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Abstract

Logarithmic derivatives translate products of linear factors into sums of their reciprocals, turning
zeroes into simple poles of same multiplicity. Based on this simple fact, we construct an interactive oracle
proof for multi-column lookups over the boolean hypercube, which makes use of a single multiplicity
function instead of working with a rearranged union of table and witnesses. For single-column lookups
the performance is comparable to the well-known [GW20] strategy used by Hyperplonk+ [CBBZ22].
However, the real power of our argument unfolds in the case of batch lookups when multiple columns are
subject to a single-table lookup: While the number of field operations is comparable to the Hyperplonk+
lookup (extended to multiple columns), the oracles provided by our prover are much less expensive. For
example, for columns of length 212, paper-pencil operation counts indicate that the logarithmic derivative
lookup is between 1.5 and 4 times faster, depending on the number of columns.
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Introduction

Lookup arguments prove a sequence of values being member of an, often prediscribed, table. They are
an essential tool for improving the efficiency of SNARKs for statements which are otherwise expensive to
arithmetize. Main applications are lookups for relations of high algebraic complexity, and interval ranges
which are extensively used by zero-knowledge virtual machines enforcing execution trace elements being
valid machine words. Although closely related to permutation arguments [BG12, BSCGT13], a first explicit
occurence of lookups dates back to [BCG+18]. The break-through was achieved by Plookup [GW20], a
permutation argument based argument which improved over the one from [BCG+18] and provided the first
solution for arbitrary tables. Since then Plookup (and slight variants of it) is the general purpose lookup
argument used in many practical applications, for example [Azt, BLH+, Ark, GPR21, Mid].

In this paper we describe a lookup argument based which is based on logarithmic derivatives instead of
permutation arguments. As in classical calculus, formal logarithmic derivatives turn products

∏N
i=1(X−zi)

into sums of their reciprocals,
N∑
i=1

1
X − zi

,

having poles with the same multiplicity as the zeros of the product. Working with poles instead of zeros
is extremly useful for lookup arguments. While strategies for arguments about radicals of products are far
from obvious, they turn trivial using logarithmic derivatives. Concretely, given a sequence of field elements
(ai)Ni=1 and another sequence (tj)Mj=1, then {ai : i = 1, . . . , N} ⊆ {tj : j = 1, . . . ,M} as sets, if and only if
there exists a sequence of field elements (mj)Mj=1 (the multiplicities) such that

N∑
i=1

1
X − ai

=
M∑
j=1

mj

X − tj
.

(This holds under quite mild conditions on the field, see Lemma 5 for details.) Based on this fractional
identity we construct lookup protocols which are more efficient than the Plookup approach, which argues
via a sorted union of witness and table sequence. This is particularly true in the case of multi-column
lookups, where several sequences (“columns”) are subject to the same table lookup. In our lookup the
oracle costs, measuring the number and sizes of the oracles the prover needs to provide, are significantly
lower than for a lookup based on the Plookup strategy. For large numbers of columns it is the half, while
the arithmetic costs of the interactive oracle prover remain comparable.

We stress the fact that we are not the only ones who exploit fractional decompositions for lookups.
Concurrently, improving the work of [ZBK+22] and [PK22], Gabizon et al. [GK22] use fractional decom-
positions for “large-table” lookups, the proving-time of which is independent of the table size. This use
case is perpendicular to ours. We focus on multi-column lookups with respect to a single, in practice
medium-sized table, a use case that is extensively used in execution trace proofs.

The document is organized as follows. In Section 2, we gather the preliminaries used in the sequel:
The Lagrange kernel over the boolean hypercube, basic facts on the formal logarithmic derivative, and
a summary of the multivariate sumcheck argument. Besides that, we introduce Lagrange interactive
oracle proofs, an oracle model we consider the best fit for arguments which are based on the Lagrange
representation of polynomials rather than their coefficients. In Section 3 we describe our multi-column
lookup based on the logarithmic derivative. The protocol comes in two variants, one for a “small” number
of columns, and another one which performs better for large numbers of columns (and is asymptotically
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linear in the instance size). For comparison reasons, we add an extra section (Section 4) in which we sketch
multi-column lookups using the Plookup strategy, adapted to the boolean hypercube. These rely on the
time shift from Hyperplonk [CBBZ22], and we consider them state-of-the-art in the multivariate setting.

We finally point out, that although our protocols are written for the multilinear setting, their translation
into univariate proofs is straight-forward. We expect these univariate arguments to improve similarly over
multi-column lookups based on the Plookup strategy.

Preliminaries

The Lagrange kernel of the boolean hypercube

Let F denote a finite field, and F ∗ its multiplicative group. Throughout the document we regard the boolean
hypercube H = {±1}n as a multiplicative subgroup of (F ∗)n. For a multivariate function f(X1, . . . , Xn),
we will often use the vector notation ~X = (X1, . . . , Xn) for its arguments, writing f( ~X) := f(X1, . . . , Xn).

The Lagrange kernel of H is the multilinear polynomial

LH( ~X, ~Y ) = 1
2n ·

n∏
j=1

(1 +Xj · Yj). (1)

Notice that LH( ~X, ~Y ) is symmetric in ~X and ~Y , i.e. LH( ~X, ~Y ) = LH(~Y , ~X), and that (1) is evaluated
within only O (log |H|) field operations. Whenever ~y ∈ H we have that LH( ~X, ~y) is the Lagrange poly-
nomial on H, which is the unique multilinear polynomial which satisfies LH(~x, ~y) = 1 at ~x = ~y, and zero
elsewhere on H. In particular for a function f : H → F the inner product evaluation formula

〈f, LH( . , ~y)〉H :=
∑
~x∈H

f(~x) · LH(~x, ~y) = f(~y).

is valid for every ~y ∈ H. This property extends beyond H, as the following Lemma shows.

Lemma 1. Let p( ~X) be the unique multilinear extension of f : H → F . Then for every ~y ∈ Fn,

〈f, LH( . , ~y)〉H =
∑
x∈H

f(~x) · LH(~x, ~y) = p(~y). (2)

Proof. Since p(~y) =
∑
~x∈H f(~z) ·LH( ~X, ~z), it suffices to show the claim for p(X) = LH( ~X, ~z), with ~z ∈ H.

By the property of LH( ~X, ~z), we have
〈
LH( . , ~z), LH( . , ~y)

〉
H

= LH(~y, ~z), which by symmetry is equal to
LH( ~X, ~y) at ~X = ~z. This completes the proof of the Lemma.

