
DME: A FULL ENCRYPTION, SIGNATURE AND KEM MULTIVARIATE

PUBLIC KEY CRYPTOSYSTEM

IGNACIO LUENGO AND MARTÍN AVENDAÑO

Abstract. DME is a multivariate public key cryptosystem based on the composition of linear
and exponential maps that allow the polynomials of the public key to be of a very high degree. A
previous version of DME ([3]) was presented to the NIST call for postquantum cryptosystems (in
the KEM category), but it did not qualify to the second round. This new version of DME adds
two extra rounds of exponentials to the first version, and only needs arithmetic in the finite fields
Fq and Fq2 , dispensing the need for the field Fq3 .

1. Introduction

The main components of the DME cryptosystem are exponential maps EA : Kn → Kn associated
to matrices A = (aij) ∈Mn×n(Z), where K is a finite field, whose precise definition is given by the
following formula:

(1) EA(x1, . . . , xn) = (xa111 · . . . · xa1nn , . . . , xan1
1 · . . . · xann

n).

For simplicity, we will use the notation EA(x1, . . . , xn) = (x1, . . . , xn)A. The following two facts
are extremely useful and also easy to verify:

a) If A,B ∈Mn×n(Z) and C = B ·A, then FC = FB ◦ FA.
b) If det(A) = ±1, then the inverse matrix A−1 has integer entries, FA is invertible on (Fq \
{0})n, and its inverse is given by FA−1 .

The of monomial maps that are extensively used in Algebraic Geometry and produce birra-
tional maps. In Projective Geometry they are also called Cremona transformations. In [2] these
transformations are used to produce a multivariate public key cryptosystem.

If det(A) 6= ±1, the monomial map is not birrational. In fact one has:

Proposition 1.1. Let FA : Kn → Kn be a monomial map as (1), where K is an algebraically
closed field of characteristic zero. Then the monomial map FA has geometric degree d := |det(A)|
on (K \ {0})n, that is, for a generic x ∈ (K \ {0})n, the fiber F−1

A (x) has d preimages.

Let q = pe be a prime power and Fq denote a finite field of q elements. It is not necessary to
consider exponents greater than q−2 since xq−1 = 1 for all x ∈ Fq \{0}. We take A ∈Mn×n(Zq−1)
and then we have:

Theorem 1.2. Let A ∈ Mn×n(Zq−1) and GA : Fnq → Fnq be the corresponding monomial map. If

gcd(det(A), q − 1) = 1, and we set b := det(A)−1 ∈ Zq−1 and B := bAdj(A), then A−1 = B ∈
Mn×n(Zq−1) and FA : (Fq \ {0})n → (Fq \ {0})n is bijective with inverse FA−1.

Proof. The proof is immediate since, as we mentioned above, we can reduce the exponents modulo
q− 1. By construction, we have bdet(A) = 1 +λ(q− 1), so AB = bdet(A)In ≡ In (mod q− 1) and
xAB = xIn = x. �

The exponential maps FA can be used to build a multivariate PKC in the standard way by
putting powers of q in the non-zero entries of the matrix A. For instance, if each row has 2 non

Date: November 8, 2022.

1

2 I. LUENGO AND M. AVENDAÑO

zero entries qaij , then after composition with two linear maps at both ends, one gets a quadratic
public key, if we allow 3 non zero entries, we get cubic polynomials, and so on. We made extensive
computer tests leading to the conclusion that those systems are not safe against Gröbner basis
attack for reasonable key size.

In order to make an scheme stronger against algebraic cryptanalysis we take q = 2e and allow
the non-zero entries of A to be powers of 2 that are not powers of q. This choice produces final
polynomials with degree up to q − 1 in each variable. The kernel of our scheme is a composition
of r exponentials with n variables and n + 1 linear maps, that we denote by DME-(r, n, 2e). We
have successfully built DME-(r, n, 2e) schemes with n = 6, 8 and 3 ≤ r ≤ 6. For simplicity, we take
r = 4 and n = 8 in the following description of the DME.

2. Mathematical description of DME-(4, 8, 2e)

The DME-(4, 8, 2e) cryptosystem works with plain texts and cypher texts in F8
q with q = 2e. Let

u2+au+b ∈ Fq[u] be an irreducible polynomial, consider the field extension Fq2 = Fq[u]/〈u2+au+b〉
of degree two over Fq. Let φ : F2

q → Fq2 be the bijection defined by (x, y) 7→ x + yū and let

φ̄ : F8
q → (Fq2)4 be the map (x1, . . . , x8) 7→ (φ(x1, x2), φ(x3, x4), φ(x5, x6), φ(x7, x8)). The values of

e, a, b are fixed during the setup of the system.

The DME-(4, 8, 2e) cryptosystem combines 5 linear+affine maps L0, . . . , L4 : F8
q → F8

q with 4

exponential maps E1, . . . , E4 : (Fq2)4 → (Fq2)4. More precisely, the encryption map

F = Ψ(L0, . . . , Lr, E1, . . . , Er) : F8
q → F8

q

is given by the composition

F8
q F8

q (Fq2)4 (Fq2)4

F8
q F8

q (Fq2)4 (Fq2)4

F8
q F8

q (Fq2)4 (Fq2)4

F8
q F8

q (Fq2)4 (Fq2)4

F8
q F8

q

L0 φ̄ E1

φ̄−1

L1 φ̄ E2

φ̄−1

L2 φ̄ E3

φ̄−1

L3 φ̄ E4

φ̄−1

L4

of the linear+affine and exponential maps interleaved with the bijections φ̄ and φ̄−1.

Each linear+affine map Li is made up of four linear maps Li1, . . . , Li4 : F2
q → F2

q and four

translation vectors ai1, . . . , ai4 ∈ F2
q , so that

Li(x1, . . . , x8) = (Li1(x1, x2) + ai1, Li2(x3, x4) + ai2, Li3(x5, x6) + ai3, Li4(x7, x8) + ai4).

The matrices of the blocks Li1, . . . , Li4 are Ai1, . . . , Ai4 ∈ F2×2
q , respectively.

In order to avoid failures of decryption (more technical details about this will be given below)
we use translations in only one intermediate step 1 ≤ i0 < 4 and set aij = 0 for all i 6= i0.

