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Abstract

Logarithmic derivatives translate products of linear factors into sums of their reciprocals, turning
zeroes into simple poles of same multiplicity. Based on this simple fact, we construct an interactive oracle
proof for lookups over the boolean hypercube, which makes use of a single multiplicity function instead
of working with a rearranged union of table and witnesses, as Plookup [GW20] does. For single-column
lookups the performance is comparable to Plookup, taken to the multivariate setting by Hyperplonk+
[CBBZ22]. However, the real power of our argument unfolds in the case of “batch-column” lookups,
where multiple columns are subject to the same table lookup: While the number of field operations
is comparable to the Plookup strategy, the oracles provided by our prover are significantly fewer. For
example, given M = 20 columns of length between 212 and 218 , and assuming a commitment scheme
over an elliptic curve with a 256 bit large base field, our paper-pencil operation counts indicate that the
logarithmic derivative lookup is more than 3.9 times faster.
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1 Introduction

Lookup arguments prove a sequence of values being member of an, often prediscribed, table. They are an
essential tool for improving the efficiency of arguments for statements which are otherwise quite expensive
to arithmetize. Main applications are (1) lookups for relations of high algebraic complexity, and (2) lookups
for interval ranges, the latter of which are extensively used by zero-knowledge virtual machines. Although
closely related to permutation (or shuffle) arguments [BG12], a first explicit occurence of lookups dates back
to the Arya paper [BCG+18], to the best of our knowledge. While their argument handles multiplicities
directly in a quite costly manner, Plookup [GW20] greatly improved over [BCG+18] using a rather geometric
approach. Since then Plookup (and variants of it) is the general purpose lookup argument used in practical
applications.

In this paper we describe a lookup argument based which is based on logarithmic derivatives. As
in classical calculus, the formal logarithmic derivative turns products

∏N
i=1(X − zi) into sums of their

reciprocals,
N∑
i=1

1
X − zi

,

having poles with the same multiplicity as the zeros of the product. Working with poles instead of
zeros is extremly useful for lookup arguments. While the treatment of multiplicities is quite indirect
and therefore costly in the product approach [BCG+18, GW20], it turns straight-forward when using
logarithmic derivatives: Given a sequence of field elements (ai)Ni=1 and another sequence (tj)Mj=1, then
{ai : i = 1, . . . , N} ⊆ {tj : j = 1, . . . ,M} as sets, if and only if there exists a sequence of field elements
(mj)Mj=1 (the multiplicities) such that

N∑
i=1

1
X − ai

=
M∑
j=1

mj

X − tj
.

(This holds under quite mild conditions on the field, see Lemma 5 for details.) Based on this fractional
identity we construct a lookup argument which is more efficient than Plookup, which argues via a sorted
union of witness and table sequence. This is particularly true in the case of batch-column lookups, where
several sequences (“columns”) are subject to the same table lookup, a situation that often arises in zero-
knowledge virtual machines, enforcing execution trace elements being valid machine words. For example,
the arithmetic unit of Polygon’s System Zero [Pol] has about 70 columns subject to one and the same
range check, or the tinyRAM implementation of Orbis Labs [Lab] has 12 columns subject to one and the
same lookup table. In our lookup the oracle costs, measuring the number and sizes of the oracles, are
significantly lower than for a lookup based on the Plookup strategy.

We stress the fact that we are not the only ones who exploit fractional decompositions for lookups
and related problems. Bulletproof++ [Eag22] already uses logarithmic derivatives for range proofs. (This
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was not known to us until the present update of this write-up.) Although their treatment lacks formal
justification, the key idea is the same as ours. Concurrently, improving the track of work [ZBK+22, PK22]
on “large-table” lookups (Caulk and Caulk+), Flookup [GK22] describes an oracle proof for the radical of
a witness sequence (i.e. the sequence with multiple occurences removed) which is almost identical to the
logarithmic derivative approach1. In the meantime, logarithmic derivatives are directly used in large-table
lookups, yielding the currently most efficient argument Cached Quotients [EFG22].

This document focuses on batch-column lookups in the multivariate setting. It is organized as follows.
In Section 2, we gather the preliminaries used in the sequel: The Lagrange kernel over the boolean hy-
percube, basic facts on the formal logarithmic derivative, and a summary of the multivariate sumcheck
argument. Besides that, we informally introduce Lagrange interactive oracle proofs, an oracle model we
consider suitable for arguments which are based on the Lagrange representation of polynomials rather than
their coefficients. In Section 3 we describe our lookup argument based on the logarithmic derivative. For
comparison reasons, we add an extra section (Section 4) in which we outline batch-column lookups using
the Plookup strategy, adapted to the boolean hypercube. These rely on the time shift from Hyperplonk
[CBBZ22], and we consider them state-of-the-art in the multivariate setting.

We finally point out, that although our protocol is written for the multilinear setting, its translation
into a univariate proof is straight-forward. We expect these univariate arguments to improve similarly over
multi-column lookups based on the Plookup strategy.

2 Preliminaries

2.1 The Lagrange kernel of the boolean hypercube

Let F denote a finite field, and F ∗ its multiplicative group. Throughout the document we regard the boolean
hypercube H = {±1}n as a multiplicative subgroup of (F ∗)n. For a multivariate function f(X1, . . . , Xn),
we will often use the vector notation ~X = (X1, . . . , Xn) for its arguments, writing f( ~X) := f(X1, . . . , Xn).

The Lagrange kernel of H is the multilinear polynomial

LH( ~X, ~Y ) = 1
2n ·

n∏
j=1

(1 +Xj · Yj). (1)

Notice that LH( ~X, ~Y ) is symmetric in ~X and ~Y , i.e. LH( ~X, ~Y ) = LH(~Y , ~X), and that (1) is evaluated
within only O (log |H|) field operations. Whenever ~y ∈ H we have that LH( ~X, ~y) is the Lagrange poly-
nomial on H, which is the unique multilinear polynomial which satisfies LH(~x, ~y) = 1 at ~x = ~y, and zero
elsewhere on H. In particular for a function f : H → F the inner product evaluation formula

〈f, LH( . , ~y)〉H :=
∑
~x∈H

f(~x) · LH(~x, ~y) = f(~y).

is valid for every ~y ∈ H. This property extends beyond H, as the following Lemma shows.

Lemma 1. Let p( ~X) be the unique multilinear extension of f : H → F . Then for every ~y ∈ Fn,

〈f, LH( . , ~y)〉H =
∑
x∈H

f(~x) · LH(~x, ~y) = p(~y). (2)

Proof. Since p(~y) =
∑
~x∈H f(~z) ·LH( ~X, ~z), it suffices to show the claim for p(X) = LH( ~X, ~z), with ~z ∈ H.

By the property of LH( ~X, ~z), we have
〈
LH( . , ~z), LH( . , ~y)

〉
H

= LH(~y, ~z), which by symmetry is equal to
LH( ~X, ~y) at ~X = ~z. This completes the proof of the Lemma.

