
Masked Iterate-Fork-Iterate: A new Design
Paradigm for Tweakable Expanding

Pseudorandom Function

Elena Andreeva1 , Benoit Cogliati2, Virginie Lallemand3, Marine Minier3,
Antoon Purnal4, and Arnab Roy5

1 TU Wien, Vienna, Austria elena.andreeva@tuwien.ac.at
2 Thales DIS France SAS, Meudon, France benoit.cogliati@gmail.com

3 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
firstname.name@loria.fr

4 KU Leuven, Leuven, Belgium antoon.purnal@kuleuven.be
5 University of Klagenfurt, Klagenfurt, Austria arnab.roy@aau.at

Abstract. Many modes of operations for block ciphers or tweakable
block ciphers do not require invertibility from their underlying primitive.
In this work, we study fixed-length Tweakable Pseudorandom Function
(TPRF) with large domain extension, a novel primitive that can bring
high security and significant performance optimizations in symmetric
schemes, such as (authenticated) encryption.
Our first contribution is to introduce a new design paradigm, derived
from the Iterate-Fork-Iterate construction, in order to build n-to-αn-
bit (α ≥ 2), n-bit secure, domain expanding TPRF. We dub this new
generic composition masked Iterate-Fork-Iterate mIFI. We then propose
a concrete TPRF instantiation ButterKnife that expands an n-bit input
to 8n-bit output via a public tweak and secret key. ButterKnife is built
with high efficiency and security in mind. It is fully parallelizable and
based on Deoxys-BC, the AES-based tweakable block cipher used in the
authenticated encryption winner algorithm in the defense-in-depth cat-
egory of the recent CAESAR competition. We analyze the resistance
of ButterKnife to differential, linear, meet-in-the-middle, impossible dif-
ferentials and rectangle attacks. A special care is taken to the attack
scenarios made possible by the multiple branches.
Our next contribution is to design and provably analyze two new TPRF-
based deterministic authenticated encryption (DAE) schemes called SAFE
and ZAFE that are highly efficient, parallelizable, and offer (n+min(n, t))/2
bits of security, where n, t denote respectively the input block and the
tweak sizes of the underlying primitives. We further implement SAFE
with ButterKnife to show that it achieves an encryption performance of
1.06 c/B for long messages on Skylake, which is 33 − 38% faster than
the comparable Crypto’17 TBC-based ZAE DAE. Our second candidate
ZAFE, which uses the same authentication pass as ZAE, is estimated to
offer a similar level of speedup. Besides, we show that ButterKnife, when
used in Counter Mode, is slightly faster than AES (0.50 c/B vs 0.56 c/B
on Skylake).

https://orcid.org/0000-0003-0964-8711
https://orcid.org/0000-0002-3284-7076

Keywords: tweakable pseudorandom functions, expanding primitives, deter-
ministic authenticated encryption, beyond-birthday-bound security

1 Introduction

Building blocks. Block ciphers (BCs) are fundamental primitives in symmet-
ric cryptography. AES [AES01] is the most popular block cipher in use today,
a fact that has prompted processor vendors, like Intel and ARM, to equip their
products with AES hardware acceleration, enabling excellent software perfor-
mance.

In [LRW02], Liskov et al. proposed Tweakable block ciphers (TBC) as an
extension of classical block ciphers by adding a public tweak input. Secure TBCs,
similarly to secure BCs as pseudorandom permutations (PRPs), are modeled as
tweak-keyed pseudorandom permutations (TPRPs). TBCs allow for building
iterative symmetric schemes of higher security [IMPS17,LN17,PS16] than their
BC-based counterparts, thanks to their increased input size. [LRW02] provided
the security analysis of a TBC built from a secure BC, where the tweak size is
either same as the block size or a longer tweak (than block size) that is hashed to
the block size. Successive results investigated how to securely integrate a tweak to
a BC. A number of recent TBC designs follow the so-called TWEAKEY [JNP14]
design framework. These include SKINNY [BJK+16], and the AES-based Deoxys-
BC, Joltic-BC and KIASU-BC.

Forkciphers [ALP+19] (FC) and their multi-forkcipher [ABPV21] (MFC) gen-
eralization are recently proposed tweakable symmetric primitives. MFCs are
fixed-length n-to-αn (α = 2 for forkciphers) domain-extending functions that
come with forward, inverse, and a reconstruction evaluation functionalities. To
date, ForkSkinny [ALP+19] is the only secure forkcipher instance. Each ForkSkinny
branch can be viewed as an instance of the SKINNY TBC. Since each branch
forms a permutation under a fixed key, the maximal security is set by the birth-
day bound to n/2.

Because the 2n-bit domain extension is realized cheaper than 2 SKINNY calls,
ForkSkinny achieves performance improvements in (r)PAEF authenticated en-
cryption (AE) [ALP+19] modes, and in counter-style (CTR) encryption modes [ABPV21].
Yet, like with classical BC-based CTR-style encryption, the latter modes require
a primitive that makes forward-only evaluations.

Tweakable pseudorandom function. A more natural candidate primitive
for the latter optimizations hence is a novel 2n-to-αn pseudorandom function
(PRF), which can achieve n-bit (rather than n/2-bit) security thanks to its 2n-
bit input size. Since a tweakable PRF (TPRF) is equivalent to a PRF with a
bigger input space (that subsumes the tweak), the only point of introducing
a tweak/block distinction would be to bring down the computational cost of
processing changes of these different input parts. As most dedicated PRFs in
symmetric cryptography are usually build upon existing block ciphers [BKR98,
CS16, MN17a, MN17b], a TPRF then becomes a preferred building block here

as it can be built upon existing TBCs that readily support the increased 2n-bit
input space via their tweak and block as compared to 2n-bit BCs building blocks.

Beyond birthday bound (BBB). BBB security, or security higher than n/2-
bit and as close as possible to n-bit is required nowadays for many cryptographic
applications in the face of the present advancements in computation, concentra-
tion of resources in powerful entities, or multi-user (device) security aspects.

Fixed-length n-to-αn-bit TPRF primitives have not been researched to date.
In this work we set to answer the main question: “Can we design an efficient,
provably and cryptanalytically sound, n-bit secure fixed-length n-to-αn TPRF for
α ≥ 2 and show highly efficient, beyond birthday bound secure applications of it
in symmetric cryptography? ”

In this work we focus on authenticated encryption (AE) applications of TPRF
and in particular, we target secure deterministic AE as it offers high security
guarantees.

Authenticated encryption. AE is the symmetric standard for guaranteeing
both privacy and authenticity for the bulk of communication and data at rest
nowadays. Contemporary AE schemes use a nonce. Some of the most popular
nonce-based AE examples are OCB [RBBK01] and the NIST-recommended [NIS07]
modes GCM [MV04] and CCM [Hou05]. Nonces deter ciphertext repetitions when
identical messages are processed. One of the main adoption reasons for nonce-
based AE is that a nonce can be implemented as a random value or a synchro-
nized state updated with every message. Oftentimes, however, when the device is
equipped with a weak or flawed software randomness source, or has a restricted
secure storage for its state, the nonce may repeat. Users can also accidentally
mishandle nonces or set them to constants. The consequence of nonce repetitions
in counter (CTR) mode-style AE (e.g. OCB) is a loss in confidentiality. Recent
nonce-misuse attacks illustrate the severity of nonce repetitions in practice. In
2016 Böck et al. [BZD+16] showed that the authenticity of AES-GCM in TLS
can be completely broken where servers repeated the nonce. They also showed
that weakness can serve further for successful injections of valid content into
encrypted sessions. Vanhoef and Piesens [VP] introduced the key reinstallation
attack which forces nonce repetitions and breaks the WPA2 wireless protocol.

Deterministic authenticated encryption (DAE). In some applications,
the ciphertext differentiation (of repeated messages) is not a desirable feature. In
that case the AE deterministic feature of the algorithm might be exactly what the
application requires, such as, for example, access to encrypted database storage.
In such scenarios it is better to use nonce-misuse (NM) resistant AE [RS06]. De-
terministic AE (DAE) schemes are nonce misuse-resistant in the sense of [RS06].
Secure DAE leak only the repetition of repeated messages, but they retain secu-
rity over distinct messages even in the face of nonce repetitions. DAE schemes
achieve the highest AE security levels and are inherently two-pass designs. In a
nutshell, DAEs provide security independently of the (mis)use of nonces.

A DAE scheme deterministically transforms a key K, associated data A,
and a message M into a ciphertext C. SIV [RS06] is one of the most well-

known DAE. The GCM-SIV was proposed by Gueron and Lindell [GL15] as an
instantiation of SIV. A slightly modified version AES-GCM-SIV was later defined
in RFC 8452 [GLL19]. DAE also has its merits in the context of lightweight
AE [BBLT18] when devices lack a secure randomness generator or memory.

In [IM16] Iwata and Minematsu showed that the GCM-SIV security bound
of q

2(n−k)/2 , where q is the number of queries, and 2k denotes the maximum
block length of all the encryption and decryption queries, is tightly matched
by a trivial distinguishing attack in just 248 queries of one message block for
n = 128 and k = 32. The next year Gueron et al. [GLL17] proposed AES-GCM-
SIV instantiation with a claimed security bound of QR2

2n−k with Q being the number
of distinct nonces, R the maximal number of repetitions of any nonce both over
encryption queries, and the maximum message length 2k−1 blocks. A year later
Iwata and Seurin [IS17] discovered a flaw in the proof of the (AES)-GCM-SIV
to show that the offered security is actually worse than assumed, namely QR2

2n−2k ,
or further lower than the birthday bound. As such (AES)-GCM-SIV, although
performing close to only 1 cpb (despite its two-pass structure), failed to deliver
strong security guarantees that hardly match the birthday bound security.

To address these security concerns several recent DAE designs have targeted
beyond birthday bound security. In [IM16] Iwata and Minematsu propose GCM-
SIV2 which is secure up to about 22n/3 queries. In [PS16] Peyrin and Seurin
presented a nonce-based AE scheme called Synthetic Counter in Tweak (SCT)
that is based on a TBC. SCT achieves BBB security when nonces do not re-
peat but its security degrades to the birthday bound with the reuse of nonces.
In [IMPS17] Iwata et al. propose the ZAE DAE mode, which achieves BBB secu-
rity and processes n(n+ t)/(2n+ t) input bits per TBC. The performance result
was possible due to the use of the ZMAC authentication that “absorbs” (n + t)
bits per authenticated block. ZAE is instantiated with the Deoxys-BC [JNPS18]
and SKINNY [BJK+16] TBCs. Table 1 summarizes the security and performance
of these schemes.

Table 1: Security against nonce respecting (NR) and nonce-misuse (NM) adver-
saries and performance comparison of DAE schemes for long messages on Intel
Skylake. By n we denote the block size, t the tweak size, Q the number of distinct
nonces (in enc.), R is the maximal number of nonce repetitions (in enc.), σ the
total length in blocks of queried messages, q the number of encryption queries,
and the maximum message length by 2k−1 blocks.

AE Scheme Security (NR) Security (NM) Performance [c/B]

AES-GCM-SIV [GLL17] Q

2n−2k
QR2

2n−2k 0.83

SCT [PS16] q
2n

+ σ2

2n+t
q2

2n
+ Rσ

2t
1.74

ZAE [IMPS17] σ2

2n+min(n,t)
σ2

2n+min(n,t) 1.46

SAFE; ZAFE [This work] σ2

2n+min(n,t)
σ2

2n+min(n,t) 1.06; 1.10

Security-wise the ZAE DAE excels over its predecessors. Efficiency-wise the
AES-GCM-SIV still significantly outperforms ZAE (see detailed performance num-
bers in Table 5). One reason is that using TBCs to attain BBB secure DAE
schemes comes with some performance penalty when compared directly to BC-
based designs, such as the GCM-SIV DAE, admittedly with lower security margin,
due to the computational overhead associated with the tweakey processing.

Our next research question in this work is: “Is it possible to use a fixed-length
TPRF to design a DAE scheme with security guarantees comparable to ZAE but
with an improved performance much closer to GCM-SIV? ”

1.1 Contributions

Novel, generic n-to-αn-bit TPRF. We propose a generic masked Iterate-
Fork-Iterate mIFI method for building an n-bit secure TPRF. mIFI uses (α+ 1)
independent permutations, the first one to generate a fork state and the rest for
the output branches. We apply the internal fork state to mask the outputs of
each branch to preclude invertibility and obtain as a result a secure TPRF.

More concretely, we build a TPRF with fixed inputs a key K, a tweak T ,
an n-bit message M and which outputs a fixed-length ciphertext C of αn bits
via (α + 1) calls to the underlying independent random permutations where
α ≥ 2. While the design bears similarities with the iterate-fork-iterate [ALP+19]
forkcipher generic composition, the proof requires an entirely different approach
that is enabled by the application of the χ2 method of Dai, Hoang, and Tessaro
in [DHT17]. We prove that mIFI is indistinguishable from a uniformly random
αn-bit string with n-bit security. Up to our knowledge, this is the first fixed-
length TPRF composition result to achieve arbitrary but fixed expansion with
n-bit security.

Novel, fixed-length TPRF primitive. The mIFI approach allows us to effi-
ciently reuse existing, well-analyzed and optimized components, such as TBCs,
to instantiate our ButterKnife design (in Section 4). Our approach is reminiscent
of the n-to-n-bit AES-based (T)PRF [DIS+18] method. We choose to base our
design on the AES-based Deoxys TBC components due to its robustness in terms
of security and its reliance on the AES-based internal structure. Deoxys-BC is
used in both ZAE and the Deoxys [JNPS18,JNPS21] AE designs and the latter
was selected as a finalist and first choice for the ’in-depth security‘ portfolio of
the CAESAR competition.