The exponential maps Ei : (Fq2)4 → (Fq2)4 are defined by

(y1, y2, y3, y4) 7→ FEi(y1, y2, y3, y4) = (y1, y2, y3, y4)Ei

DME 3

where Ei = (αi,jk)1≤j,k≤4 is a 4 × 4 matrix with coefficients in [0, q2 − 1]. It is not necessary to

consider exponents greater than q2 − 1 since xq
2

= x for all x ∈ Fq2 .

The linear+affine maps Li : F8
q → F8

q are invertible if and only if each of the 2 × 2 blocks
Li1, Li2, Li3, Li4 have non-zero determinant. In this case, the inverse of Li is

L−1
i (x1, . . . , x8) = (L−1

i1 (x1, x2)− L−1
i1 ai1, . . . , L

−1
i4 (x7, x8)− L−1

i4 ai4),

i.e. L−1
i is also a linear+affine map.

The exponential maps Ei : (Fq2)4 → (Fq2)4 are not invertible in general. However, their restric-

tions to the torus Êi : (F∗q2)4 → (F∗q2)4 are invertible if and only if

gcd(det(Ei), q
2 − 1) = 1.

The inverse of Êi is also an exponential map Ê−1
i : (F∗q2)4 → (F∗q2)4, given by the inverse of the

matrix Ei modulo q2 − 1. This matrix has coefficients in [0, q2 − 2]. Using the same matrix, we

extend Ê−1
i to an exponential map E−1

i : (Fq2)4 → (Fq2)4.

The private key consists of the coefficients of the linear+affine maps L0, . . . , L4 and exponential
maps E1, . . . , E4. That information is enough to apply all those maps in reverse, that is, to being
able to decrypt. The public key is the polynomial representation of the composition of the maps,

F (x1, . . . , x8) = (F4,1, F4,2, F4,3, F4,4, F4,5, F4,6, F4,7, F4,8)

.

3. Computing the monomials of F

If x = (x1, . . . , x8) ∈ F8
q are the initial coordinates, then the composition of all the maps allow

us to compute the components of F (x) as polynomials F4,j ∈ Fq[x1, . . . , x8]. In order to keep the
number of monomials small, we choose the matrices Ei with the following properties:

(1) The entries of Ei are powers of 2.
(2) Each row of Ei has one or two non zero entries.
(3) If we define di = 1

det(Ei)
mod q2− 1, then we have that di has a big binary weight for some

1 < i ≤ 4.

The inverse map F−1 is also composition of 4 exponentials so if the number of monomials of F−1

is not very big, one can get the polynomial components of F−1 by interpolation, provided enough
number of pairs (x, F (x)). To avoid this attack we take some i such that di has a big binary weight
to ensure that the inverse E−1

i has entries with big binary weight that will produce a big number
of monomial of the inverse F−1 above a given security level.

It is possible to get the monomials of the Fi without computing the composition of all the maps.
It is easy to verify that after exponential Ei plus φ̄−1 the 8 resulting polynomials

Fi,1, Fi,2, Fi,3, Fi,4, Fi,5, Fi,6, Fi,7, Fi,8

verify that Fi,2k−1, Fi,2k and Fi,2k−1 + ū.Fi,2k share the same monomials Mik unless some coefficient
vanish and also the same happens after we apply Li.

Let M = [m1, . . .ms] a list of monomials and α a power of 2, we define Mα = [mα
1 , . . . ,m

α
s]. If

M = [m1, . . . ,ms] and N = [n1, . . . , nt] are lists of monomials, we define

Mα ⊗Nβ = [mα
i ⊗ n

β
j , 1 ≤ i ≤ s, 1 ≤ j ≤ t],

that is, Mα ⊗Nβ is the Kronecker tensor product of M and N as row matrices.

4 I. LUENGO AND M. AVENDAÑO

It is easy to verify that Mα
ij ⊗M

β
ik is the list of monomials of the polynomial

(Fi,2j−1 + ū.Fi,2j)
α · (Fi,2k−1 + ū.Fi,2k)

β

since the exponents α and β are powers of 2.
Let M01 = [x1, x2],M02 = [x3, x4],M03 = [x5, x6],M04 = [x7, x8]. We use the following notation

for the entries of each matrix Ei: we call αi,2k−1 the first non zero entry of the row k and αi,2k the
second non zero entry. If there is only one non zero entry, we just set αi,2k = 0.

We reduce the list of monomials when some of them are repeated. Let us define an operation
Rm(M) on a list of monomials M that removes all duplicates, keeping only the first appearance of
each monomial in the list and erasing the rest. The following algorithm, called MON, shows how
to compute the lists of monomials of the Frj .

Algorithm 3.1 MON, compute the monomials in the public-key polynomials.

Input: (E1, . . . , Er)
Output: (Mr1,Mr2,Mr3,Mr4)

1: for i = 0 to r − 1 do
2: for k = 1 to 4 do
3: M(i+1)k = M

αi,2k−1

ik1
⊗Mαi,2k

ik2
, where Mik2 = [1] if αi,2k = 0

4: M(i+1)k = Rm(M(i+1)k)
5: if a(i+1)k 6= 0 then
6: append 1 to the list M(i+1)k

7: end if
8: end for
9: end for

The size of the lists Mri can be up to double exponential on the number of exponentials r for
instance if all the rows of the Ei have two non zero entries then card(Mri) = 22r . We can reduce
the size of the list of monomials by imposing some linear condition on the exponents ei,j of αi,j
(αi,j = 2ei,j), in such a way that some of the monomials become equal and the coefficient of the
repeated monomial is a sum of several terms, which will give us a defense against the structural
cryptanalysis. In fact, we need to take care of the following:

After the last exponential the final polynomials are obtained by computing F
αi,2k−1

(r−1)k1
· Fαi,2k

(r−1)k2
.

Let F
αi,2k−1

(r−1)k1
=
∑
Bimi and F

αi,2k

(r−1)k2
=
∑
Cjnj . Then,

F
αi,2k−1

(r−1)k1
· Fαi,2k

(r−1)k2
=
(∑

Bimi

)
·
(∑

Cjnj

)
=
∑

BiCjminj =
∑

Hijminj .