1Almost simultaneously, G. Roh, W. Dai, M. Jabbour, and A. He, published the same idea in a blog post [RDJH22].
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Note that for any ~y ∈ Fn, the domain evaluation of LH( ~X, ~y) over H can be computed in O(|H|) field
operations, by recursively computing the domain evaluation of the partial products pk(X1, . . . , Xk, y1, . . . , yk) =
1

2n ·
∏k
j=1(1 +Xj · yj) over Hk = {±1}k from the domain evaluation of pk−1, where one starts with f0 = 1

2n
over the single-point domain H0. Each recursion step costs |Hk−1| field multiplications, denoted by M, and
the same number of additions, denoted by A, yielding overall

n∑
k=1
|Hk−1| · (M + A) < |H| · (M + A). (3)

2.2 The formal derivate

Given a univariate polynomial p(X) =
∑d
k=0 ck ·Xk over a general (possibly infinite) field F , its derivative

is defined as

p′(X) :=
d∑

k=1
k · ck ·Xk−1. (4)

As in calculus, the derivative is linear, i.e. for every two polynomials p1(X), p1(X) ∈ F [X], and coefficients
λ1, λ2 ∈ F ,

(λ1 · p1(X) + λ2 · p1(X))′ = λ1 · p′1(X) + λ2 · p′2(X)

and we have the product rule

(p1(X) · p2(X))′ = p′1(X) · p2(X) + p1(X) · p′2(X).

For a function p(X)
q(X) from the rational function field F (X), the derivative is defined as the rational function

(
p(X)
q(X)

)′
:= p′(X) · q(X)− p(X) · q′(X)

q(X)2 . (5)

By the product rule for polynomials, the definition does not depend on the representation of p(X)
q(X) . Both

linearity as well as the product rule extend to rational functions.
For any polynomial p(X) ∈ F [X], if p′(X) = 0 then p(X) = g(Xp) where p is the characteristic of the

field F . In particular, if deg p(X) < p, then the polynomial must be constant. As the analogous fact for
fractions is not as commonly known, we give a proof of the following lemma.

Lemma 2. Let F be a field of characteristic p 6= 0, and p(X)
q(X) a rational function over F with both

deg p(X) < p and deg q(X) < p. If the formal derivative
(
p(X)
q(X)

)′
= 0, then p(X)

q(X) = c for some constant
c ∈ F .

Proof. If q(X) is a constant, then the assertion of the Lemma follows from the corresponding statement for
polynomials. Hence we assume that deg q(X) > 0. Use polynomial division to obtain the representation

p(X)
q(X) = m(X) + r(X)

q(X) ,

with m(X), r(X) ∈ F [X], degm(X) ≤ deg p(X), and deg r(X) < deg q(X) whenever r(X) 6= 0. By
linearity of the derivative, we have 0 =

(
p(X)
q(X)

)′
= m′(X) +

(
r(X)
q(X)

)′
, and therefore

r′(X) · q(X)− r(X) · q′(X) = −m′(X) · q(X)2. (6)
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Comparing the degrees of left and right hand side in (6), we conclude that m′(X) = 0. Since degm(X) ≤
deg p(X) < p we have m(X) = c for some constant2c ∈ F . Furthermore, if we had r(X) 6= 0 then the
leading term of the left hand side in (6) would be

(k − n) · cn · dk ·Xn+k−1,

with cn ·Xn, n > 0, being the leading term of q(X), and dk ·Xk, 0 ≤ k < n, the leading term of r(X). As
0 < n− k < p, and both cn 6= 0 and cm 6= 0, the leading term of the left hand side of (6) would not vanish.
Therefore it must hold that r(X) = 0 and the proof of the lemma is complete.

2.3 The logarithmic derivative

The logarithmic derivate of a polynomial p(X) over a (general) field F is the rational function

p′(X)
p(X) .

Note that the logarithmic derivative of the product p1(X) · p2(X) of two polynomials p1(X), p2(X) equals
the sum of their logarithmic derivatives, since by the product rule we have

(p1(X) · p2(X))′

p1(X) · p2(X) = p′1(X) · p2(X) + p1(X) · p′2(X)
p1(X) · p2(X) = p′1(X)

p1(X) + p′2(X)
p2(X) .

In particular the logarithmic derivative of a product p(X) =
∏n
i=1(X + zi), with each zi ∈ F , is equal to

the sum
p′(X)
p(X) =

n∑
i=1

1
X + zi

. (7)

The following lemma3is a simple consequence of Lemma 2 and essentially states that, under quite mild
conditions on the field F , if two normalized polynomials have the same logarithmic derivative then they
are equal. We state this fact for our use case of product representations.

Lemma 3. Let (ai)ni=1 and (bi)ni=1 be sequences over a field F with characteristic p > n. Then
∏n
i=1 (X + ai) =∏n

i=1 (X + bi) in F [X] if and only if

n∑
i=1

1
X + ai

=
n∑
i=1

1
X + bi

in the rational function field F (X).

Proof. If pa(X) =
∏n
i=1 (X + ai) and pb(X) =

∏n
i=1 (X + bi) coincide, so do their logarithmic derivatives.

To show the other direction, assume that p′a(X)
pa(X) = p′b(X)

pb(X) . Then

(
pa(X)
pb(X)

)′
= p′a(X) · pb(X)− pa(X) · p′b(X)

p2
b(X)

= 0.

Hence by Lemma 2 we have pa(X)
pb(X) = c for some constant c ∈ F . As both pa(X) and pb(X) have leading

coefficient equal to 1, we conclude that c = 1, and the proof of the Lemma is complete.
2For general degrees of p(X) we would only be able to conclude that m(X) = g(Xp) for some polynomial g(X).
3At the time of writing we learned that also others are aware of Lemma 3. In a Delendum Frontiers session on multi-party

computation (6. Oct. 2022) an audience member pointed out its usefulness for permutation arguments.
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Remark 1. We stress the fact that Lemma 3 also applies to the case where F is the function field
Fp(Y1, . . . , Yk) over a finite field Fp of characteristic p. This observation will be useful when generalizing
the permutation argument to the case where ai and bi are multilinear polynomials in Y1, . . . , Yn.

Given a product p(X) =
∏N
i=1(X + ai) we can gather the poles of its logarithmic derivative obtaining

the fractional decomposition

p′(X)
p(X) =

∑
a∈F

m(a)
X + a

,

where m(a) ∈ {1, . . . , N} is the multiplicity of the value a in (ai)Ni=1. Fractional decompositions are unique,
as shown by the following lemma.

Lemma 4. Let F be an arbitrary field and m1,m2 : F → F any functions. Then
∑
z∈F

m1(z)
X−z =

∑
z∈F

m2(z)
X−z

in the rational function field F (X), if and only if m1(z) = m2(z) for every z ∈ F .

Proof. Suppose that the fractional decompositions are equal. Then
∑
z∈F

m1(z)−m2(z)
X−z = 0, and therefore

p(X) =
∏
w∈F

(X − w) ·
∑
z∈F

m1(z)−m2(z)
X − z

=
∑
z∈F

(m1(z)−m2(z)) ·
∏

w∈F\{z}
(X − w) = 0.