ButterKnife uses a 256-bit tweakey and applies 7 Deoxys-BC-256 rounds until
the forking point and another 8 rounds in each of the α = 8 fully parallelizable
branches (see Figure 1) to expand an n-bit input to an 8n-bit output.

Cryptanalysis. ButterKnife benefits from the cryptanalysis of Deoxys-BC-256.
However, due to the feed-forward and of the 8 output branches in ButterKnife,
the security arguments of Deoxys-BC-256 do not directly apply to ButterKnife.
Due to the structural similarity ButterKnife also benefits from the cryptanalysis
of AES-PRF [MN17b]. We establish our design choices by providing a detailed

security analysis (in Section 5) of our proposal against well-known techniques
namely, differential, linear, impossible differential and rectangle attacks.

Encryption, authentication and DAE algorithms. Towards secure DAE,
we propose encryption and authentication schemes of independent interest and
prove their n-bit security (for TPRFs with tweaks of size t ≥ n). We introduce
the CTR-style IV-based encryption scheme FEnc that uses (n+min(n, t))-bit IVs
and encrypts on average m = αn bits of plaintext for each call to the underlying
α-blocks expanding TPRF. We also construct and prove secure the new PRF
algorithm called SFMac that takes as input the data inputs (A,M) and the fixed
key K to produce a tag of length 2n bits. The SFMac design uses a GHash-like
construction and spends about one multiplication in GF(22n) to process 2n bits
of data and two calls to the underlying TPRF for the total data processing. The
encryption scheme distinguishes itself by the optimized message processing due
to the use of αn bit outputs from the TPRF (versus n-bit outputs for TBCs).
Both schemes also support reducing the tag and IV length to any λ ≤ 2n, which
reduces the security level to min(λ, n+min(n, t))/2 bits.

We then combine both the latter authentication and encryption algorithms
under the SIV composition [RS06] to achieve the n-bit secure DAE scheme called
SAFE, that is inspired by the design of GCM-SIV. Since some platforms do not
offer instructions to speed-up finite field multiplication, we also introduce the
ZAFE DAE scheme, that combines the TPRF-based encryption from FEnc to the
efficient TBC-based ZMAC MAC algorithm. Additionally, we choose all primi-
tives so that they are parallelizable (and hence SAFE and ZAFE). Our proofs
rely on the H coefficients technique and take advantage of the additional input
space that comes from the tweak and of the larger output space to achieve full
security using a number of primitive calls that is as small as possible.

Efficiency. We implement SAFE and compare it to state-of-the-art DAE schemes.
Our detailed performance results are demonstrated in Table 5. Owing to the
large TPRF output at reduced computational cost, our fully parallelizable en-
cryption pass FEnc features significant improvements in throughput (≈ 62-74%)
with respect to the TBC-based encryption pass in other schemes such as ZAE.
In the scope of n-bit secure DAEs, we observe our proposals SAFE and ZAFE
to compare favorably to their TBC-based counterparts. Our SFMac implemen-
tation shows that GHash-style multiplication in GF(22n) may, depending on the
platform, contribute to no less effective SFMac processing than, e.g., ZMAC.
Globally, SAFE and ZAFE maintain n-bit security, like ZAE, while moving much
closer to AES-GCM-SIV in terms of performance (e.g., with 1.06 c/B on Skylake).

1.2 Organization

In Section 2, we recall the notions that are necessary for the rest of the paper. In
Section 3, we introduce the masked-Iterate-Forf-Iterate paradigm and prove its
soundness. In Sections 4 and 5, we define and analyze the ButterKnife expanding
TPRF. Finally, in Section 6, we discuss the actual performance of our construc-

tions, and we illustrate the usefulness of expanding TPRF with our two modes
of operation SAFE and ZAFE.

2 Preliminaries

2.1 General notation

For every positive integer n, we denote by {0, 1}n the set of all n-bit binary
strings, and by ({0, 1}n)+ the set of all bit strings whose size is a non-zero
multiple of n. The set of all bit strings will be denoted by {0, 1}∗, and the
empty string by ϵ. For any M in {0, 1}∗, |M | will be the bit length of the string
M . Moreover, M [1]|| . . . ||M [m]

n←− M means that we split M into m blocks
of exactly n-bit strings, where m = ⌈|M |/n⌉. If M ̸∈ ({0, 1}n)+, the one-zero
padding is used on M beforehand. Finally, for any T in {0, 1}∗, [T]n denotes the

first n bits of T if |T | ≥ n, or T ||0n−|T | otherwise. Similarly, M [1]||M [2]
(n,t)←− M

means that we split the (n+ t)-bit string [M]n+t into 2 blocks, where M [1] is a
n-bit string and M [2] a t-bit string.

The set of all permutations of {0, 1}n will be written Perm(n). Similarly, for
every positive integer m, t such that m ≥ n, the set of all tweakable permutations
of {0, 1}n with tweak space {0, 1}t will be denoted by P̃erm(t, n), and the set of
all tweakable functions from {0, 1}n to {0, 1}m will be denoted by Func(t, n,m).
For any keyed tweakable primitive P : K×T ×X → Y with key space K, tweak
space T , domain X and range Y, we will indifferently write P (k, t, x), Pk(t, x)
or P t

k(x) for every tuple (k, t, x) in K × T × X .
As usual, for any positive integers a, b such that a ≥ b, we denote by (a)b the

falling factorial a(a− 1) · · · (a− b+ 1), with the convention that (a)0 = 1.
Let GF(2n) be the field of order 2n. We identify n-bit strings and finite

field elements of GF(2n) by representing the string a = an−1an−2...a1a0 as the
polynomial a(x) = an−1x

n−1+an−2x
n−2+ ...+a1x+a0 and vice versa. For any

a, b in {0, 1}n,we define their sum a⊕b as the sum of the polynomials a(x)+b(x).
The product a⊗b or ab is defined with respect to the irreducible polynomial f(x)
used to represent GF(2n) as a(x) · b(x)modf(x). Therefore, we can view {0, 1}n
as the finite field GF(2n) with ⊕ as field addition and ⊗ as field multiplication.
Sometimes, we also identify n-bit strings with integers in {0, . . . , 2n−1}. In that
case, ⊞ and ⊟ denote the addition and subtraction modulo 2n. Moreover, we
define the ⊕t operation as follows: for any x ∈ {0, 1}n, and any y ∈ {0, 1}t,
x⊕t y = [x]t ⊕ y. Note that one always has |x⊕t y| = t.

2.2 The H coefficients technique

In this section, we present the H coefficients technique [Pat08], which will be
used to prove some of our results.

This technique is useful to upper bound the advantage of a (computationally
unbounded and deterministic) distinguisher trying to distinguish between two
worlds: a real world and an ideal one. Let D be such a distinguisher. In both

worlds, it has access to a tuple of oracles that have the same signature. Let us
denote by Ore (resp. Oid) the tuple of real (resp. ideal) world oracles. Then, the
advantage of D is defined as

Adv(D) = |Pr
[
DOre = 1

]
− Pr

[
DOid = 1

]
|.

The interaction of D with its oracles will be summarized in the queries tran-
script τ of the attack. We are going to introduce two new random variables θid
(resp. θre) which correspond to the transcript that is obtained by the interac-
tion of D with the ideal (resp. real) world oracle. A transcript τ will be said
attainable if and only if Pr [θid = τ] > 0, i.e. the probability of τ appearing in
the real world is non-zero. The set of all attainable transcripts will be denoted
by Θ. Then, one has the following classical lemma.

Lemma 1 ([Pat08,CS14]). Let Θbad, Θgood be two sets such that Θ = Θbad⊔
Θgood. If we assume that, for every transcript τ in Θgood, one has

Pr [θre = τ]

Pr [θid = τ]
≥ 1− ε,

then one has Adv(D) ≤ Pr [θid ∈ Θbad] + ε.
As usual, the set Θbad (resp. Θgood) will be referred to as the set of bad (resp.
good) transcripts.

2.3 The χ2 technique

In [DHT17], Dai, Hoang, and Tessaro introduced a new technique, dubbed the
χ2 method, to upper bound the statistical distance between the probability dis-
tributions of two sequences of random variables by computing the expectation
of the χ2 distances of the corresponding conditional distributions of the ran-
dom variables. The core result of this technique is Lemma 2 given below. So
far, it has been used to prove the security of various well-known constructions,
such as the XORP constructions [DHT17, BN18],the encrypted Davies-Meyer
construction [DHT17], or the Swap-Or-Not construction [DHT17].

Given a set Ω, let X := Xq := (X1, . . . , Xq) and Y := Y q := (Y1, . . . , Yq) be
two random vectors distributed over Ωq. For every i ∈ [q], we write PrZ

[
zi|zi−1

]
:=

Pr
[
Zi = zi|Zi−1 = zi−1

]
for Z ∈ {X,Y}. For the special case when i = 1, we

define PrZ
[
z1|z0

]
:= Pr [Z1 = z1].

Definition 1. Suppose that for every i and every yi such that Pr
[
Y i = yi

]
> 0,

one also has Pr
[
Xi = yi

]
> 0. For every zi−1 in the support of Y i−1, the χ2-

distance between these two conditional probability distributions is defined as

χ2(zi−1) :=
∑
xi

(
PrY

[
xi|zi−1

]
− PrX

[
xi|zi−1

])2
PrX [xi|zi−1]

,

where the sum is taken over all xi such that PrX
[
xi|zi−1

]
> 0.

We also recall that the statistical distance between two distributions Pr0 and
Pr1 whose supports are included in a set Ω is defined as follows:

∥Pr0 − Pr1∥ =
1

2

∑
x∈Ω

|Pr0(x)− Pr1(x)| .

Besides, the statistical distance also satisfies the following well-known property:

∥Pr0 − Pr1∥ = max
X⊂Ω

|Pr0(X)− Pr1(X)| .

We are now ready to state the core technical Lemma of the χ2 method.

Lemma 2. Assuming that the support of Y i is included in the support of Xi

for every i = 1, . . . , q, one has

∥PrX − PrY∥ ≤
(
1

2

q∑
i=1

E
[
χ2(Y i−1)

]) 1
2

. (1)

2.4 Security Notions

Tweakable pseudorandom functions/permutations. A TPRF is a keyed
function F : K×T ×X → Y. The tprf security of a TPRF is defined as follows.

Definition 2. Let F be a TPRF. The advantage of an adversary A in breaking
the tprf-security of F is defined as

AdvtprfF (A) =
∣∣Pr [AFK = 1

]
− Pr

[
AR = 1

]∣∣ ,
where the probabilities are taken over the random choices of A and the uniformly
random draw of K from K and R from the set of all functions from T × X to
Y. When T = ∅, we recover the standard prf security notion.

It is easy to see that there is no difference between a secure TPRF with tweak
space T and input space X and a secure PRF with input space T × X . We
adopt the tweakable formalism as the two inputs will have a different impact on
performance in our instantiation, and thus it makes sense to distinguish them.
When F is a TPRP, we define its tprp security in a similar way.

Definition 3. Let F be a TPRP. The advantage of an adversary A in breaking
the tprp-security of F is defined as

AdvtprpF (A) =
∣∣Pr [AFK = 1

]
− Pr

[
AP = 1

]∣∣ ,
where the probabilities are taken over the random choices of A and the uniformly
random draw of K from K and P from the set of all tweakable permutations from
T × X to X .

Deterministic AE. A deterministic authenticated encryption (DAE) scheme
is a tuple DAE = (K,AD,M, C,DAE.Enc,DAE.Dec) where K,AD,M, C are non-
empty sets and DAE.Enc,DAE.Dec are deterministic algorithms such that:

– DAE.Enc takes as input a key K in K and a plaintext M in M with some
associated data A in AD, and returns a ciphertext C in C;

– DAE.Dec takes as input a key K inK, a ciphertext C in C and some associated
data A in AD, and returns either a plaintext M inM, or the special symbol
⊥ if the ciphertext is invalid;

– for any tuple (K,A,M) in (K,AD,M), one has

DAE.DecK(A,DAE.EncK(A,M)) = M.

The dae-security of a DAE scheme is defined as follows.

Definition 4. Let DAE be a DAE scheme. The advantage of an adversary A in
breaking the dae-security of DAE is defined as

AdvdaeDAE(A) =
∣∣∣Pr [ADAE.EncK ,DAE.Deck = 1

]
− Pr

[
A$(·,·),⊥(·,·) = 1

]∣∣∣ ,
where oracle ⊥ always returns ⊥, and the probabilities are taken over the random
choices of A, the uniformly random draw of K from K, and the randomness of
the oracle $ which returns a uniformly random bit string of the same length as
the corresponding output of DAE.Enc.

IV-based encryption scheme. An IV-based encryption scheme is a tuple
IVE = (K, IV,M, C, IVE.Enc) where K, IV,M, C are non-empty sets and IVE.Enc
is a deterministic algorithm such that IVE.Enc takes as input a key K ∈ K, an
IV I ∈ IV and a plaintext M ∈M, and returns a ciphertext C ∈ C. We denote
by IVE$ the associated randomized algorithm that starts by drawing a uniformly
random IV from IV.

The ive-security of an IV-based encryption scheme is defined as follows.

Definition 5. Let IVE be an IV-based encryption scheme. The advantage of an
adversary A in breaking the ive-security of IVE is defined as

AdviveIVE(A) =
∣∣∣Pr [AIVE$.EncK = 1

]
− Pr

[
A$(·,·) = 1

]∣∣∣ ,
where the first probability is taken over the uniformly random draw of K from
K and oracle $ returns a uniformly random bit string of the same length as the
corresponding output of IVE.Enc.

