
Privacy-Preserving Blueprints

Markulf Kohlweiss1, Anna Lysyanskaya2, and An Nguyen2

1 University of Edinburgh, markulf.kohlweiss(at)ed.ac.uk
2 Brown University, {anna lysyanskaya,an q nguyen}(at)brown.edu

Abstract. In a world where everyone uses anonymous credentials for
all access control needs, it is impossible to trace wrongdoers, by design.
This makes legitimate controls, such as tracing illicit trade and terror
suspects, impossible to carry out. Here, we propose a privacy-preserving
blueprint capability that allows an auditor to publish an encoding pkA
of the function f(x, ·) for a publicly known function f and a secret input
x. For example, x may be a secret watchlist, and f(x, y) may return y if
y ∈ x. On input her data y and the auditor’s pkA, a user can compute an
escrow Z such that anyone can verify that Z was computed correctly from
the user’s credential attributes, and moreover, the auditor can recover
f(x, y) from Z. Our contributions are:

– We define secure f -blueprint systems; our definition is designed to
provide a modular extension to anonymous credential systems.

– We show that secure f -blueprint systems can be constructed for all
functions f from fully homomorphic encryption and NIZK proof sys-
tems. This result is of theoretical interest but is not efficient enough
for practical use.

– We realize an optimal blueprint system under the DDH assumption
in the random-oracle model for the watchlist function.

1 Introduction

It is a reasonable concern that information technology might enable totalitarian
control and favor dystopian rather than utopian societies. Surprisingly, cryptog-
raphy offers powerful answers on how to strike a balance between privacy and ac-
countability. The study of anonymous credentials [23,43,15,42,16,17,2] has given
us general practical tools that make it possible to obtain and prove possession of
cryptographic credentials without revealing any additional information. In other
words, users can obtain credentials without revealing who they are, and then
prove possession of credentials in a way that is unlinkable to the session where
these credentials were obtained and to other sessions in which they were shown.

It has been shown that this can be done at a limited rate. For example,
N anonymous transactions total (also known as compact e-cash) [13], or N
anonymous showings a day (compact e-tokens) [12], or at most N anonymous
transactions with the same verifier (e-cash with money laundering control) [14]
are all possible. It has also been shown that anonymous credentials are compati-
ble with identity escrow [41,3]. This way, an appropriate authority can establish

2 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

the identity of the user later, as needed. Of course, in an identity escrow scheme,
the user is not in fact fully anonymous from such an authority. Such a system is
not trustworthy if there is a possibility that this authority can be malicious or
compromised.

In this paper, we extend the state-of-the-art on anonymous credentials by
adding a new desirable feature: that of a privacy-preserving blueprint-capability;
even a malicious authority cannot learn anything about a user other than what’s
revealed by comparing the blueprinted data with the user’s data.

Let us describe a motivating application: anonymous e-cash with a secret
watchlist. Consider standard anonymous e-cash [21,22,24,13]: we have a Bank
that issues e-coins (credentials), Users who withdraw and spend them, and Ven-
dors (or Verifiers) that verify e-coins and accept them as payment in exchange
for goods and services. Some small number of users are suspected of financial
crimes, and, unbeknownst to them, a judge has authorized that their transac-
tions be traced by a de-anonymization auditor, and placed them on a watchlist.
We need a mechanism that allows the auditor to trace the transactions of these
watchlisted users without violating the privacy of any other users, and also while
keeping the contents of the watchlist confidential.

A high-level definition of a privacy-preserving blueprint. In a privacy-preserving
blueprint scheme, we have three types of participants: the users, the verifiers,
and the de-anonymization auditor. On input x (for example, a watchlist), the
auditor outputs a blueprint pkA that the users and verifiers will need.

Next, the user and the verifier engage in an anonymous transaction; we don’t
actually care what else happens in this transaction; the user might be proving
to the verifier that they are authorized, or it may be an e-cash or an e-token
transaction. What we do care about is that, as a by-product of this transaction,
the user and the verifier have agreed on a cryptographic commitment C such
that (1) the user is in possession of the opening of C; and (2) the transaction
that just occurred guarantees that the opening of C contains user data y that
is relevant for the auditor’s needs. For example, imagine that x is a watchlist
consisting of names of individuals of interest, and y contains a user’s name; then
this user is of interest to the auditor if y ∈ x.

To enhance this anonymous transaction with privacy-preserving blueprint
capability, the user runs the algorithm Escrow to compute a value Z that is an
escrow of the opening of the commitment C; from Z, the auditor will be able to
recover the information relevant to him, and no other information about the user.
Specifically, in the watchlist scenario, the auditor will recover y if y ∈ x, but will
learn nothing about the user if y /∈ x. More generally, in an f -blueprint scheme,
the auditor will recover f(x, y) and no additional information. The verifier’s job
is to verify the escrow Z against C using VerEscrow and only let the transaction
go through if, indeed, it verifies.

It is important that even a malicious auditor cannot create a blueprint that
corresponds to an unauthorized input x. To capture this, we also require that
there is a publicly available cryptographic commitment CA. Outside of our pro-
tocol, we expect a mechanism for arriving at an acceptable (but secret) input x

Privacy-Preserving Blueprints 3

and the commitment CA to x. For example, a judge may publish a commitment
to a secret watchlist, and privately reveal the opening to the auditor; or several
authorities may be responsible for different components of a watchlist and the
auditor aggregates them together in a publicly verifiable fashion; or another dis-
tributed protocol can be agreed upon for arriving at the commitment CA such
that its opening (i.e., x) is known to the auditor. To ensure that only such an
authorized secret input x is blueprinted, a secure blueprint scheme must include
an algorithm VerPK that verifies that pkA indeed corresponds to the value to
which CA is a commitment.

Our security definition mandates that the following properties hold: (1)
correctness, so that honestly created blueprints and escrows pass VerPK and
VerEscrow, respectively, and the escrow Z correctly decrypts; (2) soundness of
VerEscrow that ensures that if, for a commitment C, escrow Z is accepted, then
it correctly decrypts to f(x, y) where x is the opening of CA and y is the open-
ing of C; (3) blueprint hiding, i.e., the blueprint pkA does not reveal anything
about x other than what the adversary can learn by forming valid escrows and
submitting them for decryption; (4) privacy against a dishonest auditor that
ensures that even if the auditor is malicious, an honest user’s escrow contains no
information beyond f(x, y), where x is the opening of CA and y is the opening of
C; and finally (5) privacy with an honest auditor that ensures that an adversary
who does not control the auditor learns nothing from the escrows.

We give a precise formal definition of an f -blueprint scheme in Section 3.

Our results. Our first result is a blueprint scheme specifically for watchlists;
more precisely, it is an fw-blueprint scheme for

fw(x, y) =

{
y if y = y1 ◦ y2 and y1 ∈ x

⊥ otherwise

where y2 denotes the last O(log λ) bits of y. This first scheme is secure in the
random-oracle model under the decisional Diffie-Hellman assumption. The size
of pkA is optimal at O(λn) where λ is the security parameter, which is linear
in the number of bits needed to represent a group element; and the watchlist x
consists of n elements of Zq, where q (log q = Θ(λ)) is the order of the group.
The size of the escrow Z is also O(λn).

Our second result is an f -blueprint scheme for any f from fully homomorphic
encryption (FHE) and non-interactive zero-knowledge proofs of knowledge.

Technical roadmap. We obtain both results above via the same general method:
by first defining (Section 3) and realizing (Sections 6 and 7) a homomorphic-
enough cryptosystem (HEC) for the function f . We can think of a homomorphic-
enough cryptosystem as a protocol between Alice and Bob that works as follows:
first, Alice uses the HECenc algorithm to encode her input x into a value X,
and she also obtains a decryption key d for future use; next, Bob uses HECeval
to compute an encryption Z of z = f(x, y) from Alice’s encoding X and his
input y. Finally, Alice runs HECdec to recover z from Z. To be useful for

4 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

our application, an HEC scheme must be correct even when the inputs to the
algorithms are chosen maliciously, and it also must ensure that X hides x, and
that X and Z together hide the inputs x and y. Additionally, it must allow for
an algorithm HECdirect that computes an encryption Z of z directly from
X and z = f(x, y), such that its output is indistinguishable from the output of
HECeval, even if Alice is malicious.

An HEC combined with an appropriate non-interactive zero-knowledge (NIZK)
proof system gives us a generic construction of an f -blueprint as follows. The
auditor obtains (X, d)← HECenc(x), and an NIZK proof πA that X was com-
puted correctly in a way that corresponds to the opening of CA; he sets the
blueprint as pkA = (X,πA). Verifying this blueprint amounts to just verifying
πA. To compute the escrow Z, the user first obtains Z ′ ← HECeval(X, y) and
then a proof πZ that Z ′ was computed correctly from X and the opening of C;
then set Z = (Z ′, πZ). Verifying the escrow amounts to verifying πZ . Finally, in
order to recover f(x, y) from the escrow Z, the auditor uses the decryption key
d to run HECdec(d, Z ′).

Given this roadmap, our theoretical construction that works for any f is
relatively straightforward: we show that HEC can be realized from circuit-private
fully homomorphic encryption [38,47,30] which, in turn, can be realized from
regular fully homomorphic encryption [38,9,8,39]. The circuit-privacy guarantee
ensures that Z hides Bob’s input y from a malicious Alice. Since here we don’t
aim for efficiency, general (inefficient) simulation-extractable NIZK PoK can
be used for the proofs here. This instantiation of our generic construction is
presented in Section 7.

Our practical construction for watchlists under the decision Diffie-Hellman
assumption is not as straightforward: first, it requires that we construct a prac-
tical homomorphic enough cryptosystem based on DDH, and next we need effi-
cient non-interactive zero-knowledge proof systems for computing and verifying
πA and πZ . Let us give a brief overview.

Our HEC construction uses ElGamal encryption [31,50] as a building block.
Suppose as part of setup we are given a group G of order q in which the de-
cisional Diffie-Hellman assumption holds. Let g be a generator of G. In order
to encode her input x = (a1, . . . , an), Alice’s HECenc algorithm first generates
an ElGamal key pair (pk, sk). She then picks a random a0 and computes the
coefficients c0, . . . , cn, cn+1 of the n+ 1-degree polynomial p(x) =

∏
(x− ai) for

which a0, a1, . . . , an are the n zeroes. The encoding X is an ElGamal encryp-
tions C0, . . . , Cn+1 of the values gc0 , · · · , gcn+1 under the ElGamal public key pk
X = (C0, . . . , Cn+1, pk), and d = sk.

Bob’s algorithm HECeval computes Z as follows: first, it parses y = y1 ◦
y2 (recall that y2 denotes the last O(log λ) bits of y). Then Bob obtains an
ElGamal encryption E of gp(y1) from the encrypted coefficients C0, . . . , Cn+1.
This is possible to do because the ElGamal cryptosystem is multiplicatively

homomorphic, thus E = C0C
y1

1 C
y2
1

2 . . . C
yn+1
1

n+1 is the desired ciphertext (for an
appropriate multiplication operation on ElGamal ciphertexts). Next, let F be
an encryption of gy; finally, Bob obtains the ciphertext Z = FEr, i.e., Bob uses

Privacy-Preserving Blueprints 5

E to mask the encryption of gy; if E is an encryption of 0, the mask won’t work
and Z will decrypt to gy.

This is reminiscent of the private set intersection construction of Freedman,
Nissim and Pinkas [34], but there is a subtle difference: the polynomial encoded
as part of X has an additional zero, a0, that is unknown to Bob even in the event
that he knows the rest of Alice’s input x. This ensures that in the event that
fw(x, y) = ⊥, Bob cannot set the randomness r in such a way that Z will decrypt
to a value of his choice; instead, it will decrypt to a random value. Conversely, to
prevent Alice from choosing a value a0 that will match with one of Bob’s values
y1 we require that the domains of a0 and y1 are disjoint.

Finally, HECdec(d, Z) decrypts the ElGamal ciphertext Z to some group
element u ∈ G, and for each ai ∈ x, and for all possible values for y2, checks
whether gai◦y2 = u. If it finds such a pair, it outputs it; else, it outputs ⊥.

Plugging in this HEC scheme in our generic construction gives us an efficient
blueprint scheme for watchlists as long as we can also find efficient instantiations
of the NIZK proof systems for computing the proofs πA and πZ . As was already
well-known [36,19,46], we can represent the statement that a given ElGamal
ciphertext encrypts ga such that a given Pedersen [49] commitment C is a com-
mitment to a as a statement about equality of discrete logarithm representations;
moreover, we can also represent statements about polynomial relationships be-
tween committed values (i.e., that Cp is a commitment to the value p(a1, . . . , aℓ)
where p is a polynomials, and commitments C1, . . . , Cℓ are to values a1, . . . , aℓ)
as statements about equality of representations. Using this fact, as well as the
fact that efficient NIZK proofs of knowledge and equality of discrete logarithm
representations in the random-oracle model are known [36,35,27], we can also
efficiently instantiate the NIZK proof system in the random-oracle model.

One subtlety in using these random-oracle-based proof systems, however, is
that in order to obtain a witness from an adversarial prover, generally such proof
systems require black-box access to the adversary and involve rewinding it. In
situations where the adversary expects to also issue queries to its challenger,
and a security experiment or reduction must extract the adversary’s witness in
order to answer them, using such proof systems runs into a nested rewinding
problem. In order to adapt these proof systems to our use, we formulate a new
flavor of NIZK proof of knowledge systems: black-box extractability with par-
tial straight-line (BB-PSL) extraction, and give an efficient NIZK BB-PLS PoK
proof system for equality of discrete-logarithm representations. This proof sys-
tem allows straight-line extraction (i.e. extraction from the proof itself, without
rewinding the adversary) of some function of the witness; this gives the security
reduction enough information to proceed. Although this approach is somewhat
folklore, we believe our rigorous formulation and instantiation in the random-
oracle model (Section 2.4) may be of independent interest.

How our scheme builds on the anonymous credentials literature. Note that, as
stated so far, neither the definitions nor the schemes concern themselves with
credentials. Instead, the user and the verifier agree on a commitment C to the
user’s relevant attribute y. Out of band, the user may have already convinced the

6 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

verifier that he has a credential from some third-party organization attesting that
y is meaningful. For example, if y is the user’s name, then the third-party organi-
zation might be the passport bureau. Indeed, this is how anonymous credentials
work in general [42,16,17,2], and therefore this modeling of the problem allows
us to add this feature to anonymous credentials in a modular way. Moreover,
our ElGama-based scheme is compatible with literature on anonymous creden-
tials [42,16,17,2] and compact e-cash and variants [13,14,12] because Pedersen
commitments are used everywhere.

Related work. Group signatures and identity escrow schemes [25,18,41,1,4] al-
low users to issue signatures anonymously on behalf of a group such that an
anonymity-revoking trustee can discover the identity of the signer. The differ-
ence between this scenario and what we are doing here is that in group signatures
the signer’s identity is always recoverable by the trustee, while here it is only
recoverable if it matches the watchlist.

Another related line of work specifically for blueprints for watchlists is private
set intersection (PSI) [34,20]. Although techniques from PSI are helpful here, in
general PSI is not a solution to our problem because it’s a two-party protocol
where both parties are online and each participant has their list in the clear.
Here, the Auditor who knows the watchlist x is offline at the time when the user
is forming the escrow.

Private searching on streaming data [48] allows an untrusted proxy to pro-
cess streaming data using encrypted keywords such that, should any of the data
match the encrypted keywords, it gets retained (in encrypted form, to be de-
crypted by the client), but otherwise it is not; the proxy does not learn anything
about the keywords of interest to the client. The data that’s either retained for
the client’s benefit or discarded does not come with any assurance that it was
correct. In contrast, in our scenario, the verifier and the auditor can both verify
that Z was computed correctly.

Abuse-resistant law enforcement access systems (ARLEAS) [40] address what
might be considered the encryption counterpart of our watchlist scenario. In
ARLEAS, a law enforcement agency with a valid warrant to secretly place a user
Alice under surveillance will be able to decrypt messages that are encrypted to
Alice’s public key, but not those encrypted to other users for whom surveillance
has not been authorized. Moreover, ARLEAS make it possible for an email server
to enforce compliance by verifying that an encrypted message indeed allows
lawful access by law enforcement; and (in a nutshell) all participants can verify
the validity of all warrants even though they are unable to tell who is under
surveillance. In our view, ARLEAS follows principles that are similar to ours:
finding a way to reconcile the need to monitor illegal activity with privacy needs
of the law-abiding public. Since ARLEAS concerns itself with encryption, while
we worry about privacy-preserving authentication, our technical contributions
are somewhat orthogonal.

Privacy-Preserving Blueprints 7

2 Preliminaries

We recall the properties of public key encryption (PKE), non-interactive com-
mitments and proof systems that we require for our construction.

2.1 PKE Security and ElGamal Encryption

Let KGen be an algorithm that, upon input security parameter 1λ, outputs an
ElGamal key pair pk = (g, y) and sk = (s) such that ⟨g⟩ = ⟨h⟩ = G and gs = y.
The encryption algorithm Enc encrypts a message m ∈ G by sampling r ←$ Zq

and computing the ciphertext c = (gr,myr). The decryption algorithm Dec
decrypts a ciphertext c = (a, b) ∈ G2 by computing ba−s. We use Enc(pk,m; r)
to specify the randomness used in the encryption.

ElGamal is secure against Chosen Plaintext Attacks under the decisional
Diffie-Hellman assumption. See Appendix A.1 for the definition of IND-CPA.

Let ⊕ : G2 × G2 → G2 be the operator for the homomorphic composition
of two ElGamal ciphertexts c1 = (a1, b1) ∈ G2, c2 = (a2, b2) ∈ G2 such that:
c1 ⊕ c2 := (a1 · a2, b1 · b2) where · is the composition rule on the group G. We
also write ca as shorthand for repeated composition of c with itself a times.

