The Key Lattice Framework for Concurrent Group Messaging

Kelong Cong! @ | Karim Eldefrawy? © | Nigel P. Smart!3® | and Ben Terner**

! imec-COSIC, KU Leuven, Leuven, Belgium.
2 SRI International, Menlo Park, U.S.A.
3 Zama Inc, France.
4 University of California Irvine, Irvine, U.S.A.
kelong.cong@esat.kuleuven.be, karim.eldefrawy@sri.com,
nigel.smart@kuleuven.be, bterner@uci.edu.

Abstract. Today, two-party secure messaging is well-understood and widely adopted, e.g., Signal and
WhatsApp. Multiparty protocols for secure group messaging on the other hand are less mature and
many protocols with different tradeoffs exist. Generally, such protocols require parties to first agree on
a shared secret group key and then periodically update it while preserving forward secrecy (FS) and
post compromise security (PCS).

We present a new framework, called a key lattice, for managing keys in concurrent group messaging.
Our framework can be seen as a “key management” layer that enables concurrent group messaging
when secure pairwise channels are available. Proving security of group messaging protocols using the
key lattice requires new game-based security definitions for both F'S and PCS. Our new definitions are
both simpler and more natural than previous ones, as our framework combines both FS and PCS into
directional variants of the same abstraction, and additionally avoids dependence on time-based epochs.
Additionally, we give a concrete, standalone instantiation of a concurrent group messaging protocol
for dynamic groups. Our protocol provides both FS and PCS, supports concurrent updates, and only
incurs O(1) overhead for securing the messaging payload, O(n) update cost and O(n) healing costs,
which are optimal.

* Part of this work was completed while at SRI International.

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0002-4008-0047
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7740-2812

Table of Contents

The Key Lattice Framework for Concurrent Group Messagingc.. ... 1
Kelong Cong"™ |, Karim Eldefrawy™ , Nigel P. Smart'™ | and Ben Terner
Introduction 3
1.1 Related Work 4
1.2 Technical Overview i e e e e 7
1.3 DISCUSSION vttt 10
General Definitions and Notation. i i 11
2.1 CCA Secure Encryption Scheme 13
2.2 Message Authentication Code (MAC) i 13
2.3 Key Encapsulation Mechanism (KEM).......o ... 14
2.4 Authenticated Encryption with Associated Data (AEAD) 14
2.5 Public Key Authenticated Encryption with Associated Data (PKAEAD).......... 15
Key Lattice 16
3.1 Key Evolutiono 16
3.2 The Key Grapho 17
3.3 Instantiation 18
3.4 Key Lattice as a Key Management Technique.............. 20
Group Key Agreement 21
4.1 Security Definition 21
Group Randommness MesSSagingttt e 23
DL SECUTTLY .o vttt 24
5.2 COTTECEIESS .« o v ot ettt e e e e e e e e e e 25
5.3 Instantiation 26
5.4 Proof of Theorem 5.1o 27
Group Messagingo vttt e 29
6.1 Security Definition 29
6.2 GM from GRM and GKA 33
6.3 Main Theorem 35
6.4 DISCUSSION .« vttt e e e e e e 37
Full Proof of GM Construction. e e 38

Extension to Dynamic Groupso. i e 45

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0002-4008-0047
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0000-0002-7740-2812

1 Introduction

End-to-end encrypted secure messaging systems such as Signal and WhatsApp are widely deployed
and used. The case of two-party protocols is well-understood, and has been extensively analyzed
in the literature [ACD19,BGB04,CCD*20,CCG16,KBB17], but multiparty protocols (for group
messaging) are still an active research area. At the moment, the Message Layer Security (MLS)
IETF working group® is developing a standard to define an efficient and secure group messaging
protocol. The key building block of MLS is continuous group key agreement (CGKA), which lets a
group of users securely agree on a shared secret key [ACDT20], evolve it continuously while ensuring
forward secrecy (F'S) and post compromise security (PCS).

Many existing CGKA protocols, and their extension to group messaging protocols, require
an additional infrastructure server that guarantees availability and orders messages. Recent work
reduces dependence on the additional infrastructure, but still depends on a propose-and-commit
paradigm [AANT22b, AHKM22,AAN*22a] that allows concurrent update proposals but requires
serial commitments to accept the changes. This work develops abstractions and protocols to advance
group messaging towards truly asynchronous channels and a decentralized environment where there
is no central server to order messages. In such an environment, there may be a different “latest”
group key in the view of every honest user — all of whom simultaneously encrypt messages, all of
which must be decrypted.

