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Abstract. In the setting of subversion, an adversary tampers with the machines of the honest par-
ties thus leaking the honest parties’ secrets through the protocol transcript. The work of Mironov
and Stephens-Davidowitz (EUROCRYPT’15 ) introduced the idea of reverse firewalls (RF) to protect
against tampering of honest parties’ machines. All known constructions in the RF framework rely on
the malleability of the underlying operations in order for the RF to rerandomize/sanitize the transcript.
RFs are thus limited to protocols that offer some structure, and hence based on public-key operations.
In this work, we initiate the study of efficient Multiparty Computation (MPC) protocols in the presence
of tampering. In this regard,
– We construct the first Oblivious Transfer (OT) extension protocol in the RF setting. We obtain

poly(κ) maliciously-secure OTs using O(κ) public key operations and O(1) inexpensive symmetric
key operations, where κ is the security parameter.

– We construct the first Zero-knowledge protocol in the RF setting where each multiplication gate can
be proven using O(1) symmetric key operations. We achieve this using our OT extension protocol
and by extending the ZK protocol of Quicksilver (Yang, Sarkar, Weng and Wang, CCS’21 ) to the
RF setting.

– Along the way, we introduce new ideas for malleable interactive proofs that could be of independent
interest. We define a notion of full malleability for Sigma protocols that unlike prior notions allow
modifying the instance as well, in addition to the transcript. We construct new protocols that satisfy
this notion, construct RFs for such protocols and use them in constructing our OT extension.

The key idea of our work is to demonstrate that correlated randomness may be obtained in an RF-
friendly way without having to rerandomize the entire transcript. This enables us to avoid expensive
public-key operations that grow with the circuit-size.

⋆ Supported by NSF Awards 1931714, 1414119, and the DARPA SIEVE program.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Backdooring of primitives vs Tampering of Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Correlated OT with Leakage functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Correlated Oblivious Transfer Extension in the RF setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Base Oblivious Transfer Protocols in the RF setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Malleable Interactive Protocols in the RF setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Efficient Zero-Knowledge in the RF setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Cryptographic Reverse Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Zero Knowledge and Witness Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Interactive Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Witness Indistinguishability (WI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Zero Knowledge functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Sigma Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Correlated OT Extension in the Firewall Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Implementing FrOT in the Firewall Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Fully Malleable Sigma Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Malleability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 RF for OR Transform Sigma Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Quicksilver with Reverse Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8 Quicksilver πQS in the Reverse Firewall Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



1 Introduction

Protocols in cryptography are proven secure under standard definitions where the assumption is that the
honest parties trust their machines to implement their computation. This assumption breaks down in the
real world, where even honest parties’ computations are performed on untrusted machines. The security
guarantees of these protocols fall short of protecting against attacks that take advantage of the implementa-
tion details instead of merely treating the algorithm as a black-box. Such attacks are indeed realistic, both
because users are compelled to use third-party hardware due to lack of expertise, software mandated due
to standardization, or even because of intentional tampering due to subversion. The threat of a powerful
adversary modifying the implementation so that the subverted algorithm remains indistinguishable from
the specification in black-box interface, while leaking secrets is not overkill. Snowden revelations [BBG+13]
show that one of the potential mechanisms for large scale mass surveillance is subversion of cryptographic
standards and tampering of hardware.

Reverse Firewalls. The framework of cryptographic reverse firewalls was introduced by Mironov and Stephens-
Davidowitz [MS15] for designing protocols secure against adversaries that can corrupt the machines of honest
parties in order to compromise their security. In such a setting, all parties are equipped with their own re-
verse firewall (RF), which sits between the party and the external world and sanitizes the parties’ incoming
and outgoing messages. The parties do not trust the RF, the RF cannot create security and the hope is for
the RF to preserve security in the face of subversion. Roughly, the security properties desired from an RF
are: (i) exfiltration-resistance: the firewall prevents the machine from leaking any information to the outside
world regardless of how the user’s machine behaves. (ii) security preservation: the protocol with the firewall
is secure even when honest parties’ machines are tampered.

The work of [MS15] provides a construction of a two-party passively secure computation protocol with a
reverse firewall in addition to introducing the RF framework. Feasibility of RF for multi-party computation
(MPC) was shown in [CDN20] who constructed RFs for MPC protocols in the malicious setting. The recent
work of [CGPS21] constructs MPC protocols with RF in the presence of adaptive corruptions. We discuss
other works in the RF framework and related models for subversion resistance in Section 1.3.

Motivation. We begin by observing that both existing works that construct RFs for maliciously-secure MPC
protocols [CDN20, CGPS21] follow roughly the same template – that of the GMW compiler [GMW87]. Both
constructions are essentially compilers: they take a semi-honest secure MPC protocol and run GMW-like
steps in the reverse firewall setting to yield a secure MPC protocol with reverse firewalls. In the process, they
design secure protocols for the underlying primitives (like augmented coin-tossing and zero knowledge) in
the GMW compiler, construct reverse firewalls for each of the primitives, and finally, show that the compiled
MPC protocol is secure in the presence of tampering of honest parties. This renders the resulting protocols
inefficient for practical purposes.

The current techniques for constructing the RFs crucially make use of malleability. This is because, the
constructions rely on the ability of the RF to randomize/maul messages to prevent exfiltration. In order to
not break correctness, such mauling has to be on messages that are malleable and therefore requires the un-
derlying primitives to be homomorphic. Indeed, the RFs for Sigma protocols of [GMV20] rely on malleability
of Sigma protocol, and message and key homomorphism of Pedersen commitment. The RF of [CDN20] relies
on controlled malleable non-interactive zero-knowledge proofs (NIZK), and the constructions of [CGPS21]
need primitives like homomorphic commitment scheme and homomorphic public-key encryption. These ran-
domization techniques for constructing the RF necessitates the MPC protocol to use homomorphic prim-
itives based on expensive public-key operations. In particular, the GMW approach of [CDN20, CGPS21]
require number of public-key operations that is proportional to the size of the circuit being computed by the
protocol. However, progress in MPC has resulted in several efficient protocols [JKO13, WRK17, DKLs18]
based on Oblivious Transfer (OT) extension [IKNP03, KOS15, PSS17, CSW20a, YWL+20] that only rely on
cheap symmetric key operations and few public key operations. A recent line of works [YSWW21, BMRS21]
presented interactive ZK protocols for circuits in the vector OLE (Oblivious Linear Evaluation) model
[BCG+19, YWL+20]. Now that we know feasibility of RF for MPC via generic compilers, can we construct
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RFs for efficient MPC protocols like those based on OT extension? All known techniques to construct RFs
rely on some form of malleability/homomorphism of the underlying protocol so that the RF can randomize
the messages. It is unclear how such randomization would work when the protocol messages are unstructured.
Modifying the protocol to be homomorphic so as to be RF friendly defeats the purpose of protocols like OT
extension where the goal is to minimize the number of public key operations. This motivates us to ask the
following question:

Can we construct an MPC protocol in the reverse firewall setting where the number of public key operations
is independent of the size of the circuit being computed?

We answer the above question in the affirmative by constructing such protocols for specific functions
like OT extension and Zero-Knowledge (ZK). Constructing reverse firewalls for such protocols requires new
techniques since the transcript resulting from symmetric key operations are unstructured and do not render
themselves well to randomization.

1.1 Our Contributions

We initiate the study of efficient MPC protocols in the RF setting. Towards this end, we make the following
contributions.

– We construct a variant of the KOS OT extension protocol [KOS15] together with an RF in the random
oracle FRO model. Our protocol constructs m = poly(κ) correlated OT (cOT)4 using only O(κ) public
key operations. All prior constructions of maliciously secure OT [CDN20, CGPS21] require poly(κ) public
key operations per OT due to their reliance on the GMW compiler and expensive ZK proofs. See Sec.
2.1, and 2.2 for an overview of our cOT functionality FcOT (in Fig. 1) and cOT extension protocol
respectively.

– We construct a new base (random) OT protocol, which we use for our OT extension. In constructing
the base OT protocol and RF (an overview of these ideas in Sec 2.3), we employ new ideas for malleable
interactive proofs.

– We define a notion of full malleability for Sigma protocols that unlike prior notions allow randomizing
the instance as well. We construct RFs for Sigma protocols and for OR composition that sanitize both
the instance and the transcript. We show that ZK protocol resulting from the standard compilation of
a Sigma protocol is fully malleable and construct an RF for it. These results could be of independent
interest. We provide an overview of these ideas in 2.4.

Each base OT protocol require 35 exponentiations. For ℓ ≤ κ base OTs in the OT extension, the cost
of computing 35ℓ exponentiations gets amortized by generating poly(κ) extended cOTs. As a result each
extended cOT communicates κ bits and computes roughly 4 symmetric key operations. Our correlated OT
extension protocol in the firewall setting is captured in Thm. 1.

Theorem 1. (Informal) Assume there exists an additively homomorphic commitment scheme Com, a col-
lision resistant hash function H, a pseudorandom generator PRG, and that the Discrete Log assumption
holds. We obtain a correlated OT extension protocol πcOT with reverse firewalls that implements FcOT in
FRO-model when the honest parties’ machines can be tampered and the adversary can maliciously corrupt
either the sender or the receiver.

We then show application of our cOT extension protocol in constructing efficient Zero-knowledge proto-
cols. We build upon the recent interactive ZK protocol of Quicksilver [YSWW21] to obtain the first efficient
ZK protocol for all of NP in the RF setting. We capture our contribution by the following theorem.

4 Our cOT protocol allows the receiver to learn c bits of sender’s secret with probability 2−c. We capture this leakage
in the ideal functionality FcOT, and show that this weakened functionality suffices for constructing OT-based RF
friendly ZK protocol.
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Theorem 2. (Informal) Assuming H is a collision resistant hash function and Com is an additively homo-
morphic commitment scheme, πQS implements the Zero-knowledge FZK functionality in the FcOT model for
NP in the presence of reverse firewalls where the honest parties’ machines can be tampered and the adversary
can maliciously corrupt either the prover or the verifier. Our construction requires (n + t) invocations to
FcOT, where n is the number of input wires and t is the number of multiplication gates in the NP verification
circuit for the statement.

In πQS, proving each multiplication gate requires one cOT, as in the original Quicksilver protocol. Instan-
tiating FcOT with our πcOT results in a proof size of (n + t)κ bits. In comparison, the original Quicksilver
implements FcOT using Silent-OT extension protocol [YWL+20] yielding a proof size of (n + t) bits. We
provide an overview of our Quicksilver variant and its RF in Sec 2.5.

Key Idea. The central idea of our work is to generate correlated data (cOTs in our case) between two parties
to compute a circuit. We show how these correlated data can be generated from symmetric key operations
and in an RF-friendly way. Previously, all RF-friendly techniques were for protocols relying on public-key
primitives and the RF exploits the natural “structure”. Our work shows that there is no inherent barrier
for constructing RFs for protocols that rely on symmetric-key primitives. Concretely, we only need cheap
symmetric key operations, and the number of public key operations (e.g. the base OTs) are independent
of the size of the circuit to be computed. Looking ahead, this correlation allows the parties to verify a
protocol transcript (e.g. the RF-compatible Quicksilver) efficiently. This verification can be performed using
an inexpensive (solely based on symmetric key operations) consistency check. In contrast, if we were to use
ZK proofs (GMW paradigm) for verification, RF-compatibility requires ZK to be controlled-malleable which
are algebraic and inherently require public key operations. We believe our ideas to deal with unstructured
data opens up a new paradigm for constructing more efficient RF-compatible protocols, especially as a
stepping stone towards MPC protocols based on silent OT extension.

1.2 Future Work

Our current OT extension protocol can be used to construct MPC protocols in the RF setting using generic
compilers [IPS08, NNOB12, DPSZ12] that rely on OTs. A natural extension of our work is to construct
Silent OT extension family of protocols [BCG+19, YWL+20] in the RF setting. Current techniques in Silent
OT extension paradigm requires the receiver to compute LPN samples and use them in the underlying
bootstrapping protocol. In the RF setting, this is a non-trivial task since the LPN samples might be leaky
due to bad randomness. It is not obvious how to sanitize them without relying on expensive public key
operations or generic zero-knowledge. Our work shows that our correlated OTs suffice for designated-verifier
ZK protocols. We believe that similar ideas could be instrumental in other designated-verifier settings, like
silent-OT and authenticated garbling [YWZ20].

1.3 Related Work

Reverse firewalls. The work of [MS15] constructs RFs for a variant of the Naor-Pinkas OT protocol [NP01].
Their construction only provides passive security, whereas we are in the malicious setting. The work of
[CMY+16] constructs an OT protocol from graded rings, incurring poly(κ) public key operations for each
OT. While these works show feasibility, we focus on constructing OT extension protocols in the RF set-
ting with malicious security, while retaining the advantage of OT extension – create poly(κ) OTs with
symmetric key operations starting from κ base OTs. The other approaches via generic MPC compilers
[CDN20, CGPS21] incur poly(κ) public key operations for each OT instance. In their original paper, Mironov
and Stephens-Davidowitz [MS15] show how to construct reverse firewalls for oblivious transfer (OT) and two-
party computation with semi-honest security. Follow-up research showed how to construct reverse firewalls
for a plethora of cryptographic primitives and protocols including: secure message transmission and key
agreement [DMS16, CMY+16], signature schemes [AMV15], interactive proof systems [GMV20], and mali-
ciously secure MPC for both the case of static [CDN20] and adaptive [CGPS21] corruptions. The recent work
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of [CMNV22] also introduced the notion of Universally Composable Subversion-Resilient security. Extending
our results in their model is an interesting direction for future work.

As already mentioned in the introduction, all the above constructions use the ability of the RF to maul (in
a controlled way) the transcript of the protocols to prevent exfiltration, which in turn required the underlying
building blocks to be (controlled) homomorphic. Hence, the number of public key operations depends on
the size of the circuit (representing the function) to be computed securely. This is in sharp contrast to our
OT and (interactive) ZK protocols where the resulting protocols after RF sanitization performs a number
of public key operations that are independent of the size of the circuit being computed.

Watchdogs. The line of research on cliptography [RTYZ16, CHY20, BCJ21] shows how to clip the power
of subversion attacks without the need for reverse firewalls, and assuming only that a watchdog algorithm
can perform a black-box test to decide whether a (possibly subverted) implementation is compliant to its
specification.

A watchdog can be offline (meaning that testing only happens before a scheme is deployed), online
(meaning that testing is executed in parallel to the deployment of the scheme), or omniscient (meaning
that testing additionally depends on the implementation’s secret state). Unfortunately, offline watchdogs
alone are not powerful enough to detect pretty natural classes of subversion attacks such as input-triggered
attacks [DFP15, AMV15]. In contrast, reverse firewalls allow to annihilate input-triggered attacks via offline
testing and sanitation. Online watchdogs and omniscient watchdogs, instead, are both incomparable to
reverse firewalls as the former needs to test a running implementation, and the latter needs access to secret
inputs, but none of them sanitizes the protocol transcript.

Self-guarding. Fischlin and Mazaheri [FM18] proposed another defense mechanism called self-guarding, which
requires users to have a trusted initialization phase to generate genuine outputs of a given cryptographic
primitive. These outputs can later be used in order to sanitize the outputs produced by a possibly tampered
implementation. The main advantage of this model is that it does not require an active party (such as the
reverse firewall or the watchdog). The main disadvantage is that security depends on the number of samples
collected during the initialization phase.

Backdooring. A formal study of backdooring of PRGs was initiated in [DGG+15], where public parameters
are surreptitiously generated together with secret backdoors by a saboteur that allows to bypass security
while remaining secure to any adversary that does not know the backdoor. Parameter subversion has been
considered for several primitives, including pseudorandom generators [DGG+15], non-interactive zero knowl-
edge [BFS16], and public-key encryption [ABK18].

1.4 Backdooring of primitives vs Tampering of Implementations

Since our focus is on efficient MPC protocols and RFs, the RF-friendly protocols we construct are based on
symmetric-key primitives like hash functions and pseudorandom generators (PRGs). While backdooring of
such primitives is also of concern in the subversion setting, we argue that it is an issue orthogonal to the issue
of tampering of implementations that we consider in this work. Backdooring of a primitive [BPR14, DGG+15]
is subversion that poses a different kind of threat compared to tampering. In subversion, a powerful adversary
(saboteur) chooses an instance of a primitive for which it knows a trapdoor. For example, the Dual EC PRG
standardized by NIST is a family of PRGs parameterized by two group elements, and an entity that samples
these parameters can remember the randomness used to sample which serves as a backdoor. This backdoor
suffices to completely predict all outputs after seeing one output from the PRG. In general, subversion is
concerned with powerful adversaries who backdoor a primitive. In contrast, the setting we consider is where
a powerful adversary corrupts the computers of honest parties. In the protocols we construct, we design RFs
to immunize the messages exchanged by the parties as part of the protocol, but assume that any primitives
that the protocols might use (locally by the parties) are backdoorless. We also note that both prior works
that construct RFs for MPC protocols [CDN20, CGPS21] are generic compilers and therefore also implicitly
assume that all the primitives used by the underlying MPC protocol are backdoorless. We prove security of
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our protocols in the Random Oracle Model (ROM), and it is known how to immunize backdoored primitives
like PRGs in the ROM [DGG+15]. Once the RO is instantiated with a hash function like SHA-256, the
assumption presumes that SHA-256 is itself not backdoored. The works of [FJM18, DFMT20] show how to
immunize backdoored ROs and backdoored hash functions. Combining these immunization techniques with
RFs to construct end-to-end solutions that address subversion is an interesting direction for future work.
Countering both tampering of implementation and subversion of primitives simultaneously is important but
not in the scope of this work.