In particular, p(z) = (m1(z)−m2(z)) ·
∏
w∈F\{z}(z − w) = 0 for every z ∈ F . Since

∏
w∈F\{z}(z − w) 6= 0

we must have m1(z) = m2(z) for every z ∈ F . The other direction is obvious.

This leads to the following algebraic criterion for set membership, which is the key tool for our lookup
arguments.

Lemma 5 (Set inclusion). Let F be a field of characteristic p > N , and suppose that (ai)Ni=1, (bi)Ni=1 are
arbitrary sequences of field elements. Then {ai} ⊆ {bi} as sets (with multiples of values removed), if and
only if there exists a sequence (mi)Ni=1 of field elements from Fq ⊆ F such that

N∑
i=1

1
X + ai

=
N∑
i=1

mi

X + bi
(8)

in the function field F (X). Moreover, we have equality of the sets {ai} = {bi}, if and only if mi 6= 0, for
every i = 1, . . . , N .

Proof. Let us denote by ma(z) the multiplicity of a field element z in the sequence (ai)Ni=1. Likewise, we
do for (bi)Ni=1. Note that since N < p, the multiplicities can be regarded as non-zero elements from Fp as a
subset of F . Suppose that {ai} ⊆ {bi} as sets. Set (mi) as the normalized multiplicities mi = ma(bi)

mb(bi) . This
choice of (mi) obviously satisfies (8).

Conversely, suppose that (8) holds. Collecting fractions with the same denominator we obtain fractional
representations for both sides of the equation (8),

N∑
i=1

1
X + ai

=
∑
z∈F

ma(z)
X + z

,

N∑
i=1

mi

X + bi
=
∑
z∈F

µ(z)
X + z

.

Note that since N < p, we know that for each z ∈ {ai} we have ma(z) 6= 0. By the uniqueness of fractional
representations, Lemma 4, ma(z) = µ(z) for every z ∈ {ai}, and therefore each z ∈ {ai} must occur also
in {bi}.
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2.4 Lagrange interactive oracle proofs

The oracle proofs of many general purpose SNARKs such as Plonk [GWC19] or algebraic intermediate
representations [BSBHR18] rely on witnesses that are given in Lagrange representation, i.e. by their values
over a domain H. Their multivariate variants may completely avoid the usage of fast Fourier transforms
whenever the polynomial commitment scheme can be turned into one that does not need to know the
coefficients, neither when computing a commitment nor in an opening proof. Exactly this property is
captured by Lagrange oracle proofs, rather than polynomial ones [BFS20].

A Lagrange interactive oracle proof (Lagrange IOP) over the boolean hypercube H = {±1}n is an
interactive protocol between two parties, the “prover” and the “verifier”. In each round, the verifier sends a
message (typically a random challenge) and the prover computes one or several functions over the boolean
hypercube, and gives the verifier oracle access to them. From the moment on it is given access, the verifier
is allowed to query the oracles for their inner products with the Lagrange kernel LH( . , ~y), associated with
an arbitrary vector ~y ∈ Fn.

The security notions for Lagrange IOPs, such as completeness, (knowledge) soundness, and zero-
knowledge, are exactly the same as for other interactive oracle proofs. We assume that the reader is
familiear with these, and refer to [BSCS16] or [BFS20] for their formal definitions.

Lagrange IOPs are turned into arguments by instantiating the Lagrange oracles by a Lagrange commit-
ment scheme. A Lagrange commitment scheme is a commitment scheme for functions over H that comes
with an evaluation proof for Lagrange queries. For example, inner product arguments [BCC+16] can be
directly used to construct Lagrange commitment schemes, but also the multilinear variant [PST13] of the
[KZG10] commitment scheme is easily modified to completely avoid dealing with coefficients. We suppose
that this is well-known, and therefore we omit an explicit elaboration in this paper.

2.5 The sumcheck protocol

We give a concise summary on the multivariate sumcheck protocol [LFKN92]. Given a multivariate poly-
nomial p(X1, . . . , Xn) ∈ F [X1, . . . , Xn], a prover wants to convince a verifier upon that

s =
∑

(x1,...,xn)∈{±1}n
p(x1, . . . , xn).

This is done by a random folding procedure which, starting with H0 = {±1}n, which stepwise reduces
a claim on the sum over Hi = {±1}n−i, i = 0, . . . , n − 1, to one over the hypercube Hi+1 of half the
size. Eventually, one ends up with a claim over a single-point sum, which is paraphrased as the value of
p(X1, . . . , Xn) at a random point (r1, . . . , rn) ∈ Fn sampled in the course of the reduction steps.

Protocol 1 (Sumcheck protocol, [LFKN92]). Let p(X1, . . . , Xn) be a multivariate polynomial over a finite
field F . The sumcheck protocol, in which a prover wants to convince the verifier upon the sum s =∑

(x1,...,xn)∈{±1}n p(x1, . . . , xn), is as follows. We write s0(X) for the constant polynomial s0 = s.

• In each round i = 1, . . . , n, the prover sends the coefficients of the univariate polynomial

si(X) =
∑

(xi+1,...,xn)∈{±1}n−i
p(r1, . . . , ri−1, X, xi+1, . . . , xn),

of degree di ≤ degXi p(X1, . . . , Xn), where r1, . . . , ri−1 are the randomnesses received in the previ-
ous rounds. (In the first round i = 1 there are no previous randomnesses, and p(r1, . . . , ri−1, X,
xi+1, . . . , xn) is meant to denote p(X,x2, . . . , xn).) The prover sends the coefficients of si(X) to the
verifier, which checks whether the received polynomial si(X) is in fact of the expected degree and that

si−1(ri−1) = si(+1) + si(−1).
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(Again, in the first round i = 1 there is no r0, and the verifier checks wheather s0 = s1(+1)+s1(−1).)
If so, the verifier samples random challenge ri←$F uniformly from F and sends it to the prover.

After these rounds the verifier checks that sn(rn) = p(r1, . . . , rn). If so, the verifier accepts (otherwise it
rejects).

Soundness of the sumcheck protocol is proven by a repeated application of the Schwartz-Zippel lemma.
We omit a proof, and refer to [LFKN92] or [Tha13].

Theorem 2 ([LFKN92]). The sumcheck protocol (Protocol 1) has soundness error

εsumcheck ≤
1
|F |
·
n∑
i=1

degXi p(X1, . . . , Xn). (9)

The sumcheck protocol is easily extended to the sumcheck for a batch of polynomials pi(X1, . . . , Xn),
i = 0, . . . , L, by letting the verifier sample a random vector (λ1, . . . , λL)←$FL, and a subsequent sumcheck
protocol for the random linear combination

p̄(X1, . . . , Xn) = p0(X1, . . . , Xn) +
L∑
i=1

λi · pi(X1, . . . , Xn).

