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Abstract. Multivariate rule xi → fi, i = 1, 2, . . . , n, fi ∈ K[x1, x2, . . . , xn]
over commutative ring K defines endomorphism σn of K[x1, x2, . . . , xn]
into itself given by its values on variables xi. Degree of σn can be de-
fined as maximum of degrees of polynomials fi. We say that family σn,
n = 2, 3, . . . has trapdoor accelerator nT if the knowledge of the piece of
information nT allows to compute reimage x of y = σn(x) in time O(n2).
We use extremal algebraic graphs for the constructions of families of
automorphisms σn with trapdoor accelerators and (σn)−1 of large order.
We use these families for the constructions of new multivariate public
keys and protocol based cryptosystems of El Gamal type of Postquantum
Cryptography.
Some of these cryptosystems use as encryption tools families of endomor-
phisms σn of unbounded degree such that their restriction on the varieties
(K∗)n are injective. As usual K∗ stands for the multiplicative group of
commutative ring K with the unity. Spaces of plaintexts and ciphertexts
are (K∗)n and Kn. Security of such cryptosystem of El Gamal type rests
on the complexity of word decomposition problem in the semigroup of
Eulerian endomorphisms of K[x1, x2, . . . , xn].
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1 Introduction

Extremal algebraic graphs were traditionally used for the construction of stream
ciphers of multivariate nature (see [46] and further references). We introduce
the first graph based multivariate public keys with bijective encryption maps.
We hope that new recent results on algebraic constructions of Extremal Graph
Theory [49] will lead to many applications in Algebraic Cryptography which
includes Multivariate cryptography and Noncommutative Cryptography. Some
graph based algebraic asymmetrical algorithms will be presented in this paper.
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NIST 2017 tender starts the standardisation process of possible Post-Quantum
Public keys aimed for purposes to be (i) encryption tools, (ii) tools for digital
signatures (see [1]).

In July 2020 the Third Round of the competition started. In the category of
Multivariate Cryptography (MC) remaining candidates are easy to observe. For
the task (i) multivariate algorithm was not selected, single multivariate candidate
is ”The Rainbow Like Unbalanced Oil and Vinegar” (RUOV) digital signature
metho. As you see RUOV algorithm is investigated as appropriate instrument for
the task (ii). During Third Round some cryptanalitic instruments to deal with
ROUV were found (see [48]). That is why different algorithms were chosen at the
final stage. In July 2022 first four winners of Nist standardisation competition
were chosen. They all are lattice based algorithms.

Noteworthy that all multivariate NIST candidates were presented by multi-
variate rule of degree bounded by constant (2 or 3) of kind x1 → f1(x1, x2, . . . , xn),
x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn). In fact RUOV is given by
quadratic system of polynomial equations. We think that NIST outcomes moti-
vate investigations of alternative options in Multivariate Cryptography oriented
on encryption tools for

(a) the work with the space of plaintexts Fq
n and its transformation G of

linear degree cn, c > 0 on the level of stream ciphers or public keys

(b) the usage of protocols of Noncommutative Cryptography with platforms
of multivariate transformations for the secure elaboration of multivariate map G
from End(Fq[x1, x2, . . . , xn]) of linear or superlinear degree and density bounded
below by function of kind cnr, where c > 0 and r > 1.

We hope that classical multivariate public key approach is still able to bring
reliable encryption algorithms.

Recall that the density is the number of all monomial terms in a standard
form xi → gi(x1, x2, . . . , xn), i = 1, 2, . . . , n of multivariate map G, where poly-
nomials gi are given via the lists of monomial terms in the lexicographical order.

We use the known family of small world graphs A(n.q) (see [2], [3] and further
references) and their analogs A(n,K) defined over finite commutative ring K
with unity for the construction of cubic multivariate public keys. Noteworthy to
mention that for each prime power q, q > 2 graphs A(n, q), n = 2, 3, . . . form
a family of large girth (see [3]), there is well defined projective limit of these
graphs which is a q-regular tree.

Further we obfuscate the encryption maps of these public keys via the com-
bination of them with Eulerian transformation of Kn. We also use the new
extraction technique to combine these public keys of degree 3 or linear degree
αn, α > 0 with postquantum protocols of Noncommutative Cryptography with
the implementations on platform of Eulerian multivariate maps. We show that
extraction technique can be used for the conversion of graph based symmetric
ciphers to protocol based asymmetric algorithms of El Gamal type.

In Section 2 we present the known mathematical definitions of algebraic
geometry for further usage of them as instruments of Multivariate Cryptogra-
phy. In particular definitions of affine Cremona semigroup of endomorphisms of
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multivariate ring K[x1, x2, . . . , xn] defined over commutative ring K, Eulerian
transformations and affine Cremona group nCG(K) are presented there. This
section contains the idea of Eulerisation of bijective map from affine Cremona
semigroup, i.e. the usage of a composition of Eulerian transformation with the
element of nCG(K).

The concept of trapdoor accelerator of the transformation from affine Cre-
mona semigroup nCS(K) is presented there as a piece of information which
allows computation of reimage of the map in time O(n2).

This is a weaker version of the definition of trapdoor one way function. The
definition of the trapdoor accelerator is independent from the conjecture P 6=
NP of the Complexity theory. Section 2 also contains some statements on the
existence of the trapdoor accelerator with the restrictions on the degrees on
maps and their inverses for families of elements of the affine Cremona group
nCG(K). This section also contains similar statements for toric transformations
of nCS(K) which restrictions on (K∗)n are injective.

The description of linguistic graphs A(n,K) and some their properties are
presented in Section 3. It contains the description of subgroups and subsemi-
groups of nCS(K) defined via walks in graphsA(n,K) andA(n,K[x1, x2, . . . , xn]).
Some statements about degrees of elements of these semigroups are given.

Section 4 contains proofs of propositions of Section 2 via graph based explicite
constructions. This section contain several examples of cryptographic applica-
tions of proven statements.

Implementation of twisted Diffie-Hellman protocol based on the platform
semigroup nES(K) of Eulerian transformations is described in Section 5. Secu-
rity of this protocol rests on the well known Conjugacy Power Search Problem
(CPSP, see [14]) in the case of semigroup of Eulerian transformations. This unit
also contains tame homomorphism protocol of [41] based on the canonical homo-
morphism of parabolic subgroup nPm(K) onto nES(K) for m > n. Security of
this protocol rests on the complexity of the Word Decomposition Search Prob-
lem for the case of group mES(K). The output of both protocols is the collision
element from mES(K).

In Section 6 such output is used for the privatisation of earlier presented
multivariate public keys with public rules from nCS(K). This process converts
public rule to the protocol based El Gamal type cryptosystem. Its security rests
on the security of the corresponding protocol. Two different methods are used
for this purpose. The first one is safe delivery method which allows to transfer
the public rule created by Alice to her partner Bob. The second method uses
new idea of extraction the private password from the output of the protocol. So
both correspondents use it for private key encryption of the public key.

In Section 7 extraction method is used for the conversion of symmetric stream
ciphers of multivariate nature with encryption maps of nonpolynomial density
to El Gamal type cryptosystems. In this case there are no options to use the
encryption rule on the public key mode and linearisation attacks are not feasible.

More general idea to combine stream cipher of multivariate nature with the
space of ciphertexts Kn with the output of the protocol based in computations
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in subgroups of affine Cremona semigroup mCS(K) is presented in Section 9.
The combination is established via open logical scheme of key extraction given
in terms of Predicates Calculus.

Section 8 is dedicated to the option of faster trapdoor accelerators with exe-
cution time O(nα), 1 ≤ α < 2 instead of O(n2). Some examples of this kind are
given there.

Section 10 contains conclusions.

2 On elements of Algebraic Geometry, eulerisation of
multivariate maps and trapdoor accelerators

LetK be a commutative ring with a unity. We consider the ringK ′ = K[x1, x2, . . . , xn]
of multivariate polynomials over K. Endomorphisms δ of K ′ can be given via
the values of δ(xi) = fi(x1, x2, . . . , xn), fi ∈ K ′. They form the semigroup
End(K[x1, x2, . . . , xn]) =n CS(K) of K ′ known also as affine Cremona semi-
group (see [3], [4]) after the famous Luigi Cremona (see [5]). The map δ̃ :
(x1, x2, . . . , xn) → (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))
is polynomial transformation of affine space Kn. These transformations gener-
ate transformation semigroup CS(Kn). Note that the kernal of homomorphism
of nCS(K) to CS(Kn) sending δ to δ̃ depends on the choice of commutative
ring K.

Affine Cremona Group nCG(K) = Aut(K[x1, x2, . . . , xn]) acts bijectively on
Kn. Noteworty that some elements of nCS(K) can act bijectively on Kn but
do not belong to nCG(K). For instance endomorphism x → x3 of R[x] acts
bijectively on set R of real number but the inverse x → x1/3 of this map is
birational element outside of 1CG(R).

Recall that degree of δ is the maximal degree of polynomials δ(xi), i =
1, 2, . . . , n. The density of δ is a total number of monomial terms in all δ(xi).
nES(K) stands for the semigroup of Eulerian endomorphisms, i. e. endomorfisms
ω from nCS(K) such that ω(xi) = aix1

a(i,1)x2
a(i,2) . . . xin

a(i,n), where ai are
elements of multiplicative group K∗ of the ring.

We consider the group nEG(K) of all invertible elements of nES(K). We
consider the totality TA(n,K) of toric automorphisms, i. e. endomorphisms G
from nCS(K) such that their restrictions on (K∗)n are injective maps. For G
from TA(n,K) we define its toric inverter as polynomial map G′ from nCS(K)
such that G′G acts on (K∗)n as identity.

It is easy to see that if G ∈ TA(n,K) and H ∈n EG(K) then composi-
tion HG of H and G is a toric automorphism as well. a Assume that auto-
morphism F from nCG(K) has constant degree d, d ≥ 2. It is given in its
standard form written as x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . ,
xn → fn(x1, x2, . . . , xn) where fi, i = 1, 2, . . . , n are elements of K[x1, x2, . . . , xn
and used as public rule to encrypt plaintexts from Kn.

Then we can use eulerisation of this public rule given by standard form of
Gn = HF where H is an element of nEG(K). New public rule uses space of
plaintexts (K∗)n and space of ciphertexts Kn. Noteworthy that the decryption
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is equivalent to consecutive application of Fn
−1) and inverse H ′n in nEG(K) of

Hn but the standard form of H ′nG
−1 is impossible to compute.