Note that for any ~y ∈ Fn, the domain evaluation of LH( ~X, ~y) over H can be computed in O(|H|) field
operations, by recursively computing the domain evaluation of the partial products pk(X1, . . . , Xk, y1, . . . , yk) =
1

2n ·
∏k
j=1(1 +Xj · yj) over Hk = {±1}k from the domain evaluation of pk−1, where one starts with f0 = 1

2n

over the single-point domain H0. Each recursion step costs |Hk−1| field multiplications, denoted by M, and
the same number of additions, denoted by A, yielding overall

n∑
k=1
|Hk−1| · (M + A) < |H| · (M + A). (3)
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The formal derivate

Given a univariate polynomial p(X) =
∑d
k=0 ck ·Xk over a general (possibly infinite) field F , its derivative

is defined as

p′(X) :=
d∑

k=1
k · ck ·Xk−1. (4)

As in calculus, the derivative is linear, i.e. for every two polynomials p1(X), p1(X) ∈ F [X], and coefficients
λ1, λ2 ∈ F ,

(λ1 · p1(X) + λ2 · p1(X))′ = λ1 · p′1(X) + λ2 · p′2(X)

and we have the product rule

(p1(X) · p2(X))′ = p′1(X) · p2(X) + p1(X) · p′2(X).

For a function p(X)
q(X) from the rational function field F (X), the derivative is defined as the rational function

(
p(X)
q(X)

)′
:= p′(X) · q(X)− p(X) · q′(X)

q(X)2 . (5)

By the product rule for polynomials, the definition does not depend on the representation of p(X)
q(X) . Both

linearity as well as the product rule extend to rational functions.
For any polynomial p(X) ∈ F [X], if p′(X) = 0 then p(X) = g(Xp) where p is the characteristic of the

field F . In particular, if deg p(X) < p, then the polynomial must be constant. As the analogous fact for
fractions is not as commonly known, we give a proof of the following lemma.

Lemma 2. Let F be a field of characteristic p 6= 0, and p(X)
q(X) a rational function over F with both

deg p(X) < p and deg q(X) < p. If the formal derivative
(
p(X)
q(X)

)′
= 0, then p(X)

q(X) = c for some constant
c ∈ F .

Proof. If q(X) is a constant, then the assertion of the Lemma follows from the corresponding statement for
polynomials. Hence we assume that deg q(X) > 0. Use polynomial division to obtain the representation

p(X)
q(X) = m(X) + r(X)

q(X) ,

with m(X), r(X) ∈ F [X], degm(X) ≤ deg p(X), and deg r(X) < deg q(X) whenever r(X) 6= 0. By
linearity of the derivative, we have 0 =

(
p(X)
q(X)

)′
= m′(X) +

(
r(X)
q(X)

)′
, and therefore

r′(X) · q(X)− r(X) · q′(X) = −m′(X) · q(X)2. (6)

Comparing the degrees of left and right hand side in (6), we conclude that m′(X) = 0. Since degm(X) ≤
deg p(X) < p we have m(X) = c for some constant1c ∈ F . Furthermore, if we had r(X) 6= 0 then the
leading term of the left hand side in (6) would be

(k − n) · cn · dk ·Xn+k−1,

with cn ·Xn, n > 0, being the leading term of q(X), and dk ·Xk, 0 ≤ k < n, the leading term of r(X). As
0 < n− k < p, and both cn 6= 0 and cm 6= 0, the leading term of the left hand side of (6) would not vanish.
Therefore it must hold that r(X) = 0 and the proof of the lemma is complete.

1For general degrees of p(X) we would only be able to conclude that m(X) = g(Xp) for some polynomial g(X).
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The logarithmic derivative

The logarithmic derivate of a polynomial p(X) over a (general) field F is the rational function

p′(X)
p(X) .

Note that the logarithmic derivative of the product p1(X) · p2(X) of two polynomials p1(X), p2(X) equals
the sum of their logarithmic derivatives, since by the product rule we have

(p1(X) · p2(X))′

p1(X) · p2(X) = p′1(X) · p2(X) + p1(X) · p′2(X)
p1(X) · p2(X) = p′1(X)

p1(X) + p′2(X)
p2(X) .

In particular the logarithmic derivative of a product p(X) =
∏n
i=1(X + zi), with each zi ∈ F , is equal to

the sum
p′(X)
p(X) =

n∑
i=1

1
X + zi

. (7)

The following lemma is a simple consequence of Lemma 2 and essentially states that, under quite mild
conditions on the field F , if two normalized polynomials have the same logarithmic derivative then they
are equal. We state this fact for our use case of product representations.

Lemma 3. Let (ai)ni=1 and (bi)ni=1 be sequences over a field F with characteristic p > n. Then
∏n
i=1 (X + ai) =∏n

i=1 (X + bi) in F [X] if and only if

n∑
i=1

1
X + ai

=
n∑
i=1

1
X + bi

in the rational function field F (X).

Proof. If pa(X) =
∏n
i=1 (X + ai) and pb(X) =

∏n
i=1 (X + bi) coincide, so do their logarithmic derivatives.

To show the other direction, assume that p′a(X)
pa(X) = p′b(X)

pb(X) . Then

(
pa(X)
pb(X)

)′
= p′a(X) · pb(X)− pa(X) · p′b(X)

p2
b(X)

= 0.

Hence by Lemma 2 we have pa(X)
pb(X) = c for some constant c ∈ F . As both pa(X) and pb(X) have leading

coefficient equal to 1, we conclude that c = 1, and the proof of the Lemma is complete.

Remark 1. We stress the fact that Lemma 3 also applies to the case where F is the function field
Fp(Y1, . . . , Yk) over a finite field Fp of characteristic p. This observation will be useful when generaliz-
ing the permutation argument to the case where ai and bi are multilinear polynomials in Y1, . . . , Yn.

Given a product p(X) =
∏N
i=1(X + ai) we can gather the poles of its logarithmic derivative obtaining

the fractional decomposition

p′(X)
p(X) =

∑
a∈F

m(a)
X + a

,

where m(a) ∈ {1, . . . , N} is the multiplicity of the value a in (ai)Ni=1. Fractional decompositions are unique,
as shown by the following lemma.
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Lemma 4. Let F be an arbitrary field and m1,m2 : F → F any functions. Then
∑
z∈F

m1(z)
X−z =

∑
z∈F

m2(z)
X−z

in the rational function field F (X), if and only if m1(z) = m2(z) for every z ∈ F .

Proof. Suppose that the fractional decompositions are equal. Then
∑
z∈F

m1(z)−m2(z)
X−z = 0, and therefore

p(X) =
∏
w∈F

(X − w) ·
∑
z∈F

m1(z)−m2(z)
X − z

=
∑
z∈F

(m1(z)−m2(z)) ·
∏

w∈F\{z}
(X − w) = 0.

In particular, p(z) = (m1(z)−m2(z)) ·
∏
w∈F\{z}(z − w) = 0 for every z ∈ F . Since

∏
w∈F\{z}(z − w) 6= 0

we must have m1(z) = m2(z) for every z ∈ F . The other direction is obvious.

This leads to the following algebraic criterion for set membership, which is the key tool for our lookup
arguments.

Lemma 5 (Set inclusion). Let F be a field of characteristic p > N , and suppose that (ai)Ni=1, (bi)Ni=1 are
arbitrary sequences of field elements. Then {ai} ⊆ {bi} as sets (with multiples of values removed), if and
only if there exists a sequence (mi)Ni=1 of field elements from Fq ⊆ F such that

N∑
i=1

1
X + ai

=
N∑
i=1

mi

X + bi
(8)

in the function field F (X). Moreover, we have equality of the sets {ai} = {bi}, if and only if mi 6= 0, for
every i = 1, . . . , N .