3 The masked Iterate-Fork-Iterate paradigm

In this section, we introduce a new design paradigm, dubbed masked Iterate-
Fork-Iterate (mIFI), that can be used to build TPRFs using tweakable block

P 0

P 1 P 2 · · · Pα

X

Y1 Y2 Yα

T

T T T

Fig. 1: Graphical representation of the mIFI paradigm, where P is a tweakable
permutation with tweak space [α]× {0, 1}t.

cipher components. We will justify the soundness of our approach by proving the
information-theoretical security of our generic construction, when instantiated
with ideal primitives. As usual, this is not sufficient to justify the security of any
instantiation of that paradigm, but it serves to rule out generic attacks.

The mIFI paradigm can be seen as a variant of the Iterate-Fork-Iterate (IFI)
paradigm behind forkciphers: the main difference is that we XOR the forking
state to all output blocks. A graphical depiction of this paradigm can be found
in Figure 1. A property of forkciphers is that each of their branches behave as a
tweakable block cipher: this inherently limits the TPRF-security of forkciphers
to the birthday bound. As we will see, our simple change is sufficient to make
the construction behave as an n-bit secure TPRF, where n denotes the size of
the input block. It also allows us to keep the performance benefits of forkciphers,
and to re-use components from existing primitives (tweakable block ciphers) to
build our new algorithm. Of course, the feed-forward also precludes decryption
and reconstruction queries that are inherent to forkciphers. We demonstrate in
Section 6 AE schemes where no form of invertibitlity is required and hence a
TPRF is a perfect fit both security- and performance-wise.

We prove the following result.

Theorem 1. Let α, q and n be three strictly positive integers such that (α+1)q <
2n and let T be a non-empty set. We denote by F0 the mIFI paradigm where
P

$←− P̃erm([α]×T , n). Then, for any distinguisher D against the tprf-security
of F0 that issues at most q queries to its oracle, one has

AdvtprfF0
(D) ≤

√
2(α+ 1)q

2n
.

Proof Strategy. In this proof, we focus on information-theoretical adversaries:
these are computationally unbounded, and can be considered deterministic with-
out loss of generality. Let D be any distinguisher against the tprf-security of F0

that issues at most q queries to its oracle. We will assume (also w.l.o.g.) that

D does not make any redundant queries, and that it always issues exactly q
queries..

The first step of the proof is to notice that, in the real world, P can be lazily
sampled. In general, as long as a random tweakable permutation is queried on a
new pair (T,X), the answer can be chosen uniformly at random outside of the
set of the previous outputs with the same tweak value T . When a new query
(T,X) is issued to F0, since D does not repeat queries, X has never been queried
to P 0(T, ·). Hence, Z0 := P 0(T,X) is chosen uniformly at random outside of
the set of the Z0 from the previous queries with tweak T . Then, the values
Zi := Pα(T, Y0) can be chosen uniformly at random from the set of values that
are different from the previous Zi values with the same tweak. Hence, we can
see that F0 is indistinguishable from the PRF F1 defined as follows:

F1 : T × {0, 1}n −→ {0, 1}αn

(T,X) 7−→ ∥αi=1P
0(T,X)⊕ P i(T,X)

Hence,
AdvtprfF0

(D) = AdvtprfF1
(D).

This construction can be seen as a variant of the well-studied XORP construc-
tion, where independent permutations are used for each permutation call (and a
tweak parameter has been added). We will follow in parts the idea for the proof
of [BN18] and their convention for denoting an m-tuple (x1, . . . , xm) as xm. This
will make the size of each tuple involved in the proof easier to follow. First, we
are going to reveal additional information to the adversary:

– in the real world, the intermediate values Z0 will be revealed alongside each
query;

– in the ideal world, a dummy value will be chosen uniformly at random in a
set of authorized values (namely the set of all values that do not create any
collision with a previous query).

The random variable that corresponds to the transcript of the interaction of D
with the real (resp. ideal) world oracle will be denoted S (resp. R), and we give
a formal definition of both in Algorithms 1 and 26. Note that the conditions
Di[T] = {0, 1}n and D = {0, 1}n cannot occur since we assume (α+ 1)q < 2n7,
we include them for the correctness of the algorithm. We let Ωq denote the set
of all transcripts sq such that PrS [s

q] > 08. Such a transcript can be parsed as
a list of q tuples of the form (ti, xi, y1,i∥ · · · ∥yα,i, z0,i), where:

6 Recall that D is deterministic. Hence, all adversarial queries can be computed from
the outputs of the oracle. We still make the queries explicit in the transcript in order
to make the proof easier to follow.

7 As a consequence, for every y ∈ {0, 1}αn, there exists at least one value z0 such that
the probability of getting (y, z0) as an output is non-zero, both in the real and the
ideal world.

8 This set depends on the adversary D.

– (ti, xi) corresponds to D’s i-th query, that deterministically depends on the
values of yk,j and z0,j for j < i and k = 1, . . . , α;

– (y1,i∥ · · · ∥yα,i, z0,i) corresponds to the output of the F1 construction, which
means that, for every 1 ≤ i < j ≤ q, if ti = tj , then z0,i ̸= z0,j and
yk,i ⊕ z0,i ̸= yk,j ⊕ z0,j for k = 1, . . . , α.

It is clear that, for such a transcript, one also has PrR [s
q] > 0 as it would

have been possible for the ideal-world oracle to give the same outputs, albeit
with a different probability. Conversely, any transcript rq such that PrR [rq] > 0
also satisfies PrS [r

q] > 0. Hence, both probability distributions have the same
support Ωq, and we can apply the χ2 technique to S and R in order to lower
bound ∥PrS − PrR∥. Given that

AdvtprfF0
(D) = AdvtprfF1

(D) ≤ ∥PrS − PrR∥ ,

it will allow us to conclude the proof of Theorem 1.

Algorithm 1 S is the random variable corresponding to the outputs created by
the interaction of D with the real-world oracle defined here.

variables
Tables of sets of previous Tweakable Permutation Outputs (Di[T])i∈{0,...,α},T∈T

end variables

function Initialize
for i ∈ {0, . . . , α} do

for T ∈ T do
Di[T]←− ∅

end for
end for

end function
function Query(T ,X)

for i ∈ {0, . . . , α} do
if Di[T] = {0, 1}n then

return 0n

end if
Zi

$←− {0, 1}n \Di[T]
Di[T]←− Di[T] ∪ {Zi}

end for
for i ∈ {0, . . . , α} do

Yi ←− Z0 ⊕ Zi

end for
return (T,X, Y1∥ . . . ∥Yα, Z0)

end function

In Supplementary Material A, we prove the following Lemma.

Lemma 3.

∥PrS − PrR∥ ≤
√
2(α+ 1)q

2n
.

4 Specification of ButterKnife

In this section we propose the concrete instantiation ButterKnife, which mainly
utilizes the round function and tweakey scheduling of Deoxys-BC.

Algorithm 2 R is the random variable corresponding to the outputs created by
the interaction of D with the ideal-world oracle defined here.

variables
Tables of sets of previous Tweakable Permutation Outputs (Di[T])i∈{0,...,α},T∈T

end variables

function Initialize
for i ∈ {0, . . . , α} do

for T ∈ T do
Di[T]← ∅

end for
end for

end function
function Query(T ,X)

for i ∈ {1, . . . , α} do
Yi

$←− {0, 1}n
end for
D ←− D0[T]

for i ∈ {1, . . . , α} do
D ←− D ∪ (Yi ⊕Di[T])

end for
if D = {0, 1}n then

return 0n

end if
Z0

$←− {0, 1}n \D
D0[T]←− D0[T] ∪ {Z0}
for i ∈ {1, . . . , α} do

Di[T]←− Di[T] ∪ {Z0 ⊕ Yi}
end for
return (T,X, Y1∥ . . . ∥Yα, Z0)

end function

The Deoxys-BC is based on AES round function and thus inherits some of its
security properties. The Deoxys-BC-based AE [JNPS18] was a candidate and one
of the winners of the Caesar competition. So, extensive security analyses were
made on both Deoxys and Deoxys-BC (for instance [CHP+17,LSG+20,ZDJ19],
see Table 6), which confirm its resistance to a number of cryptanalysis techniques.

In order to inherit from both the performance and security arguments of
Deoxys-BC, and to serve our design necessities simultaneously, we modified as
few elements as possible in ButterKnife. Most notably, the beginning of the series
of operations that an input X goes through to give any Yj is exactly the same
as Deoxys-BC-256 except for the round constants.

Specification. ButterKnife uses a 256-bit tweakey and is based on Deoxys-BC-256,
P 0 contains 7 rounds and P j (1 ≤ j ≤ α = 8) contains 8 rounds (thus 15 rounds
out of which 7 common rounds are iterated to obtain the corresponding Yj from
X).

SubBytes ShiftRows MixColumns

Tweakey

RTKi

Addition

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 2: One round transformation of the internal state of Deoxys-BC.

The 128-bit state of ButterKnife is represented as a 4×4 matrix of bytes. The
tweakey is made of 256 bits, represented as two matrices in the same format. As
represented in Figure 2, each round is made of the following operations:

– AddRoundTweakey (ART) adds the (128-bit) round tweakey to the internal
state,

– SubBytes (SB) transforms each of the 16 bytes by applying the AES Sbox,
– ShiftRows (SR) rotates the i th row to the left by i positions, where i ∈
{0, 1, 2, 3},

– MixColumns (MC) corresponds to the multiplication in F28 of each column
by the circulant matrix M = circ(02, 03, 01, 01).

A final tweakey addition is done before the final feed forward leading to the
Yj , 1 ≤ j ≤ 8. As in Deoxys, the last MixColumns is not omitted. The tweak
and the key are handled together by following the tweakey framework [JNP14]
proposed by Jean et al.

At round i, the round tweakey RTKi is obtained by xoring the current state
of the two tweakey words with a round constant depending on the round i and
on the branch index jb (jb = 0 before branching, and jb = j (≥ 1)after branching
for the branch leading to Yj):

RTKi = TK1
i ⊕ TK2

i ⊕ Rconstjb,i.

The set of round constants is computed as follows, where RC[i] is the AES
round constant in the ith round:

Rconstjb,i =


1 RC[i] jb 0

2 RC[i] jb 0

4 RC[i] jb 0

8 RC[i] jb 0


The choice of the number of rounds for ButterKnife and the other parameters

are decided by the security analysis (given in Section 5).

5 Security analysis of ButterKnife

In this section we review the different attack techniques and show that the
recommended number of rounds for our instance is resilient against them. We
consider the single key and related-tweakey adversarial model for our security
analysis, and aim for 128-bit security. We recommend to take a number of rounds
before and after branching that is equal or really close and that every output Yj

is built from the same number of rounds.
Note that any one branch of ButterKnife, from X to Yj (1 ≤ j ≤ 8), follows

the FastPRF construction [MN17b] proposed by Mennink and Neves. Conse-
quently, parts of the analysis made on its concrete instance AES-PRF in [DIS+18]
apply to our case.

Note that the attacks on ForkAES [ARVV18] which exploits the reconstruc-
tion query functionality do not apply to ButterKnife. This is due to the facts that
each branch of ButterKnife is not a permutation of the input and there is no re-
construction functionality i.e. to obtain a Yi from a Yj (for i ̸= j and i, j ≥ 1),
is impossible in ButterKnife. We stress that our analysis takes into account that
different output branches share the first 7 rounds and that up to our analysis no
weakness is induced by this.

5.1 Differential distinguishers

First scenario. If we focus on one branch, the cipher follows the same transfor-
mations as Deoxys-BC. The final feed forward and the different round constants
have no impact on the number of active Sboxes of a differential characteristic,
and thus the bounds provided in [CHP+17] apply (see Table 2).

Let us consider the differential characteristic corresponding to a single branch,
w.l.o.g. the first branch producing the outputs Y1, Y

′
1 under two distinct tweaks

T, T ′ respectively. Suppose there is a tweakey differential characteristic with
probability p observed for 15-round of Deoxys-BC-256 i.e. before adding the feed-
forward internal state in ButterKnife, given by (∆in → ∆1 → . . .∆ → . . . ∇̃

1
)

where ∆ is the difference in the internal state at the round before branching.
Then any branch j will have a tweakey differential characteristic ∆in → ∆1 →
. . .∆→ . . . ∇̃

j ⊕∆ with the same probability p.

Table 2: Lower bounds on the number of active S-boxes in the related-tweakey
model for Deoxys-BC-256 (from the simple model in [CHP+17]).

rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Deoxys-BC-256 0 0 1 5 9 12 16 19 23 26 29 32 35 38

Table 3: Bounds on the number of active Sboxes in the second scenario.
rounds after branching 1 2 3 4 5 6 7 8

active Sboxes 4 16 22 22 23 24 25 26

Since the S-box used in ButterKnife is differentially 4-uniform, a characteristic
with 22 or more active Sboxes does not allow to distinguish the cipher, and
thus the previous bounds indicate that this attack scenario does not threaten
ButterKnife.

Second scenario. A second possibility would be to obtain information from
the propagation of a difference between different branches, say the one leading
to Yi and the one leading to Yj , computed from the same input X. The specific

structure of ButterKnife implies that the difference only comes from the difference
in the definition of P i and P j (see the blue differences on the left in Figure 3).

P 0

P i P j

X

T

T

Yi
Yj

δ = 0

∆?

T

P 0

P i P j

P 0

P i P j

X X ′

T

T

T ′

T ′

Yi Y ′
iYj Y ′

j

· · · · · ·

Fig. 3: Second and third scenario for a differential attack.

Right after branching the difference is naturally δ = 0. The question is to de-
termine if the variation between P i and P j is sufficient to avoid high probability
differential characteristics.

From our definition of ButterKnife, the variation only comes from the con-
stants added in the tweakey, so in each round the difference lies in the third
column, and is equal to (i⊕ j, i⊕ j, i⊕ j, i⊕ j)T .

A basic (byte-wise) MILP modelling of the problem returns the bounds in
Table 3.

