustrated in 1, the 3e3-isogeny
procedure is split into e3 small 3-isogenies, where the only public curves are the
first and last ones:

E0 = E → E1 →· · · → Ee−1 → Ẽ = Ee3 .

Each Ei has its Montgomery coefficient Ai ∈ Fp2 . Note that there exist
four different kinds of 3-isogenies with curve domain Ei, but only two of them
map to either Ei+1 or Ei−1 (this last one goes in the reverse direction and, as
mentioned in Section 2.1, corresponds to the dual isogeny). However, we know
the successive image points φ1 ◦ φ2 ◦ · · · ◦ φi([3e3−1−i]Q) determine the dual
3-isogenies φ̂i : Ei → Ei−1, and the kernel of the (i+ 1)th 3-isogeny is given by

[3e3−1−i](φ1 ◦ φ2 ◦ · · · ◦ φi)(P + [sk3]Q).

Notice that the trit si completely determines the 3-isogeny φi : Ei−1 → Ei.
In Section 3.2 we detailed how to obtain the first trit s0. In the following lines
we show how to fully recover Bob’s private key by forcing him to return to curve
E when processing the ith isogeny in derive algorithm.

Once the attacker knows s0, she can move to E1 by using the 3-isogeny
φ1 : E0 → E1 with kernel generator [3e3−1](P + [s0]Q). Next, we look for an
order-3e3 point

T ∈ E1 : [3e3−1]φ1(Q) 6= ±[3e3−1]T.

Let

– P ′ = φ1(Q) + [s0]T ,
– Q′ = −T ,
– φ̂1 : E1 → E0 be the dual 3-isogeny with kernel generator

[3e3−1](P ′ + [s0]Q
′) = [3e3−1]φ1(Q).

When Bob runs derive algorithm with input pk2 = (P ′, Q′, P ′ −Q′), we know
that the second iteration of the strategy evaluation will pass through E. Conse-
quently, the attacker can guess s1, as she did for s0, by injecting the fault, now
in the second iteration, and using Table 1. In case she needs two instances, she
could build the second one with input

pk′2 = (P ′ + [3]Q′, Q′, P ′ + [2]Q′).

Now that the attacker knows s0 and s1, she can extend this idea to recover
the rest of the trits. As we have shown, the attacker controls the outcome when
Bob computes on E. Therefore, to obtain every si from sk3 the attacker needs
to provide a proper input public key for Bob such that at iteration i of 1 the
curve obtained is E. Figure 1 summarizes this idea.



12 G. Adj et al.

E E1 · · · Ei Ei+1 · · · Ee3

E E1 · · · Ei

E Fi+1 · · · Fe3

s0

known part

s1 si−1 si

unknown part

si+1 se3−1

backtracking

si−1 si−2 s0

si

fault impact

si+1 se3−1

Fig. 1. Attack idea: forcing Bob’s strategy evaluation to pass through E : y2 = x3 +
6x2 + x at the ith iteration, and guess si by knowing whether the (i + 1)th curve is
defined over Fp or not.

Let us divide the private key sk3 into two parts

sk3 =

i−1∑
j=0

sj3
j +

e3∑
t=i

st3
t

and assume the attacker knows sk =
∑i−1
j=0 sj3

j . With this information, she can
easily compute the codomain curve Ei of the 3i-isogeny φ : E → Ei with kernel
generator

[3e3−i](P + [sk]Q).

The attacker can now forge a public key pk2 that ensures that the ith iteration
of Bob’s strategy evaluation passes through E : y2 = x3 + 6x2 + x by

1. finding an order-3e3 point T ∈ Ei : [3e3−1]T 6= ±[3e3−1]φ(Q),
2. assigning P ′ = φ(Q) + [sk]T
3. assigning Q′ = −T .

Finally, she sends

1. pk2 = (P ′, Q′, P ′ −Q′) and,
2. pk′2 = (P ′ + [3i]Q′, Q′, P ′ + [3i − 1]Q′), if needed.

Next, we illustrate how and why the attacker can guess the trit si in the
following lemma.

Lemma 2. Let us assume Bob receives the public key pk2 = (P ′, Q′, P ′−Q′) or
pk′2 = (P ′+[3i]Q′, Q′, P ′+[3i−1]Q′), as previously constructed. Then, when Bob
performs the derive procedure with the received public key, his ith 3-isogenous
curve will coincide with E : y2 = x3 + 6x2 + x.