Remark. Since our focus is on efficient MPC protocols and RFs, the RF-friendly protocols we construct
are based on symmetric-key primitives like hash functions and Pseudorandom generators (PRGs). While
backdooring of such primitives is also of concern in the subversion setting, we argue that it is an issue or-
thogonal to the issue of tampering of implementations that we consider in this work. We also note that both
prior works that construct RFs for MPC protocols [CDN20, CGPS21] are generic compilers and therefore
also implicitly assume that all the primitives used by the underlying MPC protocol are backdoorless. We
provide a more detailed discussion comparing tampering of implementations and backdooring of primitives
in Section 1.4. We prove security of our protocols in the Random Oracle (RO) model, and it is known how
to immunize backdoored primitives like PRGs in the RO model [DGG+15]. Once the RO is instantiated
with a hash function like SHA-256, the assumption presumes that SHA-256 is itself not backdoored. The
works of [FJM18, DFMT20] show how to immunize backdoored ROs and backdoored hash functions. Com-
bining these immunization techniques with RFs to construct end-to-end solutions that address subversion
is an interesting direction for future work. Countering both tampering of implementation and subversion of
primitives simultaneously is important but not in the scope of the current work.

2 Technical Overview

In this section, we discuss state-of-the-art protocols, some hurdles in adapting them to the RF setting and
outline our techniques to overcome them. Our protocols are shown secure in the RF setting by relying
on the recent result of [CGPS21], which showed that 1) if an MPC protocol satisfies simulation-based
security, and 2) the firewall is functionality maintaining and provides exfiltration resistance, then the firewall
preserves security of the protocol in the presence of functionality maintaining tampering. Thm. 3 in Sec.
3.2 formally summarizes the result. For every protocol we prove that it satisfies simulation-based security
and their respective firewall provides exfiltration resistance. Combining Thm. 3 with simulation security and
exfiltration resistance provides us the desired security guarantee.

2.1 Correlated OT with Leakage functionality

We initiate our overview discussion with the correlated OT functionality FcOT in Fig. 1 (taken from [KOS15]).
It allows some leakage to a corrupt receiver. The receiver has a choice bit vector b ∈ {0, 1}ℓ. The functionality
samples s ←R {0, 1}κ, M ←R {0, 1}ℓ×κ and sets Qj = Mj ⊕ (s ⊙ bj) for j ∈ [ℓ]. The functionality sets
Q = {Qj}j∈[j∈[ℓ]] and returns M to the receiver and the (s,Q) to the sender. The functionality allows the
receiver to guess c bits of s and the receiver gets caught with 1− 2−c probability. We show that this weaker
functionality suffices for the ZK protocol of Quicksilver [YSWW21].

2.2 Correlated Oblivious Transfer Extension in the RF setting

We use the KOS [KOS15] OT extension to implement the FcOT functionality. We recall the KOS protocol
as follows:

Recalling KOS OT extension: In the KOS OT extension, the sender SExt and receiver RExt generate m
(= poly(κ)) OTs using κ invocations to the random OT functionality, i.e. FrOT

5(Fig. 9), (implemented by

5 Each invocation of FrOT returns (a0, a1) to the sender and (b, ab) to the receiver where a0, a1 ←R {0, 1}κ and
b←R {0, 1} are randomly sampled by the functionality.
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Functionality FcOT

Upon receiving (Initiate, sid, ℓ) from sender S and receiving (Initiate, sid,b, ℓ) from receiver R where b = (b1, . . . , bℓ)
and bj ∈ {0, 1} for j ∈ [ℓ], the functionality FcOT interacts as follows:

– If S is corrupted receive s ∈ {0, 1}κ and Q ∈ {0, 1}ℓ×κ from the sender. Set Mj = Qj ⊕ (s⊙ bj) for j ∈ [ℓ].

– If R is corrupted then receive M ∈ {0, 1}ℓ×κ from the receiver, sample s←R {0, 1}κ and set Qj = Mj ⊕ (s⊙ bj)
for j ∈ [ℓ].

– When a corrupt R guesses c bits of s by invoking (Guess, sid, {indi}i∈[c], {s′i}i∈[c]): FrOT aborts if s′i ̸= sindi for
any i ∈ [c]; otherwise all the guesses are correct and FrOT sends (Undetected, sid) to A.

– If both parties are honest, then sample s←R {0, 1}κ, M←R {0, 1}ℓ×κ and set Qj = Mj ⊕ (s⊙ bj) for j ∈ [ℓ].

Denote Q = {Qj}j∈[ℓ] and M = {Mj}j∈[ℓ]. Send (sent, sid,M) to R and (sent, sid, (s,Q)) to S and store
(sen, sid, ℓ, (b,M,Q)) in memory. Ignore future messages with the same sid.

Fig. 1: Ideal functionality FcOT for Correlated Oblivious Transfer with leakage

base OTs) and symmetric key operations. In the base OTs, the sender SExt plays the role of a receiver, and
the receiver RExt plays the role of a sender. The ith invocation of FrOT functionality returns random strings
(ki,0, ki,1) ←R {0, 1}κ to the sender and (si, ki,si) to the receiver where si ←R {0, 1}. The input of RExt is
bit string r ∈ {0, 1}m for m correlated extended-OTs. The receiver also samples κ random bits τ ←R {0, 1}κ
and sets r′ = (r||τ) ∈ {0, 1}m+κ. This is done to prevent leakage of input choice bits during the consistency
checks. The receiver computes the choice bit matrix R ∈ {0, 1}(m+κ)×κ where the jth row of R denoted as
Rj is computed as follows:

Rj = (r′j , . . . , r
′
j) for j ∈ [m+ κ].

RExt computes a matrix M ∈ {0, 1}(m+κ)×κ such that the ith column of M denoted as Mi is computed as
follows:

Mi = PRG(ki,0) for i ∈ [κ],

where PRG : {0, 1}κ → {0, 1}m+κ. RExt sends a mapping D from his choice bits r′ ∈ {0, 1}m to the (ki,0,ki,1)
values. The ith column of D is denoted as Di and is computed as follows:

Di = PRG(ki,0)⊕ PRG(ki,1)⊕Ri for i ∈ [κ].

Upon obtaining this mapping D and the base-OT output, the sender computes his mapping as Q where
the ith column of Q is denoted as follows:

Qi =
(
si ⊙Di

)
⊕ PRG(ki,si) for i ∈ [κ],

The jth row of Q denoted as Qj satisfies the following relation:

Qj = Mj ⊕ (s⊙Rj) = Mj ⊕ (s⊙ rj) for j ∈ [m].

In addition to the above, the sender performs consistency checks [Dia22]. A corrupt receiver can leak
bits of s if the rows of R are not monochrome, i.e. ∃j ∈ [m] s.t. Rj is neither 0κ nor 1κ. Such an attack
can be launched by the corrupt receiver if D is malformed. To detect such malicious behaviour, the sender
performs a consistency check on matrix D. In the original KOS paper, the protocol consists of an interactive
check phase. The receiver and sender perform a coin-tossing protocol to generate m + κ fields elements
χ ←R Fm+κ using a random oracle FRO, where F = O(2µ) and µ is the statistical security parameter. The
receiver computes u and v as part of the consistency check on D:

u =
⊕

j∈(m+κ)

(χj ·Mj),v =
⊕

j∈(m+κ)

(χj ·Rj)

6



The receiver sends (u,v) to the sender as the response of the consistency checks. The sender computes
w as follows:

w =
⊕

j∈(m+κ)

(χj ·Qj).

The sender aborts if w ̸= u ⊕ s · v. The consistency checks ensure that the receiver learns only c bits
of s with probability 2−c probability. We follow the same approach. Once the consistency checks pass, the
receiver sets {rj ,Mj} as the output of the jth cOT for j ∈ [m]. The sender sets (s,Qj) as the output of the
jth cOT.

Obstacles in RF setting and key insights. The above protocol fails to provide exfiltration resistance in the
RF setting. We highlight the problems and outline solution ideas.

– Implementing FcOT: There is no protocol πrOT in MPC literature that implements FrOT functionality
while providing ER for tampered honest parties. In order to provide ER, the firewall needs to rerandomize
the OT protocol transcript such that the receiver’s choice bit gets randomized and the sender’s messages
are rerandomized. The state-of-the-art OT protocols of [PVW08, CSW20b] are in the setup string model
where the setup string can be tampered. Moreover, a firewall cannot rerandomize the first message of
the receiver to rerandomize the receiver’s choice bit since the tampered receiver would then be unable
to decrypt the sanitized OT transcript. Meanwhile, the protocols of [BPRS17, MR19, CSW20a] are in
the random oracle model where the messages in the OT transcript consists of random oracle outputs.
It is unclear how a firewall could rerandomize such transcripts since it would require computing the
preimage of the random oracle output. To address this issue, we build a new base OT protocol πrOT

which implements FrOT functionality and provides exfiltration resistance for tampered parties. Overview
of the base OT protocol is discussed in Sec. 2.3.

– Rerandomizing D matrix: A malicious receiver could send a “signal” such that a tampered sender
behaves differently thereby leaking one bit of the honest (tampered) sender’s input. For instance, a
malicious receiver can choose its choice bits r in a way such that D lies in a particular distribution (e.g.
the first column of D is all 0s). A tampered sender aborts upon receiving this malformed D matrix while
an honest sender does not. This leaks one bit of the sender’s input violating exfiltration resistance. We
address this issue by using a technique such that the r vector is randomly chosen as part of the protocol.
The receiver and the sender perform an augmented coin-tossing protocol where the receiver obtains
random coins coin and the sender obtains a commitment to the coin as ccoin. The receiver generates the
first column of D, denoted as D1, by invoking the random oracle FRO on coin. The receiver is required
to compute the choice bit vector(and the padding bits) r′ = r||τ from D1 and the outputs of the base
OTs as follows:

r′ = D1 ⊕ PRG(k1,0)⊕ PRG(k1,1)

This rerandomizes the r′ vector, and as a result the D matrix cannot be used to exfiltrate by choosing
a tampered choice bit vector r (or τ). The receiver is required to decommit to ccoin when it sends D to
the sender. The sender verifies the opening and also verifies that the first column of D is generated by
invoking the random oracle FRO on coin.

– Consistency Checks: A malicious receiver can still send a badly constructed D (rows of the computed
R are not monochrome) which might trigger a tampered sender. Upon obtaining D the tampered sender
can abort thus leaking one bit of its input. In contrast, an honest sender does not abort until the end of the
consistency checks. This behaviour could exfiltrate secrets of a tampered sender to a malicious receiver.
We observe that if a malicious receiver sends a malformed D and the consistency check is performed
correctly then a tampered sender aborts, similar to an honest sender, since the tampering is functionality
maintaining. However, the sender should obtain D and the receiver’s response for the consistency check
in the same round. In such a case, an honest sender also aborts if D is malformed as this is detected
in the consistency check. A tampered sender also aborts and now this prevents exfiltration even if D
contains hidden triggers since the abort is due to the checks failing. The behaviour of the tampered
sender is statistically indistinguishable from an honest sender: they only differ when the checks fail to
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detect inconsistency which occurs with probability 1
|F| . This observation leads us to a modified protocol

such that it provides ER for a tampered sender.
After computing the base OTs, the corrupt receiver commits to the hash of D using an additively homo-
morphic commitment scheme as cD. Additive homomorphism allows rerandomization of the commitment
by the firewall. The parties then generate the coins seed for the consistency check using an RF-compatible
augmented coin-tossing protocol. The randomness for the consistency checks are derived from FRO(seed),
where FRO is the random oracle. Finally, the receiver sends D, the decommitment of cD to H(D) and
the response to the consistency checks. The sender verifies the decommitment and the response to the
consistency check.

The hash function and cD forces a corrupt receiver to succinctly commit to D and allows it to decommit
to D along with the response to the consistency check. The consistency check forces a tampered sender to
abort if D is malformed in a way oblivious to any hidden triggers. This provides exfiltration resistance for
the sender. The commitment cD is rerandomized by the firewall. seed is rerandomized by the firewall to

ŝeed = seed+ s̃eed. To incorporate s̃eed into cseed the firewall computes ĉseed = cseed ·Com(seed; δ̃seed) and

sends ĉseed to receiver on behalf of sender. The firewall also sends ĉR = seedR+ s̃eed to the sender on behalf
of the receiver. When sender opens cseed to (seedS; δseed) the firewall sends (seedS+ s̃eed, δseed+ δ̃seed) to the

receiver. This ensures that both parties obtain the coins as ŝeed. We also assume that the commitments
are additively homomorphic so that they can be rerandomized by the firewall. The only way to tamper
D matrix and not get caught is when the receiver guesses κ bits of s to pass the consistency checks.
However, the checks ensure that such an event occurs with 2−κ probability.

The protocol with the three changes gives us a correlated OT (with leakage) extension protocol πcOT.
The protocol is presented in Fig. 7 and the firewall in Fig. 8. Our correlated OT with leakage is weaker than
correlated OT of [YSWW21] since it allows a corrupt receiver to compute c bits of sender’s secret key s with
probability 2−c. However, as we show in Sec. 2.5, this suffices for Quicksilver [YSWW21]. Next, we build our
base OT protocol πrOT which implements FrOT.

2.3 Base Oblivious Transfer Protocols in the RF setting

As discussed above, the state-of-the-art OT protocols [PVW08, MR19, CSW20b, CSW20a] fail to give πrOT

in the presence of functionality maintaining tampering. The OT protocol of [MS15] provides only passive
security in the RF setting and no guarantees against active corruption of the receiver. We construct πrOT by
building upon the classical OT protocol of [BM90] in the plain model. For the sake of completeness, we first
recall the protocol.

Protocol of [BM90]. The sender samples a field element q and computes group element Q = gq and sends Q
to the receiver. The receiver has a choice bit b and it samples two public keys (pk0, pk1) such that pkb = gsk

for secret key sk and Q = pk0 · pk1. The receiver sends pk0 to the sender. The sender samples r0, r1 ←R Zq,
and computes R0 = gr0 and R1 = gr1 . The sender sets the output as k0 = H(pkr00 ) and k1 = H(pkr11 ) where
H is the Goldreich-Levin hash function or a random oracle. The sender sends (R0, R1) to the receiver. The
receiver outputs kb = H(Rsk

b ).

Modifications for Simulation-based security. The protocol of [BM90] only provides semantic security. The
receiver’s choice bit is perfectly hidden in the first message pk0 and the sender’s messages are (k0, k1) not
extractable. We make the following changes in order to allow for simulation based security:

– Sender Input Extraction: To extract the sender’s input, we modify the protocol so that the sender
proves knowledge of q such thatQ = gq through an interactive protocol zero knowledge proof of knowledge
(ZKPOK) with the receiver as the verifier. The simulator extracts q from the ZKPOK and sets the secret
keys as sk0 ←R Zq and sk1 = q − sk0. The knowledge of the two secret keys enables the simulator to
extract the corrupt sender’s outputs (k0, k1). The ZK property of the proof ensures that q is hidden from
a corrupt receiver.
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– Receiver Input Extraction: To extract the receiver’s input, we modify the protocol so that the receiver
proves knowledge of sk for the statement ((pk0, pk1,G,Zq) : ∃sk ∈ Zq, b ∈ {0, 1} s.t. (pk0 = gsk ∨ pk1 =
gsk)) using a Witness indistinguishability proof of knowledge (WIPOK). The simulator extracts (sk, b)
from the WI proof. Meanwhile, the simulator against a corrupt sender is able to simulate the proof by
setting pk0 = gsk and b = 0 by relying on the WI property. We also set k0 = pkr00 and k1 = pkr11 for
efficiency purposes and remove the Goldreich-Levin hash function. The WI proof ensures that if the proof
accepts then the receiver has full knowledge of (sk, b). Using the knowledge of sk, we reduce a corrupt
receiver breaking semantic security of the OT scheme to an adversary breaking DDH.