2.2 Commitment Security and Pedersen Commitments

Definition 1 (Statistically hiding non-interactive commitment). A pair
of algorithms (CSetup,Commit) constitute a statistically hiding non-interactive
commitment scheme for message space Mcpar and randomness space Rcpar if
they satisfy (1) statistical hiding, i.e., for any cpar output by CSetup(1λ), for
any m0,m1 ∈ Mcpar , the distributions D(cpar ,m0) and D(cpar ,m0) are sta-
tistically close, where D(cpar ,m) = {r ← Rcpar : Commitcpar (m; r); and (2)
computational binding, i.e. for any probabilistic poly-time adversary A, there
exists a negligible ν such that

Pr[cpar ← CSetup(1λ); (m0, r0,m1, r1) ← A(cpar) : Commitcpar (m0; r0) =
Commitcpar (m1; r1)] = ν(λ)

We will use the Pedersen commitment scheme which employs a cyclic group G
of prime order q. Let g, h1, h2, . . . , hn be generators of G and m1,m2, . . . ,mn ∈
Zn
q , then Commith1,h2,...,hn,g(m1,m2, . . . ,mn) samples r ←$ Zq and computes

gr
∏n

i=1 h
mi
i . This scheme is binding under the DL assumption in G. We write

Commith1,...,hn,g(m1, . . . ,mn; r) to specify the randomness for the commitment.

2.3 Non-interactive Zero Knowledge

Let R be a polynomial-time verifiable binary relation. For pair (x,w) ∈ R, we
refer to x as the statement and w as the witness. Let L = {x | ∃w : (x,w) ∈ R}.

A non-interactive proof system for R consists of a prover algorithm P and
verifier algorithm V both given access to a setup S. The setup can either be
a random oracle or a reference string—we show later how we abstract over the

8 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

differences in their interfaces. P takes as input a statement x and witness w, and
outputs a proof π if (x,w) ∈ R and failure otherwise. V takes as input (x, π)
and either outputs accept or reject.

Definition 2 (Simulation sound NIZK). Let S be the setup, and (P,V) be a
pair of algorithms with access to setup S. Φ = (S,P,V) is a simulation-sound
(optionally extractable) non-interactive zero-knowledge proof system for relation
R ⊆ X × Y if it has the following properties:

Completeness: For all (x,w) ∈ R, Pr
[
π ← PS(x,w) : VS(x, π) = reject

]
= 0.

S is a stateful oracle that captures both the common-random-string setting and
the random-oracle setting. In the random-oracle setting, S responds to a query
m by sampling a random string h of appropriate length ℓ (clear from context).
In the common-reference-string (CRS) setup, it samples a reference string on
the first invocation, and from then onward returns the same reference string to
all callers.

Zero-knowledge: The zero-knowledge property requires that no adversary can
distinguish the real game in which the setup is generated honestly and an honest
prover computes proofs using the correct algorithm P, from the simulated game
in which the proofs are computed by a simulator that does not take witnesses as
inputs (and the setup is also generated by the simulator). More formally, there
exist probabilistic polynomial time (PPT) simulator algorithms (SimS,Sim) such
that, for any PPT adversary A interacting in the experiment in Figure 2.1, the
advantage function ν(λ) defined below is negligible:

AdvNIZKA (λ) =
∣∣∣Pr[NIZKA,0(1λ) = 0

]
− Pr

[
NIZKA,1(1λ) = 0

]∣∣∣ = ν(λ)

NIZKA,0(1λ)

1 : return AS(·),PS(·,·)(1λ)

NIZKA,1(1λ)

1 : return AOS,OP(·,·)(1λ)

OS(m)

1 : state, h, τExt ← SimS(state,m)

2 : return h

OP(x,w)

1 : if (x,w) /∈ R : return failure

2 : state, π ← Sim(state,x)

3 : return π

Fig. 2.1: NIZK game

SimS shares state with Sim modeling both RO programming and CRS trapdoors.
Additionally there are extraction trapdoors τExt that are only used to define
simulation extractability.

Privacy-Preserving Blueprints 9

Simulation Soundness A proof system is sound if no adversary can fool a
verifier into accepting a proof of a false statement. It is simulation sound if the
adversary cannot do so even given oracle access to the simulator — of course in
that case the adversary is prohibited from outputting statement-proof pairs for
which the proof was obtained from the simulator.

Let Φ = (S,P,V) be an NIZK proof system satisfying the zero-knowledge
property above; let (SimS,Sim) be the simulator. Φ provides simulation sound-
ness if for any PPT adversary A participating in the game defined in Figure 2.2,
the advantage function ν(λ) defined below is negligible. In Figure 2.2, Q denotes
the query tape that records the instances x for which A has obtained proofs π
via oracle access to the simulator Sim; this is explicitly recorded by OSim.

AdvNISimSound
A (λ) = Pr

[
NISimSoundA(1λ) = 1

]
= ν(λ)

for some negligible function ν.

NISimSoundA(1λ)

1 : Q ← []

2 : (x, π)← AOS(·),OSim(·)(1λ)

3 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧ ∀w.(x,w) ̸∈ R

OS(m)

1 : state, h, τExt ← SimS(state,m)

2 : return h

OSim(x)

1 : state, π ← Sim(state,x)

2 : Q.add((x, π))
3 : return π

Fig. 2.2: NISimSound game

Soundness and Extractability We omit a formal definition of soundness and
extractability here; in order to obtain it, it is sufficient to remove oracle access
to OSim in the simulation soundness definition and the simulation extractability
definitions below.

2.4 NIZK Proof of Knowledge

Simulation Extractability A proof system is extractable (also often called a
proof of knowledge, or PoK for short) if there exists a polynomial-time extractor
algorithm that, on input a proof π for a statement x that passes verification,
outputs the witness w for x. In order to reconcile extractability with the zero-
knowledge property, it is important that the extractor algorithm Ext have some
additional information that is not available to any regular participants in the

10 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

system. This information depends on the setup S: in the CRS setting, it is a
trapdoor that corresponds to the CRS; in the random-oracle setting it comes
from the ability to observe the adversary’s queries to the random oracle. Note
that in addition trapdoors can be embedded by programming the random oracle.
Further, a proof system is simulation-extractable if the extractor algorithm works
even when the adversary has oracle access to the simulator and can thus obtain
simulated proofs. More formally, let Φ = (S,P,V) be an NIZK proof system
satisfying the zero-knowledge property above; let (SimS,Sim) be the simulator.
Φ is simulation-extractable if there exists a polynomial-time extractor algorithm
Ext such that for for any PPT adversary A participating in the game defined in
Figure 2.3, the advantage function ν(λ) defined below is negligible.

AdvNISimExtract
A (λ) = Pr

[
NISimExtractA(1λ) = 1

]
= ν(λ)

In Figure 2.3 Q denotes the simulator query tape. QS denotes the setup query
tape that records the queries, replies, and embedded trapdoors of the simulated
setup; this is explicitly recorded by OS and ÕS. As discussed below, ÕS gives A
additional power and allows the definition to captures adaptive extraction from
many proofs.

NISimExtractA(1λ)

1 : Q,QS ← []

2 : (x, π)← AÕS(·),OSim(·)(1λ)

3 : w← Ext(QS,x, π)

4 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧ (x,w) ̸∈ R

OS(m) ÕS(m)

1 : state, h, τExt ← SimS(state,m)

2 : QS.add((m,h, τExt))

3 : return h, τExt

OSim(x)

1 : state, π ← Sim(state,x)

2 : Q.add((x, π))
3 : return π

Fig. 2.3: NISimExtract game: τExt is only returned by ÕS(m)

Our definition of simulation extractability above is the one of straight-line
extractability: the extractor obtains the witness just from QS and the pair (x, π).
A weaker definition allows for black-box extractability, where the extractor ad-
ditionally obtains black-box access to A, i.e. it can reset it to a previous state.
By BB(A) we denote this mode of access to A, and by ExtBB(A)(QS,x, π) we
denote an extractor algorithm that, in addition to its inputs, also has this access
to A. We further discuss and formally define a black-box simulation extractabil-
ity game NISimBBExtract in Appendix A.2. We now propose a notion that falls
between straight-line and black-box simulation extractability.

Privacy-Preserving Blueprints 11

Black-Box with Partial Straight Line (BB-PSL) Simulation Extractabil-
ity Sometimes, it is good enough that a straight-line extractor be able to learn
something about the witness, say some function f(w), not necessarily the entire
witness. For such a scenario, it is convenient to have two extractors: Ext that
is a black-box extractor that extracts the entire witness given black-box access
to the adversary, and ExtSL that extracts some function of that witness in a
straight-line fashion. The reason this is good enough for some proofs of security
is that, in a reduction, f(w) may be enough information for the reduction to
know how to proceed, without the need to reset the entire security experiment.

Let us now formalize BB-PSL simulation extractability; as before, let Φ =
(S,P,V) be an NIZK proof system satisfying the zero-knowledge property above;
let (SimS,Sim) be the simulator. Let f be any polynomial-time computable func-
tion. Φ is f -BB-PSL simulation-extractable if there exists a pair of polynomial-
time extractor algorithms (Ext,ExtSL) such that for any PPT adversary A par-
ticipating in the game defined in Figure 2.4, the advantage function ν(λ) defined
below is negligible. As before, Q denotes the query tape. QExt denotes the setup
query tape that records the queries, replies, and embedded trapdoors of the sim-
ulated setup; this is explicitly recorded by OS. In fact, the game here is almost
identical to that in Figures 2.3 and A.2, except now we have two extractors.

AdvNISimBBPSLExtract
A (λ) = Pr

[
f -NISimBBPSLExtractA(1λ) = 1

]
= ν(λ)

for some negligible function ν.

f -NISimBBPSLExtractA(1λ)

1 : Q,QS ← []

2 : (x, π)← AÕS(·),OSim(·)(1λ)

3 : w← ExtBB(A)(QS,x, π)

4 : w
′ ← ExtSL(QS,x, π)

5 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧ (x,w) ̸∈ R ∧w′ ̸= f(w)

OS(m) ÕS(m)

1 : state, h, τExt ← SimS(state,m)

2 : QS.add((m,h, τExt))

3 : return h, τExt

OSim(x)

1 : state, π ← Sim(state,x)

2 : Q.add((x, π))
3 : return π

Fig. 2.4: f -NISimBBPSLExtract game

More on the simulator and extractor. In the games NIZK, NISimSound,
NISimExtract, NISimBBExtract, and NISimBBPSLExtract the simulator initializes
and updates the setup using SimS and then responds to queries from A for

12 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

simulated proofs. Note that the two halves of the simulator, SimS and Sim,
share state information, and update it when queried. This captures both the
CRS and the random-oracle settings. In the CRS setting, SimS computes the
reference string S so that it can pass the corresponding simulation trapdoor to
Sim via the shared state. In the random-oracle (RO) setting, SimS programs the
random oracle (computes the value h that the random oracle will return when
queried on m) and uses the shared state in order to memorize the information
that Sim will need to use h in the future. Similarly, in the random-oracle mode,
Sim has the ability to program the random oracle as well and memorize what it
did using the state variable.

In the simulation extractability experiments, the extractor Ext has only access
to QS, which contains the information necessary to extract a witness from a
proof produced by the adversary. In the CRS model, QS will contain extraction
trapdoor information created at the beginning, when S was first generated. In
the RO model, QS also contains information that the simulator algorithms SimS
generated, such as how the RO was programmed and where the adversary queried
it. It does, however, not contain the simulation trapdoor or give the extractor
the ability to program the RO.

Our definition requires successful extraction even when all information in
QS, in particular τExt, is available to the adversary. This allows the adversary to
execute Ext itself, and thus allows for the extraction from multiple proofs.

Instantiating Simulation Extractable proofs.While simulation-extractable
proof systems exist for all NP relations [29], there are multiple ways to realize
non-interactive zero-knowledge (NIZK) proof systems more efficiently. One of
which is to start with Σ-protocols and convert them into a NIZK proof in the
random oracle model, e.g. using the techniques of [33,32,44]. As we will elaborate
below, Σ protocols are particularly suitable for proving Group Homomorphisms
such as discrete logarithm representations, see, e.g. [45], but can also efficiently
prove disjunctive statements [26]. This has been used for range proofs.

Bulletproofs [11] is a practically efficient NIZK proof system for arithmetic
circuits, specifically optimized for range-proofs. Recent work shows that Bullet-
proofs are simulation extractable [37] and can be integrated withΣ-protocols [10].

Bernhard et al. [5, Theorem 1] state that Fiat-Shamir Σ-protocols are black-
box simulation extractable with respect to expected polynomial-time adversaries.
To show partial straightline extractability we use a theorem of [32, Theorem 2]
that shows that Σ-protocols compiled using Fiat-Shamir are simulation-sound
and adapt the theorem of [28, Theorem F.1] which shows how to transform
simulation-sound into simulation-extractable NIZK, by encrypting the witness
to the sky. Our approach differs from their approach in that we only encrypt a
partial witness and can thus use groups for which computing discrete logarithms
is hard.

In Section 2.7 we give a construction from Σ-protocols of a proof system Ψ
for equality of discrete logarithm representation relations and prove the following
theorem:

Privacy-Preserving Blueprints 13

Theorem 1. Let the relation Reqrep = {(x,w)} be an equality of discrete loga-
rithm representations relation. For any J ⊆ [m], let f(J,w) = {gwj : j ∈ J}.
The proof system Ψ = (S,P,V) is an f(J, ·)-BB-PSL simulation-extractable
NIZK proof system in the random-oracle model.

Notation. When using NIZK proofs of knowledge in a protocol, it is convenient
to be able to compactly specify what exactly the prover is proving its knowledge
of. We shall use the notation:

π ← PoKΨ

{
w : R(x,w)

}
to indicate that the proof π was computed as follows: the proof system Ψ =

(S,P,V) for the relation R was used; the prover ran PS(x,w); to verify π, the
algorithm VS(x, π) needs to be run. In other words, the value w in this notation
is the witness the knowledge of which the prover is proving to the verifier, while
x is known to the verifier. A helpful feature of this notation is that it describes
what we need Ψ to be: it needs to be a NIZK PoK for the relation R.

2.5 Σ-protocol for proof of equality of discrete logarithm
representations

Let Reqrep be the following relation: Reqrep(x,w) accepts if x = (G, {xi, {gi,1, . . . ,
gi,m}}ni=1) where G is the description of a group of order q, and all the xis and
gi,js are elements of G, and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

P→V On input the (x,w) ∈ Reqrep, the Prover chooses ej ← Zq for 1 ≤ j ≤ m
and computes di =

∏m
j=1 g

ej
i,j for 1 ≤ i ≤ n. Finally, the Prover sends to the

Verifier the values com = (d1, . . . , dn).
P←V On input x and com, the Verifier responds with a challenge chal = c for

c← Zq.
P→V The Prover receives chal = c and computes si = ei + cwi mod q for

1 ≤ i ≤ m, and sends res = (s1, . . . , sm) to the Verifier.
Verification The Verifier accepts if for all 1 ≤ i ≤ n, dix

c
i =

∏m
j=1 g

sj
i,j ; rejects

otherwise.
Simulation On input x and chal = c, the simulator chooses sj ← Zq for 1 ≤

j ≤ m, and sets di = (
∏m

j=1 g
sj
i,j)/x

c
i for 1 ≤ i ≤ n. He then sets com =

(d1, . . . , dn) and res = (s1, . . . , sm).
Extraction On input two accepting transcripts for the same com = (d1, . . . , dn),

namely chal = c, res = (s1, . . . , sm), and chal′ = c′, res′ = (s′1, . . . , s
′
m), out-

put wj = (sj − s′j)/(c− c′) mod q for 1 ≤ j ≤ m.

2.6 From Σ-protocols to BB simulation extractable NIZK PoK via
Fiat-Shamir

Let Ψeqrep = (Seqrep,Peqrep,Veqrep) be the proof system we get from the Σ-protocol
described in Section 2.5 via the Fiat-Shamir heuristic. Specifically, Seqrep is a
random oracle.

14 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

We use a theorem of [32, Theorem 2] that shows that Σ-protocols compiled
using Fiat-Shamir are simulation-sound; moreover, it follows from a theorem of
[5, Theorem 1] and the proof of [32, Theorem 3] that it is in fact black-box
simulation extractable.

Recall that the notation π ← PoKΨeqrep

{
w : Reqrep(x,w)

}
denotes that the

proof π is the output of Peqrep.

2.7 gx-BB-PLE simulation extractable NIZK from Ψeqrep

Now we want a BB-PSL simulation extractable proof system for Reqrep such
that, in a straight-line fashion, a function of w can be extracted. Specifically,
recall that x = (G, {xi, {gi,1, . . . , gi,m}}ni=1) and w = {wj}mj=1 such that xi =∏m

j=1 g
wj

i,j .
Consider the following proof system Ψ = (S,P,V) for the relation Reqrep

and for the function f(J, ·), defined as follows. Let g be the generator of G
included in the description of G. Let J be a subset of the set of indices [m]. Let
f(J,w) = {gwj : j ∈ J}.

S is a random oracle, but we interpret its output as follows: On input the
description of a group G with generator g of order q, outputs a random element
h of G; we can think of this h as the public key of the ElGamal cryptosystem.

P works as follows: on input x = (G, {xi, {gi,1, . . . , gi,m}}ni=1) and w =
{wj}mj=1, it first obtains h = S(G) and then forms the ElGamal ciphertexts
of gwj for each jk ∈ J : (ck,1, ck,2) = (grk , gwjkhrk), for 1 ≤ k ≤ |J |.

It then forms x′ and w′ that allow us to express the following relation R as
a special case of Reqrep:

R = {x′,w′ | x′ = (x, {(cjk,1, cjk,2)}) and
w

′ = (w,w′′) where w′′ = (r1, . . . , r|J|) such that

for 1 ≤ k ≤ |J |, (ck,1, ck,2) = (grk , gwjkhrk)

In order to express x′ and w′ as a statement and witness for Reqrep, form

them as follows: x′ = (G, {x′
i, {g′i,1, . . . , g′i,m′}}n

′

i=1), where

n′ = n+ 2|J |, m′ = m+ |J |
For 1 ≤ i ≤ n, x′

i = xi, and for 1 ≤ j ≤ m, g′i,j = gi,j , and for m < j ≤ m+ |J |,
g′i,j = 1.

For 1 ≤ k ≤ |J |, x′
n+2(k−1)+1 = ck,1, g

′
n+2(k−1)+1,m+k = g, and for ℓ ̸= m+ k,

1 ≤ ℓ ≤ m+ |J |, g′n+2(k−1)+1,ℓ = 1.

For 1 ≤ k ≤ |J |, x′
n+2k = ck,2, g

′
n+2k,jk

= g, g′n+2k,m+k = h, and for ℓ /∈
{jk,m+ k}, 1 ≤ ℓ ≤ m+ |J |, g′n+2(k−1)+1,ℓ = 1.