Proof. From the nature of pk2 and pk′2, the ith 3-isogeny Bob’s secret kernel R
is

[3e3−i](P ′ + [3i]Q′ + [sk3]Q′) = [3e3−i](P ′ + [sk3]Q′).



Faulty isogenies: a new kind of leakage 13

Notice [3e3−i]([sk3]Q′) = [3e3−i]([sk]Q′) and thus R = [3e3−i]φ(Q). By con-
struction, φ : E → Ei is a 3i-isogeny with kernel generator [3e3−i](P + [sk]Q).
That is, R is the kernel generator of the dual 3i-isogeny φ̂ : Ei → E since
〈P + [sk3]Q,Q〉 = E [3e3 ] holds. Consequently, Bob will pass through the ith
codomain curve E : y2 = x3 + 6x2 + x. On that basis, Bob’s (i+ 1)th 3-isogeny
will have kernel either P3, (P3 + Q3), or (P3 + [2]Q3) = (P3 − Q3) as in Equa-
tion 4, all of them lying on E : y2 = x3+6x2+x. Consequently, our attacker has
the possibility of correlating the trit si by guessing whether Bob passed through
Fp 3-isogeny codomain curves, by applying Lemma 1 and using Table 1.

P3 = [3e3−1−i]
(
φ̂(P ′) + [sk]φ̂(Q′)

)
,

P3 +Q3 = [3e3−1−i]
(
φ̂(P ′) + [sk+ 3i]φ̂(Q′)

)
,

P3 −Q3 = [3e3−1−i]
(
φ̂(P ′) + [sk+ 2 · 3i]φ̂(Q′)

)
.

(4)

3.4 Proposed attack

Let Osk3
(pk2, i) be an oracle taking as input an SIDH/SIKE public key pk2 =

(P ′, Q′, P ′ −Q′) and an integer 0 ≤ i ≤ e3− 2. The oracle internally performs a
strategy evaluation with Bob’s static private key sk3 and injects a fault at the
(i+ 1)th iteration (from line 9 of 1) as detailed in Section 3.3. Then it outputs
1 if supersingularity is preserved for Ee3 , and 0 otherwise. Based on Section 3.2
and Section 3.3, and using Osk3

(pk2, i), 2 correctly reconstructs Bob’s private
key sk3 with about 5e3

3 ≈
5 log2(p)
6 log2(3)

≈ 0.53 log2(p) oracle calls.

4 Experiments and countermeasures

As a proof-of-concept of our attack, we implemented 2 using the SIDH Library
v3.4 (C Edition)6. Our software implementation simulates the fault injection at
lines 5 and 13 of 2 as follows.

The oracle Osk(pk, i) accesses the curve Ei : y2 = x3+6x2+x, injects zeros in
the A-coefficient of Ei+1, and then performs a supersingularity check by testing
at the (i + 2)th iteration xtpl(R,A) = O 7. We ensure that the input public
key pk = (P ′, Q′, P ′ − Q′) for E′ : y2 + x3 + Ax2 + x has been correctly built,
by internally verifying Ei : y2 = x3 + 6x2 + x, using the isogeny ψ : E′ → Ei
with kernel generator [3e3−i](P ′+[sk3 mod 3i]Q′) = [3e3−i]ψ(Q) where E[3e3 ] =
〈P,Q〉.

5 E′ is the curve determined by P ′, Q′ and (P ′ − Q′). We set for the case i = 0,
ψ : E → E as the identity map, and E′ = E.

6 https://github.com/microsoft/PQCrypto-SIDH
7 Isogenies preserve the torsion of points, and because R is the kernel of the next
3-isogeny, then verifying R is an order-3 point determines supersingularity.

https://github.com/microsoft/PQCrypto-SIDH


14 G. Adj et al.

Algorithm 2 Bob’s private key recovery by injecting zeros on the A-coefficients
Inputs: Public parameters P , Q, and E from SIDH. The oracle Osk3() as defined

in Section 3.4, and Ẽ = E/〈P + [sk3]Q〉
Output: Bob’s private key sk3 =

∑e3−1
i=0 si3

i

1: sk← 0
2: for i = 0 to e3 − 2 do
3: pk2 ← (P ′, Q′, P ′ −Q′) as in Section 3.3
4: Compute P3, Q3, and (P3 −Q3) following Equation 4
5: b← Osk3(pk2, i)
6: c1 ← number of elements in {P3, P3 +Q3, P3 −Q3} lying on Fp