Modifications in RF setting. The above protocol fails to provide exfiltration resistance. We highlight some
problems and suggest solutions.

– Rerandomizing OT parameter Q: A malicious sender can malform Q and use it as a trigger for
a tampered receiver. To address this issue, we generate Q using coin tossing where the receiver sends
T = Com(QR) and the sender sends a share QS. The receiver later decommits to QR and both parties
set Q = QR · QS as the parameter. A firewall can sanitize this: sample q̃ ←R Zq, t̃ ←R {0, 1}∗ and

sanitize the commitment as T̂ = T · Com(gq̃; t̃) and sanitize QS as Q̂S = QS · gq̃ such that the new

parameter is Q̂ = Q · gq̃ where q̃ ←R Zq. The firewall also invokes the firewall of the ZK protocol with
instance rerandomizer q̃ since the receiver produces a ZK proof for (QS,G,Zq) and the firewall sanitizes
it to a proof of (QS · gq̃,G,Zq). More discussion about the ZK firewall can be found in Sec. 2.4. This
transformation provides ER to both parties corresponding to the OT parameters and the ZK proof.

– Rerandomizing Receiver’s choice bit and public keys: The firewall needs to rerandomize the
receiver’s choice bit and the public keys to implement FrOT functionality and prevent exfiltration through
the public keys. To enable this, we have the sender commit to a pad p ←R Zq using an additively
homomorphic commitment as cS = Com(p; dS). When the sender receives (pk0, pk1) the sender decommits
to p and the receiver sets the new public keys as pk′0 = pk0 · gp and pk′1 = pk1 · g−p. These new public
keys maintain the invariant that pk′0 · pk

′
1 = Q. The firewall sanitizes the public keys by changing p to

p̂ = p+ p̃. The commitment is modified to ĉS = cS ·Com(p̃; d̃S). Upon receiving the decommitment (p, dS)

the firewall modifies it to (p̂, dS+ d̃S). Upon receiving the public keys (pk0, pk1) the firewall changes it to

(pk0·gp̃, pk1·g−̃p). This allows both parties to get sanitized public keys (p̂k0, p̂k1) = (pk0·gp+p̃, pk1·g−p−p̃).
It is ensured that p̂k0 · p̂k1 = Q̂ thus preventing any exfiltration through the public keys. Next, we
rerandomize the choice bit of the receiver where the sender sends a random bit ρ in the last message of
the OT protocol. The receiver’s new choice bit is set to s = b ⊕ ρ where b was initially chosen by the
receiver by sampling sk←R Zq and setting pkb = gsk. The firewall sanitises ρ to ρ̂ = ρ⊕ ρ̃ and it permutes
the order of pk0 and pk1 if ρ̃ = 1. The firewall also modifies the commitment cseed accordingly so that the
order of the sanitised public keys are consistent for both parties. Finally, these changes are also reflected
in the WIPOK proof performed by the receiver as the prover. Recall that the receiver proves knowledge
of witness for the statement ((pk0, pk1,G,Zq) : ∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 = gw ∨ pk1 = gw)) using a
WIPOK. The firewall sanitizes the proof such that it is consistent with the sanitized public keys and the
order of the keys. In particular, if ρ̃ = 0 the new statement is ((pk0 · gp̃, pk1 · g−p̃,G,Zq) : ∃w ∈ Zq, b ∈
{0, 1} s.t. (pk0 · gp̃ = gw ∨ pk1 · g−p̃ = gw)). If ρ̃ = 1 the new statement is ((pk0 · gp̃, pk1 · g−p̃,G,Zq) :
∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 · gp̃ = gw ∨ pk1 · g−p̃ = gw)). This is performed by constructing malleable
Interactive WIPOKs in the RF setting where the instance is also sanitized. The firewall for the OT
protocol invokes the WI RF with input ((p̃,−p̃), ρ̃). Detailed discussion about WI is in Sec. 2.4.

– Rerandomizing sender’s messages: Finally the sender’s pads (R0, R1) for the OT protocol needs
to be rerandomized to implement FrOT functionality. The receiver commits to (v0, v1)←R Zq and sends
the commitments alongwith the public keys. Upon receiving (R0, R1), the receiver opens to (v0, v1)
and considers the sender’s random pads as (R0 · gv0 , R1 · gv1). The sender sets the new randomness as
(r0 + v0, r1 + v1). The firewall sanitizes the commitment and the interaction such that the random pads
are (R0 · gv0 · gṽ0 , R1 · gv1 · gṽ1) and the sender’s randomness are (r0 + v0 + ṽ0, r1 + v1 + ṽ1). This ensures
that the tampered sender’s pads are indistinguishable from an honestly generated sender random pads.
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We obtain our base OT protocol implementing FrOT in Fig. 10 and 11. by carefully putting together the
above ideas. While this overview is for ℓ = 1 for simplicity, the final protocol implements FrOT for general
ℓ. The protocol and the firewall are presented in Sec. 5. Each OT instance communicates 13 group elements
+ 15 field elements + 1 bit, and performs 35 exponentiations. In comparison, previous maliciously secure
OT protocols [CDN20, CGPS21] rely on the GMW compiler, and compute poly(κ) exponentiations and
communicate poly(κ) bits.

2.4 Malleable Interactive Protocols in the RF setting

We consider a class of interactive protocols based on Sigma protocols. For the sake of concreteness, consider
the classical Sigma protocol for proving knowledge of a discrete logarithm [Sch90]. The statement consists
of the description of a cyclic group G of prime order q, a generator g and an instance x = gw, for w ∈ Zq.
The prover’s first message is a random group element a = gα. For a verifier’s challenge c ∈ Zq, the prover’s
response is z = a + wc. The transcript τ = (a, c, z) is accepting if gz = axc. We need to rerandomize the
transcript without breaking the completeness condition, and without knowing the witness. In addition, since
we use these interactive protocols in constructing our OT protocol, the instance x could also potentially be
subliminal and therefore, we need to randomize the instance as well, to generate a randomized transcript
(x̂, τ̂). In order to build RFs for the ZK protocol obtained by compiling a Sigma protocol, we need to sanitize
additional messages. Here, we rely on the key and message homomorphism of the Pedersen commitment
scheme to randomize the commitment key, the commitment, and the message inside the commitment. Finally,
we construct an RF for the OR composition that not only randomizes each instance in the compound
statement, but the entire statement (by permuting the clauses). This is necessary since we use the OR
protocol as a building block in a larger protocol where the statement itself could be tampered and needs to
be sanitized.

We emphasize that our RFs randomize not just the transcript (a, c, z), but also the instance x, as opposed
to the RF constructions in [GMV20] where the sanitized transcript still verifies for the same instance x. In our
setting, crucially, the instance could also potentially be subliminal and therefore, needs to be randomized to
prevent exfiltration. Our notion of fully malleable Sigma protocol is stronger than the malleability considered
in [GMV20].

2.5 Efficient Zero-Knowledge in the RF setting

The recent works of [YSWW21, BMRS21] present interactive ZK protocols for circuits in the vector OLE
model [BCG+19, YWL+20]. We focus on the work of Quicksilver [YSWW21] for binary circuits. In this
setting, the vector OLE over binary field is modeled by the FcOT functionality. In Quicksilver, the parties
run an interactive preprocessing phase which depends only on the security parameter. The parties obtain
correlated randomness through this phase. In the online phase the prover obtains the NP verification circuit
C and the witness wire assignment w. The verifier obtains the circuit C. The parties locally expand their
correlated randomness. The prover obtains M ∈ {0, 1}ℓ×κ and a random b ∈ {0, 1}ℓ, the verifier obtains
K ∈ {0, 1}ℓ×κ and a random ∆ ∈ {0, 1}κ such that the following holds for i ∈ [ℓ], where K = {Ki}i∈[ℓ],
M = {Mi}i∈[ℓ], b = {bi}i∈[ℓ]:

Ki =Mi ⊕ bi ⊙∆

Assume that the number of input wires to the circuit is n, the number of multiplication gates is t and
ℓ = n+ t. The prover commits to the n+ t wire assignments for the input wires and multiplication gates by
sending the mapping di = wi⊕ bi to the verifier. Addition gates are free due to additive homomorphism and
can be verified locally. The verifier updates Ki as follows for i ∈ [n+ t]:

Ki = Ki ⊕ di ⊙∆ = (Mi ⊕ bi ⊙∆)⊕ (wi ⊕ bi)⊙∆ =Mi ⊕ wi ⊙∆.

The prover P proves that the committed values wi corresponding to the multiplication gates are correct by
executing a batched verification phase with the verifier V. For each multiplication gate (α, β, γ) with input
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wires α and β and output wire γ, the prover P has (wα,Mα), (wβ ,Mβ), (wγ ,Mγ) and the verifier V holds
Kα,Kβ ,Kγ , ∆ such that the following four equations should hold:

wγ = wα · wβ and Mi = Ki ⊕ wi ⊙∆ for i ∈ {α, β, γ}.

This can be verified by the verifier by performing the following check where prover sends Ai,0 and Ai,1:

known to V︷ ︸︸ ︷
Bi = Kα ·Kβ ⊕Kγ ·∆

?
=

known to P︷ ︸︸ ︷
Mα ·Mβ + (wβ ·Mα ⊕ wα ·Mβ ⊕Mγ) ·

known to V︷︸︸︷
∆

= Ai,0 ⊕Ai,1 ·∆

A corrupt prover passes the check even if wγ ̸= wα · wβ if it correctly guesses ∆, which occurs with 2−κ

probability. This covers the case for one gate. To check t multiplication gates in a batch the verifier sends a
challenge χ. The prover and verifier also generates a random linear relationship B∗ = A∗

0 ⊕ A∗
1 ·∆ to mask

the prover’s inputs. This is performed using additional κ cOTs. The prover computes (U, V ) as described
below. The prover sends (U, V ) and the verifier locally computes W .

U =
⊕

i∈[n+t]

Ai,0 ⊕A∗
0 , V =

⊕
i∈[n+t]

Ai,1 ⊕A∗
1 , W =

⊕
i∈[n+t]

Bi ⊕B∗

The verifier outputs accept if (W == U ⊕ V · ∆) and rejects the proof if the equation fails to satisfy. A
corrupt prover successfully cheats in the batch verification with probability 2−κ by guessing ∆. Meanwhile,
the ZK simulator simulates the proof by passing the check, given the knowledge of (K, ∆) from FcOT. The
simulator computes W , samples V ←R {0, 1}κ and sets U =W ⊕ V ·∆.

Modifications in RF setting. In order to achieve ER in the firewall setting, we make the following changes
to the above protocol.

– Preprocessing Phase: The above protocol provides ER for the preprocessing phase if we implement
FcOT with πcOT with parameter ℓ = n+ t+κ. However, the parties need to know the number of extended
correlated OTs (i.e. n + t + κ) in πcOT during the preprocessing phase and perform communication
proportional to it.

– Batch Verification: The mappings d maybe malformed and can be used to leak w. Similarly, the
challenge χ maybe malformed and can be used by a malicious verifier to trigger a tampered prover.
We address these issues by following an approach similar to the consistency check in πcOT. The prover
commits to hash of d as cd. Upon receiving the commitment, the parties participate in an interactive coin
tossing protocol to generate the challenge χ. Upon receiving the challenge, the prover decommits d and
computes the response to the batch verification (following the original Quicksilver protocol). The verifier
checks the decommitment to d and performs the verifier algorithm of the original quicksilver protocol.
The soundness argument of the check is preserved if the hash is collision resistant, cd is instantiated using
a binding commitment scheme and the coin-tossing returns a random χ in the presence of functionality
maintaining tamperings. The coin-tossing subprotocol is same as the coin tossing protocol in πcOT.
The firewall construction is also the same and this ensures ER for the coin-tossing. We refer to the
Consistency Checks Sec. 2.2 for the discussion on the coin-tossing. Given that ∆ is random and the
challenge is sanitized by the firewall, a corrupt prover gets caught if d vector is malformed such that the
underlying w = b⊕ d is invalid, i.e. C(w) = 0. The complete protocol πQS cna be found in Sec. 7.

The original quicksilver paper achieves communication complexity of 1 bit per multiplication gate. We
incur a cost of κ(1 + o(1)) < 2κ bits per multiplication gate. The number of public key operations is O(κ).
The prover and verifier can run our protocol to verify a batch of m different circuits (C1, C2, . . . , Cm) with
parameters (ℓ1, ℓ2, . . . , ℓm) where ℓi denotes the number of input wires and multiplication gates in Ci. In
such a case the parties invoke FcOT with parameter L = Σi∈[m]ℓi. The number of public key operations for
the base OTs gets amortized over m runs of the ZK protocol.
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3 Preliminaries

Notations: We denote by a ← D a uniform sampling of an element a from a distribution D. The set
of elements {1, . . . , n} is represented by [n]. We denote the computational security parameter by κ and
statistical security parameter by µ respectively. Let Zq denote the field of order q, where q = p−1

2 and p are
primes. Let G be the multiplicative group corresponding to Z∗

p with generator g, where CDH assumption

holds. We denote a field of size O(2µ) as F. For a bit b ∈ {0, 1}, we denote 1− b by b̄. We denote a matrix by
M and let Mi refer to the ith column and Mj to the jth row of M respectively. Given a field element x ∈ F
and a bit vector a = (a1, a2, . . . , aκ) we write component-wise multiplication as x ·a = (a1 ·x, a2 ·x, . . . , aκ ·x).
Given two vectors a,b ∈ {0, 1}n, we denote component-wise multiplication by a⊙ b = (a1 · b1, . . . , an · bn).

3.1 Commitment Schemes

We define an additively homomorphic non-interactive commitment scheme Com as a tuple of two algorithms
(Gen, Com) such that Com satisfies the following properties:

Definition 1. (Computationally Binding) Com is computationally binding scheme if the following holds
true for all PPT adversary A:

Pr
[
(m0, r0,m1, r1)← A(pp)|pp← Gen(1κ),

Com(pp,m0; r0) = Com(pp,m1; r1)
]
≤ neg(κ)

Definition 2. (Computationally Hiding) Com is a computationally hiding scheme if the following holds
true for all PPT adversary A = (A1,A2):

Pr
[
b = b′|pp← Gen(1κ), (m0,m1, st)← A1(pp), b← {0, 1},

c← Com(pp,mb; r), b
′ ← A2(c; st)

]
≤ 1

2
+ neg(κ)

Definition 3. (Additively Homomorphic Commitment) A commitment scheme Com = (Gen, Com)
is additively homomorphic over message space M and randomness space R, which are written additively,
such that for all m,m′ ∈M, r, r′ ∈ R we have:

Com(pp,m; r) · Com(pp,m′; r′) = Com(pp,m+m′; r + r′).

In our protocols we assume that the public parameters are implicitly provided to the parties to avoid
notation overloading. We denote an additively homomorphic commitment scheme over G and Zq as ComG
and Comq respectively. We show to instantiate such a commitment scheme from discrete log and DDH
assumptions below.

Pedersen Commitment Scheme. Given generators g, h ∈ G, the committer commits to a field element m ∈ Zq
by sampling randomness r ← Zq and sets c = gmhr. Decommitment to message m is r. It is perfectly hiding,
computationally binding due to the Discrete Log assumption and satisfies additive homomorphism in a
straightforward manner.

Elgamal Commitment Scheme. We present a version [CGPS21] of Elgamal commitment scheme without
setup as follows. Given a generator g ∈ G, the committer commits to a group element m ∈ G by sampling
randomness x, r ← Zq and sets c = (c1, c2, c3) = (gx, gr,m · grx). The tuple (x, r) serves as the decommit-
ment information. It is perfectly binding and computationally hiding due to the DDH assumption. Given a
commitment c to m it can be rerandomized to a commitment ĉ to m̂ = m · m̃ as follows: Sample x̃, r̃ ←R Zq,
compute ĉ = (ĉ1, ĉ2, ĉ3) = (c1 · gx̃, c2 · gr̃, c3 · m̃ · cr̃1 · cx̃2 · gx̃r̃).
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3.2 Cryptographic Reverse Firewalls

In this section we recall the basic definitions of reverse firewalls following [MS15, CDN20, CGPS21]. We
focus on the setting of two parties.

Notation. Let Π denote a ℓ-round two-party protocol, for some arbitrary polynomial ℓ(·) in the security
parameter κ. For a party P and reverse firewall RF we define RF ◦ P as the “composed” party in which the
incoming and outgoing messages of A are “sanitized” by RF. The firewall RF is a stateful algorithm that is
only allowed to see the public parameters of the system, and does not get to see the inputs and outputs of
the party P . We denote the tampered implementation of a party P by P . We write ΠRF◦P (resp. ΠP ) to
represent the protocol Π in which the role of a party P is replaced by the composed party RF ◦P (resp. the
tampered implementation P ). We now define the properties that a reverse firewall must satisfy.

