
Coeus: A System for Oblivious Document Ranking and Retrieval

Ishtiyaque Ahmad, Laboni Sarker, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta

University of California, Santa Barbara

Abstract

Given a private string q and a remote server that holds a

set of public documents D, how can one of the K most rele-

vant documents to q in D be selected and viewed without

anyone (not even the server) learning anything about q or

the document? This is the oblivious document ranking and

retrieval problem. In this paper, we describe Coeus, a system

that solves this problem. At a high level, Coeus composes

two cryptographic primitives: secure matrix-vector prod-

uct for scoring document relevance using the widely-used

term frequency-inverse document frequency (tf-idf) method,

and private information retrieval (PIR) for obliviously re-

trieving documents. However, Coeus reduces the time to

run these protocols, thereby improving the user-perceived

latency, which is a key performance metric. Coeus first re-

duces the PIR overhead by separating out private metadata

retrieval from document retrieval, and it then scales secure

matrix-vector product to tf-idf matrices with several hun-

dred billion elements through a series of novel cryptographic

refinements. For a corpus of English Wikipedia containing

5 million documents, a keyword dictionary with 64K key-

words, and on a cluster of 143 machines on AWS, Coeus

enables a user to obliviously rank and retrieve a document

in 3.9 seconds—a 24× improvement over a baseline system.

1 Introduction

As a motivating example, consider Ziv, who identifies with

a non-binary gender, chooses to keep this preference se-

cret from a conservative family, and considers Wikipedia a

reliable source of information. Ziv wants to attend a gender-

specific event and wishes to read about the event’s history

before attending it. As usual, Ziv opens Wikipedia, enters a

search query (e.g., “History of ____ event in San Francisco”),

and selects one of the links to get the desired information.

However, this time Ziv feels concerned about privacy due to

recent, high-profile data breaches, via insider attacks [39],

external hacks [17, 52, 63], mass surveillance by an ISP [14],

and even financial pressure [71]. Can we enable Ziv to search

for and retrieve documents from Wikipedia, or more generally

This is an unmodified version of the paper originally published in the 28th

ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’21), October

26–29, 2021, Virtual Event, Germany. This work is licensed under the

Creative Commons Attribution-NonCommercial 4.0 International License.

It is posted here for your personal or classroom use. Not for redistribution.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

https://doi.org/10.1145/3477132.3483586

any public document repository, privately? Furthermore, can

Ziv get peace-of-mind with provable privacy guarantees?

Ziv’s situation is one example of a fundamental problem

this paper addresses: the oblivious document ranking and re-

trieval problem. An abstract formulation of the problem is as

follows. A user holds a search query q containing multiple

keywords, while a server holds a set of public documents D.

The user enters q in a web browser (or app), which interacts

with the server to enable the user to select and view one

of the K documents that have highest relevance to q. The

privacy requirement is that nobody besides the user (nei-

ther the server nor a network eavesdropper) must learn any

information about q or the document viewed by the user.

We emphasize that this problem is quite different from the

problem of searching and ranking on encrypted data that has

received much attention in the literature (e.g., [8, 20, 24, 29–

31, 48, 49, 53, 57, 67, 67, 79, 80, 82, 83, 88, 90, 91, 94, 99]; §7).

In searching on encrypted data, the data is private (owned by

the user), while in our problem the documents are public and

known to the server (for example, theWikipedia server owns

the documents). This difference in setting enables fundamen-

tally different techniques; for example, if the documents are

private, then the owner may encrypt and arrange them in

a tree data structure, as in oblivious RAMs [42, 81]. Such

encryption is not possible if the documents are public.

Instead, oblivious document ranking and retrieval is more

closely related to the problem of private information retrieval

(PIR) [26, 59], although with significant differences. PIR, in

its most basic form, allows a user to privately retrieve a

document by specifying an index in a list (e.g., retrieve the

34-th document from the list of 1,000 documents). In contrast,

in our problem a user specifies a multi-keyword search query

and not an index. Two extensions to PIR, namely PIR-by-

keywords [25] and private stream searching [19, 68], allow

the user to retrieve documents that match keywords—but

without consideration of ranking. As an example, suppose

the user’s string is “Cristiano Ronaldo”. Then, with PIR-by-

keywords, the user will get one of the many articles that

contain the name of the famous soccer player. On the other

hand, with private stream searching, the user will get all

documents that mention Ronaldo, without any ranking or

ordering, possibly overwhelming the user.

This paper describes Coeus, the first system for oblivious

document ranking and retrieval over public documents un-

der a strong threat model that does not make assumptions

about the server. Coeus ranks a document’s relevance given

a user query using the term frequency-inverse document

frequency (tf-idf) statistical method [72, 74] (§3.1), which

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3477132.3483586

is used commonly in text-based recommender systems in

digital libraries. Coeus imposes a latency of a few seconds

on a user while providing provable guarantees.

At a high-level, Coeus composes the secure matrix-vector

product primitive [41, 46, 47, 58] with PIR. One natural way

to do their composition is a two-round protocol, where in the

first round the user securely multiplies the query q with the

tf-idf matrix to obtain scores for all the documents, and then

in the second round retrieves the top-K documents oblivi-

ously using PIR. The challenge though is the high server-side

overhead, imposed by both secure matrix-vector product and

PIR. Fundamentally, if the server must learn no information

about the user query or the retrieved document, then it must

process its entire state comprising the tf-idf matrix and the

document library; else, the server will learn information

about keywords that are not in the query, or the documents

that are not retrieved by the user (§2.3).

Coeus responds to this challenge in two ways. First, at

the protocol-design level, instead of using the natural two-

round protocol, Coeus uses a new three-round protocol that

separates out metadata retrieval from document retrieval. In

the first round, as in the two-round protocol, a user converts

the query q into an encrypted vector, sends it to the server,

and obtains encrypted relevance scores for the documents by

securely multiplying the vector with the tf-idf matrix. Then,

in the second round, the user retrieves short descriptions and

title (metadata) for top-K scoring documents from a meta-

data library using multi-retrieval PIR that can concurrently

retrieve multiple objects [12, 50]. Finally, in the third round,

the user retrieves a single document that the user wants to

view in detail using a single-retrieval PIR [7, 12].

Coeus’s three round protocol reduces PIR overhead rela-

tive to the two-round protocol. Not only does a user retrieve

K smaller metadata instead of K documents, but the sep-

aration of metadata from document retrieval enables the

server to pack variable-sized documents and compress the

document library, thereby reducing PIR compute time.