More general class is the totality of toric multivariate rules G of kind xi → Gi
where G is a toric automorphism of K[x1, x2, . . . , xn] of constant degree d. We
can take element H of nES(K) in ”general position” and consider HGn of
linear degree and polynomial density with Gn. We say that HGn is eulerisation
of Gn. Recall that a transformation D is ”in general position” if each D(xi) has
monomial terms containing xj for each j = 1, 2, . . . , n.

The following definition was motivated by the idea to have a weaker version
of trapdoor one way function.

We say that family Fn ∈n CG(K) of bijective nonlinear polynomial trans-
formations of affine space Kn of degree ≤ 3 has trapdoor accelerator nT of level
≥ d if

(i) the knowledge of piece information nT (”trapdoor accelerator”) allows to
compute the reimage x for Fn in time O(n2)

(ii) the degree of Fn
−1 is at least d, d ≥ 3.

Notice that if Fn are given by their standard forms and degrees of Fn
−1 are

equal to d then the inverse can be approximated in polynomial time f(n, d) =

O(nd
2+1) via linearisation technique. One can see that the approximation task

becomes unfeasible if d is ”sufficiently large” like d = 100. Examples of cubic
families Fn with trapdoor accelerator of high level t are given in the case of
special finite fields Fq in the next section. We show there that the following
statement holds.

PROPOSITION 2. 1.

For each commutative ring K with a unity there is a family of cubic maps
Fn ∈n CG(K) with trapdoor accelerator of level 3.

We say that family Fn ∈n CG(K) has unbounded degree if degrees of Fn
and Fn

−1 are bounded below by cnα where c and α are positive constants.

The family Fn of unbounded degree has symmetric trapdoor accelerator Tn if
the knowledge of piece of information nT allows to compute the value y = Fn(x)
for x ∈ Kn and reimage x of given y = Fn(x) in time O(n2).

THEOREM 2. 1.

For each commutative ring K with the unity there is the family Fn ∈n CG(K)
of unbounded degree with symmetric trapdoor accelerator nT .

The explicit construction of the family as in the theorem is given in Section
3 and Section 4.

Notice that deg(Fn
−1) and deg(Fn) can be different. We say that Fn is un-

balanced family of unbounded degree if deg(Fn
−1)) − deg(fn) ≥ cnα for some

α > 0.

We present such families defined over special finite fields in the next sections.

REMARK 2.1.

Noteworthy that standard form (s. f.) of Fn of unbounded degree can be
unknown.

REMARK 2.2.
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The family as in Theorem 2. 1 can be used as stream cipher with the password
nT , the example is given in the next section.

REMARK 2.3.

Assume that the family of subsemigroups Sn(K) of nCS(K) is used as plat-
form of some protocol of Noncommutative Cryptography ([7]-[25]) with security
based on complexity of Conjugacy Power Search Problem (CPSP).

The input consists of some elements of Sn(K) and output is a collision ele-
ment C = Cn of the protocol. Asume that some extraction function Ext converts
each element g of Sn(k) to a trapdoor nT (K, g). Alice and Bob can conduct
the protocol and use symmetric trapdoor accelerator nT (K,Cn to work with
encryption function Fn and its inverse on the space Kn of plaintexts. The im-
plementation of such scheme will be given in Section 5. Correspondents can also
use other protocols of Noncommutative cryptography described in Section 4.

The family of toric automorphisms Fn ∈ TA(n,K) has a toric trapdoor ac-
celerator nT if the knowledge of nT allows for each y ∈ Fn((K∗)n) to find the
solution x of Fn(x) = y in time O(n2). The family of toric automorphisms
Fn ∈ TA(n,K) has toric inverter Fn if there is a family of F ′n ∈n CS(K) such
that FnF

′
n acts on (K∗)n as the identity.

PROPOSITION 2.2.

For each finite commutative ring K with unity such that |K| > 3 and |K| we
construct a family of cubic toric automorphisms with toric trapdoor accelerator
nT and inverter of degree ≥ 3t where t is maximal power of 3 in the interval
(0, |K|).

We say that family of toric automorphism has unbounded degree if deg(Fn)
is ≥ cnα for some positive constants c and α.

PROPOSITION 2.3.

For each commutative ring K with |K∗| > 1 there is family Gn ∈n EG(K)
of unbounded degree with toric trapdoor accelerator.

PROPOSITION 2.4.

For each commutative ring K with |K∗| > 1 there is family of toric automor-
phisms Fn of unbounded degree and density O(n4) with toric trapdoor accelerator
and inverter of non polynomial density.

Examples of families as in proposition above in the cases (K = Zm (see [26])
and K = Fq (see [27]) were used for the construction of public keys with the
space of plaintexts (K∗)n and ciphertexts Kn (implementation of one of such
cryptosystems is described in [28]).

We show that the following statement holds.

PROPOSITION 2.5.

For each commutative ring K with |K∗| ≥ 3 there is a family Fn of toric auto-
morphisms of K[x1, x2, . . . , xn] of unbounded degree and nonpolynomial density
with toric trapdoor accelerator nT and inverter of unbounded degree.

Let Fn be a family of toric automorphisms with an invertor. We say that
family Gn is its diagonaliser if for each n the composition of Gn and Fn is an
element of nEG(K).
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Examples in [26], [27] have cubic diagonaliser. Note that family Fn ∈n
CG(K) has identity transformation as diagonaliser. For each finite commutative
ring we construct the family Fn satisfying the Proposition with the diagonaliser
of unbounded degree.

PROPOSITION 2.6.

Let K be a finite commutative ring d = |K∗| > 2 and (d, 3) = 1. There
is a family Fn = HnGn, where Hn ∈n EG(K), Gn ∈n CG(K) is unbalanced
unbounded automorphism with toric trapdoor accelerator.

It is easy to see that diagonaliser of Fn is a family Gn
−1. Similar examples

will be presented for each field F2n .

THEOREM 2. 2.

For each finite commutative ring K with large order d of K∗ such that
(3, d) = 1 there is a family Fn of toric automorphisms of K[x1, x2, . . . , xn] with
multivariate trapdoor and diagonaliser Gn of degree ≥ t where t is a maximal
power of 3 from interval (0, d).

Noteworthy that computations in the group nCS(K) are very difficult. The
task of computation of the composition of n elements σ1, σ2, . . . , σn in general
position is not feasible because their degree are unbounded and degree of the
composition of gi and gj in ”majority cases” is the product of two degrees. Let
S be a subsemigroup of nCS(K). Note that property of ability to compute the
composition of arbitrary n polynomial maps from S in polynomial time implies
the ability to compute the product of O(nt) elements from nCS(K). we say
that S posesses the property of multiple computation of composition, shortly
MCCP-property.

It is easy to see that General Affine Semigroup AGSn(K) of transforma-
tions of kind (x1, x2, . . . , xn) → (x1, x2, . . . , xn)A + (b1, b2, . . . , bn), where A =
(a(i, j)) is a matrix with entries a(i, j) ∈ K, i = 1, 2, . . . , n, j = 1, 2, . . . , n
and (b1, b2, . . . , bn) ∈ Kn and semigroup nES(K). Graph based constructions
of other semigroups and groups with MCCP property will be considered in the
next section.

3 On linguistic graphs A(n,K), related semigroups and
groups and symmetric ciphers

Regular algebraic graph A(n, q) = A(n, Fq) is an important object of Extremal
Graph Theory. In fact we can consider more general graphs A(n,K) defined over
arbitrary commutative ring K. This graph is a bipartite graph with the point
set P = Kn and line set L = Kn (two copies of Cartesian power of K are used).
It is convenient to use brackets and parenthesis to distinguish tuples from P and
L.

So, (p) = (p1, p2, . . . , pn) ∈ Pn) and [l] = [l1, l2, . . . , ln] ∈ Ln. The incidence
relation I = A(n,K) (or corresponding bipartite graph I) is given by the follow-
ing condition.

pIl if and only if the equations
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p2 − l2 = l1p1, p3 − l3 = p1l2, p4 − l4 = l1p3, p5 − l5 = p1l4, . . . , ,pn − ln =
p1ln− 1 hold for odd n and pn − ln = l1pn−1 for even n.

In the case of K = Fq, q > 2 of odd characteristic graphs A(n, Fq), n > 1
form a family of small world graphs because their diameter is bounded by linear
function in variable n (see [2]).

Recall that the girth of the graph is the length of its minimal cycle. We
can consider an infinite bipartite graph A(K) with points (p1, p2, . . . , pn, . . . )
and lines [l1, l2, . . . , ln, . . . ] which is a projective limit of graphs A(n,K) when
n tends to infinity. If K, |K| > 2 is an integrity ring then A(K) is a tree and
the girth gn of A(n,K), n = 2, 3, . . . is bounded below by linear function cn for
some positive constant c [3].

As a byproduct of this result we get that A(n, q), n = 2, 3, . . . for each fixed
q, q > 2 form a family of large girth in sense of Erdős’ (see [29]). In fact graphs
A(n, q) were obtained in [30] as homomorphis images of known graphs CD(n, q)
of large girth (see [31], [32], [33]).

Graphs A(n, q) were intensively used for the constructions of LDPC codes
for satellite communications (see [34]) and cryptographic algorithms (see [36],
[35]) and further references). It was shown that A(n, q) based LDPC codes have
better properties in the comparison to those derived from CD(n, q) or Cayley-
Ramanujan graphs X(p, q) [37] (see [38], [39]).

Let K be a commutative ring with a unity. Graphs A(n,K) belong to the
class of linguitic graphs of type (1, 1, n− 1) [40], i.e. bipartite graphs with par-
titian sets P = Kn (points of kind (x1, x2, . . . , xn), xi ∈ K) and L = Kn

(lines [l1, l2, . . . , ln], li ∈ K) and incidence relation I = I(n,K) such that
(x1, x2, . . . , xn)I[y1, y2, . . . , yn] if and only if a2x2 + b2x2 = f2(x1, y1), a3x3 +
b3x3 = f3(x1, x2, y1, y2), . . . , anxn + bnxn = fn(x1, x2, . . . , xn), where ai and bi
are elements of multiplicative group K∗ of K and fi are multivariate polynomials
from K[x1, x2, . . . , xi−1, y1, y2, . . . , yi−1 for i = 2, 3, . . . , n.

The colour of ρ(v) of vertex v of graph I(K) is defined as x1 for point
(x1, x2, . . . , xn) and y1 for line [y1, y2, . . . , yn]. The definition of linguistic graph
insures that there is a unique neighbour with the chosen colour for each vertex
of the graph. Thus we define operator u = Na(v) of taking neighbour u with
colour a of the vertex v of the graph.

Additionally we consider operator aC(v) of changing colour of vertex v, which
moves point (x1, x2, . . . , xn) to point (a, x2, x3, . . . , xn) and line [x1, x2, . . . , xn]
to line [a, x2, x3, . . . , xn].