Definition 4 (Functionality maintaining). For any reverse firewall RF and a party P , let RF1 ◦ P =
RF ◦ P , and RFk ◦ P = RF ◦ · · · ◦ RF︸ ︷︷ ︸

k times

◦P . For a protocol Π that satisfies some functionality requirements

F , we say that a reverse firewall RF maintains functionality F for a party P in protocol Π if ΠRFk◦P also
satisfies F , for any polynomially bounded k ≥ 1.

Definition 5 (Security preservation). A reverse firewall strongly preserves security S for party P in
protocol Π if protocol Π satisfies S, and for any polynomial-time algorithm P , the protocol ΠRF◦P satisfies
S. (i.e., the firewall can guarantee security even when an adversary has tampered with party P .)

A reverse firewall preserves security S for party P in protocol Π if protocol Π satisfies S, and for any
polynomial-time algorithm P such that ΠP satisfies F , the protocol ΠRF◦P satisfies S. (i.e., the firewall can
guarantee security even when an adversary has tampered with P , provided that the tampered implementation
does not break the functionality of the protocol.)

We now define exfiltration resistance, which intuitively asks the adversary to distinguish between a tampered
implementation P of party P from an honest implementation (via the reverse firewall). This prevents, for
e.g., for a tampered implementation P to leak the secrets of P .

Definition 6 (Exfiltration resistance). A reverse firewall is exfiltration resistant for party P1 against
party P2 in protocol Π satisfying functionality F if no PPT adversary AER with output circuits P1 and P2

such that ΠP1
and ΠP2

satisfies F has non-negligible advantage in the game LEAK(Π,P1, P2,RF, κ) (see
Fig.2). If P2 is empty, then we simply say that the firewall is exfiltration resistant.

A reverse firewall is strongly exfiltration resistant for party P1 against party P2 in protocol Π if no PPT
adversary AER has non-negligible advantage in the game LEAK(Π,P1, P2,RF, κ). If P2 is empty, then we
simply say that the firewall is strongly exfiltration resistant.

LEAK(Π,P1, P2,RF, κ)

(P1, P2, I)← AER(1
κ)

b
$←− {0, 1};

If b = 1, P ∗
1 ← RF1 ◦ P1

Else, P ∗
1 ← RF1 ◦ P1.

τ∗ ← ΠP∗
1 ,{P2→P2}(I).

b∗ ← AER(τ
∗, {stP2

}).
Output (b = b∗).

Fig. 2: LEAK(Π,P1, P2,RF, κ) is the exfiltration-resistance security game for a reverse firewall RF1 for party
P1 in the protocol Π against party P2 with input I. Here, AER is the adversary, stP2

denote the state of
party P2 after the run of the protocol, and τ∗ denote the transcript of the protocol ΠP∗

1 ,{P2→P2} with input

I.
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We recall the transparency property [CGPS21] that intuitively, requires that the behavior of RF ◦ P is
identical to the behavior of P if P is the honest implementation.

We will use the following result established in [CGPS21]. It basically states that exfiltration resistance implies
security preservation for protocols satisfying simulation-based definition of security.

Theorem 3 ([CGPS21] Exfiltration resistance implies Security preservation ). Let Π denote a
two-party protocol running between P1 and P2 that securely computes some function f with abort in pres-
ence of malicious adversaries in the simulation-based setting. Assume w.l.o.g, that P1 is honest (i.e., not
maliciously corrupted). Then if the reverse firewall RF1 is functionality-maintaining, (strongly/weakly) exfil-
tration resistant for P1 against P2, and transparent, then for all PPT adversaries A and all PPT tempering
P1 provided by A, the firewall RF1 (strongly/weakly) preserve security of the party P1 in the protocol Π
according to Definition 5.

We recall the definition of transparent firewalls from [CGPS21].

Definition 7 (Transparency). A reverse firewall is transparent for an honest party P1 against party P2

in protocol Π if no PPT adversary ATR has non-negligible advantage in the game TRANS(Π,P1, P2,RF1, κ)
(see Fig.3).

TRANS(Π,P1, P2,RF, κ)
I ← AER(1

κ)

b
$←− {0, 1};

If b = 1, P ∗
1 ← RF1 ◦ P1

Else, P ∗
1 ◦ P1.

τ∗ ← ΠP∗
1 ,P2(I).

b∗ ← ATR(τ
∗, {stP2}).

Output (b = b∗).

Fig. 3: TRANS(Π,P1, P2,RF, κ) is the transparency game for a reverse firewall RF1 for an honest party P1

in the protocol Π against party P2 with input I.

3.3 Zero Knowledge and Witness Indistinguishability

In this section we provide the supplementary material on interactive proofs, sigma protocols, witness indis-
tinguishability and zero knowledge.

Interactive Proofs. Let R ⊂ {0, 1}∗ × {0, 1}∗ be an NP relation, with associated language L, i.e. L =
{x : ∃w s.t. (x,w) ∈ R}. We often call x the statement or theorem, and w the corresponding witness.

An interactive proof system (IPS) for R is a pair of algorithms Π = (P,V) modeled as interactive PPT
Turing machines. The prover algorithm P takes as input a statement x ∈ L and a corresponding witness
w for x. The verifier algorithm V takes as input a statement x, and at the end of the protocol outputs a
decision bit indicating whether it is convinced that x ∈ L or not. We write P(x,w) ⇌ V(x) for the random
variable corresponding to the view of V in a run of Π on common input x to P,V, and auxiliary input w
to P; such view includes the protocol’s transcript τ ∈ {0, 1}∗ (consisting of all messages exchanged during
the protocol) and the internal coin tosses of the verifier. We also write ⟨P(x,w),V(x)⟩ to denote the random
variable corresponding to the decision bit of the verifier in such an execution. An IPS must satisfy the
following properties:

– Completeness. Let Π = (P,V) be an IPS for a relation R. We say that Π satisfies completeness if for all
(x,w) ∈ R the following holds:
Pr[⟨P(x,w),V(x)⟩ = 1] = 1.
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– Soundness. Let Π = (P,V) be an IPS for a relation R. We say that Π satisfies computational soundness
if for all x ̸∈ L and for all PPT malicious provers P∗ there exists a negligible function ν : N→ [0, 1] such
that

Pr[⟨P∗(x),V(x)⟩ = 1] ≤ ν(κ).

– Zero knowledge. Let Π = (P,V) be an IPS for a relation R. We say that Π satisfies computational (black-
box, auxiliary-input) zero knowledge if there exists a PPT simulator Sim such that for all (non-uniform)
PPT malicious verifiers V∗ the following holds:{

P(x,w) ⇌ V∗(x, z)
}
(x,w)∈R,z∈{0,1}∗

c
≈

{
SimV∗(x,z,·;·)(x)

}
x∈L,z∈{0,1}∗

,

where V∗(x, z, ·; ·) denotes the next-message function of the interactive Turing machine V∗ when the
common input x, and auxiliary input z are fixed.

Witness Indistinguishability (WI). The WI property intuitively says that for any statement x ∈ L
admitting multiple witnesses w0, w1, transcripts produced by having the honest prover use w0 and w1

should be computationally indistinguishable, even in case the verifier is malicious. The formal definition
follows.

Definition 8 (Witness indistinguishability). Let Π = (P,V) be an IPS for a relation R. We say that
Π satisfies computational (auxiliary-input) witness indistinguishability (WI) if for all (non-uniform) PPT
malicious verifiers V∗ the following holds:{

P(x,w0) ⇌ V∗(x, z)
}
(x,w0)∈R,z∈{0,1}∗

c
≈

{
P(x,w1) ⇌ V∗(x, z)

}
(x,w1)∈R,z∈{0,1}∗

.

In case the above two ensembles are identically distributed, we say that Π satisfies perfect WI.

Zero Knowledge functionality We present the ideal ZK functionality in Fig. 4.

FZK

On receiving (prove, sid, x, y) from P and (verify, sid, x′) from V, output (accept, x, sid) to V if x == x′ and
R(x, y) = 1, else output (reject, x, sid).

Fig. 4: The Zero-knowledge functionality

Sigma Protocols. Sigma protocols are special class of public-coin interactive proof systems Σ = (P,V)
consisting of 3 rounds. The prover speaks first generating a message a, followed by a challenge c ∈ {0, 1}ℓ
which is a uniform random string sent by the verifier and then followed by the response z from the prover. The
resulting transcript τ = (a, c, z) is said to be accepting w.r.t statement x if V(τ, x) = 1. Besides completeness,
Sigma protocols must satisfy the following properties:

– Special Soundness. Let Σ be a Sigma protocol for a relation R. We say that Σ satisfies special soundness
if there exists a polynomial-time algorithm called the extractor which when given x and two transcripts
τ = (a, c, z) and τ ′ = (a, c′, z′) that are accepting for x, with c ̸= c′, outputs a value w such that
(x,w) ∈ R.
This property is a strong form of soundness which, in fact, implies Sigma protocols are not only sound

but even proofs of knowledge.
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– Special honest-verifier zero knowledge. Let Σ be a Sigma protocol for a relation R. We say that Σ
satisfies computational (resp. perfect) special honest-verifier zero knowledge (SHVZK) if there exists a
PPT simulator taking as input x and c ∈ {0, 1}ℓ, and outputting an accepting transcript for x where c is
the challenge, such that the following holds: For all ℓ bit strings c, the distribution of the output of the
simulator on input (x, c) is computationally indistinguishable from (resp. identically distributed to) the
distribution of an honest transcript obtained when V sends c as challenge and P runs on common input
x and any private input w such that (x,w) ∈ R.

Moreover, for our purpose we require the underlying Sigma protocol to be a unique response protocol.

– Unique response. This states that, there exists no two transcripts τ = (a, c, z) and τ ′ = (a, c, z′) with
z ̸= z′ such that V(τ, x) = V(τ ′, x) = 1. In case that it is only computationally infeasible to find two
responses for given x, a, c, the protocol is said to have (computationally) unique responses.

Most known sigma protocols like knowledge of discrete log, DDH tuple, knowledge representation and
other instantiations that can be cast in Maurer’s unifying framework are known to be unique response
[GMV20].

4 Correlated OT Extension in the Firewall Setting

We describe our revised cOT extension protocol in Fig. 7 and the corresponding firewall can be found in
Fig. 8. High level overview can be found in Sec. 2.2. We show security of our protocol by proving Thm. 4.

Theorem 4. Assuming πrOT implements FrOT functionality, Com is a binding and hiding commitment
scheme, PRG is a pseudorandom generator and H is a collision resistant hash function, then πcOT implements
FcOT functionality against active corruption of parties in the FRO model.

Proof. We consider the case for a corrupt sender and the case for a corrupt receiver seperately as follows.

Simulation against a corrupt sender. The simulation algorithm is provided in Fig. 5 and argue indistin-
guishability between real and ideal world as follows.

– Hyb0 : Real world execution of the protocol.

– Hyb1 : Same as Hyb0, except the simulator invokes the simulator of πrOT to simulate the Seed OT phase.
Indistinguishability follows due to simulation based security of πrOT against a corrupt receiver.

– Hyb2 : Same as Hyb1, except the simulator performs the coin tossing according to the simulation algo-
rithm, i.e. by running the coin tossing protocol with input seed′R and then rewinding the corrupt sender
and sending a different seedR and aborts if the sender opens to a different share of the seed. An adversary
distinguishes between the two hybrids if the simulator aborts in Hyb2 but does not abort in Hyb1. This
occurs when both (seedS, δS) and (seed′S, δ

′
S) are valid openings of the commitment scheme; leading to an

adversary breaking binding property of the commitment scheme.

– Hyb3 : Same as Hyb2, except the simulator samples D randomly and computes v =
⊕

j∈[m+κ](χj ·Rj),
w using knowledge of Q and u = w ⊕ s · v. The simulator also programs the random oracle on coin.
Indistinguishability follows due to PRG security and hiding property of the commitment ccoin. The corrupt
sender does not possess ki,si and hence the distribution of PRG(ki,si) and D in Hyb2 is indistinguishable
from a random string in Hyb3. The simulator is able to successfully program the random oracle on coin
since the commitment ccoin hides an additive share, i.e. cR, of coin.

– Hyb4 : Same as Hyb3, except the simulator computes v and u according to simulation algorithm. This is
the ideal world execution of the protocol. (Rm+1, . . . ,Rm+κ) are chosen uniformly at random in Hyb3
and contains κ bits of entropy. (Rm+1, . . . ,Rm+κ) is hidden from the corrupt sender and as a result it
statistically hides r in v.
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Seed OT Phase:

1. The simulator invokes the simulator of πrOT to obtain the corrupt sender’s output from πrOT as (s,k′).

OT Extension Phase:

1. The simulated receiver performs the coin-tossing protocol honestly to obtain coin, commitment to coinR and the
decommitment δcoin.

2. The simulated receiver samples a random D1 ←R F(m+κ)×κ and commits to it as cD = Com(H(D); δD) using
randomness d and sends cD to S. The simulated receiver also programs the random oracle FRO on coin such that
D1 = FRO(sid, coin).

Consistency Check Phase:

1. The corrupt sender and the simulated receiver performs the coin tossing protocol as follows:
– The corrupt sender sends commitment cseed to the simulated receiver.
– The simulated receiver samples seed′R ←R {0, 1}κ and sends seed′R to S.
– The corrupt sender opens cseed by sending (seed′S, δ

′
seed) to the simulator.

– The simulator rewinds the sender and sends seedR ←R {0, 1}κ to the sender.
– After rewinding, the corrupt sender opens cseed by sending (seed′S, δ

′
seed) to the simulated receiver. If

(seed′S, δ
′
seed) ̸= (seedS, δseed) then the simulator aborts.

2. The simulator aborts if cseed ̸= Com(seedS; δseed). Else, the simulator computes challenge from the output of the
coin tossing protocol, as χ = {χ1, . . . , χm+κ} = PRG(seedS + seedR).

3. The simulator computes Q such that Qi =
(
si ⊙Di

)
⊕ PRG(k′i).

4. The simulator samples r ←R {0, 1}, α ←R F and sets v = α · (r, . . . , r) ∈ Fκ. The simulator computes w =⊕
j∈[m+κ](χj ·Qj) where χ = FRO(sid, seed). The simulator sets u = w⊕ s · v. The simulator sends (D, δD,u,v)

to the corrupt sender. The simulator also decommits to coinR by sending (coinR, δcoin) to the corrupt sender.

Output Phase:
The simulator invokes FcOT with the corrupt sender’s input as (s,Q).

Fig. 5: Simulation against a corrupt sender in πcOT

Simulation against a corrupt receiver. The simulation algorithm is provided in Fig. 6 and argue indistin-
guishability between real and ideal world as follows.

– Hyb0 : Real world execution of the protocol.

– Hyb1 : Same as Hyb0, except the simulator invokes the simulator of πrOT to obtain the corrupt receiver’s
output from πrOT as (k0,k1). Indistinguishability follows due to security of πrOT against a corrupt sender.

– Hyb2 : Same as Hyb1, except the simulator performs the first rewinding to the OT extension phase,
programs FRO such that it opens to a random D1 and the simulator aborts if the corrupt receiver opens
ccoin to two different openings (coin′′R, δ

′′
coin) ̸= (coin′R, δ

′
coin). Indistinguishability follows due to binding

of the commitment scheme for ccoin and D1 looks random (on the uniformly sampled unqueried point
coinrec

′′ ⊕ coinS) due to the random oracle assumption.

– Hyb3 : Same as Hyb2, except the simulator performs the second rewinding after the coin tossing protocol
and reruns the coin tossing protocol and aborts if the coin tossing outputs are same, i.e. (seed′S+seed′R) ==
(seedS + seedR). This occurs when the adversary breaks the hiding of the commitment scheme Com.

– Hyb4 : Same as Hyb3, except the simulator rewinds the receiver after the coin tossing protocol and
reruns the coin tossing protocol and aborts if the corrupt receiver opened cD to two different openings
(D′, δ′D) ̸= (D, δD) or opened ccoin to two different openings (coinR, δR) ̸= (coin′′R, δ

′′
R). This occurs when

either the adversary breaks the binding of the commitment scheme Com with openings (H(D′), δ′D) and
(H(D), δD), or it finds a collision in the hash function H such that H(D′) == H(D) for D ̸= D′, or it
breaks the binding property of ccoin with openings (coinR, δR) ̸= (coin′′R, δ

′′
R).
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Seed OT Phase:

1. The simulator invokes the simulator of πrOT to obtain the corrupt receiver’s output from πrOT as (k0,k1).

OT Extension Phase and Consistency Check:

1. The simulated sender runs the coin tossing protocol honestly to obtain ccoin from the corrupt receiver. It also
receives cD from the receiver.