Thus, we have Hij = BiCj , and it is clear now that the coefficients Hij ∈ Fq2 satisfy HijHkl =
HilHkj , which will be called quadratic relations (QR) from now on. Since the coefficients of final
polynomials F1, . . . F8 are obtained applying φ̄−1 and Lr, we can use the QR to compute equations
for the coefficients of the components of inverse of L−1

r . Given that the QR are homogeneous (of
degree two), one can solve those equations to find L−1

r and Lr up to a constant.

In order to eliminate the QR among the Hij , the strategy is to force many coincidences among
the final monomials, that is, if Hij is a sum =

∑
BkCl it will by more difficult to get the quadratic

relations or any polynomial relations among the Hij . The implicit equations on the Hij are obtained
by computing the equations of the image of the map Q = (Qij), defined by Hij = Qij(B,C) =∑
BkCl, that is by eliminating the B1 and Cj from the system [Hij −

∑
BkCl

Q : Fq2 [Bk, Cl] −→ Fq2 [Hij]

DME 5

For instance, for the second component of example 1 there are no QR, the source has 24 variables
and the target 48.

Assume that we are at the step i of the algorithm MON and we are computing the list M(i+1)k.
We can force a reduction of the monomials only if there are two non zero entries 2ei,2k−1 and 2ei,2k

in the corresponding row of the matrix Ei, so we’ll have to compute M(i+1)k = M
αi,2k−1

ik1
⊗Mαi,2k

ik2
.

Now, we take a variable that is in both lists with exponent a power of 2, which for simplicity we’ll

assume it is x1. More precisely, the monomial x2l1
1 ·m1, where l1 = l1(ej,l : 1 ≤ j ≤ i − 1) is a

linear form and m1 is a monomial in the other variables would appear in Mik1 , and x2l2
1 ·m2 in the

list Mik2 . By the method that the lists are constructed (x1 and x2 play exactly the same role), we

would also have the monomials x2l1
2 ·m1 and x2l2

2 ·m2 in the lists Mik1 and Mik2 , respectively.

Now, when we compute M
αi,2k−1

ik1
, the exponent of x1 in the first monomial is 2l1+ei,2k−1 and in the

other list is 2l2+ei,2k . We can forze that 2l1+ei,2k−1 = 2l2+ei,2k if we substitute ei,2k by ei,2k−1 + l1− l2
and then the monomials in both lists became

x2
1
l1+ei,2k−1 ·m2

1
ei,2k−1 , x2

2
l1+ei,2k−1 ·m2

1
ei,2k−1

in the first list, and

x2
1
l1+ei,2k−1 ·m2

2
ei,2k−1+l1−l2 , x2

2
l1+ei,2k−1 ·m2

2
ei,2k−1+l1−l2

in the second.
When the tensor product of both lists is computed, we get that two of the four monomials are

equal:

x2
1
l1+ei,j2k−1 ·m2

1
ei,j2k−1 · x2

2
ei,j2k−1+l1−l2 ·m2

2
ei,j2k−1+l1−l2

= x2
2
l1+ei,j2k−1 ·m2

1
ei,2k−1j · x2

1
l1+ei,j2k−1 ·m2

2
ei,j2k−1+l1−l2 .

If there are other variables repeated in both lists that have different exponents after the change
ei,2k = ei,2k−1 + l1 − l2, we can repeat the same procedure of imposing a linear condition, but in
this case the linear equations involves terms ejk with j ≤ i − 1. In general, each linear condition
will produce the reduction of many monomials, but the actual number depends of the structure of
the matrices Ei and it is not possible to give a formula for the final number of monomials of F .
Next, we present an example of the procedure.

Example 1: For this example, we take q = 2e, n = 6 and following matrices over Zq2−1:

E1 =

 α1,1 0 α1,2

α1,3 α1,4 0
0 0 α1,5

 , E2 =

 α2,1 α2,2 0
0 α2,3 α2,4

α2,5 0 α2,6

 , E3 =

 α3,1 0 α3,2

α3,3 α3,4 0
0 α3,5 α3,6

 .

As usual, αi,j = 2ei,j and ei,j ≤ e − 1. If the ei,j are generic, the lists of monomials after
the first exponential (M11,M12,M13) have size (22, 22, 2), after the second exponential the lists
(M21,M22,M23) have size (24, 23, 23), and after the third one the final lists (M31,M32,M33) have
size (27, 27, 26). We can apply the method in this section and find 7 independent linear conditions
on the ei,j as follows: after E1, the lists (M11,M12,M13) have size (22, 22, 2), after E2, we observe
that the list M21 comes from tensoring M11 and M13, which have x1 and x6 in common, so the
linear condition e2,2 = e1,1 + e2,1 − e1,3 reduces the number of monomials to 12. For M21 there are
no common variables and for M23 we get the condition e2,4 = −e2,5 + e2,6 − e1,1 + e1,3 + e2,3, that
gives (12, 23, 6) monomials. Finally, after E3, the lists have size (72, 96, 48). For the list M31 we
get the condition e3,2 = e3,1 + e2,1 − e2,5 that reduces the size of M31 to 32. For the list M32 we
get the condition e3,4 = e3,3 + e1,1 + e2,1 − e1,3 + e2,3 that reduces the size of M32 to 38. There is
another independent linear equation −e1,2 + e1,5 − e1,3 − e2,3 + e2,4 that reduce the size of M32 to

6 I. LUENGO AND M. AVENDAÑO

36. For the list M33 we get the condition e3,6 = e3,5 − e1,1 + e1,3 − e2,5 + e2,3 that reduce the size
of M33 to 24.

By making the above linear changes in the exponents of the Ei, new matrices E′i and lists that
have (32, 36, 24) monomials appear, where one can verify that there are no quadratic relations
among the coefficients Hij . using a CAS system one can compute binomial relations of the type∏

(Hij) −
∏

(Hkl) up to some degree. In this example we check with Maple that there are no
binomial relations up to degree 10 .

This scheme can not be used for the kernel of the DME as is, because the three determinants
det(E′i) are a power of 2 and then the inverse F−1 will have a small number of monomials. If we
do not use the last linear relation we get M33 with 48 monomials, and there is no reduction of
monomials there are many QR which eventually will allow us to compute the last component the
matrix L3. A priori, this is not a problem for the security of the schema because the other two
components of L3 can not be obtained.