Set w′ = (w1, . . . , wm, r1, . . . , rk). Using the algorithm PS
eqrep, compute πeqrep ←

PoKΨeqrep

{
w

′ : Reqrep(x
′,w′)

}
, and output π = ({(ck,1, ck,2)}, πeqrep).

V works as follows: on input the statement x, and the proof π = ({(ck,1, ck,2)},
πeqrep), first compute x′ exactly the same way as the prover’s algorithm P did.
Then output VS

eqrep(x
′, πeqrep).

Privacy-Preserving Blueprints 15

We now sketch the proof of Theorem 1.

Proof (Sketch). We need to describe the sim setup, simulator, the extractor
trapdoor and the two extractors.

SimS(state,m) → state, h′, τExt: On input the description of a group G with
generator g of order q, sample τExt ← Zq and output the hash value that
will be interpreted as the element gτExt of G; we can think of this as the
public key of the ElGamal cryptosystem for secret key τExt. On other inputs
simulate the random oracle faithfully.

Sim(state,x) → state, π: On input x, the simulator extends x with random
ElGamal ciphertexts to x′, chooses c ← Zy, sj ← Zq for 1 ≤ j ≤ m + |J |,
and sets di = (

∏m+k
j=1 g

sj
i,j)/x

c
i for 1 ≤ i ≤ n + 2|J |. He then sets com =

(d1, . . . , dn+2|J|), stores H[x, com] = c in state, sets chal = c, and res =
(s1, . . . , sm) and return (chal, res).

ExtBB(A)(QS,x, π)→ w: Parse π as (chal, res) and compute com as Sim. Rewind
BB(A) to the point where it queried the random oracle on (x, com) and
provide it fresh random results. Repeat until it obtains two accepting tran-
scripts for the same com = (d1, . . . , dn+2|J|) and then run the extractor of
the Σ-protocol to obtain w′. Remove the last k elements to obtain w.

ExtSL(QS,x, π) → f(J,w): Parse x as (G, {xi, {gi,1, . . . , gi,m}}n+2|J|
i=1), obtain

τExt from the entry (G, h, τExt) of QS. Interpret the last 2|J | elements xi as
ElGamal ciphertext and decrypt them to obtain f(J,w).

3 Definition of Security of f-Blueprint Scheme

Our scheme features three parties: an auditor, a set of users, and a set of recip-
ients. It is tied to a non-interactive commitment scheme (CSetup,Commit); let
cpar be the parameters of the commitment scheme output by CSetup.

The auditor A has private warrants data x and publishes a commitment
CA = Commitcpar (x). The user has private data y and publishes a commitment
C = Commitcpar (y). For example x could be a list and y could be the user’s
attributes in a credential system.

Auditors create a warrant-specific public key and private key pair (pkA, skA)
and the user can escrow its private data under pkA to obtain an escrow Z. We
require, that Z decrypts (with the help of skA) to f(x, y) for a function f that
all parties have agreed upon in advance. In the definition, we do not restrict f : it
can be any efficiently computable function. Moreover, an escrow recipient R can
verify that indeed Z was computed correctly for the given pkA and C. Similarly,
a privacy-conscious user can verify that indeed pkA was computed correctly for
the given warrants data commitment CA.

Definition 3. An f -blueprint scheme tied to a non-interactive commitment scheme
(CSetup,Commit) consists of the following probabilistic polynomial time algo-
rithms:

16 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Setup(1λ, cpar) → Λ: is the algorithm that sets up the public parameters Λ. It
takes as input the security parameter 1λ and the commitment parameters
cpar output by CSetup(1λ); to reduce the number of inputs to the rest of
the algorithms, Λ includes 1λ and cpar ; we will also write Commit instead
of Commitcpar to reduce notational overhead.

KeyGen(Λ, x, rA)→ (pkA, skA): is the key generation algorithm for auditor A. It
takes in input 1λ, parameters Λ, and values (x, rA), and outputs the key
pair (pkA, skA). The values (x, rA) define a commitment CA. This allows to
integrate KeyGen into larger systems.3

VerPK(Λ, pkA, CA) → accept or reject: is the algorithm that, on input the audi-
tor’s public key pkA and a commitment CA, verifies that the warrant public
key was computed correctly for the commitment CA.

Escrow(Λ, pkA, y, r)→ Z: is the algorithm that, on input the values (y, r) outputs
an escrow for commitment C = Commit(y; r).

VerEscrow(Λ, pkA, C, Z) → accept or reject: is the algorithm that, on input the
auditor’s public key pkA, a commitment C, and an Z, verifies that the escrow
was computed correctly for the commitment C.

Decrypt(Λ, skA, C, Z) → f(x, y) or ⊥: is the algorithm that, on input the audi-
tor’s secret key skA, a commitment C and an Z such that VerEscrow(Λ, pkA,
C, Z) = accept, decrypts the escrow. Our security properties will ensure
that it will output f(x, y) if C is a commitment to y.

Definition 4 (Secure blueprint). An f -blueprint scheme Blu = (Setup,KeyGen,
VerPK,Escrow,VerEscrow,Decrypt) tied to commitment scheme (CSetup,Commit)
constitutes a secure f -blueprint scheme if it satisfies the following properties:

Correctness of VerPK and VerEscrow: Values (cpar , pkA, CA, C, Z) are gen-
erated honestly if: (1) cpar is generated by CSetup(1λ); (2) Λ is generated by
Setup(1λ, cpar); (3) pkA is the output of KeyGen(Λ, x, rA); (4) CA = Commitcpar (
x; rA); (5) C = Commitcpar (y; r); (6) Z is generated by Escrow(Λ, pkA, y, r).
For honestly generated values (cpar , pkA, CA, C, Z), we require that algorithms
VerEscrow and VerPK accept with probability 1.
Correctness of Decrypt: Similarly, we require for honestly generated (cpar , pkA,
skA, C, Z) that with overwhelming probability Decrypt(Λ, skA, C, Z) = f(x, y).

Soundness: Let CA and C be a commitment whose opening (x, rA) and (y, r) are
known to the adversary. Let (pkA, skA) ← KeyGen(Λ, x, rA) be honestly derived
keys. Soundness guarantees that, any pkA, Z pair that passes VerEscrow(Λ, pkA,
C, Z) will decrypt to f(x, y) with overwhelming probability. More formally, for
all probabilistic polynomial-time adversaries A involved in the experiment in
Figure 3.1, there exists a negligible function ν such that:

AdvSoundA,Blu(λ) = Pr
[
SoundABlu(λ) = 1

]
= ν(λ)

3 E.g., A can prove that x does not contain journalists, but does contain all Russian oli-
garchs on the OFAC’s sanctions list. https://home.treasury.gov/policy-issues/
financial-sanctions

https://home.treasury.gov/policy-issues/financial-sanctions
https://home.treasury.gov/policy-issues/financial-sanctions

Privacy-Preserving Blueprints 17

SoundABlu(λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : x, rA ← A(1λ, Λ)
4 : (pkA, skA)← KeyGen(Λ, x, rA)

5 : (C, y, r, Z)← A(pkA)
6 : return [C = Commit(y; r)∧
7 : VerEscrow(Λ, pkA, C, Z) ∧ Decrypt(Λ, skA, C, Z) ̸= f(x, y)]

Fig. 3.1: Experiments SoundABlu(λ)

Blueprint Hiding: We want to make sure that pkA just reveals that x is a
valid first argument to f (i.e. this may possibly reveal the size of x or an upper
bound on its size). Otherwise, x is hidden even from an adversary who (1) may
already know a lot of information about x a-priori; and (2) has oracle access to
Decrypt(Λ, skA, ·, ·).

We formalize this security property by requiring that there exist a simulator
Sim = (SimSetup,SimKeygen,SimDecrypt) such that a probabilistic polynomial-
time adversary cannot distinguish between the following two games: the “real”
game in which Λ is chosen honestly, the public key pkA is computed correctly
for adversarially chosen x, rA, and the adversary’s decryption queries (C,Z) are
answered with Decrypt(Λ, skA, C, Z); the “hiding” game in which Λ is computed
using SimSetup, the public key pkA is computed using SimKeygen independently
of x (although with access to the commitment CA), and the adversary’s de-
cryption query Zi is answered by first running SimDecrypt to obtain enough
information about the user’s data yi to be able to compute f(x, yi). When we
say “enough information,” we mean that SimDecrypt obtains y∗i = g(yi) for some
function g such that f(x, y) = f∗(x, g(y)) for an efficiently computable f∗, for
all possible inputs (x, y)4.

More formally, for all probabilistic poly-time adversaries A involved in the
game described in Figure 3.2, the advantage function satisfies:

AdvBHA,Sim(λ) =
∣∣∣Pr[BHrealABlu(λ) = 0

]
− Pr

[
BHidealABlu,Sim(λ) = 0

]∣∣∣ = ν(λ)

for some negligible ν.

Privacy against Dishonest Auditor: There exists a simulator such that the
adversary’s views in the following two games are indistinguishable:

4 For example, if x is a list (x1, . . . , xn) and f(x, y) checks if y = xi for some i, g(y)
can be a one-way permutation: in order to determine whether y is on the list, it is
sufficient to compute g(xj) and compare it to y∗ = g(y).

18 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

BHrealABlu(λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (x, rA, stateA)← A(1λ, Λ)
4 :

5 : (pkA, skA)← KeyGen(Λ, x, rA)

6 : return AO0(pkA,skA,·,·)(pkA, stateA)

BHidealABlu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : (Λ, state)← SimSetup(1λ, cpar)

3 : (x, rA, stateA)← A(1λ, Λ)
4 : dsim ← (|x|,Commit(x; rA))

5 : (pkA, skA)← SimKeygen(1λ, state, dsim)

6 : return AO1(pkA,state,x,·,·)(pkA, stateA)

O0(pkA, skA, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : return Decrypt(Λ, skA, C, Z)

O1(pkA, simtrap, x, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : y∗ ← SimDecrypt(state, C, Z)

4 : return f(x, y) = f∗(x, y∗)

Fig. 3.2: Experiments BHrealABlu(λ) and BHidealABlu,Sim(λ)

1. Real Game: The adversary generates the public key and the data x corre-
sponding to this public key, honest users follow the Escrow protocol on input
adversarially chosen openings.

2. Privacy-Preserving Game: The adversary generates the public key and
the data x corresponding to this public key. Next, on input generated com-
mitments and openings, the users run a simulator algorithm that depends
only on f(x, y) but is independent of the commitment openings.

More formally, there exists algorithms (SimSetup,SimEscrow) such that, for any
PPT adversary A involved in the game described in Figure 3.3, the following
equation holds:

AdvPADAA,Blu,Sim(λ) =
∣∣∣Pr[PADAA,0

Blu,Sim(λ) = 1
]
− Pr

[
PADAA,1

Blu,Sim(λ) = 1
]∣∣∣ = ν(λ)

for some negligible function ν.
Privacy with Honest Auditor: There exists a simulator Sim such that the
adversary’s views in the following two games are indistinguishable:

1. Real Game: The honest auditor generates the public key on input x pro-
vided by the adversary, and honest users follow the Escrow protocol on input
adversarially chosen openings.

2. Privacy-Preserving Game: The honest auditor generates the public key
on input x provided by the adversary. On input adversary-generated com-
mitments and openings, the users run a simulator that is independent of y
(although with access to the commitment C) to form their escrows.

Privacy-Preserving Blueprints 19

PADAA,b
Blu,Ext,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar); (Λ1, state)← SimSetup(1λ, cpar)

3 : (x, rA, pkA, stateA)← A(1λ, Λb)

4 : if VerPK(Λb, pkA,Commit(x; rA)) = reject : return ⊥

5 : return AOb(y,r)(stateA)

O0(y, r)

1 : return Escrow(Λ0, pkA, y, r)

O1(y, r)

1 : return SimEscrow(state, Λ1, pkA,Commit(y; r),

2 : f(x, y))

Fig. 3.3: Game PADAA,b
Blu (λ)

In both of these games, the adversary has oracle access to the decryption algo-
rithm.

We formalize these two games in Figure 3.4. We require that there exists
an simulator Sim = (SimSetup,SimEscrow) such that, for any PPT adversary A
involved in the game described in the figure, the following equation holds:

AdvPWHA
Blu,Sim(λ) =

∣∣∣Pr[PWHAA,0
Blu,Sim(λ) = 0

]
− Pr

[
PWHAA,1

Blu,Sim(λ) = 0
]∣∣∣ = ν(λ)

for some negligible function ν.

4 Homomorphic Enough Encryption

Definition 5 (Homomorphic-enough cryptosystem (HEC) for a func-
tion family). Let F = {f | f : domainf,x × domainf,y 7→ rangef} be a set
of polynomial-time computable functions. We say that the set HEC of algo-
rithms (HECsetup,HECenc,HECeval,HECdec,HECdirect) constitute a
homomorphic-enough cryptosystem (HEC) for F if they satisfy the following
input-output, correctness, and security requirements:

HECsetup(1λ) is a PPT algorithm that, on input the security parameter, out-
puts the parameters hecpar ; in case there is no HECsetup algorithm,
hecpar = 1λ.

HECenc(hecpar , f, x) is a PPT algorithm that, on input the parameters hecpar ,
a function f ∈ F , and a value x ∈ domainf,x, outputs an encrypted (garbled,
obfuscated) representation X of the function f(x, ·), and a decryption key d.

HECeval(hecpar , f,X, y) is a PPT algorithm that, on input the parameters
hecpar , a function f ∈ F , an encrypted representation of f(x, ·), and a
value y ∈ domainf,y, outputs a ciphertext Z, an encryption of f(x, y).

20 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

PWHAA,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar);Λ1 ← SimSetup(1λ, cpar)

3 : M ← []

4 : x, rA ← A(1λ, Λb)

5 : (pkA, skA)← KeyGen(Λb, x, rA)

6 : return AOEscrow
b (·,·,·),ODecrypt(Λb,skA,·,·)(pkA)

OEscrow
0 (y, r)

1 : return Escrow(Λ0, pkA, y, r)

OEscrow
1 (y, r)

1 : C = Commit(y; r)

2 : Z ← SimEscrow(state, Λ1, pkA, C)

3 : M [C,Z] = f(x, y)

4 : return Z

ODecrypt(Λ1, skA, C, Z)

1 : if M [C,Z] return M [C,Z]

2 : return Decrypt(Λ1, skA, C, Z)

Fig. 3.4: Game PWHAA,b
Blu,Sim(λ)

HECdec(hecpar , d, Z) is a polynomial-time algorithm that, on input the pa-
rameters hecpar , the decryption key d, and a ciphertext Z, decrypts Z.

HECdirect(hecpar , X, z) is a PPT algorithm that, on input hecpar , an en-
crypted representation X of some garbled circuit, and a value z, outputs a
ciphertext Z.

HEC correctness. HEC = (HECsetup,HECenc,HECeval,HECdec) is
correct with adversarial evaluation randomness if for any PPTadversary A,
the following advantage function:

AdvheccorrectA (λ) = Pr
[
HECcorrectA(λ) = accept

]
= ν(λ)

holds for a negligible function ν and for experiment HECcorrect shown
in Figure 4.1.

Security of x. For any PPT algorithm A, |pA,0 − pA,1| = ν(λ) for a negligible
ν, where for b ∈ {0, 1}, pA,b is the probability that A outputs 0 in experiment
SecX in Figure 4.1.

Security of x and y from third parties. For any PPT algorithm A, |pA,0 −
pA,1| = ν(λ) for a negligible ν, where for b ∈ {0, 1}, pA,b is the probability
that A outputs 0 in the SecXY game in Figure 4.1.

Privacy-Preserving Blueprints 21

HECcorrectA(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, stateA)← A(1λ, hecpar)
3 : if f ∈ F, x ∈ domainf,x

4 : (X , d)← HECenc(hecpar , f, x)

5 : (y, rZ)← A(stateA, X)

6 : if y ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X , y; rZ)

8 : if HECdec(hecpar , d, Z) ̸= f(x, y)

9 : return accept

10 : return reject

11 : return reject

12 : return reject

SecXA
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, state)← A(1λ, hecpar)
3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X, ← HECenc(hecpar , f, xb)

5 : return A(hecpar , X, state)

6 : return A(⊥, state)

SecXYA
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, state)← A(1λ, hecpar)
3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X, ← HECenc(hecpar , f, xb)

5 : (y0, y1, state)← A(X, state)

6 : if y0, y1 ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X, yb)

8 : return A(Z, state)
9 : return A(⊥, state)

10 : return A(⊥, state)

DirectZA
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x, y, rX , state)← A(1λ, hecpar)
3 : if f ∈ F, x ∈ domainf,x, y ∈ domainf,y

4 : X, = HECenc(hecpar , f, x; rX)

5 : Z0 ← HECeval(hecpar , f,X, y)

6 : Z1 ← HECdirect(hecpar , X, f(x, y))

7 : return A(hecpar , Zb, state)

8 : return A(⊥, state)

Fig. 4.1: HEC correctness and security games

Suppose that we want to form a ciphertext Z that will decrypt to a specific
value z — how do we do that? If the function f is not one-way and it is
easy, given z, to sample x and y such that z = f(x, y), then forming Z con-
sists of first computing (X, d) = HECenc(hecpar , f, x) and then computing
Z = HECeval(hecpar , f,X, y). But in general, it may be helpful (for some
applications) to have a separate algorithm HECdirect(hecpar , X, z) such
that, if X = HECenc(hecpar , f, x), then Z = HECdirect(hecpar , X, z)
decrypts to z using the decryption key that corresponds to X, i.e. z =
HECdec(hecpar , d, Z).

Security of DirectZ Even when the decryption key is known. For any PPT
algorithm A, |pA,0 − pA,1| = ν(λ) for a negligible ν, where for b ∈ {0, 1},
pA,b is the probability that A outputs 0 in the DirectZ experiment in
Figure 4.1.

22 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

5 A Generic f-Blueprint scheme from HEC

We construct a privacy-preserving blueprint scheme using a commitment scheme,
a homomorphic-enough cryptosystem, as well as two NIZK proof systems as
building blocks. The scheme consists of the following six algorithms:

Setup takes λ and a commitment setup as input and generates hecpar and
assigns the NIZK oracles S1 and S2. Note that when instantiated using real
hash functions or reference strings both RO and CRS setups can be represented
as bit-strings in implementations. KeyGen uses the HEC scheme to compute an
encrypted representation of the function f(x, ·) and proves that it was computed
correctly. VerPK verifies that pkA was computed correctly with respect to the
auditor’s commitment CA. Escrow homomorphically evaluates f(x, ·) on y to
obtain a ciphertext and proves that it was formed correctly. VerEscrow verifies
the ciphertext with respect to the user’s commitment C, and Decrypt decrypts.