2. The simulator runs the coin tossing honestly to generate cseed and seed′′.
3. The corrupt receiver sends (D′′, δ′′D, u′′, v′′) and (coin′′R, δ

′′
coin). The simulator aborts if ccoin ̸= Com(coin′′R; δ

′′
coin).

4. First Rewinding: The simulator rewinds the receiver to Step 1 of the OT extension phase and samples a different
coinS after obtaining cseed from R. The simulator samples a D1 ←R Fm+κ and programs the FRO such that
D1 = FRO(sid, coin

′′
R ⊕ coinS). The simulator sends coinS to the receiver as part of the coin tossing subprotocol.

The corrupt R sends cD to the sender.
5. The simulator runs the coin tossing protocol honestly with the corrupt receiver as follows:

– The simulator samples seed′S ←R {0, 1}κ and sends c′seed = Com(seed′S; δ
′
seed) to the corrupt receiver.

– The corrupt receiver sends seed′R to the simulated sender.
– The simulator opens c′seed by sending (seed′S, δ

′
seed) to the corrupt receiver.

6. The corrupt receiver sends (D′, δ′D, u′, v′) and (coin′R, δ
′
R) to S as the response. If (coin′R, δ

′
R) ̸= (coin′′R, δ

′′
R ) then

the simulator aborts.
7. Second Rewinding: The simulator rewinds the receiver to Step 1 of Consistency Check Phase and runs the coin-

tossing protocol with different randomness as follows:
– The simulator samples seedS ←R {0, 1}κ and sends cseed = Com(seedS; δseed) to the corrupt receiver.
– The corrupt receiver sends seedR to the simulated sender.
– The simulator opens cseed by sending (seedS, δseed) to the corrupt receiver.

8. The corrupt receiver sends (D, δD, u, v) and (coinR, δR) to S as the response.
9. Upon receiving the response, the simulator aborts if any of the following occurs:

– The coin tossing outputs are same - (seed′S + seed′R) == (seedS + seedR).
– The corrupt receiver opened cD to two different openings (D′, δ′D) ̸= (D, δD).
– The corrupt receiver opened ccoin to two different openings, i.e. (coinR, δR) ̸= (coin′′R, δ

′′
R ).

10. The simulator constructs matrix R column wise as follows for i ∈ [κ]:
– Computes Mi = PRG(ki,0).
– Computes Ri = Mi ⊕ PRG(ki,1)⊕Di.

11. The simulator denotes R columnwise as R = (R1, . . . ,Rκ). The simulator aborts if µ columns differ. Else, set r
as the column which matches with µ columns of R.

12. The simulator sets ind = (i1, i2, . . . , ic) as the set of columns of R which differ from r. It sets s′ = 0c. The
simulator invokes the FrOT functionality with input (Guess, sid, ind, s′). If FrOT aborts then the simulator also
aborts and returns the view of the dummy adversary as the ideal world adversary view. Else, if FrOT returns
(Undetected, sid) then the simulator proceeds with the simulation.

Output Phase:
The simulator invokes FcOT with the corrupt receiver’s input as (r,M).

Fig. 6: Simulation against a corrupt receiver in πcOT
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– Hyb5 : Same as Hyb4, except the simulator constructsM andRmatrix following the simulation algorithm.
The simulator samples s ←R {0, 1}κ and computes Q and w, honestly performs the consistency check
and the simulator aborts if µ columns of R differ. If abort has not occurred then the simulator parses
computes r as per simulation algorithm and invokes FcOT with r and M as the corrupt receiver’s input.
The adversary distinguishes between the two hybrids if it passes the consistency check and correctly
guesses µ bits of s. In such a case, Hyb5 results in an abort; whereas Hyb4 does not. This occurs with
2−µ negligible probability [Dia22] in the random oracle model since χ is ensured to be random on the
random chosen point seed. This is the ideal world execution of the protocol.

⊓⊔

– Private Inputs: R and S do not possess any private inputs.
– Primitives: Pseudorandom Generators PRG : {0, 1}κ → {0, 1}m+κ and FRO : {0, 1}κ → Fm+κ is a random oracle

functionality and Collision Resistant Hash function H : {0, 1}(m+κ)×κ → {0, 1}κ and Com : {0, 1}κ ← {0, 1}κ is
a string commitment scheme.

– Subprotocols: Subprotocol πrOT computes ℓ instance of random OT.

Seed OT Phase:

1. S and R participate in πrOT protocol (implementing the FrOT functionality) as receiver and sender respectively.
2. R receives (k0,k1) as output where kα = {ki,α}i∈[κ] and ki,α ∈ {0, 1}κ for α ∈ {0, 1}, i ∈ [κ].
3. S receives s ∈ {0, 1}κ and k′ where k′ = {k′i}i∈[κ] and k

′
i = ki,si for i ∈ [κ].

OT Extension Phase:

1. R and S perform a coin tossing protocol as follows:
– R samples coinR ←R {0, 1}κ and sends ccoin = Com(coinR; δcoin) to S.
– S obtains ccoin and samples coinS ←R {0, 1}κ and sends coinS to R.
– R computes coin = coinR ⊕ coinS.

2. R forms three (m+ κ)× κ matrices M, R and D in the following way:
– Sets Mi = PRG(ki,0) for i ∈ [κ].
– Sets D1 = FRO(sid, coin). Computes r′ = D1 ⊕M1 ⊕ PRG(k1,1).
– Parses r′ = r||τ where r ∈ {0, 1}m and τ ∈ {0, 1}κ.
– Sets Rj = (r′j , . . . , r

′
j) for j ∈ [m+ κ]. Clearly, Ri = r′ for i ∈ [κ].

– Set Di = Mi ⊕ PRG(ki,1)⊕Ri for i ∈ [κ].
R sets D = {Di}i∈[κ]. R commits to D as cD = Com(H(D); δD) using randomness d and sends cD to S.

Consistency Check Phase:

1. S and R performs a coin tossing protocol as follows:
– S samples seedS ←R {0, 1}κ and sends cseed = Com(seedS; δseed) to R.
– R obtains cseed and samples seedR ←R {0, 1}κ and sends seedR to S.
– S opens cseed by sending (seedS, δseed) to R and sets seed = seedS + seedR.

2. R aborts if cseed ̸= Com(seedS; δseed). Else R computes challenge from the output of the coin tossing protocol, as
χ = {χ1, . . . , χm+κ} = FRO(sid, seedS + seedR).

3. R computes u =
⊕

j∈(m+κ)(χj ·Mj) and v =
⊕

j∈(m+κ)(χj ·Rj). R sends (D, δD, u, v) to S as the response. R

also decommits ccoin to coinR by sending (coinR, δcoin).
4. On receiving D, S aborts if cD ̸= Com(H(D); δD) or ccoin ̸= Com(coinR; δcoin) or D1 ̸= FRO(coinR ⊕ coinS).

S forms (m + κ) × κ bit-matrix Q with the ith column of Q set as Qi =
(
si ⊙Di

)
⊕ PRG(k′i). Clearly, (i)

Qi =
(
Mi ⊕ (si ⊙Ri)

)
and (ii) Qj =

(
Mj ⊕ (s⊙Rj)

)
=

(
Mj ⊕ (s⊙ rj)

)
.

5. S constructs χ = FRO(sid, seed) and computes w =
⊕

j∈(m+κ)(χj ·Qj). S aborts if w ̸= u⊕ s · v.

Output Phase:
S sets (s,Q) as the output. R sets (r,M) as the output.

Fig. 7: Correlated OT Extension πcOT in the RF setting
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Com is an additively homomorphic commitment where Com(m1; r1) · Com(m2; r2) = Com(m1 +m2; r1 + r2).

Seed OT Phase:
RFcOT-S (resp. RFcOT-R) invokes the firewall RFrOT-R (resp. RFrOT-S) of base-OT receiver (resp. sender) for sanitising
the cOT-extension sender’s (resp. receiver’s) πrOT messages.

OT Extension Phase:

1. The firewall sanitizes the coin-tossing protocol as follows:
– Upon receiving ccoin from R the firewall samples ĉcoin = ccoin · Com(c̃oin; δ̃coin) where c̃oin ←R {0, 1}∗ and

δ̃coin ←R {0, 1}∗. The firewall sends ĉcoin to the sender.

– Upon receiving coinS from the sender, the firewall sends ĉoinS = coinS + c̃oin to the receiver.
2. Upon receiving cD from receiver, the firewall computes ĉD = cD · Com(0; δ̃D) where δ̃D ←R {0, 1}∗. The firewall

sends ĉD to the receiver.

Consistency Check Phase:

1. The firewall sanitizes the coin tossing protocol messages as follows:
– When S sends cseed, the firewall samples s̃eed and computes the sanitized commitment as ĉseed = cseed ·

Com(s̃eed; δ̃seed) where δ̃seed ←R {0, 1}∗. the firewall sends ĉseed to the receiver R.

– When R sends seedR, the firewall sends s̃eedR = seedR + s̃eed to the sender S.

– When S sends (seedS, δseed), the firewall sends (ŝeedS, δ̂seed) = (seedS + s̃eed, δseed + δ̃seed) to the receiver R.

2. When R sends (D, δD, u, v), the firewall computes δ̂D = δD + δ̃D and sends (D, δ̂D, u, v) to S. When R sends

(coinR, δcoin), the firewall sends (coinR + c̃oin, δcoin + δ̃coin) to the sender.

Fig. 8: Sender’s (resp. Receiver’s) Firewall RFcOT-S (resp. RFcOT-R) in πcOT

Theorem 5. Assuming Com is an additively homomorphic, binding and hiding commitment scheme, and
RFrOT-R provides exfiltration resistance for the receiver (of base OT) in πrOT then RFcOT-S (Fig. 8) provides
exfiltration resistance for a tampered sender of πcOT. Similarly if RFrOT-S provides exfiltration resistance for
the sender (of base OT) in πrOT then RFcOT-R (Fig. 8) provides exfiltration resistance for a tampered receiver
in πcOT.

Proof. We argue exfiltration resistance for each phase as follows:

– The RFrOT transcript provides ER to the sender and receiver due to ER of RFcOT-R and RFcOT-S respec-
tively.

– In the OT extension phase, the ĉcoin and ĉD provides ER due to homomorphism and hiding property of
the commitment scheme.

– In the consistency check phase if a receiver passes the consistency check the random oracle FRO(sid, coin),
PRG(k1,0) and PRG(k1,1) ensures that the first column of D is randomly distributed and as a result r′ is
random. Both parties generate the sanitized r′ as follows:

r′ = FRO(sid, coinR + coinS + c̃oin)⊕ PRG(k1,0)⊕ PRG(k1,1),

where k1,0 and k1,1 are outputs from the sanitized base OT protocols. ĉseed provides ER due to to
homomorphism and hiding property of the commitment scheme. The consistency check ensures that a
malformed D is detected. For example if the ith column of D is malformed such that Ri ̸= r then the
check detects and the honest and tampered party aborts when si == 1. When si == 0 the check fails
to detect it and the adversary is able to leak the ith bit of s. The honest sender does not abort following
the protocol and the tampered sender also doesn’t abort since it is functionality maintaining w.r.t FcOT

which enables adversary to guess c bits of s.
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⊓⊔
By composing Theorems 3, 5 and 4 we show that the firewalls RFcOT-R and RFcOT-S (Fig. 8) preserves the

security of the underlying protocol πcOT and that proves Thm. 1.

5 Implementing FrOT in the Firewall Setting

In this section we implement FrOT (Fig. 9) for base OT protocol. Our protocol πrOT can be found in Fig. 10
and 11. Detailed overview can be found in Sec. 2.3. We show simulation based security of πrOT by proving
Thm. 6. We implement the ZK protocol in Fig. 16 and WI protocol in Fig. 19 in Sec. 6.

Functionality FrOT

Upon receiving (Initiate, sid, ℓ) from sender S and a receiver R, the functionality FrOT interacts as follows:

– If S is corrupted receive (a0,a1) ∈ {0, 1}ℓ×κ from the sender. Else, sample ai,0, ai,1 ←R {0, 1}κ for i ∈ [ℓ] and set
(a0,a1) = {ai,0, ai,1}i∈[ℓ].

– If R is corrupted then receive b ∈ {0, 1}ℓ and a′ ∈ {0, 1}ℓ×κ from the receiver, and set ai,bi = a′i for i ∈ [ℓ]. Else,
sample b←R {0, 1}ℓ.

– Denote b = {bi}i∈[ℓ]. Set a
′ = {a′i}i∈[ℓ] where a

′
i = ai,bi for i ∈ [ℓ].

Send (sent, sid, (b,a′)) to R and (sent, sid, (a0,a1)) to S and store (sen, sid, ℓ, (b,a0,a1)) in memory. Ignore future
messages with the same sid.

Fig. 9: The ideal functionality FrOT for Oblivious Transfer with random inputs

Theorem 6. Assuming ComG and Comq be computationally binding and hiding commitment schemes where
they are rerandomizable and additively homomorphic for message spaces over G and Zq elements respectively,
πDL
ZK implement FZK functionality for the Discrete Log relation RDL, π

OR
WI be a protocol for Witness Indistin-

guishability with proof of knowledge for the relation ROR and DDH assumption holds in group G, then πrOT

implements FrOT against active corruption of parties.

Proof. We consider the case for a corrupt sender and the case for a corrupt receiver seperately as follows.

Simulation against a corrupt sender. The simulation algorithm is provided in Fig. 12 and argue indistin-
guishability between real and ideal world as follows.

– Hyb0 : Real world execution of the protocol.

– Hyb1 : Same as Hyb0, except the simulator invokes the simulator of πDL
ZK to either correctly extract

sender’s witness q or abort the protocol if extraction fails. Indistinguishability follows from simulation
based security against a corrupt prover of πDL

ZK. Proof of knowledge property of πDL
ZK ensures the existence

of a witness extractor if the proof is accepting.

– Hyb2 : Same as Hyb1, except the simulator samples ski,0 ←R Zq, computes pki,0 = gski,0 and runs the ith

πOR
WI protocol with witness (ski,0, 0) for i ∈ [ℓ]. Indistinguishability follows from the WI property of πOR

WI .
The simulator also computes ski,1 = q−ski,0 and the honestly sampled and the simulated public keys are
identically distributed in Step 4. This is the ideal world execution of the protocol. The simulated receiver
correctly extracts the sender’s inputs as (k0,k1) and invokes FrOT functionality with the extracted inputs,
following the simulation algorithm.

Simulation against a corrupt receiver. The simulation algorithm is provided in Fig. 13 and argue indistin-
guishability between real and ideal world as follows.

– Hyb0 : Real world execution of the protocol.
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ComG and Comq are commitments for group elements and field elements respectively. πDL
ZK is a ZK proof for the

statement (x,G,Zq) corresponding to relation RDL = (∃w ∈ Zq : x = gw). πOR
WI is a WI proof for the statement

(x0, x1,G,Zq) corresponding to relation ROR = (∃w ∈ Zq, b ∈ {0, 1} : x0 = gw ∨ x1 = gw).

1. Receiver’s Coin-tossing for Parameters: The receiver samples QR ←R G and sends T = ComG(QR; t) to the
sender.

2. Sender’s Coin-tossing for Parameters and Receiver’s Public Key: The sender samples q ←R Zq and
computes QS = gq. For i ∈ [ℓ] the sender performs the following:
– The sender samples pi ←R Zq to rerandomize the receiver public key.
– The sender computes cSi = Comq(pi; d

S
i ).

The sender sends (QS,C
S) to the receiver, where CS = {cSi}i∈[ℓ].

3. Sender’s Zero-Knowledge Proof for Parameters: The sender and the receiver run πDL
ZK protocol where

sender is the prover for the statement (QS,G,Zq) corresponding to witness q.
4. Receiver’s generates Public Keys and Performs Coin-tossing for Sender’s OT message: The receiver

computes Q = QR ·QS. The receiver samples random choice bits b←R {0, 1}ℓ. For i ∈ [ℓ] the receiver performs
the following:
– The receiver samples ski ←R Zq and computes pki,b = gski .

– The receiver computes pki,b =
Q

pki,b
.

– The receiver samples shares for sender’s OT randomness vi,0, vi,1 ←R Zq.
– The receiver commits to the shares as cRi,0 = Comq(vi,0; d

R
i,0) and c

R
i,1 = Comq(vi,1; d

R
i,1).

The receiver decommits to T by sending (QR, t). The receiver also sends the commitments - (CR
0 ,C

R
1) where

CR
0 = {cRi,0}i∈[ℓ] and CR

1 = {cRi,1}i∈[ℓ] and the public keys {pki,0}i∈[ℓ].