Our main contribution is conceptual. We model the group keys used within the protocol via
a key lattice, which can be seen as an n-dimensional grid if there are n participants. The key
lattice tracks all the group keys that will ever be used by the parties. Each key evolution travels
along a path in the lattice. Every party uses the key lattice to track not only its own view of the
current group key(s), but also the information it has about the other parties’ views. To both permit
concurrency (via the ability to swap the order of key updates) and to prevent the state space from
exploding, we require that the key evolution functions are commutative.

By framing our (new) security definitions with respect to the key lattice, we intuitively find that
the dual (and simultaneous) notions of F'S and PCS become directional variants of the same simple
notion, which states that the adversary cannot traverse the key lattice to learn keys which it has
not yet compromised.® We also eliminate any dependence on epoch-based time from the analysis
and solely focus on the keys’ relationships to each other. To ensure PCS, parties evolve the group
key with random updates and define new points on the key lattice. To ensure FS, each party tracks
other parties’ views of the group key, and deletes keys which it knows will never be used again. We
also show how to trade FS for correctness when desired, since in a fully asynchronous network, the
adversary may arbitrarily delay delivery of an encrypted application message in order to force one
party to hold old keys.

Our secondary contribution is an instantiation of a novel group messaging protocol that uses
the key lattice, and we prove its security. Next we clarify some important terminology.

Group Key Agreement vs. Group Messaging: It is not always straightforward to transform
from group key agreement to group messaging. Key exchange protocols usually contain a key-
confirmation step, but when the key exchange protocol is used as a building block in a larger
protocol (e.g., secure messaging), this step breaks the key indistinguishability property of key

5 https://messaginglayersecurity.rocks/
5 This approach bears some resemblance to the analysis of Fuchsbauer et al. [FKKP19] for public key re-encryption.

https://messaginglayersecurity.rocks/

exchange. This is a well known problem even for two-party key agreement followed by composition
with a secure channel, see for example [BFST13,BFWW11]. We avoid this definitional problem
by treating key-agreement and messaging together and directly analyzing the scheme for group
messaging.

Asynchrony vs. Concurrency: An asynchronous group messaging protocol means that the ad-
versary can arbitrarily reorder messages that are sent, as long as all are eventually delivered. This
models a highly adverasarial network, and subsumes the scenario that some parties can temporarily
“go offline” (if the adverary does not deliver messages to them) and then receive messages later
when they come back online. A concurrent protocol allows messages, including update messages,
to be sent and processed concurrently. But messages are delivered within some round of execution.
The work by Bienstock, Dodis and Résler [BDR20] studied the trade-off between PCS, concurrency,
and communication complexity. They show an upper-bound in terms of communication overhead
that increases from O(logn) when there is no concurrency, to O(n) when the update messages are
fully concurrent.

1.1 Related Work

Group key agreement and group messaging protocols have a long history. Early work focused
on generalizing the Diffie-Hellman key exchange protocol [ITW82,STW96]. Later work extended
the security guarantees (e.g., by providing authentication, forward secrecy, and post-compromise
security) [BCP01,BCPQ01,BM08,BMS07], and improved performance and added new features (e.g.,
support for dynamic groups) [BCP02].

Ratchet Trees, Propose & Commit: The family of key agreement protocols popularized by the
Message Layer Security (MLS) working group [BBM*20], is based on binary trees. These protocols
are efficient and secure; they require O(log(n)) public key operations to update a shared key, and
they achieve both forward secrecy (FS) and post-compromise security (PCS).

The first in this line of binary-tree protocols introduced asynchronous ratcheting trees
(ART) [CCGT18,KPT04]. In ART, the authors constructed the first asynchronous GKA proto-
col with FS and PCS. The group initiator selects the secret keys for nodes on the tree, and allows
the group members to update the secret. TreeKEM [Res19] evolved ART to introduce support for
dynamic groups.

Alwen et al. [ACDT20] explained that TreeKEM does not provide adequate FS. Concretely, the
authors formalized the security model and showed that, in the worst case, F'S is only achieved if
every group member updates their key material, which has a cost of O(nlogn). To achieve optimal
FS and reduce the complexity, the authors introduced a modification to TreeKEM, called Re-
randomized TreeKEM (RTreeKEM), that uses updatable public key encryption to roll the group
key with every encryption and decryption. This technique reduced the healing cost to O(logn).