7: c0 ← number of elements in {P3, P3 +Q3, P3 −Q3} not living in Fp

8: if cb = 1 then
9: Guess si using Table 1
10: sk← sk+ si3

i

11: else
12: pk′2 ←

(
P ′ + [3i]Q′, Q′, P ′ + [3i − 1]Q′

)
13: b′ ← Osk3(pk

′
2, i)

14: if cb′ = 1 then
15: Guess si using Table 1
16: sk← sk+ si3

i

17: else
18: Guess si by discard from the previous 2 options
19: sk← sk+ si3

i

20: end if
21: end if
22: end for
23: Brute force search on se3−1 ∈ {0, 1, 2} such that E/〈P + [sk+ se3−13

e3−1]Q〉 = Ẽ
24: return sk+ se3−13

e3−1

Furthermore, we verify that P3, P3 + Q3, and P3 − Q3 are different 3-order
points on Ei for each instance. Additionally, we set the initial 3e3-order points
P and Q on E : y2 = x3 + 6x2 + x as the public SIDH/SIKE 3e3 -torsion points.

Table 2 summarizes the timings and oracle calls simulating the proposed
attack, and reports the average running time of 5e3

3 = 5 log2(p)
6 log2(3)

≈ 0.53 log2(p)

oracle calls. All of our experiments successfully recover Bob’s private key, and
were executed on a 2.3 GHz 8-Core Intel Core i9 machine with 16GB of RAM,
using gcc version 11.1.0. In particular, we use the optimized configuration from
the SIDH Library v3.4 (see footnote 6). Our software implementation is freely
available at https://github.com/FaultyIsogenies/faulty-isogeny-code .

We emphasize that our software C-code implementation is a proof-of-concept
simulator that helps to illustrate and verifying the correctness of the attack. So,
omitting each verification step from the code will reduce the attack latency,
giving a faster key recovery.

Implications to SIKE. Recently, Ueno et al. [26] analyze a plaintext-checking
Oracle-based attack; they focus on the encryption computation from the SIKE
decapsulation procedure. However, our attack targets SIDH derive procedure,

https://github.com/FaultyIsogenies/faulty-isogeny-code


Faulty isogenies: a new kind of leakage 15

Instances e3 Clock Cycles Seconds Oracle calls

SIDHp434 137 4249 4.62 226
SIDHp503 159 7257 7.76 263
SIDHp610 192 17424 18.64 318
SIDHp751 239 40638 42.77 396

Table 2. All measurements are given in millions of clock cycles, and they correspond
to the average of 1000 random instances

but a combination with the plaintext-checking oracle would give a fault-injection
attack on the SIKE decapsulation procedure requiring 5

3 +1 queries per iteration
and, therefore, 8e3

3 ≈
8 log2(p)
6 log2(3)

≈ 0.84 log2(p) oracle calls. This extra query comes
from the nature of our attack that constructs not valid inputs for decapsulating
messages (as different from attacking SIDH). Table 3 summarizes the expected
running time for a fully private key recovery by attacking Decaps procedure.

Instances e3
Oracle calls

[26] This work

SIKEp434 137 230 364
SIKEp503 159 266 422
SIKEp610 192 323 512
SIKEp751 239 398 630

Table 3. Expected number of plaintext-checking oracle calls and injected faults re-
quired to recovering a fixed Bob’s private key when attacking Decaps. In the third
column we predict that the required number of oracle calls is just 5

3
e3, which is slightly

smaller than the 2e3 oracle calls reported in [26, Table 2].

Countermeasures. A pairing test could work as a countermeasure, but the
attacker can manipulate the points to bypass this test. Recall, P ′ = φ(Q)+[sk]T
and Q′ = −T form a basis, then there is µ such that e(P ′, Q′) = e(P,Q)µ. So she
forces to pass the pairing check by looking for a point T such that θ = µ/2e2 is
a quadratic residue and

√
θ is invertible modulo 3e3 . If that is the case, she sets

as basis input P ′ ← [1/
√
µ]P ′ and Q′ ← [1/

√
µ]Q′. If not, we try with another

different T .
In [24], Tasso et al. implemented Ti’s attack and additionally proposed a

countermeasure to it. Essentially, they propose to check whether the recon-
structed A-coefficient from the computed public key pk2 = (P ′, Q′, R) equals
the last A-coefficient in keygen (output of line 15 of 1). If there is equality then
Bob ensures that R = (P ′−Q′) and returns pk2; otherwise, an attack is detected.