By checking the final lists of monomials, we can observe and interesting structure:
if we make the changes of variables in S1, S2 and S3:

S1 =

x2e3,1+e1,1+e2,1

1 = y11, x
2e3,1+e1,1+e2,1

2 = y12, x
2e1,4+e1,1+e2,1−e1,3+e3,1

3 = y13,

x2e1,4+e1,1+e2,1−e1,3+e3,1

4 = y14, x
2e1,2+e2,1+e3,1

5 = y15, x
2e1,2+e2,1+e3,1

6 = y16


S2 =

x2e3,1+e1,1+e2,1

1 = y21, x
2e3,1+e1,1+e2,1

2 = y22, x
2e1,4+e1,1+e2,1−e1,3+e3,1

3 = y23,

x2e1,4+e1,1+e2,1−e1,3+e3,1

4 = y24, x
2e1,2+e2,1+e3,1

5 = y24, x
2e1,2+e2,1+e3,1

6 = y26


S3 =

x2e1,3+e2,3+e3,3

1 = y31, x
2e1,3+e2,3+e3,3

2 = y32, x
2e1,4+e2,3+e3,3

3 = y33,

x2e1,4+e2,3+e3,3

4 = y34, x
2e1,2−e1,1+e1,3+e2,3+e3,3

5 = y35, x
2e1,2−e1,1+e1,3+e2,3+e3,3

6 = y36


we get polynomials Fi = Fi(y) ∈ Fq[y11, . . . y36] of low degree 6 or 7. Therefore, using S1, S2, S3 and

Fi(y) instead of Fi(x) as public key will make faster encryption for DME-KEM and faster signature
verification for DME-SIGN.

4. Computing the coefficients of the public key F

Once the list of monomials of the Fr,j is obtained, one gets the coefficient of each group of
polynomials by evaluating the polynomials Fr,1, ..., Fr,8. The set of pairs (c, Fr,j(c)) should be
big enough to guarantee that the corresponding linear equations are independent. That is, if

Qk = [q1...qd] and Fr,j =
∑d

i=1 frjiqi(x), we take vectors c1, . . . , cR such that the linear equations
on the coefficients frij in Fk(ce) =

∑
frjiqi(ce) are independent and can be solved to get the

coefficients of the polynomials Fr,1, . . . , Fr,8.

To compute the polynomials Fr,k faster we can use the same idea used to compute the lists of

monomials of the polynomial (Fi,2j−1 + ūFi,2j)
α(Fi,2k−1 + ūFi,2k)

β, i.e. Mα
ij ⊗M

β
ik. Let sij be the

size of the list Mij . Now, regard Mij as a 1× sij matrix, which by abuse of notation, we will still
write it as Mij . We denote by Cij the sij × 2 matrix of the coefficients of the polynomials Fi,2j−1

and Fi,2j on the monomials of Mij , as shown in the following formula:

Cij =


cij11 cij12

cij21 cij22
...

...

cijsij1 cijsij2


Now we have that Fi,2j−1 + ūFi,2j = Mij · Cij · (1, ū)t.

DME 7

If α = 2b, then (Fi,2j−1 + ūFi,2j)
α = Mα

ij · Cαij · (1, ūα)t.
Applying the mixed-product property of the Kronecker product we get:

(Fi,2j−1 + ūFi,2j)
α · (Fi,2k−1 + ūFi,2k)

β

= (Mα
ij · Cαij · (1, ūα)t)⊗ (Mβ

ik · C
β
ik · (1, ū

β)t)

= (Mα
ij ⊗M

β
ik) · (C

α
ij ⊗ C

β
ik) · (1, ū

β, ūα, ūα+β)t

Let’s call Uαβ the 4× 2 matrix defined by

(1, ūβ, ūα, ūα+β)t = Uαβ · (1, ū)t.

Then, we have the following result:

Lemma 4.1. The matrix of coefficients of (Fi,2j−1 + ūFi,2j)
α · (Fi,2k−1 + ūFi,2k)

β with respect of

the monomials Mα
ij ⊗M

β
ik is (Cαij ⊗ C

β
ik) · Uαβ

Now, we can compute the coefficients of the Fr,j with algorithms similar to Rm and MON. Given
the matrices of coefficients (M,C) of a component we define Rc(C) the matrix coefficient obtained
by adding of the coefficient of a the same monomial in the case that is repeated in the monomial
list M .

Algorithm 4.1 COE, compute the coefficients of the public-key polynomials.

Input: (E1, . . . , Er, L0 . . . Lr)
Output: (Cr1, Cr2, Cr3, Cr4)

1: M01 ← [x1, x2], M02 ← [x3, x4], M03 ← [x5, x6], M04 ← [x7, x8]
2: C01 ← A01, . . . , C04 ← A04

3: for i = 0 to r − 1 do
4: for k = 1 to 4 do
5: if αi,2k 6= 0 then

6: C(i+1)k =
(
C
αi,2k−1

ik1
⊗ Cαi,2k

ik2

)
· Uαi,2k−1,αi,2k

7: else
8: C(i+1)k = C

αi,2k−1

ik1
· (1, ūα)

9: end if
10: C(i+1)k = Rc(C(i+1)k)
11: if a(i+1)k 6= 0 then
12: add a(i+1),k to the coefficient matrix C(i+1)k

13: end if
14: end for
15: end for

5. DME as a trapdoor one way permutation

Let’s assume that the public key is

F = Ψ(L0, . . . , Lr, E1, . . . , Er) : F8
q → F8

q .

By construction, F is a composition of bijections of (Fq2 \ {0})4 if there is no affine translations
ai,j = 0 for all i, that is:

Remark 5.1. Let U = φ̄−1((Fq2 \ {0})4) ⊂ F8
q then F : U→ U is a bijection.

If we add an affine translation in only the step i0, then given x0 ∈ U the translation ai0,j can
produce a 0 in the step i0, which in turn will give F (x) 6∈ U, so F can not be inverted at F (x). On
the other hand, if F (x) ∈ U, then F is invertible at F (x), that is, we have:

8 I. LUENGO AND M. AVENDAÑO

Theorem 5.2. Let F be a public key map such that there is only one step 1 ≤ i0 < r with non-zero
affine components then F is invertible at F (x) if F (x) ∈ U. In other words,

F : U ∩ F−1(U)→ U ∩ F (U)

is a bijection.

Proof. Let x and y0 = (y0
1, y

0
2, y

0
3, y

0
4) = φ̄(L0(x)) ∈ (Fq2 \ {0})4.