Our construction in Figure 5.1 uses VerPK as a subroutine in Escrow and
VerEscrow. To be consistent with the syntax we add CA to pkA. Similarly, we use
VerEscrow in Decrypt and add pkA to skA.

Theorem 2. If HEC is a secure homomorphic-enough cryptosystem, the com-
mitment scheme is binding, and the NIZK PoKs Ψ1 and Ψ2 are zero-knowledge
and BB-PSL simulation extractable then our generic blueprint scheme is a secure
f -blueprint scheme.

Note that, our formal security theorem does not require the commitment
to be hiding. It only shows, using simulation, that no additional information
besides the commitment is revealed. To benefit from the hiding and privacy
properties of the blueprint scheme it is, however, crucial that the transaction
system employing it uses a hiding commitment scheme.

We prove correctness of VerEscrow and VerPK, correctness of Decrypt, sound-
ness of VerEscrow, blueprint hiding and binding, and privacy against dishonest
auditor and with honest auditor in separate lemmas.

Correctness of VerEscrow and VerPK follows from the completeness of the
NIZK proof system. Correctness of Decrypt additionally requires correctness of
HEC.

Lemma 1. If the NIZK PoKs Ψ1 and Ψ2 are complete, then the generic blueprint
scheme satisfies correctness of VerEscrow and VerPK.

Proof. Consider VerPK as defined in Figure 5.1. Suppose the same VerPK returns
reject in the experiment in Figure B.1. Then either (CA ̸= C ′

A) or VS1
1 (pkA) =

reject. Since CA = C ′
A = Commitcpar (y; r), the later must be true. However, this

contradicts completeness of the NIZK scheme because the proof πA in pkA is
generated by KeyGen on a valid statement and witness pair.

Similarly, consider VerEscrow as defined in Figure 5.1. We know that VerPK
returns accept, so VerEscrow only returns reject if VS2

2 (Z, hecpar , f,X,C, cpar) =
reject. However, similar to in the case of VerPK, Z was generated using PS2

2 on
a valid statement and witness pair. This again contradicts completeness of the
NIZK PoK schemes.

Privacy-Preserving Blueprints 23

Setup(λ, cpar)

hecpar ← HECsetup(1λ)

return Λ = (λ, cpar , hecpar , S1, S2)

KeyGen(Λ, x, rA)

parse Λ = (λ, cpar , hecpar , S1, S2)

(X , d)
rX← HECenc(hecpar , f, x)

CA = Commitcpar (x; rA)

πA ← PoKS1
Ψ1

{
(x, d, rX , rA) :

(X , d) = HECenc(hecpar , f, x; rX)

∧ CA = Commitcpar (x; rA))
}

pkA ← (X , CA, πA); skA ← (pkA, d)

return (pkA, skA)

VerPK(Λ, pkA, CA)

parse Λ = (λ, cpar , hecpar , S1, S2)

parse pkA = (X , C′
A, πA)

return VS1
1 ((X , hecpar , f, CA, cpar), πA)

∧ (C′
A = CA)

Escrow(Λ, pkA, y, r)

parse Λ = (λ, cpar , hecpar , S1, S2)

parse pkA = (X , CA,)

if VerPK(Λ, pkA, CA) = reject

return reject

Ẑ
r
Ẑ← HECeval(hecpar , f,X , y)

C = Commitcpar (y; r)

πU ← PoKS2
Ψ2

{
(y, r, rẐ) :

Ẑ = HECeval(hecpar , f,X, y; rẐ)

∧ C = Commitcpar (y; r)
}

return (Ẑ, πU)

VerEscrow(Λ, pkA, C, Z = (Ẑ, πU))

parse Λ = (λ, cpar , hecpar , S1, S2)

parse pkA = (, CA,)

return VerPK(Λ, pkA, CA)

∧ VS2
2 ((Ẑ, hecpar , f,X,C, cpar), πU)

Decrypt(Λ, skA, C, Z = (Ẑ, πU))

parse Λ = (λ, cpar , hecpar , S1, S2)

parse skA = (pkA, d)

if VerEscrow(Λ, pkA, C, Z) = reject

return reject

return HECdec(hecpar , d, Ẑ)

Fig. 5.1: Construction of generic f -blueprint scheme

24 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Lemma 2. If the NIZK PoKs Ψ1 and Ψ2 are complete and the HEC is correct,
then the generic blueprint scheme satisfies correctness of Decrypt.

Proof. Consider Figure B.2. By Lemma 1, we get that Escrow and in extension
Decrypt will not return reject, as that requires VerEscrow and VerPK to reject
on correct inputs. This tells us that any parts of DecCorrect that relates to the
NIZK does not affect the output of the algorithm. Omitting these lines results
in:

DecCorrect′(λ, x, rA, y, r)

1 : hecpar ← HECsetup(1λ)

2 : (X , d)
rX← HECenc(hecpar , f, x)

3 : Ẑ
r
Ẑ← HECeval(hecpar , f,X , y)

4 : m← HECdec(hecpar , d, Ẑ)

5 : return [m = f(x, y)]

Fig. 5.2: Experiment DecCorrectBlu(λ, x, rA, y, r) with all NIZK parts removed

which is the definition for correctness of our HEC scheme for adversaries that
hardcode f, x, y and sample rẐ at random. Assuming HEC is correct, DecCorrect′

returns 1 with overwhelming probability, and so does DecCorrect.

Lemma 3. Let Ψ2 be a BB extractable NIZK scheme, let (CSetup,Commit) be a
computationally binding commitment scheme, and HEC be correct with adver-
sarial evaluation randomness, then our proposed scheme achieves Soundness.

Proof. Consider Figure 3.1. Suppose, for the sake of contradiction, that there
exists a PPT adversary A such that AdvSoundA,Blu(λ) = ν(λ) is non negligible. Let Z,

one of the adversary’s output in the experiment, be divided into Ẑ and a proof
π to validate Ẑ.

The events where A outputs 1 can be divided into three: (i) when C =
Commit(y; r), C = Commit(y′; r′) and Ẑ = HECeval(hecpar , f,X, y′; rẐ) for

y ̸= y′, (ii) when C = Commit(y; r) and Ẑ = HECeval(hecpar , f,X, y; rẐ) for
some rẐ where in both (i) and (ii) X is a part of pkA, and (iii) the case where
neither of these equalities holds. Let the probability of these events be expressed
with functions ν0(λ), ν1(λ), and ν2(λ) respectively. Since ν(λ) is non negligible
and these three events covers all cases where A would output 1, at least one of
ν0(λ), ν1(λ), or ν2(λ) must be non negligible.

Suppose ν2(λ) is non negligible. The adversary produced a proof of a false
statement and we can construct a reduction B to the BB extractable NIZK sys-
tem. B runs A the same way as Sound, but outputs (Ẑ, hecpar , f,X,C, cpar), πU)

Privacy-Preserving Blueprints 25

instead. By BB extractability of the NIZK, Pr[B wins] of extraction failure is
negligible, which contradicts our assumption that ν2(λ) is non negligible.

We now assume that the BB extractor extracts a witness (y′, r′, rẐ), such

that Ẑ = HECeval(hecpar , f,X, y′; rẐ) and C = Commitcpar (y
′; r′).

Suppose ν0(λ) is non negligible. In this event, we break the computational
binding property using a reduction that outputs (y, r, y′, r′).

Suppose ν1(λ) is non negligible. In this event, we get a situation where both
pkA and Z were generated correctly with adversarial randomness rẐ , but the
output of decrypt is incorrect. We can construct a reduction B using A to HEC
correctness with adversarial evaluation randomness. B runs A, in the same way
as Sound, but instead of returning a bit at the end, it outputs the tuple (y, rẐ).

Lemma 4. Let Ψ1 be a NIZK with simulation algorithms (SimS,Sim) and Ψ2

be a g∗-BB-PSL extractable NIZK with extraction algorithms (Ext,ExtSL) along
with an efficiently computable f∗ such that f∗(x, g∗(y)) = f(x, y). Let HEC be
correct with adversarial evaluation randomness and satisfy security of x. Then
our proposed scheme achieves Blueprint Hiding.

Proof. Consider the game in Figure 3.2. We shall define SimSetup, SimKeygen,
and SimDecrypt as follows:

– SimSetup runs HECsetup, but also sets up statei to contain the state and
query list QSi of the simulated PoK setup OSi available to A, Pi, and Vi,
for i ∈ {1, 2}. The state1 will additionally be programmed by Sim while QS2

will be used for extraction.
– SimKeygen first samples x′ ← domainf,x with the same size as x and com-

putesX ← HECenc(hecpar , f, x′). Then it runs Sim(state1, (X ,Commit(x; rA)))
to produce a simulated proof πA that X is generated honestly and cor-
responds to Commit(x; rA). Finally, it produces pkA that contains Λ, X ,
CA = Commit(x; rA), and the simulated proof.

– SimDecrypt splits Z into Ẑ and the proof πU, then runs ExtSL(QS2
, (Ẑ, C), πU)

to obtain y∗.

Consider the following games:

– Game 0: The left blueprint hiding game BHreal as described in Figure 3.2.
– Game 1: In this game, we replace Setup with SimSetup, and run a modified

version of KeyGen that generates the proof πA using Sim instead.
– Game 2: Functions identically to the last game, but with Decrypt swapped

with SimDecrypt that outputs y∗ and returns f∗(x, y∗).
– Game 3: We replace our modified KeyGen with SimKeygen, that is we replace

x with a a randomly sampled x′. This game is identical to the game BHideal.

Let A be a fixed probabilistic polynomial time adversary. We denote the inter-
action with the adversary A in Game i as BHA

i . We claim that∣∣∣Pr[BHA
j (λ) = 0

]
− Pr

[
BHA

j+1(λ) = 0
]∣∣∣

26 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

is negligible with respect to λ for j ∈ [0, 2].
For j = 0, we can show this via a reduction to the Zero-Knowledge property

of the NIZK PoK system. We can construct a reduction B to the NIZK game
described in Figure 2.1. B receives two oracles from its challenger, denoted (S′,P′)
and uses S′ to answer queries to the S1 oracle, and P′ to generate the proof in
the modified KeyGen. Otherwise, B interacts with A as if it is A’s challenger in
the blueprint security games, and output whatever A outputs. Notice that, when
in the experiment NIZKB,0, B functions identically to A’s challenger in Game 0.
Similarly, when in experiment NIZKB,1, B acts identically as A’s challenger in
Game 1. Therefore, we get that:∣∣∣Pr[BHA

0 (1
λ) = 0

]
− Pr

[
BHA

1 (1
λ) = 0

]∣∣∣
=

∣∣∣Pr[NIZKB,0(1λ) = 0
]
− Pr

[
NIZKB,1(1λ) = 0

]∣∣∣ = ν(λ)

for negligible function ν, as required.
For j = 1, let us propose a Game 1.5 that is identical to Game 1, but

instead of running only Decrypt or SimDecrypt, it runs both. When Decrypt and
SimDecrypt agrees, the decryption oracle returns their output. Otherwise, the
experiment is halted and ∅ is returned. We claim that this event occurs with
negligible probability.

Let ν(λ) = Pr
[
BHA

1.5(1
λ) = ∅

]
. We can separate this into the event E0 with

probability ν0(λ) that captures the event where the output is ∅ and extraction
fails (i.e. when the output of ExtSL used in SimDecrypt does returns a y∗ for
which there does not exists valid witness y such that g∗(y) ̸= y∗ for the relation
in the proof in πA), and event E1 with probability ν1(λ) that captures all other
cases where the experiment would output ∅.

ν0(λ) must be negligible, otherwise we can construct a reduction B to the
g∗-BB-PSL extractability property of the NIZK described in Figure 2.4. B re-
ceives two oracles ÕS and OSim and uses ÕS to answer A’s queries to the OS2

oracle. Otherwise, B acts identically as A’s challenger in Game 1.5, except that
it outputs the statement Ẑ and proof πA when of the first decryption query for
which Decrypt and SimDecrypt disagrees.

If the event E0 occurs, then B succeeds in its reduction. However, by g∗-BB-
PSL simulation extractability, we know that B succeeds with negligible proba-
bility. This gives us:

Pr[E1] = ν0(λ) ≤ Pr
[
NISimBBPSLExtractB(1λ) = 1

]
= µ(λ)

for some negligible µ.
Assume the BB extractor succeeds in extracting a witness (y, r, rẐ), such

that Ẑ = HECeval(hecpar , f,X, y; rẐ) and C = Commitcpar (y; r).
ν1(λ) must also be negligible, otherwise we get a situation where both pkA and

Z were generated correctly with adversarial randomness rẐ , but the output of
decrypt is incorrect. We can construct a reduction B using A to HEC correctness

Privacy-Preserving Blueprints 27

with adversarial evaluation randomness. B first outputs f, x that it receives from
A, and uses the X, d that it receives from its challenger to simulate KeyGen.
Then it behaves in the same way as BH1.5, but instead of answering an invalid
decryption oracle, it outputs the tuple (y, rẐ).

For j = 2, we can construct a reduction B to the HEC Security of x game in
Figure 4.1. B functions identically to the challenger in Game 2, but instead of
running KeyGen, it generates the public key pkA using by first sampling x′ ←$

domainf,x. It then outputs (f, x, x′) to its challenger and receives X back. B
then obtains the simulated πA by running Sim(X). At the end, it outputs what
the adversary outputs.

We see that B acts identically to A’s challenger in Game 2 if its challenger
chose b = 0, and identically to A’s challenger in Game 3 otherwise. Since the
encryption scheme is HEC secure, we get that B has negligible distinguishing
advantage, and so does A.

Lemma 5. Let (CSetup,Commit) be a computationally binding non-interactive
commitment scheme. Let Ψ1 be a BB extractable NIZK with extraction algorithms
Ext, and Ψ2 be a NIZK with simulation algorithms (SimS,Sim). Let HEC sat-
isfy security of HECdirect. Then our proposed construction achieves privacy
against dishonest auditor.

Proof. We shall construct SimSetup and Sim for the PADA game as follows:

1. SimSetup(cpar , state) runs HECsetup, but also sets up statei to contain the
state and query list QSi of the simulated PoK setup OSi available to A, Pi,
and Vi, for i ∈ {1, 2}. The state2 will additionally be programmed by Sim
while QS1

will be used for extraction.
2. Sim(state, Λ1, pkA,Commit(y; r), f(x, y)) first runs Ẑ ← HECdirect(hecpar ,

X , f(x, y)). Afterwards, it creates πU using the ZK simulator. Finally it out-
puts Z = (Ẑ, πU).

Consider the following games:

1. Game 0: The privacy against dishonest auditor game defined in Figure 3.3
where b = 0.

2. Game 1: In this game, we change from using Setup to using SimSetup.
Additionally, in the Escrow function, instead of using P2 to generate πU, we
use Sim.

3. Game 2: Instead of using the modified Escrow procedure, we use SimEscrow.
This is effectively the game defined in Figure 3.3 with b = 1.

Let A be a fixed PPT adversary, and let PADAA
i denote A’s interaction in Game

i. We claim that
∣∣∣Pr[PADAA

0 (1
λ) = 0

]
− Pr

[
PADAA

2 (1
λ) = 0

]∣∣∣ = ν(λ) for some

negligible function ν.

First, we show that
∣∣∣Pr[PADAA

0 (1
λ) = 0

]
− Pr

[
PADAA

1 (1
λ) = 0

]∣∣∣ is negligi-
ble by a reduction B to the NIZK zero-knowledge game in Figure 2.1. B functions
as follows:

28 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

1. B obtains two oracles (S′,P′) from its challenger in the NIZK game. It then
functions as A’s adversary in the PADA game, with minor tweaks.

2. In setup, B runs SimSetup but assigns S2 ← S′.
3. When its escrow oracle is queried, it generates Ẑ using HECeval similar to

Escrow, but obtains πU using P′ with input Ẑ.

Now B functions identically to A’s challenger in Game b for b defined in the
NIZK game. We know that NIZK2 is zero-knowledge, therefore B’s advantage is
negligible and we get:∣∣∣Pr[PADAA

0 (1
λ) = 0

]
− Pr

[
PADAA

1 (1
λ) = 0

]∣∣∣ =∣∣∣Pr[NIZKB,0(1λ) = 0
]
− Pr

[
NIZKB,1(1λ) = 0

]∣∣∣ = ν(λ)

for some negligible function ν, as desired.

Further, we have to show that
∣∣∣Pr[PADAA

1 (1
λ) = 0

]
− Pr

[
PADAA

2 (1
λ) = 0

]∣∣∣
is negligible.

The event whereA outputs x, rA, pkA can be divided into three: (i) when CA =
Commit(x; rA), CA = Commit(x′; r′A) and X, = HECenc(hecpar , f, x′; rX) for
x ̸= x′, (ii) when CA = Commit(x; rA) and X, = HECenc(hecpar , f, x; rX) for
some rx where in both (i) and (ii) X is a part of pkA, and (iii) the case where
neither of these equalities holds.

Let the probability of these events be expressed with functions ν0(λ), ν1(λ),
and ν2(λ) respectively. Since ν(λ) is non negligible and these three events covers
all cases of A outputting these values, at least one of ν0(λ), ν1(λ), or ν2(λ) must
be non negligible.

Suppose ν2(λ) is non negligible. The adversary produced a proof of a false
statement and we can construct a reduction B to the BB extractable NIZK
system. B runs A, but outputs (X, hecpar , CA, cpar), πA) instead of continuing
the game. By BB extractability of the NIZK, Pr[B wins] is negligible, which
contradicts our assumption that ν2(λ) is non negligible.

Assume the BB extractor succeeds in extracting a witness (x′, d, rX , r′A), such
that CA = Commit(x′; r′A) and X, d = HECenc(hecpar , f, x′; rX).

Suppose ν0(λ) is non negligible. In this event, we break the computational
binding property of the commitment scheme using a reduction that outputs
(x, rA, x

′, r′A).
Suppose that it is only ν1(λ) that is non negligible. Further, suppose A is

allowed ℓ(λ) queries to the encryption oracle where ℓ is a polynomial. We use a
hybrid reduction B to the security of HECdirect that shows that∣∣∣Pr[PADAA

1 (1
λ) = 0

]
− Pr

[
PADAA

2 (1
λ) = 0

]∣∣∣
is negligible. In hybrid i, the first i queries the adversary makes to the oracle
are answered as it would in PADA1, and the rest are answered as it would be in
PADA2.