Nevertheless, the new attack in this paper and the ones from [26] and [29]
use valid public keys such that R = (P ′−Q′) always holds, and thus our attack



16 G. Adj et al.

is completely immune to Tasso et al.’s countermeasure and any other variant of
it.

From the mechanism of our attack, each instance given by Equation 4 is on
an intermediate curve in Bob’s secret 3-isogeny chain. Also, the attack is not
limited to use exclusively the curve E : y2 = x3 + 6x2 + x, we only require a
Montgomery curve with affine A-coefficient in Fp.

Naively, to avoid the attack, Bob should check if any of its intermediate secret
3-isogeny computations returns an A-coefficient in Fp, if this happens then Bob
would reject Alice’s public key. However, such a countermeasure opens the door
to another attack:

1. The attacker makes a first guess with s0 = 0
2. Sends the corresponding pk2 8 to Bob
3. If Bob rejects pk2, then she knows her guess was correct;
4. If Bob accepts pk2, then she make another guess with s0 = 1
5. Sends a different public key pk′2 8 to Bob
6. If Bob rejects pk′2, then she knows s0 = 1, otherwise, s0 = 2
7. Repeat the same attack flow to recover s1, . . . , se3−2.

Remarkably, the attack outlined above does not rely on fault injections, but
only on oracle calls. This makes it more dramatic than the attack that Bob tries
to avoid in the first place.

Since Lemma 1 characterizes all curves defined over Fp regardless of whether
the affine curve coefficients belong to Fp, randomizing the curve coefficients (as-
suming multiplying by a random Fp2 -element) will not help. The same goes for
randomizing points. In other words, all Bob’s computations operate with pro-
jective points and curves defined over Fp2 \Fp, and then Bob cannot be possibly
aware that he is processing Fp-curves. Therefore, the attack is not affecting the
constant-time nature of SIDH/SIKE implementations.

A plausible countermeasure consist of using a commutative diagram by push-
ing forward Bob’s 3e3-isogeny ψB : EA → EAB through a random isogeny
ρ : EA → E′A of degree not divisible by 3 and obtain an isogeny ψ′B : E′A → E′AB ,
then push forward the dual of ρ through ψ′B to finally obtain ρ̂′ : E′AB → EAB .

For instance, Bob can choose ρ to be of degree 2k-isogenies, for some suffi-
ciently large k. To be more precise, Bob would

1. sample an arbitrary order-2k point R ∈ EA;
2. construct ρ : EA → E′A of kernel R;
3. push Alice’s public key pk2 and a point D through ρ, ρ(D) generating ρ̂;
4. compute ψ′B : E′A → E′AB using ρ(pk2), push ρ(D) through ψ′B to get D′;
5. finally, compute the codomain curve EAB of the isogeny ρ̂′ of kernel D′.

This randomized countermeasure increases the number of queries, 0.53 log2(p),
of our attack by a factor of about 2k, suggesting large (enough) values for k since,
asymptotically speaking, it remains the same complexity when k is small com-
pared with e2. Consequently, a secure countermeasure with, for example, k = e2

2

8 pk2 and pk′2 are computed by means of Equation 4.



Faulty isogenies: a new kind of leakage 17

would give a 2x of slowdown of Bob’s computations, while the more conservative
choice of k = e2 would be 3x slower.

Discussion about the feasibility of our attack. As we have seen, the attack
presented in this paper requires injecting faults in a precise step of the SIDH
strategy evaluation procedure. More concretely, the attacker must inject zeroes
in the imaginary part of the coefficient Ai+1 at iteration i+ 1 of line 9 of 1.

But for a real implementation of SIDH and SIKE, how feasible/realistic would
be to inject such faults?

In [24] the authors report that electromagnetic injection is considerably dif-
ficult to synchronize with the execution of SIKE. Because of this difficulty, the
real-scenario attack implemented by the authors achieved a rather modest exper-
imental success rate of just 0.62%, which is relatively inefficient compared with
the expected theoretical 50% success rate attributed to Ti’s attack [24, Remark
7].

One advantage that Ti’s attack offers, is that the perturbations do not need
to be placed in a precise step of Key Generation, provided that the faults are
injected before the victim starts computing and evaluating isogenies. Moreover,
with high probability, it suffices that the torsion points are perturbed by flipping
any single bit of the points.

Due to the high timing synchronization required by our attack, its instan-
tiation using electromagnetic injection would appear to be just too difficult for
being successfully launched in a real implementation of SIDH.

On the other hand, software oriented fault attacks appear to be more promis-
ing for our attack.