The soundness error bound increases only slightly,

εsumcheck ≤
1
|F |
·
(

1 +
n∑
i=1

degXi p(X1, . . . , Xn)
)
. (10)

Computational cost

Let us discuss the prover cost of the sumcheck protocol for the case that p( ~X) = p(X1, . . . , Xn) is of the
form

p( ~X) = Q(w1( ~X), . . . , wν( ~X)),

with each wi( ~X) ∈ F [X1, . . . , Xn] being multilinear, and

Q(Y1, . . . , Yν) =
∑

(i1,...,iν)∈{0,1}ν
ci1,...,iν · Y

i1
1 · · ·Y

iν
ν

is a multivariate polynomial having (a typically low) absolute degree d. We denote the arithmetic complex-
ity, i.e. the number of field multiplications M, substractions and additions A to evaluate Q by |Q|M and
|Q|A, respectively. (For simplicity we count substractions as additions.) Each of the univariate polynomials
si(X), i = 1, . . . , n, is of degree at most d the absolute degree of Q, and is computed from its values over
a set D ⊇ {±1} of size |D| = d + 1. In each step i = 1, . . . , n, the values of si(z) for z ∈ D are obtained
by linear interpolation of the domain evaluations of each

wj(r1, . . . , ri−1,±1, Xi+1, . . . , Xn)

over Hi = {±1}n−i as given from the previous step, to the domain evaluation

wj(r1, . . . , ri−1, z,Xi+1, . . . , Xn),

the values of which are used for computing si(z) =
∑

(xi+1,...,xn)∈Hi Q(r1, . . . , ri−1, z, xi+1, . . . , xn). Given
the random challenge ri from the verifier, the domain evaluation of each

wj(r1, . . . , ri−1, ri, Xi+1, . . . , Xn)
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is computed by another linear interpolation. Linear interpolation costs |Hi| multiplications and the same
number of additions/substractions for each multilinear polynomial, the values of Q are obtained within
|Q|M ·M + |Q|A · A. In terms of field multiplications M and substractions/additions A, step i consumes

ν · |Hi| · A + ν · (|D| − 1) · |Hi| · (M + A) + |D| · |Hi| · (|Q|M ·M + |Q|A · A) + |D| · |Hi| · A,

where the last term is for the domain sums. Since
∑n
i=1 |Hi| = |H| − 1, the overall cost for the prover is

bounded by

|H| ·
(

1− 1
|H|

)
·
(
(d · ν + (d+ 1) · |Q|M) ·M + (d+ 1) · (ν + |Q|A) + d) · A

)
. (11)

We shall use the simplified formula

|H| · (d+ 1) ·
(
(ν + |Q|M) ·M + (ν + |Q|A) · A

)
(12)

for the operation counts of our lookup protocol.

3 Lookups based on the logarithmic derivative

Assume that F is a finite field, and that f1, . . . , fM and t : H → F are functions over the Boolean hypercube
H = {±1}n. By Lemma 5, it holds that

⋃M
i=1{fi(~x)}~x∈H ⊆ {t(~x)}~x∈H as sets, if and only if there exists a

function m : H → F such that ∑
~x∈H

M∑
i=1

1
X + fi(~x) =

∑
~x∈H

m(~x)
X + t(~x) , (13)

assuming that the characteristic of F is larger thanM times the size of the hypercube. If t is injective (which
is typically the case for lookup tables) thenm is the multiplicity function, counting the number of occurences
for each value t(~x) in f1, . . . , fM altogether, i.e. m(~x) = mf (t(~x)) =

∑M
i=1 |{~y ∈ H : fi(~y) = t(~x))|. If t is

not one-to-one, we set m as the normalized multiplicity function

m(~x) = mf (t(~x))
mt(t(~x)) =

∑M
i=1 |{~y ∈ H : fi(~y) = t(~x))|
|{~y ∈ H : t(~y) = t(~x))| . (14)

Given a random challenge x←$F from the verifier, the prover shows that the rational identity (13) holds
at X = x, i.e. ∑

~x∈H

M∑
i=1

1
x+ fi(~x) −

m(~x)
x+ t(~x) = 0, (15)

whenever evaluation is possible. However, in order to apply the sumcheck protocol we need to turn the
fractional expression into a polynomial one. For that, the prover splits the sum into partial sums of
(roughly) the same number of terms `, and provides multilinear helper functions for each sum. These
helper functions are subject to a domain identity of algebraic degree essentially equal to the number of
reciprocal terms in the sum. In practice one chooses ` so that the prover time is minimal for the given
number of columns M . That optimum depends on the used polynomial commitment scheme. The costlier
the computation of a commitment, the higher the algebraic degree for the domain identity of the helper
function can be.

In Section 3.1 we describe our batch-column lookup, Protocol 2, and we sketch its soundness analysis
in Section 3.2. In the following Section 3.3 we give detailed operations counts for its oracle prover, which
we then use to estimate the optimal choice of ` assuming a commitment scheme which uses an ordinary
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sized elliptic curve4. Eventually, we point out the generalization of the lookup argument to vector-valued
tables.

3.1 The protocol

Let ` be the chosen sum size, [0,M ] =
⋃K
k=1 Ik the decomposition of [0,M ] into K =

⌈
M+1
`

⌉
subintervals

Ik = [(k − 1) · `, k · `) ∩ [0,M ], k = 1, . . . ,K. Let

hk(~x) =
∑
i∈Ik

mi(~x)
ϕi(~x) , k = 1, . . . ,K, (16)

be the respective partial sum of consecutive terms in the overall expression m(x)
x+t(~x) −

1
x+f1(~x) − . . .−

1
x+fM (~x) ,

where we used the notation

m0(~x) = m(~x), ϕ0(~x) = x+ t(~x),
mi(~x) = −1, ϕi(~x) = x+ fi(~x), i = 1, . . . ,M.

The prover provides the oracles for h1, . . . , hk, subject to∑
~x∈H

h1(~x) + . . .+ hK(~x) = 0,

and the domain identities
hk(~x) ·

∏
i∈Ik

ϕi(~x) =
∑
i∈Ik

mi(~x) ·
∏

j∈Ik\{i}
ϕj(~x) (17)

over H, the latter are reduced to sumchecks by applying the Lagrange kernel LH( . , ~z) at a randomly
chosen ~z←$Fn. All sumchecks are then combined into a single one, using random scalars λ1, . . . , λK ←$F .

Protocol 2 (Batch-column lookup over H = {±1}n). Let M be an integer, and F a finite field with
characteristic p > M · 2n. Fix any integer `, 1 ≤ ` ≤ M + 1, and let K =

⌈
M+1
`

⌉
. Given any functions

f1, . . . , fM , t : H → F on the boolean hypercube H = {±1}n, the Lagrange IOP for that
⋃M
i=1{fi(~x) : ~x ∈

H} ⊆ {t(~x) : ~x ∈ H} as sets is as follows.

1. The prover determines the (normalized) multiplicity function m : H → F as defined in (14), and sends
the oracle for m to the verifier. The verifier answers with a random sample x←$F \{−t(~x) : ~x ∈ H}.