Proof. Let us denote by ma(z) the multiplicity of a field element z in the sequence (ai)Ni=1. Likewise, we
do for (bi)Ni=1. Note that since N < p, the multiplicities can be regarded as non-zero elements from Fp as a
subset of F . Suppose that {ai} ⊆ {bi} as sets. Set (mi) as the normalized multiplicities mi = ma(bi)

mb(bi) . This
choice of (mi) obviously satisfies (8).

Conversely, suppose that (8) holds. Collecting fractions with the same denominator we obtain fractional
representations for both sides of the equation (8),

N∑
i=1

1
X + ai

=
∑
z∈F

ma(z)
X + z

,

N∑
i=1

mi

X + bi
=
∑
z∈F

µ(z)
X + z

.

Note that since N < p, we know that for each z ∈ {ai} we have ma(z) 6= 0. By the uniqueness of fractional
representations, Lemma 4, ma(z) = µ(z) for every z ∈ {ai}, and therefore each z ∈ {ai} must occur also
in {bi}.

Lagrange interactive oracle proofs

The oracle proofs of many general purpose SNARKs such as Plonk [GWC19] or algebraic intermediate
representations [BSBHR18] rely on witnesses that are given in Lagrange representation, i.e. by their values
over a domain H. Their multivariate variants may completely avoid the usage of fast Fourier transforms
whenever the polynomial commitment scheme can be turned into one that does not need to know the
coefficients, neither when computing a commitment nor in an opening proof. Exactly this property is
captured by Lagrange oracle proofs, rather than polynomial ones [BFS20].
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A Lagrange interactive oracle proof (Lagrange IOP) over the boolean hypercube H = {±1}n is an
interactive protocol between two parties, the “prover” and the “verifier”. In each round, the verifier sends a
message (typically a random challenge) and the prover computes one or several functions over the boolean
hypercube, and gives the verifier oracle access to them. From the moment on it is given access, the verifier
is allowed to query the oracles for their inner products with the Lagrange kernel LH( . , ~y), associated with
an arbitrary vector ~y ∈ Fn.

The security notions for Lagrange IOPs, such as completeness, (knowledge) soundness, and zero-
knowledge, are exactly the same as for other interactive oracle proofs. We assume that the reader is
familiear with these, and refer to [BSCS16] or [BFS20] for their formal definitions.

Lagrange IOPs are turned into arguments by instantiating the Lagrange oracles by a Lagrange commit-
ment scheme. A Lagrange commitment scheme is a commitment scheme for functions over H that comes
with an evaluation proof for Lagrange queries. For example, inner product arguments [BCC+16] can be
directly used to construct Lagrange commitment schemes, but also the multilinear variant [PST13] of the
[KZG10] commitment scheme is easily modified to completely avoid dealing with coefficients. We suppose
that this is well-known, and therefore we omit an explicit elaboration in this paper.

The sumcheck protocol

We give a concise summary on the multivariate sumcheck protocol [LFKN92]. Given a multivariate poly-
nomial p(X1, . . . , Xn) ∈ F [X1, . . . , Xn], a prover wants to convince a verifier upon that

s =
∑

(x1,...,xn)∈{±1}n

p(x1, . . . , xn).

This is done by a random folding procedure which, starting with H0 = {±1}n, which stepwise reduces
a claim on the sum over Hi = {±1}n−i, i = 0, . . . , n − 1, to one over the hypercube Hi+1 of half the
size. Eventually, one ends up with a claim over a single-point sum, which is paraphrased as the value of
p(X1, . . . , Xn) at a random point (r1, . . . , rn) ∈ Fn sampled in the course of the reduction steps.

Protocol 1 (Sumcheck protocol, [LFKN92]). Let p(X1, . . . , Xn) be a multivariate polynomial over a finite
field F . The sumcheck protocol, in which a prover wants to convince the verifier upon the sum s =∑

(x1,...,xn)∈{±1}n p(x1, . . . , xn), is as follows. We write s0(X) for the constant polynomial s0 = s.

• In each round i = 1, . . . , n, the prover sends the coefficients of the univariate polynomial

si(X) =
∑

(xi+1,...,xn)∈{±1}n−i

p(r1, . . . , ri−1, X, xi+1, . . . , xn),

of degree di ≤ degXi
p(X1, . . . , Xn), where r1, . . . , ri−1 are the randomnesses received in the previous

rounds. (In the first round i = 1 there are no previous randomnesses, and p(r1, . . . , ri−1, X, xi+1, . . . , xn)
is meant to denote p(X,x2, . . . , xn).) The prover sends the coefficients of si(X) to the verifier, which
checks whether the received polynomial si(X) is in fact of the expected degree and that

si−1(ri−1) = si(+1) + si(−1).

(Again, in the first round i = 1 there is no r0, and the verifier checks wheather s0 = s1(+1)+s1(−1).)
If so, the verifier samples random challenge ri←$F uniformly from F and sends it to the prover.

After these rounds the verifier checks that sn(rn) = p(r1, . . . , rn). If so, the verifier accepts (otherwise it
rejects).
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Soundness of the sumcheck protocol is proven by a repeated application of the Schwartz-Zippel lemma.
We omit a proof, and refer to [LFKN92] or [Tha13].

Theorem 2 ([LFKN92]). The sumcheck protocol (Protocol 1) has soundness error

εsumcheck ≤
1
|F |
·
n∑
i=1

degXi
p(X1, . . . , Xn). (9)

The sumcheck protocol is easily extended to the sumcheck for a batch of polynomials pi(X1, . . . , Xn),
i = 0, . . . , L, by letting the verifier sample a random vector (λ1, . . . , λL)←$FL, and a subsequent sumcheck
protocol for the random linear combination

p̄(X1, . . . , Xn) = p0(X1, . . . , Xn) +
L∑
i=1

λi · pi(X1, . . . , Xn).

The soundness error bound increases only slightly,

εsumcheck ≤
1
|F |
·
(

1 +
n∑
i=1

degXi
p(X1, . . . , Xn)

)
. (10)