Coeus’s second idea further improves the overhead of

the first round through a new secure matrix-vector product

primitive that fundamentally reduces server-side work (§4.2,

§4.3), and distributes this work efficiently across a cluster

of machines (§4.4). Coeus starts from the state-of-the-art

construction of Halevi and Shoup that works for a square

matrix block with few thousand rows and the same number

of columns [46, 47] (§3.2). First, Coeus observes and elimi-

nates redundancy in the calls to an underlying homomorphic

rotation operation; this optimization reduces overhead by a

constant factor of approximately four (§4.2). Second, Coeus

amortizes the overhead of homomorphic rotations across

multiple blocks of the tf-idf matrix (§4.3). Third, Coeus effi-

ciently distributes the computation for thousands of matrix

blocks (the tf-idf matrix is large consisting of several hun-

dred billion elements) onto a cluster of machines arranged in

a master-worker-aggregator architecture. During workload

distribution, Coeus preserves the benefits of amortization

while keeping in check the network transfer overhead, by

including an optimizer that finds the optimal shape of the

submatrices at the worker nodes (§4.4). Although Coeus’s

secure matrix-vector product scheme is designed keeping

Coeus’s scale in mind, it may find uses in other applications

especially where matrices are large.

We have implemented (§5) and evaluated (§6) a prototype

of Coeus. On an Amazon EC2 cluster (97 machines for docu-

ment relevance scoring, 7 for metadata retrieval, and 39 for

document retrieval), and for a document library consisting of

a corpus of English Wikipedia with 5M documents, Coeus’s

latency is 3.9s for oblivious document ranking and retrieval.

In contrast, without Coeus’s two techniques, its latency over

the same cluster would be 93.9s—thus an improvement of

24×. If Coeus’s resource overheads are converted to dollars,

then it costs 6.5 cents per request, in contrast to 1.62 dollars

for the baseline.

Coeus’s absolute overheads are substantial: each request

keeps a cluster of machines busy for up to a few seconds.

Thus, it may not be used for every request. However, Coeus

scales horizontally, as one can replicate its setup, for exam-

ple, at various CDNs. But more importantly, Coeus shows

that Ziv could choose to get strong privacy guarantees while

retrieving documents from Wikipedia, without waiting for

tens of seconds for the webpage to load, and without drain-

ing wallet balance (e.g., hundred private requests per month

would cost Ziv 6.5 dollars rather than 162 dollars).

2 Architecture and overview

Coeus is designed for private retrieval of public documents.

Abstractly, a user holds a multi-keyword query q and a server

holds a library of n documents and their metadata (informa-

tion such as the document title and a short text description).

Similar to how search engines work, Coeus takes as input

the query q and enables the user to select and view one of

the K ≥ 1 documents that rank highest for q. In the process,

an adversary who may compromise the server hosting the

library or the network learns no information about q.

2.1 Approach and architecture

An approach to realize the picture described above is to

incorporate fully homomorphic encryption (FHE) [38]: the

user encrypts q using FHE and sends it to the server, who

homomorphically ranks and sends the top-K documents back

to the user. On the plus side, the user retrieves the documents

in a single round of communication, but on the negative

side, the server’s computational work is prohibitively high

due to the large expense of the homomorphic comparison

operation [54, 61].

An alternative to the single-round approach is to split doc-

ument ranking and retrieval into separate protocol rounds.

In the first round, the user retrieves scores for each of the

2

Query-scorer

Keywords

Client

Enc(query)

Enc((0.1, 3.2, ..., 0.4))

Round 1 : Query-scoring

Metadata library ()

Enc((idx1, ..., idxK))

npkd, Enc(([idx1], ..., [idxK]))

Round 2 : Metadata-retrieval

Title, Desc, Location
fox lazy dog jump

0

1

...

n-1

Scoring data structure

Client

0

1

...

n-1

Document library ()

Enc(idx*)

Enc([idx*])

Round 3 : Document-retrieval

Doc 0

Client

0

1

...

npkd-1

Metadata-provider Document-provider

1 2 3

Doc 1 Doc 2

...

Doc n-1

Figure 1. An overview of Coeus’s three-round protocol: query-scoring, metadata-retrieval, and document-retrieval.

n documents, and locally compares them to learn indices

for the top-K documents. Then, in the second round, the

user obliviously retrieves the K documents from the server’s

library. A downside of this two-round protocol is that the

user’s device downloads K documents rather than the one

document the user eventually views in detail.

Coeus instead follows an approach consisting of three

rounds of query-scoring, metadata-retrieval, and document-

retrieval that run in succession. These rounds are depicted

in the three sub-figures of Figure 1, that also shows Coeus’s

client-server architecture, and the server’s three components:

a query-scorer, a metadata-provider, and a document-provider.

In the query-scoring round, Coeus’s client, running on a

user’s device, encodes the user query q into a suitable format

(for example, a Boolean vector), encrypts it, and sends it

to the query-scorer component of the server. The query-

scorer maintains a data structure to score documents against

user queries and returns an encrypted vector whose i-th

component contains the query’s score for the i-th document

in the server’s library. The client then locally processes the

score vector to obtain the K indices {idx1, idx2, . . . , idxK } for
the K vector entries that have the highest values.

Next, in the metadata-retrieval round, the client takes the

K indices, encodes and encrypts them in a specific way that

enables oblivious retrieval of the metadata, and sends them to

the metadata-provider (the middle diagram in Figure 1). The

metadata-provider sends back the entries in the metadata

libraryM corresponding to theK indices. The client presents

the metadata of the top-K documents to the user and asks

the user to select one of the documents.

Finally, in the document-retrieval round, the client uses

the metadata from the previous round to get a document

from the document-provider component of the server. Since

document sizes vary and Coeus must not reveal the length

of the retrieved document, the document-provider packs the

n documents in the document library D into npkd ≤ n equal-

sized objects. Such packing is possible as Coeus can add a

document’s location (e.g., the index of the object into which a

document is packed) to the metadata of the document that is

retrieved before the document. The user’s device downloads

an entire object and locally selects the required document.

2.2 Assumptions and guarantees

Threat model. Coeus assumes a strong adversary who may

arbitrarily compromise the server or the network. For in-

stance, it may log and process network packets, or the re-

quests received and the responses sent by the server.

We assume that the adversary cannot break standard cryp-

tographic assumptions, such as the semantic security of en-

cryption. We also assume that the adversary does not com-

promise the user device.

Although we consider server-side side channels (disk ac-

cess patterns, memory access patterns, etc.), we do not con-

sider side channels that exist due to a client’s participation in

the system. In particular, we let the adversary learn the num-

ber of queries a user makes, the wall-clock times at which

the user makes these queries, and the time the user spends

in selecting one of the K documents to view in detail. A

user who wishes to hide this information can send queries

at a fixed schedule, and send dummy queries (e.g., “Cristiano

Ronaldo”) if needed, as in communication metadata hiding

systems [9, 13, 60, 86].

Privacy guarantee. Coeus guarantees query privacy (Ap-

pendix A). Informally, an adversary learns no information

about the user query q (which also means it learns no in-

formation about the metadata or the document returned by

the server). This notion of privacy is formalized via a secu-

rity game between a challenger and an adversary, in which

the adversary supplies two queries, the challenger simulates

Coeus’s protocol for one of them, and the adversary guesses

which query the challenger picked. In Coeus, the adversary

cannot identify the query choice with probability signifi-

cantly better than that of random guessing (
1

2
).