5. Receiver’s WI Proof for Secret Keys: For i ∈ [ℓ], the receiver and the sender parallely run πOR
WI protocol

where receiver is the prover for the statement {pki,0, pki,1,G,Zq}i∈[ℓ] corresponding to witness {ski, bi}i∈[ℓ].
6. Sender generates OT message, Rerandomizes and Permutes Receiver’s Public Keys: The sender

aborts if T ̸= ComG(QR; t) else it sets Q = QS · QR. The sender samples random choice bit permutation ρ ←R

{0, 1}ℓ. For i ∈ [ℓ] the sender performs the following:
– The sender computes pki,1 = Q

pki,0
.

– The sender samples ri,0, ri,1 ←R Zq.
– The sender computes Ri,0 = gri,0 and Ri,1 = gri,1 .

The sender sends (ρ, {Ri,0, Ri,1, pi, d
S
i}i∈[ℓ]) to the receiver.

7. Receiver Rerandomizes Sender’s OT message and Computes Output: The receiver sets the random
choice bit string as s = b⊕ ρ. For i ∈ [ℓ], the receiver performs the following:
– The receiver aborts if cSi ̸= Comq(pi; d

S
i ).

– The receiver sets pi,0 = pi and pi,1 = −pi.
– The receiver updates ski = ski + pi,bi and computes k′i = (Ri,si · gvi,si )ski .

The receiver outputs (s,k′) where k′ = {k′i}i∈[ℓ]. The receiver decommits (CR
0 ,C

R
1) by sending

{vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] to sender.

Fig. 10: Protocol πrOT implementing FrOT

8. Sender Computes Rerandomized Output: For i ∈ [ℓ] the sender computes the following:
– For β ∈ {0, 1} : The sender aborts if cRi,β ̸= Comq(vi,β ; d

R
i,β).

– Sets pi,0 = pi and pi,1 = −pi.
– The sender computes ki,0 and ki,1 based on ρi by considering the following two cases:
• If (ρi == 0): the sender computes the output messages ki,0 = (pki,0 · gpi,0)ri,0+vi,0 and ki,1 = (pki,1 ·
gpi,1)ri,1+vi,1 .

• If (ρi == 1): the sender computes the output messages ki,0 = (pki,1 · gpi,1)ri,0+vi,0 and ki,1 = (pki,0 ·
gpi,0)ri,1+vi,1 .

More generally, the sender computes ki,0 = (pki,ρi · g
pi,ρi )ri,0+vi,0 and ki,1 = (pki,ρi · g

pi,ρi )ri,1+vi,1 .
The sender sets (k0,k1) = {ki,0, ki,1}i∈[ℓ] as the output.

Fig. 11: Protocol πrOT implementing FrOT
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1. Receiver’s Coin-tossing for Parameters: The simulator samples QR ←R G and sends T = ComG(QR; t) to
the sender.

2. Sender’s Coin-tossing for Parameters and Receiver’s Public Key: The sender sends (QS,C
S), where

CS = {cSi}i∈[ℓ], to the simulated receiver.

3. Sender’s Zero-Knowledge Proof for Parameters: The sender and the simulated receiver run πDL
ZK protocol

where sender is the prover for the statement (QS,G,Zq). The simulator invokes the simulator for πDL
ZK to extract

the witness q. The simulator aborts if it fails to obtain a correct witness.

4. Receiver’s generates Public Keys and Performs Coin-tossing for Sender’s OT message: The simulator
computes Q = QR ·QS. The simulator samples b = {0, 1}ℓ. For i ∈ [ℓ] the simulator performs the following:
– The simulator samples ski,0 ←R Zq and computes pki,0 = gski,0 .

– The simulator sets ski,1 = q − ski,0 and computes pki,1 = Q
pki,0

.

– The simulator samples shares for sender’s OT randomness vi,0, vi,1 ←R Zq.
– The simulator commits to the shares as cRi,0 = Comq(vi,0; d

R
i,0) and c

R
i,1 = Comq(vi,1; d

R
i,1).

The simulator decommits to T by sending (QR, t). The simulator also sends the commitments - (CR
0 ,C

R
1) where

CR
0 = {cRi,0}i∈[ℓ] and CR

1 = {cRi,1}i∈[ℓ] and the public keys {pki,0}i∈[ℓ].

5. Receiver’s WI Proof for Secret Keys: For i ∈ [ℓ], the simulated receiver and the sender parallely run
πOR
WI protocol where receiver is the prover for the statement {pki,0, pki,1,G,Zq}i∈[ℓ] corresponding to witness
{ski,0, 0}i∈[ℓ].

6. Sender generates OT message, Rerandomizes and Permutes Receiver’s Public Keys: The corrupt
sender sends (ρ, {Ri,0, Ri,1, pi, d

S
i}i∈[ℓ]) to the simulated receiver.

7. Receiver Rerandomizes Sender’s OT message and Computes Output: The simulator sets the random
choice bit string as s = b⊕ ρ. For i ∈ [ℓ], the simulator performs the following:
– The simulator aborts if cSi ̸= Comq(pi; d

S
i ).

– The simulator sets pi,0 = pi and pi,1 = −pi.
– The simulator updates ski,0 = ski,ρi + pi,ρi and ski,1 = ski,ρi + pi,ρi .
– The simulator computes ki,0 = (Ri,0 · gvi,0)ski,0 and ki,1 = (Ri,1 · gvi,1)ski,1 .

The simulator sets (k0,k1) = {ki,0, ki,1}i∈[ℓ] and invokes FrOT with input (Initiate, sid, ℓ) and corrupt sender
inputs - (k0,k1). The simulator decommits (CR

0 ,C
R
1) by sending {vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] to sender.

8. Sender Computes Rerandomized Output: The sender performs its own adversarial strategy.

Fig. 12: Simulation against a corrupt sender in πrOT
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1. Receiver’s Coin-tossing for Parameters: The receiver sends T = ComG(QR; t) to the sender.

2. Sender’s Coin-tossing for Parameters and Receiver’s Public Key: The simulator samples q ←R Zq and
computes QS = gq. For i ∈ [ℓ] the simulator performs the following:
– The simulator samples pi ←R Zq to rerandomize the receiver public keys.
– The simulator computes cSi = Comq(pi; d

S
i ).

The simulator sends (QS,C
S) to the receiver, where CS = {cSi}i∈[ℓ].

3. Sender’s Zero-Knowledge Proof for Parameters: The simulator invokes the ZK simulator of πDL
ZK to simulate

the proof for the statement (QS,G,Zq).

4. Receiver’s generates Public Keys and Performs Coin-tossing for Sender’s OT message: The receiver
decommits to T by sending (QR, t). The receiver also sends the commitments - (CR

0 ,C
R
1) where CR

0 = {cRi,0}i∈[ℓ]

and CR
1 = {cRi,1}i∈[ℓ] and the public keys {pki,0}i∈[ℓ].

5. Receiver’s WI Proof for Secret Keys: For i ∈ [ℓ], the receiver and the simulated sender parallely run πOR
WI

protocol where receiver is the prover for the statement {pki,0, pki,1,G,Zq}i∈[ℓ]. The simulator either extracts the
witness {ski, bi}i∈[ℓ] or it aborts if extraction fails for any statement.

6. Sender generates OT message, Rerandomizes and Permutes Receiver’s Public Keys: The simulator
aborts if T ̸= ComG(QR; t) else it sets Q = QS · QR. The simulator samples random choice bit permutation
ρ←R {0, 1}ℓ. For i ∈ [ℓ] the simulator performs the following:
– The simulator computes pki,1 = Q

pki,0
.

– The simulator samples ri,0, ri,1 ←R Zq.
– The simulator computes Ri,0 = gri,0 and Ri,1 = gri,1 .

The simulator sends (ρ, {Ri,0, Ri,1, pi, d
S
i}i∈[ℓ]) to the receiver.

7. Receiver Rerandomizes Sender’s OT message and Computes Output: The receiver decommits (CR
0 ,C

R
1)

by sending {vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] to the simulated sender.

8. Sender Computes Rerandomized Output: For i ∈ [ℓ] the simulator computes the following:
– For β ∈ {0, 1} : The simulator aborts if cRi,β ̸= Comq(vi,β ; d

R
i,β).

– Sets pi,0 = pi and pi,1 = −pi.
– If ρi == 0: the simulator computes the output messages ki,bi = (pki,bi · g

pi,bi )ri,bi+vi,bi and ki,bi ←R G.

– If ρi == 1: the simulator computes the output messages ki,bi = (pki,bi · g
pi,bi )

r
i,bi

+v
i,bi and ki,bi ←R G.

The simulator sets (k0,k1) = {ki,0, ki,1}i∈[ℓ] as the sender OT output. The simulator sets s = (bi ⊕ ρi)i∈[ℓ] and
and k′ = {k′i}i∈[ℓ] = {ki,si}i∈[ℓ]. The simulator invokes FrOT with input (Initiate, sid, ℓ) and corrupt receiver
inputs - (s,k′).

Fig. 13: Simulation against a corrupt receiver in πrOT
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– Hyb1 : Same as Hyb0, except the simulator invokes πZK the ZK simulator of πDL
ZK to simulate the proof

for the statement (QS,G,Zq). Indistinguishability follows from simulation based security of πDL
ZK against

a corrupt verifier. The zero knowledge property of πDL
ZK ensures this indistinguishability.

– Hyb2 : Same as Hyb1, except the simulator extracts the corrupt receiver’s witnesses - {ski, bi} for i ∈ [ℓ]
from the WI proofs. Indistinguishability follows from the proof of knowledge property of πOR

WI .

– Hyb3 : Same as Hyb2, except the simulator samples ki,bi ←R G randomly and constructs (k0,k1) following
the simulation algorithm. It invokes FrOT with corrupt receiver’s input as (s,k′). Indistinguishability
follows from the binding of T (i.e. ComG), binding of (cR0 , c

R
1 ) (i.e. Comq) and the DDH assumption.

A corrupt receiver distinguishing between an honestly constructed ki,si and a simulated ki,si ←R G is
either able to break the DDH assumption or able to bias the distribution by biasing the distribution
of Q or Ri,bi · g

vi,bi . Such an adversary can be used to break binding of the commitment schemes. The
reduction for the adversary of ComG runs the simulation algorithm against a corrupt receiver until step
4 to receive the opening (QR, t) corresponding to commitment T . Then it rewinds to Step 2 and reruns
the simulation algorithm with different randomness. If it obtains openings valid (Q′

R, t
′) ̸= (QR, t) for the

same commitment T then it returns the response - T, (QR, t), (Q
′
R, t

′), to the challenger (for the binding
game of ComG). We follow the same roadmap for constructing an adversary for the binding property of
Comq. The reduction for the adversary of Comq runs the simulation algorithm against a corrupt receiver
until step 8 to receive the opening (vi,β , d

R
i,β) corresponding to commitment cRi,β for β ∈ {0, 1}. Then it

rewinds to Step 2 and reruns the simulation algorithm with different randomness. If it obtains openings
valid (v′i,β , d

R
i,β

′
) ̸= (v′i,β , d

R
i,β

′
) corresponding to the same commitment cRi,β for β ∈ {0, 1} then it returns

the response - cRi,β , (v
′
i,β , d

R
i,β

′
) ̸= (v′i,β , d

R
i,β

′
)), to the challenger (for the binding game of Comq). Finally,

we construct an adversary for DDH given a distinguisher for the two hybrids. The DDH adversary receives
(g,X, Y, Z) as the DDH challenge. It simulates by rewinding step 4 such that Q = X. The reduction
extracts bi and sets Ri,bi = Y and sets ki,si =

Z
Y ski
· Y vi,bi . The DDH adversary returns whatever the

distinguisher outputs. If Z = Xy where y = gy then the receiver is in Hyb2, else it is in Hyb3. Hence, a
distinguisher for the hybrids can be successfully used to break the DDH assumption.

⊓⊔
We provide the reverse firewall RFrOT for protocol πrOT in in Appendix. ??. We show that the firewall

maintains functionality and provides ER for a tampered sender against a receiver and also provides ER for
a tampered receiver against a sender by proving Thm. 7.

Theorem 7. Assuming ComG and Comq be computationally binding and hiding commitment schemes where
they are rerandomizable and additively homomorphic for message spaces over G and Zq elements respectively,
RFZK and RFWI provides exfiltration resistance for the tampered parties in πDL

ZK and πOR
WI respectively, then

the above firewall RFrOT provides exfiltration resistance for a tampered sender against a receiver, and for a
tampered receiver against a sender.

Proof. The firewall RFrOT is presented as follows. It is same for the sender and the receiver and hence we
present only for one of them.

1. Upon receiving T , RFrOT samples q̃ ←R Zq and computes T̂ = T · ComG(g
q̃; t̃) where t̃←R {0, 1}∗. The

RFrOT sends T̂ to the sender.
2. Upon receiving (QS,C

S) from sender, the firewall sets Q̂S = QS · gq̃ For i ∈ [ℓ], RFrOT performs the
following for i ∈ [ℓ]:
– RFrOT samples p̃i to sanitize sender’s randomness pi.
– The firewall also samples a permutation bit αi ←R {0, 1}.
– The firewall sanitizes cSi as ĉSi based on αi as follows:

• (αi == 0) : Set ĉSi = cSi · Comq(p̃i; d̃Si ) where d̃
S
i ←R {0, 1}∗.

• (αi == 1) : Set ĉSi = Comq(−p̃i; d̃Si ) · (cSi )−1 where d̃Si ←R {0, 1}∗.
RFrOT sends (Q̂S, ĈS) where ĈS = {ĉSi }i∈[ℓ] to the receiver.

3. RFrOT invokes the firewall RFZK(q̃) (Fig. 17) for the ZK protocol to rerandomize the transcript of πDL
ZK.

25



4. Upon receiving (QR, t, (C
R
0 ,C

R
1 ), {pki,0}i∈[ℓ] from the receiver the firewall sets Q̂R = QR · gq̃, t̂ = t+ t̃ and

computes Q̂ = QS ·QR · gq̃. In addition the firewall performs the following for i ∈ [ℓ]:

– RFrOT samples ṽi,0, ṽi,1 ←R Zq. RFrOT computes ĉRi,0 = cRi,0 · Comq(ṽi,0; d̃Ri,0) and ĉRi,1 = cRi,1 ·
Comq(ṽi,1; d̃Ri,1) where d̃

R
i,0, d̃

R
i,1 ←R {0, 1}∗.

– Based on the permutation bit αi the firewall performs the following:

• (αi == 0) : Set p̂ki,0 = pki,0 · gp̃i .
• (αi == 1) : Set p̂ki,0 = pki,1 · gp̃i =

Q̂
pki,0
· gp̃i .

RFrOT sends (Q̂R, t̂, (ĈR
0 , Ĉ

R
1 ), {p̂ki,0}i∈[ℓ]) to the sender where ĈR

0 = {ĉRi,0}i∈[ℓ] and ĈR
1 = {ĉRi,1}i∈[ℓ].

5. For i ∈ [ℓ], RFrOT invokes the firewall RFWI((p̃i,−p̃i), αi) (Fig. 18) of the WI protocol for OR composition
to rerandomize the transcript of πOR

WI .
6. Upon receiving {ρi, Ri,0, Ri,1, pi, dSi , }i∈[ℓ] from the sender, the firewall performs the following for i ∈ [ℓ] :

– Set ρ̂i = ρi ⊕ αi.
– Set R̂i,0 = Ri,0 · gṽi,0 and R̂i,1 = Ri,1 · gṽi,1 .
– Based on permutation bit αi the firewall performs the following:

• (αi == 0) : Set p̂i = pi + p̃i and d̂Si = dSi + d̃Si .

• (αi == 1) : Set p̂i = −pi − p̃i and d̂Si = d̃Si − dSi .
The firewall sends {ρ̂i, R̂i,0, R̂i,1, p̂i, d̂Si , }i∈[ℓ] to the receiver.

7. Upon receiving {vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] from the receiver, the firewall performs the following for i ∈ [ℓ]:
– Set v̂i,0 = vi,0 + ṽi,0 and v̂i,1 = vi,1 + ṽi,1.

– Set d̂Ri,0 = dRi,0 + d̃Ri,0 and d̂Ri,1 = dRi,1 + d̃Ri,1.

The firewall sends {v̂i,0, d̂Ri,0, v̂i,1, d̂Ri,1}i∈[ℓ] to the sender.

We show that RFrOT is correct and maintaining functionality of πrOT. The correctness of the firewall can

be verified for (αi == 0) and (αi == 1) such that k̂′i outputted by the receiver is same as k̂i,ŝi .

– (αi == 0, ρi == 0) : The sender outputs k̂i,0 = (pki,0·gpi+p̃i)ri,0+vi,0+ṽi,0 and k̂i,1 = (pki,1·g−(pi+p̃i))ri,1+vi,1+ṽi,1 .