Computational cost

Let us discuss the prover cost of the sumcheck protocol for the case that p( ~X) = p(X1, . . . , Xn) is of the
form

p( ~X) = Q(w1( ~X), . . . , wm( ~X)),

with each wi( ~X) ∈ F [X1, . . . , Xn] being multilinear, and

Q(Y1, . . . , Ym) =
∑

(i1,...,im)∈{0,1}m

ci1,...,im · Y
i1

1 · · ·Y
im
m

is a multivariate polynomial having (a typically low) absolute degree d. We denote the arithmetic com-
plexity, i.e. the number of field multiplications M, substractions S and additions A to evaluate Q by |Q|M,
|QS| and |Q|A, respectively. Each of the univariate polynomials si(X), i = 1, . . . , n, is of degree at most
d the absolute degree of Q, and is computed from its values over a set D ⊇ {±1} of size |D| = d + 1. In
each step i = 1, . . . , n, the values of si(z) for z ∈ D are obtained by linear interpolation of the domain
evaluations of each

wj(r1, . . . , ri−1,±1, Xi+1, . . . , Xn)

over Hi = {±1}n−i as given from the previous step, to the domain evaluation

wj(r1, . . . , ri−1, z,Xi+1, . . . , Xn),

the values of which are used for computing si(z) =
∑

(xi+1,...,xn)∈Hi
Q(r1, . . . , ri−1, z, xi+1, . . . , xn). Given

the random challenge ri from the verifier, the domain evaluation of each

wj(r1, . . . , ri−1, ri, Xi+1, . . . , Xn)

is computed by another linear interpolation. Linear interpolation costs |Hi| multiplications and the same
number of additions/substractions for each multilinear polynomial, the values of Q are obtained within
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|Q|M ·M + |Q|S · S + |Q|A · A. In terms of field multiplications M, substractions S and additions A, step i
consumes

m · |Hi| · S +m · (|D| − 1) · |Hi| · (M + A) + |D| · |Hi| · (|Q|M ·M + |Q|S · S + |Q|A · A) + |D| · |Hi| · A,

where the last term is for the domain sums. Since
∑n
i=1 |Hi| = |H| − 1, the overall cost for the prover is

bounded by

|H| ·
(

1− 1
|H|

)
·
(
(d ·m+ (d+ 1) · |Q|M) ·M + (m+ (d+ 1) · |Q|S) ·S + (d ·m+ (d+ 1) · (|Q|A + 1)) ·A

)
. (11)

We shall use this formula for the operation counts of our lookup protocol.

Lookups based on the logarithmic derivative

Assume that F is a finite field, and that f1, . . . , fM and t : H → F are functions over the Boolean hypercube
H = {±1}n. By Lemma 5, it holds that

⋃M
i=1{fi(~x)}~x∈H ⊆ {t(~x)}~x∈H as sets, if and only if there exists a

function m : H → F such that ∑
~x∈H

M∑
i=1

1
X + fi(~x) =

∑
~x∈H

m(~x)
X + t(~x) , (12)

assuming that the characteristic of F is larger thanM times the size of the hypercube. If t is injective (which
is typically the case for lookup tables) thenm is the multiplicity function, counting the number of occurences
for each value t(~x) in f1, . . . , fM altogether, i.e. m(~x) = mf (t(~x)) =

∑M
i=1 |{~y ∈ H : fi(~y) = t(~x))|. If t is

not one-to-one, we set m as the normalized multiplicity function

m(~x) = mf (t(~x))
mt(t(~x)) =

∑M
i=1 |{~y ∈ H : fi(~y) = t(~x))|
|{~y ∈ H : t(~y) = t(~x))| . (13)

The plot for proving that
⋃M
i=1{fi(~x)}~x∈H ⊆ {t(~x)}~x∈H is as follows. Given a random challenge x←$F ,

the prover shows that the rational identity (12) holds at X = x, whenever evaluation is possible. However,
in order to make (12) applicable to the sumcheck argument, the prover needs to provide multilinear helper
functions for the rational expressions. We shall discuss two different different approaches for doing that.
In the first one, explained in Section 3.1, we use a single multilinear function for the entire fractional
expression in (12), which is subject to a domain identity over H which has O(M ) variables and absolute
degree O (M ). This will lead to a protocol with a O

(
M2 ) prover. However, if M is not too large this

approach will be more performant than the second one, discussed in Section 3.2, in which we essentially
use helper functions for each of the reciprocals 1

x+fi(~x) , and 1
x+t(~x) . This second variant has a sumcheck

polynomial in O (M ) many variables, but the absolute degree is bounded, henceforth having a O (M )
prover.

An argument for not too many columns

In this variant we provide a single helper function

h(~x) =
M∑
i=1

1
x+ fi(~x) −

m(~x)
x+ t(~x) , (14)

subject
∑
~x∈H h(~x) = 0. Correctness of h is ensured by the domain identity

(
h(~x) · (x+ t(~x)) +m(~x)

)
·
M∏
i=1

(x+ fi(~x)) = (x+ t(~x)) ·
M∑
i=1

∏
j 6=i

(x+ fj(~x)) (15)
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over H, and we apply the Lagrange kernel LH( . , ~z) at a randomly chosen ~z←$Fn to reduce the domain
identity to another sumcheck over H. Both sumchecks, the one for h and the one for the domain identity,
are then combined into a single one, using another randomness λ←$F .

Protocol 2 (Multi-column lookup over H = {±1}n). Let M ≥ 1 be an integer, and F a finite field with
characteristic p > M ·2n. Given any functions f1, . . . , fM , t : H → F on the boolean hypercube H = {±1}n,
the Lagrange IOP for that

⋃M
i=1{fi(~x) : ~x ∈ H} ⊆ {t(~x) : ~x ∈ H} as sets is as follows.

1. The prover determines the (normalized) multiplicity function m : H → F as defined in (13), and sends
the oracle for m to the verifier. The verifier answers with a random sample x←$F \{−t(~x) : ~x ∈ H}.

2. Given the challenge x from the verifier, the prover computes the randomized functions ϕi(~x) =
x+ fi(~x), i = 1, . . . ,M , and τ(~x) = x+ t(~x). It determines the values for

h(~x) =
M∑
i=1

1
ϕi(~x) −

m(~x)
τ(~x) , (16)

over H, and sends the oracle for h to the verifier.

3. The verifier responds with a random vector ~z←$Fn and a batching randomness λ←$F . Now, both
prover and verifier engage in the sumcheck protocol (Protocol 1) for∑

~x∈H
Q(LH(~x, ~z), h(~x),m(~x), ϕ1(~x), . . . , ϕM (~x), τ(~x)) = 0,

where

Q(L, h,m, ϕ1, . . . , ϕM , τ) = L ·

(h · τ +m) ·
M∏
i=1

ϕi − τ ·
M∑
i=1

∏
j 6=i

ϕj

+ λ · h. (17)

The sumcheck protocol outputs the expected value v for the multivariate polynomial

Q(LH( ~X, ~z), h( ~X),m( ~X), ϕ1( ~X), . . . , ϕM ( ~X), τ( ~X)) (18)

at ~X = ~r sampled by the verifier in the course of the protocol.

4. The verifier queries [f1], . . . , [fM ], [t], [m], [h] for their inner product with LH( . , ~r), and uses the
answers to check whether (18) equals the expected value v at ~X = ~r. (The value LH(~r, ~z) is computed
by the verifier.)