The reduction functions as follows:

Privacy-Preserving Blueprints 29

1. B obtains hecpar from its challenger, It then uses it in the generation of Λ
in SimSetup.

2. When given (x, rA, pkA) by A, it runs the BB extractor to obtain (x, rX)
3. It samples j ←$ {0, 1, . . . , ℓ(λ)− 1}.
4. For the first j queries that A makes, B answers as it would in PADA2.
5. For query j, B sends (f, x, rX , y) to its challenger and obtains Ẑ and runs

Sim(Ẑ) for πU.
6. For the rest of the queries, B answers as it would in PADA1.

If we are in DirectZ0 and extraction succeeds, then the adversary’s view is
identical to hybrid j. Similarly, the adversary’s view is identical to hybrid j + 1
if B is in DirectZ1. Note that hybrid 0 is PADA1 and hybrid ℓ(λ) is PADA2. By
the hybrid argument, we get that:

ν1(λ) = ℓ(λ)
∣∣Pr[DirectZB,0(1λ) = 0

]
− Pr

[
DirectZB,1(1λ) = 0

]∣∣
= ℓ(λ)ν(λ)

for some negligible function ν, sinceHECdirect is secure. This is still negligible.

Lemma 6. Let Ψ1 = (S1,P1,V1) be a NIZK proof system and Ψ2 = (S2,P2,
V2) be a g∗-BB-PSL simulation extractable NIZK along with an efficiently com-
putable f∗ such that f∗(x, g∗(y)) = f(x, y). Let HEC be correct with adversarial
evaluation randomness and satisfy secure of x and y from third parties. Then
our proposed construction achieves privacy with honest auditor.

Lemma 6. Let Ψ1 = (S1,P1,V1) be a NIZK proof system and Ψ2 = (S2,P2,
V2) be a g∗-BB-PSL simulation extractable NIZK along with an efficiently com-
putable f∗ such that f∗(x, g∗(y)) = f(x, y). Let HEC be correct with adversarial
evaluation randomness and satisfy secure of x and y from third parties. Then
our proposed construction achieves privacy with honest auditor.

Proof. Let (SimS1,Sim1) be the setup and simulator functions that satisfies
soundness and zero-knowledge for Ψ1, and (SimS2,Sim2) be the setup and simu-
lator functions along with extractor pairs (Ext2,ExtSL2) that satisfies black-box
with partial straight line simulation extractability for g∗ for Ψ2 where ExtSL2
is the straightline extractor for g∗. Recall that f∗ is an efficiently computable
function such that f∗(x, g∗(y)) = f(x, y).

We shall construct SimSetup and Sim as follows:

1. SimSetup(cpar , state) runs HECsetup, but also sets up statei to contain the
state and query list QSi

of the simulated PoK setup OSi
available to A, Pi,

and Vi, for i ∈ {1, 2}. The statei will additionally be programmed by Simi

while QS2
will be used for extraction.

2. SimEscrow(state, Λ1, pkA,Commit(y; r)) first samples y ←$ domainf,y and ob-

tains Ẑ ← HECeval(hecpar , f,X , y). Afterwards, it runs Sim2 to generate
πU. Finally it outputs Z = (Ẑ, πU).

30 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Consider the following games:

– Game 0: The privacy with honest auditor game defined in Figure 3.4 where
b = 0.

– Game 1: Here, we change OEscrow
0 (y, r) to do the following:

1. First, it runs Z ← Escrow(Λ, pkA, y, r)
2. Then, it sets M [C, Z] = f(x, y) and returns Z

Essentially, this caches every OEscrow result for decryption.
– Game 2: In this game, we exchange Setup with SimSetup. Then, we change

oracle OEscrow
0 of the game to run an algorithm identical to Escrow, but instead

of generating πU with P2, it generates it by running Sim2.
– Game 3: We change ODecrypt to an alternate algorithm O′Decrypt similar to

O1 in the blueprint hiding game described in Figure 3.2:

1. First check if M [C,Z] exists, and if so return M [C,Z]. This handles the
simulated escrows.

2. Then check if VerEscrow(Λ, pkA,C, Z) = reject, and if so return ⊥.
3. Then it obtains α using ExtSL
4. Finally, it returns f∗(x, α).

– Game 4: In this game, we use Sim1 to simulate the proof πA. Everything
else stays the same.

– Game 5: In this game we change to using OEscrow
1 .

– Game 6: Now, we change to using P1 to generate the proof πA.
– Game 7: Now, we change back to using ODecrypt. Notice that this is identical

to the privacy with honest auditor game defined in Figure 3.4 where b = 1.

Let A be a fixed PPT adversary, and let PWHAA
i denote A’s interaction in

Game i. We claim that
∣∣∣Pr[PWHAA

0 (1
λ) = 0

]
− Pr

[
PWHAA

2 (1
λ) = 0

]∣∣∣ = ν(λ)

for some negligible function ν.
For Game 0 and Game 1, we claim that the output of ODecrypt in both games

agree with overwhelming probability, which can be shown via a reduction to
soundness of the construction defined in Figure 3.1. Consider a Game 0.5 where
we use the following decrypt oracle:

1. Runs g ← Decrypt(Λ, skA,C, Z)
2. Check if M [C,Escrow], and if g ̸= M [C,Escrow] then halts and return ∅.
3. Otherwise, return g.

Additionally, instead of only recording f(x, y) in M , it also records y, r but does
not use this in any computation and M [C, Z] should only return f(x, y). We see
that if Game 0.5 does not end with ∅, then its behavior is identical to Game 0

or Game 1. We claim that the probability Pr
[
PWHAA

0.5(1
λ) = ∅

]
is negligible by

a reduction B to the the soundness game in Figure 3.1. B functions identically
to A’s challenger in Game 0.5 with the following modifications:

1. Upon receiving Λ from its challenger, it passes that to A.
2. When receiving (x, rA) from A, it passes it to the challenger.

Privacy-Preserving Blueprints 31

3. When about to return ∅, instead give its challenger the values (C, y, r, Z)
that was used to call ODecrypt.

We see that A’s view of this game is identical to that of Game 0.5. Additionally,
B succeeds in the reduction (produce an escrow where verification passes but
decrypts to an incorrect value) if it would have outputted ∅ in Game 0.5. How-
ever, we know that B’s probability of success must be negligible by Lemma 3,

and so does Pr
[
PWHAA

0.5(1
λ) = ∅

]
.

For Game 1 and Game 2, we can construct a reduction B to the zero knowl-
edge game for NIZK2 as described in Figure 2.1. B acts as the challenger in Game
1 except the following modifications.

1. B receives (S′,P′) from its challenger and in S, it assigns S2 ← S′.
2. When performing Escrow in OEscrow, instead of computing πU with P2, B

runs πU ← P′((pkA, Ẑ,Commit(y; r), Λ), (y, r, r′)) where r′ is the value used
to compute Ẑ.

If B is interacting in NIZKA,0, then A is interacting with its challenger in Game
1. Similarly, when B is interacting in NIZKA,1, then A is interacting with its
challenger in Game 2. Note that, although the challenger in Game 2 simply runs
Sim2, the challenger for B will always pass the if check in OP because we always
provide it a valid witness-statement pair. We get that:∣∣∣Pr[PWHAA

1 (1
λ) = 0

]
− Pr

[
PWHAA

2 (1
λ) = 0

]∣∣∣ =∣∣∣Pr[NIZKB,0(1λ) = 0
]
− Pr

[
NIZKB,1(1λ) = 0

]∣∣∣ = ν(λ)

for some negligible function ν as required, since NIZK2 is zero-knowledge.
For Game 2 and Game 3, we claim that A cannot cause the output of ODecrypt

and O′Decrypt to disagree with non negligible probability. Consider a Game 2.5
where the challenger instead of running just ODecrypt or O′Decrypt, it runs both
and outputs the answer if both agrees, or ends the game and output ∅ otherwise.
We claim that Pr

[
PWHAA

2.5(1
λ) = ∅

]
is negligible.

For the sake of simplicity, we assume that all queries A made to the decryp-
tion oracle contains (C, Z) such that VerEscrow(Λ, pkA,C, Z) = accept. This is
something that A itself can check, and if a query is made that does not fit this
description, then the O will return with ⊥ as both ODecrypt and O′Decrypt runs
this verification and return ⊥ when it fails. Consider two cases where ∅ is the
output: when extraction succeeds and when it fails.

We know by simulation extractability of Ψ2 that the later occurs with negli-
gible probability. Otherwise, we can construct a reduction B to black-box partial
straightline simulation extractability of Ψ2. B runs exactly as the challenger in
Game 2.5, but when O′Decrypt returns failure, it halts execution and return the
corresponding (Λ,Z,C, pkA) tuple that cases extraction to fail. We know Ψ2 is
simulation extractible, so B’s advantage is negligible, and so is the probability
of failure in Game 2.5 as long as the adversary is probabilistic polynomial time.

32 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Consider the case where ∅ is returned and extraction does not fail, denoted
Ebadproof . This happens when Decrypt does not return f(x, y) where y is the
result of running Ext in O′Decrypt. We claim that this happens with negligible
probability. Otherwise, we can perform a reduction B to the correctness of HEC.
B functions the same as the challenger in Game 2.5, with the following modifi-
cations:

1. It receives hecpar from its challenger, and uses it in generating Λ.
2. It receives (x, rA), passes f, x to its challenger and uses the returned X, d to

generate (pkA, skA).
3. Upon a decryption oracle query with values (C,Z) where extraction does not

fail but the outputs disagrees, it pauses execution of A. Further, B uses Ext2
to extract values (y, r, rẐ) from Z via rewinding, Then, it returns (y, rẐ) to
the challenger.

Notice that, up to the point that the event in interest occurs, B acts identically
as A’s challenger in Game 2.5. Additionally, when the event occurs, B returns a
valid reduction. By correctness of HEC, we get that:

Pr[Ebadproof] = Pr
[
HECcorrectB(1λ) = failure

]
= ν(λ)

for some negligible function ν, as required.
Therefore, the decryption oracle in Game 2.5 agrees with that of Game 2 and

Game 3 with overwhelming probability.
The logic for Game 3 and 4 is similar to that of Game 1 and Game 2 – a

reduction to the zero knowledge property of Ψ1 described in Figure 2.1. Here,
B receives (S′,P′) and assigns S1 ← S′ in SimSetup. When computing the proof
πA, it uses P

′. At the end, it outputs whatever A outputs.
When B is in NIZKB,0, B acts as A’s challenger in Game 3. Likewise, it acts

as A’s challenger in Game 4 if B is in NIZKB,1. Therefore, we get:∣∣∣Pr[PWHAA
3 (λ) = 0

]
− Pr

[
PWHAA

4 (λ) = 0
]∣∣∣ =∣∣∣Pr[NIZKB,0(λ) = 0

]
− Pr

[
NIZKB,1(λ) = 0

]∣∣∣ = ν(λ)

for some negligible function ν as required, since NIZK1 is zero-knowledge.
For Game 4 and Game 5, we can show the adversary performs negligibly

different by a series of hybrid arguments. Suppose A is allowed to submit ℓ(λ)
queries to the Escrow oracle where ℓ is a polynomial. Let Hybrid i, denoted
PWHA4,i, defined for i ∈ [0, ℓ(k)] be the same as Game 5, but for the first i
calls to OEscrow, the challenger answers with OEscrow, and for subsequent calls it
answers with O′Escrow. We see that Game 4 is the same as PWHA4,0 and Game
5 is the same as PWHA4,ℓ(λ).

Consider the following reduction B to the security of (x, y) as described in
Figure 4.1:

1. B receives hecpar and uses it in generating Λ.

Privacy-Preserving Blueprints 33

2. B outputs (f, x, x) to the challenger when it receives (x, rA) and receives X .
It then uses Sim1 to generate πA corresponding to X and computes pkA =
(Λ,X , CA = Commit(x; rA), πA).

3. B then samples j ←$ [0, ℓ(λ)) uniform randomly.
4. For the first j queries to OEscrow, it computes Ẑ asHECeval(hecpar , f,X , y).
5. For the (j+1)th query, B samples y′ ←$ domainf,y and outputs (y′, y) to its

challenger. It then receives Ẑ from the challenger, and computes πU using
Sim2 on this Ẑ.

6. For the next queries, it computes Z with Sim the same way as in OEscrow
1 .

We see that, in SecXYB
0 , B is identical to A’s challenger in PWHA4,j . In

SecXYB
1 , B is identical to A’s challenger in PWHA4,j+1. By a hybrid argument,

we get that: ∣∣∣Pr[PWHAA
4 (1

λ) = 0
]
− Pr

[
PWHAA

5 (1
λ) = 0

]∣∣∣ =∣∣∣Pr[PWHAA
4,0(1

λ) = 0
]
− Pr

[
PWHAA

4,ℓ(λ)(1
λ) = 0

]∣∣∣ =
ℓ(λ)

∣∣Pr[SecXYB
0 (1

λ) = 0
]
− Pr

[
SecXYB

1 (1
λ) = 0

]∣∣ = ℓ(λ)ν(λ)

for some negligible function ν since HEC is secure. This is still negligible, as
required.

The argument for Game 5 and 6 is identical to that of Game 3 and Game 4.
The argument for Game 6 and 7 is identical to that of Game 2 and Game

3, except the reduction would make use of the simulator SimS used in OEscrow
1 .

Everything else about the reduction stays the same.

6 Construction of HEC for fk from ElGamal

Let domainf,y = {0, 1}ly . We require, for the sake of security, that 2ly be super-
polynomial in terms of our security parameter λ. Additionally, we require the
group we use in ElGamal has prime cardinality q ≥ 2ly+1. Let function lobits :
{0, 1}ly → {0, 1}k be defined as follows:

lobitsk(y) = y mod 2k

There, lobitsk(y) can be interpreted as an identifier for a user with private input
y. lobitsk(y) returns the k least significant bits of y if it is interpreted as a binary
integer. We assume implicit conversion between binary strings and integers.

We will construct a Homomorphic Enough Encryption using ElGamal for the
function family F = {fk} with x ⊆ domainf,y.

fk(x, y) =

{
y lobitsk(y) ∈ x

∅ otherwise

Intuitively, the function reveals y if lobitsk(y) ∈ x, and nothing otherwise.

34 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

We use bold font to indicate that x is a set of values. We sometimes interpret
it as a vector x1, . . . , x|x| by imposing an arbitrary order. x can be interpreted
as a watchlist that reveals information about the users when used with fk. As a
caveat, for our construction, particularly HECdec, to be polynomial time, we
require that 2ly−k is polynomial to our security parameter λ. Additionally, lists
in domainf,x must have a fixed length, otherwise it is possible to distinguish
between encryptions of lists of different lengths.

The idea is that with ElGamal, HECenc can encrypt a polynomial P that
has roots at the elements of x as well as another element s ∈ Zq\

{
0, 1, . . . , 2k − 1

}
.

Then, HECeval can compute an encryption of y that is additively blinded by
a randomized evaluation of the encrypted P at point lobitsk(y). If the values
match, the blinding value is an encryption of 0. Thus, HECdec can decrypt
this encrypted evaluation and either obtain a random value or y.

6.1 ElGamal construction

Figure 6.1 describes our ElGamal construction for a HEC for the aforementioned
functions fk. Here, (KGen,Enc,Dec) are the key generation, encryption, and
decryption algorithms respectively for the ElGamal cryptosystem. Recall that ⊕
is the homomorphic operator for ElGamal ciphertexts.

Our construction will employ ciphertexts Ci ← Enc(gPi) that encrypt the co-

efficients Pi of the polynomial P = (χ−s)
∏|x|

i=1(χ−xi), that is P =
∑|x|+1

i=0 Piχ
i.

Theorem 3. Under the decisional Diffie-Hellman assumption, our construction
above constitutes a homomorphic-enough encryption for fk.

We prove each of the required security properties in a separate lemma.

Lemma 7. Under the decisional Diffie-Hellman assumption, our HEC scheme
for fk satisfies correctness with adversarial evaluation randomness.

Proof. Let A be any fixed PPT adversary. We can construct the reduction B to
the CPA security of ElGamal as described in Figure A.1. B creates two poly-

nomials Pj ← (χ − s0)
∏|x|

i=1(χ − xi), j ∈ {0, 1}. Let Pj,i be their coefficients.
It obtains the encryption of the coefficients of one of these polynomials via the
ElGamal challenger: Ci ← Ob(g

P0,i , gP1,i). This is described in more detail in
Figure C.1. Observe that, regardless of b, B functions identical to A’s challenger.

Let extend(x) denote the set {y|y ∈ domainf,y ∧ lobitsk(y) ∈ x}. Elements y
of extend(x) have the property that P (lobitsk(y)) = 0, and decrypts to y if it is
used in HECeval.

Here, we suppose that HECeval uses rZ by partitioning it into r used for
randomizing the encrypted polynomial evaluation and rEnc to run Enc on y.

Consider the case where A succeeds in the HECcorrect experiment. We
know that, for y chosen by A, it is not the case that lobitsk(y) ∈ x. Otherwise,
Pb(lobitsk(y)) = 0 and HECeval’s output always decrypts to y no matter the r
value chosen. As sb > 2k, lobitsk(y) cannot be sb.

Privacy-Preserving Blueprints 35

HECenc(hecpar , fk,x)

1 : (pkE , skE)← KGen(1λ)

2 : s←$ Zq \
{
0, 1, . . . , 2k − 1

}
3 : P ← (χ− s)

|x|∏
i=1

(χ− xi)

4 : for i in{0, . . . , |x|+ 1}

5 : Ci ← Enc(pkE , g
Pi)

6 : return (X = (pkE ,C0, . . . ,C|x|+1),

7 : d = (skE , fk,x)))

HECdec(hecpar , d = (skE , fk,x), Z)

1 : D ← Dec(skE , Z1)

2 : for y in domainf,y ∧ lobitsk(y) ∈ x

3 : if gy = D

4 : return y

5 : return ∅

HECeval(hecpar , fk,X , y)

1 : parse X = (pkE ,C0, . . . ,C|x|+1)

2 : eval←
|x|+1⊕
i=0

(Ci)
lobitsk(y)

i

3 : enc← Enc(pkE , g
y)

4 : r ←$ Zq

5 : return Z = evalr ⊕ enc

HECdirect(hecpar ,X , z)

1 : parse X = (pkE ,C0, . . . , C|x|+1)

2 : if z = ∅
3 : β ←$ Zq

4 : return Enc(pkE , g
β)

5 : return Enc(pkE , g
z)

Fig. 6.1: ElGamal instantiation of a Homomorphic Enough Cryptosystem

Therefore, y must be a value for which Pb(lobitsk(y)) ̸= 0. Additionally, since
A succeeds, it must be that Decrypt returns something other than ∅. Therefore,
we know that lobitsk(Pb(lobitsk(y))r + y) ∈ x.