From this basic model we obtain that already after 3 rounds there are 22 ac-
tive Sboxes, and then that a single characteristic would not allow to distinguish.
As we discuss in Appendix E.1, these rather slowly increasing bounds are not
tight.

Third scenario. We can also consider two inputs X and X ′ (processed under
two tweakeys T and T ′), and look at the difference propagation from the inputs
to two different branches of each process. For instance, a difference starting from
X ⊕X ′ to Yi ⊕ Y ′

j . (see on the right of Figure 3).
The first part of a characteristic in this setting follows the same constraints

as a characteristic over Deoxys-BC, and thus the same bounds as the one given
in Table 2 apply on this portion. The framework is more complicated for the
lower part, for which we may have a difference in the internal state, in the
tweak, and coming from the round constants.

We again made a byte-wise MILP model to get an idea of the number of
active Sboxes. The results are reported in Table 4. Note that we did not force
a difference in the tweakey nor in the input so that the minimum returned
here might correspond to characteristics following the previous scenario with no
difference in X nor in T .

Table 4: Bounds on the number of active Sboxes in the third scenario.
rounds before + after branching 2+2 3+3 4+4 5+5 6+6 7+7 7+8

active Sboxes 2 7 17 22 24 25 26

5.2 Linear trails

Any 4 consecutive rounds of ButterKnife have the same property as Deoxys and as
the AES, that is, activate at least 25 Sboxes. Moreover, the impact of a tweak on
the resistance to linear cryptanalysis was studied in detail in [KLW17], with the
important conclusion that "tweaking a block cipher with a linear tweak schedule
does not introduce any new linear trails".

5.3 Meet-in-the-Middle attacks

A MitM attack was presented in [DIS+18] against the AES-PRF [MN17b]. This
analysis shows that 7 rounds (with s rounds before and 7 − s rounds after the
feed-forward) of AES-PRF can be attacked with time and (chosen plaintext)
data complexity 2107. A single branch in ButterKnife resembles the FastPRF (or
AES-PRF) construction. The attack in [DIS+18] can also be applied against a
single branch of ButterKnife. However, this is only able to break 7 out of 15
rounds. The MiTM attack [LJ19] on Deoxys-BC-256 (with 128-bit key) breaks 8
rounds of the cipher. This attack is based on the same distinguishing technique
(from Demirci and Selçuk [DS08]) that is also used in [DIS+18]. For ButterKnife
(with a 128-bit key), it is possible to break a maximum of 8 rounds.

5.4 Impossible differentials and zero-correlation

First case (Single Branch). As for the differential, we start with the scenario
that studies a single branch (X to one of the Yi), which corresponds to the
FastPRF construction. The impossible differential technique used against AES-
PRF [DIS+18] can be applied to any branch of ButterKnife, for a version with
P j (1 ≤ j ≤ 8) of any number of rounds. This is depicted in Figure 4.

P 1P 0

Γin Γout

Γout

0 ΓoutΓout
P 1P 0

∆in ∆out

∆out

∆out ∆out0

Fig. 4: Impossible differential and Zero-correlation attacks (from [DIS+18]).

In the single tweakey scenario, P j is a permutation and as such cannot cancel
a difference: for any non-zero input difference ∆out the output difference cannot

be 0. Thus, if the output difference of P 0 is ∆out it is impossible to observe ∆out

after the feed forward. This is an impossible differential distinguisher, and it can
be converted into an attack by positioning the key-recovery rounds in P 0.

An impossible differential attack [DIS+18] against AES-PRF2,8 i.e., 2 rounds
before and 8 rounds after the feed forward step, can be mounted. The full But-
terKnife, i.e. with 7 and 8 rounds before and after feed forward respectively,
seems secure against this type of attack as we expect that no more than 3 key
recovery rounds can be added.

A similar technique can be used to create a zero-correlation linear distin-
guisher (depicted on the right in Figure 4) that leads to a ZC attack against
AES-PRF2,8. We expect that the same number of rounds of ButterKnife can be
attacked in this fashion.

We note that like different configurations of AES-PRF in [DIS+18], it is
possible to attack different round-reduced versions of ButterKnife. For example,
corresponding to AES-PRF6,4, 6 and 4 rounds before and after feed-forward
in ButterKnife, corresponding to AES-PRF7,3, 7 and 3 rounds before and after
feed-forward are possible to attack using zero-correlation attack. However, the
full ButterKnife is secure against such attacks.

Second scenario. The second possible scenario studies two different outputs
Yi and Yj , and thus looks for impossible differences between these two branches.
By searching for a trail in a miss in the middle way, we obtain the 3-round
impossible differential trail given in Supplementary Material, in Figure 10.

5.5 Amplified boomerang distinguishers

Given that decryption queries are impossible, we focus on the chosen plaintexts
variant of the boomerang attack, that is, on amplified boomerangs [KKS01].

An amplified distinguisher works by splitting the cipher E into two parts,
E = E1 ◦E0 and by using a differential for each: a first differential of probability
p over E0, and a second one over E1 of probability q. The distinguisher uses
quartets of messages (Xi, 0 ≤ i ≤ 3) with two fixed input differences (X0 ⊕X1

and X2⊕X3), and count the number of times a specific difference appears both
in E(X0)⊕E(X2) and in E(X1)⊕E(X3). A first estimate gives the probability
of a distinguisher based on the previous differentials to be p2q22−n, which has
to be compared to 2−2n for the ideal case.

Once again, several scenarios are possible9. The first one (on the left in Fig-
ure 5) corresponds to constructing quartets with 4 independent branches built
from 4 different inputs ((Xi, Y i

j) for a fixed j and 0 ≤ i ≤ 3). In the best case,
it returns the same results as for Deoxys-BC (at the time of writing the best
published distinguisher reaches 9 rounds in the related-tweak scenario [ZDJ19]).
A second possibility would be to consider the setting depicted on the right of
Figure 5 for which a quartet is obtained from 4 different inputs and by looking
at two different branches (number i ≥ 1 and j ≥ 1 in the figure). By using the

9 We first discuss the case where the feed forward is omitted

bounds returned by the MILP models for the various scenarios, the higher num-
ber of rounds that can be attacked in this setting is 10: the upper trail would
cover a part E0 made of 3 rounds of P 0, while the lower trail would cover the
next 3 rounds of P 0 and 4 rounds of the bottom part. Namely, the first differen-
tial characteristic would be in the first differential scenario (3 rounds, 1 active
Sbox), and the second differential characteristic would be in the third differential
scenario and cover 3 rounds before and 4 rounds after branching, with 9 active
Sboxes. Assuming our bounds are tight10 and that each Sbox transition can
be done with probability 2−6, it would result in a distinguisher of probability
p2q22−n = 2−122−1082−128 = 2−248.

α α

δ

δ

P 0

β β
γ

P 0
P 0

P 0

γ P j

P jP i

P i

α α

δ

δ

P 0

β β
γ

P 0
P 0

P 0

γ

P i

P i

P i

P i

Fig. 5: Setting 1 and 2 for a boomerang attack.

Another possible setting would be to only consider two different inputs and
two of their branches, as depicted in Figure 6. On the left, we consider the
first differential to be starting from the 0 difference, right after branching, while
the second differential characteristic is put between the two branches of equal
index. A maximum of 12 rounds can be covered in this fashion: 1 round (with
4 active Sboxes) after branching, followed by 4 rounds (with 5 active Sboxes)
and since any number of rounds can be added on top (before branching), all
the 7 of them can be included. Such a distinguisher would have a probability
around 2−128−108. However, a problem with this scenario is the difficulty to
detect the boomerang once the feed forward is taken into account. To work
around this, we consider another setting (depicted on the right in Figure 6) where
the characteristic over E0 is nonexistant: we consider that a certain difference γ
appears between the two branching point of two different states and use a (or
two different) characteristic(s) from the branching point to the two outputs of
equal index, leading to the difference ∆ (or ∆1 and ∆2) before the feed forward,
and equal to ∆⊕ δ (or ∆1 ⊕ δ and ∆2 ⊕ δ) after it. Again, the 7 rounds before
branching can be included, and 5 rounds can be considered after branching with
10 active Sboxes, thus reaching a probability close to 2−128−120.

Given that ButterKnife has 8 rounds after branching, we believe that only
reduced round versions could be attacked with this technique.

10 Arguments similar to the ones shown in supplementary material E.1 apply here and
show that we are not tight.

P 0

P i

P 0

P i P j

δ

∆

∆⊕ δ

∆

∆⊕ δ

P j

P 0

P i

P 0

P i P j

P j

Fig. 6: Setting 3 and 4 for a boomerang attack.

5.6 Other Aspects

In some parts of the previous discussion, we mostly focused on distinguishers
without taking into account the final feed-forward. However, this ending opera-
tion makes difficult to add a key recovery part at the bottom. The key recovery
requires to invert rounds in value to access the end of the distinguisher, which
is made difficult by the unknown value of the middle internal state.

When given the full code book a zero-sum distinguisher can be constructed
against one or more branch in the same way as described in [MN17b, Appendix
A.1] with distinguishing advantage 1− 1

2128 . In an integral attack, adding a round
tweakey does not have any impact. This allows an adversary to apply the integral
attacks on reduced-round AES to round-reduced ButterKnife also.

As already mentioned, one could try to apply the techniques used for the
cryptanalysis of ForkCiphers [BBJ+19], but with the difference that the recon-
struction setting is not available given that one cannot make decryption queries.
A reflection differential distinguishers might exist between two branches, but
accessing it and building the required pair is troublesome.

6 DAE for TPRFs: Security and Performance

6.1 Presentation

This section focuses on DAE applications of expanding TPRFs as an important
cryptographic block in security. A TPRF with input space and tweak space
{0, 1}n, and output space {0, 1}αn with α ≥ 2 is of interest when its evaluation
is faster than the computation of α outputs of an equivalently secure TBC or
non-expanding TPRF. In particular, this means that it excels in counter-mode
scenarios, where the goal is to output a keystream as fast as possible. Conversely,
it does not appear to be a good fit for data absorption. Hence, in order to build
a DAE as the union of fast encryption and authentication schemes, our proposed
authentication mechanisms will be TPRF independent. To this end, we propose
2 DAE constructions to efficiently tackle this goal:

– the SAFE DAE mode of operation that combines fast TPRF-based encryp-
tion in counter-mode with a polynomial-based hash function;

– the ZAFE DAE mode of operation that combines fast TPRF-based encryp-
tion in counter-mode with a MAC based on a tweakable block cipher.

While the encryption portion in both modes stays the same, we propose two
distinct authentication methods to enable adequate support for a larger spectrum
of applications and platforms.

Let us fix a TPRF F : K× {0, 1}t+1 × {0, 1}n → {0, 1}m with key space K,
tweak space {0, 1}t+1, domain {0, 1}n and range {0, 1}m for the remainder of
this section, which is dedicated to the presentation and analysis of both modes
of operation. As we will see, both SAFE and ZAFE offer the same security level
of (n +min(n, t))/2 bits, assuming that E offers the same tweak size as F . We
then implement both schemes with ButterKnife and compare their performance
with Deoxys-based modes of operations.

6.2 The SAFE mode of operation

Statement of the result and discussion. Let us also fix an integer λ such
that λ ≤ 2n. The SAFE mode of operation can be divided into two primitives:

1. a PRF algorithm SFMac[F] that takes as input two messages (message and
associated data), and processes on average 2n bits of input for every multi-
plication in GF(22n). SFMac[F] uses a single call to F during the finalization,
and outputs a λ-bit tag;

2. an IV-based encryption scheme FEnc that uses min(λ, n + t)-bit IVs and
encrypts on average m bits of plaintext for each call to F , using a constant
tweak value.

We combine both primitives using the SIV generic structure [RS06] in order to
construct our DAE scheme. It is also worth noting that one of our motivation
for the choice of underlying primitives was the fact that the calls to F in the
encryption pass can be computed in parallel, and SFMac algorithm relies on a
GHash-like construction, which can also be computed in parallel.

The design of SAFE is inspired by the design of GCM − SIV. Most improve-
ments were possible thanks to the fact that the output of a TPRF can be larger
than its input. In more details, the encryption of an (A, M) pair is done as
follows. A 2n-bit hashing key L is first derived from the key using a call to F
with the all-zero tweak and message as its inputs. Then, the associated data
A and message M are parsed into 2n-bit blocks. A 2n-bit hash Y of (A,M) is
computed, the tag is simply

T = [F
0||Y [2]
K (Y1)]λ,

where Y1||Y2
n,t←− Y . This tag is then used as IV in FEnc[F], which behaves sim-

ilarly to the counter mode of operation for block ciphers but when instantiated
with a TPRF.

The formal specification of SAFE is presented in Algorithm 3. Moreover, a
graphical representation of the encryption algorithm can be found in Figure 7

in supplementary material. We prove the security of SAFE[F] via the following
theorem.

Theorem 2. Let n,m, t, σ, q, λ be positive integers such that m ≥ 2n ≥ 1, q, σ <
2n and λ ≤ 2n. Let F be a TPRF with tweak space {0, 1}t+1, domain {0, 1}n and
range {0, 1}m. Let also D be an adversary against the dae-security of SAFE[F]
that runs in time at most time, and makes at most q queries for a total of at
most σ n-bit blocks. Then there exists an adversary B against the prf-security
of F that runs in time at most time+O(σ) and makes at most σ+ q+1 chosen
plaintext queries such that

AdvdaeSAFE[F](A) ≤ AdvtprfF (B) +
q

2λ
+

2(q − 1)σ

2m′ +
2qσ + 2q2 + σ + 4q

2n+min(n,t)
,

where m′ = min(λ, n+ t).