Remark 3. We imposed the condition x /∈ {−t(~x)}~x∈H merely for completeness. However in some applica-
tions it may be not be desirable, or even not possible, to sample x from outside the range of t. There are
several ways to handle this. One can simply omit the constraint on x, letting the verifier sample x←$F
and the prover set h arbitrary whenever (16) is not defined. This comes at no extra cost, but the obtained
protocol is only overwhelmingly complete. That is, with a probability of at most |H||F | in the verifier ran-
domness x, the honest prover does not succeed. In practice this is often considered acceptable, and many
lookup implementations have a non-zero completeness error. Whenever this is not acceptable, one may
modify the domain identity (15) to(h · τ +m) ·

M∏
i=1

ϕi − τ ·
M∑
i=1

∏
j 6=i

ϕj

 · τ · M∏
i=1

ϕi = 0 (19)

over H, which imposes no condition on h(~x) whenever τ(~x) = 0. However, this approach comes at the cost
of almost doubling the absolute degree of Q.
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Let us point out two variations of Protocol 2. In the single-column case M = 1 the lookup argument
can be turned into a multiset check for the ranges of f1 and t, by setting m as the constant function
m(~x) = 1. In this case only h needs to be provided by the prover. More interestingly, Protocol 2 is
easily extended to a proof of range equality, showing that

⋃M
i=1{fi(~x)}~x∈H = {τ(~x)}~x∈H as sets. For this

the prover additionally shows that m 6= 0 over H, which is done by providing another auxiliary function
hm : H → F subject to hm ·m = 1 over H. However, we are not aware of any application of this fact.

A variant for a large number of columns

Assume that M = 2m, so that we can index the columns to be looked up by f~z, where ~z ∈ {±1}m. We
patch these columns into a single function f over the extended hypercube H̄ = {±1}m ×H by

f(~y, ~x) =
∑

~z∈{±1}m

Lm(~y, ~z) · f~z(~x),

where Lm(~y, ~z) is the Lagrange polynomial for {±1}m. Given the random challange x←$F \ {−t(~x) : ~x ∈
H} from the verifier, the prover supplies an oracle for the values of

h(~y, ~x) = 1
x+ f(~y, ~x) −

m̃(~x)
x+ t(~x) (20)

over the extended hypercube, where m̃(~x) = 1
2m ·m(~x). The supplementary function h is subject to the

domain identity (
h(~y, ~x) · (x+ t(~x)) + m̃(~x)

)
· (x+ f(~y, ~x))− (x+ t(~x)) = 0

over H̄, and ∑
~y∈{±1}m

∑
~x∈H

h(~y, ~x) = 0.

Again, the domain identity is turned into a sumcheck over H̄ by applying the Lagrange kernel LH̄( . , ~z),
where ~z is now sampled from Fm+n. Combining the two sumchecks using a random λ←$F leads to the
overall sumcheck ∑

~y∈{±1}m

∑
~x∈H

Q(LH̄((~y, ~x), ~z), h(~y, ~x), m̃(~x), ϕ(~y, ~x), τ(~x)) = 0,

over H̄ = {±1}m ×H, with ϕ(~y, ~x) = x+ f(~y, ~x) and τ(~x) = x+ t(~x), and where Q is

Q(L, h, m̃, ϕ, τ) = L · ((h · τ + m̃) · ϕ− τ) + λ · h. (21)

In this variant, providing h amounts to M oracles over H, yielding an overall equivalent of M + 1 oracles
of size |H|. However, Q has only ν = 5 variables and its absolute degree is independent of the number of
columns.

Soundness

The soundness analysis of Protocol 2 is a straight-forward application of the Schwartz-Zippel lemma and the
Lagrange-query to point-query correspondence stated by Lemma 1. We merely sketch it. The univariate
rational lookup identity (12) is turned into a polynomial identity of degree at most |H| · (M + 1) − 1 by
multiplying it with the common denominator

p(X) =
∏
~x∈H

(X + t(~x)) ·
M∏
i=1

(X + fi(~x)). (22)
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Since we sample x from a set of size at least |F | − |H|, the soundness error of Step 2 of the protocol is at
most

ε1 ≤
(M + 1) · |H| − 1
|F | − |H|

. (23)

The soundness error due to the reduction of the domain identity (15) to the Lagrange kernel based sumcheck
is

ε2 ≤
1
|F |

,

as scalar products with the Lagrange kernel translate to point evaluation of the multilinear extension. This
yields the following theorem.

Theorem 4. The interactive oracle proof described Protocol 2 has soundness error

ε <
(M + 1) · |H| − 1
|F | − |H|

+ εsumcheck,

where εsumcheck is the soundness error of the sumcheck argument (10) over H for a multivariate polynomial
in M + 4 variables with maximum individual degree M + 3.

Remark 5. The O(M )-variant described in Section 2 has same soundness error, with εsumcheck being the
soundness error of the sumcheck argument over the extended hypercube of size M · |H| for a multivariate
polynomial in ν = 5 variables and maximum individual degree 4.
Remark 6. Protocol 2 and its variant from Section 3.2 are easily generalized to functions with multilinear
values,

t(~x) =
∑

(j1,...,jk)∈{0,1}k

tj1,...,jk(~x) · Y i1
1 · · ·Y

jk
k ,

fi(~x) =
∑

(j1,...,jk)∈{0,1}k

fi,j1,...,jk(~x) · Y i1
1 · · ·Y

jk
k ,

i = 1, . . . ,M , without changing the soundness error bound from Theorem 4. As F [X,Y1, . . . , Yk] is a unique
factorization domain, and polynomials of the form X −

∑
(i1,...,ik)∈{0,1}k ci1,...,ik · Y

i1
1 · · ·Y

ik
k are irreducible,

we may apply Lemma 5 to see that
⋃M
i=1{fi(~x)}~x∈H ⊆ {t(~x)}~x∈H as sets in the rational function field

F (X,Y1, . . . , Yk), if and only if there exists a function m : H → F such that

∑
~x∈H

M∑
i=1

1
X + fi(~x)(~Y )

=
∑
~x∈H

m(~x)
X + t(~x)(~Y )

. (24)

The only change to Protocol 2 is that the verifier now samples x from F and ~y = (y1, . . . , yk) from F k,
and continues with x− fi(~x) and x− t(~x) replaced by x− fi(~x)(~y) and x− t(~x)(~y).

Computational cost

The polynomial Q from (17) has ν = M + 4 variables, and absolute degree d = M + 3. Let us discuss an
domain evaluation strategy for the values of Q, which makes use of batch inversion. This strategy allows us
to evaluate Q much more efficiently than using (17), but demands a modification of the sumcheck operation
count formula (11). Assume that the inverses of ϕ1, . . . , ϕM−1 are given. Then we may evaluate Q by the
fractional representation

Q = L ·
M−1∏
i=1

ϕi ·
(
ϕM ·m+ τ ·

(
ϕM · h−

(
M−1∑
i=1

1
ϕi

+ 1
)))

+ λ · h.
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This costs M + 4 multiplications, one substraction, and M + 1 additions, and hence the arithmetic com-
plexities are |QM| = M + 4, |QS| = 1, |QA| = M + 1. Now, to attribute the inverses in formula (11), we
increase the multiplicative complexity by 3 · (M − 1), which represents the fractional cost of the batch
inversion2of ϕ1, . . . , ϕM−1. This yields the following equivalent complexities

|QM| = 4 ·M + 1, |QS| = 1, |QA| = M + 1,

which we may plug into formula (11).
Therefore the prover cost of Protocol 2 is as follows: Given the values of f1, . . . , fM and t over H,

computing ϕ1 = x+f1, . . . , φM = x+fM , τ = x+ t costs |H| · (M+1) ·A, and their reciprocals 1
ϕ1
, . . . , 1

ϕM
,

1
τ are obtained within 3 · |H| · (M + 1) ·M, using batch inversion. With these reciprocals we obtain the
values for

h =
M∑
i=1

1
ϕi
− m

τ

by |H| ·(1 ·S+(M−1) ·A). By the remark following Lemma 1, the values for LH( ~X, ~y) over H are obtained
within |H| · (M + A) operations. Hence the total cost of the preparation phase is

|H| · ((3 ·M + 4) ·M + 1 · S + (2 ·M + 1) · A.