Let us consider a walk v, v1, v2, . . . , v2s of even length 2s in the linguistic
graph I(K). The information on the walk is given by v and the sequence of
colours ρ(vi), i = 1, 2, . . . , 2s. The walk will not have edge repetitions if ρ(v2) 6=
ρ(v), ρ(vi) 6= ρ(vi−2) for i = 3, 4, . . . , n. Notice that v and v2s are elements of
the same partition set (P or L).

For each vertex v of I(K) we consider a variety of walks with jumps, i.
e. totality of sequences of kind v, v1 =a1 C(v), v2 = Na2(v1), v3 =a3 C(v2),
v4 = Na4(v3), . . . , v5 =a5 C(v4), . . . , v4s = Na4s(v4s−1), v4s+1 =a4s+1 C(v4s).
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Note that for each s , s ≥ 0 vertices v, v1, v4s, v4s+1 are elements of the same
partition. Let u = (a1, a2, . . . , a4s, a4s+1) be the colours of the walk with jumps.

We introduce the following polynomial transformations of partition sets P
and L. Firstly we consider the pair of linguistic graphs I(K) and I(K[x1, x2, . . . , xn]).
These graphs are defined by the same equations with coefficients from the com-
mutative ring K. We look at sequences of walks with jumps of length 4s + 1
where s ≥ 0 starting in the point v = (x1, x2, . . . , xn) (or line [x1, x2, . . . , xn])
of the graph IK[x1, x2, . . . , xn] which uses colours a1(x1), a2(x1), . . . , a4s+1(x1)
from K[x1]. The final vertex of this walk is v4s+1 with coordinates a4s+1(x1),
f2(x1, x2), f3(x1, x2, x3), . . . , fn(x1, x2, . . . , xn)). Let us consider the transfor-
mations uTP and uTL sending starting vertex to the destination point of the
walk with jumps acting via the rule x1 → a4s+1(x1), x2 → f2(x1, x2), . . . ,
xn → fn(x1, x2, . . . , xn) on the partition sets P and L isomorphic to Kn. It
is easy to see that transformations of kind uTP (or uTL) form the semigroup
LSP (I(K)) (LSL(I(K)) respectively). We refer to this transformation semigroup
as linguistic semigroup of graph I(K).

Let us consider an algebraic formalism for the introduction of linguistic semi-
groups. We take the totality of words F (K[x) in the alphabet K[x] and define
the product of u = (a1(x), a2(x), . . . , ak(x)) and w = (b1(x), b2(x), . . . , bs(x)) as
word =(a1(x), a2(x), . . . , ak(x)) × (b1(x), b2(x), . . . , bt(x))=(a1(x), a2(x), . . . ,
ak−1(x), b1(ak(x)), b2(ak(x)), . . . , bt(a(x))).

Obtained semigroup F (K[x) is slightly modified free product of End(K[x])
with itself. Note that we can identify a(x) from K[x] with the map x → a(x)
from End(K[x]).

Let FK be a subsemigroup of words of length of kind 4s+ 1, s ≥ 0.

PROPOSITION 3. 1.

Let I(K) be a linguistic graph defined over commutative ring K with unity.
The map I(K)ηP : FKEnd(K[x1, x2, . . . , xn]) such that I(K)η(u) =u TP (or
η(u)L =u TL) is a semigroup homomorphism.

It is easy to see that I(K)ηP (FK)=LSP (I(K) and I(K)ηL(FK)=LSL(I(K).

POPOSITION 3. 2.

The image of u = (a1(x), a2(x), . . . , ak(x)) from FK under the map I(K)ηP
(or I(K)ηP is invertible element of LSP (I(K) (or LSL(I(K) if and only if the
map x→ ak(x) is an element of Aut(K[x]).

Proof. Let u = (a1(x), a2(x), . . . , ak(x) be an element of FK and x → ak(x)
has inverse x→ b(x) in End(K[x]) in SLP (I(K)). Then

w = (ak−1(b(x)), ak−2(b(x), . . . a1(b(x)), b(x)) = Rev(u) is another element
of FK and I(K)η(u × w) is the identity map. Thus I(K)ηP (w) is an inverse for
I(K)ηP (u).

REMARK 3.1.

The transformations (I(K)ηP (u), P ) and (I(K)ηL(u), L) are bijective if and
only if the map x→ b(x) is bijective.

ILLUSTRATIVE EXAMPLE.

Let K = R (real numbers) or K be algebraically closed field of characteristic
0 and b(x) = x3. The inverse map for x → x3 is birational automorphism
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x → x1/3 of K[x]. Thus gP =I(K) ηP (u) and g
I(K)
L ηL(u) do not have inverses

in End(K[x]). They have bijective birational inverses. Noteworthy that gP and
gL are tranfrormations of infinite order. Degree of polynomial transformations
of gP

s and gL
s are at least 3s.

So we have an algorithm of generation bijective polynomial maps of arbitrary
large degree on variety Kn.

We refer to subgroups GP (I(K)) and GL(I(K)) of invertible elements of
LSP (I(K)) and LSL(I(K)) as groups of linguistic graphs I(K). They are dif-
ferent from automorphism group of I(K).

Let us consider semigroup F̃K of words of kind u = (x, f1, f1, f2, . . . , fs, fs).
It is easy to see that for each linguistic graph I(K) the transformations gP (u) =
I(K)ηP (u) and gL

I(K)ηL(u) are computed via consecutive usage of Nfi in

the linguistic graph. Thus we refer to SWP (I(K) = {gP (u)|u ∈ F̃K} and
SWL(I(K) = {gL(u)|u ∈ F̃K} as semigroups of symbolic walks on partition sets
of I(K). We refer to GWP (I(K) = SWP (I(K) ∪ GP (I(K)) and GWL(I(K) =
SWL(I(K) ∩GL(I(K)) as groups of symbolic walks.

Finally we consider the semigroup St(K) of words u = (x+α1, x+α2, . . . , x+
αk) where αi are elements of K. We consider FK = FK ∩ StK F̃K = F̃K ∩
StK = ΣK and introduce groups I(K)|ηP (FK)=H̃P (I(K)), I(K)|ηP (FK)=H̃P (I(K)),
I(K)|ηP (ΣK)=HP (I(K)), I(K)|ηP (ΣK)=HP (I(K)).

We refer to groups HP (I(K)), HL(I(K)) as groups of walks on partition sets
of linguistic graph I(K).

PROPOSITION 3. 3.
If a linguistic graph I(K) is connected then groups HP (I(K)) and HL(I(K))

are acting transitively on Kn.
REMARK 3.2.
Transitivity of HP (I(K) (HL(K)) implies transitivity of group transforma-

tions of kind (G,Kn) where G > HP (or G > HL respectively.
PROPOSITION 3. 4. (see [30]).
Let K be an arbitrary commutative ring, n ≥ 2 and u = (x, f1.f1, f2, f2, . . . , fs, fs)

, s ≤ n is an element of F̃K . Then endomorphism g = A(n,K)η(u) has degree d,
d ≥ 1+deg(f1)+ (deg(f2−x)+ (deg(f3−f1))+ (deg(f4−degf2) · · ·+(deg(fn−
fn−2).

COROLLARY 3. 1.
If s is ≥ cn for c > 0 and fi − fi+2 are not constants than degree of g is

≥ cn) for some c > 0.
COROLLARY 3. 2.
Let u = (x, f1.f1, f2, f2, . . . , fs, gs) then deg(g) = A(n,K)η(u) is at least

maximum of d as above and deg(gs).
COROLLARY 3.3.
Assume that x → gs is an automorphism of K[x] and its inverse x → h(x)

has degree t. Then reimage of g−1 is Rev(u) for u′ = (x, f1, f2, . . . , fs, gs). Note
that Rev(u) = (fs(h), fs(h), f(s − 1(h), fs−1(h), f1(h), f1(h),h)ofdegreedeg
(h)(deg (fs) + deg(fs−1) + deg(fs−3− fs) + deg(fs−4− fs−2) + · · ·+ deg(h− f1).
So degree of inverse map is multiple of degree h.
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The following statement was formulated in [42].
THEOREM 3. 1.
For each commutative ring K group HP (A(n,K)) = GA(n,K) is a totality

of cubical automorphisms of K[x1, x2, . . . , xn].
COROLLARY 3. 4.
Let us consider element u = (x, x+a1, x+a1, x+a2, x+a2, . . . , x+ak−1, x+

ak−1x+ ak, x
t of FK for commutative ring with unity with finite multiplicatiove

group of order d, d > 2 where t = 2 or t = 3 and (d, t) = 1. The transformation
A(n,K)η(u) is a cubical one.

As we already mentioned graphs A(n,K) appear as homomorphic quotients
of linguistic graphs D(n,K) or their connected components CD(n,K) (see [30]).
Isomorphic groups HP (D(n,K) and HL(D(n,K) were introduced in [43]. The
fact that elements of HP (D(n,K)) (GD(n,K) are transformations of degrre ≤ 3
in other notations) was proved in [44]. Theorem 1 was deduced from this fact.
It is easy to see that the group GA(n,K) possesses MCCP property.

4 Explicit constructions of trapdoor accelerators and
their applications

PROOF OF PROPOSITION 2.1.
Let us consider general commutative ringK with unity and Fn = T

A(n,K)
1 η(u)T2,

where T1, T2 are elements of AGLn(K) and the tuple (x, x+α1, x+α1, x+α2,
x+α2, . . . , x+α2,. . . , x+αs, x+αs) such that cn < s < n for some constant
c > 0. According to Theorem 3. 1 the transformations Fn and Fn

−1 are of degree
3. So T = {T1, T2, u} is a trapdoor accelerator of Fn of degree 3 and level 3.

PROOF OF THE THEOREM 2.1.
Let K be general commutative ring with unity. Let us consider the tuple of

kind u = (x, f1(x), f1(x), f2(x), f2(x), . . . , fs(x), fs(x)) from K[x]
2s+1

such
that positive s is even and degrees di of each fi satisfy condition αn < di < βn
for some positive constants α and β and di 6= di+2, i = 1, 2, . . . , s − 2. Let us

consider graph A(n,K) and Fn = T
A(n,K)
1 η(u)T2 where T1 and T2 are elements

of AGLn(K). Then according to Proposition 3.4 degrees of Fn and Fn
1 are of

quadratic size cn2 for c > 0. Let (p) = (p1, p2, . . . , pn) from Kn be given. The
knowledge of the triple T = (T1, T2, u) allows to compute the colours f1(p1),
f2(p1), . . . , fs(p1) of the walk with the starting point (p) in time O(n2). The
computation of the destination of the walk also takes O(n2). The computation
of colours of reverse walk and determination of its starting point take the same
time. So T is a symmetric trapdoor accelerator of bijective multivariate map of
unbounded degree. REMARK 4. 1.