Proof. Due to space constraints, we defer the proof of Theorem 2 to Supplemen-
tary Material D.2, but we briefly sketch its main ingredients here. First, we start
by applying a hybrid argument to replace F by its ideal counterpart. We then use
a composition result to split the study of the dae-security of SAFE in two parts:
the prf-security of its authentication pass, and the ive-security of its encryption
pass. Both are then studied independently with the H coefficients technique, and
rely on the fact that inputs to F only collide with negligible probabilities.

Remark 1. The parameter λ allows for some flexibility when choosing the tag
length. As far as security is concerned, the bound from Theorem 2 tells us that
λ ≥ n + min(n, t) is a reasonable choice. When one has t + 1 = n (i.e. the
underlying TPRF has the same tweak length and block length, one bit of tweak
being reserved for domain separation by SAFE), λ = 2n might be preferable if
n is a multiple of 8 since it will prevent having an unused bit in one byte of the
tag.

6.3 The ZAFE mode of operation

The ZAFE mode of operation relies on a TBC E : K × {0, 1}t′ × {0, . . . , 9} ×
{0, 1}n → {0, 1}n with key space K′, tweak space {0, 1}t′ ×{0, . . . , 9}, and block
space {0, 1}n. Like in the case of SAFE, it can be seen as the composition through
the SIV construction of two primitives:

– the PRF algorithm ZMAC that processes on average n+ t′ bits of data per
TBC call;

– the IV-based encryption scheme FEnc.

Note that, in this scenario, both primitives rely on different keys. This distinction
was not necessary in the case of ZAE, as both components relied on the same
TBC, and could be replaced by two independent tweakable permutations thanks
to domain separation. A possible solution in our case would be to derive both
keys from the same master key, by using calls to F in order to generate both
subkeys. For the sake of simplicity, we present the 2-key version in Algorithm 4.

One has the following result.

Algorithm 3 The SAFE [F] Authenticated Encryption scheme, where FK ∈
Func(t+1, n,m) for every key K. Here ⊗ denotes the multiplication in the field
GF(22n).

1: function SFMac(K,A,M)
2: T ←− 02n

3: L←−
[
F 0t+1

K (0n)
]
2n

4: X ←− Pad10(A)||Pad10(M)
5: X ←− X||⟨|A|⟩n||⟨|M |⟩n
6: X[1]|| · · · ||X[x]

2n←− X
7: for i←− 1, x do
8: T ←− (T ⊕X[i])⊗ L
9: end for

10: U ||V (n,t)←− [T]n+t

11: T ←− F
0||V
K (U)

12: return [T]λ
13: end function

1: function SAFE.Enc(K,A,M)
2: T ←− SFMac(K,A,M)
3: IV←− [T]min(λ,n+t)

4: C ←− FEnc(K, IV,M)
5: return (C, T)
6: end function

1: function FEnc(K,I,M)

2: U ||V (n,t)←− [I]n+t

3: C[1]|| · · · ||C[c]
m←−M

4: for i←− 1, c do
5: C[i]←− C[i]⊕[F 1||V

K (U⊞i−1)]|C[i]|
6: end for
7: return C[1]|| · · · ||C[c]
8: end function

1: function SAFE.Dec(K,A,C,T)
2: IV←− [T]min(λ,n+t)

3: M ←− FEnc(K, IV, C)
4: T ′ ←− SFMac(K,A,M)
5: if T = T ′ then
6: return M
7: else
8: return ⊥
9: end if

10: end function

Algorithm 4 The ZAFE [F,E] Authenticated Encryption scheme, where FK ∈
Func(t+1, n,m) for every key K, and EK′ ∈ Perm({0, 1}t′ ×{0, . . . , 9}, n). The
full ZMAC pseudocode is given in Supplementary Material C.
1: function ZFMac(K,A,M)
2: X ←− Pad10(A)||Pad10(M)
3: X ←− X||⟨|A|⟩n||⟨|M |⟩n
4: T ←− ZMAC(K,X)
5: return [T]λ
6: end function
1: function ZAFE.Enc(K,K′,A,M)
2: T ←− ZFMac(K′, A,M)
3: IV←− [T]min(λ,n+t)

4: C ←− FEnc(K, IV,M)
5: return (C, T)
6: end function

1: function ZAFE.Dec(K,K′,A,C,T)
2: IV←− [T]min(λ,n+t)

3: M ←− FEnc(K, IV, C)
4: T ′ ←− ZFMac(K′, A,M)
5: if T = T ′ then
6: return M
7: else
8: return ⊥
9: end if

10: end function

Theorem 3. Let n,m, t, σ, q, λ be positive integers such that m ≥ 2n ≥ 1, q, σ <
2n and λ ≤ 2n. Let F be a TPRF with tweak space {0, 1}t+1, domain {0, 1}n and
range {0, 1}m, and let E : K×{0, 1}t′×{0, . . . , 9}×{0, 1}n → {0, 1}n be a TBC
with key space K′, tweak space {0, 1}t+1×{0, . . . , 9}, and block space {0, 1}n. Let
also D be an adversary against the dae-security of ZAFE[F,E] that runs in time
at most time, and makes at most q queries for a total of at most σ n-bit blocks.
Then there exist an adversary B against the tprf-security of F an adversary C
against the tprp-security of E that both run in time at most time + O(σ) and
make at most σ + 4q + 2 chosen plaintext queries, such that

AdvdaeZAFE[F,E](A)

≤ AdvtprfF (B) + AdvtprpE (C) +
q

2λ
+

2(q − 1)σ

2m′ +
2.5σ2

2n+min(n,t′)
+ 4

(q

2n

)3/2
,

where m′ = min(λ, n+ t).

Proof. The proof of Theorem 3 is very similar to the proof of Theorem 2, and we
only highlight the differences here. We first start by applying a hybrid argument
to replace both F and E by their ideal counterparts. Then, the variant of [RS06,
Theorem 1] allows us to separate the study of the authentication pass and the
encryption pass. Since the latter simply corresponds to FEnc, we can directly
reuse Theorem 6 to upper-bound its ive-advantage. Finally, we upper-bound
the prf-security of ZMAC with [IMPS17, Theorem 1]. Note that the fact that
we truncate the output of ZMAC to λ bits does not reduce its security, since
a prf-adversary against the truncated version can always be turned into a prf-
adversary against the full version, with the same advantage, and a small time
complexity overhead.

6.4 Implementation aspects

To evaluate the performance of SAFE and ZAFE, we implement the two principal
novel components proposed in this work. First, we describe the implementation
of our main result FEnc, the encryption pass based on ButterKnife. Second, we
cover implementation aspects of SFMac as, prior to this work, it was uncertain
whether an implementation in a larger field would maintain competitive perfor-
mance [IMPS17].

Implementation of FEnc. Many contemporary devices support the AES round
function in hardware (e.g., AES-NI). Similar to other parallel AES-based modes,
SAFE and ZAFE can harness the full power of the AES-NI pipeline for suffi-
ciently long messages [Gue09], or with task-level parallelism [BLT15]. In accor-
dance with other implementations, we consider eight simultaneous AES-based
primitives (i.e., AES, Deoxys and ButterKnife). Within ButterKnife, all branches
are computed independently, and round tweakeys can be precomputed. Further-
more, as the counter is given as an input block to ButterKnife, as opposed to the
tweak, the tweakey-schedule only needs to be evaluated once for all calls to the
primitive.

Implementation of SFMac. We generally rely on the same implementation tech-
niques that were used for the GCM mode of operation [GK14]. Namely, we
use the carry-less multiplication instructions (PCLMULQDQ) that are supported on
many recent processors, as well as the fast reduction algorithm from [GK14] in
order to implement the multiplication in the finite field GF(2256). In order to keep
the reduction algorithm efficient, we used the polynomial x256+x10+x5+x2+1.
Moreover, we also aggregate the reduction step by computing the first λ powers
of the hashing key, and by only reducing once every λ multiplications. Of course,
the optimal value of λ depends on the message length and the microarchitecture.
Based on experiments, we find λ = 32 to be an adequate aggregation level.

6.5 Evaluation

Table 5: Encryption performance of DAE modes in cycles per byte (c/B) for
long messages (64KiB), decoupled in authentication and encryption passes.

The ZAE instances use Deoxys-256 and/or Deoxys-384.

Skylake (3.2 GHz) Cascade Lake SP (2.7 GHz)

Mode Security Auth. Enc. Total Auth. Enc. Total

AES-GCM-SIV [GLL17] 64 0.27 0.56 0.83 0.21 0.42 0.63

SCT [PS16] 64 0.87† 0.87† 1.74† 0.60† 0.60† 1.20†

ZAE (256) [IMPS17] 128 0.61† 0.87† 1.48† 0.42† 0.60† 1.02†

ZAE (384) [IMPS17] 128 0.59† 0.99† 1.58† 0.41† 0.68† 1.09†

ZAE (256-384) [IMPS17] 128 0.59† 0.87† 1.46† 0.41† 0.60† 1.01†

SAFE 128 0.56 0.50 1.06 0.42 0.37 0.79

ZAFE 128 0.60† 0.50 1.10† 0.42† 0.37 0.79†

(† are estimates based on measured counter-in-tweak performance, cf. [IMPS17])

Comparison. Our own SAFE implementations are written in C, using compiler
intrinsics for AES-NI and PCLMULQDQ instructions. For the encryption pass with
ButterKnife, we adapt the Deoxys implementations from [JNPS16]. For AES-
GCM-SIV, we use assembly-optimized implementations11 from [GLL17], noting
that assembly implementations may further improve the throughput of SAFE/ZAFE
as well.

To our knowledge, there are no publicly available implementations of ZAE
and SCT. However, as explored by Iwata et al. [IMPS17], the performance of
11 Taken from https://github.com/Shay-Gueron/AES-GCM-SIV (September 2021)

https://github.com/Shay-Gueron/AES-GCM-SIV

their TBC-based building blocks is well-understood. We adopt their estimation
methodology to estimate the performance of ZAFE, and compare our modes with
other DAE schemes (ZAE and SCT). We confirm their long-message estimates
for Deoxys counter-in-tweak on Skylake (i.e., 0.87 c/B for Deoxys-256 and 0.99
c/B for Deoxys-384). For Cascade Lake SP, this yields estimates of 0.60 c/B for
Deoxys-256 and 0.68 c/B for Deoxys-384. Like Iwata et al., for random tweak
inputs, we apply a penalty of 1.4 for Deoxys-256 and 1.8 for Deoxys-384.

We use the rdstc(p) instructions on x86 to measure performance across 50
batches, each averaging 500 measurements, of which the fastest batch is retained.
To reflect practical scenarios and match prior work [GLL17], the measurement
iterations are preceded by iterations that warm up the instruction and data
caches.

In addition to Skylake (i5-6500, legacy, 2015), we also report evaluate per-
formance of SAFE/ZAFE on the server-grade Cascade Lake SP (Xeon Platinum
8280, server, 2019). For reproducibility, we additionally make our implementa-
tions and measurements available in supplementary material.

Results. Table 5 gives encryption performance of SAFE/ZAFE w.r.t. comparable
schemes. We decouple authentication and encryption passes, allowing them to be
compared separately, and consider long messages (64 KiB in our experiments).

The encryption pass in SAFE/ZAFE benefits from two main design choices.
First, ButterKnife itself has excellent performance due to a more efficient use
of AES rounds (i.e., on average 8.875 AES rounds per output block, compared
to 14 or 16 for Deoxys). Second, the static tweakey schedule throughout the
entire encryption pass compares favorably to a counter in the tweak. As a result,
we observe an estimated throughput increase of ≈ 62−74% w.r.t. counter-in-
tweak with Deoxys-256 (SCT and ZAE) and ≈84−96% w.r.t. Deoxys-384 (ZAE).
ButterKnife is even competitive to AES in counter mode (cf. AES-GCM-SIV).

For the authentication pass (i.e., MAC), Table 5 indicates that our SFMac
implementation in GF (2256) is approximately twice as slow as in GF (2128), e.g.,
as used in AES-GCM-SIV. Our findings suggest that it is at least competitive to
ZMAC [IMPS17], provided that the platform supports efficient field multiplica-
tions (e.g., PCLMULQDQ on x86). On platforms without such hardware support,
we expect ZMAC to outperform SFMac (and hence, ZAFE to outperform SAFE).

Globally, SAFE/ZAFE outperform current state-of-the-art n-bit secure DAE
schemes with an estimated 38% on Skylake and 28% on Cascade Lake SP.

7 Conclusion

In this work we presented the first n-to-αn TPRF mIFI design paradigm for
α ≥ 2 with generic n-bit security. We presented a concrete instance of such
TPRF, called ButterKnife and supported its security with extensive cryptanaly-
sis. We then designed two provably secure DAE schemes: SAFE and ZAFE, which
combine our fast TPRF-based encryption pass with two efficient authentication
algorithms with 2n-bit outputs. Both schemes come with approximately n-bit

security and give important efficiency improvements over ZAE when instantiated
with ButterKnife.

We believe TPRFs can find further applications in scenarios where data ex-
pansion is used. We leave this research for future work.

References

ABPV21. Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1,
2, 3, fork: Counter mode variants based on a generalized forkcipher. IACR
Trans. Symmetric Cryptol., 2021(3):1–35, 2021.

AES01. Advanced Encryption Standard (AES). National Institute of Standards and
Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, Novem-
ber 2001.

ALP+19. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. Forkcipher: A new primitive for authenti-
cated encryption of very short messages. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages
153–182. Springer, Heidelberg, December 2019.

ARVV18. Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár.
Forking a blockcipher for authenticated encryption of very short messages.
Cryptology ePrint Archive, Report 2018/916, 2018. https://eprint.iacr.
org/2018/916.

BBJ+19. Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks, Willi
Meier, Mostafizar Rahman, Dhiman Saha, and Yu Sasaki. Cryptanalysis
of ForkAES. In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa,
and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages 43–63.
Springer, Heidelberg, June 2019.