For example, the attack presented in [2] was executed on a ChipWhisperer-
Lite board equipped with a 32-bit STM32F303 ARM Cortex-M4 processor, using
the SIKEp434 Cortex-M4 implementation of [16]. Under the assumption that
the attacker knows the exact code locations where the faults must be injected,
the authors reports close to 100% of efficiency in their attack. The faults were
injected by clock glitching, which forced the ChipWhisperer card to skip an
instruction. In [29], the authors report a instruction-skipping generic fault attack
that targets all NIST PQC Round 3 KEM candidates including SIKE. The attack
was executed on a ChipWhisperer cw308 UFO base-board, which permits fault-
injection attacks using clock glitching.

It is conceivable that we can adapt the attacks of [2,29] to our setting, but in
our case we should rather focus on perturbing the memory locations where the
imaginary parts of the coefficient A are stored.

5 Concluding remarks

In this paper, we presented a new vulnerability based on deciding whether Bob’s
3e3-isogeny computation passes through a curve with A-coefficient in Fp. This
way we propose a new fault-injection attack that

– belongs to the same family of [11], known sometimes as reaction attacks [19],



18 G. Adj et al.

– has similar query complexity as the attacks in [29] and [11],
– it is different to mitigate than the one previous SIDH fault attack, known as

Ti’s attack [25],
– can be combined with the side-channel attack in [26] to achieve full key

recovery in SIKE.

From the description of the proposed attack, one can easily see that the best
scenarios where it applies are when the individual isogeny degree is as small as
possible, namely 2 or 3. We considered 3 in this work because the computed
isogenies in SIDH/SIKE are of degree 3 and (almost always) 4. We believe our
fault-injection attack can be transformed into a side-channel attack using the
techniques of [26] and trying to force working with purely Fp values, but this
appears to be a formidable task that we leave here as future work.

Now, when the individual isogenies have higher (prime) degrees, as in B-
SIDH, the attack is unlikely to work as efficiently as 3-isogenies due to the
significantly smaller proportion of Fp-isogenies (2 Fp-isogenies in average). How-
ever, the number of queries remains a polynomial factor multiplying the isogeny
degree. Since in B-SIDH, for instance, the prime isogeny degrees are bounded
(by at most 216) so that the isogenies are efficiently computable, reaching this
number of queries should not be a big concern.

To the best of our knowledge, there is no previous attack in which the attacker
can inject such amount of zeros in memory (or registers) as we require our
attacker to do. We consider finding alternative methods to perform this injection
in a controlled way as future work. We would also like to remark that the attack’s
timing constraints are similar to those in the loop-abort attack presented by
Gélin and Wesolowski in 2017 [13]. In addition, we believe our contribution opens
a new path of attacks not considered before. It might be later implemented with
the appropriate tools as it happened previously in the theoretical attack by Ti
in 2017, recently implemented in 2021 by Tasso et al [24].

Acknowledgements. We thank anonymous reviewers for their helpful com-
ments to improve this work. We also thank Krijn Reijnders and Michael Meyer
for suggesting the randomized countermeasure.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., Feo, L.D., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes, J.,
Soukharev, V., Urbanik, D.: Supersingular isogeny key encapsulation. third round
candidate of the nist’s post-quantum cryptography standardization process (2020),
available at: https://sike.org/

2. Campos, F., Krämer, J., Müller, M.: Safe-error attacks on SIKE and CSIDH (2021),
https://eprint.iacr.org/2021/1132

3. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-
pander graphs. J. Cryptol. 22(1), 93–113 (2009). https://doi.org/10.1007/s00145-
007-9002-x, https://doi.org/10.1007/s00145-007-9002-x

https://eprint.iacr.org/2021/1132
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x


Faulty isogenies: a new kind of leakage 19

4. Costello, C.: The case for SIKE: A decade of the supersingular isogeny problem.
IACR Cryptol. ePrint Arch. p. 543 (2021), https://eprint.iacr.org/2021/543

5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2017 Part II. LNCS, vol. 10625, pp. 303–329. Springer (2017)

6. Costello, C., Smith, B.: Montgomery curves and their arithmetic -
the case of large characteristic fields. J. Cryptogr. Eng. 8(3), 227–240
(2018). https://doi.org/10.1007/s13389-017-0157-6, https://doi.org/10.1007/
s13389-017-0157-6

7. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), http://eprint.iacr.org/2006/291

8. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Mathematical Cryptology 8(3), 209–247 (2014)