Bienstock, Dodis, and Résler [BDR20] give a tree-based construction that works with concurrent
updates. The communication complexity varies between O(logn), when there is no concurrency,
and O(n), when the updates are fully concurrent. Alwen et al. [ACIM20,AJM22] added insider
security to the family of TreeKEM protocols by considering the key schedule.

Recent evolutions of ratchet trees employ the “propose and commit” framework to achieve a
nontrivial amount of concurrency. Specifically, the parties can concurrently propose updates, which

are resolved with a serial or ordered commit in the next round. CoCoA [AANT22b], handles con-
current updates within one epoch with the help of a server. Their key idea is to apply all concurrent
updates in one epoch by applying them in order determined by an ordering function that is a system
parameter. This idea assumes a fully synchronous network; otherwise, consensus is required. Conse-
quently, it may take up to log(n) rounds to complete all updates. DeCAF [AANT22a] improves on
CoCoA’s healing time, and requires a blockchain for ordering. SATK [AHKM22] explicitly models
the role of the server in group key agreement and improves on the upload cost to update the group
key using multi-message multi-recipient PKE. CmPKE [HKP*21] is similar to SAIK in these re-
gards, with tradeoffs on the communication costs compared to SAIK, and does not explicitly model
the role of the server.

The closest work to ours is the recent paper by Weidner et al. [WKHB21], who introduced
“decentralized” continuous group key agreement (DCGKA). DCGKA makes progress on the con-
currency problems in ART and RTreeKEM so that all group members converge to the same view if
they receive the same set of messages (possibly in different orders). The key primitive that enables
concurrent updates is authenticated causal broadcast, defined in a similar way as Lamport’s vector
clocks [Lam78]. Additionally, the authors made progress on how to manage group membership in
an asynchronous network without a central server. However, their construction still requires a serial
commitment.

In comparison to Weidner et al. [WKHB21], our construction does not require authenticated
causal broadcast; we permit asynchronous messaging by buffering messages that are received out
of order, and we authenticate via authenticated encryption. Our construction also does not require
acknowledgements. This substantially reduces the cost of an update because DCGKA requires n—1
broadcast acknowledgements for an update.

Other Protocols: There are many group key agreement and group messaging protocols that do
not use the tree structure, e.g., generalized Diffie-Hellman protocols [[TW82,STW96]. Protocols in
such early work often do not provide the strong security properties found in modern protocols or
are not efficient (i.e., requiring O(n) rounds of communication to establish a key). As such, we only
discuss recent developments.

Secure group messaging can be implemented by running two-party Signal between all pairs in
a group [CHK21,RMS18]. If a party wants to send a message to a group, it sends the message over
all of its pairwise channels’. An advantage of this approach is that if two parties are in multiple
groups, the same pairwise channel is reused. Forward secrecy and post-compromise security are
guaranteed by the underlying Signal protocol. This approach works in a concurrent environment
too since PCS updates do not need to be synchronized, they only happen in the pairwise channels.
The disadvantage is that parties must always create n ciphertexts under n different keys for every
message.

Sender Keys, currently deployed by WhatsApp [Wha21], also builds group messaging from
pairwise Signal. During initialization, each party sends a symmetric “sender” key to all the group
members using the pairwise Signal protocol. This key is used for encrypting payload messages by
that party. Every party keeps n “sender” keys in their state where n—1 keys are used for decryption
and 1 is used for encryption. Sender Keys does not provide PCS since an adversary who corrupts a

7 In practice it is not as easy as simply creating a Signal instance between every two parties. Additional steps need
to be added for the users to establish the group ID and perform group management tasks.

Update Cost
Protocol Sender |Receiver Healing PCS|FS|Active Server Concurrent Proof|Adaptive
Rounds Updates