BBLT18. Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.
SUNDAE: Small universal deterministic authenticated encryption for the
internet of things. IACR Trans. Symm. Cryptol., 2018(3):1–35, 2018.

BJK+16. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.

BKR98. Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-rackoff backwards:
Increasing security by making block ciphers non-invertible. In Kaisa Nyberg,
editor, EUROCRYPT ’98, Proceeding, volume 1403 of LNCS, pages 266–280.
Springer, 1998.

BLT15. Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. Comb to
pipeline: Fast software encryption revisited. In Gregor Leander, editor, Fast
Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture
Notes in Computer Science, pages 150–171. Springer, 2015.

BN18. Srimanta Bhattacharya and Mridul Nandi. Revisiting variable output length
xor pseudorandom function. IACR Transactions on Symmetric Cryptology,
2018(1):314–335, Mar. 2018.

BZD+16. Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jo-
vanovic. Nonce-disrespecting adversaries: Practical forgery attacks on GCM

https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2018/916

in TLS. In 10th USENIX Workshop on Offensive Technologies, WOOT 16,
Austin, TX, USA, August 8-9, 2016, 2016.

CHP+17. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A
security analysis of Deoxys and its internal tweakable block ciphers. IACR
Trans. Symm. Cryptol., 2017(3):73–107, 2017.

CS14. Shan Chen and John Steinberger. Tight Security Bounds for Key-
Alternating Ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014, volume 8441, pages 327–350.
Springer, 2014. Full version available at http://eprint.iacr.org/2013/
222.

CS16. Benoît Cogliati and Yannick Seurin. EWCDM: an efficient, beyond-birthday
secure, nonce-misuse resistant MAC. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016, volume 9814 of
Lecture Notes in Computer Science, pages 121–149. Springer, 2016.

DHT17. Wei Dai, Viet Tung Hoang, and Stefano Tessaro. Information-theoretic in-
distinguishability via the chi-squared method. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 497–523,
Cham, 2017. Springer International Publishing.

DIS+18. Patrick Derbez, Tetsu Iwata, Ling Sun, Siwei Sun, Yosuke Todo, Haoyang
Wang, and Meiqin Wang. Cryptanalysis of AES-PRF and its dual. IACR
Trans. Symm. Cryptol., 2018(2):161–191, 2018.

DS08. Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 116–126. Springer, Heidelberg, February 2008.

GK14. Shay Gueron and Michael E. Kounavis. Intel Carry-Less Mul-
tiplication Instruction and its Usage for Computing the GCM
Mode. Technical report, Intel Corporation, 2014. Available at:
https://software.intel.com/sites/default/files/managed/72/cc/clmul-
wp-rev-2.02-2014-04-20.pdf.

GL15. Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce misuse-resistant au-
thenticated encryption at under one cycle per byte. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 109–119.
ACM, 2015.

GLL17. Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: specifi-
cation and analysis. IACR Cryptol. ePrint Arch., 2017:168, 2017.

GLL19. Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: nonce
misuse-resistant authenticated encryption. RFC, 8452:1–42, 2019.

Gue09. Shay Gueron. Intel’s new AES instructions for enhanced performance and
security (invited talk). In Orr Dunkelman, editor, FSE 2009, volume 5665
of LNCS, pages 51–66. Springer, Heidelberg, February 2009.

Hou05. R. Housley. Using advanced encryption standard (aes) ccm mode with ipsec
encapsulating security payload (esp). RFC, 4309, 2005.

IM16. Tetsu Iwata and Kazuhiko Minematsu. Stronger security variants of GCM-
SIV. IACR Trans. Symm. Cryptol., 2016(1):134–157, 2016. http://tosc.
iacr.org/index.php/ToSC/article/view/539.

IMPS17. Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A fast tweakable block cipher mode for highly secure message au-
thentication. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017, volume 10403 of Lecture Notes in Computer
Science, pages 34–65. Springer, 2017.

http://eprint.iacr.org/2013/222
http://eprint.iacr.org/2013/222
http://tosc.iacr.org/index.php/ToSC/article/view/539
http://tosc.iacr.org/index.php/ToSC/article/view/539

IS17. Tetsu Iwata and Yannick Seurin. Reconsidering the security bound of AES-
GCM-SIV. IACR Trans. Symm. Cryptol., 2017(4):240–267, 2017.

JNP14. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 274–288.
Springer, Heidelberg, December 2014.

JNPS16. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys
v1. 41. Submitted to CAESAR, 2016.

JNPS18. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys
v1.43. 2018.

JNPS21. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. J. Cryptol., 34(3):31, 2021.

KKS01. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang
attacks against reduced-round MARS and Serpent. In Bruce Schneier, ed-
itor, FSE 2000, volume 1978 of LNCS, pages 75–93. Springer, Heidelberg,
April 2001.

KLW17. Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. Linear cryptanal-
ysis: Key schedules and tweakable block ciphers. IACR Trans. Symm. Cryp-
tol., 2017(1):474–505, 2017.

LJ19. Rongjia Li and Chenhui Jin. Meet-in-the-middle attacks on round-reduced
tweakable block cipher deoxys-bc. IET Inf. Secur., 13(1):70–75, 2019.

LN17. Eik List and Mridul Nandi. Revisiting full-PRF-secure PMAC and using it
for beyond-birthday authenticated encryption. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 258–274. Springer, Heidelberg,
February 2017.

LRW02. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ci-
phers. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages
31–46. Springer, Heidelberg, August 2002.

LSG+20. Ya Liu, Bing Shi, Dawu Gu, Fengyu Zhao, Wei Li, and Zhiqiang Liu. Im-
proved meet-in-the-middle attacks on reduced-round deoxys-bc-256. Com-
put. J., 63(12):1859–1870, 2020.

MMS18. Farokhlagha Moazami, Alireza Mehrdad, and Hadi Soleimany. Impossible
differential cryptanalysis on deoxys-bc-256. ISC Int. J. Inf. Secur., 10(2):93–
105, 2018.

MN17a. Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual:
Towards optimal security using mirror theory. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017, Proceedings,
Part III, volume 10403 of LNCS, pages 556–583. Springer, 2017.

MN17b. Bart Mennink and Samuel Neves. Optimal PRFs from blockcipher designs.
IACR Trans. Symm. Cryptol., 2017(3):228–252, 2017.

MV04. David A. McGrew and John Viega. The security and performance of the
Galois/counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT 2004, volume 3348 of LNCS, pages
343–355. Springer, Heidelberg, December 2004.

NIS07. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) andGMAC. NIST Special Publication 800-38D,
2007.

Pat08. Jacques Patarin. The “Coefficients H” Technique. In Roberto Maria Avanzi,
Liam Keliher, and Francesco Sica, editors, Selected Areas in Cryptography -
SAC 2008, volume 5381, pages 328–345. Springer, 2008.

PS16. Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated en-
cryption modes for tweakable block ciphers. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
33–63. Springer, Heidelberg, August 2016.

RBBK01. Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A
block-cipher mode of operation for efficient authenticated encryption. In
Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages
196–205. ACM Press, November 2001.

RS06. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, volume 4004, pages 373–390. Springer, 2006.

VP. Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing
nonce reuse in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, pages 1313–1328.

ZDJ19. Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey
boomerang and rectangle attacks on deoxys-bc including BDT effect. IACR
Trans. Symm. Cryptol., 2019(3):121–151, 2019.

Supplementary Material

A Proof of Theorem 1

The first step of the proof is to compute the value of χ2(si−1) for all i = 1, . . . , q
and all si−1 ∈ Ωi−1. Let us fix any integer i in {1, . . . , q}, and any transcript
si−1 such that PrS

[
si−1

]
> 0. Recall that one has

χ2(si−1) =
∑

s∈Ωsi−1

(
PrS

[
si|si−1

]
− PrR

[
si|si−1

])2
PrR [si|si−1]

,

where Ωsi−1 = {si : si ∈ Ωi}. Let us fix any si ∈ Ωsi−1 . The value of si−1 com-
pletely determines the value of the i-th adversarial query, which will be denoted
(ti, xi). Let ni be the number of occurrences of the tweak ti in si−1. Clearly, one
has ni ≤ i − 1. Besides, in the system S, the output value (y1,i∥ · · · ∥yα,i, z0,i)
uniquely determines the value of the random variables Zj,i for j = 1, . . . , α, and
these values are compatible with the output of a tweakable permutation since
si ∈ Ωsi−1 . It is easy to see that, at this point, the random variable Zj in Algo-
rithm 1 is sampled uniformly at random in a set of size 2n − ni for j = 0, . . . , α.
Hence, one has

PrS
[
si|si−1

]
=

1

(2n − ni)α+1
.

Let us denote Dsi−1,j the set of all z0,k⊕yj,k such that tk = ti, for k = 1, . . . , i−1
and j = 1, . . . , α. Similarly, let Dsi−1,0 be the set of all z0,k such that tk = ti,
for k = 1, . . . , i− 1. Namely, these sets correspond to the value of Dj [Ti] at the
beginning of the i-th query in both experiments. In the ideal world, the sampling
of the output is done as follows:

– first Yi = Y1,i∥ · · · ∥Yα,i is chosen uniformly at random in {0, 1}αn;
– second, Z0,i is chosen uniformly at random outside of Dyi

si−1 := Dsi−1,0 ∪
{yj,i ⊕ dj : j = 1, . . . , α, dj ∈ Dsi−1,j}.

Hence, one clearly has

PrR
[
si|si−1

]
=

1

2αn
(
2n −

∣∣Dyi

si−1

∣∣) .

Thus

χ2(si−1) =
∑

s∈Ωsi−1

2αn
(
2n −

∣∣Dyi

si−1

∣∣)(1

(2n − ni)α+1
− 1

2αn
(
2n −

∣∣Dyi

si−1

∣∣)
)2

=
∑

s∈Ωsi−1

2αn
(
2n −

∣∣Dyi

si−1

∣∣)((2n − ∣∣Dyi

si−1

∣∣)− (2n−ni)
α+1

2αn

(2n − ni)α+1
(
2n −

∣∣Dyi

si−1

∣∣)
)2

=
∑

(ti,xi,yi,z0,i)∈Ωsi−1

2αn
((

2n −
∣∣Dyi

si−1

∣∣)− (2n−ni)
α+1

2αn

)2
(2n − ni)2α+2

(
2n −

∣∣Dyi

si−1

∣∣)
=

∑
yi∈{0,1}αn

2αn
((

2n −
∣∣Dyi

si−1

∣∣)− (2n−ni)
α+1

2αn

)2
(2n − ni)2α+2

. (2)

The remaining step is to compute the expectancy of χ2(si−1) when si−1 is sam-
pled according to S. Note that this random experiment can be uniquely rewrit-
ten as a sampling of the Z random variables, as per Algorithm 1, which will
make our computation slightly easier to read. Let us start by remarking that
2n −

∣∣Dyi

si−1

∣∣ = ∣∣∣Dyi

si−1

∣∣∣, where A denotes the complementary of the set A in
{0, 1}αn. Besides, one also has∣∣∣Dyi

si−1

∣∣∣ = ∑
z∈{0,1}n

Iz,

where Iz = 1 if z ∈ Dyi

si−1 , and 0 otherwise. In the real world, Iz = 1 corresponds
to the following event:

– the random values Z0,k, for k = 1, . . . , ni, which are sampled without re-
placement in {0, 1}n, are all different from z;

– for j = 1, . . . , α and k = 1, . . . , ni, the random values Zj,k, which are sampled
without replacement in {0, 1}n, are all different from z ⊕ yj,i.

Hence, one has

E [Iz] = Pr [Iz = 1] =
(2n − 1)α+1

ni

(2n)α+1
ni

=

(
2n − ni

2n

)α+1

,

and

E
[∣∣∣Dyi

si−1

∣∣∣] = ∑
z∈{0,1}n

E [Iz] =
(2n − ni)

α+1

2αn
.

Plugging this equality into Eq (2), one has

E
[
χ2(Si−1)

]
=

∑
yi∈{0,1}αn

2αnE
[(∣∣∣Dyi

Si−1

∣∣∣− E
[∣∣∣Dyi

Si−1

∣∣∣])2]
(2n − ni)2α+2

=
∑

yi∈{0,1}αn

2αnVar
[∣∣∣Dyi

Si−1

∣∣∣]
(2n − ni)2α+2

. (3)

This implies that we now have to evaluate Var
[∣∣∣Dyi

Si−1

∣∣∣] for every yi ∈ {0, 1}αn.
One has

Var
[∣∣∣Dyi

Si−1

∣∣∣] = Var

 ∑
z∈{0,1}n

Iz


=

∑
z∈{0,1}n

Var [Iz] +
∑
z ̸=z′

Covar (Iz, Iz′)

=
∑

z∈{0,1}n

(
E
[
I2z
]
− E [Iz]

2
)
+
∑
z ̸=z′

(E [IzIz′]− E [Iz]E [I′])

=
∑

z∈{0,1}n

(
E [Iz]− E [Iz]

2
)
+
∑
z ̸=z′

(
E [IzIz′]− E [Iz]

2
)

=
∑

z∈{0,1}n

(
2n − ni

2n

)α+1
(
1−

(
2n − ni

2n

)α+1
)

+
∑
z ̸=z′

(
E [IzIz′]− E [Iz]

2
)
.

As was done previously for the computation of E [Iz], IzIz′ = 1 corresponds to
the following event:

– the random values Z0,k, for k = 1, . . . , ni, which are sampled without re-
placement in {0, 1}n, are all different from z and z′, with z ̸= z′;

– for j = 1, . . . , α and k = 1, . . . , ni, the random values Zj,k, which are sampled
without replacement in {0, 1}n, are all different from z ⊕ yj,i and z′ ⊕ yj,i.