2. Given the challenge x from the verifier, the prover computes the values over H for the partial sums
h1(~x), . . . , hK(~x) as defined above, and sends their oracles to the verifier.

3. The verifier responds with a random vector ~z←$Fn and random batching scalars λ1, . . . , λK ←$F .
Now, both prover and verifier engage in the sumcheck protocol (Protocol 1) for∑

~x∈H
Q(LH(~x, ~z),m(~x), ϕ0(~x), . . . , ϕM (~x), h1(~x), . . . , hK(~x)) = 0,

where

Q(L,m,ϕ0, . . . , ϕM , h1, . . . , hK) =
K∑
k=1

hk + L · λk ·

hk · ∏
i∈Ik

ϕi −
∑
i∈Ik

mi ·
∏

j∈Ik\{i}
ϕj

 , (18)

4By ordinary sized we mean a 128 bit secure curve over a 256 bit large base field. This covers both KZG-like commitments
in Barreto-Naehrig curves, and IPA commitments in an ordinary elliptic curve.
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with m0 = m, and all other mi = −1, i = 1, . . . ,M . The sumcheck protocol outputs the expected
value v for the multivariate polynomial

Q(LH( ~X, ~z),m( ~X), ϕ0( ~X), . . . , ϕM ( ~X), h1( ~X), . . . , hK( ~X)) (19)

at ~X = ~r sampled by the verifier in the course of the protocol.

4. The verifier queries [m], [t], [f1], . . . , [fM ], [h1], . . . , [hK ] for their inner product with LH( . , ~r), and
uses the answers to check whether (19) equals the expected value v at ~X = ~r. (The value LH(~r, ~z) is
computed by the verifier.)

Remark 3. We imposed the condition x /∈ {−t(~x)}~x∈H merely for completeness. However in some appli-
cations it may be not be desirable, or even not possible, to sample x from outside the range of t. There
are several ways to handle this. One can simply omit the constraint on x, letting the verifier sample
x←$F and the prover set h0 arbitrary whenever (16) is not defined. This comes at no extra cost, but
the obtained protocol is only overwhelmingly complete. That is, with a probability of at most |H||F | in the
verifier randomness x, the honest prover does not succeed. In practice this is often considered acceptable,
and many lookup implementations have a non-zero completeness error. Whenever this is not acceptable,
one may modify the domain identity for h0 toh0 ·

∏
i∈I0

ϕi −
∑
i∈I0

mk ·
∏
j 6=i

ϕj

 · ϕ0 = 0 (20)

over H, which imposes no condition on h0 whenever ϕ0(~x) = 0. However, this approach comes at the cost
of a slight increase in the degree of Q with respect to ϕ0.

Let us point out two variations of Protocol 2. In the single-column case M = 1 the lookup argument
can be turned into a multiset check for the ranges of f1 and t, by setting m as the constant function
m(~x) = 1. In this case only h0 needs to be provided by the prover. More interestingly, Protocol 2 is
easily extended to a proof of range equality, showing that

⋃M
i=1{fi(~x)}~x∈H = {t(~x)}~x∈H as sets. For this

the prover additionally shows that m 6= 0 over H, which is done by providing another auxiliary function
g : H → F subject to g ·m = 1 over H. However, we are not aware of any application of this fact.

3.2 Soundness

The soundness analysis of Protocol 2 is a straight-forward application of the Schwartz-Zippel lemma and the
Lagrange-query to point-query correspondence stated by Lemma 1. We merely sketch it. The univariate
rational lookup identity (13) is turned into a polynomial identity of degree at most |H| · (M + 1) − 1 by
multiplying it with the common denominator

∏
~x∈H

(X + t(~x)) ·
M∏
i=1

(X + fi(~x)). (21)

Since we sample x from a set of size at least |F | − |H|, the soundness error this step is at most

ε1 ≤
(M + 1) · |H| − 1
|F | − |H|

. (22)

The soundness error due to the reduction of the domain identities (17) to the Lagrange kernel based
sumcheck is altogether

ε2 ≤
K

|F |
,

11



as scalar products with the Lagrange kernel translate to point evaluation of the multilinear extension.
Finally, the batching step of the K + 1 sumchecks has soundness error ε3 = 1

|F | . This yields the following
theorem.

Theorem 4. The interactive oracle proof described Protocol 2 has soundness error

ε <
(M + 1) · |H| − 1
|F | − |H|

+ K + 1
|F |

+ εsumcheck,

where εsumcheck is the soundness error of the sumcheck argument (9) over H for a multivariate polynomial
in M + 4 variables with maximum individual degree M + 3.

3.3 Computational cost and optimal sum size

The polynomial Q from (18) has ν = M +K + 3 variables, and absolute degree d = `+ 2. Let us describe
a domain evaluation strategy for Q which uses of batch inversion. This strategy allows us to evaluate
Q much more efficiently than using (18), but demands a modification of the sumcheck operation count
formula (12). Assume that in each group Ik the inverses of ϕi are given, except for one distinct ik ∈ Ik.
Then we may evaluate the domain identity terms in Q by the fractional representation

hk ·
∏
i∈Ik

ϕi −
∑
i∈Ik

mi ·
∏

j∈Ik\{i}
ϕj =

∏
i∈Ik\{ik}

ϕj ·

ϕik ·
hk − ∑

i∈Ik\{ik}

mi

ϕi

−mik


For k ≥ 2, all involved mi = −1, and we have

∏
i∈Ik\{ik}

ϕj ·

ϕ0 ·

hk +
∑

i∈Ik\{ik}

1
ϕi

+ 1

 , (23)

regardless of the choice of ik. For the first group k = 1, we chose i1 = 0, so that

∏
i∈I1\{0}

ϕj ·

ϕ0 ·

hk +
∑

i∈I1\{0}

1
ϕi

−m
 . (24)

In both cases (24) and (23) the evaluation costs are ` · M + ` · A, counting substractions as additions.
Henceforth Q is evaluated in overall

K · (`+ 2) ·M +K · (`+ 1) · A. (25)

Now, to attribute the inverses in formula (12), we increase the multiplicative complexity by 3 · (M −K),
which represents the fractional cost of the batch inversion5of all the ϕi except one in each of the groups.
This yields the following equivalent complexities

|QM| = 3 ·M +K · (`− 1), |QA| = K · (`+ 1),

which we may plug into formula (12).
5Batch, or Montgomery inversion, of a sequence (ai)Ni=1 computes the inverses of a−1

i by recursively computing the cumu-
lative products pi = a1 · . . . ·an, i = 0, . . . , n, then calculating their inverses qi = 1

pi
in a reverse manner starting with qn = 1

pn
,

and putting qi−1 = qi · ai, where i goes from n down to 1. The inverses are then derived via a−1
i = pi−1 · qi, where p0 := 1.

The overall cost of the batch inversion is 3 · (N − 1) multiplications and a single inversion.