In the case of finite commutative ring K with K∗ of cardinality d, d > 3
such that (d, 3) = 1 we can change the tuple u of the presented above con-
struction for u = (x, f1(x), f1(x), f2(x), f2(x), . . . , fs(x), x3). The family

Fn = T
A(n,K)
1 η(u)T2 is formed by unbalanced multivariate maps of unbounded

degree because degree of Fn
−1 coincides with degree A(n,K)η(Rev(u)) which is
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> deg(Fn) and difference between deg(Fn) and degFn
−1 is ≥ cn2 for some pos-

itive constant c. So we have example of unbalanced family of elements nEG(K)
with symmetric trapdoor accelerator.

The following two constructions give families of cubic multivariate map with
trapdoor accelerator of rather large level.

EXAMPLE 4. 1

Let us consider family of fields Kn = F2na for some constant a and transfor-
mation Fm =A(m,Kn) η(x, x+a1, x+a1, x+a2, x+a2, . . . , x+as−1, x+as−1, x+
as, x

2). Then the map w: x → x2 is an automorphism of Kn. It is easy to see
that wn

a

is identity map and wn
a−1is an inverse map for w. Note that degree

of wk is 2k. Thus the degree of inverse for w is 2n
a−1. The degree tn of F−1n is

proportional to degree of w. In fact it can be shown that tn = 32n
a−1.

Let us assume that αm < s < m where α is a positive constant and two
affine transformation T1 and T2 from the group AGLm(Kn). We consider the
family of bijective transformation Gm = T1FmT2. Standard forms of cubical
maps Gm form family with trapdoor accelerator m,nT which are triples T1,
(x, x + a1, x + a1, x + a2, x + a2, . . . , x + as−1, x + as−1, x + as, x

2) and
T2 of level tn = 32n

a−1. Really , the knowledge on the triples gives us T2
−1,

Rev((x, x+a1, x+a1, x+a2, x+a2, . . . , x+as−1, x+as−1, x+as, x
2)) and T1

−1.
It allows the computation of reimage of Gm in time O(m2). Alice can use cubic
standard form Gm as public rule and trapdoor m,nT as her private key.

EXAMPLE 4.2.

We consider a modification of Example 1 in more general case of finite fields
Fq where q is such that (3, q − 1) = 2. We consider a triple which consists of T1
and T2 from AGLm(Fq) and tuple u = (x, x + a1, x + a1, x + a2, x + a2, . . . ,
x + as−1, x + as−1, x + as, x

3). We use the assumption that α ×m < s < m
and s is even where α is a positive constant. Let Gm be the standard form of
the composition of T1, A(m,q)η(u) and T2. The degree of Gm

−1 acting on Fq
m

is ≥ 3t, where t is maximal power of 3 which < q − 1 and transformations
of kind T1FmT2, Fm =A(m,q) η(u) can serve as public keys. This algorithm is
implemented in the case of finite fields F263 .

We modify previous example to get explicit construction of family of cubic
toric automorphism with toric trapdoor accelerator.

EXAMPLE 4.3.

We consider family A(m,K), m ≥ 2 defined over finite commutative ring K
such that d = |K∗ | > 3 and (3, d) = 1 to construct cubical mapGm of affine space
Km, m ≥ 2 which acts injectively on Tm(K) = K∗m and has eulerian inverse
En which is an endomorphism of K[x1, x2, . . . , xm] such that the composition of
Gm and Em acts on n,mT (K) as identity map. The degree of Em(K) is at least
3×t where t is maximal power of 3 which is < d. So we take affine transformation
T1 from AGLm(K) such that T1(x1) = αx1 where α ∈K∗ together with T2 ∈
AGLm(K) and tuple, u =(x, x+a1, x+a1, x+a2, x+a2, . . . , x+as−1, x+as−1,
x+as, x

3) where even s is selected as in the previous example. Standard form Gm
of T1

A(n,K)η(u)T2 is a toric automorphism of K[x1, x2, . . . , xm]. The knowledge
of trapdoor accelerator (T1, u, T2) allows to compute the reimage of G(K∗m) in
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time O(m2). So we have cubic toric automorphism with trapdoor accelerator
of level t. It can be used for the construction of public keys with the space of
plaiexts Tm(K) and the space of ciphertexts Km.

We implement this algorithm in the case of K = Z2n , n = 7, 8, 16.32, 64. It
uses cubical toric automorphism of level 3t where t is maximal power of 3 from
interval (0, 2n−1). In this case we can use more general form for T1 defined by
condition T1(x1) = a1x1 + a2x2 + · · ·+ am(xm) where odd number of ai are odd
residues modulo 2n (see [26], [28]). In the case of K = Fq we get an example 2.

The simplest example of family of toric transformations of unbounded degree
can be defined as sequence of elements Gn from nEG(K).

EXAMPLE 4. 4.

Recall that nEG(K) stands for Eulerian group of invertible transformations
from nES(K). It is easy to see that the group of monomial linear transformations
Mn is a subgroup of nEG(K). So semigroup nES(K) is a highly noncommu-
tative algebraic system. Each element from this semigroup can be considered
as transformation of a free module Kn. Let π and σ be two permutations on
the set {1, 2, . . . , n}. Let us consider a special transformation of (K∗)n where K
is a commutative ring with the multiplicative group K∗ of order d, d > 2. We
define the transformation AJG(π, σ), where A is triangular matrix with positive
integer entries 0 ≤ a(i, j) < d from Zd defined by the following closed formula
(1).

y
π(1)=µ1x

a(1,1

σ(1)

,

y
π(2)=µ2x

a(2,1

σ(1)

x
a(2,2
σ(2) ,

. . .

y
π(n)=µnx

a(n,1

σ(1)

x
a(n,2
σ(2) . . . x

a(n,n
σ(n) ,

where (a(1, 1), d) = 1, (a(2, 2), d) = 1, . . . , (a(n, n), d) = 1.

We refer to AJG(π, σ) as Jordan - Gauss multiplicative transformation or
simply JG element. It is an invertible element of nES(K) with the inverse of
kind BJG(σ, π) such that a(i, i)b(i, i) = 1 (mod d). Notice that in the case
K = Zm straightforward process of computation the inverse of JG element
is connected with the factorization problem of integer m. If n = 1 and m is a
product of two large primes p and q the complexity of the problem is used in RSA
public key algorithm. We say that τ is tame Eulerian element over K if it is a
composition of several Jordan-Gauss multiplicative maps over commutative ring
or field respectively. We take collection n of several Jordan Gauss transformations
J1, J2, . . . , Jk, k ≥ 2, k = O(1) from nEGn(K) and form Hn = J1J2 . . . Jk
written in its standard form. Assume that nT is expanded by adding Ji

−1 for
j = 1, 2, . . . , n. It is clear that the knowledge of nT allows to compute the value
Hn(x) for x ∈ (K∗)n and Hn

−1(y) for y ∈ (K∗)n in time O(n2). So Hn is a
family of toric automorphisms with toric trapdoor accelerator nT .

REMARK 4. 2. In the simplest case k = 2 users can work with J1 and J2
given by rules

x1 → µ1x1
a(1,1)

x2 → µ1x1
a(2,1)x2

a(2,2)
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. . .

xn → µ1x1
a(n,1)x2

a(n,2) . . . xn
a(n,n)

where (a(1, 1), d) = 1, (a(2, 2), d) = 1, . . . , (a(n, n), d) = 1.

and

x1 → β1x1
b(1,1)x2

b(1,2) . . . xn
b(1,n)

x2 → β2x2
b(2,2)x2

b(2,3) . . . xn
b(2,n)

. . .

xn → βnxn
b(n,n)

where (b(1, 1), d) = 1, (b(2, 2), d) = 1,. . . , (b(n, n), d) = 1.

The inverter for Hn will be element J2
−1J1

−1 from nEG(K). Thus the di-
agonaliser of Hn can be taken as the unity of nEG(K).

The following examples are obtained via eulerisation of presented above fam-
ilies of multivariate maps with trapdoor accelerators.

EXAMPLE 4. 5.

Let K be arbitrary commutative ring with unity such that its multiplicative
group contains at least 3 elements. We can use composition Fn of Hn described
in Example 4 and Gn satisfying condition of Proposition 2.1 In the simplest case
Hn is the composition of J1 and J2 which form the toric trapdoor. Recall that
we constructed Gn as T1A(n,K)η(u)T2 and its trapdoor accelerator (T1, T2, u)
has level 3. The family of toric automorphisms Fn is the family of unbounded

degree. Its density is O(n4). We have a factorization Fn = J1J2T
A(n,K)
1 η(u)T2.

The knowledge on this factorization allows to compute Fn(x), x ∈ K∗n and solve
equation of kind Fn(x) = y, y∈ Fn(K∗n) in time O(n2). So (J1, J2, T1, T2, u) is
a toric trapdoor accelerator of Fn. It is easy to see that the inverter G−1n Hn

−1

has non polynomial density. So we prove the Proposition 2.4 It is easy to see
that family Fn has cubic diagonaliser Gn

−1. The public key corresponding Fn
satisfying Proposition 2.4 in the cases of finite fields and arithmetic rings Zm
were suggested in [26], [27], [47], their implementations are given in [28].

EXAMPLE 4. 6.

In the case of finite commutative ring K with multiplicative group K
∗

of
order d, d ≥ 3 such that (d, 3) = 1 we can change the string u from the Example
5 for the string u = (x, x+ a1, x+ a1, x+ a2, x+ a2, . . . , x+ as−1, x+ as−1,
x + as, x

3)andT1 as in the Example 3. It is easy to see that the diagonaliser
for modified family will have large degree. These explicit constructions give the
proof of Theorem 2. 2.

EXAMPLE 4.7.

In the case of finite field F2m we modify example 5 via the change of u for
u = (x, x + a1, x + a1, x + a2, x + a2, . . . , x + as−1, x + as−1, x + as, x

2).
So we get the toric automorphism of K[x1, x2, . . . , xn of linear degree of density
O(n4) with the trapdoor accelerator (J1, J2, T1, T2, u). The diagonaliser for the
member of the family will have degree 3 × 2m−1. Noteworthy that in this case
we have a free choice of elements T1 and T2 from AGLn(F2m).

REMARK 4.3.