Non-guarantees. Coeus does not guarantee content in-

tegrity that undermines correctness but not privacy. Indeed,

the server may compute scores incorrectly, or return docu-

ments that do not match the requested indices. Coeus could

be extended to add protection against these attacks through

additional techniques such as verifiable computation [23, 69].

2.3 Challenges

Coeus’s three round protocol already improves over alterna-

tives such the one-round or the two-round protocol (§2.1).

But still, Coeus must manage the high server-side compute

3

overhead. This challenge is fundamental and best illustrated

by an example. Suppose that a client makes a query through

Coeus. Then, the three server components, namely, the query-

scorer, the metadata-provider, and the document-provider

must process their entire state (the data structure for scoring,

and the librariesM andD) to service the user query. Indeed,

if the server were given an information that would allow it to

process a subset of the scoring data structure or the libraries

(say leaving out a particular document ofD), then the server

would learn information about the query keywords or the

document that the user is not interested in. Although, we

cannot break this fundamental lower bound [18], our goal is

to improve the concrete efficiency and provide low-latency,

affordable ranking and document retrieval.

3 Background and protocol

This section describes the scoring method Coeus uses to

determine a document’s relevance given a user’s query (§3.1),

cryptographic primitives Coeus builds on (§3.2), and Coeus’s

protocol (§3.3) that composes these primitives to provide

query privacy (§2.2). This protocol is an intermediate design

point for Coeus, as one of the protocol components requires

further optimizations (§4).

3.1 Term frequency-inverse document frequency

Coeus uses the term frequency-inverse document frequency

(tf-idf) measure [72, 74, 101] to determine document rele-

vance given a user query. This method is used popularly in

the information retrieval community. It also expresses the

scoring function as a matrix-vector product, which is a lin-

ear computation that can be performed somewhat efficiently

over encrypted data (§3.2). Given that tf-idf is well-studied,

we do not go into its lower-level details, but instead focus on

the matrix-vector computation structure.

The main idea behind tf-idf is to assign a weight to each

(term, document) pair, where a term is, a keyword or a phrase,

and the weight reflects how important or relevant the term

is to a document in a collection of documents. Thus, a corpus

of documents is represented by a tf-idf matrix, where the

matrix rows correspond to the documents in the corpus, and

the columns correspond to terms in the corpus.

With this arrangement, a common way to score a docu-

ment d for a query q is to add the tf-idf weights for all terms

in the query. This computation can be expressed as a matrix-

vector product. The query is converted to a binary vector,

whose j-th component is 1 if the j-th term in the corpus is

present in the query. Then, the score of a document is the

dot product of the query vector with the row vector for the

document in the tf-idf matrix. More generally, the scores

for all documents are computed by taking the matrix-vector

product of the tf-idf matrix and the query vector.

3.2 Cryptographic building blocks

Coeus obliviously performs the scoring computation and

retrieves the best matching documents and their metadata

(§2.1), using two cryptographic primitives: secure matrix-

vector product [41] and private information retrieval (PIR) [26,

59]. The state-of-the-art constructions of these primitives [12,

46, 47] in turn rely on an underlying homomorphic encryp-

tion (HE) scheme based on lattices. The literature offers many

lattice-based HE schemes [21, 22, 35, 38, 62]; we use and de-

scribe the BFV scheme [21, 35] due to its maturity [75] and

involvement as a leading candidate in homomorphic encryp-

tion standardization efforts [10].

BFV homomorphic encryption scheme. In the more effi-

cient vectorized version of BFV, a plaintext is a vector with

N components and a ciphertext is a vector with 2N compo-

nents, where N is of the form 2
x
in {211, . . . , 215} [10]. For

the plaintext, each component is an element of Zp, which is

the set of integers modulo p. Meanwhile, each component of

the ciphertext vector is an element of Zp′. The parameters

N , p, p
′
can be tuned for a desired security level [10](§5).

The BFV encryption algorithm Enc adds “noise” when

encrypting a plaintext into a ciphertext.
1
This noise grows

as homomorphic operations are performed on the ciphertext.

To ensure that the noise does not grow to a point where the

ciphertext cannot be decrypted, p′ ≫ p must be ensured.

The BFV scheme supports three homomorphic operations,

Add, ScalarMult, and Rotate, that are used in the higher-

level secure matrix-vector product and PIR primitives.

• Add takes as input two ciphertexts c1 and c2 and produces

a ciphertext cout that decrypts to the component-wise sum

of the plaintext vectors in c1 and c2.

• ScalarMult takes as input a plaintext vector s (of same

domain as a BFV plaintext) and a ciphertext vector c and

produces a ciphertext cout that decrypts to the component-

wise product of s with the plaintext vector in c.

• Rotate takes as input a ciphertext c, an integer 1 ≤ i ≤
N − 1, and a set of rotation keys RK , and produces a ci-

phertext cout that decrypts to the plaintext in c rotated left

cyclically by i positions. For instance, if c encrypts the

plaintext (a, b, c, d), then a rotation by i = 3 produces a

ciphertext that decrypts to (d, a, b, c).
The set of rotation keys RK is configurable and the rotation

is performed as a combination of the rotation keys, each

of which indicates the number of positions to rotate. On

the one extreme, RK = {rk1} contains a single rotation key,

where rk1 performs rotations by one position. In this con-

figuration, each call to Rotate resolves into i single position

rotations. Although the size of RK is small, this configuration

is impractical due to significant noise growth. On the other

extreme, the set RK = {rk1, . . . , rkN−1} contains N − 1 keys,
1
For the readers familiar with differential privacy [34], we remark that

the noise in the context of homomorphic encryption is semantically much

different from the noise added for differential privacy.

4

a1

b2

a2 a3 a4

c3

d4

b3

c4

b4

d1

c1 c2

d2

b1

d3

v1

v2

v3

v4

a1.v1 b2.v2 c3.v3 d4.v4

a2.v2 b3.v3 c4.v4 d1.v1

a3.v3 b4.v4 c1.v1 d2.v2

a4.v4 b1.v1 c2.v2 d3.v3

x

+

+

+

 ai.vi

 bi.vi

 ci.vi

 di.vi

Figure 2. An illustration of secure matrix-vector product construc-

tion of Halevi and Shoup [46, 47] for a 4 × 4 matrix.

and Rotate calls a single i position rotation with the key rki .