By construction, all the successive maps of which F is made up are bijections in (Fq2 \ {0})4 or

U until we get the linear map Li0 . If we have that Li0(xi0) ∈ U, this property is preserved by the
rest of the maps, so F (x) ∈ U.

On the contrary, if Li0(xi0) 6∈ U, then there exist a k such that Li0k(xi0,2k−1, xi0,2k)+ai0,k = (0, 0).
As det(Ei) 6= 0, there is a non-zero entry αi0k in the k-th column, yαik = 0 and Fi0+1(x) 6∈ U
this property is preserved by the rest of the maps because there are no more translations, hence
F (x) 6∈ U.

In this case, it is clear that there are some x such that F (x) 6∈ U and therefore F (U) 6⊂ U. This
means that there will be messages that, after padding, x ∈ U but can not be signed. By the same
argument above, those messages can be detected because F−1(x) 6∈ U and the message can be
signed by changing the padding. �

In the case that there are affine translations in more than one step then can be failure of de-
cryption even if F (x) ∈ U. In example 1, if we take a11 6= 0, a21 6= 0, a22 6= 0 and the rest of the
aij are zero, after L1 we may have (x1

1, x
1
2) = (0, 0) and E1(y0) can not be inverted but as a21 6= 0

and a22 6= 0 then we may have x2 ∈ U and F (x) ∈ U, but clearly F is not invertible at F (x). One
can check that if we take a13 6= 0 and a21 6= 0 then F has the property that if F (x) ∈ U then
F−1(F (x)) = x, but the converse of this statement is not true because the matrices E−1

i have all
the entries different from zero.

From now on, we will assume that there are non zero affine translations at one level 1 < i0 ≤ r−1.
Then, as shown above, F : U ∩ F−1(U)→ U ∩ F (U) is a bijection. We can consider F as trapdoor
one way permutation. Given a message m, we add some padding to get x ∈ U. Now we can get
F (x) 6∈ U with probability 1/q2, then we change the padding and try again. For the signature of a
message we can do the same. In this work, we are mainly interested into find out the performance
and security of the DME and we will not elabotrate more about padding . For padding, we use the
standards OAEP for PKE and KEM and PSS00 for signature, and we will denote by DME-OAEP
and DME-PSS the corresponding cryptosystem.

6. Security of the DME

The security of the DME depends on the chosen settings and parameters. We will describe first
the setting of the the scheme DME(r, n, 2e):

6.1. The configuration of matrices. We define a Configuration of Matrices (CM) as a list
of r matrices for the exponentials where the non zero entries are substituted by 1. We denote
such matrices by E∗i . Let CM = [E∗r , . . . E

∗
1] be a CM. Then, it is easy to get the number of

monomials of the each component of F from CM if there are no repeated monomials, just compute
E∗ = E∗r · · ·E∗1 and let tk be the sum of the entries in the k − th row of E∗, in which case the
number of monomials of the components F2k−1, F2k is 2tk . In the example 1 we have

E∗ = E∗3 · E∗2 · E∗1 =

 3 1 3
3 2 2
2 1 3


and the corresponding number of monomials is (27, 27, 26).

DME 9

Another example is the configuration CM2 that we study in the next section and we implemented
with q = 264. The matrices of CM2 are:

E∗1 =


1 1 0 0
1 0 0 0
0 0 1 1
0 0 0 1

 , E∗2 =


1 1 0 0
0 1 0 0
1 0 0 1
0 0 1 0

 , E∗3 =


1 0 0 1
1 1 0 0
0 0 1 1
0 1 1 0

 , E∗4 =


1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1



E∗ = E∗4 · E∗3 · E∗2 · E∗1 =


5 2 1 1
4 2 1 2
5 2 0 1
3 2 1 3


and the number of monomials is (29, 29, 28, 29). After imposing 8 linear conditions we reduce the
number of monomials to (72, 90, 36, 96) and there are no QR.

When we consider in 6.3 a possible attack of the DME by Weil descent, the tk give also the
degree of the components F2k−1, F2k when we express them as polynomials over F2. In fact one of
the main reason to use 4 or more exponentials is to increase the values in the list (t1, t2, t3, t4).

6.2. Reduction of the number of monomials. Given a CM, it is straightforward to use the
algorithm we describe in section 3 to reduce drastically the number of monomials of the Fi, in fact
the linear relations depends only on CM and they are easy to compute. It is more complicate to
get the maximal reduction and simultaneously to produce a determinant det(Ei) with a big binary
weight so that E−1

i yields a large number of monomials. Nevertheless, it is possible to get a few
CM that verify that condition. Remember that the algorithm produce some linear condition on
the exponents of the matrices that allow us to eliminate some variables and find new matrices with
exponents in the remainder variables.

An important point for the security of the DME is that the final monomials depend on fewer
variables than the final matrices, this fact implies that given the monomials the public key F ,we
can deduce the variables involved in the public key and the rest of variables will produce a big list
of matrices with the same exponents as F . In example 1, there are initially 17 parameters that
reduce to 12 after the reduction of monomials and examining the lists of exponents that appear in
(F, S1, S2, S3.S4) we can verify that the exponents of F depend only on 6 parameters, therefore,
by fixing these parameters, the exponents are determined. As the 6 remaining parameters verify
that 1 < eij ≤ q2− 1, given the exponents of the public key and the base field F2e there are 26(e+1)

matrices that can produce those exponents.
For the configuration CM1 in section 7 , we have initially 23 variables and the reduction of

exponent left 16 free variables. Now the final exponents depend only on 8 variables, that means
that given the monomials of the public key there are 28(e+1) sets of matrices that produce the same
monomials. This means that for q = 264, there are 256 sets of matrices for a given public key.

For the configuration CM2 in section 7 we start with 28 variables ei,j corresponding to the non
zero entries in CM2 and we impose 8 linear conditions to get (72, 90, 36, 96) monomials. We fix F,
in order to determine the monomials in F we need to give values to 8 of the remaining variables
that is after we fix F there are 12 free variables. For instance if q = 264 the given F there are
212(e+1) = 284 set of matrices from CM that give the same exponents as F.