Original TreeKEM [Res19] O(logn) o) |n yes |yes|Ordering no None| n/a
Causal TreeKEM [Weil9] O(logn) o) |n yes |yes|none causal StM yes
RTreeKEM [ACDT20)] O(logn) o(1) |2 yes |yes|Ordering no ROM| yes
Concurrent TreeKEM [BDR20]| O(n) o) |2 yes | no |none yes StM yes
Signal group [CHK21,RMS18] O(n) o@1) |2 ves |yes|Prekeys yes None| n/a
Sender Keys [Wha21,RMS18] O(n?) O(n) |2 yes |yes|Prekeys yes None| n/a
DCGKA [WKHB21] O(n) (O) | O1) |2 yes |yes|none yes (o) ROM| no
CoCoA [AANT22D] O(logn) O(1) |log(n) | yes |yes ESOCCSS_UpdatCS yes (©) ROM| yes
SAIK [AHKM22] O(logn) | O(1) |2 yes |yes EBOC‘J‘SS'UPMQS yes (A) |ROM| yes
DeCAF [AANT22a] O(logt) (1)] O(1) [log(t) | yes |yes|blockchain ves (©) ROM| yes
Our work O(n) o) |2 yes |yes|none yes StM yes

Table 1: Comparing our work and existing work. PCS denotes post compromise security, and FS denotes forward
secrecy. ROM stands for the random oracle model, StM denotes the standard model. (O) an update for DCGKA
requires n — 1 broadcast acknowledgements, so the total complexity is O(n?), although the sender’s computational
complexity is O(n). (¢) These works use the propose-and-commit paradigm, where assumes the existence of epochs
and allows concurrent proposals but a serial commitment is required. (f) ¢ is the number of corrupt parties. () The
server in CoCoA and SAIK processes an update to send an individual packet to each participant. They also order
messages. (A) The SAIK server arbitrarily chooses one of concurrent updates to be processed. Our work is the only
one which supports concurrent updates, does not require an active server, is PCS and F'S and has a proof of security
against adaptive adversaries. In this table desired features are highlighted in blue and those which negative impact
security are in red.

party will learn all the symmetric keys and decrypt future messages sent to all parties. Fully healing
the state therefore requires every party to update its symmetric key, which has a cost of O(n?).

Our work can be viewed as a generalization of Sender Keys with improved security and func-
tionality, where parties update the key lattice instead of holding symmetric keys for each party.
The group session heals once a corrupted party’s pairwise channels heal because the next update it
sends or receives is indecipherable to the adversary. This requires O(n) public key operations (also
O(n) communication complexity) after one corruption.

Summary: Table 1 summarizes a representative sample of recent literature on group key agree-
ment and group messaging. “Update Cost” gives the communication complexity to update a shared
or pairwise key, for the sender and the receiver, and “Healing rounds” describes the round com-
plexity of healing the session after a corruption. “Active Server” is a server that provides additional
functionalities other than a PKI, such as ordering messages or post-processing updates. For exam-
ple, the Signal servers need to store single-use pre-keys and the TreeKEM servers need to order
messages. “Adaptive” means whether the adversary can adaptively pick which oracles to query
during the security game.

Our work, on the last row, carves out a new trade-off in the group messaging design space.
Specifically, we use pairwise channels which results in O(n) update cost and, in contrast to prior
work, maintain a set of evolving shared group key without compromising security, i.e., allowing
adaptive queries.

1.2 Technical Overview

Our group messaging (GM) protocol consists of three building blocks: (1) an initial group key
agreement (GKA) protocol, (2) a group randomness messaging (GRM) protocol used to transport
key updates, and (3) a key lattice. We overview all blocks but focus on the key lattice as it is our
primary contribution.

Group Key Agreement (GKA): Our GKA assumes existence of a public key infrastructure
(PKI). In other words, each party knows the other party’s long-term public key. The protocol takes
as input the identities and public keys of the group members and outputs a symmetric key shared
by those members. This symmetric key is used by the other two building blocks detailed below. We
use the GKA as a black box and thus are not concerned with the exact construction in this work.
Nevertheless, we require that it is forward secure, i.e., if the long-term secret key is compromised
after agreeing on a shared key, the adversary still learns nothing about the shared key. Note that
many GKA protocols exist in the literature [BMS20,BM08,BMS07,PRSS21]. In this work we use
the definition from [BMSO07], which allows for asynchrony (as needed by our construction).

Group Randomness Messaging (GRM): We design a new primitive called GRM which ab-
stracts the transport mechanism used to communicate key updates. This abstraction allows us to
decouple the update mechanism from our messaging protocol, which makes our proof more mod-
ular. Specifically, GRM implements pairwise secure channels which are both forward secret and
post-compromise secure, but is specially designated to only send random messages, as the update
messages are always random. GRM is bootstrapped from the output of GKA, i.e., it requires agree-
ment on an initial shared group secret key. It then creates a secure channel (which has FS & PCS
properties) between every pair of group members to transport updates of the group key.