This configuration keeps noise growth in check (and reduces

cpu time of Rotate), but drastically increases the size of RK

needed for Rotate (with our parameters, all N − 1 keys in
RK would be ≈1.5 GiB). So we assume the default configura-

tion implemented in the state-of-the-art library for BFV [75],

where RK = {rk
2
0 , rk

2
1 , . . . , rk

2
log(N)−1 } contains log(N) keys

for all powers of two between 1 and N − 1, and rotations

by i are performed using the rotation keys corresponding to

positions of 1s in i’s binary representation. Thus, rotation

by i uses as many keys as the number of 1’s in i’s binary

representation (i.e., i’s Hamming weight); we call such in-

ternal calls to a primitive rotation operation that rotates by

a power-of-two amount as PRot. Further, since the set of

rotation keys is fixed, we will assume the set of rotation keys

is implicit when specifying the rotation operation.

Securematrix-vector product.Aprotocol for securematrix-

vector product runs between a client and a server, where the

client has a vector, the server has a matrix, and at the end of

the protocol the client learns the result of the matrix-vector

product. In the process, the server learns no information

about the values in the client vector.

The literature on cryptography offers many constructions

for secure matrix-vector product (e.g., [11, 33, 41, 46, 47, 56,

58]). The state-of-the-art construction is that of Halevi and

Shoup [46, 47]. It operates over square matrices of dimension

N × N (where N is the number of components in plaintext

vectors of a lattice-based HE scheme).

The main idea of the Halevi-Shoup construction is illus-

trated in Figure 2. The client starts by encrypting its vector of

dimension N × 1 using a lattice-based HE scheme and calling

its Enc function. The server then performs the product of

the vector with its plaintext matrix using the ScalarMult ho-

momorphic operation. The key point here is that the server

multiplies the diagonals of the matrix with the rotations of

the client vector. For instance, say N = 4 and the matrix is as

shown in Figure 2. Then, the server first scalar-multiplies the

client vector that encrypts (v1, v2, v3, v4) with the matrix’s

main diagonal (a1, b2, c3, d4) to get a ciphertext that encrypts
(a1 · v1, b2 · v2, c3 · v3, d4 · v4). Then, the server rotates the
client vector by one position using Rotate and multiplies the

rotated vector with the matrix diagonal adjacent to the main

diagonal to get encryption of (a2 · v2, b3 · v3, c4 · v4, d1 · v1).

And so on. Finally, the server adds (using Add) all the in-

termediate ciphertexts to get one ciphertext containing the

result of the matrix-vector product.

We emphasize that the Halevi-Shoup method is much

more efficient than naive matrix-vector multiplication that

multiplies the input vector with the rows of the matrix (rather

than its diagonals). In the naive scheme, the server would

have to perform log(N) rotations for each row to add all com-

ponents of the dot product and allocate the result correctly

in the output vector. The Halevi-Shoup construction reduces

these log(N) rotations per-row down to 1 by performing

multiplications in diagonal order. In total, the construction

makes N calls each to ScalarMult, Add, and Rotate.

One can trivially support matrices larger than N × N , say

of dimension (m · N) × (ℓ · N), by partitioning it into square

blocks of size N ×N . (In case the original matrix dimensions

are not multiples ofN , then the matrix can be padded.) In this

case, the aforementioned costs get multiplied by the number

of blocks m · ℓ in the larger matrix.

Private information retrieval (PIR). A PIR protocol [26,

59] runs between a client and a server, where a client has an

index i between 1 and n, and the server holds a set of n items.

The protocol allows the client to retrieve the i-th item while

hiding the value of i from the server.

PIR exists in two flavors: computational PIR (CPIR) [59]

and information-theoretic PIR (ITPIR) [26]. CPIR protocols

are computationally more expensive but make no assump-

tions about the server (except standard cryptographic as-

sumptions). On the other hand, ITPIR protocols are more

efficient, but require non-colluding servers. For Coeus, we

use a CPIR protocol due the alignment of CPIR assumptions

with Coeus’s threat model (§2.2).

Although a PIR protocol allows a client to retrieve one

document, it can be extended to retrieving K > 1 docu-

ments without naively running K parallel instances of a

single-retrieval PIR protocol. These more efficient schemes

for multiple retrievals are called multi-retrieval PIR [12, 50].

3.3 Coeus’s protocol

Coeus composes securematrix-vector productwith PIR. Specif-

ically, the query-scorer in Coeus’s server (§2.1) maintains a

tf-idf matrix, and during the query-scoring round of Coeus’s

protocol, uses secure matrix-vector product to score docu-

ments against a user query. This is possible as the scoring

computation with tf-idf is a matrix-vector product (§3.1).

In rounds two and three, a Coeus client and the server use

PIR. Specifically, in round two, Coeus runs multi-retrieval

PIR between the client who has K indices and the metadata-

provider who has the metadata library. For round three, the

client and the document-provider use single-retrieval PIR.

A subtle issue for the third round is that of document sizes,

which can vary. But PIR expects all objects in the server’s

library to be of the same size. Coeus addresses this issue by

5

Worker

M1,2

Master

Aggregator
I1

I2

I3

M1,1 M1,3

M2,2M2,1 M2,3

I2 I3

M3,2M3,1 M3,3

M4,2M4,1 M4,3

Aggregator

RK

I1 I2RK

Aggregator

Aggregator

RK

R1

R2

R3

R4

Worker

Worker Worker

Figure 3. How Coeus partitions secure matrix-vector product onto

a single master node, and a set of worker and aggregator nodes. I

is the input vector from the client containing ℓ ciphertexts, one for

each block along the width of the matrix.M is the matrix withm× ℓ
blocks. R is the result vector containing m ciphertexts. RK is the set

of cryptographic keys for the Rotate homomorphic operation.

using a mix of concatenation and zero-padding, while taking

inspiration from prior work on PIR with variable document

sizes [44, 50]. In particular, Coeus uses bin packing to pack

multiple documents into the least number of bins such that

the “capacity” of each bin is equal to the size of the largest

document in the document library. After bin packing, Coeus

fills unfilled space in each bin with zeros. A consequence of

packing is that a Coeus client needs start and end offsets of

a document to extract it from a larger (binned) object. Coeus

includes this information in the metadata for each document.

We remark that had Coeus not used a three-round pro-

tocol that separates out metadata retrieval from document

retrieval, Coeus would have had to forego the packing tech-

nique described above. Instead, to make document sizes uni-

form, the natural option would have been to pad each docu-

ment to the size of the largest document, thereby increasing

the size of the document library and the overhead of PIR.

Security analysis. Appendix A contains a rigorous proof

that Coeus’s protocol provides query privacy (§2.2). Briefly,

during round one, the client sends an encrypted vector after

converting a query into a binary vector and encrypting it.

Thus, the server learns no information about the query due

to the semantic security of encryption. For rounds two and

three, the security of PIR ensures that the server learns no in-

formation about the indices for which the client is retrieving

objects from the metadata or the document library.