12



Table 1: Benchmark of Halo2’s Pippenger multi-scalar multiplication in the Pallas curve, varying the
number N of scalars. The benchmarks where done on a AMD Ryzen 7 PRO 4750U, 32GB RAM DDR4,
restricting to a single core.

logN Pippenger of size N 28 ·N field mult. equivalent field mult.
12 46.010 ms 21.11 ms N · 557 ·M
14 153.67 ms 84.78 ms N · 464 ·M
16 522.13 ms 169.70 ms N · 394 ·M
18 1.869 ms 679.27 ms N · 351 ·M

The prover cost of Protocol 2 is as follows: Given the values of t and f1, . . . , fM over H, computing
ϕ0 = x+ t and ϕ1 = x+ f1, . . . , ϕM = x+ fM costs |H| · (M + 1) ·A, and their reciprocals 1

ϕ0
, . . . , 1

ϕM
are

obtained within 3 · |H| · (M + 1) ·M, using batch inversion. With these reciprocals we obtain the values
for h1, . . . , hK within overall |H| · (M +K · (`− 1) · A). By the remark following Lemma 1, the values for
LH( ~X, ~y) over H are computed in |H| · (M + A) operations. Hence the total cost of the preparation phase
is

|H| · ((3 ·M + 5) ·M + (M +K · (`− 1) + 2) · A.

According to (12) the sumcheck costs

|H| · (`+ 3) ·
(
(4 ·M + 3 + ` ·K) ·M + (M + 3 + (`+ 2) ·K) · A

)
.

However, as we may reuse the reciprocals of ϕ0, . . . , ϕM in the first step of the sumcheck, we may correct
the sumcheck cost by substracting |H| · 3 · (M −K). The total costs of the oracle prover are

• arithmetic costs of
|H| · (K + 5 + (`+ 3) · (4 ·M + 3 + ` ·K)) ·M, (26)

neglecting field additions and substractions, and

• oracle costs of
K + 1 =

⌈
M + 1
`

⌉
+ 1 (27)

oracles of size |H|.

The optimal choice of `

Let us discuss the concrete impact of the partial sum size ` on the overall prover cost. If ` = 1, then each
reciprocal is given a helper function, resulting in M + 1 additional commitments (besided the one for m)
but a very low degree of Q, d = 3 . Increasing ` reduces the number of commitments, but comes at the cost
of a growing degree. The most extreme case is ` = M + 1, where the prover provides a single additional
commitment besides m, but needs to cope with a degree of d = M + 3, resulting in sumcheck costs which
are quadratic in M . The optimal choice for ` is between these two cases, but depends on the concrete
polynomial commitment scheme. We consider elliptic curve based commitments. To take the commitment
costs into account we rely on the benchmarks from Table 1 which measure the equivalent number of field
multiplications for a multi-scalar multiplication in an ordinary-sized elliptic curve of 128 bit security.
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Table 2: An estimate of the partial sum size ` in Protocol 2, which minimizes the prover cost. The
numbers are based on the operation counts (33) for the oracle prover and the benchmarks for a multi-
scalar multiplication in the Pallas curve, Table 1.

logN ` field mult. per col.
M = 10 M = 20 M = 70 M =∞ M = 10 M = 20 M = 70 M =∞

12 11 11 11 11 N · 188 N · 158 N · 135 N · 120
14 11 11 9 9 N · 170 N · 144 N · 120 N · 112
16 11 11 9 9 N · 155 N · 132 N · 112 N · 104
18 11 11 8 8 N · 147 N · 126 N · 106 N · 99

3.4 Vector-valued lookups

As Plookup, Protocol 2 is easily generalized to functions with multilinear values,

t(~x) =
∑

(j1,...,jk)∈{0,1}k
tj1,...,jk(~x) · Y i1

1 · · ·Y
jk
k ,

fi(~x) =
∑

(j1,...,jk)∈{0,1}k
fi,j1,...,jk(~x) · Y i1

1 · · ·Y
jk
k ,

i = 1, . . . ,M , without changing the soundness error bound from Theorem 4. As F [X,Y1, . . . , Yk] is a unique
factorization domain, and polynomials of the form X −

∑
(i1,...,ik)∈{0,1}k ci1,...,ik · Y

i1
1 · · ·Y

ik
k are irreducible,

we may apply Lemma 5 to see that
⋃M
i=1{fi(~x)}~x∈H ⊆ {t(~x)}~x∈H as sets in the rational function field

F (X,Y1, . . . , Yk), if and only if there exists a function m : H → F such that

∑
~x∈H

M∑
i=1

1
X + fi(~x)(~Y )

=
∑
~x∈H

m(~x)
X + t(~x)(~Y )

.

The only change to Protocol 2 is that the verifier now samples x from F and ~y = (y1, . . . , yk) from F k,
and continues with x− fi(~x) and x− t(~x) replaced by x− fi(~x)(~y) and x− t(~x)(~y).
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4 Multivariate Plookup

In this section we sketch batch-column lookups using the Plookup strategy and the multivariate time shift
introduced by Hyperplonk [CBBZ22]. The time shift T : H → H on the boolean hypercube H = {±1}n is
derived from the multiplication by a primitive root in GF (2n),

T (x1, . . . , xn) = 1 + xn
2 · (1, x1, . . . , xn−1) + 1− xn

2 · (−1, (−1)1−c1 · x1, . . . , (−1)1−cn−1 · xn−1),

where the ci ∈ {0, 1} are the coefficients of a primitive polynomial 1 +
∑n−1
i=1 ci ·Xi +Xn over GF (2). The

time shift acts transitively6on the punctuated hypercube

H ′ = H \ {~1},

and more importantly, evaluations of a shifted function f(T (~x)) can be simulated from two evaluations of
f by

f(T (x1, . . . , xn)) = 1 + xn
2 · f(1, x1, . . . , xn−1) + 1− xn

2 · f(−1, (−1)1−c1 · x1, . . . , (−1)1−cn−1 · xn−1).

4.1 Batch-column Plookup

Let t : H ′ → F be the lookup table, and fi : H ′ → F , i = 1, . . . ,M , the functions subject to the lookup.
Although the functions are defined over the punctuated hypercube H ′, we assume arbitrary values at ~1.
(These will be ignored by the lookup argument.) The prover provides the ordered union of the fi together
with t in a piecewise manner, via the additional functions si : H ′ → F , i = 1, . . . ,M + 1. The Plookup
identity (in the [Gab22] style) is then

∏
~x∈H′

M∏
i=1

(X + si(~x) + si+1(~x) · Y ) · (X + sM+1(~x) + s1(T (~x)) · Y )

=
∏
~x∈H′

M∏
i=1

(X + fi(~x) + fi(~x) · Y ) · (X + t(~x) + t(T (~x)) · Y ).