Given two sets of matrices MA1 and MA2 with the same final exponents we can ask if both
sets can give the same coefficients for F , that is MA1 and MA2 can produce equivalent private
keys. Counting the parameters on the coefficients of F one can see that it is very unlikely that two
sets matrices MA1 and MA2 gives the same F. For instance in example 1 the coefficients of F are
polynomials on the entries of the matrices of the linear isomorphisms Li, that is 48 variables and

10 I. LUENGO AND M. AVENDAÑO

(32 + 36 + 48)2 = 232 coefficients in F. The sets MA1 and MA2 will give two different solutions to
this system of 232 equations with 48 variables.

6.3. Weil descent. Taking a base of Fq over F2, namely B = {v1, . . . , ve}, we can express the

polynomial of F as polynomials F̃ in ne variables over F2. It is easy to verify that before the
reduction of monomials, the degrees of the components of s F̃ are (t1 . . . tn/2). In fact the raise of
the binary degree of the public key was one of the reasons to use more than two exponentials on
the DME ([4])

The reduction of monomials can produce also a reduction of the degrees of s F̃ and it is not
possible to determine apriori the degrees of the s F̃ . One has to examine the list of monomials
after the reduction and compute the degrees. For instance, in example 1 the degrees reduced from
(7, 7, 6) to (5, 6, 6) . For CM2 in section 7 the degrees of F̃ are reduced from (9, 9, 8, 9) to (7, 8, 6, 7).

6.4. Gröbner basis. To determine the resistance of a CM to the Gröbner basis attack, we have
to estimate the complexity of computing the Gröbner basis of the ideal

I = 〈f1(x)− y1, . . . , fn(x)− yn, x2e

1 − x1, . . . , x
2e

n − xn〉
where F (x) = y. Let sd(I) be the solving degree of I, i.e. the the highest degree of polynomials
involved in the computation of the Gröbner basis. The complexity of computing the Gröbner basis
using a algorithm like F4/F5 is bounded from above by

(2) O

((
n+ sd(I)

n

)ω)
where ω is the exponent in the complexity of matrix multiplication. It is easy to see that this
upper bound is well above O(2256), since sd(I) is bounded below be degree of the initial basis I ,
x2e
n − xn ∈ I and a typical monomial of F has from 4 to 8 variables we can force the degree of I to

be bounded below by 2e. Now if we take a CM with 8 variables (2) is bounded below by 216e. If
we use q = 264 then the complexity is bounded by O(21024).

We can safely assume that 2e ≤ sd(I), the problem is that we do not know if the bound (2)
is accurate or not for the Gröbner basis computation of this kind of ideals. In order to make an
experimental testing of the above bound, we used Magma in a cluster with several fat nodes with
512 Gb of RAM each. After an extensive series of computations, Magma can find the Gröbner
basis only for q = 23 and or q = 24. For q = 25 Magma exhausted the RAM before the end of the
computation. Here are the conclusions that we get from our experiments.

• Given a CM, the time of computing the Gröbner basis depends mainly on the exponents
of F , but not of the actual matrices that give F .
• The initial basis I can be considered sparse because it has a low number of monomials by

rapport to the degree but the intermediate computations of Magma show that the number
of monomials can be very big.
• The upper bound (2) seems to be accurate, but further research is needed to confirm this

fact.

Of course those conclusions can not be extrapolated for higher q. If any one can try to verify
those conclusion for e ≥ 5 we can provide them the basis for different CM.

We can use the special form of the monomials that allow to substitute F (x) by F (y11, . . .) as
described in example 1, but this will give a greater complexity because we will have much more
variables but the degree will not decrease much. Let’s explain this in the example 1. We have now
that F̄ has 18 variables {y11, . . . , y36}. If we examine the relations among the xi and the yjk given

by the lists S1, S2, S3 we find, for instance, x2e3,1+e1,1+e2,1

1 = y21, x
2e1,3+e2,3+e3,3

1 = y31, so we would
get a relation y31 = y2a

21 for some a ≤ q and we would end with a basis Ī such that sd(Ī) ≥ 2e as
before.

DME 11

6.5. Estimation of the number of monomials of the inverse. As we mentioned earlier we
set that 1/det(Ai) has a big binary weight to get a number of monomials of the inverse big enough.
Next we will do a more precise estimation of this number of monomial. Lets denote by Ci the
matrix obtained from A−1

i changing the non zero entries by 1. If the entries of A−1
i were powers of

two, then the number of monomials of F−1 is (s1, s2, s3, s4) where si is the sum of entries of de row
i of C∗ = C∗1 · · ·C∗r but now each entry in A−1

i is multiplied by 1/det(Ai) or −1/det(Ai). Let bi the
binary weight of 1/det(Ai) mod q2−1 then 128− bi is the binary weight of −1/det(Ai) mod q2−1.
We can impose that bi ≤ 128− bi and then bi is a lower bound for the binary weight of each entry
of A−1

i . It is easy to verify that the number of monomial is bounded below be (s1bi, s2bi, s3bi, s4bi).
If the CM has two matrices Ai, Aj with determinant not a power of 2 then one get the bound
(s1bibj , s2bibj , s3bibj , s4bibj).

For the configuration CM1 with 3 exponentials only A3 has determinant not a power of 2. The
computation of C∗ gives

C∗ = C∗1 · C∗2 · C∗3 =


3 3 3 3
6 6 6 6
7 7 7 7
6 6 6 6


This means that each polynomial has at least 212b3 monomials. If we take b3 = 10 they have at

least 2120 monomials that gives a complexity of 120w ≥ 256 bits .
For the configuration CM2 with 4 exponentials A3 has determinant not a power of 2. The

computation of C∗ gives

C∗ = C∗1 · C∗2 · C∗3 · C∗4 =


1 4 4 4
3 9 9 9
4 12 12 12
9 9 9 9


This means that each polynomial has at least 213b3 monomials. If we take b3 = 9 they have at

least 2117 monomials that gives a complexity of 117w ≥ 256 bits .

6.6. Structural Cryptanalysis. In the structural cryptoanalysis we can start by considering that
given the monomials of the public key F and CM,we get after the reduction of monomials 2l(e+1)

matrices that get the same monomials for F , and different sets of matrices will give public keys
with hight probability. We can try to invert F directly by starting with the inverse of the last
linear map Lr. As we explained in section 3, for each linear map Lrk we can use the the relations
Hij = Qij(B,C) =

∑
BkCl, to get homogeneous implicit equations for the Hij by eliminating Bk

and Cl from those equations. It is not clear what is the complexity of the Gröbner basis computation
for eliminate the Bk, Cl from the equations Hij = Qij(B,C) but the number of variables is high,
for instance for the last component of CM2 we have 96 + 36 = 132 variables.