Note that in the example used for the prove of Proposition 2.1 as well in
Examples 1, 2, 3, 5, 6, 7 the density of transformation Fn is O(n4). Computer
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simulation shows that if most of entries of T1 and T2 are non zero ring elements
and the commutative ring K is chosen then the density d(n, s) depends just on
parameters n and s. The following list presents these densities in the case of
Example 7 and K = F232 .

d(16, 16) = 76, d(16, 32) = 148, d(16, 64) = 288, d(16, 128) = 576, d(16, 256) =
1148;

d(32, 16) = 1268, d(32, 32) = 2420, d(32, 64) = 4700, d(32, 128) = 9268,
d(32, 256) = 18405),

d(64, 16) = 22144, d(64, 32) = 40948,d(64, 64)=78551,d(64, 128)=153784,d(64,
256)=304240;

d(128, 16) = 460200. d(128, 32) = 819498, d(128, 64) = 153784, d(128, 128) =
2970743, d(128, 256) = 5836938.

If we consider the case of K = Z232 we obtain the following densities

d(16, 32) = 24, d(16, 64) = 36, d(16, 128) = 64, d(16, 256) = 116;

d(32, 32) = 248

, d(32, 64) = 428, d(32, 128) = 788,d(32, 256)=1508,

d(64, 32) = 5317, d(64, 64) = 5576, d(64, 128) = 15216, d(64, 256) = 28176;

d(128, 32) = 180861, d(128, 64) = 290432, d(128, 128) = 509812, d(128, 256) =
949652.

The following examples give the polynomial maps of Kn for which the com-
putation of its density is unfeasible. We will use Proposition 3.4 for these con-
structions.

EXAMPLE 4.8.

Let K be an arbitrary commutative ring,n ≥ 2 and u =(x, f1, f1, f2, f2,
. . . , fs, fs), s ≤ n is an element of F̃K , such that s ≥ αn for the constant
α > 0, s ≤ n. Then endomorphism Gn,s = A(n,K)η(u) has degree d and d ≥
1+deg(f1)+(deg(f2−x)+(deg(f3−f1))+(deg(f4−degf2) · · ·+(deg(fn−fn−2).
We select fi of degree > cn for c > 0 of size O(n), i = 1, 2, . . . , s such that
deg(fi) ≥ 1, deg(fi+2 6= deg(fi) for i = 1, 2, . . . , s − 2, fs = x + a, a ∈ K and
density O(1). We take two elements T1 and T2 in AGLn(K) and consider Fn =
T1Gn,sT2. The knowledge on the triple T = (T1, T2, u) allows fast computation
of Fn(p1, p2, . . . , pn) and the reimage of transformation Fn. Note that elements
of the tuple (a1 = f1(p1), a2 = f2(p1), . . . , as = fs(p1)) can be computed
in time O(n) via Horner scheme with the usage of nested form of each fi. So
the tuple itself will be computed in time O(n2). The sequence of vertices v0 =
(p1, p2, . . . , pn), v1 = Na1(v0), v2 = Na2(v1, . . . , vs = Nas(vs−1 also can be
computed in time O(n2).

Assume that Fn(x) = (c1, c2, . . . , cn) is given. We assume that standard forms
of transformations T1

−1 and T2
−1 are known as well. So the computation of

y = T2
−1(c1, c2, . . . , cn) of colour c1 takes O(n2). The value of x1 will be obtained

from the equation x1 + a = y1.. Next step is the computation of bi = fi(y1 − a),
its cost is also O(n2). Consecutive application of Nbs−1

, Nbs−2
, . . . Nb1 and Nx1

produces vector z in time O(n2). The reimage of (c1, c2, . . . , cn) will be obtained
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as T2
−1(z) So we proved that T is a symmetric trapdoor accelerator for the

bijective multivariate map Fn of unbounded degree.
EXAMPLE 4. 9.
Let K = F2m . We can take u as (x, f1, f1, f2, f2, . . . , fs, x

2) where fi
are selected as in the previous example. Then the family of functions Fn =
T1
A(n,K)η(u′)T2 will be unbalanced bijective multivariate function of unbounded

degreee with symmetric trapdoor accelerator (T1, T2, u
′).

EXAMPLE 4. 10.
Let us consider the case K = Fq where (q, 3) = 1, q ≥ 4. Then simple change

of u′ in the previous example for ũ = (x, f1, f1, f2, f2, . . . , fs−1, fs−1, fs, x
3)

leads to new example of unbalanced family of bijective maps with symmetric
trapdoor accelerator.

EXAMPLE 4.11.
Let us consider the case of finite commutative ring K with zero divisors such

that (|K∗|, 3) = 1 and work with ũ as in the previous example. In this case
we add additional requirements T (x1) = βx1whereβ is an element of K∗. In
particular case Z2m we use condition T (x1) = x1b1 + x2b2 + · · · + xnbn where

number of odd residues bi is odd. Then transformation T
A(n,K)
1 η(u)T2 is a toric

automorphism of unbounded degree with symmetric trapdoor accelerator. The
inverter of this map will be of unbounded degree.

REMARK 4.4.
In cases of Examples 4.9, 4.10, 4.11 let us consider ”light trapdoor version”

with transformations T1 and T2 of kind x1 → x1a1 + x2a2 + . . . xnan where ai
are elements of K∗ and xj → xj for j = 2, 3, . . . . We take s = O(1), s ≥ 2.
Recall that degree of f1, f2, . . . fs−1 are > cn for some positive constant c, their
size is O(n). It is easy to see that in this case Fn is still bijective function of
unbounded degree but the knowledge of trapdoor allows to compute the value
of multivariate function Fn and its reimage in time O(n).

EXAMPLES 4.12, 4.13 and 4.14.
We can introduce further obfuscation of the previous Example 11 (toric au-

tomorphisms) and Examples 10 and 9 (bijective maps). After selection of com-
mutative ring K elements of J1 and J2 from nES(K) as in Example 4 has to be
constructed. In each of these cases we take transformation Wn = J1J2T1FnT2
of nonpolynomial density. Its diagonaliser T2

−1Fn
−1T1

−1 has degree ≥ Cn2.
The tuple (J1, J2, T1, u, T2) is a symmetric toric trapdoor accelerator of the toric
automorphism of unbounded degree and nonpolynomial density.

The encryption via consecutive application of J1, J2, T1, A(n,K)η(u), T2
can be used in symmetric cipher working with the space of plaintexts (K∗)n and
space of ciphertexts Kn.

5 On protocols of Noncommutative Cryptography with
platforms of Eulerian transformations

5.1. TWISTED DIFFIE HELLMAN PROTOCOL.
Let S be an abstract semigroup which has some invertible elements.
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Alice and Bob share element g ∈ S and pair of mutually inverse elements
h−1, h from this semigroup. Alice takes positive integer t = kA and d = rA and
forms h−dghd = gA. Bob takes s = kB and p = rB and forms h−pgshp = gB .
They exchange gA and gB and compute collision element X as Ag = h−dgB

thd

and Bg = h−pgA
shp respectively.

Adversary has gA and gB . He/she has to solve the equation h−ygxhy = gA for
x and y to break the protocol and get the collision element. This is well known
Conjugacy Power Search Problem (CPSP) of Noncommutative Cryptography
(see [8],[9], [14]). It is complexity depends on the choice of platform S. We use
the case when S is a representative of family nES(K), n = 2, 3, . . . defined over
finite commutative ring K with unity and order d = |K∗| satisfying condition
d ≥ 3. With this platform CPSP is an intractable problem of Postquantum
Cryptography.

One of the modifications of this algorithm is group enveloped Diffie Hellman
protocol presented in [41]. It uses some generalization of CPSP property.

TAHOMA PROTOCOL 5. 2.
Let S1 <1 S and S2 < 2S be pairs of finite semigroups which contains

invertible elements.
Assume that φ is homomorphism from S1 to S2. Then Alice and Bob can use

the following tame homomorphism (Tahoma) protocol..
1) Alice selects invertible element 1h ∈1 S and 2h ∈2 S. Additionally she

takes elements g1, g2, . . . , gk, k ≥ 2 from 1S and computes their homomorphic

images φ(gi), i = 1, 2, . . . , k. Alice forms pairs (ai, bi) = (1hgi
1h
−1
,2 hgi

2h
−1

)
She sends these pairs (ai, bi), i = 1, 2, . . . , k to Bob.
He takes abstract alphabet z1, z2, . . . , zk and forms the word of kind w =

w(z1, z2, . . . , zk) = z
k(1)
i1

z
k(2)
i2

. . . z
k(s
is

, s ≥ 2 , {i1, i2, . . . , is} is a subset of cardi-
nality s in {1, 2, . . . , k}.

Bob forms specialisation W (a1, a2, . . . , ak) = a
k(1)
i1

a
k(2)
i2

. . . a
k(s
is

= a and sends
a to Alice. For himself he computes collision element

W (b1, b2, . . . , bk) = b
k(1)
i1

b
k(2)
i2

. . . b
k(s
is

= b.

Alice will compute the collision element via the sequence 1a = 1h
−1
a1h,

2a = φ(1a), 3a =2 h2a2h
−1

.
We consider the implementation of this algorithm in the case when S1 and

S2 are Semigroups mES(K) and ESn(K), m = m(n) > n and |K∗| ≥ 3. Alice
works with Parabolic subsemigroup P (K) =n Pm(K) of all endomorphisms g
from S1 such that g(x1), g(x2), . . . , g(xn) are monomials from K[x1, x2, . . . , xn].
She uses canonical homomorphism of nPm to End(K[x1, x2, . . . , xn]) sending
g ∈ P (K) to φ(g) ∈nCS(K) given by the rule xi → g(xi), i = 1, 2, . . . ,m.

In the simplest case Alice takes 1h as composition of 1J1 moving xi to
xai (i, i)xai+1(i, i+ 1) . . . xai,m(i,m), (a(i, i), d) = 1, i = 1, 2, . . . ,m and 1J2 moving

xi to x
b(1,i)x

b(2,i)
2 x2...x

b(i,i)
i

1 , (b(i, i), d) = 1, i = 1, 2, . . . ,m. where a(i, j) and b(i, j)
for i 6= j are presudorandom nonzero elements of Zd. She forms 1J1 ×1 J2 =1 h.

Secondly Alice forms 2h as composition of 2J1 moving xi to xci (i, i)x
c
i+1(i, i+

1) . . . xci,m(i,m), (c(i, i), d) = 1, i = 1, 2, . . . , n and 2J2 moving xi to x
d(1,i)x

d(2,i)
2 x2...x

d(i,i)
i

1
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(d(i, i), d) = 1, i = 1, 2, . . . , n. where c(i, j) and d(i, j) for i 6= j are presudoran-
dom nonzero elements of Zd. She forms 2J1 ×2 J2 =2 h. Alice selects elements
g1, g2, . . . , gk from P (K) and starts the presented above protocol.