Because GRM requires pairwise channels with FS & PCS, it could be implemented using pair-
wise 2-party secure messaging e.g., pairwise Signal or another double-ratchet-based protocol. We
provide a custom instantiation of GRM in Section 5 that better fits our assumptions (specifically,
we assume only a public key infrastructure and do not require a server to distribute pre-key bun-
dles), is conceptually simpler than a double-ratchet, and is easier to prove secure. Nevertheless, we
give an outline of how to build a concurrent group messaging protocol from black-box primitives
in Section 3.4.

Our GRM protocol is intuitively simple. Whenever a party U sends a random message = to
party V, U samples a fresh key pair (pk/, sk’), and encrypts (x, pk’) under the public key pk, that
U holds for V. When V receives (z,pk’), it assigns pk’ as its latest public key for U and outputs
x as U’s message. Future messages sent by V' to U must be encrypted under the latest ephemeral
public key that V' holds for U. The scheme achieves both FS and PCS because all secret keys are
independently sampled with every message sent, and therefore leaking one secret key never reveals
information about another. The scheme uses a public key AEAD scheme for all encrypted messages,
where the associated data are bookkeeping material on the order of updates.

Key Lattice: We now explain our key lattice framework, including our security game and its
representation of F'S and PCS.

|

*o—0— 0
*o—0—>0
*o—0—0

|

*o—0—0

T e

o—0—0

k1,0 Tkl,o T T

—e— o—eoe—e

ko,o ko,2 koo ko,2
(a) The red vertices and edges are explicitly revealed (b) The full set of information that an adversary can
to the adversary. compute from 1la.

Fig. 1: In Figure 1la, the red vertices and edges are explicitly revealed to the adversary. If PCS
holds, then the adversary cannot compute the key kg2 because there is no path of red edges from
a red vertex to kgo. In Figure 1b, the adversary can compute the keys ko 1, and ko 1, and ki by
starting at ko o and following a path of red edges. F'S can analogously be visualized by (preventing)
traversing the directed graph “backwards” from a compromised vertex.

Framework: Every group key in a group messaging protocol is associated with a coordinate in a
discrete n-dimensional space, where n is the number of players in the group. When parties update
the group key (at some index), the new key produced is mapped to a larger index. For example, for
n = 2, a key ki o at coordinate (1,0) may be updated to a new key with an associated coordinate
ki,1. We also provide a graphical explanation of a key lattice in which the indices in the discrete
n-dimensional space are vertices, and each vertex is labeled with a key. In the graph, edges between
vertices represent key updates.

FS & PCS: Our key lattice allows us to discuss FS & PCS in a unified and simple manner, as
directional variants of the same abstraction. In Figure 1, every key is mapped to a point on the
graph, and updates are mapped to edges in the graph. We color a vertex or edge black if it is not
revealed to the adversary, and we color a vertex or edge red if it is revealed to the adversary. A
party that “knows” both the key corresponding to a vertex and an edge leaving that vertex will
also “know” the vertex’s neighbor. FS & PCS mean that the only way the adversary can learn
a key k* at some target vertex v* is by starting with a red vertex on the graph and following a
path of red edges to v*. In the traditional definition of F'S, this would mean that given a vertex
v, without following (in reverse) a path of red edges, the adversary cannot learn a predecessor of
v. In the traditional definition of PCS, this would mean that given a vertex v, without following a
path of red edges, the adversary cannot learn a successor of v. The key lattice is described in full
in Section 3.

Security Game and Freshness: Our security game is an oracle game in which the adversary activates
oracles corresponding to parties running a polynomial number of protocol executions. The adversary
plays a semantic security game against a “fresh” key on one of the lattices. A key is “fresh” precisely
if the adversary cannot derive that key from its view of the execution thus far; graphically, this
means that the key is black in the corresponding graph akin to Figure 1b. The adversary wins the
semantic security game if it can distinguish two ciphertexts encrypted under a fresh key.

Tracking Keys of Other Parties: Parties will maintain a local key lattice in order to track the
group keys, but they do not (necessarily) need to maintain a full view of the key lattice. Each party

® ®
ko,1 k1,1
° 'S °
ko,o k1,0
x x x

(a) (b) (c)

Fig.2: An example of a local key lattice in an execution with two players (blue and red) from the
perspective of the red party.

tracks only the keys that it may need in the future in order to decrypt a message that it has not
yet received. This permits the construction to achieve the best possible FS while also achieving
correctness; as soon as some party knows it no longer needs the key, it deletes the key from its view
(in order to prevent an adversary from learning the key after it has become deprecated).