4 Large-scale secure matrix-vector product

The server-side scalability of PIR has received significant

attention recently [9, 12, 13]. Besides, the metadata and doc-

ument libraries are not large, at least in relation to the tf-idf

matrix. But the tf-idf matrix can have millions of rows and

tens of thousands of columns—a total of several hundred

billion elements—corresponding to the documents and key-

words in the server’s document library. Thus, a fundamental

question Coeus must answer is: how can its server compute

the secure matrix-vector product with the tf-idf matrix while

keeping the client-perceived latency small?

One option is to process the tf-idf matrix block-by-block

using the Halevi-Shoup construction (§3.2), where each block

is of dimensionN×N , andN is of the form 2
x
for some integer

x ∈ {11, . . . , 15} for the security of the underlying homomor-

phic encryption scheme [10]. This solution, however, does

not meet the small latency requirement. First, the processing

time for each block is several seconds even on amachine with

tens of cpus (§6.3). This expense is due to the high cost of

the underlying homomorphic operations, particularly Rotate

(§3.2). Second, a tf-idf matrix with billions of elements com-

prises of thousands of blocks. Naturally, we do not want to

provision thousands of machines for the computation. Thus,

how should Coeus scale the secure matrix-vector product?

Coeus reduces the work the server has to perform (§4.2,

§4.3), and distributes this work efficiently over a cluster of ma-

chines (§4.4). We begin with an abstract overview of Coeus’s

scheme that will help set the stage for the optimizations.

4.1 Overview

Computation. Coeus’s server multiplies a matrix M of di-

mension (m · N) × (ℓ · N) consisting of m · ℓ blocks each of

dimension N × N , with a client input vector I comprising of

ℓ ciphertexts (recall each ciphertext itself encrypts a vector

of dimension N) to produce a result vector R comprising of

m ciphertexts. The i-th ciphertext in R is computed as

Ri =

ℓ∑︁
j=1

Block-Mult(Mi,j , Ij , RK),

where the sum operation is the homomorphic Add operation,

Block-Mult is a block-level secure matrix-vector multipli-

cation algorithm, Mi,j is a matrix block, Ij is a ciphertext in

the client input vector, and RK is a set of client-supplied keys

for the Rotate homomorphic operation.

Architecture. Coeus projects this computation onto a mas-

ter node, and a set of worker and aggregator nodes (Figure 3).

The master receives I and RK from the client. It then copies

the keys RK to every worker. It also distributes one or more

ciphertexts in I to each worker. The workers together com-

pute Block-Mult(Mi,j , Ij ,RK) for all i ∈ {1, . . . ,m} and for

all j ∈ {1, . . . , ℓ}. Each worker, however, performs only part

of this computation—corresponding to a submatrix of M . An

aggregator produces one or more ciphertexts in R by adding

outputs from one or more workers.

Division of matrix into submatrices. If Coeus were per-

forming a plain matrix-vector product, it could partition the

matrix into submatrices arbitrarily: a submatrix could be a

single cell of dimension 1 × 1, or the entire matrix of dimen-

sion (m ·N) × (ℓ ·N), or any dimension in between. However,

the Halevi-Shoup block multiplication algorithm that Coeus

builds on imposes certain restrictions due the vectorization

of the underlying homomorphic operations: each diagonal

6

Rotate(c, 10002)

PRot(12)

Rotate(c, 10012) Rotate(c, 10102)

PRot(102)

Rotate(c, 10112)

PRot(12)

Rotate(c, 11002)

PRot(1002)

Rotate(c, 11012)

PRot(12)

Rotate(c, 11102)

PRot(102)

Rotate(c, 11112)

PRot(12)

Rotate(c, 12) Rotate(c, 102) ... Rotate(c, 10002) Rotate(c, 10012) Rotate(c, 10102) ...

Linear structure (unoptimized)

Tree structure

Figure 4. How Coeus conserves calls to the PRot operation.

of a N × N matrix block is encoded into a single, indivisible

unit (§3.2). This means that although the submatrix width w

can be any value between 1 and ℓ ·N , the submatrix height h

must be a multiple of N . One way to visualize this constraint

is to imagine that each matrix block is transformed by taking

its diagonals one-by-one and putting them as columns of

the block; after this transformation, one can slice the block

vertically but not horizontally.

A toy example of the computation. Suppose the matrix

M has dimension 4 × 3 in terms of blocks. Then, the client

input I has three ciphertexts, and the result vector R has

four ciphertexts. Also, suppose that one of the workers gets

assigned the submatrix consisting of block M1,1 and half of

block M1,2 (first N/2 diagonals of M1,2). Then, this worker

receives ciphertexts I1, I2 from the master, multiplies I1 and

I2 with M1,1 and the N/2 diagonals of M1,2, respectively, to

obtain two ciphertexts, and sends their sum to an aggregator.

This aggregator adds this ciphertext to a similar ciphertext

from another worker who is responsible for the remaining

half of M1,2 and the whole of M1,3. This final sum is R1.

4.2 Reducing expense of homomorphic rotations

We first drill into the computation performed by a single

worker, and further into the computation for a single block

of the worker’s submatrix. For now, assume that the width

w and height h of the submatrix are both multiples of N so

that the submatrix is an exact multiple of some number of

blocks; we will relax this simplifying assumption shortly.

Consider the Halevi-Shoup computation for a block. It

comprises of N steps, where each step rotates the plaintext

in an input ciphertext c by one position (§3.2, Figure 2). As

an example, if N = 4, and the input ciphertext c encrypts the

plaintext (v1, v2, v3, v4), then the algorithm calls Rotate(c, 1),
Rotate(c, 2), and Rotate(c, 3) in succession. These N − 1

rotations consume the bulk (≈ 90%) of the cpu time.

As mentioned earlier (§3.2), each call to Rotate resolves

into a set of calls to a primitive rotation operation PRot that

performs rotations with power-of-two amounts. For instance,

Rotate(c, 3) resolves into a call to c
′← PRot(c, 2) followed

by a call to PRot(c′, 1). In total, all N −1 calls to Rotate in the

Halevi-Shoup algorithmmake

∑
N−1
i=1 HammingWt(i) = (N−

2) · log(N)/2 calls to PRot, where HammingWt() returns
the number of 1’s in the binary representation of its input.

But observe there is significant redundancy across multiple

calls to Rotate. For instance, Rotate(c, 11002) calls PRot for
rotation amounts eight and four, while Rotate(c, 11112) calls
PRot over the same ciphertext for rotation amounts eight,

four, two, and one. Coeus eliminates these redundant calls

to PRot and resolves the N − 1 calls to Rotate in the Halevi-

Shoup algorithm into N − 1 calls to PRot.

Details. Define Parent(i) as the logical AND of the binary

representation i2 and the negation of the smallest non-zero

suffix of i2. For example, if i is 11002 in binary, then its

smallest non-zero suffix is 1002, and its parent is 11002 &

∼1002 = 10002. It is easy to see that the hamming distance

between i2 and Parent(i) is one. Thus, we can obtain c
′←

Rotate(c, i) by performing one PRot over the ciphertext

Rotate(c, Parent(i)), where the primitive rotation is for an

amount equal to the smallest non-zero suffix of i2.