6 Privatisation of public keys

6. 1. PRIVATISATION OF CUBICAL PUBLIC RULES.
(i) Save delivery method [41].
Alice proposes to selected user Bob to start one of the protocol with out-

put Y from nES(K) given by n monomial terms qix1
a(i, 1)x2

a(i,2)...xn
a(i,n)

,
i = 1, 2, . . . , n. Alice and Bob form matrix A with entries a(i, j) from Zd
and matrix B with entries b(i, j) = (qiqj)

a(i,j). They form tuple fi such that
f1 = x + q1, f2 = x + q2, f3 = x + q1 + q3, f4 = x + q2 + q4, . . . . x +
q1 + q3 + . . . qn−1, x + q2 + q4 + · · · + qn. She forms element of semigroup u
= (x, f1, f1, f2, f2, . . . , fn, fn) and linear transformations R1 moving xi to
b(i, i)xi + b(i, i + 1)xi+1 + · · · + b(i, n)xi,n, i = 1, 2, . . . , n R2 moving xi to b(1,

i)x1 + b(2, i)x2x+ · · ·+ x
b(i−1,i)
i−1 + xi, i = 1, 2, . . . , n. Alice and Bob indepen-

dently creates H = R1R
A(n,K)
2 η(u)R2R1 in its standard form. She creates one

of cubical public rules G as above. She sends H +G to Bob. He restores G and
uses it for encryption.

(ii) Extraction method in the case of a field.
Let K = Fq. After the completion of the protocol each correspondent forms

matrices A, B, transformations R1 and R2 as in (i). Instead of u = (x, f1, f1,
f2, f2, . . . , fn, fn) they form w = (x, f1, f1, f2, f2, . . . , fn, xe), where e = 2 in
the case of even q, or e = 3 on the case of (3, q − 1) = 1.

Each of them uses consecutive application of R1, R2, A(n,K)η(u), R2, R1 for
the encryption and R1

−1, R2
−1, A(n,K)η(Rev(u)), R2

−1, R1
−1 for the decryp-

tion. meth This is symmetric a cipher supported by postquantum secure key
exchange protocol.

(iii) Extraction method in the case of commutative rings.
Each correspondent forms matrices R1, R2 as in the previous cases. They

form R′1 moving xi to b(i, i)xi + b(i, i+ 1)xi+1 + · · ·+ b(i, n)xi,n, i = 2, 3, . . . , n
such that R′1(x1) = b(1, n)xn. Alice and Bob use consecutive application of R2,
R′1, A(n,K)η(u), R1 and R2 for the encryption.

REMARK 6.1.
In the case of K = Z2r , r ≥ 2 correspondents can use more general expression

for R′1(x1) of kind b(1, 1)x1 + b(1, 2)x2 + · · ·+ b(1, n− 1) + 2b(1, n). Recall that
we asumed that parameter n is even.

6.2. PRIVATISATION OF EULERISED PUBLIC RULES OF DENSITY
O(n4).

(i) Alice constructs cubical public key G from nCG(K) via presented above
method. She creates its Eulerisation via generation of J from nCG(K) via se-
lected Jordan-Gauss automorphisms of K[x1, x2, . . . , xn] and composition JG =
E of linear degree cn, c > 0 and density O(n4). After the completion of pro-
tocol Alice and Bob elaborate matrices A and B. They create R1, R2 and
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sequence u and compute H = R1R
A
2 (n,K)η(u)R2R1 (see (1) above). Addi-

tionally they use matrix A to create Jordan Gauss elements 1J moving xi
to xi

a′i,ixi+1
a(i,i+1)xi+2

a(i,i+1) . . . xn
a(i,n), i = 1, 2, . . . , n and 2J moving xi to

xi
a′i,ix1

a(i,1)x2
a(i,2) . . . xi−1

a(i,i−1), i = 1, 2, . . . , n where a′(i, i) = a(i, i) if (a(i, i), d) =
1 and a′(i, 1) = 1 in the oposite case. Each of correspondents forms H ′ as 1J2JH.

Alice sends E + H ′ to Bob. He restores the standard form of multivatiate
map E of density O(n4) and linear degree.

(ii) Privatisation ”by parts”.

Alice creates the pair (J,G) as in (i). Correspondents execute protocol and get
matrices A and B. They form 1J and 2J and their composition J ′ together with
a cubical map H. Alice sends tuple of monomial terms (J(x1)J(x1), J(x2)J ′(x2),
. . . , J(xn)J ′(xn)) together with the standard form G+H. Bob restores the pair
(J,G).

So he encrypts via consecutive usage of J and G to a plaintext from K∗n.
Alice decrypts via consecutive usage of T2

−1, A(n,K)η(Rev(w)), T1
−1, J−1. Com-

plexity of encryption procedure by Bob is O(n4).

(iii) Extraction method.

Alice and Bob execute the protocol and get matrices A,B. In the case of
K = Fq correspondents construct linear transformations R1 and R2 and string
u = (x, f1, f1, f2, f2, . . . , fn, fn) as in (i).

In the case of characteristic 2 they have a choice to create w = (x, f1, f1,
f2, f2, . . . , fn, x2) or to use w = (x, f1, f1, f2, f2, . . . , fn, x3) if (3, q − 1) = 1.
They form J1 and J2 accordingly to the method of (ii).

They use sequence J1, J2, R1, R2, A(n,K)η(w), R2, R1 to encrypt a plaintext
from K∗n and use R1

−1, R2
−1, A(n,K)η(Rev(w)), R2

−1, R1
−1, J2

−1, J1
−1 to

decrypt a ciphertext from Kn.

The complexity of protected symmetric cipher is O(n2).

7 Asymmetric Cryptosystem with multivariate
encryption of nonpolynomial density

Let K be a commutative ring with d = |K∗| > 3. We consider graphs A(n,K) for
even n, n ≥ 2 and t the tuple u = u(b1, b2, . . . , bn) given as f1 = b1x, f2 = b2x,
f3 = b3x

2 + b1, f4 = b4x
2 + b1, f5 = b5x + b1 + b3, f6 = b6x + b2 + b4, . . . ,

bxn−1
alpha+ b1 + b3 + · · ·+ bn−3, bnx

α + b1 + b2 + · · ·+ bn−2 where α = 2, t = 1
for n = 0 (mod 4) and α = 1, t = 2 for n = 2 (mod 4), b1, b2, . . . , bn are elements
from K∗.

Accordingly to the given above estimates degree of A(n,K)η(u′) for u′ =
u′(b1, b2, . . . , bn) = (x, f1, f1, f2, f2, . . . , fk, fk) is at least 2n− 2. It is easy to
see that degree of A(n,K)η((w)) for w(b1, b2, . . . , bn) = (x, f1, f1, f2, f2, . . . , fk,
xe) with e < 2n− 2 coincides with A(n,K)η(u).

Assume that (e, d) = 1 and r is multiplicative inverse of e, i. e. re = 1(modd).
Then xer = x, (xxe)r is an identity map. Degree of the composition of xxr and
x→ xe is a product of these degrees. So they will be mutually inverse.
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Let us assume that K is a field Fq, q = 2t and e = 2. In this case r = 2t−1.

Then the composition of x→ x2
t−1

and xx2 is an identity. The degree of inverse
for x→ x2 has degree 2t−1. Notice that this degree is maximal power of 2 which
is < d.

Let us consider the case of arbitrary e and a finite commutative ring K such
that (d, e) = 1. The inverse δ−1 for the bijective map δ: x → xe belongs to the
cyclic group C =< δ >. Noteworthy that x → xe

s

for es < d can not be the
inverse for δ if es+1 6= d. Thus deg(δ)−1 is ≥ than maximal power of e which is
< d.

Notice that in the case of Fpt , p is a prime and e = p we have d = pt − 1,
r = 3t−1. The inverse map of δ has degree which is equal to the maximal power
of p in the interval (0, pt − 1).

Let us estimate degree g =A(n,K) ηn(Rev(w)). Notice that Rev(w) = (fk(xr),
fk(xr), fk−1(xr), fk−1(xr), fk − 1(xr), . . . , f1(xr), f1(xr), xr). It is easy to see
that deg(g) ≥ 2(n− 2)m, where m is the maximal power of e from the interval
(0, d).

ALGORITHM 7.1. Alice and Bob execute on of the algorithm of section 5
with the output from the semigroup nES(K), where n is even parameter ≥ 2 and
K is a finite commutative ring with multiplicative group K∗ of order d, d ≥ 3.
They use the collision map to create matrices A = (a(i, j) with a(i, j) ∈ Zd
and B = (b(i, j), b(i, j) ∈K∗ as in previous section. Additionally they have a
vecror (q1, q2, . . . , qn) of coefficients from the standard form of the output.
Correspondents agree on parameter e via open channel.

They form w(b1, b2, . . . , bn), matrices R′, R1 and R2 as in the previous sec-
tion.

They work with the plaintexts (x1, x2, . . . , xn) from K∗n and ciphertexts
from Kn.

The encryption algorithm contans the following steps.
Step 1. Sender takes the plaintext p = (p1, p2, . . . , pn) and computes param-

eters ai = fi(p1), i = 1, 2, . . . , n together with a = p1.
Step 2. Sender forms triangular matrices R′, R1, R2 together with their

inverses R′
−1

, R1
−1 and R2

−1.
Step 3. Sender consecutively computesR′(p) =1 p,R2(1rmp) =2 p,Na1(2p) =3

p, Na2(3p) =4 p, . . . , Nan(n+1p) =n+2 p, Ja(n+2p) =n+3 rmp, R2R1(n+3p) = c.
This procedure can be executed in time O(n).
For the decryption correspondent executes the following steps.
Step 1. Takes ciphertext c and nutes R1

−1R2
−1(c) = (b, c2, c3, . . . , cn) =1 c.

Let v = (v1, v2, . . . , vn) = R′R2(p). Notice that v1 ∈ K∗.
Step 2. He/she computes v1 = br together with an = fn(v1, an−1 = fn−1(v1),

. . . , a1 = f1(v1)
Step 3. Correspondent forms 2c = (p1 + an, c2, c3, . . . , cn).
Step 4. He/she computes Nan−1

(2c) =3 c.
Step 5. Computation of Nan−2(3c) =4 c.
. . .
Step n+ 3. Computation of Na1(n+3c) =n+4 c.
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Step n+ 4. Computation of Np1(3c) = v.

Final step is computation of R2
−1R′

−1
(v) = p.

In fact the encryption and decryption maps are multivariate transformations
of Kn of degree ≥ (2n− 2) and ≥ (2n− 2)m where m is a maximal power of e
which is ≤ d.