We illustrate our approach in Figure 2. For simplicity, we only consider two parties labelled with
the colors red and blue. The shaded regions, assigned by color, indicate the set of points towards
which the corresponding party may define a new group key in the future. Any point in a totally
unshaded region represents an index of a key that can be deleted. In our construction, when any
party updates the key, it moves the latest group key towards a point in the n-dimensional space
along an axis that has been assigned uniquely to it. Blue and red update the key towards higher
indices on the = axis and y axis, respectively.

1. In Figure 2a, the red and blue parties initialize their local lattices with kg .

2. In Figure 2b, red evolves the group key, which moves red’s latest key to k1.

3. In Figure 2c, suppose red received an update message from blue. Red applies the update and
evolves its own index from ko1 to ki,1. Because red knows that blue evolved its key, red updates
its view of blue’s index koo to kig. Specifically, red’s perspective of the latest key for blue
becomes ki . Since kg and ko 1 are outside the shaded region, these keys are removed.

Windowing to Limit State Expansion: In addition to the state reduction described above, we also
apply a state “window” that prevents the state from blowing up in case encrypted messages are
delayed over the network, at the expense of the ability to decrypt long-delayed messages. Consider
that if one party makes m updates to the shared group key, resulting in m possible different group
keys, then parties must keep O(m) states in case another party sends a message using one of those
m keys. In our windowing scheme, each party maintains at most the latest w key evolutions from
every other party, which provides the ability to compute at most w™ total keys on the key lattice
at any time.

When using this scheme, there are situations in which parties may send messages such that
some application messages are not decryptable. Suppose sender S sends an application message m
encrypted under key k, and then suppose S updates the group key w times starting with k. If S’s
message m is delayed until after receiver R receives S’s key updates, then R will delete the key
material describing how to decrypt m. In synchronous networks, the window can be set such that
parties update their keys once per epoch, and the window can be set large enough (by setting w

is equal to the number of epochs that measure the network delay) for sent messages to always be
received in time to be decrypted. In the general asynchronous case, the window can be set to oo in
order to always guarantee decryption, but this approach loses FS.® Thus, windowing allows us to
trade between security and correctness.

Group Messaging (GM): In our construction, parties who wish to participate in a GM instance
begin by running a GKA protocol to obtain a shared symmetric key k. They use k to initialize their
key lattice, and then use GRM to securely communicate update messages that can be applied to
the key lattice to evolve the shared group key. When a party encrypts an application (payload)
message, it always uses the latest key in its key lattice.

Dynamic Membership: We provide an extension of our framework that permits dynamic group
membership “for free,” and additionally handles simultaneous adds and removals with no addi-
tional effort, thus completely avoiding “splitting” [ACJM20] issues in synchronous protocols where
multiple parties make competing simultaneous updates. The intuitive understanding is to view our
representation of a key lattice as a lossless compression of an n-dimensional space in which only a
finite number of points are defined, where n is the number of all possible identities. Each dimension
in the key lattice represents a party that belongs to the group, and all other dimensions in the
lattice are defined to contain points set to L. When a new party joins the group, points become
defined in the dimension corresponding to that party. When a party leaves the group, its future
group updates become invalid.

Treating dynamic membership in this way averts all of the problems of concurrency incurred by
other works — including with respect to insider attacks — since groups including the new members
are only defined in the lattice as successor points of the addition operation, and we incur no conflicts
by maintaining multiple copies of the lattice that correspond to groups both with and without the
new member. For simplicity, in the remainder of this paper, we define and construct our protocols
without dynamic membership. We provide details of our dynamic group extension in Section 8.

1.3 Discussion

Fast Healing and Updates: Our key lattice and modular framework achieves a fast and intuitive
healing mechanism. If any party is compromised, it must first heal its local GRM execution by calling
its evolution function once (this refreshes the state of the channel as well as updates the group
key). The next update that it receives from an uncompromised party yields an uncompromised key
(including if the recovered party performs the second evolution itself). This means that healing
requires 2 GRM messages. If all parties are simultaneously corrupted — meaning the adversary
learns all of the keys in all parties’ local states — then all parties must refresh their GRM channels
and then the next uncompromised key update yields an uncompromised group key.