We can give an upper bound of the cost using linear algebra as follows. Let n1 the the number
of variables Hij , that is, the size of the corresponding list Mrk and let n2 be the number of
variables Bk, Cl. Let Pd(Hij) a homogeneous polynomial of degree d, by making the substitution
Q2d(B,C) = Pd(Qij) we get a polynomial of degree 2d , Q2d(B,C) in the variables Bk and Cl
Taking the coefficients of P2(Hij) =

∑
cijHij as variables , the coefficients of Q2d(B,C) are linear

forms on the cij and we can impose the condition Q2d(B,C) = 0 by solving the corresponding

linear equations. Let HM(n, d) =
(
n+d−1

d

)
be the number of monomials of degree d in n variables.

In our situation HM(n1, d) < HM(n2, 2d) for small d, but we can get HM(n1, d) > HM(n2, 2d)
taking d big enought and the implicit equations on Hij can be obtained by solving those linear
equations. For instance, in for the second list of example 1, we have n1 = 36, n2 = 12 + 8, and
for 25 ≤ d one has HM(36, d) > HM(20, 2d). For d = 25, HM(36, d) ≈ 255 and then solving the
linear equations take O(255ω) = O(2131).

12 I. LUENGO AND M. AVENDAÑO

It is possible to get higher cost for solving the linear equations. For instance, we have a CM
with n1 = 120, n2 = 56, d = 45, HM(120, 45) ≈ 2137 and solving the linear system requires at least
O(2317) operations.

This means that for each k ≤ n/2 we would have a solution for the matrix of L4k that is defined
up to a multiplicative constant λk, and given (λ1, . . . , λn/2) ∈ Fq \{0} we can find the inverse of the

Lrk. For instance, if we have n = 8 and q = 264, we have a choice of O(2256) vectors (λ1, λ2, λ3, λ4)
and the translations at round i0 will prevent to transfer the λk to the next rounds . For each vector
we have 27l possible matrices, where l is the number of free variables in the exponents.

7. Implementation and timings

For test the timing we implemented two configuration of matrices CM1 for DME-(3, 8, 264) and
CM2 for DME-(4, 8, 264) for KEM (with OAEP as padding) and for SIGN (with PSS as padding)
For the implementation, we used the special instructions that modern Intel processors have to
perform arithmetic in finite fields, which gives th algorithm an impressive boost in performance.
In all the cases, when a hash function was needed, we used the NIST approved standard SHA-2
function.

The matrices for CM1 with DME-(3, 8, 264) are the following:

E∗1 =


1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

 , E∗2 =


1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1

 , E∗3 =


1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 0



E∗ = E∗3 · E∗2 · E∗1 =


4 1 1 1
4 2 1 0
4 2 0 1
4 1 0 2


The number of monomials of F before reduction is (27, 27, 27, 27) and the binary degree (7, 7, 7, 7).

As we explain in 6.1 and in example 1 in more detail, given the CM, the linear equations that reduce
the monomials are determined by matrices of the CM. The only alternative is if we use all the
linear equations for the reduction or we use all but one in order to ensure that det(Ei) is not 0
or a power of 2. For this CM in particular, we get 8 linear equations, one for each row from the
E2 and E3. By substituting the 8 equations one get (40, 30, 30, 30), but then det(E3) = 0 which is
not valid. For this reason we drop the linear equation coming from the first row of E3 and we get
(72, 30, 30, 30). The equations that we obtain by method in section 3 are

e2,2 = e2,1,

e2,4 = e1,1 + e2,3 − e1,5,

e2,6 = e1,1 + e2,5 − e1,7,

e2,8 = e1,5 + e2,7 − e1,7,

e3,4 = e2,1 + e3,3 − e2,5,

e3,6 = e2,3 + e3,5 − e2,5,

e3,8 = e1,1 − e1,5 + e2,3 + e3,7 − e2,7

The equation that we do not use is e3,2 = e1,1 − e1,5 + e2,1 + e3,1 − e2,7. As in example 1, we can
make a change to the variables yij , which in this case are given by:

DME 13

S1 =


x2e3,1+e1,1+e2,1

1 = y11, x
2e3,2+e1,5+e2,7

1 = y12, x
2e3,1+e1,1+e2,1

2 = y13, x
2e3,2+e1,5+e2,7

2 = y14,

x2e1,2+e2,1+e3,1

3 = y15, x
2e1,2+e2,11+e3,1

4 = y16, x
2e1,4+e2,1+e3,1

5 = y17, x
2e1,4+e2,1+e3,1

6 = y18,

x2e1,6+e2,7+e3,2

7 = y19, x
2e1,6+e2,7+e3,2

8 = y1,10



S2 =

x2e1,1+e2,1+e3,3

1 = y21, x
2e1,1+e2,1+e3,3

2 = y22, x
2e1,2+e2,1+e3,3

3 = y23,

x2e1,2+e2,1+e3,3

3 = y24, x
2e1,4+e2,11+e3,3

5 = y25, x
2e1,4+e2,11+e3,3

6 = y26


S3 =

x2e1,1+e2,1+e3,3

1 = y31, x
2e

1,1+e2,1+e3,3

2 = y32, x
2e1,2+e2,1+e3,3

3 = y33,

x2e1,2+e2,1+e3,3

4 = y34, x
2e1,4+e2,1+e3,3

5 = y35, x
2e1,4+e2,1+e3,3

6 = y36



S4 =

x2e1,1+e2,3+e3,7

1 = y41, x
2e1,1+e2,3+e3,7

2 = y42, x
2e1,2+e2,3+e3,7

3 = y43,

x2e1,2+e2,3+e3,7

4 = y44, x
2e1,6+e1,1+e2,3−e1,5+e3,7

7 = y45, x
2e1,6+e,11+e2,3−e1,5+e3,7

8 = y46


With this changes the degrees of F̄ aree (5, 8, 7, 7) and the binary degrees of F̃ after Weil

descent are (7, 6, 6, 6). The translations are in the first component of the third linear map, yielding
(78, 36, 30, 30) monomials. The length of the secret key is 542 bytes, the length of the public key is
2739 bytes, and a ciphertext takes 64 bytes.