REMARK 7.1. Noteworthy that decryption and encryption maps are trans-
formations of nonpolynomial density, in practical cases their standard forms are
impossible to compute. Symmetric cipher with such encryption was implemented
(see [45]).

ALGORITHM 7. 2.
Let us consider the extraction method of privatization in the cases of Exam-

ples 12, 13, 14. Like in Algorithm 1 correspondents execute the protocol, takes
its uutput G. They form matrices A and B together with vector (q1, q2, . . . , qn)
and construct T1, T2 and tuple u as in previous algorithm. Additionally they use
matrix A to create transformation J1 and J2. So they use space of plaintexts
(K∗)n and space of ciphertexts Kn.

8 On sparse trapdoor accelerators

Practical applications need ”sparse trapdoor accelerators” which allows the com-
putation of the value of toric automorphism from polynomial map and its toric
reimage in time O(n). In the case of map from nEG we can use walks in the
following graph ∗A(n,H) defined over arbitrary commupative group H It is inci-
dense structure with points set ∗Pn and line set ∗L isomorphic to Hn such that
point (p1, p2, . . . , pn) is incident to line [l1, l2, . . . , ln] if and only if

p2/l2 = l1p1,
p3/l3 = p1l2,
p4/l4 = l1p3,
. . .
pn/ln = l1pn−1 if n is even and pn/ln = p1ln−1 if n is odd.
Similarly to the case of graphs A(n,K) we introduce colours p1 and l1 of

point (p1, p2, . . . , pn) and line [l1, l2, . . . , ln] of the graph ∗A(n,H) and define
operator αN(v) of taking of neighbour of v ∈ Pn ∪ Ln of colour α ∈ H.

We define ∗K[x1, x2, . . . , xn] as totality of monomials βx1
α1x2

α2 . . . xn
αn

where β ∈ K∗ and αi are elements of Zd, d = |K∗|. This is an abelian group
with natural operation of multiplication as in K[x1, x2, . . . , xn] which contains
K∗. We will use pair of graphs ∗A(n,K∗), ∗A(n,∗K[x1, x2, . . . , xn]) to define
the transformation from nEG(K). We take point (x1, x2, . . . , xn) of the graph
∗A(n,∗K[x1, x2, . . . , xn]) and the sequence u of elements 1h, 2h, . . . , sh from
∗K[x1] where parameter s is even. We assume that sh is element of kind qx1

t(s)

where (t(s),∗ |) = 1.
We consider the walk in the graph ∗A(n,∗K[x1, x2, . . . , xn]) starting from

point (x1, x2, . . . , xn) and further vertices of colours 1h. Let µn(u) be the trans-
formtion from nEG(K) sending (x1, x2, . . . , xn) to the destination point of the

walk (qx1
t(s), q1x1

a(1,1x
a(1,2)
2 , q2x1

a(2,1x
a(2,2)
2 , . . . , qnx1

a(n,1x
a(n,2)
2 . . . xn

a(n,s).
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We can consider transformations 1J and 2J defined by the rules x1 →
c(i, 1)x

a(i,1)
1 x2

a(i,2) . . . xn
a(i,n), x2 → c(i, 2)x2, . . . , xn → c(i, n)xn, i = 1, 2 where

c(i, j) are elements of K∗, a(i, j) are elements of Zd and a(i, 1), i = 1, 2 are mu-
tually prime with d. The rule Fn is a composition of J1, µn(u), J2. It is clear
that Fn has toric trapdoor accelerator (J1, J2, u). Noteworthy that if s = O(1)
and trapdoor is known that the value of Fn and the reimage of given tuple can
be computed in time O(n).

REMARK 8.1.

In all examples of families Fn from nCG(K) or toric automorphisms with
trapdoor accelerator T there is an option to work with ” sparce” trapdoor ac-
celerator. In the case of elements from nEG(K) one can work with function
Fn =1 Jµn(u)J2 as above in the case when length s of the walk of size O(1).

In the cases of Fn = T1ηn(u)T2 one can use the space of linear transformations
such that T (x1) and T2(x1) are of kind b1x1+b2x2+· · ·n xn, bi ∈ K∗. T (xj) = xj
for j = 2, 3, . . . , n and use u of kind (x, f1, f1, f2, f2, . . . , fs, g(x)) where the
choice of fi and g(x) depens on the used algorithm.

In cases of Examples 9, 10, 11 degrees of f1, f2, . . . , fs−1 are > cn for some
positive constant c, their size is O(n). It is easy to see that in the case of s
of size O(1) the rule Fn is still bijective function of unbounded degree but the
knowledge of trapdoor allows to compute the value of multivariate function Fn
and its reimage in time O(n).

In the cases 12, 13, 14 we create trapdoors of kind J1, J2, T1, T2, u as above
and work with toric automorphism Fn = J1J2T1T2u Special choice of trapdoor
informalions allows us to compute the value and toric reimage in time O(n).

REMARK 8. 2.

Alice and Bob can use one of protocols with platform nES(K). They take
the collision element G and form the matrices A and B. Some ”light extraction
algoritm” can be used to select (a(i, 1), a(i, 2), . . . , a(i, n)), i = 1, 2 as some rows
or columns of A and vectors from (K∗)n as rows or columns of matrix B.

9 On open schemes of collision maps extractions

.

Let K be a commutative ring with multiplicative group K∗ of order ≥ 3. We
consider an element TFn = Fn from nCG(K) depending on piece of information
T which is a trapdoor accelerator.

Note that we can take two affine transformations T1 and T2 from AGLn(K)
and form a new element Gn = TT1 FnT2. It is easy to see that automorphism Gn
has trapdoor accelerator T ′ = (T1, T, T2). We refer to T ′ as deformation of T . In
many cases the information on T can be given via two vectors v1 from Kt and
v2 from Zm

r for some parameters r, t and m. Note that part of information on
T can be given publicly. In the case of Gn of polynomial density this map can
be given via its standard form which can be used as a public rule and T ′ will be
treated as a private key.
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We can consider more general toric trapdoor accelerator of kindGn = TT1 FnT2
where Gn and Fn are toric automorphisms and solution for Fn(x) = b, x ∈ (K∗)n

can be computed in time O(n2).

Other examples of toric trapdoor accelerators corresponds to Eulerian trans-
formations from nEG(K). Let MJ element from nEG(K) such that the knowl-
edge of M allows the computation of solution for MJ(x) = b, x, b ∈ K∗ can be
computed in time O(n2). Then En = J1

MJJ2 where J1 and J2 are products of
r = O(1) of Jordan-Gauss generators also has toric trapdoor accelerator (L1,
L2, M) where L1 and L2 are lists of generators for Ji, i = 1, 2.

Noteworthy that we can combine trapdoor accelerators (L1, L2,M) and (T1, T, T2).
Toric automorphism Yn = J1

MJJ2T1
TFnT2 has toric trapdoor accelerator (L1,

L2, M , T1, T , T2). The first examples of realisations of these schemes are given
in [26].

Alternatively Alice and Bob can use protocols of Noncommutative Cryptog-
raphy based on semigroup platform S generated by several endomorphisms from
sCS(K). The collision element g is given by the tuple of polynomials (f1, f2, . . . ,
fs). One can take vectors v(i) of coefficients in front of monomials of gi ordered in
lexicographical order, amd the list m(i) of normalised ordered monomials (with
coefficient 1) ordered monomials of gi.

We refer to the algorithm with input v(i), m(i), i = 1, 2, . . . , s and output
T ′ as trapdoor accelerator extraction procedure.

For the feasibility of protocol the seemigroup S of sC has satisfy tp Multiple
Composition Computetion Property (MCCP) which insures the computation of
s elements of S in plolynomial time.

One of the examples of semigroup with MCCP is the subgroup sES(K), other
examples are stable subsemigroups of sCS(K) for which degree of elements are
bounded by some constant. In the case of sES(K) the output g is the map
xi → qix1

a(i,1)x2
a(i,2) . . . xs

a(i,s), i = 1, 2, . . . , s

So we form to matrices B = (b(i, j)), b(i, j) = (qiqj)
a(i,j) and A = (a(i, j).

Assume that v = (v1, v2, . . . , vs2)) and a = (a1, a2, . . . , an2) are lists of elements
of B an A ordered lexicographically.

9. 1. EXTRACTION OF AFFINE TRANSFORMATIONS AND TUPLES
OF POLYNOMIALS FROM THE PROTOCOL.

Take list of formal variables zi, i = 1, 2, . . . , n2 together with parameter m
and form formal lower triangular matrix Z with rows Zj = (zi(1,j), zi(2,j), . . . , zi(j,j , 0, 0, . . . , 0),
i(t, j ∈ {1, 2, . . . , Sn2} , j = 1, 2, . . . ,m and R = (zl(1, zl(2), . . . , zl(m)).

The list of variables yi, i = 1, 2, . . . , n2 will be used for a creation of formal
upper triangular matrix Y of sise m × m with rows Yj = (0, 0, . . . , yk(j, j),
yk(j, j + 1), . . . , yk(j,m)).

we consider polynomials of kind jQ(x) = zl(j,0) + zl(j,1x+ · · ·+ zl(l(j,r(j))xr(j)

where l(j, i) are elements of {1, 2, . . . , n2}, j = 1, 2, . . . , s, i = 1, 2, . . . , r(j).

9. 2. PROTOCOL INTERPRETION.

Let us consider toric automorphism of kind Gm = TT1 FmT2 from mCS(K)
where Fm is graph based toric automorphism A(m,K)η(u) with trapdoor accelera-
tor of kind (x, f1, f1, f2, f2, . . . , fs, gs), s = O(m). For the simplicity we assume
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that gs is known bijective map on K. In particular we can take g(x) = ax + b,
a ∈ K∗ or K = Fq and g(x) = axr + b, (r, q − 1) = 1 , a 6= 0. Under this
assumption Fn will be a bijective map.

One of correspondents selects parameter m and forms formal lower triangular
matrices 1Z ans 2Z of sisem×m with rows 1Zj = (z1i(1,j), z1i(2,j), . . . , z1i(j,j , 0, 0, . . . , 0)
and 2Zj = (z2i(1,j), z2i(2,j), . . . , z2i(j,j , 0, 0, . . . , 0). Words (1i(1, j), z1i(2,j), . . . , z1i(j,j))
and (2i(1, j),2 i(2, j), . . . ,2 i(j, j) in the alphabet {1, 2, . . . , n2} can be generated
by some pseudorandom algorithm.

Similarly he/she forms two formal upper triangular matrices lY , l = 1, 2
with rows lYj = (0, 0, . . . , ylk(j,j), ylk(j,j+1), . . . , ylk(j,m)) and two vectors jR =
(zj l(1, zj l(2), . . . , zj l(m)), j = 1, 2.