A first-cut solution to leveraging this parent-child rela-

tionship is to generate all rotations of a ciphertext c, that

is, Rotate(c, i) for all i ∈ {1, . . . ,N − 1}, sequentially, as
depicted by a toy example for N = 16 in the top part of Fig-

ure 4. In particular, we can generate Rotate(c, i + 1) from its

parent, which is one of the ciphertexts from Rotate(c, 1) to
Rotate(c, i). This solution does eliminate redundant calls to

PRot, but it has a downside that it increases memory pressure

as it requires storing up to N ciphertexts in memory.

However, observe in the toy example that once the ci-

phertext Rotate(c, 10002) is generated, the ciphertexts from
Rotate(c, 12) to Rotate(c, 01112) can be discarded as they

cannot be parents for any ciphertext after Rotate(c, 10002).
Similarly, once Rotate(c, 11002) is generated, all ciphertexts
prior to (and including) Rotate(c, 10112) can be discarded,

and same for Rotate(c, 11102) as the parent for the next value
of i = 11112 is 11102.

Leveraging this intuition, Coeus collapses the linear struc-

ture into an efficient tree structure that eliminates redundant

PRot without increasing memory pressure, as depicted in

the bottom part of Figure 4. Coeus performs a depth-first

traversal through the tree and at each step in the traversal,

generates a child ciphertext from its parent using one call

to PRot. Coeus’s algorithm garbage collects any ciphertext

in a branch of the tree that has been completely traversed.

Hence at any given point, the maximum number of interme-

diate ciphertexts stored is log(N) as the height of the tree is
log(N), the number of bits in N . However, further observe

that once the algorithm traverses all siblings of a given ci-

phertext, it can also garbage collect the parent. Hence the

number of stored intermediate ciphertexts further reduces

to ⌈log(N)/2⌉.
This optimization to conserve calls to PRot applies even

to fractional blocks (recall the simplifying assumption at the

beginning of this subsection) that contain d < N adjacent

7

diagonals and require performing up to d consecutive rota-

tions. The computation for d diagonals maps to generating a

subtree of the overall tree.

Cost savings. The original Halevi-Shoup algorithm applied

to a (m · N) × (ℓ · N) dimension matrix makes m · ℓ · N calls

to the ScalarMult and Add homomorphic operations (§3.2),

and m · ℓ ·∑N−1
i=1 HammingWt(i) = m · ℓ · (N − 2) · log(N)/2

calls to PRot. Coeus’s optimization reduces the calls to the

expensive PRot tom · ℓ · (N −1)—an improvement by a factor

of ≈ log(N)/2.

4.3 Amortizing rotations across blocks

This subsection zooms out of block-level savings, and consid-

ers the entire submatrix at a worker (§4.1). Having potentially

many matrix blocks to process raises a natural question: can

we amortize the overhead across blocks? It turns out that the

cost of rotations can be amortized.

As with the last subsection, we begin by making a sim-

plifying assumption that the width w and height h of the

submatrix are multiples of N ; we will relax this assumption

towards the end of this subsection.

Consider the computation imposed by the Halevi-Shoup

algorithm on a set of matrix blocks that are vertically aligned

in the submatrix: that is, the blocks {Mi,j} for a fixed j and

different values of i (up to h/N values of i, which is the num-

ber of vertically-stacked blocks in a submatrix of height h).

First, these blocks are multiplied by the same input cipher-

text: the j-th ciphertext Ij in the client input vector I . Second,

when these blocks are multiplied by Ij , the Halevi-Shoup

algorithm produces the same sequence of rotations for each

block: Rotate(Ij , 0), Rotate(Ij , 1), . . . , Rotate(Ij ,N − 1).
Coeus eliminates this redundancy in rotations by reorder-

ing homomorphic operations. If Coeus were to process each

of the vertically-aligned blocks independently, then it would

perform a computation structured as: for each of the h/N
blocks, perform a sequence of N Rotate, N ScalarMult, and

N Add. Instead, Coeus restructures this computation along

the diagonals of the blocks: for each of the N diagonals, per-

form one Rotate followed by h/N ScalarMult’s and h/N
Add’s for the h/N blocks.

This optimization extends to fractional blocks that are

vertically aligned and contain d < N diagonals each. These

diagonals are multiplied by consecutive d rotations of the

same input ciphertext. Thus, the homomorphic operations

can be reordered as before to amortize the costs of rotation.

Cost savings. Let h be the height of the submatrix and w

be its width. Then, the submatrix has f = (h/N) · ⌊w/N ⌋
full blocks and t = (h/N) · (w − N · ⌊w/N ⌋) diagonals in
the fractional blocks. Without the optimization presented

in this subsection, Coeus would make f · N + t calls to each

of ScalarMult, Add, and PRot. With the optimization, the

number of calls to PRot reduces by a factor of h/N .

4.4 Setting submatrix dimensions optimally

So far, we have discussed the matrix-vector product while

keeping submatrix dimensions abstract: width w and height

h. But, how should these values be set?

A strawman design is to partition the matrix into subma-

trices by using a strategy that is commonly used for plaintext

matrix-vector multiplication. In plaintext multiplication, the

compute time to process a submatrix is proportional to the

area of the submatrix—and does not depend on the shape

of the submatrix. This performance characteristic leads to

a common strategy of breaking up the matrix into square

submatrices [73, 93].

However, for Coeus, this strategy is sub-optimal as the

compute time to process a submatrix depends on the shape of

the submatrix: taller (but less wide) submatrices have lower

compute overhead due to the amortization of rotations (§4.3).

A downside of making submatrices less wide, however, is the

increase in aggregator overhead to combine results from each

worker. Thus, one needs to find a submatrix shape that mini-

mizes the total time to compute the matrix-vector product

considering both per-worker and across-worker work.

We first present an analytical model for the time to com-

pute the matrix-vector product. This model has limitations

and makes several simplifying assumptions, and thus cannot

be directly used, but serves as a tool to understand the sys-

tem behavior. We then use this analytical model to present

Coeus’s empirical method to determine the submatrix shape.

Analytical model. Our goal is to minimize the total time for

computing the matrix-vector product. This time is the sum

of three components, tdistribute, tcompute, and taggregate, which

correspond to the times for the three stages of computation:

distributing inputs from the master to the workers, process-

ing each submatrix parallelly at the workers, and aggregating

worker outputs (§4.1, Figure 3).