We take n = 8 and q = 264, we have a choice of O(2256) vectors (λ1, λ2, λ3, λ4),and for each vector
(λ1, λ2, λ3, λ4) we get (by 6.5) l = 8 free parameters for the matrices of this CM, i.e. 27l = 256

possible matrices, so this gives a total of O(2312) operations that are enough for the NIST level 5.

The matrices for CM2 with DME-(4, 8, 264) are the following:

E∗1 =


1 1 0 0
1 0 0 0
0 0 1 1
0 0 0 1

 , E∗2 =


1 1 0 0
0 1 0 0
1 0 0 1
0 0 1 0

 , E∗3 =


1 0 0 1
1 1 0 0
0 0 1 1
0 1 1 0

 , E∗4 =


1 1 0 0
0 1 1 0
0 1 0 1
0 0 1 1


,

E∗ = E∗4 · E∗3 · E∗2 · E∗1 =


5 2 1 1
4 2 1 2
5 2 0 1
3 2 1 3


The number of monomial of F before reductions is (29, 29, 28, 29). After imposing 8 linear con-

ditions we reduce the number of monomials to (72, 90, 36, 96) and there are no QR. The equations
that we obtain by method in section 3 are:

e2,2 = e1,1 + e2,1 − e1,3,

e3,4 = e1,1 − e1,3 + e2,1 − e2,3 + e3,3,

e3,6 = e1,7 − e1,6 + e2,6 − e2,7 + e3,5,

e3,8 = e1,3 − e1,1 + e2,3 − e2,5 + e3,7,

e4,2 = e3,1 − e3,4 + e4,1,

e4,4 = e2,1 − e2,5 + e3,3 − e3,5 + e4,3,

e4,6 = e1,1 − e1,3 + e2,1 − e2,3 + e3,3 − e3,7 + e4,5,

e4,8 = e1,1 − e1,3 + e2,5 − e2,5 + e3,5 − e3,7 + e4,7

14 I. LUENGO AND M. AVENDAÑO

As in the previous 3 round case one can make changes the to get the polynomials F̄ (yij) and

after those changes the degrees of F̄ are (9, 9, 8, 9) and the binary degrees of F̃ after Weil descent
are (7, 8, 6, 7).

If we take the first component F1 of F we have n1 = 72 monomials and n2 = 32 variables
Bi, Cj and for 22 ≤ d we have HM(72, d) > HM(32, 2d). For d = 22, HM(72, 22) ≈ 270 and
finding the solutions would have complexity at least O(2164) to find the matrix of the last linear
L41 up to a constant λ1. Now we have a choice of O(2256) vectors (λ1, λ2, λ3, λ4),and for each vector
(λ1, λ2, λ3, λ4) we get (by 6.5) l = 12 free parameters for the matrices of this CM, i.e. 27l = 284

possible matrices, so this gives a total complexity of O(2340) operations that are enough for the
NIST level 5.

The translations are in the first component of the fourth linear map, yielding (80, 90, 36, 96)
monomials. The length of the secret key is 675 bytes, the length of the public key is 4843 bytes,
and a ciphertext takes 64 bytes.

DME-(3, 8, 264)-SIGN-PSS
KeyGen 731µs

Sign 97µs
Verify 10µs

DME-(3, 8, 264)-KEM-OAEP
KeyGen 734µs
Decrypt 96µs
Encrypt 10µs

Figure 1. Timings for DME-SIGN (100 byte messages) and DME-KEM

DME-(4, 8, 264)-SIGN-PSS
KeyGen 1808µs

Sign 116µs
Verify 13µs

DME-(4, 8, 264)-KEM-OAEP
KeyGen 1801µs
Decrypt 115µs
Encrypt 13µs

Figure 2. Timings for DME-SIGN (100 byte messages) and DME-KEM

The timings of DME-KEM have also been measured with SuperCop, to allow a fair comparison
with other schemes. The DME implementation has been optimised for processors with the special
clmul operation (carry-less multiplication) that gives a considerable speed-up in the arithmetic
over finite fields of characteristic two. Currently, we are using a naive algorithm for computing
inverses in Fq based on the binary exponentiation algorithm and the relation a−1 = aq−2. Any
optimization here would translate in further improvements in the timings.

NSL KeyGen Enc Dec
dme-4r-8v-64b-oaep 5 3468004 80097 216374
dme-3r-8v-64b-oaep 5 3831467 66365 538711

kyber1024 5 137520 147921 112820
ntrukem743 5 2002204 426806 610610

mcelice348864 1 120686580 75741 278278
sikep751 5 23110975 37404352 40155660

bikel3 3 2729828 385831 8923861

Figure 3. Average CPU cycles for KEM as measured by SuperCop on an Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz

DME 15

NSL KeyGen Sign Verify
dme-4r-8v-64b-pss 5 6301098 223276 52395
dme-3r-8v-64b-pss 5 1987123 339533 35163

dilithium2 2 169935 238597 147235
falcon1024dyn 5 78644060 2080846 310257

sphincsf256shake256robust 5 23130618 530274683 25373313

Figure 4. Average CPU cycles for SIGN as measured by SuperCop on an Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz (message length = 93 bytes)

References

[1] J. Ding, D.r Schmidt: Solving degree and degree of regularity for polynomial systems over finite fields. Number
theory and cryptography, pp. 34–49, Lecture Notes in Comput. Sci., 8260, Springer, Heidelberg, 2013.

[2] J. Ding, C. Wolf, B. Yang: l-Invertible Cycles for Multivariate Quadratic (MQ) Public Key Cryptography.
[3] I. Luengo: DME a public key, signature and KEM system based on double exponentiation with matrix exponents.

Preprint 2017. https://csrc.nist.gov/CSRC/media/Presentations/DME/images-media/dme-April2018.pdf
[4] J.C. Faugère, L. Perret.:An efficient algorithm for decomposing multivariate polynomials and its applications to

cryptography. Journal of Symbolic Computation 44 (2009) 1676–1689

Departamento de Álgebra, Geometŕıa y Topoloǵıa, Facultad de Matemáticas, Universidad Com-
plutense de Madrid. Plaza de Ciencias 3, 28040 Madrid, Spain.

Email address: iluengo@ucm.es