Secondly the correspondent forms polynomials of kind jQ(x) = zl(j,0) +
zl(j,1x + · · · + zl(l(j,r(j))xr(j) where l(j, i) are elements of {1, 2, . . . , n2}, j =
1, 2, . . . , s, i = 1, 2, . . . , r(j). We assume that r(j) ≥ 1 of size O(m)

He/she sends these data to partner. So correspondents use it and create
matrices rB, r = 1, 2 via specialisation zri(k,j) = vri(k,j) and rC, r = 1, 2 via
specialisation of matrices rY via specialisation rk(j, j) = v(rk(j, j + 1)). They
form two vectors jb of kind (vj l(1, vj l(2), . . . , vj l(m)). They use specialisations
jP (x) of jQ(x) = zl(j,0) + zl(j,1x + · · · + zl(l(j,r(j))xr(j) obrained via the rule
zl(j,t) = vl(j,t).

Each of correspondent uses affine transformations Tr : x : BrCrx + br, r =
1, 2 and tuple u = (P1, P1, P2, P2, . . . , Ps, Ps) to encrypt with multivariate rule

x → T
A(m,K)η(u)T2

1 . It is easy to see that encryption takes time O(m2). We
assume that deg(Pi) 6= degPi+2, i = 1, 2, . . . ,m − 2, deg(Pi) ≥ cm, s ≥ cm for
some constant c. Then degree of encryption map is ≥ cm2. The execytion time
of encryption and decryption procedures is O(m2).

Let us assume that correspondents can use constants 0 and 1 together with co-
ordinates of vector v. One can use sparce variant were T1 = C1, T2 = C2 obtained
via specialisations of rY , r = 1, 2 with first rows (yr(1,), yrk(1,2), . . . , y2k(1,m)) and
other rows (0, 1, 0, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, . . . , 0, 1). They select s of
size O(1). Then the encryption and decryption procedure will take time O(m).
We can slightly modify sparce version as above via the choice of s of size O(mt),
1 ≤ t < 1. Then execution of encryption and decryption will cost O(m1+t).

REMARK 9. 1.

We can use arbitrary linguistic graph I defined over K instead of A(m,K).
The usage is defined via the change of A(m,K)η for Iη.

We can hide the graph taking some coefficients in equations of graph as
variables vi and degrees of monomials as some ai. For instance we can use equa-
tions of kind hi2x2 + hj2y2 = y1

ck(2)x1
cs(2)

, h(i3x3 + h(j3)y3 = x1
ck(3)y3

cs(3),
. . . himxim + hjmyim = y1

c
k(m)xm−1

c
s(m) if m is even and himxim + hjmyim =

x1
c
k(m)ym−1

cs(m) if m is odd where il, jl, k(l), s(l), l ≥ 2 are elements of the

alphabet {1, 2, . . . , n2} After the complition of the protocol correspondents spe-
cialise his , hjs , s = 2, 3, . . . ,m as vis and vis . They set ck(s) = ak(s) if ak(s) 6= 0
and ck(s) = 1 for ak(s) = 0. Similarly cs(l) = as(l) if as(l) 6= 0 and cs(l) = 1 for
as(l) = 0, l = 2, 3, . . . ,m.
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REMARK 9.2.

We can use more general formal polynomials jQ(x) = zl(j,0) + zl(j,1x
d(t(j,1) +

zl(j,2x
(2(d(t(j, 2)) · · ·+zl(l(j,r(j))xr(j)jd(t(j,ir(j))) , where t(j, k) are elements of {1, 2, . . . , n2}.

For the specialisation we will use tuple (c(1), c(2), . . . , c(n2)) such that c(i) =
ai if ai 6= 0 and c(i) = 1 for ai = 0 and set d(t(j, k)) = c(t(j, k)).

9. 3. EXTRACTION OF EULERIAN TRANSFORMATIONS ANd TUPlES
Of ELEMENTS OF 1ES(K).

Let m be a positive integer. We consider list of variables tz(tk(i, j)), 1 ≤
i ≤ j ≤ m, t = 1, 2 where tk(i, j) is an element of alphabet {1, 2, . . . , n2} = N
Additionally we will work with list of variables tu(tr(i, j)), m ≥ i ≥ j ≥ 1, t =
1, 2 where tr(i, j) ∈ N . We set lists of variables txtk(i), k(i) ∈ N , i = 1, 2, . . . ,m,
t = 1, 2, 3, 4 together with tytl(i), l

t(i) ∈ N , i = 1, 2, . . . , s, s = O(m), t = 1, 2.

Assume that Alicia sends these lists to Bob. After the execution of protocol
correspondents specialised variables txtk(i) as vtk(i) and get tuples (1q1,

1 q2, . . . ,
1 qm)

and (2q1,
2 q2, . . . ,

2 qm). They form arrays tz(tk(i, j)) = c(tk(i, j)) and tu(tk(i, j)) =c

(tr(i, j)). They form the following Jordan-Gauss transformations 1J and 2J
tJ(x1) =t qx1

tc′(tk(1,1)),
tJ(x2) =t qx1

tc(tk(2,1))x2
tc′(tk(2,2)),

. . . ,
tJ(xm) =t qx1

tc(tk(m,1))x2
tc(tk(m,2)) . . . xm

tc′(tk(m,m))xm
tc′(tk(m,m))

where c′(i) is maximal number from the interval [1, c(i)] which is mutualy
prime with d and t = 1, 2

Additionally they generate 3J and J4 of kind
tJ(x1) =k qx1

kc′(tr(1,1))x2
tc(tr(1,2)) . . . xm

tc(tk(1,m−1))xm
tc(tk(1,m))

tJ(x2) =k qx2
kc′(tr(2,2))x2

tc(tr(2,3)) . . . xm
tc(tk(2,m−1))xm

tc(tk(2,m))

. . .
tJ(xm) =t qx1

tc′(tr(m,m)),

where t = 3, 4.

They use specialisations of variables 1y1l(i) = v1l(i), i = 1, 2, . . . , s, 2y2l(i) =
c2l(i), i = 1, 2, . . . , s where parameter s is even.

Correspondents form u′ = (v
1l(1)x

2l(1),v

1l(2)x

2l(2),...,v
1l(2)x

2l(2))

.

They will encrypt plaintexts fromK∗m with element Em =1 J3JA(n,K∗)µ(u)2J4J .
It is easy to check that Em from mEG(K) has toric trapdoor accelerator (J1, u

′, J2)
where J1 =1 J3J, J2 =2 J4J .

COMBINED EXTRACTION ALGORITHM.

One of correspondents selects parameters m and n. He/she executes extrac-
tion algorithm 1 and 2 above. Alice and Bob compllete the protocol based
on platform nES(K). Each of correspondents implement the protocol imple-

mentations to get toric maps F1 = T
A(m,K)η(u)T2

1 and Eulerian transformation
F = J1µ(u′)J2.

After they work with the space of plaintexts (K∗)m and space of ciphertexts
Km. We can see that tuple (J1, J2, u′, T1, T2, u) is a toric trapdoor accelerator.
So encryption and decryption requires O(m2) elementary operations.
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REMARK 9.3.
Let us consider extraction algorithm to generate toric automorphism of kind

Gm = TT1 FmT2 from mCS(K) where Fm = η(u) , u = (x, f1(x), f1(x), f2, f2,
. . . , fs−1, fs−1, fs, gs) in the case when the equations of kind gs(x) = b, x ∈ K∗
has a unique solution but function gs is not a bijection on K. We use described
above scheme with special selection of lY1 as (0, 0, . . . , O, ylk(1,j), 0, . . . , 0) for
some 1 ≤ m. Additionally we change the positions of Br and Cr and define
rT as transformations x: CrBrx + br, r = 1, 2 during the process of protocol
implementation. Then modified algorithm produces toric automorphism Gm =
TT1 FmT2 with toric trapdoor accelerator (T1, T2, u) and toric automorphism Gm
is not an element of mCG(K).

10 Conclusions

Extremal algebraic graphs were traditionally used for the construction of stream
ciphers of multivariate nature. We introduce first graph based multivariate public
keys with bijective encryption maps.

We use family of graphs A(n, Fq) where q is large prime power such that
(q − 1, 3) = 1 or charFq = 2 to define cubical bijective maps Fn of vector space
Fq)

n with inverse maps of large degree. In particular for each pair (2m, n), m ≥ 2,
n ≥ 2 we have example of cubical bijective transformation Gn of Fn2m with degree
of the inverse map 3× 2m−1.

More general families A(n,K), n ≥ 2 are defined over finite commutative
ring K such that d = |K∗ | > 3 and (3, d) = 1 is used to construct cubical map
Gn of affine space Kn, n ≥ 2 which act injectively on Tn(K) = K∗m and have
Eulerian inverse En which is endomorphism of K[x1, x2, . . . , xn] such that the
composition of Gn and En acts on Tn(K) as identity map. The degree of En(K)
is at leat 3×t where t is maximal power of 3 which is < d. It can be used for the
construction of public keys with the space of plaintexts Tn(K) and the space of
ciphertexts Kn.

In the case when K is a field Gn and En are bijective maps on Kn. So, in the
case of q such that (3, q−1) = 2 degree of Gn

−1 acting on Fq
n is ≥ 3t, where t is

maximal power of 3 which < q−1 and transformations of kind T1FnT2, T1, T2 ∈
AGLn(Fq) can serve as public keys. We consider obfuscations of Gn and Fn of
kind F ′n = HnT1(Fq)FnT2, T1, T2 ∈ AGLn(Fq) and G′n = Hn(K)T1GnT2, T2 ∈
AGLn(K),T1 is a special affine transformation, where Hn(q) and Hn(K) are
Eulerian automorphisms of Fq[x1, x2, . . . , xn] and K[x1, x2, . . . , xn] respectively,
i.e., transformations moving each xi to a monomial term with coefficient from
K∗. Maps F ′n and G′n has linear degree and the same densities with Fn and
Gn. In the case of usage of such obfuscations as public keys adversary has to
approximate the ”decryption map” of non polynomial density.

Finally we convert proposed public keys to protocol based cryptosystems of
El Gamal type with the usage of algorithms of Noncommutative Cryptography
with platforms of Eulerian endomorphisms of K[x1, x2, . . . , xn]. Security of these
cryptosystems rests on the complexity of Power Conjugacy Problem or Word
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Decomposition Problem for Eulerian endomorphisms given in their standard
forms.

Additionally we introduced a cryptosystem with the encryption map on non
polynomial density. This map is impossible to use on public key mode.
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