The first component tdistribute is the sum of the time for

copying rotation keys RK from the master to each worker,

and copying parts of the input vector I as needed to the work-

ers. If the total number of workers is nworkers , and the time to

transfer one copy of RK out of the master is tkey_transfer , then

the total time for the copying of keys is nworkers · tkey_transfer .
For the remaining cost of copying parts of the input vector

I , observe that for a submatrix of width w, a worker needs

⌈w/N ⌉ ciphertexts. Thus, if tct_transfer is the time to transfer

one ciphertext, the total time for input distribution phase is

tdistribute = nworkers · (tkey_transfer + ·⌈w/N ⌉ · tct_transfer). (1)

The second component of the total time, tcompute, is the

time taken by a worker to process its submatrix. This time

follows from the number of per-worker homomorphic oper-

ations executed. This number was analyzed in the previous

subsection (§4.3). If tadd , tmult , and trot are the times to per-

form one homomorphic ScalarMult, Add, and PRot, then

tcompute = (h · w)/N · (tmult + tadd) + w · trot . (2)

8

Finally, the aggregation time taggregate equals the sum of

the times to transfer intermediate ciphertexts from workers

to the aggregators, and the time each aggregator takes to add

the ciphertexts. The former equalsm · ⌈(ℓ ·N)/w⌉ · tct_transfer ,
and the latter equals m · ⌈(ℓ · N)/w⌉ · tadd/nagg , where m is

the number of blocks across the height of the original matrix

M , and nagg is the number of aggregators. The rationale is

that the matrix has ⌈(ℓ ·N)/w⌉ vertical partitions (recall that
matrix dimensions are (m · N) × (ℓ · N)), and each generates

m ciphertexts. Thus,

taggregate = m · ⌈(ℓ · N)/w)⌉ · (tct_transfer + tadd/nagg). (3)

Observe that tdistribute and tcompute depend linearly on the

value w (h · w in Equation 2 is the area of each submatrix

and is fixed depending on the total area of M and nworkers).

Thus, wider submatrices increase input distribution and com-

putation time. In contrast, taggregate depends inversely on w,

and reduces with the width of the submatrix. Due to these

opposing forces, the total time is a convex function of w.

Ideally, we would like to derive an optimal value for w (the

lowest point of the convex function) that would minimize

the total time. However, there are two issues. First, the model

uses uniform values for network transfer times for both keys

and ciphertexts that do not account for load, network condi-

tions, and the topology in which workers and aggregators are

connected. Second, the total time function is not continuous

and differentiable. Hence, in Coeus we develop an empirical

method to determine the submatrix width value.

Coeus’s empirical method. One tempting option is to con-

figure and deploy a prototype of Coeus for all possible values

ofw and measure the total time to compute the matrix-vector

product. But observe that the total time is a convex function.

Thus, we can perform a more efficient directional search

inspired by gradient descent in machine learning [43]. Coeus

starts by measuring the time for any value of w, say wstart ;

then takes a step in an increasing or decreasing direction

of w and measuring the time for a new value of w; then, if

the time decreases, it continues in the same direction; other-

wise, it goes back to wstart and takes a step in the opposite

direction. Coeus repeats this process until steps in both direc-

tions increase time. Besides following this search approach,

Coeus explores only select values of w such that either N

is divisible by w, or ℓ · N is divisible by w (when w > N).

These constraints allow Coeus to more easily deal with the

boundary conditions due to the ceil function.

5 Implementation details

Query-scorer. Coeus’s query-scorer (§2) is written in ≈2200
lines of C++. Its main piece is a distributed implementation

of Coeus’s secure matrix-vector product (§4) that uses the

state-of-the-art Microsoft SEAL library [75] for BFV homo-

morphic encryption. Recall that the BFV scheme has three

parameters: the bound p on each component of the plaintext

vector, the dimension N of this vector, and the bound p′ on
each component of the ciphertext vector (§3.2). We set p as a

46-bit prime (0x3FFFFFF84001), p′ as a product of three 60-
bit primes {0xFFFFFFFFFFD8001, 0xFFFFFFFFFFE8001, and
0xFFFFFFFFFFFC001}, and N as 2

13
. These values provide

128-bit security [10]. Furthermore, they satisfy the constraint

p′ ≫ p such that the query-scorer can perform the required

number of homomorphic operations for the large tf-idf ma-

trix while staying within the noise budget (§3.2).

tf-idf matrix preparation and encoding. The query-scorer

converts a document library into a tf-idf matrix (§3.1) using

the Gensim Python library for natural language processing [1,

70]. The query-scorer must also encode the tf-idf matrix

into plaintext vectors in the BFV scheme (§3.3). One way

to perform this encoding is to map each matrix element

individually into a single component (of size log(p)) of the
plaintext vector. However, this method is wasteful as p is a 46-

bit prime and tf-idf values are within a small range. Instead,

Coeus uses the standard ideas of quantization [40] and input

packing [6, 45] to map multiple (three in our prototype)

matrix elements into a single component of the plaintext. For

example, if a1, b1, and c1 are the beginning elements of the

first three rows of the tf-idf matrix, then Coeus first quantizes

each one to one of 2
10
levels, and then packs them into the

value a1 ·d2+b1 ·d+c1 made of three “digits” of size log d = 15

bits each. As long as the number of keywords in user queries

is less than 2
5
, this arrangement ensures that additions of

packed values happen digit-wise without overflow.

Metadata and document providers. Coeus’s metadata and

document provider are written in ≈1200 and ≈1000 lines of
C++, respectively. Underneath, the metadata-provider con-

tains our implementation of the multi-query PIR protocol of

Angel et al. [12], which in turn builds on the state-of-the-art

SealPIR PIR library [2]. Meanwhile, the document-provider

directly uses the SealPIR library (which, by default, provides

single-retrieval capability). Both the metadata and document

provider use a master-worker architecture for the PIR server,

where the master receives client request and distributes work

to the workers. Similarly, both providers configure SealPIR

to provide 128-bit security. Finally, the document-provider

implements the first-fit-decreasing bin packing algorithm to

pack the set of variable-sized documents into a PIR library

with equal-sized objects (§3.3).

6 Evaluation

Our evaluation focuses on highlighting Coeus’s latency for a

user request, Coeus’s resource overheads (cpu, network, and

dollars) for both its server and clients, and the benefits of

Coeus’s techniques in reducing these overheads. A summary

of our main results is as follows:

• For a corpus of 5M documents from English Wikipedia

and a dictionary with 65,536 keywords, Coeus’s latency

is 2.81 s, 0.55 s, and 0.54 s for its three protocol rounds of

9

query-scoring, metadata-retrieval, and document-retrieval

(§2.1). For the same configuration, a baseline system with

two rounds incurs a total latency of 93.9 seconds.

• For 5M documents and 65,536 keywords, Coeus’s resource

consumption (cpu and network) is substantial. However,

when converted to a dollar amount, this cost is 6.5 cents

per request. In contrast, the baseline costs 1.62 dollars.

• Both system-level design techniques (§2.1, §3.3) and op-

timizations to secure matrix-vector product (§4.2–§4.4)

significantly improve Coeus’s performance.