The receiver outputs ŝi = bi and k̂′i = (Ri,ŝi · gvi,ŝi+ṽi,ŝi )sk+(−1)bi (pi+p̃i)).

– (αi == 0, ρi == 1) : The sender outputs k̂i,0 = (pki,1·gpi+p̃i)ri,0+vi,0+ṽi,0 and k̂i,1 = (pki,0·g−(pi+p̃i))ri,1+vi,1+ṽi,1 .

The receiver outputs ŝi = bi ⊕ 1 and k̂′i = (Ri,ŝi · gvi,ŝi+ṽi,ŝi )sk+(−1)bi+1(pi+p̃i)).

– (αi == 1, ρi == 0) : The sender outputs k̂i,0 = (pki,1·gpi+p̃i)ri,0+vi,0+ṽi,0 and k̂i,1 = (pki,0·g−(pi+p̃i))ri,1+vi,1+ṽi,1 .

The receiver outputs ŝi = bi ⊕ 1 and k̂′i = (Ri,ŝi · gvi,ŝi+ṽi,ŝi )sk+(−1)bi+1(pi+p̃i)).

– (αi == 1, ρi == 1) : The sender outputs k̂i,0 = (pki,0 · g−(pi+p̃i))ri,0+vi,0+ṽi,0 and k̂i,1 = (pki,1 ·
gpi+p̃i)ri,1+vi,1+ṽi,1 . The receiver outputs ŝi = bi and k̂′i = (Ri,ŝi · gvi,ŝi+ṽi,ŝi )sk+(−1)bi+1(pi+p̃i)).

We also demonstrate that RFrOT provides ER against tampering of the parties in πrOT by proving Thm.
7.

Proof. We argue ER for a party for each step of the protocol as follows. The same argument holds for both
parties.

1. T̂ is identically distributed to an honestly sampled T due to rerandomization property of ComG.

2. Q̂S is identically distributed to an honestly sampled QS due to gq̃. The sanitised commitments ĈS are
identically distributed to an honestly sampled commitments CS due to additive homomorphism of Comq.

3. Exfiltration resistance is achieved corresponding to the ZK protocol transcript of πDL
ZK due to RFZK.

4. (ĈR
0 , Ĉ

R
1 ) is identically distributed to honestly sampled (CR

0 ,C
R
1 ) due to additive homomorphism of Comq.

The distribution of (Q̂R, t̂, {p̂ki,0}i∈[ℓ]) is identical to honestly sampled (QR, t, {pki,0}i∈[ℓ]) due to gq̃, t̃
and {αi, p̃i}i∈[ℓ].
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5. Exfiltration resistance is achieved corresponding to the WI protocol transcript of πOR
WI due to RFWI.

6. {ρ̂i, R̂i,0, R̂i,1, p̂i, d̂Si , }i∈[ℓ] is identically distributed to an honestly generated {ρi, Ri,0, Ri,1, pi, dSi , }i∈[ℓ]

due to {αi, gṽi,0 , gṽi,1 , p̃i}i∈[ℓ] and additive homomorphism of Comq.

7. Upon receiving {vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] from the receiver, the firewall performs the following for i ∈ [ℓ]:
– Set v̂i,0 = vi,0 + ṽi,0 and v̂i,1 = vi,1 + ṽi,1.

– Set d̂Ri,0 = dRi,0 + d̃Ri,0 and d̂Ri,1 = dRi,1 + d̃Ri,1.

8. {v̂i,0, d̂Ri,0, v̂i,1, d̂Ri,1}i∈[ℓ] is identically distributed to {vi,0, dRi,0, vi,1, dRi,1}i∈[ℓ] due to {ṽi,0, ṽi,1}i∈[ℓ] and ad-
ditive homomorphism of Comq.

⊓⊔
⊓⊔

Cost. The protocol πrOT implements FrOT by producing ℓ random OT instances. Each random OT instance
communicates 13 group elements + 15 field elements + 1 bit, and performs 35 exponentiations.

6 Fully Malleable Sigma Protocols

We denote a Sigma protocol by Σ = (P,V), where P1 and P2 are algorithms that compute, respectively, the
prover’s first message a, and the prover’s last message (response) z. Moreover we require the Sigma protocol
to be “unique response”, i.e., it is infeasible to find two distinct valid responses for a given first message and
fixed challenge. Let A be the space of all possible prover’s first messages; membership in A can be tested
efficiently, so the V always outputs ⊥ when a ̸∈ A. Also, let C denote the challenge space of the verifier.

6.1 Malleability

The work of [GMV20] defines the notion of malleability. A Sigma protocol is malleable if the prover’s first
message a can be randomized into â that is distributed identically to the first message of an honest prover. In
addition, for any challenge c, given the coins used to randomize a and any response z yielding an accepting
transcript τ = (a, c, z), a balanced response ẑ can be computed such that (â, c, ẑ) is also an accepting
transcript. In our constructions, we need a stronger notion of malleability: we will need to randomize the
instance in addition to the transcript.

The sigma protocol for discrete log is presented in Fig. 14. We demonstrate its malleability in Fig. 15.
We present the ZK protocol for discrete log in Fig. 16.

Prover(x,w) Verifier(x)

α←R Zq, a = gα

a−−−−−−−−−−→
c←R Zq

c←−−−−−−−−−−
z = α+ cw mod q

z−−−−−−−−−−→
gz

?
= axc

Fig. 14: Sigma protocol for proving knowledge of w such that x = gw

We now formally define our notion of fully malleable Sigma protocols.

Definition 9 (Fully Malleable Sigma protocol). Let Σ = (P1,P2,V) be a Sigma protocol for a relation
R. Σ is said to be fully malleable if there exists a tuple of polynomial-time algorithms (Maul,MaulCh,Bal)
specified as follows:
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Prover(x = gw, w) Verifier

a = gα

δ ←R Zq, ρ←R Zq, γ ←R Zq

(x,a)−−−−−−−−−−→ x̂ = x · gδ, â = a · gγ · x−ρ (x̂,â)−−−−−−−−−−→
c←R Zq

ĉ←−−−−−−−−−− ĉ = c+ ρ
c←−−−−−−−−−−

z = α+ ĉw
z−−−−−−−−−−→ ẑ = z + γ + cδ

ẑ−−−−−−−−−−→
gẑ

?
= â x̂c

Fig. 15: Fully Malleable Sigma protocol for discrete log

Prover(x,w) Verifier(x)

u←R G, k ←R Zq, v = uk
(u,v)−−−−−−−−−→

c←R Zq, d←R Zq

β = ucvd

β←−−−−−−−−−−
α←R Zq, a = gα

a−−−−−−−−−−→
c,d←−−−−−−−−−−−

If β = ucvd, then z = α+ cw
Else, z = ⊥

z,k−−−−−−−−−−−→
uk

?
= v, gz

?
= axc

Fig. 16: Sigma protocol πDL
ZK compiled to obtain full zero knowledge

(i) Maul is a probabilistic algorithm that takes as input an instance x, a ∈ A (recall that A is set of all
possible prover’s first messages), instance randomizer δ and outputs an instance x̂, and â ∈ A and state
σ ∈ {0, 1}∗;

(ii) MaulCh is a probabilistic algorithm that takes as input a challenge c and a randomizer ρ and returns a
modified challenge ĉ.

(iii) Bal is a deterministic algorithm that takes as input x, z, the state σ output by Maul, a challenge ĉ output
by MaulCh and returns a balanced response ẑ.

The following properties need to be satisfied.

– Uniformity. For all (x,w) ∈ R, and for all a ∈ A, x̂ is a uniformly distributed instance in L, and the
distribution of â is identical to that of P1(x̂, ŵ), where (x̂, â, σ) ←R Maul(x, a, δ) such that (x̂, ŵ) ∈ R.
Moreover, for all c ∈ C (recall that C denotes the challenge space) and uniformly random ρ←R Zq, ĉ is
uniformly distributed in C, where ĉ←R MaulCh(c; ρ)

– Malleability. For all x ∈ L, for all ρ←R Zq and for all τ = (a, ĉ, z) such that V(x, (a, ĉ, z)) = 1, where
ĉ←R MaulCh(c; ρ), the following holds :

Pr[V(x̂, (â, c, ẑ)) = 1 : (x̂, â, σ)← Maul(x, a, δ); ẑ = Bal(z, σ, c)] = 1,

where the probability is over the randomness of Maul and MaulCh.
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Lemma 1. The Sigma protocol in Fig 14 is fully malleable as per Definition 9. The construction is shown
in Fig 15.

Proof. We instantiate Maul, MaulCh and Bal algorithms for knowledge of discrete logarithm, where γ ←R Zq:

Maul(x, a, ρ, δ) = (x · gδ, a · gγ · x−ρ, (γ, δ)) MaulCh(c, ρ) = c+ ρ

Bal(z, (γ, δ), c) = z + γ + cδ

– Uniformity: For all (x,w), x = gw, for all α ∈ Zq, the distribution of â = a · gγ · x−ρ = gα · gγ · g−ρw over
the choice of γ ←R Zq is identical to the distribution of a = gα over the choice of α ∈ Zq. Moreover, for
all uniformly random ρ←R Zq, the value ĉ = c+ ρ is uniformly distributed in the challenge space.

– Malleability: For all x ∈ L, for all ρ ∈ Zq, and for all τ = (a, ĉ, z) such that gz = ax−ĉ, where ĉ = c+ ρ,
the following holds:

âx̂−c = agγx−ρx̂−c = agγx−c−ρg−δc = agγx−ĉg−δc = gzgγg−δc = gẑ

⊓⊔
We note that Maul and Bal easily generalize to the unifying Sigma protocol for proving knowledge of

preimage of a homomorphism [Mau09]. This generalization gives an RF for the unifying Sigma protocol,
even though we only need the protocol for knowledge of discrete logarithm in our applications.

In general, Sigma protocols are not full-fledged zero knowledge or zero-knowledge proof of knowledge
(ZKPoK) protocols. However, standard techniques [GK96] allow to compile a Sigma protocol into a zero
knowledge protocol. We recall the ZKPoK protocol πDL

ZK for the discrete logarithm problem in Fig. 16.
The RF for the ZK protocol is shown in Fig. 17 and we show that it provides exfiltration resistant for

the parties in πDL
ZK by proving Thm. 8.

Prover(x = gw, w) RFZK(δ) Verifier

(u,v)−−−−−−−−−→
t1 ←R Zq, t2 ←R Zq

û = ut1 , v̂ = vt2
(û,̂v)−−−−−−−−−→

β̂←−−−−−−−−−− ρ, ζ ←R Zq β̂ = βt−1
1 · uρ · vζ β←−−−−−−−−−−

(x,a)−−−−−−−−−−→
γ ←R Zq

(x̂, â, σ) = Maul(x, a, δ)
(x̂,â)−−−−−−−−−−→
(c,d)←−−−−−−−−−−

ĉ = MaulCh(c; ρ) = c+ ρ, d̂ = d · t2 · t−1
1 + ζ

(ĉ,d̂)←−−−−−−−−−−

z,k−−−−−−−−−−−→
ẑ = Bal(z, σ, c)

k̂ = k · t2 · t−1
1

ẑ,k̂−−−−−−−−−−−→
v̂

?
= ûk̂

gẑ
?
= â x̂c

Fig. 17: Reverse Firewall RFZK for ZK compiled Sigma protocol
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Theorem 8. Let Σ be a fully malleable unique-response Sigma protocol for R as in Def 9. The RF RFZK

in Fig. 17 is functionality-maintaining, weakly ZK preserving and exfiltration resistant for protocol πDL
ZK in

Fig 16.

Proof. Firstly, we note that the protocol in Fig 16 achieves zero-knowledge and proof of knowledge properties
[GK96] for discrete logarithm. At a high level, the value β is a Pedersen commitment to the challenge
c of the verifier (using randomness d). Since the commitment β is perfectly hiding, the prover gets no
information about c and d. The zero-knowledge proof of knowledge (ZKPoK) then follows from the special-
soundness property of the underlying Sigma protocol. In particular, the extractor obtains the trapdoor k
of the commitment scheme at the end of the protocol and hence can rewind the verifier to the point where
the challenge was sent. It then equivocates the commitment β to another challenge c′. At this point, the
extractor gets two accepting transcripts (a, c, z) and (a, c′, z′) and hence can extract the witness w (the
discrete logarithm corresponding to x).

It is straight-forward to see that the RF RFZK is functionality-maintaining. In particular, it follows
from the malleability of the Perdersen commitment and the full malleability property of the underlying
Sigma protocol. We now argue that RFZK provides exfiltration-resistance. By the result of [CGPS21], this
also implies (weak) security preservation, in particular weak ZK preservation. The entire transcript of our

protocol (Fig 17) is τ = (û, v̂, β̂, x̂, â, ĉ, d̂, ẑ, k̂). The prover receives the messages (β̂, ĉ, d̂) and the verifier

receives the messages (û, v̂, x̂, â, ẑ, k̂). To prove ER, we prove the following:

Lemma 2. The reverse firewall RFZK for the protocol shown in Fig 17 achieves exfiltration-resistance for
the verifier against the prover.

Proof. To prove ER for the verifier, we will need to show that the output distribution of an honest verifier V
(who follows the protocol honestly) is indistinguishable from the output of the tampered verifier (tampered

in a functionality-maintaining way) Ṽ composed with the RF RFZK, i.e., Ṽ ◦ RFZK.
The messages output by the verifier in the above protocol is the tuple (β, c, d). After post processing by

the RF RFZK the tuple is transformed into the tuple (β̂, ĉ, d̂), which is received the prover. The value β̂ is

uniformly random even if the commitment β is not uniform. This is because β̂ = βt
−1
1 ·uρ ·vζ = uc+ρvt2·t

−1
1 +ζ .

Since, the values t1, t2, ρ, ζ are sampled uniformly at random by RFZK from Zq, β̂ is also a uniformly random

group element, irrespective of β was chosen by Ṽ. Hence, the value β̂ is identically distributed to the value β
sampled by the honest verifier V. The value ĉ is also a uniformly random element in Zq. This follows from the

uniformity property of the algorithm MaulCh of the underlying Σ protocol. Finally, the value d̂ = d·t2 ·t−1
1 +ζ

is also a uniformly random element in Zq, irrespective of how d was chosen by the tampered verifier Ṽ. Hence,

the messages (β̂, ĉ, d̂) are distributed identically to the output (β, c, d) of the honest verifier V. ⊓⊔

Lemma 3. The reverse firewall RFZK for the protocol shown in Fig 17 achieves exfiltration-resistance for
the prover against the verifier.

Proof. To prove ER for the prover, we will need to show that the output distribution of an honest prover V
(who follows the protocol honestly) is indistinguishable from the output of the tampered prover (tampered

in a functionality-maintaining way) P̃ composed with the RF RFZK, i.e., P̃ ◦ RFZK.
The messages output by the prover in the above protocol is (u, v, x, a, z, k). After post processing by the

RF RFZK the tuple is transformed into the tuple (û, v̂, x̂, â, ẑ, k̂), which si received by the verifier. Recall
that, û = ut1 and v̂ = vt2 , where t1 and t2 are sampled independently and uniformly at random from Zq.
Hence, the values û and v̂ are uniformly random group elements, irrespective of how u and v were sampled
by the tampered prover P̃. This implies that the values û, v̂ are distributed identically as the values u, and v
sampled by the honest prover P. Further, the uniformity property of the algorithm Maul (corresponding to
the underlying Σ protocol) ensures that the instance x̂ is a uniformly distributed instance in the language
and â is identically distributed to the first message computed by an honest prover P (on input (x̂, ŵ) such
that (x̂, ŵ) ∈ R). Further, since our underlying Σ protocol is a unique response protocol, the value of ẑ is
determined by the message â. Since, the transcript (x̂, â, ẑ) is accepting, the value ẑ is distributed uniformly
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subject to the verification condition. Hence ẑ is identically distributed to z sent by an honest prover P.
Finally, it is easy to see that the value k̂ is uniformly distributed, irrespective of how k was sampled by the
tampered prover P̂. This is because k̂ = k · t2 · t−1

1 , and the values t2 and t−1
1 were sampled independently and

uniformly at random from Zq. Hence, we can conclude that the tuple (û, v̂, x̂, â, ẑ, k̂) is identically distributed
to the tuple (u, v, x, a, z, k) sent by an honest prover P in the protocol. ⊓⊔
The proof of Theorem 8 now follows from the proofs of Lemma 3 and Lemma 2 respectively. ⊓⊔

6.2 RF for OR Transform Sigma Protocol

OR Transform. Given x0, x1, a prover wishes to prove to a verifier that either x0 ∈ L0 or x1 ∈ L1 without
revealing which one is true. The OR relation is given by: ROR = {((x0, x1), w) : (x0, w) ∈ R0∨(x1, w) ∈ R1}.