Let’s denote b as 1−b. Since Pb is generated independently of the adversary’s
view, we can imagine a different scenario where sb and Pb are generated after
all of A’s responses. Here, lobitsk(Pb(lobitsk(y))r + y) ∈ x occurs with the same
probability as in our HEC correctness experiment. We claim that this probability
is negligible.

Suppose A chose values y, r,x. Consider the event E:

E = [lobitsk(Pb(lobitsk(y))r + y) ∈ x]

= [Pb(lobitsk(y))r + y ∈ extend(x)]

There are at most 2ly−k|x| values for Pb(lobitsk(y)) such that the equation corre-
sponding to E holds. Fixing Pb(lobitsk(y)), along with x also uniquely identifies
a polynomial Pb since y ̸∈ extend(x). This is because doing so gives us |x| + 1
points on the polynomial, and we know a degree n polynomial can be uniquely
identified by n unique points on the polynomial. But we know that there are
q − 2k unique polynomials Pb can be due to how we generate the root sb, and
each occurs with the same probability. Therefore, the probability that the event

E happens is at most: 2ly−k|x|
q−2k

. We know that the numerator is a product of two

36 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

IND-CPAC,b(1
λ)

1 : (pkE , skE)←$ KGen(1λ)

2 : return COb(pkE ,·,·)(1λ, pkE)

Ob(pkE ,m0,m1)

1 : return Enc(pkE ,mb)

BOb(·,·)(1λ, pkE)

1 : hecpar ← HECsetup(λ)

2 : (f,x, stateA)← A(1λ, hecpar)
3 : if f ∈ F,x ∈ domainf,x

4 : s0 ←$ Zq \
{
0, 1, . . . , 2k − 1

}
5 : s1 ←$ Zq \

{
0, 1, . . . , 2k − 1

}
6 : P0 ← (χ− s0)

|x|∏
i=1

(χ− xi)

7 : P1 ← (χ− s1)

|x|∏
i=1

(χ− xi)

8 : for i in {0, . . . , |x|+ 1}

9 : Ci ← Ob(g
P0,i , gP1,i)

10 : X ← (pkE ,C0, . . . ,C|x|+1)

11 : (y, rZ)← A(stateA, X)

12 : if y ∈ domainf,y

13 : parse rZ = (r, rEnc)

14 : y0 ← P0(lobitsk(y))r + y

15 : y1 ← P1(lobitsk(y))r + y

16 : for b′ in{1, 0}
17 : if (lobitsk(y) ̸∈ x ∪ {sb′}) ∧ (lobitsk(yb′) ∈ x)

18 : return b′

19 : return 0

20 : return 0

21 : return 0

Fig. 6.2: Reduction from HEC correctness to IND-CPA

values that are polynomial to the security parameter λ, and the denominator is
at least 2k, which is super polynomial in λ. Therefore, the above probability is
negligible.

Suppose that A succeeds with probability p(λ). With b = 0, B outputs 1
with probability equal to some negligible ν(λ) as argued above. With b = 1,

Privacy-Preserving Blueprints 37

B outputs 1 with probability p(λ). By CPA security of ElGamal, we know that
|p(λ)− ν(λ)| is also negligible, so p is a negligible function. Therefore, A succeeds
with negligible probability, as required.

IND-CPAB,b(1
λ)

1 : (pkE , skE)←$ KGen(1λ)

2 : return BOb(pkE ,·,·)(1λ, pkE)

Ob(pkE ,m0,m1)

1 : return Enc(pkE ,mb)

BOb(·,·)(1λ, pkE)

1 : hecpar ← HECsetup(λ)

2 : (f,x0,x
′, state)← A(hecpar)

3 : s0 ←$ Zq \
{
0, 1, . . . , 2k − 1

}
4 : s1 ←$ Zq \

{
0, 1, . . . , 2k − 1

}
5 : P = (χ− s0)

|x|∏
i=1

(χ− xi)

6 : P ′ = (χ− s1)

|x′|∏
i=1

(χ− x′
i)

7 : for i in{0, |x|+ 1}

8 : Ci = Ob(g
Pi , gP

′
i)

9 : X = (pkE ,C0, . . . , C|x|+1)

10 : return A(hecpar ,X , state)

Fig. 6.3: Reduction from security of x to IND-CPA

Lemma 8. Our ElGamal construction satisfies Security of x

Proof. Let A be any probabilistic polynomial algorithm. We shall construct a re-
duction B to CPA security of ElGamal as described in figure C.2. Since ElGamal
is CPA secure, we get that:

Pr
[
IND-CPAB,0(1

λ) = 0
]
− Pr

[
IND-CPAB,1(1

λ) = 0
]
| = ν(λ)

Pr
[
SecXA

0 (λ) = 0
]
− Pr

[
SecXA

1 (λ) = 0
]
| = ν(λ)

for some negligible function ν, as required.

38 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

IND-CPAC,b(1
λ)

1 : (pkE , skE)←$ KGen(1λ)

2 : return COb(pkE ,·,·)(1λ, pkE)

Ob(pkE ,m0,m1)

1 : return Enc(pkE ,mb)

COb(·,·)(1λ, pkE)

1 : hecpar ← HECsetup(1λ)

2 : (f,x,x1, state)← A(hecpar)
3 : if f ∈ F,x0,x1 ∈ domainf,x

4 : s0 ←$ Zq \
{
0, 1, . . . , 2k − 1

}
5 : s1 ←$ Zq \

{
0, 1, . . . , 2k − 1

}
6 : P0 ← (χ− s0)

|x|∏
i=1

(χ− x0,i)

7 : P1 ← (χ− s1)

|x|∏
i=1

(χ− x1,i)

8 : for i in{0, |x0|+ 1}

9 : Ci ← Ob(g
P0,i , gP1,i)

10 : X ← (pkE ,C0, . . . ,C|x0|+1)

11 : (y0, y1, state)← A(X , state)

12 : if y0, y1 ∈ domainf,y

13 : eval← Ob(pkE , g
P0(lobitsk(y0)), gP1(lobitsk(y1)))

14 : enc← Ob(pkE , y0, y1)

15 : r ←$ Zq

16 : Z ← evalr ⊕ enc

17 : return A(Z, state)
18 : return A(⊥, state)
19 : return A(⊥, state)

Fig. 6.4: Reduction from security of XY to IND-CPA

Lemma 9. Our ElGamal construction achieves Security of x and y from
third parties

Proof. Let A be a fixed p.p.t. algorithm. We shall construct a reduction B as
described in figure C.3. Note that B acts identically as A’s challenger in the
SecXY game in Figure 4.1. In particular, X is computed identically as how
A’s challenger would, and we claim that Z is distributed identically as if A’s
challenger would have computed it.

Privacy-Preserving Blueprints 39

The distribution of Z in our reduction B is:{
(α, β, r)←$ Z3

q : (gαr, gPb(lobitsk(yb))rhαr)⊕ (gβ , gyhβ)
}

=
{
(α, β, r)←$ Z3

q : (gαr+β , gPb(lobitsk(yb))r+yhαr+β)
}

=
{
(α, β, r)←$ Z3

q : (gβ , gPb(lobitsk(yb))r+yhβ)
}

since β is sampled uniformly over Zq and so is the distribution of β + αr.
Let ri denote the randomness used to encrypt Ci for Xb. The distribution of

Z in SecXY can be expressed as:{
(β, r)←$ Z2

q : (g(
∑|x|+1

i=0 rilobitsk(y)
i)r+β , g(

∑|x|+1
i=0 Pilobitsk(y)

i)r+yh(
∑|x|+1

i=0 rilobitsk(y)
i)r+β)

}
And since β is sampled uniformly from Zq, then so is the distribution of β +

(
∑|x|+1

i=0 rilobitsk(y)
i)r. So we get:{

(β, r)←$ Z2
q : (gβ , g(

∑|x|+1
i=0 (Pb)ilobitsk(y)

i)r+yhβ)
}

{
(β, r)←$ Z2

q : (gβ , gPb(lobitsk(y))r+yhβ)
}

which is identical to our distribution of Z in B.
Since B is identical to A’s challenger, we get:∣∣Pr[IND-CPAB,0(1

λ) = 0
]
− Pr

[
IND-CPAB,1(1

λ) = 0
]∣∣ = ν(λ)∣∣∣Pr[SecXYA

0 (λ) = 0
]
− Pr

[
SecXYA

1 (λ) = 0
]∣∣∣ = ν(λ)

as required.

Lemma 10. Our ElGamal construction achieves Security of DirectZ.

Proof. Here, we can show that Z0 and Z1 in the experiment in Figure 4.1 are
identically distributed, regardless of the value of X and x. From the proof in
Theorem 13, we get that the distribution of HECeval is as follows:{

(β, r)←$ Z2
q : (gβ , g(

∑|x|+1
i=1 Pilobitsk(y)

i)r+yhβ)
}

{
(β, r)←$ Z2

q : (gβ , gP (lobitsk(y))r+yhβ)
}

Similarly, we get that the distribution of HECdirect when lobitsk(y) ∈ X is as
follows: {

(β)←$ Z2
q : (gβ , gf(x,y)hβ)

}
And otherwise, it is an encryption of a random value, distributed as:{

(α, β)←$ Z2
q : (gβ , gαhβ)

}

40 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Now suppose we fix a y value. If lobitsk(y) ∈ X , then f(x, y) = y, and
P (lobitsk(y)) = 0, so we get that both distributions are uniform over all ElGamal
encryptions of gy.

Otherwise, if lobitsk(y) ̸∈ X , then f(x, y) = ∅. In DirectZ0, we know that
P (lobitsk(y)) ̸= 0 since lobitsk(y) cannot be one of the |x|+1 roots of x. This is
because we explicitly restrict the root to Zq \

{
0..2k − 1

}
which excludes the do-

main of lobitsk. We know that r is chosen uniform randomly, so P (lobitsk(y))r+y
is also uniformly distributed over Zq and the two distributions are identical.

6.2 NIZK for ElGamal Construction

In order to use our HEC construction in Figure 6.1 to construct our Generic
f -blueprint scheme in Figure 5.1, we need a BB simulation extractable proof
system for Ψ1 to prove knowledge of the witness in the following relation:{

x = (X , hecpar , f, CA, cpar),
w = (x, d, rX , rA)

∣∣∣ (X , d) = HECenc(hecpar , f,x; rX) ∧
CA = Commitcpar (x; rA)

}
For proving that the value s used to generate the polynomial P in HECenc
is sampled in the appropriate range, we employ Bulletproofs [11] . Apart from
this, the remaining building blocks of this relation are statements about the
message and randomness of ElGamal encryption and the opening of Pedersen
commitments that can be expressed as statements about discrete logarithms
representations in Reqrep. By Theorem 1, we have a BB simulation-extractible
NIZK proof system for Reqrep and in extension Ψ1.

For our specific construction, we assume that the auditor’s commitment CA

contains commitments to coefficients of the polynomial P ′ =
∏|x|

i=1(χ − xi). To
prove that we encrypted some polynomial P = (χ − s)P ′ involves proving that
P = χP ′ − sP ′. We first prove that we have properly encrypted the coefficients
of P ′. Then, we can exponentiate these encrypted values by s, effectively mul-
tiplying the coefficients by s. Since ElGamal is additively homomorphic in the
exponent, we can subtract the encrypted P ′s from a shifted encryption of P ′ to
form P . See Appendix D for more details.

Additionally, we require that there exists a f ′-BB-PSL simulation extractable
proof system for Ψ2 such that there exists an efficiently computable function f∗

where f∗(x, f ′(y)) = f(x, y) for all (f,x, y) ∈ F×domainf,x×domainf,y). Recall
that Ψ2 is used to prove the following relation:{

x = (Ẑ, hecpar , f,X,C, cpar),
w = (y, r, rẐ)

∣∣∣ Ẑ = HECeval(hecpar , f,X, y; rẐ) ∧
C = Commitcpar (y; r)

}
Similar to Ψ1, we need a range proof to prove that lobitsk(y) is used to generate
Eval in Ẑ. This can be done using Bulletproofs [11]. The rest of the building
blocks for the relation involves statements about ElGamal encryption and Ped-
ersen commitments, we can again be expressed as eqrep relation statement.

Theorem 1 guarantees a f(J, ·)-BB-PSL simulation extractable NIZK system
for eqrep, and in extension Ψ2. Recall that f(J,w) = {gwj : j ∈ J}. Here, if we

Privacy-Preserving Blueprints 41

choose J to be a singleton containing just the index corresponding to y in w, we
get a gy-BB-PSL simulation extractable NIZK system. Luckily, knowing x and
y is sufficient to compute f(x, y). Here, f∗(x, gy) can be computed similar to
HECdec in Figure 6.1. We first iterate over all y′ values such that lobitsk(y

′) ∈ x.
If gy

′
= gy, we return y′. If no such value exists, we return ∅. Since |x|2ly−k is

polynomial in λ, f∗ is efficiently computable.

See Appendix D for more details.

7 Construction of HEC for any f from Fully
Homomorphic Encryption

Definition 6 (Circuit-private (CP) fully homomorphic encryption (FHE)).
A set of algorithms (FHEKeyGen,FHEEnc,FHEDec,FHEEval) constitute a secure
fully homomorphic public-key encryption scheme [38,9,8,39] if:

Input-output specification FHEKeyGen(1λ, Λ) takes as input the security pa-
rameter and possibly system parameters Λ and outputs a secret key FHESK
and a public key FHEPK. FHEEnc(FHEPK , b) takes as input the public key
and a bit b ∈ {0, 1} and outputs a ciphertext c. FHEDec(FHESK , c) takes as
input a ciphertext c and outputs the decrypted bit b ∈ {0, 1}. FHEEval(FHEPK ,
Φ, c1, . . . , cn) takes as input a public key, a Boolean circuit Φ : {0, 1}n 7→
{0, 1}, and n ciphertexts and outputs a ciphertext cΦ; correctness (below)
ensures that cΦ is an encryption of Φ(b1, . . . , bn) where ci is an encryption
of bi.

Correctness of evaluation For any integer n (polynomial in λ) for any circuit
Φ with n inputs of size that is polynomial in λ, for all x ∈ {0, 1}n, the event
that FHEDec(FHESK , C) ̸= Φ(x) where (FHESK ,FHEPK) are output by
FHEKeyGen, c1, . . . , cn are ciphertexts where ci ← FHEEnc(FHEPK , xi), and
cΦ = FHEEval(FHEPK , Φ, c1, . . . , cn), has probability 0.

Security FHE must satisfy the standard definition of semantic security.

Compactness What makes fully homomorphic encryption non-trivial is the
property that the ciphertext cΦ should be of a fixed length that is indepen-
dent of the size of the circuit Φ and of n. More formally, there exists a
polynomial s(λ) such that for all circuits Φ, for all (FHESK ,FHEPK) out-
put by FHEKeyGen(λ) and for all input ciphertexts c1, . . . , cn generated by
FHEEnc(FHEPK , ·), cΦ generated by FHEEval(FHEPK , Φ, c1, . . . , cn) is at
most s(λ) bits long.

An FHE scheme is, additionally, circuit-private [38,47,7,30] for a circuit
family C for any probabilistic polynomial-time algorithm A, |pA,0−pA,1| = ν(1λ)
for a negligible ν, where for b ∈ {0, 1}, pA,b is the probability that the following
experiment outputs 0:

42 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

FHECircHideExpt(1λ)

(R,Φ0, Φ1, (x1, r1), . . . , (xn, rn))← A(1λ)
if Φ0 /∈ C ∨ Φ1 /∈ C ∨ Φ0(x1, . . . , xn) ̸= Φ1(x1, . . . , xn) : reject

(FHEPK ,FHESK) = FHEKeyGen(1λ;R)

for i ∈ {1, . . . , n} :
ci = FHEEnc(FHEPK , xi; ri)

Z0 ← FHEEval(FHEPK , Φ0, c1, . . . , cn)

Z1 ← FHEEval(FHEPK , Φ1, c1, . . . , cn)

return A(Zb)

Bibliographic note. Definitions of circuit-privacy in the literature come in differ-
ent flavors; we chose to formulate the definition in a way that makes it easiest
to prove Theorem 4 below. The strongest, malicious circuit-privacy [47,30], is
strictly stronger than what we give here; therefore, constructions that achieve it
automatically achieve the definition here. Constructions of circuit-private FHE
from regular FHE have been given by Ostrovsky et al. [47] and by Döttling and
Dujmović [30].

Similarly, we chose to formulate correctness as perfect correctness, rather
than allowing a negligible probability (over the choice of randomness for the key
generation, encryption, and evaluation) of a decryption error. Our construction
below also achieves HEC from schemes that are strongly correct, i.e. where the
probability of a decryption error is non-zero, but with high probability, no ef-
ficient adversary can find a public key and a set of ciphertexts and a circuit
that will cause a decryption error. Achieving strong correctness from the more
standard notion of correctness with overwhelming probability can be done with
standard techniques, see Appendix E.

Construction of HEC for any f from CP-FHE. For a Boolean function
g : {0, 1}ℓx × {0, 1}ℓy 7→ {0, 1}, an ℓy-bit string y and a value z ∈ {0, 1}2, let
Φg
y,z(x) be the Boolean circuit that outputs g(x, y) if z1 = 0, and z2 otherwise.

Recall that our goal is to construct a secure f -HEC scheme with a direct
encryption algorithm; suppose that the length of the output of f is ℓ; for 1 ≤
j ≤ ℓ, let fj(x, y) be the Boolean function that outputs the jth bit of f(x, y).
Suppose we are given an FHE scheme that is circuit-private for the families of

circuits {Cj} defined as follows: Cj = {Φ
fj
y,z(x) : y ∈ {0, 1}ℓy , z ∈ {0, 1}2}.