Because we don’t require the propose-and-commit framework to complete an update, we reduce
the complexity of every group update operation from 2 messages to 1 compared to propose-and-
commit.

8 This tradeoff was similarly explored by [PP22]; our asynchronous security model specifically accounts for the
attacks they describe by withholding some ciphertexts and corrupting a party days later to recover the messages.

10

Full Concurrency: Our approach to providing full concurrency is a foundational departure from
the propose-and-commit framework. Propose-and-commit defines an execution as a series of epochs
in which there is one group key per epoch, and somehow the parties achieve agree on a serial
commit that defines the key for each epoch. (An infrastructure server implies this consensus by
ordering messages; other protocols require an extra round of acknowledgements that still do not
guarantee consensus without additional gadgetry.) Even DCGKA [WKHB21], the decentralized
work closest to ours by eliminating the central server, requires that a dominating commitment is
made in order to heal after compromises, but in the event of concurrent commitments there is
no solution. Additionally, if multiple updating or committing parties encrypt group messages with
respect to their own commitments, their messages are not guaranteed to be decryptable.

In contrast, our framework eliminates any notion of epochs and accepts that there many be
many simultaneous group keys. It is possible that there is a different “latest” group key in the
view of every party, and all parties may simultaneously update the group key(s). The key lattice
framework tracks simultaneous keys while graphically representing the keys’ relationships to each
other.

Partnering and Concurrent Sessions: In comparison to other recent work on group
messaging [AANT22b, ACDT20,AANT22a BDR20,WKHB21], our construction achieves secu-
rity of concurrent sessions by considering partnering. Partnering [BMS07,Brz13,KY03] (also
called matching) states that parties participating in concurrent sessions of group key agree-
ment commonly distinguish the separate sessions. An entire line of work starting with ART
[CCGT18] and continuing with extensions and improvements towards the MLS standard
[ACDT20,AANT22b, ACDT20,BDR20,Res19, WKHB21,Weil9] either explicitly or implicitly® con-
siders only one concurrent session at a time; other works explicitly model that only one CreateGroup
instruction may be called [ACJM20].

Comparison to a Simplified Session Model As an example of the complexity introduced by concur-
rent sessions, we note that [ACDT21] recently showed how to build group messaging from group key
agreement (with clear abstraction boundaries, as opposed to our construction) by omitting a key
confirmation step. Their protocol exists in a fully authenticated model where the adversary is not
allowed to inject messages, and the analysis only considers isolated sessions. The model therefore
disallows any possible attacks that could break key confirmation. They then defer authentication
to the higher-level secure messaging protocol that uses a CGKA underlying primitive.

2 General Definitions and Notation

We denote by N the natural numbers. For a list ¢, we denote by £[i] the ith element of ¢{. We write
[m] = {1,...,m}, and write [a,b] = {a,a+1,...,b — 1,b} where b > a. We assume a set of all
possible parties P and let n = |P|. For ease of notation, we define a function ¢ : P — [n] that
assigns a canonical ordering of P, i.e., to each U € P, ¢(U) assigns a unique index between 1 and
n. No specific representation is used to identify every player U € P, as long as the representation
is unique, such as a public key.

9 Cohn-Gordon [Coh18] explains that ART adopts a session-identifier model that obviates this issue by essentially
assuming that different sessions are distinguished by the participants.

11

Let i € N™ denote an index vector. All keys will be indexed by index vectors, i.e., we will always
write the secret keys as k;. The j-th element of index vector i will be denoted by i). For ease of
notation, we introduce a function increment(i, j) with inputs an index vector i and an integer j € [n]
and returns an index vector i’ such that for i # j, ¥ = i@ and ¥¥) = i) + 1. Similarly, the
function decrement(i, j) returns an index vector i’ such that for i # j, ¥ = i® and V) = i0) —1.
We also define a partial ordering on the index vectors by saying i > ¢ if i) > ¢(@) for all j. We write
H>c for a constant index vector ¢ € N to be the n-dimensional hyperplane of all index vectors i
such that i) > ¢ for all j € [n].

Network Model: We assume parties are connected via pairwise channels such that both parties
know the identity of the party on the other end. We assume a PKI exists that provides a mapping
between an identity U € P and a long-term public key. Every U € P also has its own long-term
private key.