Thus, one has

E [IzIz′] = Pr [IzIz′ = 1] =
(2n − 2)α+1

ni

(2n)α+1
ni

=

(
(2n − ni)(2

n − ni − 1)

2n(2n − 1)

)α+1

=
(
1− ni

2n

)α+1
(
1− ni

2n − 1

)α+1

≤
(
1− ni

2n

)2α+2

= E [Iz]
2
.

Thus, it is easy to see that one has

Var
[∣∣∣Dyi

Si−1

∣∣∣] ≤ ∑
z∈{0,1}n

(
2n − ni

2n

)α+1
(
1−

(
2n − ni

2n

)α+1
)

≤ (2n − ni)
α+1

2αn

(
1−

(
1− ni

2n

)α+1
)

≤ (2n − ni)
α+1(α+ 1)ni

2(α+1)n
. (4)

Using Lemma 2, Eqs (3) and (4), one has

∥PrS − PrR∥2 ≤
1

2

q∑
i=1

E
[
χ2(Si−1)

]

≤ 1

2

q∑
i=1

∑
yi∈{0,1}αn

2αnVar
[∣∣∣Dyi

Si−1

∣∣∣]
(2n − ni)2α+2

≤ 1

2

q∑
i=1

∑
yi∈{0,1}αn

2αn(2n − ni)
α+1(α+ 1)ni

(2n − ni)2α+22(α+1)n

≤ 1

2

q∑
i=1

∑
yi∈{0,1}αn

(α+ 1)ni

(2n − ni)α+12n

≤ 1

2

q∑
i=1

2αn(α+ 1)(i− 1)

(2n − q)α+12n
≤ 1

4

2(α−1).n(α+ 1)q2

(2n − q)α+1
.

Since one has (α+ 1)q ≤ 2n by assumption, 2n − q ≥ 2n α
α+1 . This implies that

∥PrS − PrR∥2 ≤
1

4

(α+ 1)q2

22n

(
α+ 1

α

)α+1

.

Moreover, one has

ln

(
α+ 1

α

)
= ln(α+ 1)− ln(α) =

∫ α+1

α

1

t
dt ≤ 1

α
.

Thus
(
α+1
α

)α+1 ≤ exp((α+ 1)α−1) ≤ exp(2) ≤ 8 since α ≥ 1.

B Graphical Representation of SAFE

S
A
F
E
.E
n
c

(A
,M

)

en
co
d
e

X0
n

0
t

F
0 K

T
ru
n
c 2

n
0
2
n

X
[1
]

X
[2
]

··
·

X
[l
]

T
ru
n
c λ

TF
0 K

S
p
lit

n
,t

U
V

S
p
lit

n
,t

U V

F
1 K

F
1 K

C
[1
]

M
[1
]

C
[c
]

M
[c
]

1

··
·

T
ru
n
c |

M
[c
]|

Fig. 7: The SAFE authenticated encryption function which, given a plaintext M
and associated data A, outputs the ciphertext C and the tag T . Here Trunci
simply truncates its input to i bits if it is longer or fills it with zeroes otherwise,
and Splita,b additionally splits it into its leftmost a bits and rightmost b bits. ⊗
denotes the multiplication in GF(22n). Recall that λ ≤ 2n.

C ZMAC Pseudocode

Algorithm 5 Specification of ZMAC [IMPS17]. Here 2a denotes the multiplica-
tion by the element of the finite field GF(2n) that is represented by the polyno-
mial x.
1: function ZHASH(K,X)
2: U ← 0n, V ← 0t

3: Ll ← E9
K(0t, 0n)

4: Lr ← E9
K(0t−11, 0n)

5: (X[1], . . . , X[m])
n+t←− X

6: for i = 1 to m do
7: (Xl, Xr)

n,t←− X[i]
8: Sl ← Ll ⊕Xl

9: Sr ← Lr ⊕t Xr

10: Cl ← E8
K(Sr, Sl)

11: Cr ← Cl ⊕t Xr

12: U ← 2(U ⊕ Cl)
13: V ← V ⊕ Cr

14: (Ll, Ll)← (2Ll, 2Ll)
15: end for
16: return (U, V)
17: end function

1: function ZFIN(K,i,U ,V)
2: Y [1]←− Ei

K(V,U)⊕ Ei+1
K (V,U)

3: Y [2]←− Ei+2
K (V,U)⊕ Ei+3

K (V,U)
4: Y ←− Y [1]||Y [2]
5: return Y
6: end function

1: function ZMAC(K,M)
2: X ←− Pad10(M)
3: (U, V)←− ZHASH(K,X)
4: if n+ t | |M | then
5: return ZFIN(K, 0, U, V)
6: else
7: return ZFIN(K, 4, U, V)
8: end if
9: end function

D Deferred Proofs from Section 6

D.1 On the SIV generic construction

The generic SIV construction, as defined in [RS06], takes the composition of a
PRF and an IV-based encryption scheme, where the output of the PRF is used
as the IV of the encryption scheme, in order to create a DAE scheme. In our
context, while we use the full output of the PRF as tag, we truncate it before
using it as an IV. This requires a slight adjustment to [RS06, Theorem 1], which
we develop in this section.

Let N ≥ M be two positive integers, let F : K1 × AD ×M → {0, 1}N be
a PRF, and let E be an IV-based encryption scheme with message space M,
ciphertext space C, key space K2, and IV space {0, 1}M .

The DAE scheme SIV[F,E] is defined in algorithm 6. Note that this corre-
sponds exactly to the composition method that we use for SAFE, where N = λ,
and M = min(λ, n+ t). One has the following result.

Theorem 4. Let D be an adversary against the dae-security of SIV[F,E] that
runs in time t and makes q queries of total length σ. Then there exist an ad-
versary D1 against the prf-security of F and an adversary D2 against the ive-
security of E such that

AdvdaeSIV[F,E](D) ≤ AdvprfF (D1) + AdviveE (D2) +
q

2N
.

Algorithm 6 The SIV[F,E] Authenticated Encryption scheme, where F is a
PRF that outputs N -bit strings, and E is an IV-based encryption scheme that
accepts IVs of length M ≤ N bits.
1: function SIV[F,E].Enc((K1,K2),A,X)
2: T ←− F (K1, A,X)
3: IV←− [T]M
4: C ←− E.Enc(K2, IV, X)
5: return (C, T)
6: end function

1: function SIV[F,E].Dec((K1,K2),A,C,T)
2: IV←− [T]M
3: X ←− E.Dec(K2, IV, C)
4: T ′ ←− F (K1, A,X)
5: if T = T ′ then
6: return X
7: else
8: return ⊥
9: end if

10: end function

The adversaries D1 and D2 run in time at most t+ cσ for some constant c, and
make at most q queries of total length at most σ.

The proof of this result is almost exactly the same as the one of [RS06, Theorem
1], and we state it here for the sake of completeness.

Proof. Let D be an adversary against the dae-security of Π := SIV[F,E] that
runs in time t and makes q queries of total length σ. We also assume w.l.o.g that
D never repeats queries. We are going to introduce an intermediary DAE scheme
Π ′ := SIV[$, E] which is similar to SIV[F,E], but where F has been replaced by
a truly random function. Then, the following inequalities hold:

AdvdaeSIV[F,E](D) =
∣∣∣Pr [DΠ.EncK ,Π.DecK = 1

]
− Pr

[
D$(·,·),⊥(·,·) = 1

]∣∣∣
≤
∣∣∣Pr [DΠ.EncK ,Π.DecK = 1

]
− Pr

[
DΠ′.EncK2

,Π′.DecK2 = 1
]∣∣∣

+
∣∣∣Pr [DΠ′.EncK2

,Π′.DecK2 = 1
]
− Pr

[
DΠ′.EncK2

,⊥(·,·)
]∣∣∣

+
∣∣∣Pr [DΠ′.EncK2

,⊥(·,·)
]
− Pr

[
D$(·,·),⊥(·,·)

]∣∣∣ (5)

=p1 + p2 + p3, (6)

where pi denotes the i-th term of the r.h.s. of the inequality.
It is easy to see that p1 corresponds to the advantage of the following adver-

sary D1 against the prf-security of F : D1 picks a uniformly random key K2 in K2

and then runs D, and outputs the same bit. It simply forwards D’s encryption
queries to its oracle in order to generate the tag, then simulates the encryption
of the plaintext using its own key K2 and the truncated tag to generate the
ciphertext. For every decryption query, it simply decrypts the ciphertext, and
feeds the output to its oracle to generate the tag, and returns the plaintext if
both tags match, or ⊥ otherwise. It is clear that D1 makes at most q queries, for
a total length of at most σ, and runs in time t+ cσ, where c is a small constant
depending on the overhead of evaluating E. Hence, one clearly has

p1 = AdvprfF (D1). (7)

Similarly, p3 corresponds to the ive-advantage of the following adversary D2

against the security of E. Here D2 also runs D and outputs the same bit. Let
us generically denote with g the oracle D1 has access to. For every encryption
query (A,X), it simply asks for the encryption (IV, C) = g(X) of the queried
plaintext, then chooses uniformly at random a N−M -bit string T ′, then forwards
(IV||T ′, C) as the (tag, ciphertext) pair. For every decryption query, it simply
answers ⊥. If g = E$

K2
.Enc, then D1 perfectly simulates Π ′.EncK2 since the tag

is indeed uniformly random, and the ciphertext can be generated by applying
EK2

..Enc to the truncated tag and the plaintext. Note that here, the argument
relies on the fact that D never repeats queries. If g outputs uniformly random
strings, then clearly D1 perfectly simulates $(·, ·). Hence, one has

p3 ≤ AdviveE (D2), (8)

where D2 makes at most q queries for a total length of at most σ, and runs in
time at most t+ cσ.

In order to upper bound p2, we are first going to slightly alter the security
experiment. We are going to reveal the key K2 to the attacker. Since this can
only improve its advantage, this can be done w.l.o.g. We can also assume that D
outputs 1 as soon as a decryption query succeeds, since the encryption oracles
are the same in both worlds, which means that encryption query cannot help
for distinguishing between the two pairs of oracles. If we take a look at algo-
rithm 6, this means that p2 is upper bounded by the probability that D makes
a decryption query (A,C, T) such that f(A,X) = T , where f denotes the uni-
formly random function that underlies Π ′, and X = E.DecK2([T]M , C). Since
the adversary cannot make trivial queries, this equality occurs with a probability
smaller than 2−n, which means that one has

p2 ≤
q

2N
. (9)

Combining Equation (5) with Eqs (7), (8) and (9) yields the result. ⊓⊔

D.2 Proof of Theorem 2

We are going to fix four positive integers n, t,m, λ such that n ≤ m and λ ≤ 2n
for the whole proof of Theorem 2. Let F be a TPRF with key space K, such
that for every K in K, one has FK ∈ Func(t+ 1, n,m).

Let also q, σ be two integers. Let A be an adversary against the DAE-security
of SAFE[F] that makes at most q queries, for a total of at most σ n-bit blocks,
and runs in time at most time.

As usual, the first step of the construction is to use a hybrid argument to
replace the TPRF F by a uniformly random tweakable function F0. We then
denote by SAFE0, SFMac0 and FEnc0 the resulting constructions. More specif-
ically, A can be turned into an attacker B against the tprf- security of F that
makes at most σ + q + 1 chosen plaintext queries and runs in time time + ασ,
where α is an upper bound on the overhead implied by SAFE. Then, one has

AdvdaeSAFE[F](A) ≤ AdvtprfF (B) + AdvdaeSAFE0
(A). (10)

Then, what remains is to upper bound the advantage of A against the dae-
security of SAFE. Since this experiment is purely information-theoretical, we can
assume w.l.o.g. that A is computationally unbounded, and thus deterministic,
and does not make useless queries. Applying a small variant of [RS06, Theorem
1] that we discuss in more details in Supplementary Material D.1, we know that
there exist two information-theoretical adversaries C (resp. D) against the prf-
security of SFMac (resp. the ive-security of FEnc) that both make at most q
queries for a total of at most σ n-bit blocks, such that

AdvdaeSAFE0
(A) ≤ q

2λ
+AdvprfSFMac0

(C) + AdviveFEnc0(D). (11)

Note that this strategy works thanks to the domain separation of the TPRF
instances.

One has the following Theorem on the prf-security of SFMac0.

Theorem 5. Let n, t,m, q, σ, λ be positive integers such that m ≥ 2n ≥ 1, q, σ <
2n and λ ≤ 2n. Let D be a computationally unbounded deterministic adversary
against the prf-security of SFMac0 that makes at most q queries for a total of at
most σ n-bit blocks. Then one has

AdvprfSFMac0
(D) ≤ 2qσ + 2q2 + σ + 4q

2n+min(n,t)
.

Proof sketch. Since the finalization function of SFMac0 is a uniformly random
function, as long as there is no hash collision and that no hash is all-zero, then the
outputs will be indistinguishable from uniform. This probability can be shown
to be upper-bounded by

2qσ + 2q2 + σ + 4q

2n+min(n,t)
.

A complete proof of Theorem 5 can be found in Supplementary Material D.3.
Besides, we also prove the following result on the ive-security of FEnc0.

Theorem 6. Let n, t,m, q, σ, λ be positive integers such that m ≥ n, q, σ < 2n

and λ ≤ 2n. Let us define m′ = min(λ, n + t). Let D be a computationally
unbounded deterministic adversary against the ive-security of FEnc0 that makes
at most q queries for a total of at most σ m-bit blocks, and never repeats a query.
Then one has

AdviveFEnc0(D) ≤ 2(q − 1)σ

2m′ .