HECsetup(1λ) Generate the FHE parameters Λ, if needed.

HECenc(1λ, Λ, f, x) First, generate (FHESK ,FHEPK) ← FHEKeyGen(1λ, Λ).
Let |x| = n; set ci ← FHEEnc(FHEPK , xi). OutputX = (FHEPK , c1, . . . , cn),
and decryption key d = FHESK .

HECeval(hecpar , f,X, y) Parse X = (FHEPK , c1, . . . , cn). For j = 1 to ℓ,

compute Zj ← FHEEval(FHEPK , Φ
fj
y,00, c1, . . . , cn). Output Z = Z1, . . . , Zℓ.

HECdec(hecpar , d, Z) Output FHEDec(d, Z1), . . . ,FHEDec(d, Zℓ).

Privacy-Preserving Blueprints 43

HECdirect(hecpar , X, z) Parse X = (FHEPK , c1, . . . , cn). For j = 1 to ℓ, com-

pute Zj ← FHEEval(FHEPK , Φ
fj
0ℓ,1zj

, c1, . . . , cn). Output Z = Z1, . . . , Zℓ.

Theorem 4. If (FHEKeyGen,FHEEnc,FHEDec,FHEEval) is a fully-homomorphic

public-key encryption scheme that is circuit-private for circuit family {Cfj : f ∈
F} defined above, then our construction above constitutes a homomorphic-enough
encryption for the family F .

Proof. (Sketch) Correctness follows from the perfect correctness of FHE. Secu-
rity of x by semantic security of FHE. Security of x and y from third parties is
also by semantic security. Finally, the security of the direct encryption algorithm
follows by circuit privacy.

Combining the fact that circuit-private FHE exists if and only FHE exists,
and (as we saw earlier) the fact that HEC and simulation-extractable NIZK [29]
give us a secure blueprint scheme, we have the following result:

Corollary 1. If fully homomorphic encryption and simulation extractable NIZK
exist, then for any function f , secure f -blueprint scheme is realizable.

Acknowledgments

We thank Scott Griffy for helpful discussions. This research was supported by
NSF grant 2154170, and by grants from Meta.

References

1. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 255–270. Springer, Heidelberg,
August 2000.

2. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages
1087–1098. ACM Press, November 2013.

3. Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic frame-
work for the controlled release of certified data. In Security Protocols Workshop,
volume 3957 of Lecture Notes in Computer Science, pages 20–42. Springer, 2004.

4. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of LNCS, pages 614–629. Springer, Heidelberg, May 2003.

5. David Bernhard, Olivier Pereira, and BogdanWarinschi. How not to prove yourself:
Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 626–
643. Springer, Heidelberg, December 2012.

6. Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. https:
//toc.cryptobook.us/.

https://toc.cryptobook.us/
https://toc.cryptobook.us/

44 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

7. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE cir-
cuit privacy almost for free. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part II, volume 9815 of LNCS, pages 62–89. Springer, Heidelberg,
August 2016.

8. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.

9. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106.
IEEE Computer Society Press, October 2011.

10. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: To-
wards privacy in a smart contract world. In Joseph Bonneau and Nadia Heninger,
editors, FC 2020, volume 12059 of LNCS, pages 423–443. Springer, Heidelberg,
February 2020.

11. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer
Society Press, May 2018.

12. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: efficient periodic n-times anony-
mous authentication. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, Proc. 13th ACM Conference on Computer and Communica-
tions Security, pages 201–210. ACM, 2006.

13. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-cash. In
Ronald Cramer, editor, Advances in Cryptology — Eurocrypt 2005, volume 3494
of LNCS, pages 302–321. Springer, 2005.

14. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing account-
ability and privacy using e-cash (extended abstract). In Roberto De Prisco and
Moti Yung, editors, Proceedings of the 5th International Conference on Security
and Cryptography for Networks (SCN), volume 4116 of Lecture Notes in Computer
Science, pages 141–155. Springer, 2006.

15. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 93–118. Springer Verlag,
2001.

16. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In SCN 2002, volume 2576 of LNCS, pages 268–289, 2003.

17. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In CRYPTO 2004, volume 3152 of LNCS, pages 56–72,
2004.

18. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups (extended abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume
1294 of LNCS, pages 410–424. Springer, Heidelberg, August 1997.

19. Jan Leonhard Camenisch. Group Signature Schemes and Payment Systems Based
on the Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998.

20. Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer,
Heidelberg, August 2020.

21. David Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, pages
199–203. Plenum Press, 1982.

Privacy-Preserving Blueprints 45

22. David Chaum. Blind signature systems. In CRYPTO ’83, pages 153–156. Plenum,
1983.

23. David Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

24. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In
CRYPTO ’90, volume 403 of LNCS, pages 319–327, 1990.

25. David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, ed-
itor, EUROCRYPT’91, volume 547 of LNCS, pages 257–265. Springer, Heidelberg,
April 1991.

26. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
CRYPTO’94, volume 839 of LNCS, pages 174–187. Springer, Heidelberg, August
1994.

27. Ivan Damg̊ard. On σ-protocols. Available at http://www.daimi.au.dk/~ivan/

Sigma.ps, 2002.
28. Ivan Damg̊ard, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Orlandi, and

Luisa Siniscalchi. Balancing privacy and accountability in blockchain identity man-
agement. In Kenneth G. Paterson, editor, CT-RSA 2021, volume 12704 of LNCS,
pages 552–576. Springer, Heidelberg, May 2021.

29. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Heidelberg, Au-
gust 2001.

30. Nico Döttling and Jesko Dujmovic. Maliciously circuit-private FHE from
information-theoretic principles. Cryptology ePrint Archive, Report 2022/495,
2022. https://eprint.iacr.org/2022/495.

31. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84,
volume 196 of LNCS, pages 10–18. Springer, Heidelberg, August 1984.

32. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi.
On the non-malleability of the Fiat-Shamir transform. In Steven D. Galbraith and
Mridul Nandi, editors, INDOCRYPT 2012, volume 7668 of LNCS, pages 60–79.
Springer, Heidelberg, December 2012.

33. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86,
volume 263 of LNCS, pages 186–194. Springer, Heidelberg, August 1987.

34. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

35. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In CRYPTO ’97, volume 1294 of LNCS, pages
16–30, 1997.

36. Eiichiro Fujisaki and Tatsuaki Okamoto. Witness hiding protocols to confirm
modular polynomial relations. In The 1997 Symposium on Cryptograpy and In-
formation Security, Fukuoka, Japan, January 1997. The Institute of Electronics,
Information and Communcation Engineers. SCSI97-33D.

37. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel
Tschudi. Fiat–shamir bulletproofs are non-malleable (in the algebraic group
model). Cryptology ePrint Archive, Report 2021/1393, 2021. https://eprint.

iacr.org/2021/1393.

http://www.daimi.au.dk/~ivan/Sigma.ps
http://www.daimi.au.dk/~ivan/Sigma.ps
https://eprint.iacr.org/2022/495
https://eprint.iacr.org/2021/1393
https://eprint.iacr.org/2021/1393

46 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

38. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of STOC 2009, pages 169–178, 2009.

39. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

40. Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant law enforce-
ment access systems. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 553–583. Springer,
Heidelberg, October 2021.

41. Joe Kilian and Erez Petrank. Identity escrow. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 169–185. Springer, Heidelberg, August
1998.

42. Anna Lysyanskaya. Signature schemes and applications to cryptographic proto-
col design. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, September 2002.

43. Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems.
In Howard Heys and Carlisle Adams, editors, Selected Areas in Cryptography, vol-
ume 1758 of LNCS, 1999.

44. Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable sigma-
protocols in the global random-oracle model. Cryptology ePrint Archive, Report
2022/290, 2022. https://eprint.iacr.org/2022/290.

45. Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart Preneel,
editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 272–286. Springer, Hei-
delberg, June 2009.

46. C.Ãndrew Neff. A verifiable secret shuffle and its application to e-voting. In Proc.
8th ACM Conference on Computer and Communications Security, pages 116–125.
ACM press, November 2001.

47. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Ma-
liciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 536–553. Springer, Heidel-
berg, August 2014.

48. Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data.
In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 223–240.
Springer, Heidelberg, August 2005.

49. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 129–140. Springer, Heidelberg, August 1992.

50. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

A Deferred Preliminaries

A.1 IND-CPA security

An encryption scheme (KGen,Enc,Dec) is IND-CPA secure if for any PPT adver-
sary A participating in the experiment described in Figure A.1, the advantage

AdvIND-CPA
A (λ) =

∣∣∣Pr[IND-CPAA,0
Enc (1

λ) = 0
]
− Pr

[
IND-CPAA,1

Enc (1
λ) = 0

]∣∣∣ = ν(λ)

https://eprint.iacr.org/2022/290

Privacy-Preserving Blueprints 47

is some negligible function ν.

IND-CPAA,b
Enc (1

λ)

1 : (pk, sk)←$ KGen(1λ)

2 : return AOb
Enc(pk,·,·)(1λ, pk)

Ob
Enc(pk,m0,m1)

1 : return Enc(pk,mb)

Fig.A.1: IND-CPA game

Note that the standard definition for IND-CPA only allows an adversary
to query the oracle once. It can be shown that our definition for IND-CPA is
equivalent [6].

A.2 Black-Box (BB) vs. Straight-Line (SL) Simulation
Extractability

It is straightforward to see that black-box simulation extractability is as strong or
weaker than regular simulation extractability, because anything that an extractor
can do without black-box access to A it can also do with it (it just won’t use
it). It is somewhat less obvious that in fact the resulting flavor of knowledge
extraction is inferior, in the sense that a protocol that uses regular simulation
extractability may have better security properties than one that uses the black-
box flavor. The problem arises when the proof of security of such a protocol tries
to use the extractor: this extractor needs BB(A), which requires resetting the
adversary to a previous state and replaying its view. Sometimes (in some proofs
of security) that also requires resetting the overall security experiment, which
is something that a security reduction may not always be able to do. For that
reason, regular (straight-line) extraction is preferred, when it can be achieved.

Let us now formalize BB simulation extractability; as before, let Φ = (S,P,V)
be an NIZK proof system satisfying the zero-knowledge property above; let
(SimS,Sim) be the simulator. Φ is black-box simulation-extractable if there ex-
ists a polynomial-time extractor algorithm Ext such that for any PPT adversary
A participating in the game defined in Figure A.2, the advantage function ν(λ)
defined below is negligible. As before, Q denotes the query tape. QExt denotes
the setup query tape that records the queries, replies, and embedded trapdoors
of the simulated setup; this is explicitly recorded by OS. In fact, the game here
is identical to that in Figure 2.3, except now Ext also gets access to BB(A).

AdvNISimBBExtract
A (λ) = Pr

[
NISimBBExtractA(1λ) = 1

]
= ν(λ)

for some negligible function ν.

48 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

NISimBBExtractA(1λ)

1 : Q,QS ← []

2 : (x, π)← AÕS(·),OSim(·)(1λ)

3 : w← ExtBB(A)(QS,x, π)

4 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧ (x,w) ̸∈ R

OS(m) ÕS(m)

1 : state, h, τExt ← SimS(state,m)

2 : QS.add((m,h, τExt))

3 : return h, τExt

OSim(x)

1 : state, π ← Sim(state,x)

2 : Q.add((x, π))
3 : return π

Fig.A.2: NISimBBExtract game: τExt is only returned by ÕS(m)

B Detailed Correctness definitions for f-Blueprint
Scheme

Correctness of VerPK and VerEscrow: An f -blueprint scheme satisfies cor-
rectness of VerPK and VerEscrow, if the algorithm VerCorrectABlu(λ, x, rA, y, r) in
Figure B.1 always outputs 1.

VerCorrectBlu(λ, x, rA, y, r)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (pkA, skA)← KeyGen(Λ, x, rA)

4 : C ← Commitcpar (y; r)

5 : Z ← Escrow(Λ, pkA, y, r)

6 : return [VerPK(Λ, pkA, CA) = accept ∧ VerEscrow(Λ, pkA, C, Z) = accept]

Fig. B.1: Experiment VerCorrectBlu(λ, x, rA, y, r) with verification on honestly
generated escrow.

Correctness of Decrypt: An f -blueprint scheme satisfies correctness of Decrypt,
if the algorithm in Figure B.2 has the following output probability:

Pr[DecCorrectBlu(λ, x, rA, y, r) = 1] = 1− ν(λ)

for some negligible function ν and all inputs x, rA, y, r.

Privacy-Preserving Blueprints 49

DecCorrectBlu(λ, x, rA, y, r)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (pkA, skA)← KeyGen(Λ, x, rA)

4 : C ← Commitcpar (y; r)

5 : Z ← Escrow(Λ, pkA, y, r)

6 : m← Decrypt(Λ, skA, C, Z)

7 : return [m = f(x, y)]

Fig. B.2: Experiment DecCorrectBlu(λ, x, rA, y, r) with decryption on honestly
generated escrow.

C Deferred Proofs for ElGamal Instantiation

Lemma 11. Under the decisional Diffie-Hellman assumption, our HEC scheme
for fk satisfies correctness with adversarial evaluation randomness.

Proof. Let A be any fixed PPT adversary. We can construct the reduction B to
the CPA security of ElGamal as described in Figure A.1. B creates two poly-

nomials Pj ← (χ − s0)
∏|x|

i=1(χ − xi), j ∈ {0, 1}. Let Pj,i be their coefficients.
It obtains the encryption of the coefficients of one of these polynomials via the
ElGamal challenger: Ci ← Ob(g

P0,i , gP1,i). This is described in more detail in
Figure C.1. Observe that, regardless of b, B functions identical to A’s challenger.

Let extend(x) denote the set {y|y ∈ domainf,y ∧ lobitsk(y) ∈ x}. Elements y
of extend(x) have the property that P (lobitsk(y)) = 0, and decrypts to y if it is
used in HECeval.

Here, we suppose that HECeval uses rZ by partitioning it into r used for
randomizing the encrypted polynomial evaluation and rEnc to run Enc on y.

Consider the case where A succeeds in the HECcorrect experiment. We
know that, for y chosen by A, it is not the case that lobitsk(y) ∈ x. Otherwise,
Pb(lobitsk(y)) = 0 and HECeval’s output always decrypts to y no matter the r
value chosen. As sb > 2k, lobitsk(y) cannot be sb.

Therefore, y must be a value for which Pb(lobitsk(y)) ̸= 0. Additionally, since
A succeeds, it must be that Decrypt returns something other than ∅. Therefore,
we know that lobitsk(Pb(lobitsk(y))r + y) ∈ x.

Let’s denote b as 1−b. Since Pb is generated independently of the adversary’s
view, we can imagine a different scenario where sb and Pb are generated after
all of A’s responses. Here, lobitsk(Pb(lobitsk(y))r + y) ∈ x occurs with the same
probability as in our HEC correctness experiment. We claim that this probability
is negligible.

50 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

IND-CPAC,b(1
λ)

1 : (pkE , skE)←$ KGen(1λ)

2 : return COb(pkE ,·,·)(1λ, pkE)

Ob(pkE ,m0,m1)

1 : return Enc(pkE ,mb)

BOb(·,·)(1λ, pkE)

1 : hecpar ← HECsetup(λ)

2 : (f,x, stateA)← A(1λ, hecpar)
3 : if f ∈ F,x ∈ domainf,x

4 : s0 ←$ Zq \
{
0, 1, . . . , 2k − 1

}
5 : s1 ←$ Zq \

{
0, 1, . . . , 2k − 1

}
6 : P0 ← (χ− s0)

|x|∏
i=1

(χ− xi)

7 : P1 ← (χ− s1)

|x|∏
i=1

(χ− xi)

8 : for i in {0, . . . , |x|+ 1}

9 : Ci ← Ob(g
P0,i , gP1,i)

10 : X ← (pkE ,C0, . . . ,C|x|+1)

11 : (y, rZ)← A(stateA, X)

12 : if y ∈ domainf,y

13 : parse rZ = (r, rEnc)

14 : y0 ← P0(lobitsk(y))r + y

15 : y1 ← P1(lobitsk(y))r + y

16 : for b′ in{1, 0}
17 : if (lobitsk(y) ̸∈ x ∪ {sb′}) ∧ (lobitsk(yb′) ∈ x)

18 : return b′

19 : return 0

20 : return 0

21 : return 0

Fig. C.1: Reduction from HEC correctness to IND-CPA

Suppose A chose values y, r,x. Consider the event E:

E = [lobitsk(Pb(lobitsk(y))r + y) ∈ x]

= [Pb(lobitsk(y))r + y ∈ extend(x)]

Privacy-Preserving Blueprints 51

There are at most 2ly−k|x| values for Pb(lobitsk(y)) such that the equation corre-
sponding to E holds. Fixing Pb(lobitsk(y)), along with x also uniquely identifies
a polynomial Pb since y ̸∈ extend(x). This is because doing so gives us |x| + 1
points on the polynomial, and we know a degree n polynomial can be uniquely
identified by n unique points on the polynomial. But we know that there are
q − 2k unique polynomials Pb can be due to how we generate the root sb, and
each occurs with the same probability. Therefore, the probability that the event

E happens is at most: 2ly−k|x|
q−2k

. We know that the numerator is a product of two
values that are polynomial to the security parameter λ, and the denominator is
at least 2k, which is super polynomial in λ. Therefore, the above probability is
negligible.

Suppose that A succeeds with probability p(λ). With b = 0, B outputs 1
with probability equal to some negligible ν(λ) as argued above. With b = 1,
B outputs 1 with probability p(λ). By CPA security of ElGamal, we know that
|p(λ)− ν(λ)| is also negligible, so p is a negligible function. Therefore, A succeeds
with negligible probability, as required.