Adversarial Model: In our security game, the adversary is responsible for delivering all messages
to its oracles. It may reorder messages arbitrarily, as per the definition of an asynchronous network
[CGR14]. Proper ordering of messages within a subprotool is enforced by sequence numbers on our
updates and encrypted messages, and therefore in the exposition we assume that each subprotocol’s
messages are ordered, but messages sent by different subprotocols (such as GKA, GRM, and GM
application messages) are not ordered with respect to each other.

The adversary may call its oracles on messages that have not been sent by honest parties.
This is an injection attack. However, because all messages in our constructions are authenticated,
successfully changing the state of an oracle without knowledge of a party’s underlying key would
break the security of an authenticated cryptographic primitive (PKAEAD or CCA Encryption).

The adversary can corrupt parties to learn protocol keys, and in some cases may inject messages
based on those keys. For example, learning a group key allows the adversary to inject application
messages, but these injections do not affect the security of other keys.'"

Insider Security The adversary can “take over” a party by first learning its GRM key (via a
separate corruption query than leaks the group keys) and then evolving the group key on the party’s
behalf. This is an insider attack, as the party has become impersonated, and it is not considered
recoverable in any known scheme if the same party ever issues a competing key update. However,
if the adversary only uses the discovered state to send a message early which would have been sent
later by the party as in [ACJM20], then the attack is naturally covered by our security framework
“for free,” as this attack is equivalent in our game to calling an oracle’s evolution function early,
revealing the edge, and delaying delivery of the message to other parties. This is also equivalent
to setting the randomness for the party’s next key evolution; in either case, the adversary simply
learns the party’s next key evolution.

The techniques of [AJM22] for insider security require incorporating another protocol key into
the key schedule, which might not be revealed alongside a party’s other local state, as well as the
simulator’s ability to learn RO calls. The former is beyond the scope of the key lattice but could
be included in a comprehensive system, and it is unclear that the latter is possible in the standard
model. !

10 Some authentication schemes require parties to sign messages with their long-term keys [DGP22] but adapting
this to concurrent group messaging is non-trivial, and not the focus of this work.
1 When [ACJIM20] provide a construction without their RO, they achieve only static security.

12

2.1 CCA Secure Encryption Scheme

Definition 2.1 (Symmetric Key Encryption Scheme). A symmetric key encryption scheme
consists of three algorithms:

— KeyGen(1"): Output a symmetric key with security parameter \.

— Enc(m; k): On plaintext input m, output a ciphertext ¢ encrypted under the symmetric key k.

— Dec(c; k): Decrypt the ciphertext input ¢ using k and output the plaintext m if successful, oth-
erwise output 1.

Definition 2.2 (Symmetric Encryption Scheme IND-CCA Security). The security of an
IND-CCA symmetric encryption scheme is defined by a game between a challenger and an adversary
A as follows:

Challenger samples a symmetric key k & KeyGen(1%).
The adversary A outputs two messages mg, mj.

The challenger selects b & {0,1} and computes c* < Enc(mp; k).
The challenger sends c* to A.
A outputs b'.

Guds o o =

The adversary has access to an encryption oracle and a decryption oracle. On input x, the former
outputs Enc(z; k) and the latter outputs Dec(z; k). After the adversary learns c*, it is not allowed
to query the decryption oracle on c*. The advantage of the adversary is

2. | Prlb = 0] —1/2].

We say an encryption scheme described in Definition 2.1 is secure if, for any polynomial-time
adversary A, the advantage of the game above is negligible in the security parameter .

2.2 Message Authentication Code (MAC)
Definition 2.3 (MAC). A MAC consists of three algorithms

— k < MAC.KeyGen(1%),
— t + MAC(m; k), and
— b+ MAC.Verify(m, t; k).

For correctness we require for every A\, every key k and every m € {0,1}* it holds that
MAC.Verify(m, MAC(m; k); k) = 1.

Definition 2.4 (MAC EUF-CMA Security). The security of a MAC is modelled using the
existentially unforgeable under an adaptive chosen-message attack (EUF-CMA) game between chal-
lenger C and adversary A.

— C generates k < MAC.KeyGen(1?).

— A is allowed to query the MAC oracle (i.e., MAC(m;k)) on for any message m of his choice.
All the queried messages are stored in a table T'. Additionally, A is also allowed the verification
oracle MAC.Verify(m,t; k) on his input (m,t).

— FEventually, A outputs (m*,t*) to C.

— A wins t