9. Feo, L.D., Mrabet, N.E., Genêt, A., Kaluđerović, N., de Guertechin, N.L., Pontié,
S., Élise Tasso: Sike channels. Cryptology ePrint Archive, Report 2022/054 (2022),
https://ia.cr/2022/054

10. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Advances in Cryptology - CRYPTO. LNCS, vol. 1666, pp.
537–554. Springer (1999)

11. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
- ASIACRYPT 2016 Part I. LNCS, vol. 10031, pp. 63–91 (2016)

12. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

13. Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryptosys-
tems. In: Lange, T., Takagi, T. (eds.) Post-Quantum Cryptography - 8th In-
ternational Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10346, pp. 93–106.
Springer (2017). https://doi.org/10.1007/978-3-319-59879-6_6, https://doi.org/
10.1007/978-3-319-59879-6_6

14. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography - 15th International Conference, TCC.
LNCS, vol. 10677, pp. 341–371. Springer (2017)

15. Jao, D., Feo, L.D.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B. (ed.) Post-Quantum Cryptography - 4th Inter-
national Workshop, PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer (2011)

16. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
benchmarking nist pqc on arm cortex-m4. Cryptology ePrint Archive, Report
2019/844 (2019), https://ia.cr/2019/844

17. NIST: NIST Post-Quantum Cryptography Standardization Process. Second Round
Candidates (2017), available at: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

18. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017, Pro-
ceedings, Part II. LNCS, vol. 10625, pp. 330–353. Springer (2017)

19. de Quehen, V., Kutas, P., Leonardi, C., Martindale, C., Panny, L., Petit, C., Stange,
K.E.: Improved torsion-point attacks on SIDH variants. In: Malkin, T., Peikert, C.
(eds.) Advances in Cryptology - CRYPTO 2021, Proceedings, Part III. LNCS, vol.
12827, pp. 432–470. Springer (2021)

https://eprint.iacr.org/2021/543
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-017-0157-6
http://eprint.iacr.org/2006/291
https://ia.cr/2022/054
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-319-59879-6_6
https://ia.cr/2019/844


20 G. Adj et al.

20. Renes, J.: Computing isogenies between montgomery curves using the action of
(0, 0). In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography - 9th
International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11,
2018, Proceedings. LNCS, vol. 10786, pp. 229–247. Springer (2018)

21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006, 145 (2006)

22. Smith, B.: Pre- and post-quantum Diffie–Hellman from groups, actions, and isoge-
nies. In: Budaghyan, L., Rodríguez-Henríquez, F. (eds.) Arithmetic of Finite Fields
- WAIFI 2018. LNCS, vol. 11321, pp. 3–40. Springer (2018)

23. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Advances in Mathematics of Commu-
nications 4(2), 215–235 (2010)

24. Tasso, É., Feo, L.D., Mrabet, N.E., Pontié, S.: Resistance of isogeny-
based cryptographic implementations to a fault attack 12910, 255–276
(2021). https://doi.org/10.1007/978-3-030-89915-8_12, https://doi.org/10.1007/
978-3-030-89915-8_12

25. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T.,
Takagi, T. (eds.) Post-Quantum Cryptography - 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings. LNCS,
vol. 10346, pp. 107–122. Springer (2017)

26. Ueno, R., Xagawa, K., Tanaka, Y., Ito, A., Takahashi, J., Homma, N.:
Curse of re-encryption: A generic power/em analysis on post-quantum kems.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 296–322 (2022).
https://doi.org/10.46586/tches.v2022.i1.296-322, https://doi.org/10.46586/tches.
v2022.i1.296-322

27. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Academie des
Sciences de Paris Serie A 273, A238–A241 (1971), english translation by A. Ghitza
available at https://aghitza.github.io/publication/translation_velu/

28. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, Second
Edition. Chapman & Hall/CRC, 2 edn. (2008)

29. Xagawa, K., Ito, A., Ueno, R., Takahashi, J., Homma, N.: Fault-injection at-
tacks against nist’s post-quantum cryptography round 3 KEM candidates 13091,
33–61 (2021). https://doi.org/10.1007/978-3-030-92075-3_2, https://doi.org/10.
1007/978-3-030-92075-3_2

https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://doi.org/10.46586/tches.v2022.i1.296-322
https://aghitza.github.io/publication/translation_velu/
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3_2
https://doi.org/10.1007/978-3-030-92075-3_2

	 Faulty isogenies: a new kind of leakage 