According to (11) the sumcheck costs

|H| ·
(

1− 1
2n
)
·
(
(5 ·M2 + 24 ·M + 16) ·M + (2 ·M + 8) · S + (2 ·M2 + 13 ·M + 20) · A

)
.

However, as we may reuse the reciprocals of ϕ1, . . . , ϕM−1 in the first step of the sumcheck, we correct the
sumcheck cost by substracting |H| · (3 · (M − 1)). Neglecting the 1/2n-term, the overall cost of the prover is

|H| ·
(
(5 ·M2 + 24 ·M + 23) ·M + (2 ·M + 9) · S + (2 ·M2 + 15 ·M + 21) · A

)
, (25)

whereas it provides two H-sized oracles. The cost is O(|H|) but depends quadratically in M the number
of columns to be looked up. This quadratic occurence is due to the fact that both, the number of function
as well as the degree of Q grow linearly in M .

The cost for the O(M ) strategy from Section 3.2 is as follows. There, the prover provides h over the
extended hypercube of size |H̄| = M × |H|, and Q from (21) has ν = 5 variables, absolute degree d = 4,
and arithmetic complexities |QM| = 4, |QS| = 1, |QA| = 2. Computing the values of h over H̄ using batch
inversion costs

M · |H| · (3 ·M + A),

and the values for LH̄( , , ~z) over H̄ are determined in M · |H| · (M + A). The overall sumcheck costs

M · |H| ·
(

1− 1
M · |H|

)
·
(
40 ·M + 10 · S + 35 · A

)
.

Neglecting the 1
M ·|H| -term, the overall cost for the prover is

M · |H| · (44 ·M + 10 · S + 37 · A), (26)
2Batch, or Montgomery inversion, of a sequence (ai)N

i=1 computes the inverses of a−1
i by recursively computing the cumu-

lative products pi = a1 · . . . · an, i = 0, . . . , n, then calculating their inverses qi = 1
pi

in a reverse manner starting with qn = 1
pn

,
and putting qi−1 = qi · ai, where i goes from n down to 1. The inverses are then derived via a−1

i = pi−1 · qi, where p0 := 1.
The overall cost of the batch inversion is 3 · (N − 1) multiplications and a single inversion.
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but the prover needs to provide the oracles for one function over a domain of size M · |H|, and one over H.
Let us estimate the range for M where Protocol 2 is more efficient than the O (M ) variant. For this

we use the benchmarks from Table 3 which measure the equivalent number of field multiplication for a
multi-scalar multiplication in an elliptic curve over 256 bit large field. Based on this equivalent, and our
operation counts for the oracle prover, we obtain the following break even points.

Table 1: The estimated number of columns M where the O (M ) strategy starts to perform better than
Protocol 2. The numbers are based on the operation counts (25) and (26) for the oracle prover, and the
benchmarks for a multi-scalar multiplication over the Pallas curve, see Table 3.

log |H| 12 14 16 18
M 114 95 81 73

Lookups based on the Hyperplonk shift

In this section we informally discuss multi-column lookups based on the Plookup strategy and the time shift
from Hyperplonk+ [CBBZ22]. We give detailed operation counts and compare with our lookup arguments
from Section 3.

On of the main contributions of [CBBZ22] is the introduction of an (almost) transitive time shift
T : H → H which translates to multilinear extensions in a tame manner. The shift is derived from the
multiplication by a primitive root in GF (2n),

T (x1, . . . , xn) = 1 + xn
2 · (1, x1, . . . , xn−1) + 1− xn

2 · (−1, (−1)1−c1 · x1, . . . , (−1)1−cn−1 · xn−1),

where the ci ∈ {0, 1} are the coefficients of a primitive polynomial 1 +
∑n−1
i=1 ci ·Xi +Xn over GF (2). The

time shift acts transitively on the punctuated hypercube H ′ = H \ {~1} (as a group automorphism it has ~1
as a fixed point), and more importantly, evaluations of a shifted function f(T (~x)) can be simulated from
two evaluations of f by

f(T (x1, . . . , xn)) = 1 + xn
2 · f(1, x1, . . . , xn−1) + 1− xn

2 · f(−1, (−1)1−c1 · x1, . . . , (−1)1−cn−1 · xn−1). (27)

Using the time shift T allows for the same strategy for the univariate Plookup argument. (See Appendix
A.1 for a recap.) The argument is based on the fact that, given two sequences of field elements (ai)N−1

i=0
and (ti)N−1

i=0 , then {ai : j = 0, . . . , N − 1} ⊆ {ti : i = 0, . . . , N − 1} as sets, if and only if there exists a
sequence (si)2N−1

i=0 of double the size, which satisfies the lookup identity
N−1∏
i=0

(X + si + si+1 mod N · Y ) =
N−1∏
i=0

(X + ai + ai · Y ) · (X + ti + ti+1 mod N · Y ). (28)

(The sequence (si)2N−1
i=0 is the concatenation of the (ai) and (ti), ordered by value in the same way as given

by t.) We again discuss two approaches3for dealing with the grand product obtained from (28), when
sampling random (α, β)←$F 2 for (X,Y ). The first one applies a batched grand product argument over
H, independent of M the number of columns, leading to a O

(
M2 ) prover for similar reasons as Protocol 2

does. The second one proves the grand product argument over an extended hypercube H̄ of size M · |H|,
which on the one hand leads to larger functions to be provided, but on the other hand has a O(M ) prover
which outperforms the first approach at a high number of columns.

3We point out that the presented strategies slightly differ from the one in [CBBZ22], which uses the more expensive grand
product argument from [SL20].
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The argument for not too many columns

Let t : H ′ → F be the lookup table, and fi : H ′ → F , i = 1, . . . ,M , the functions subject to the lookup.
Although the functions are defined over the punctuated hypercube H ′, we assume arbitrary values at ~1.
(These will be ignored by the lookup argument.) The prover provides the ordered merge of the fi together
with t via additional functions si : H ′ → F , i = 1, . . . ,M + 1, subject to the generalized lookup identity

∏
~x∈H′

M∏
i=1

(X + si(~x) + si+1(~x) · Y ) · (X + sM+1(~x) + s1(T (~x)) · Y )

=
∏
~x∈H′

M∏
i=1

(X + fi(~x) + fi(~x) · Y ) · (X + t(~x) + t(T (~x)) · Y ).