Let Σ0 = ((P0
1,P

0
2),V

0) (resp. Σ1 = ((P1
1,P

1
2),V

1)) be a Sigma protocol for language L0 (resp. L1). Let
Sim0 (resp. Sim1) be the HVZK simulator for Σ0 (resp. Σ1). A Sigma protocol πOR

WI for the relation ROR was
constructed in [CDS94]. We describe the protocol πOR

WI in Fig. 19. πOR
WI satisfies perfect special HVZK and

perfect WI.

RF for OR Protocol. In order to construct an RF for the OR transform, we need to maul the prover’s first
message in such a way that the verifier’s challenge can be balanced in addition to the prover’s last message.
We note that [GMV20] considers an RF for the OR composition, however that definition and construction
does not suffice for our application since we need to randomize the instance as well. We show the RF for the
OR composition in Fig. 18 and demonstrate that it provides ER by proving Thm. 9.

Prover((x0, x1), w) Reverse Firewall((δ0, δ1), ψ ∈ {0, 1}) Verifier

(x0,x1,a0,a1)−−−−−−−−−−−→
ρ0, ρ1 ←R Zq

(x̂0, â0, σ0)←R Σ0 ·Maul0(x0, a0, ρ0, δ0)
(x̂1, â1, σ1)←R Σ1 ·Maul1(x1, a1, ρ1, δ1)

(x̂ψ,x̂1−ψ,â0,â1)−−−−−−−−−−−−−→
c←−−−−−−−

ρ = ρ0 + ρ1
ĉ = c− ρ

ĉ←−−−−−−−
(z0,z1,c0,c1)−−−−−−−−−−→

ĉ0 = Σ0 ·MaulCh0(c0; ρ0) = c0 + ρ0
ĉ1 = Σ1 ·MaulCh1(c1; ρ1) = c1 + ρ1

ẑ0 = Σ0 · Bal0(z0, σ0, ĉ0)
ẑ1 = Σ1 · Bal1(z1, σ1, ĉ1)

(ẑψ,ẑ1−ψ,ĉψ,ĉ1−ψ)
−−−−−−−−−−−−−−−→

c
?
= ĉ0 + ĉ1

Σ0 · V0(x̂0, (â0, ĉ0, ẑ0))
?
= 1

Σ1 · V1(x̂1, (â1, ĉ1, ẑ1))
?
= 1

Fig. 18: RFWI: RF for the OR composition of Sigma protocols, where (xb, w) ∈ Rb for b ∈ {0, 1}. The bit ψ
is an additional input to RFWI provided by a RF of an higher-level protocol (in our case the RF of our base
OT protocol)

We present the WI protocol for OR composition in Fig. 19 and the corresponding firewall can be found
in Fig. 18. We show that the firewall provides ER by proving Thm. 9.

Theorem 9. Let Σ0 and Σ1 be fully malleable unique-response Sigma protocols for R0 and R1 respectively.
The RF RFWI in Fig. 18 preserves completeness, is weakly HVZK/WI preserving and exfiltration resistant
for πOR

WI .
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Prover((x0, x1), w) Verifier(x0, x1)

ab = Pb
1(xb, w; a)

(a1−b, c1−b, z1−b)←R Sim1−b(x1−b)
(x0,x1,a0,a1)−−−−−−−−−−−−−−−−−−→

c←R Zq
c←−−−−−−−−−−−−

cb = c+ c1−b

zb = Pb
2(xb, w, cb, a)

(c0,c1,z0,z1)−−−−−−−−−−−−−−−→
c

?
= c0 + c1

V0(x0, (a0, c0, z0))
?
= 1

V1(x1, (a1, c1, z1))
?
= 1

Fig. 19: Protocol πOR
WI for OR composition of Sigma protocols, b ∈ {0, 1} is s.t. (xb, w) ∈ Rb.

Proof. To proof this theorem, it suffices to prove that the RF RFWI is exfiltration-resistant for both the
parties. Then, using the result of [CGPS21], this also implies (weak) security preservation, in particular
(weak) HVZK/WI preservation. To prove ER we prove the following:

Lemma 4. The reverse firewall RFWI for the protocol shown in Fig 18 achieves exfiltration-resistance for
the verifier against the prover.

Proof. The protocol of the protocol is τ = (x̂ψ, x̂1−ψ, â0, â1, ĉ, ẑψ, ẑ1−ψ, ĉψ, ĉ1−ψ). Let us the denote the
verifier and the prover of the above protocol ΣOR as VOR = (V0,V1) and POR =

(
P0 = ((P0

1,P
0
2)),P

1 =

(P1
1,P

1
2)
)
respectively. To prove ER for the verifier VOR, we will need to show that the output distribution

of the honest verifier VOR (who follows the protocol honestly) is indistinguishable from the output of the

tampered verifier ṼOR = (Ṽ
0
, Ṽ

1
) (tampered in a functionality-maintaining way) composed with the RF

RFWI, i.e., ṼOR ◦ RFWI.
The messages output by the verifier in the above protocol is the only message c. After post processing

by the RF RFZK the tuple is transformed into the tuple ĉ = c − ρ, which is received the prover POR. Here
ρ = (ρ0 + ρ1) is a uniform random element in Zq since both ρ0 and ρ1 are sampled uniformly at random
from Zq by RFWI. Hence, the challenge ĉ is distributed identically to the challenge c sampled by an honest

verifier ṼOR. ⊓⊔

Lemma 5. The reverse firewall RFWI for the protocol shown in Fig 18 achieves exfiltration-resistance for
the prover against the verifier.

Proof. To prove ER for the prover POR, we will need to show that the output distribution of the honest
prover POR (who follows the protocol honestly) is indistinguishable from the output of the tampered prover

P̃OR = (P̃
0
, P̃

1
) (tampered in a functionality-maintaining way) composed with the RF RFWI, i.e., P̃OR ◦RFWI.

The messages output by the prover in the above protocol is the tuple (x0, x1,
a0, a1, z0, z1, c0, c1). After post processing by the RF RFZK the tuple is transformed into the tuple (x̂ψ, x̂1−ψ,

â0, â1, ĉ, ẑψ, ẑ1−ψ, ĉψ, ĉ1−ψ), which is received by the verifier ṼOR. The uniformity property of the algorithms
Σ0 ·Maul0 and Σ1 ·Maul1 (corresponding to the underlying Sigma protocols Σ0 and Σ1 respectively) ensures
that x̂0 are x̂1 are uniformly distributed in the instance space respectively. Additionally, the uniformity
property also ensures that the commitments â0 and â1 are identically distributed to the first messages
computed by the provers P0 and P1. Moreover, since Σ0 and Σ1 are unique response Sigma protocols the
responses ẑ0 and ẑ1 are determined by â0 and â1 respectively. Since the transcripts (x̂0, â0, ẑ0) and (x̂1, â1, ẑ1)
are accepting, the values ẑ0 and ẑ1 are distributed uniformly at random subject to the verification conditions.
Finally, it is easy to see the challenges ĉ0(= c0 + ρ0) and ĉ1 = (= c1 + ρ1) are uniformly random challenges
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since the values ρ0 and ρ1 are sampled uniformly at random from Zq by RFWI. The bit ψ ∈ {0, 1} is a
uniformly random bit received by RFWI and it permutes the instances, responses and challenges according
to ψ. This bit ψ is given as input by the RF of our base OT protocol to RFWI. This bit is used to permute
the choice bit of the (tampered) receiver in the OT protocol to ensure that the choice bit is random. ⊓⊔
This completes our proof of Thm. 9. ⊓⊔

7 Quicksilver with Reverse Firewall

We present a variant of Quicksilver [YSWW21] in the firewall setting, πQS, in Fig. 20. It is in the FcOT model
and provides efficient interactive ZK for binary circuits. For a circuit with number of input wires n and the
number of multiplication gate t, the proof size is (n + t) bits in the FcOT model. Instantiating FcOT with
πcOT the concrete proof size of πQS is (n + t)κ + O(κ2) bits. The number of public key operations is O(κ)
and is independent of t. Detailed overview can be found in Fig. 2.5. Security of πQS is summarized in Thm.
10.

8 Quicksilver πQS in the Reverse Firewall Setting

We present the quicksilver protocol πQS in the reverse firewall setting in Fig. 20.

Theorem 10. Assuming H is a collision resistant hash function and Com is a computationally hiding and
binding commitment scheme then πQS implements FZK functionality in the FcOT model.

Proof Sketch. A corrupt prover breaks soundness of the protocol if it 1) breaks binding of cd, or 2) finds a
collision in H, or 3) breaks hiding of cseed, or it passes the batch verification phase for a circuit C such that
∀w, C(w) = 0. Breaking binding of cd or finding a collision in H allows the prover to open the commitment
to a different d′ after obtaining the challenge χ and hence passing the batch verification. Breaking hiding
of cseed allows the prover to fix the challenge to a particular value for which it passes the challenge. Finally,
assuming the above attacks fail the prover can still pass the batch verification checks if it correctly guesses
the entire ∆κ of the V. The functionality FcOT allows the prover to leak c bits of 2−c bits. However, it
successfully guesses the entire ∆ ∈ {0, 1}κ with 2−κ probability. Zero knowledge of the protocol follows from
the security for a receiver in πcOT. The pads (A∗

0, A
∗
1) perfectly hides the inputs of the prover and the ZK

simulator simulates the proof given corrupt verifier’s input ∆ to FcOT.

The Firewall Construction. We provide the firewalls in Fig. 21. Assuming FcOT is implemented by πcOT in
πQS, the firewall RFcOT-S for the sender in πcOT provides ER to the prover in the preprocessing phase of πQS.
Similarly, the firewall RFcOT-R for the receiver in πcOT provides ER to the verifier in the preprocessing phase.
The coin χ is rerandomized by the firewall to prevent any exfiltration through the coin-tossing. Similarly,
the commitments are also rerandomized to prevent exfiltration. Thm. 11 summarizes the RF security.

Theorem 11. Let πcOT implement FcOT in πQS. Assuming Com is an additively homomorphic, binding
and hiding commitment scheme, RFcOT-R provides exfiltration resistance for a tampered receiver in πrOT

and RFcOT-S provides exfiltration resistance for a tampered sender of πcOT then RFQS-P provides exfiltration
resistance for the prover in πQS and RFQS-V provides exfiltration resistance for the verifier in πQS respectively.

By composing Theorems 3, 10 and 11 we show that the firewalls RFQS-V and RFQS-P (Fig. 21) preserves
the security of the underlying protocol πQS thus proving Thm. 2.

Optimizations. Our protocol admits batching: the prover and verifier can run our protocol to verify m
different circuits (C1, C2, . . . , Cm) with parameters (ℓ1, ℓ2, . . . , ℓm) where ℓi denotes the number of input wires
and multiplication gates in Ci. The parties invoke FcOT with parameter ℓ = Σi∈[m]ℓi, the combined witness
w consists of the individual witnesses (w1,w2, . . . ,wm) and circuit C(w) = 1 when ∀i ∈ [m], Ci(wi) = 1. In
this batched setting, the number of public key operations for the base OTs gets amortized over m runs of
the ZK protocol.
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Inputs: The prover P and the verifier V hold a binary circuit C with t multiplication gates. Prover P also holds a
witness assignment of wire values w ∈ {0, 1}n+t such that C(w) = 1 and number of input wires |Iwire| is n.

Preprocessing phase:
The prover and verifier knows n and t.

1. P and V invoke FcOT with (Initiate, sid,b, ℓ) and (Initiate, sid, ℓ) respectively where ℓ = n + t + κ and b ←R

{0, 1}ℓ. FcOT returns (Q,∆) to the verifier and M to the prover respectively where Q,M ∈ {0, 1}ℓ×κ, ∆ ∈ {0, 1}κ
and Qi =Mi ⊕ bi ⊙∆ for i ∈ [ℓ].

2. The P computes pads (A∗
0, A

∗
1) ∈ {0, 1}κ for the batch verification as follows:

– Set A∗
0 = (Mn+t+1,1,Mn+t+2,2, . . .Mn+t+κ,κ) where Mi,j denotes the jth bit in the bitstring Mi ∈ {0, 1}κ.

– Set A∗
1 = (bn+t+1, bn+t+2, . . . , bℓ).

3. The V computes pad B∗ ∈ {0, 1}κ for the batch verification as follows. Set B∗ =
(Qn+t+1,1, Qn+t+2,2, . . . Qn+t+κ,κ) where Qi,j denotes the jth bit in the bitstring Qi ∈ {0, 1}κ.

Online phase:
Now the circuit and witness are known by the parties.

4. Input Wire Mapping: For i ∈ Iwire, P sets di := wi ⊕ bi ∈ {0, 1}.
5. Gate Computation: For each gate (α, β, γ, T ) ∈ C, in a topological order:

– If T = Add, then prover performs nothing.
– If T = Mult and this is the ith multiplication gate, the P sets di = wα · wβ ⊕ bi ∈ [n+ 1, n+ t].

P commits to d = {di}i∈[n+t] as cd = Com(H(d); δd). P sends cd to the verifier.
6. Batch Verification Challenge: P and V performs a coin tossing protocol as follows:

– V samples seedV ←R {0, 1}κ and sends cseed = Com(seedV; δseed) to P.
– P obtains cseed and samples seedP ←R {0, 1}κ and sends seedP to V.
– V opens cseed by sending (seedV, δseed) to P and sets seed = seedP ⊕ seedV.
– P aborts if cseed ̸= Com(seedS; δseed). Else, P computes challenge from the output of the coin tossing protocol,

as χ = seedS ⊕ seedR.
7. Batch Verification Response: For the ith (∈ [t]) multiplication gate denoted as (α, β, γ), P and V holds Qi and

Mi respectively such that (Qα =Mα ⊕ bα ⊙∆)(same for β and γ). The wire mapping is dα = wα ⊕ bα(same for
β and γ). P computes A0,i :=Mα ⊙Mβ ∈ {0, 1}κ and A1,i := wα ⊙Mβ ⊕ wβ ⊙Mα ⊙Mγ .
– For i ∈ [t], P computes A0,i :=Mα ⊙Mβ ∈ {0, 1}κ and A1,i := wα ⊙Mβ ⊕ wβ ⊙Mα ⊙Mγ .
– P computes U := (

⊕
i∈[t]A0,i)⊙ χ⊕A∗

0 and V := (
⊕

i∈[t]A1,i)⊙ χ⊕A∗
1. and sends (U, V ) to V.

The prover sends (d, δd, U, V ) to the verifier as the response.
8. Batch Verification: The verifier performs the following:

– Abort if cd ̸= Com(H(d); δd).
– For i ∈ [n+ t], set Ki = Qi ⊕ di ⊙∆.
– For the ith (∈ [t]) multiplication gate denoted as (α, β, γ), set Bi = Kα ·Kβ ⊕Kγ ⊙∆.
– Compute W =

⊕
i∈[t]Bi ⊕B∗. Abort if W ̸= U ⊕ V ⊙∆.

Fig. 20: Quicksilver protocol [YSWW21] πQS for boolean circuit satisfiability in the firewall setting
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Com is an additively homomorphic commitment scheme. RFcOT-R and RFcOT-S provides exfiltration resistance for a
tampered receiver and a tampered sender in πcOT.

Preprocessing phase:
The firewall for the prover invokes the firewall RFcOT-R (resp. RFcOT-S) to sanitize the transcript of πcOT for the prover
(resp. verifier).

Online phase:
Now the circuit and witness are known by the parties.

4. Input Wire Mapping: This step only includes local computation.
5. Gate Computation: Upon receiving cd from the prover the firewall computes ĉd = cd · Com(0; δ̃d) by sampling

δ̃d ←R {0, 1}κ. The firewall sends ĉd to the verifier.
6. Batch Verification Challenge: The steps of the coin tossing protocol are sanitised as follows:

– Upon receiving cseed from verifier the firewall computes ĉseed = cseed · Com(s̃eed; δ̃seed) by sampling s̃eed ←R

{0, 1}κ and δ̃seed ←R {0, 1}∗. The firewall sends ĉseed to the P.

– Upon receiving seedP from the prover the firewall sends ŝeedP = seedP ⊕ s̃eed to the V.
– Upon receiving (seedV, δseed) from the verifier, the firewall sends (seedV ⊕ ŝeed, δseed ⊕ δ̂seed) to the prover.

7. Batch Verification Response: Upon receiving (d, δd, U, V ) from the prover, the firewall sends (d, δd⊕ δ̃d, U, V ) to
the verifier as the response.

8. Batch Verification: This step only includes local computation.

Fig. 21: Reverse Firewalls RFQS-P (resp. RFQS-V) providing exfiltration resistance for a tampered prover
(resp. verifier) in πQS
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