IND-CPAB,b(1
λ)

1 : (pkE , skE)←$ KGen(1λ)

2 : return BOb(pkE ,·,·)(1λ, pkE)

Ob(pkE ,m0,m1)

1 : return Enc(pkE ,mb)

BOb(·,·)(1λ, pkE)

1 : hecpar ← HECsetup(λ)

2 : (f,x0,x
′, state)← A(hecpar)

3 : s0 ←$ Zq \
{
0, 1, . . . , 2k − 1

}
4 : s1 ←$ Zq \

{
0, 1, . . . , 2k − 1

}
5 : P = (χ− s0)

|x|∏
i=1

(χ− xi)

6 : P ′ = (χ− s1)

|x′|∏
i=1

(χ− x′
i)

7 : for i in{0, |x|+ 1}

8 : Ci = Ob(g
Pi , gP

′
i)

9 : X = (pkE ,C0, . . . , C|x|+1)

10 : return A(hecpar ,X , state)

Fig. C.2: Reduction from security of x to IND-CPA

52 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Lemma 12. Our ElGamal construction satisfies Security of x

Proof. Let A be any probabilistic polynomial algorithm. We shall construct a re-
duction B to CPA security of ElGamal as described in figure C.2. Since ElGamal
is CPA secure, we get that:

Pr
[
IND-CPAB,0(1

λ) = 0
]
− Pr

[
IND-CPAB,1(1

λ) = 0
]
| = ν(λ)

Pr
[
SecXA

0 (λ) = 0
]
− Pr

[
SecXA

1 (λ) = 0
]
| = ν(λ)

for some negligible function ν, as required.

Lemma 13. Our ElGamal construction achieves Security of x and y from
third parties

Proof. Let A be a fixed p.p.t. algorithm. We shall construct a reduction B as
described in figure C.3. Note that B acts identically as A’s challenger in the
SecXY game in Figure 4.1. In particular, X is computed identically as how
A’s challenger would, and we claim that Z is distributed identically as if A’s
challenger would have computed it.

The distribution of Z in our reduction B is:{
(α, β, r)←$ Z3

q : (gαr, gPb(lobitsk(yb))rhαr)⊕ (gβ , gyhβ)
}

=
{
(α, β, r)←$ Z3

q : (gαr+β , gPb(lobitsk(yb))r+yhαr+β)
}

=
{
(α, β, r)←$ Z3

q : (gβ , gPb(lobitsk(yb))r+yhβ)
}

since β is sampled uniformly over Zq and so is the distribution of β + αr.
Let ri denote the randomness used to encrypt Ci for Xb. The distribution of

Z in SecXY can be expressed as:{
(β, r)←$ Z2

q : (g(
∑|x|+1

i=0 rilobitsk(y)
i)r+β , g(

∑|x|+1
i=0 Pilobitsk(y)

i)r+yh(
∑|x|+1

i=0 rilobitsk(y)
i)r+β)

}
And since β is sampled uniformly from Zq, then so is the distribution of β +

(
∑|x|+1

i=0 rilobitsk(y)
i)r. So we get:{

(β, r)←$ Z2
q : (gβ , g(

∑|x|+1
i=0 (Pb)ilobitsk(y)

i)r+yhβ)
}

{
(β, r)←$ Z2

q : (gβ , gPb(lobitsk(y))r+yhβ)
}

which is identical to our distribution of Z in B.
Since B is identical to A’s challenger, we get:∣∣Pr[IND-CPAB,0(1

λ) = 0
]
− Pr

[
IND-CPAB,1(1

λ) = 0
]∣∣ = ν(λ)∣∣∣Pr[SecXYA

0 (λ) = 0
]
− Pr

[
SecXYA

1 (λ) = 0
]∣∣∣ = ν(λ)

as required.

Privacy-Preserving Blueprints 53

IND-CPAC,b(1
λ)

1 : (pkE , skE)←$ KGen(1λ)

2 : return COb(pkE ,·,·)(1λ, pkE)

Ob(pkE ,m0,m1)

1 : return Enc(pkE ,mb)

COb(·,·)(1λ, pkE)

1 : hecpar ← HECsetup(1λ)

2 : (f,x,x1, state)← A(hecpar)
3 : if f ∈ F,x0,x1 ∈ domainf,x

4 : s0 ←$ Zq \
{
0, 1, . . . , 2k − 1

}
5 : s1 ←$ Zq \

{
0, 1, . . . , 2k − 1

}
6 : P0 ← (χ− s0)

|x|∏
i=1

(χ− x0,i)

7 : P1 ← (χ− s1)

|x|∏
i=1

(χ− x1,i)

8 : for i in{0, |x0|+ 1}

9 : Ci ← Ob(g
P0,i , gP1,i)

10 : X ← (pkE ,C0, . . . ,C|x0|+1)

11 : (y0, y1, state)← A(X , state)

12 : if y0, y1 ∈ domainf,y

13 : eval← Ob(pkE , g
P0(lobitsk(y0)), gP1(lobitsk(y1)))

14 : enc← Ob(pkE , y0, y1)

15 : r ←$ Zq

16 : Z ← evalr ⊕ enc

17 : return A(Z, state)
18 : return A(⊥, state)
19 : return A(⊥, state)

Fig. C.3: Reduction from security of XY to IND-CPA

Lemma 14. Our ElGamal construction achieves Security of DirectZ.

Proof. Here, we can show that Z0 and Z1 in the experiment in Figure 4.1 are
identically distributed, regardless of the value of X and x. From the proof in

54 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Theorem 13, we get that the distribution of HECeval is as follows:{
(β, r)←$ Z2

q : (gβ , g(
∑|x|+1

i=1 Pilobitsk(y)
i)r+yhβ)

}
{
(β, r)←$ Z2

q : (gβ , gP (lobitsk(y))r+yhβ)
}

Similarly, we get that the distribution of HECdirect when lobitsk(y) ∈ X is as
follows: {

(β)←$ Z2
q : (gβ , gf(x,y)hβ)

}
And otherwise, it is an encryption of a random value, distributed as:{

(α, β)←$ Z2
q : (gβ , gαhβ)

}
Now suppose we fix a y value. If lobitsk(y) ∈ X , then f(x, y) = y, and

P (lobitsk(y)) = 0, so we get that both distributions are uniform over all ElGamal
encryptions of gy.

Otherwise, if lobitsk(y) ̸∈ X , then f(x, y) = ∅. In DirectZ0, we know that
P (lobitsk(y)) ̸= 0 since lobitsk(y) cannot be one of the |x|+1 roots of x. This is
because we explicitly restrict the root to Zq \

{
0..2k − 1

}
which excludes the do-

main of lobitsk. We know that r is chosen uniform randomly, so P (lobitsk(y))r+y
is also uniformly distributed over Zq and the two distributions are identical.

D Technical Details of the NIZK proof systems for
ElGamal Instantiation of Generic f-blueprint Scheme

Recall that in our Generic f -Blueprint scheme from HEC in Figure 5.1, we need
a BB-extractible NIZK system for the following relation for Ψ1:{

x = (X , hecpar , f, CA, cpar),
w = (x, d, rX , rA)

∣∣∣ (X , d) = HECenc(hecpar , f,x; rX) ∧
CA = Commitcpar (x; rA)

}
In our instantiation found in Figure 6.1, in HECenc we first compute an El-
Gamal key pair using KGen. Then, we sample some s ∈ Zq \

{
0, 1, . . . , 2k − 1

}
.

Finally, we encrypt coefficients of the polynomial P = (χ− s)
∏|x|

i=1(χ− xi).
Recall also that we assume the commitment CA contains commitments to

coefficients of P ′ =
∏|x|

i=1 xi. More formally, let P ′
i denote the ith coefficient of

P ′, Then we have commitments CA = Commitcpar (P
′
0, P

′
1, . . . , P

′
|x|+1; rA).

Let Ψ be a NIZK proof system for Reqrep, we can construct Ψ1 with PΨ1
as

described in Figure D.1. We assume rX can be split into rE used in generating
pkE and rs used in generating the additional root s to the polynomial, and ri for
i ∈ 0, . . . , |x| used in encryptingCi. In Ψ1, we have a commitment to P ′, but have
to prove that we have encrypted (χ−s)P ′. We can express Pi = P ′

i−1−sP ′
i , which

gives us P ′
i−1 = Pi + sP ′

i that we can use to compute encryptions to coefficients
of P ′. We use this to compute an encryption of P ′ from the encryption of P and

Privacy-Preserving Blueprints 55

the root s and publicize it (effectively including it in the proof), along with proof
that it was computed from encrypted coefficients of P . This does not give away
information about s, otherwise we would violate the DDH assumption. Observe
that, other than proving s ≥ 2k, which can be done using Bulletproofs, all other
components of our proof system involves proof of equivalent discrete logarithm
representation.

PS
Ψ1

((hecpar , f, cpar ,X , CA), (x, d, rX , rA))

1 : parse X = (pkE ,C0, . . . ,C|x|+1)

2 : parse rX = (rE , rs)

3 : parse cpar = (g0, . . . , g|x|, H)

4 : e
rE←−− Zq

5 : (pkE , skE)← KGen(hecpar ; rE) = ((g, h = ge), e)

6 : s
rs←− Zq \

{
0, . . . , 2k − 1

}
7 : P ′ =

|x|∏
i=1

(χ− xi)

8 : P = (χ− s)P ′

9 : C′
|x| = C|x|+1

10 : r′|x| = r|x|+1

11 : for i ∈ {|x| − 1, . . . , 0}
12 : C′

i = Ci+1 ⊕ (C′
i+1)

s

13 : r′i = ri+1 + s · ri+1

14 : publish (C′
0, . . . ,C

′
|X |)

15 : π ← PoKΨ

{
w = (P ′

0, . . . , P
′
|x|, r0, . . . , r|x|+1, r

′
0, . . . , r

′
|x|, s, rA, e) :

16 : h = ge ∧ s ≥ 2k ∧ CA = HrA

|x|∏
i=0

g
P ′
i

i ∧

17 : C′
i = (gr

′
i , gP

′
ihr′i) for i ∈ {0, . . . , |x|}∧

18 : C0 = (C′
0)

s ∧Ci = C′
i−1 ⊕ (C′

i)
−s for i ∈ {1, . . . , |x|}

19 :
}

20 : return π, any published values

Fig.D.1: Instantiation of Ψ1 for ElGamal

56 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

Recall that Ψ2 is used to prove the following relation:{
x = (Ẑ, hecpar , f,X,C, cpar),
w = (y, r, rẐ)

∣∣∣ Ẑ = HECeval(hecpar , f,X, y; rẐ) ∧
C = Commitcpar (y; r)

}
In our instantiation found in Figure 6.1, in HECeval we first evaluate our
private input y on the encrypted polynomial C to obtain eval. Then, we encrypt
gy to enc, and sample r ←$ Zq. Finally, we output eval

r⊕enc. Our proof system
Ψ2, detailed in Figure D.2, also goes through its steps in this order, and again
utilizes Ψ for Reqrep. The verifier VS

Ψ2
works by first verifying the proof π, then

verify:

Ẑ = (t−UX

|x|+1∏
i=0

GAR
i , t−U ′

Y Z

|x|+1∏
i=0

HAR
i)

And that (U,O) and (U ′, O′) are openings to X
∏|x|+1

i=0 Ri and YZ
∏|x|+1

i=0 R′
i

respectively, both under base (g, h).
Let’s walk through PΨ2 . We deal with proving a = lobitsk(y) by first proving

a < 2k, then a ≡ y mod 2k, which is captured by 1 = gy−a(g2
k

)−m. Next,
the idea is that we are computing Pedersen commitments AR

i to air, that can

later be used to compute commitments to components of Cair
i composed with

some added noise (tρi , tρ
′
i). Additionally, we compute Pedersen commitments X,

Y , and Z where (X,Y Z) correspond to Enc(pkE , y; rEnc) composed with some
noise (tγX , tγY +γZ). After line 24, we reveal the cumulated noise’s exponents U
and U ′, which allows Ẑ to be revealed. This still perfectly hides our witness,
since a Pedersen commitment is hiding even if part of the opening is known. To
prove that the U and U ′ we reveal are indeed the cumulated noise, we generate
Pedersen commitments of the old noise captured in U and U ′, and reveal the
cumulative new noise O and O′, and we can verify that (U,O) and (U ′, O′) are
openings to the composition of the new Pedersen commitments.

When we refer to published commitments correctly computed in PoK, we
are indicating that whenever P runs publish on a commited value of the form
A ← CommitB,C(D,E), we include the line A = CommitB,C(D;E) in the PoK
statement on Line 38. In most of our calls to Commit, the arguments are all
either public or members of the witness, so we can directly including them in
the PoK statement. There is a slight nuance involving proving that GAR

i and
HAR

i are correctly computed. Here, we know that AR
i = CommitAi,h(r

′;βi) can

be expressed as AR
i = Commitg,h(a

ir;βi +
∑i

j=0 αj), which can be proven by
induction on i. We can instead construct a sigma protocol for equality of rep-
resentation of two Pedersen commitments, which also reduces to an instance of
Reqrep and therefore can be included in our proof.

Apart from the one range proof we need to use at the start to ensure a is
within range, the rest of the statements within the proof are instances of eqrep.
Therefore, this construction gives us a f(J, ·)-BB-PSL simulation extractable
NIZK proof system by Theorem 1.

Privacy-Preserving Blueprints 57

PS
Ψ2

((Ẑ, hecpar , f,X,C, cpar), (y, r, rẐ))

1 : parse rẐ = (r′, rEnc)

2 : parse X = (pkE ,C0, . . . ,C|x|+1)

3 : parse pkE = (g, h)

4 : t←$ G
5 : (α0, . . . , α|x|+1, β0, . . . , β|x|+1

6 : ρ0, . . . , ρ|x|+1, ρ
′
0, . . . , ρ

′
|x|+1

7 : δ0, . . . , δ|x|+1, δ
′
0, . . . , δ

′
|x|+1

8 : γX , γY , γZ , δX , δY , δZ)←$ Z4|x|+10
q

9 : a← lobitsk(y)

10 : m← ⌊ y
2k
⌋

11 : publish R← Commitg,h(r
′)

12 : publish A0 ← Commitg,h(1;α0)

13 : publish AR
0 = Commitg,h(r

′;β0)

14 : for i ∈ {1, . . . , |x|+ 1}
15 : publish Ai = CommitAi−1,h(a;αi)

16 : publish AR
i = CommitAi,h(r

′;βi)

17 : for i ∈ {1, . . . , |x|+ 1}
18 : parse Ci = Gi, Hi

19 : publish GAR
i ← CommitGi,t(a

ir′; ρi)

20 : publish HAR
i ← CommitHi,t(a

ir′; ρ′i)

21 : publish X ← Commitg,t(rEnc; γX)

22 : publish Y ← Commitg,t(y; γY)

23 : publish Z ← Commith,t(rEnc; γZ)

24 :

PΨ2 continued

24 : publish U ← γX +

|x|+1∑
i=0

ρi

25 : publish U ′ ← γY + γZ +

|x|+1∑
i=0

ρ′i

26 : for i ∈ {1, . . . , |x|}
27 : publish Ri ← Committ,g(ρi, δi)

28 : publish R′
i ← Committ,g(ρ

′
i, δ

′
i)

29 : publish X ← Committ,g(γX , δX)

30 : publish Y ← Committ,g(γY , δY)

31 : publish Z ← Committ,g(γZ , δZ)

32 : publish O = δX

|x|+1∏
i=0

33 : publish O′ = δY δZ

|x|+1∏
i=0

34 : π ← PoKΨ

{
w = (y, rA, r

′,

35 : rEnc, a,m, and all greek letters) :

36 : a < 2k ∧ 1 = gy−a(g2
k

)−m∧
37 : C = Commitcpar (y; rA)∧
38 : published commitments correctly computed

39 :
}

40 : return π, any published values

Fig.D.2: Instantiation of Ψ2 for ElGamal

E Achieving strongly correct FHE

The correctness requirement as stated in Definition 6 is stronger than stan-
dard correctness. Namely, we need to ensure that, for the specific circuit Φ
used in our construction, the probability that the adversary can find random
coins R for FHEKeyGen, and inputs x1, . . . , xn, and randomness r1, . . . , rn for
FHEEnc such that FHEDec(FHESK , C) ̸= Φ(x) where FHEPK ,FHESK) =
FHEKeyGen(1λ;R), ci = FHEEnc(FHEPK , xi; ri) and C = FHEEval(FHEPK , Φ,
c1, . . . , cn), is 0, i.e., the scheme is perfectly correct. Known constructions of FHE

58 Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen

either have perfect correctness or can be adapted to achieve it by bounding the
amount of random noise, and therefore stating correctness this way is justifiable.

If we allow a negligible probability that an adversary can make a decryption
error happen, then we get another correctness notion, let us refer to it as strong
correctness. It is easy to see that strong correctness is good enough for our
construction of HEC from CP-FHE: Strong correctness ensures that even in the
event when the adversary controls the choice of the keys and input ciphertexts,
as long as he is following the protocol, he cannot (with more than negligible
probability) create a situation in which decryption is incorrect; and therefore an
incorrect decryption event cannot leak information about the inputs.

Regular (not perfect or strong) correctness requires only that a decryption
error occurs negligibly often when keys are ciphertexts are selected honestly.
In the common-random-string model, strong correctness can be achieved from
regular correctness by standard techniques, which we describe here. Here is a
standard technique first seen in Naor’s commitment scheme. Let the circuit Φ be
fixed. Suppose that for a random public key and a random set of n ciphertexts,
the probability of incorrect decryption is p < 1/10. By the Chernoff bound,
repeated encryption and taking the majority when decrypting, we can transform
this cryptosystem into one whose probability (over the choice of randomness
for the public key and the set of input ciphertexts) of incorrect decryption is
2−(n+2)(λ+1).

Let the common random string consist of n+1 random strings ρ0, ρ1, . . . , ρn.
ρ0 has length ℓFHEKeyGen, where ℓFHEKeyGen is an upper bound on the number of
random bits needed for FHEKeyGen. For 1 ≤ i ≤ n, ρi has length ℓFHEEnc, where
ℓFHEEnc is an upper bound on the number of random bits needed for FHEEnc.

In order to generate a public key, sample a λ-bit random seed s0, and let R =
G(s0)⊕ ρ0; output (FHEPK ,FHESK) = FHEKeyGen(1λ;R) where G is a PRG
with appropriate lengths. In order to generate a the ith ciphertext, sample a λ-
bit random seed si, and let ri = G′(si)⊕ρi; output ci = FHEEnc(FHEPK , xi; ri)
where G′ is a PRG with appropriate lengths. Note that there are only 2(n+1)(λ+1)

ways of setting these random strings, and for each of them the probability that
truly random ρ′is are chosen so as to lead to a decryption error is 2−(n+2)(λ+1)

(since that’s the probability of a decryption error). Thus, by the union bound,
the probability that there exists a way to set the randomness for key generation
and ciphertexts so as to lead to a decryption error is 2(n+1)(λ+1)2−(n+2)(λ+1) =
2−λ−1, and the resulting FHE is strongly correct.

	Privacy-Preserving Blueprints