The identity is reduced to a grand product over H ′ using random samples α, β←$F for X and Y , yielding∏
~x∈H′

h(~x) = 1,

where

h(~x) = α+ sM+1(~x) + s1(T (~x)) · β
α+ t(~x) + t(T (~x)) · β ·

M∏
i=1

(α+ si(~x) + si+1(~x) · β)
(α+ fi(~x) + fi(~x) · β) .

The prover computes the cumulative products of the values h(~x) along the orbit of the time shift T on
H ′, starting with φ(−~1) = 1, and setting

φ
(
T k(−~1)

)
= φ

(
T k−1(−~1)

)
· h
(
T k−1(−~1)

)
,

for k = 1, . . . , |H| − 1. At the remaining point ~x = ~1 outside H ′, the prover sets φ(~x) to zero. Correctness
of the grand product is proven by the constraint on its initial value φ(−~1) = 1, and the domain identity

φ(T (~x)) · τ(~x) ·
M∏
i=1

ϕi(~x)− φ(~x) · σM+1(~x) ·
M∏
i=1

σi(~x) = 0, (29)

for all ~x ∈ H, where τ(~x) = α+ t(~x) + β · t(T (~x)) and

ϕi(~x) = α+ (1 + β) · fi(~x),
σi(~x) = α+ si(~x) + β · si+1(~x),

for i = 1, . . . ,M , except σM+1(~x) = α + sM+1(~x) + β · s1(T (~x)). As in Protocol 2, both constraints on
φ, the initial value condition and the domain identity, are reduced to sumchecks over H by help of the
Lagrange polynomials LH( . ,−~1) and LH( . , ~y), where ~y←$Fn, and then combined into a single one by a
batching randomness λ←$F . The resulting overall sumcheck is∑

~x∈H
Q(LH(~x, ~y), LH(~x,−~1), τ(~x), ϕ1(~x), . . . , ϕM (~x), σ1(~x), . . . , σM+1(~x), φ(~x), φ(T (~x))) = 0,

where

Q(LH , L, τ, ϕ1, . . . , ϕM , σ1, . . . , σM+1, φ, φT ) = LH ·
(
φT · τ ·

M∏
i=1

ϕi − φ ·
M+1∏
i=1

σi
)

+ λ · L · (φ− 1). (30)

Note that Q has absolute degree d = M + 3, which is the same as in Protocol 2, but about the double of
variables, ν = 2 ·M + 6. Its arithmetic complexities are |QM| = 2 · (M + 1) + 3, |QS| = 2, |QA| = 1.
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Prover costs

The prover cost for the multi-colum Plookup is as follows. Computing the values for τ and all ϕi, σi over
H consumes overall

|H| · (2 · (M + 1) ·M + (3M + 4) · A),

the quotient h(~x) is obtained within |H| · (2 ·M + 4) ·M, using batch inversion. From these values φ(x)
over H is derived by another |H| ·M. The domain evaluation for LH( ~X, ~y) is obtained within |H| · (M + A)
operations, and the sumcheck costs

|H| ·
(

1− 1
|H|

)
·
(
(4 ·M2 + 25 ·M + 38) ·M + (6 ·M + 20) · S + (2 ·M2 + 14 ·M + 26) · A

)
.

Neglecting the 1/|H|-term, the overall cost of the prover is

|H| ·
(
(4 ·M2 + 29 ·M + 46) ·M + (6 ·M + 20) · S + (2 ·M2 + 17 ·M + 31) · A

)
. (31)

This is comparable with (25), but does not take into account that the prover needs to supply a total of
M + 1 functions over H instead of two.

A variant for a large number of columns

Suppose that we have a table function t : H ′ → F defined over the punctuated hypercube H ′ = H\{~1}, and
M column functions f1, . . . , fM : H → F defined on the entire hypercube. We assume that M+1 = 2m for
an integer m ≥ 1, so that we can index the column functions as f~z, with ~z from {±1}m \ {~1}. The ordered
concatenation of the column functions and the table function has now 2m · |H|−1 entries, which we arrange
in a single function s over H̄ \ {~1} along the orbit of the time shift TH̄ on H̄, where H̄ = {±1}m × H.
The value of s at ~1 can be set arbitrary (it will be ignored by the lookup argument). Using the patched
function

f(~y, ~x) =
∑

~z∈{±1}m\{~1}

Lm(~y, ~z) · f~z(~x),

over H̄, where Lm is the Lagrange kernel for {±1}m, the lookup identity at random (α, β)←$F 2 reads
now as∏

(~y,~x)∈H̄′
(α+ s(~y, ~x) + β · s(TH̄(~y, ~x))) =

∏
(~y,~x)∈H̄′

(α+ (1 + β) · f(~y, ~x) + Lm(~y,~1) · (t(~x) + β · t(TH(~x))),

where H̄ ′ = H̄ \ {~1}. (Notice that the α-term for t on the right hand side is combined with the α-term for
f .) In other words the prover needs to show that∏

(~y,~x)∈H̄′

ϕ(~y, ~x)
σ(~y, ~x) = 1,

where

ϕ(~y, ~x) = α+ (1 + β) · f(~y, ~x) + Lm(~y,~1) · (t(~x) + β · t(TH(~x))),
σ(~y, ~x) = α+ s(~y, ~x) + β · s(TH̄(~y, ~x)).

As before, the prover provides a function φ over H̄ ′ for the cumulative products of the values of
h(~x) = ϕ(~y,~x)

σ(~y,~x) along the orbit of TH̄ , starting with φ(−~1) = 1, and setting

φ(T k
H̄

(−~1)) = φ(T k−1
H̄

(−~1)) · h(T k−1
H̄

(−~1)),
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for k = 1, . . . , |H̄|−2. At the remaining point ~1 we set φ(~1) = 0. Correctness of φ is ensured by φ(−~1) = 1,
and the domain identity

φ(TH̄(~y, ~x)) · ϕ(~y, ~x)− φ(~y, ~x) · σ(~y, ~x) = 0

over H̄. Applying the Lagrange polynomials LH̄( . , ~z), ~z←$Fm+n, and LH̄( . ,−~1), the constraints on φ
are reduced to sumchecks over H̄, which are then combined into a single one using a random λ←$F . The
overall sumcheck is∑

(~y,~x)∈H̄

Q(LH̄((~y, ~x), ~z), LH̄((~y, ~x),−~1), ϕ(~y, ~x), σ(~y, ~x), φ(~y, ~x), φ(TH̄(~y, ~x))) = 0,

where
Q(LH , L, ϕ, σ, φ, φT ) = LH · (φT · ϕ− φ · σ) + λ · L · (φ− 1). (32)

The polynomial Q has ν = 6 variables, absolute degree d = 3, and its arithmetic complexities are |QM| = 5,
|QS| = 2, |QA| = 1.