The identity is reduced to a grand product over H ′ by random samples α, β←$F for X and Y , yielding∏
~x∈H′

h(~x) = 1, (28)

where

h(~x) = α+ sM+1(~x) + s1(T (~x)) · β
α+ t(~x) + t(T (~x)) · β ·

M∏
i=1

(α+ si(~x) + si+1(~x) · β)
(α+ fi(~x) + fi(~x) · β) . (29)

As in Protocol 2, we control the algebraic degree of the resulting identity for (28) by splitting the product
(29) into K =

⌈
M+1
`

⌉
partial products of size `, where 1 ≤ ` ≤M + 1. For this we use the notation

ϕ0(~x) = α+ t(~x) + β · t(T (~x)),
σ0(~x) = α+ sM+1(~x) + β · s1(T (~x)),

6As a group automorphism it has ~1 = (1, 1, . . . , 1) as a fixed point.
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and for i = 1, . . . ,M ,

ϕi(~x) = α+ (1 + β) · fi(~x),
σi(~x) = α+ si(~x) + β · si+1(~x).

Then

h(~x) =
K∏
k=1

hk(~x),

with
hk(~x) =

∏
i∈Ik

σi(~x)
ϕi(~x) ,

where Ik = [(k− 1) · `, k · `)∩ [0,M ]. For each k = 1, . . . ,K, the prover computes the cumulative products
of the values hk(~x) along the orbit of the time shift T on H ′, starting with φk(−~1) = 1, and setting

φk
(
T j(−~1)

)
= φk

(
T j−1(−~1)

)
· h
(
T j−1(−~1)

)
,

for j = 1, . . . , |H ′| − 1. At the remaining point ~x = ~1 outside H ′, the prover sets φk to zero. Correctness
of the grand product (28) is proven by the domain identities

φk(T (~x)) ·
∏
i∈Ik

ϕi(~x)− φk(~x) ·
∏
i∈Ik

σi(~x) = 0,

and the point identities

φ1(−1) = 1,
φk(T−1(−~1)) = φ(k mod K)+1(−~1),

where k = 1, . . . ,K. These identities are reduced to sumchecks over H by help of the Lagrange polynomials
LH( . ,−~1) and LH( . , ~y), where ~y←$Fn, and then combined into a single one by random batching scalars
λ1, . . . , λK ←$F . The resulting overall sumcheck is∑
~x∈H

Q(LH(~x, ~y), LH(~x,−~1), ϕ0(~x), . . . , ϕM (~x), σ0(~x), . . . , σM (~x), φ1(~x), . . . , φK(~x), φ1(T (~x)), . . . φK(T (~x)))

= 0,

where

Q(LH ,L, LT , ϕ0, . . . , ϕM , σ0, . . . , σM , φ1, . . . , φK , φ1,T , . . . , φK,T ) =

L · (φ− 1) +
K∑
k=1

λk · LH ·
(
φk,T ·

∏
i∈Ik

ϕi − φk ·
∏
i∈Ik

σi
)

+ µk ·
(
LT · φk − L · φ(k mod K)+1

)
.

(30)

The sumcheck polynomial Q has absolute degree d = `+ 2, which is the same as in Protocol 2, but about
the double of variables, ν = 2 · (M + 1 +K) + 3. Its arithmetic complexities are |QM| = K · (2 · `+ 3) + 2,
|QA| = 4 ·K − 1.
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4.2 Computational cost and optimal product size

The prover cost for the Plookup strategy is as follows. Computing the values for all ϕi, σi over H consumes
overall

|H| · (2 · (M + 1) ·M + (3 ·M + 4) · A),

the quotients hk(~x) are obtained within |H| ·K · (2 · (` − 1) + 4) ·M, using batch inversion. From these
values of the φk(x) over H are derived by another K · |H| · M. The domain evaluation for LH( ~X, ~y) is
obtained within |H| · (M + A) operations, resulting in the overall preparation cost

|H| · ((2 · (M + 1) +K · (2 · `+ 3) + 1) ·M + (3 ·M + 5) · A). (31)

According to (12) the sumcheck costs

|H| · (`+ 3) ·
(
(2 ·M + 7 + (2 · `+ 5) ·K) ·M + (2 · `+ 6) · (M + 2 + 3 ·K) · A

)
. (32)

The total costs of the oracle prover are

• arithmetic costs of

|H| ·
((

2 · `2 + 13 · `+ 18
) ⌈M + 1

`

⌉
+ ` · (2 ·M + 7) + 8 · (M + 3)

)
·M, (33)

neglecting field additions and substractions, and

• oracle costs of
M +K + 1 = M +

⌈
M + 1
`

⌉
+ 1 (34)

functions of size |H|.

The optimal choice of `

As for Protocol 2, the partial product size ` determines the trade-off between algebraic degree and the
number of commitments. Based on the multi-scalar multiplication benchmarks from Table 1, and the
operation counts (31) and (32) we obtain the following estimates for the optimal choice of `, see Table 3.

Table 3: An estimate of the partial sum size ` which minimizes the prover cost. The numbers are based on
the operation counts (31) and (32) for the oracle prover and the benchmarks for a multi-scalar multiplication
in the Pallas curve, Table 1.

logN ` field mult. per col.
M = 10 M = 20 M = 70 M =∞ M = 10 M = 20 M = 70 M =∞

12 11 11 12 12 N · 750 N · 717 N · 687 N · 675
14 11 11 12 11 N · 637 N · 609 N · 584 N · 572
16 11 11 9 10 N · 553 N · 528 N · 506 N · 496
18 11 11 9 10 N · 503 N · 479 N · 458 N · 450
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4.3 Bounded multiplicity encoding

The Polygon MidenVM [Mid] uses an improvement of Plookup, which reduces the number of commitments
for the sorted union of f1, . . . , fM and t by arranging it as runs of at most B = 2b occurences, where b ≥ 1.
The length m of each run (reduced by one, as explained below) is then given bitwise,

m− 1 = m0 +m1 · 2 + . . .+mb−1 · 2b−1,

and the power of the corresponding term Z in the lookup product is selected by the expression

V (Z,m0, . . . ,mb−1) =
b−1∏
j=0

(mj · Z2j + (1−mj) · 1) = Zm0+m1·2+...+mb−1·2b−1
. (35)

From this point of view it can be seen as an application of the Arya [BCG+18] multiplicity technique to
Plookup. Although [Mid] restricts to range proofs (optimized for the cases of small ranges, the size of
which is a fraction of the domain), we quickly outline its generalization to lookups of domain-sized tables.

Let N be the size of the punctuated hypercube H ′. Instead of committing to the full-length union
(si)(M+1)·N

i=1 , the prover provides the compressed sequence

(rj , (mj,0, . . . ,mj,b−1))nj=1

of values rj and their B-bounded run lengths mj (minus one), represented bitwise by mj,0, . . . ,mj,b−1 ∈
{0, 1}. Depending on the distribution of the values, the size n of the compressed sequence is bounded by

M + 1
B

·N ≤ n ≤
(
M

B
+ 1

)
·N.

(The left bound corrsponds to uniform distribution, and the right bound to the singleton case.) The lookup
product over s, written in terms of the compressed sequence is then

(M+1)·N∏
i=1

(X + si + s(i mod N)+1 · Y ) =
n∏
j=1

V (X + (1 + Y ) · rj ,m0, . . . ,mb−1︸ ︷︷ ︸
encoding mj−1

) · (X + rj + Y · r(j mod n)+1).