We are going to use the H coefficients technique to prove this Theorem. Let
q, σ be two integers such that q, σ < 2n. Let D be a computationally unbounded
deterministic adversary against the ive-security of FEnc0, as stated in the theo-
rem. We make the additional assumption that D always queries the maximum
number of blocks σ. Then D has to distinguish between two worlds:

– the real world where it interacts with the randomized construction FEnc∗0;
– the ideal world where it interacts with an oracle that on input M outputs a

uniformly random string of size {0, 1}m′+|M |.

As before, the interaction of D with its oracle will be summarized in a queries
transcript Q of the attack. It will consist in the list Q = {(I1,M1, C1), . . . , (Iq,
Mq, Cq)}, where, for i = 1, . . . , q, D queried message Mi, and received IV Ii, and
ciphertext Ci. Moreover, we will denote by mi the length of Mi in m-bit blocks,
In,i||It,i

(n,t)←− [Ii]n+t and

Mi[1]|| · · · ||Mi[mi]
m←−Mi,

Ci[1]|| · · · ||Ci[mi]
m←− Ci.

We are going to slightly alter the security experiment by always outputting the
full output of the last m-bit keystream block in the real world, regardless of the
actual size of the input. In the ideal world, we simply output additional random
bits. As D can freely ignore it, this can only improve its advantage.

The next step in our proof will be to define a set of bad transcripts and upper
bound their probability of appearing in the ideal word.

Definition 6. An attainable transcript Q will be said bad if there exists four
integers i, i′, j, j′ such that 1 ≤ i < j ≤ q, 1 ≤ i′ ≤ mi, 1 ≤ j′ ≤ mj, and

It,i = It,j , In,i ⊞ (i′ − 1) = In,j ⊞ (j′ − 1).

One has the following result.

Lemma 4. One has Pr [θid ∈ Θbad] ≤ 2(q−1)σ

2m′ .

The proof of this Lemma has been deferred to Supplementary Material D.6.
Let us now consider good transcripts. One has the following result.

Lemma 5. Let Q be a good queries transcript. One has

Pr [θre = τ] = Pr [θid = τ] .

The proof of this Lemma has been deferred to Supplementary Material D.7.
Combining Lemmas 1 with Lemmas 4 and 5 ends the proof of Theorem 6, while
combining Lemmas 1, 6 and 7 ends the proof of Theorem 5.

D.3 Proof of Theorem 5

We are going to use the H coefficients technique to prove this Theorem. Let q, σ
be two integers such that q, σ < 2n. Since the result is trivially true when q = 0
or σ = 0, we are going to assume that q, σ > 0. Let D be a computationally
unbounded deterministic adversary against the prf-security of SFMac0, as stated
in the theorem. Then D has to distinguish between two worlds:

– the real world where it interacts with the construction SFMac0;
– the ideal world where it interacts with a uniformly random function with

domain ({0, 1}∗)2 and range {0, 1}λ.

As usual, the interaction of D with its oracle will be summarized in a queries tran-
scriptQ of the attack. It will consist in the listQ = {(A1,M1, T1), . . . , (Aq,Mq, Tq)},
where, for i = 1, . . . , q, D queried message Mi with associated data Ai, and re-
ceived tag Ti. Moreover, we will denote by xi the length of the encoding of
(Ai,Mi) in 2n-bit blocks, and

Xi[1]|| · · · ||Xi[xi]
2n←− Pad10A||Pad10M ||⟨|A|⟩n||⟨|M |⟩n.

Note that, if ai (resp. mi) denote the length of Ai (resp. Mi) in n-bit blocks,
then xi ≤ (ai +mi)/2 + 4.

We are also going to reveal additional information to the adversary at the
end of its interaction with its oracles, but before it outputs its answer. As D
can freely ignore it, this can only improve its advantage. Namely, in the real
world, we are going to reveal the value of the hashing key L, while in the ideal
world we will simply draw a uniformly random value L in {0, 1}2n. Overall, the
transcript τ of the attack will be defined as τ = (Q, L). In order to simplify the
description of bad transcript, we are going to denote by HL(A,M) the result of
the evaluation of the hashing algorithm on (A,M) (l. 4 to 8 in 3). Note that one
has

HL(Ai,Mi) =

xi⊕
i=j

Lxi−j+1 ⊗Xi[j].

The next step in our proof will be to define a set of bad transcripts and upper
bound their probability of appearing in the ideal word.

Definition 7. An attainable transcript τ = (Q, L) will be said bad if one of the
following conditions hold:

(C-1) there exist i < j such that [HL(Ai,Mi)]n+t = [HL(Aj ,Mj)]n+t;
(C-2) there exists i such that [HL(Ai,Mi)]n+t = 0.

One has the following result.

Lemma 6. One has

Pr [θid ∈ Θbad] ≤
2qσ + 2q2 + σ + 4q

2n+min(n,t)
.

The proof of this Lemma has been deferred to Supplementary Material D.4.
We now consider good transcripts, and prove that the probabilities of observing
any such transcript in the real world and in the ideal world are close. More
precisely, the following result holds.

Lemma 7. For any τ in Θgood, one has

Pr [θre = τ]

Pr [θid = τ]
= 1.

The proof of this Lemma has been deferred to Supplementary Material D.5.

D.4 Proof of Lemma 6

We denote by Θi the set of all attainable transcripts that fulfill condition (C-i)
for i = 1, 2. As usual, using the union bound, one has

Pr [θid ∈ Θbad] ≤
2∑

i=1

Pr [θid ∈ Θi] . (12)

We are going to upper bound both probabilities in turn.

Condition (C-1). Let us fix i < j. The condition [HL(Ai,Mi)]n+t = [HL(Aj ,Mj)]n+t

can be rephrased as follows:

– if t < n: there exists δ ∈ {0, 1}n−t such that HL(Ai,Mi) ⊕ HL(Aj ,Mj) =
δ||0n+t;

– if t ≥ n: HL(Ai,Mi)⊕HL(Aj ,Mj) = 02n.

In both cases, the equation corresponds to a polynomial of degree at most
max(ai+mi, aj +mj)+4 in L, since our encoding is injective and the adversary
is not allowed to repeat queries. Since in the ideal world, L is chosen uniformly
at random at the end of the queries, independently from the experiment, we can
see that, in both cases, one has

Pr [[HL(Ai,Mi)]n+t = [HL(Aj ,Mj)]n+t] ≤
ai + aj +mi +mj + 4

2n+min(n,t)
.

Summing over every possible pair of queries yields

Pr [θid ∈ Θ1] ≤
2qσ + 2q2

2n+min(n,t)
. (13)

Condition (C-2). This condition can be treated like the previous one. Indeed, if
we fix 1 ≤ i ≤ q, then the condition [HL(Ai,Mi)]n+t = 0 yields a polynomial in
L of degree at most xi. Hence, one has

Pr [[HL(Ai,Mi)]n+t = 0] ≤ ai +mi + 4

2n+min(n,t)
,

and summing over the q queries gives

Pr [θid ∈ Θ2] ≤
σ + 4q

2n+min(n,t)
. (14)

Combining Eqs. (12), (13) and (14) concludes this proof. ⊓⊔

D.5 Proof of Lemma 7

Let τ = (Q, L) be a good transcript. Since all the answers are uniformly random
in the ideal world, it is clear that one has

Pr [θid = τ] =
1

2qλ+2n
. (15)

We now focus on the real world. Slightly overloading our notation, we are
going to denote by F0 the uniformly random tweakable function that is used
in the real world and SFMac[F0] the SFMac algorithm instantiated with this
tweakable function. We are now going to lower bound the probability of observing
τ in the real world. This is equivalent to lower bounding the probability that
F0 is such that SFMac[F0] yields τ . This event will be denoted by F0 ⊢ τ . This
event is actually equivalent to the following q + 1 equations:

[F 0t+1

0 (0n)]2n = L

[F
0||V1

0 (U1)]λ = T1

...

[F
0||Vq

0 (Uq)]λ = Tq,

where Ui||Vi = [HL(Ai,Mi)]n+t for i = 1, . . . , q. Since τ is a good transcript, we
can be sure that the inputs of those conditions are actually pairwise distinct.
Thus, one has

Pr [θre = τ] =
1

2qλ+2n
, (16)

which ends the proof of Lemma 7. ⊓⊔

D.6 Proof of Lemma 4

Let us denote by Θ the subset of all attainable transcripts that satisfy condition
that defines bad transcripts.

Let i, j be two integers such that 1 ≤ i < j ≤ q. We want to upper bound
the probability that

It,i = It,j and In,j = In,i ⊞ i′ ⊟ j′

for some integers i′, j′ such that 0 ≤ i′ ≤ mi − 1 and 0 ≤ j′ ≤ mj − 1. It is clear
that this probability is smaller than

mi +mj

2m′ .

Summing over all the pairs of messages yields

Pr [θid ∈ Θ1] ≤
q−1∑
i=1

q∑
j=i+1

mi +mj

2m′ ≤
q−1∑
i=1

(q − 1)mi + σ

2m′ ≤ 2(q − 1)σ

2m′ , (17)

which ends the proof of Lemma 4 ⊓⊔

D.7 Proof of Lemma 5

Let Q be a good queries transcript. Since the output of the ideal world oracle
is uniformly random, and by our assumption that D always queries a total of σ
blocks across all its queries, one has

Pr [θid = Q] = 1

2qλ+mσ
.

Let us now focus on the real world. As in the proof of Lemma 7, we are going
to denote by F0 the uniformly random tweakable function that is used by the real
world oracle. Moreover, we denote by F0 ⊢ Q the event where the construction
FEnc, when using the tweakable function F0, yields the queries transcript Q.
Then, one has

Pr [θre = Q] = Pr [F0 ⊢ Q] .
The event F0 ⊢ Q is actually equivalent to the following conditions on F0:

F
010||It,i
0 (In,i ⊞ (i′ − 1)) = Mi[i

′]⊕ Ci[i
′]

for all i = 1, . . . , q and i′ = 1, . . . ,mi. Note that, since τ is a good transcript
and no query can be longer than 2n− 1 blocks, there is no collision between the
inputs of those σ conditions. Hence, it is easy to see that

Pr [θre = Q] = Pr [θid = Q] ,

which ends the proof of this lemma. ⊓⊔

E Details on the Security Analysis

E.1 Discussion of the bounds obtained in Section 5.1

In this appendix, we show that the rather low bounds given by the byte wise
model for the second scenario in Section 5.1 can be improved by taking into
account the definition of the MixColumns matrix and of the round constant
difference. To see this, consider the minimum returned for two rounds, equal
to 16. The byte-wise model returns a unique pattern reaching this minimum
(depicted on top in Figure 8) in which the third active diagonal of the input of
the second round is fully cancelled by the round constant difference. However,
the difference in the third column origins from a single active byte of difference
denoted δ, so is equal to (02.δ, δ, δ, 03.δ)T given the definition of MixColumns.
The round constant difference is equal to (i⊕j, i⊕j, i⊕j, i⊕j)T between branch
i and j, so at most two bytes of differences can be cancelled, resulting in the
best characteristic being the one depicted at the bottom of Figure 8.

For 5 rounds and more, the optimal solutions returned by the model are of
the form depicted in Figure 9, with in particular a succession of a fully active
column originating from a single active byte that entered a MixColumns that
gets cancelled by the addition of the round constant difference. As discussed
previously, this sequence is impossible, and thus the bound is actually higher.

bb
bb

b
bbb

sb

sr

b
bb b

mc
b

b
b

bbbbb b bb b
b

bb
b

sb

sr

b
b

bbb b bb
b

bb
b

b
b

bbb b bb
b

b b
b

bb
bb

bb
bb

b
bb
b

sb

sr

b
bb
b

mc
b

b
b

b
b
bbb

b bb b
b

bb
b

sb

sr

b
b

bbb
b bb

b
bb
b

b
b

bbb
b bb
b

b b
b

bb
bb

returned by the model:

b

b

reachable:

b

b

Fig. 8: Best characteristic returned by the byte-wise model (top) and actual best
reachable solution (bottom).

E.2 Simple 3-round impossible differential distinguisher in the
second scenario

E.3 Reminder of the best results on Deoxys-BC-256 with 128-bit
key and tweak

Table 6: Some of the best results on Deoxys-BC-256 with 128-bit key and tweak.

rounds Technique Time Data Memory ref.

8 MITM 2113 2113 297 [LJ19]

9 RK Imp. dif. 2118 2118 2102 [MMS18]

10
RK boomerang 2109.1 298.4 288 [ZDJ19]

RK rectangle 2114.2 2114.2 2112.2 [ZDJ19]

x

b
bbb

bbb
b

sb

sr

bbb
b

mc
bbb

b
b
bbb

b bb b
bbb

b

b
b
b

b
b
bbb
b bb b

b
bb
b

sb

sr

mc
b
b
bb
b bbb

b

b
b
bbb
b bb b

b
bb
b

b
b

b
b
bbb
b bb b
b

bb
b

b
bbb
b bb

sb

sr

mc b
bbb

bb bb
b

bb
b sb

sr

mc b
bb

b b b

bb
b sb

sr

mc b
bb

b b bb iterative part

bb
b sb

sr

mc
b

b active byte inactive byte

Fig. 9: For 5 rounds and more, the red iterative characteristic allows to add only
1 active Sbox per round, in the byte-wise model.

b
bbb

bbb
b

sb

sr

bbb
b

mc
bbb

b
b
bbb

b bb b
bbb

b

1 round

bb
bb

sb

sr

mc

b
bb
b

sb

sr

mcbb b
b

b b
bb
b
b
bb

b
b
b
b
b
b
b
b
bb
b

b
b
b
b
b b
bb
b
b
bb
b

bb b
b bbb b

bbb
b

bb b
b bbb b
bbb
bb b bb bb

bb b b bb

b b bb bb
bb b b bb b

2 rounds

contradiction

Fig. 10: 3-round impossible differential.

	Masked Iterate-Fork-Iterate: A new Design Paradigm for Tweakable Expanding Pseudorandom Function