Prover cost

Computing the values of the patched function ϕ over H̄ takes |H̄| · (1 ·M + 2 ·A), and the same number of
operations are needed for σ. The quotient h over H̄ is obtained by batch inversion, consuming

|H̄| · (3 + 1) ·M,

and the values of φ are computed within another |H̄| multiplications. Last but not least, computing
LH̄( . , ~z) over H̄ costs |H̄| · (M + A), and the sumcheck

|H̄| ·
(

1 + 1
|H̄|

)
· (38 ·M + 20 · S + 26 · A).

Neglecting the 1
|H̄| -term, the overall cost of the prover is

(M + 1) · |H| · (45 ·M + 20 · S + 30 · A), (33)

whereas it needs to provide the functions s and φ over H̄, which amounts the equivalent of 2 · (M + 1)
functions over |H|. Based on our benchmark-backed equivalent number of field operations for a multi-scalar
multiplications (Table 3), we obtain the following break even points.

Table 2: The estimated number of columns M where the O (M ) strategy starts to perform better than
the protocol from Section 4.1. The numbers are based on the operation counts (31) and (33) for the oracle
prover, and the benchmarks for a multi-scalar multiplication over the Pallas curve, see Section ??.

log |H| 12 14 16 18
M 143 120 103 92
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Table 3: Benchmark of Halo2’s Pippenger multi-scalar multiplication in the Pallas curve, varying the
number N of scalars. The benchmarks where done on a AMD Ryzen 7 PRO 4750U, 32GB RAM DDR4,
restricting to a single core.

logN Pippenger of size N 28 ·N field mult. equivalent field mult.
12 46.010 ms 21.11 ms N · 557 ·M
14 153.67 ms 42.315 ms N · 464 ·M
16 522.13 ms 169.70 ms N · 394 ·M
18 1.869 ms 679.27 ms N · 351 ·M

Comparison with logarithmic derivative lookups

The main advantage of logarithmic derivative lookups over the ones from the current section is not the
arithmetic cost as reflected by the operation counts (25), (26) and (25), (26), but the number and sizes of
oracle functions the prover needs to provide. That oracle costs depend on the used commitment scheme.
To give an estimate for these costs in the case of an elliptic curve based Lagrange commitment scheme
(such as the IPA), we rely on a benchmark-backed equivalent of field multiplications for the multi-scalar
multiplication in the Pallas curve. These are found in Table 3.

With these equivalence measure and the operation counts from (25), (26) and (31), (33), we obtain the
following ratios of field multiplications.

Table 4: The estimated performance advantage of the logarithmic derivative lookups over the ones from
this section, as the ratio of their number of field multiplications r = M(Plookup)/M(logD). The numbers are
based on the equivalent number of field multiplication from Table 3. For hypercube sizes |H| ranging from
212–218 we describe the maximum ratio rmax over the number of columns M , as well as the ranges for M
over which r is larger than 2 and 3, respectively. The minimum ratio is throughout r = 1.5 and obtained
in the single-column setting M = 1.

log |H| r ≥ 3 r ≥ 2 rmax
12 M ∈ [5, 41] M ∈ [3, 87] 4.1 (at M = 15)
14 M ∈ [6, 32] M ∈ [3, 71] 3.8 (at M = 13)
16 M ∈ [6, 26] M ∈ [3, 59] 3.5 (at M = 12)
18 M ∈ [6, 21] M ∈ [3, 52] 3.2 (at M = 12)
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Appendix

Univariate Lookups

Let us sketch Plookup variant from [GW20] described in the blog post [Gab22], generalized to the case
of multi-column lookups. Here, the set H denotes the univariate domain H = {x ∈ F : xn = 1} with
generator g. Suppose that fi : H → F , i = 0, . . . ,M − 1, are functions for which we want to prove that
its range is contained in that of t : H → F , i.e.

⋃M−1
i=0 {fi(x)}x∈H ⊆ {t(x)}x∈H as sets. Let (fi,k)n−1

k=0
and (tk)n−1

k=0 denote the sequences of values given by the index with respect to g, i.e. fi,k = f(gk) and
tk = f(gj), and let mk be the overall multiplicity of tk in the union (or, concatenation) of the sequences
(fi,k)i, i = 1, . . . ,M . Consider the sequence

s̄ = (s̄i)(M+1)·n−1
i=0 = ( t0, . . . , t0︸ ︷︷ ︸

1+m0 times

, t1, . . . , t1︸ ︷︷ ︸
1+m1 times

, . . . , tn−1, . . . , tn−1︸ ︷︷ ︸
1+mn−1 times

),

and split it into (M + 1) sequences of length n,

si = (s̄i+k·(M+1))n−1
k=0 ,

with i = 0, . . . ,M . We regard these sequences again as functions on H. Then
M−1⋃
i=0
{si(x), si+1(x)}x∈H ∪ {(sM (x), s0(g · x))}x∈H =

M−1⋃
i=0
{(fi(x), fi(x))}x∈H ∪ {(t(x), t(g · x))}x∈H (34)

as multisets. Moreover, this multiset equality is in fact equivalent to
⋃M−1
i=0 {fi(x)}x∈H ⊆ {t(x)}x∈H . The

set inclusion holds if and only if there exists functions s0, . . . , sM : H → F satisfying (34). The multiset
equation (34) is equivalent to the formal identity

∏
x∈H

M−1∏
i=0

(X + si(x) + si+1(x) · Y ) · (X + sM (x) + s0(g · x) · Y )

=
∏
x∈H

M−1∏
i=0

(X + fi(x) + fi(x) · Y ) · (X + t(x) + t(g · x) · Y ),
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which is reduced by random sampling α, β←$F for X and Y , to the grand product

∏
x∈H

σM (x)
τ(x) ·

M−1∏
i=0

σi(x)
ϕi(x) = 1, (35)

where τ(x) = α+ t(x) + β · t(g · x), and

ϕi(x) = α+ (1 + β) · fi(x),
σi(x) = α+ si(x) + β · si+1(x),

for i = 0, . . . ,M − 1, except for σM (x) = α + sM (x) + β · s0(g · x). To prove the grand product over the
quotients h(x) = σM (x)

τ(x) ·
∏M−1
i=0

σi(x)
ϕi(x) , the prover sets φ(1) = 1, and computes recursively φ(gi) = φ(gi−1) ·

h(gi−1), for i = 1, . . . , n− 1. (Recall that the grand product is equal to 1 if and only if φ(gn) = φ(1) = 1.)
This leads to the following domain identities over H,

φ(g · x) · τ(x) ·
M−1∏
i=0

ϕi(x)− φ(x) ·
M∏
i=0

σi(x) = 0,

and
LH(x, 1) · (φ(x)− 1) = 0,

where LH(X,Y ) = 1
n ·

Y ·vH(X)−X·vH(Y )
X−Y is the Lagrange kernel for the univariate domain H. The indentities

are combined into a single one using a random λ←$F , yielding the overall polynomial identity is

φ(g · x) · τ(x) ·
M−1∏
i=0

ϕi(x)− φ(x) ·
M∏
i=0

σi(x) + λ · LH(X, 1) · (φ(X)− 1) = 0 mod vH(X),

where vH(X) = Xn − 1 is the vanishing polynomial of H.
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