As before, the compressed sequence is provided piecewise, splitted into functions over H ′. This results
in

R =
⌈
M

B
+ 1

⌉
“blocks” of functions, rk(~x) and (mk,0(~x), . . . ,mk,b−1(~x)), k = 1, . . . , R, subject to the lookup identity∏

~x∈H′
V (X + rK(~x) · (1 + Y ),mR,0(~x), . . . ,mR,b−1(~x)) · (X + rR(~x) + r1(T (~x)) · Y )

·
R−1∏
k=1

V (X + rk(~x) · (1 + Y ),mk,0(~x), . . . ,mk,b−1(~x)) · (X + rk(~x) + rk+1(~x) · Y )

=
∏
~x∈H′

(X + t(~x) + t(T (~x)) · Y ) ·
M∏
i=1

(X + fi(~x) · (1 + Y )),

with V as above, and the boolean domain identities mk,i(~x) · (1−mk,i(~x))2 = 0, over H, for all k, i. Note
that the commitment costs for s are reduced by the factor

R · (1 + log2B)
M + 1 ≈ 1 + log2B

B
,
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whereas the absolute degree of the lookup identity is almost invariant for large B, increasing only by the
factor

R

M + 1 · (B + log2B) ≈ 1 + log2B

B
.

As the protocol is along the lines of plookup, we omit further details.

5 Comparison

The significant advantage of the logarithmic derivative lookup over Plookup is the lower oracle costs. While
the Plookup strategy demands M + 1 oracles for the sorted union of the M witness column and the table,
the logarithmic derivative approach demands only a single one for the multiplicities. We compare the two
strategies by their computational cost per column, when running them with the optimal sum/product size
` as given in Table 2 and 3.

Table 4: The estimated performance advantage of logarithmic derivative lookups (Protocol 2) over the
multivariate Plookup strategy (Section 4.1), as the ratio of their number of field multiplications per column.
The numbers are based on the equivalent number of field multiplications for a multi-scalar multiplication
over the Pallas curve, given in Table 1.

log |H| ratio Plookup / log. derivative
M = 1 M = 5 M = 10 M = 20 M = 70 M =∞

12 1.5 3.1 4.0 4.5 5.2 5.6
14 1.5 3.0 3.8 4.2 4.8 5.1
16 1.5 2.9 3.6 4.0 4.5 4.8
18 1.5 2.9 3.4 3.9 4.3 4.5

Let us give a rough comparison with the bounded multiplicity improvement of Plookup described in
Section 4.3. For that we simply count the number of oracles needed for obtaining a quadratic overall
domain identity (and hence a cubic sumcheck polynomial Q). Under this assumption,

• The logarithmic derivative approach needs overall M + 1 oracles: one for the multiplicity function,
and M helper functions.

• Plookup demands overall 2 · (M + 1) oracles: M + 1 for the sorted union of table and witnesses, and
M + 1 for the cumulative products.

• With multiplicity encoding using b bits, Plookup is improved down to

M + 1 +
⌈
M

2b + 1
⌉
· 3 · b

oracles: Each of the
⌈
M
2b + 1

⌉
blocks of the compressed representation consists of b+ 1 domain-sized

functions (the multiplicity bits and the value), and to linearize each factor in the power selection
expression (35), one additionally needs b−1 functions for the two-adic powers, and another b functions
for the products with the bits. The grand product argument uses M+1 cumulative product functions.

In its most extreme setting, 2b = M , and therefore only R = 2 blocks, the number of oracles for the
multiplicity improvement is M + 1 + 6 · log2(M). We use this configuration in our comparison, Table 5.
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Table 5: A rough comparison of the three lookup protocols in their quadratic constraint variant. The table
presents the overall number of commitments for a batch of M = 2b columns. (bPlookup denotes Plookup
using multiplicity encoding with b bits.)

M = 4 M = 8 M = 16 M = 32 M = 64 M = 128
log. derivative 5 9 17 33 65 129

Plookup 10 18 34 66 130 258
bPlookup (b = log2(M)) 17 27 41 63 101 171

Multiplicity encoding seems to be beneficial only for quite large batches of columns. Below M = 32
columns it is expected to perform even worse than Plookup. However, for M = 64 and M = 128 that
picture clearly changes. For these batch sizes it consumes only 78% and 66% of Plookups’ number of
commitments, respectively, which is still about 55% and 30% more than with the logarithmic derivative
approach.
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A The flookup proof of radical

Section 5 of [GK22] describes a polynomial IOP for lookups, which is almost identical to the logarithmic
derivative approach. We present its generalization to batch-lookups. Let F be an FFT-friendly finite field,
having a multiplicative subgroup H = {x ∈ F : xn = 1} of order n, and denote by g a generator of it. For
showing that the ranges of witness function fi : H → F , i = 0, . . . ,M − 1, are contained in the range of a
table t : H → F , the fractional logaritmic derivative identity is turned into the polynomial identity

∑
x∈H

M−1∑
i=0

vT (X)
X + fi(x) =

∑
x∈H

m(x) · vT (X)
X + t(x) ,

by multiplying with the precomputed table polynomial vT (X) =
∏
x∈H(X + t(x)). Instead of the multi-

plicity function m, the prover explicitly provides the polynomial7

RT (X) =
∑
x∈H

m(x) · vT (X)
X − t(x) ,

and engages with the verifier in an IOP for showing that

∑
x∈H

M−1∑
i=0

vT (X)
X + fi(x) = RT (X). (36)

The verifier queries vT (X) and RT (X) at a random challenge α←$F , and both prover and verifier run a
sumcheck argument for ∑

x∈H

M−1∑
i=0

1
ϕi(x) = RT (α)

vT (α) ,

where ϕi(x) = α + fi(x). For this the prover provides the Lagrange representation of the sumcheck
polynomial φ(X) subject to the domain identity

φ(g · x)− φ(x) + RT (α)
|H| · vT (α) =

M−1∑
i=0

1
ϕi(x)

for all x ∈ H, or

(
φ(g ·X)− φ(X) + RT (α)

|H| · vT (α)

)
·
M−1∏
i=0

ϕi(X) =
M−1∏
i=0

ϕi(X) ·
M−1∑
i=0

1
ϕi(x) mod vH(X). (37)

The overall identity is of the form

Q(φ0(X), . . . , φM−1(X), φ(X), φ(g ·X)) = 0 mod vH(X),

with Q having ν = M + 2 variables and absolute degree d = M + 1.

7In a variant of the protocol, communicated by A. Gabizon, the prover provides the Lagrange representation of RT (X)
with respect to the Lagrange basis of the table set {t(x) : x ∈ H}. As Lagrange IOPs with respect to several Lagrange bases
have different impacts on the Lagrange commitment scheme (e.g., it leads to a separate commitment in a KZG-like scheme,
or a separate inner product argument for an IPA-like scheme), we do not compare with this variant.
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