Baselines. We compare Coeus to two baseline systems. B1

composes the secure matrix-vector product construction of

Halevi and Shoup for query-scoring with PIR (specifically,

SealPIR [2]) for document retrieval to form a two-round

protocol (§2.1, §3.3). B2 improves on B1 by incorporating

Coeus’s technique of splitting the document retrieval round

into separate rounds for metadata and document retrieval

(§3.3). Notably, both B1 and B2 apply the Halevi-Shoup algo-

rithm for query-scoring to the tf-idf matrix block-by-block,

and distribute this computation onto a cluster of machines

by assigning square, equal-sized submatrices to each worker

machine. The difference between B2 and Coeus is the im-

provements to secure-matrix vector product (§4.2–§4.4).

Dataset. Our seed corpus is an English Wikipedia articles

dump from Feb 1, 2021 [3]. It contains ≈6M articles. However,

Coeus’s topic modeling library Gensim [1, 70] (§5) removes

small re-directional articles, which leaves 4, 965, 789 articles.

We form a keyword dictionary from these articles by picking

keywords that have the highest idf (specificity) (§3.1).

Experiment configurations.We vary the number of docu-

ments (n) in the server’s document library, the number of

keywords in the dictionary, and the number of machines

assigned to the server. To vary n, we sample documents from

the seed corpus uniformly at random. This sampling dictates

the size of the document library. For the baseline B1, we pad

each sampled document to the size of largest document in

the set of sampled documents. In contrast, for B2 and Coeus,

we pack (concatenate) smaller documents before padding

(§3.3). Each document’s metadata is 320 bytes, which includes

255 bytes of title [5], and 40 bytes of a short description [4],

among other information such as the document’s location in

the (packed) document library in the case of B2 and Coeus

(§3.3). For the baseline B1, we set K = 16 as the number of

documents the client retrieves in the second protocol round,

while for B2 and Coeus, K equals the number of documents

for which the client receives metadata in the second protocol

round. Finally, we set the number of tf-idf matrix columns

equal to the number of keywords, and the number of rows

of the matrix equal to ⌈n/3⌉ after taking into account tf-idf

matrix preparation from the document data (§5).

Testbed.We run Coeus’s server and a client over a set of ma-

chines in the US East (Ohio) AWS EC2 data center. Each com-

ponent of the server (query-scorer, metadata-provider, and

 0.1

 1

 10

 100

 1000

 10000

32 48 64 80 96

Q
u

er
y

-s
co

ri
n

g
 l

at
en

cy
 (

se
c)

Number of machines for the query-scorer

B1/B2 (n=300K)
B1/B2 (n=1.2M)
B1/B2 (n=5M)

Coeus (n=300K)
Coeus (n=1.2M)
Coeus (n=5M)

Figure 5. User-perceived latency for Coeus’s query-scoring round.

n is the number of documents in the document library. The number

of keywords is set to 65,536.

document-provider) uses one machine of type c5.24xlarge
(96 vcpu, 192 GiB RAM, and 25 Gbps network bandwidth) to

host its master, and a variable number of machines of type

c5.12xlarge (48 vcpu, 96 GiB RAM, 12 Gbps network band-

width) to run its workers. For the query-scorer, we also run

an aggregator on each of the worker machines. The client

uses a single vcpu of a machine of type c5.12xlarge.

6.1 Latency performance of Coeus

Wefirst focus on the query-scoring round of Coeus’s protocol

as it is different for Coeus and both the baselines, and then

on the other two rounds (metadata and document retrieval),

which are different for Coeus and only the B1 baseline.

Coeus versus the baselines for query scoring. Figure 5

shows the user-perceived latency of Coeus and the baselines

for their query-scoring round, while keeping the number

of keywords fixed to 65,536 but varying both the number

of documents n in the document library and the number of

worker machines for the query-scorer. Coeus’s latency is, in

general, much lower than the baseline latency. For example,

for 5M documents and 96 machines, Coeus’s latency is 2.8s,

while the baseline’s latency is 63.4s, which is 22.6× higher.
These improvements are due to Coeus’s optimizations to

secure matrix-vector product that fundamentally reduce, and

efficiently distribute, the server’s work (§4.2–§4.4). We will

evaluate these optimizations individually in §6.3.

Variation with the number of machines. The latency

of query-scoring initially decreases with the number of ma-

chines for the query-scorer, then reaches an inflection point,

and then increases with more machines. This trend is most

clear to see for Coeus when n = 1.2M: the latency is 1.75s

for 32 machines, decreases to 1.60s for 64 machines, and

then increases to 1.68s for 96 machines. The reason is that

although the per-machine compute time decreases with an

increase in the number of machines due to a reduction in the

size of the submatrix assigned to a machine, the overhead

of aggregating intermediate outputs increases (§4.4). Thus,

adding more machines does not necessarily improve latency.

(For n = 300K and n = 5M, the curves for Coeus are to the

right and left of the inflection point, respectively.)

10

 1

 10

 100

 1000

2
13

2
14

2
15

2
16

2
17

2
18

2
19

Q
u

er
y

-s
co

ri
n

g
 l

at
en

cy
 (

se
c)

Number of keywords

B1/B2
Coeus

Figure 6. User-perceived latency for Coeus’s query-scoring round

with the number of keywords. The number of documents is set to

5M, and the number of machines for the query-scorer is 96.

Variation with the number of documents. Coeus’s la-

tency for query-scoring increases with the number of doc-

uments, but not linearly. This is due to the amortization of

the cost of Rotate operations across matrix blocks (§4.3). For

instance, for 32 server machines, latency for Coeus grows

from 0.97s for 300K documents to 1.75s for 1.2M documents—

an increase of 1.8×. In contrast, the corresponding latency

for the baselines increases from 12.8s to 49.7s (an increase

of 3.88×). This linear growth for the baselines is expected

as they perform the secure matrix-vector product block-by-

block, without any amortization of costs across blocks.

Variation with the number of keywords. Figure 6 shows

how Coeus’s query-scoring latency changes with the number

of keywords when n = 5M and the query-scorer runs over

96 worker machines. Coeus’s latency increases linearly with

the number of keywords with a slope smaller than one. For

instance, it increases by 4.1× from 1.5s to 6.1s when the

number of keywords increase by 16× from 2
14
to 2

18
. The

reason the latency does not increase sixteen times (even

though the matrix increases by that factor) is that Coeus

readjusts submatrix dimensions to make submatrices taller,

which reduces server’s work by further amortizing the cost

of Rotate operations (§4.4, §4.3). In contrast, the baseline

latency increases with a slope of ≈ 1 as the baseline secure

matrix-vector product computation time increases linearly

with the width of the matrix.

Latency for metadata and document retrieval. Figure 7

shows user-perceived latency for Coeus and the baselines for

the rounds ofmetadata-retrieval (if applicable) and document-

retrieval. (For completeness, the figure also shows query-

scoring latency from Figure 5.)

The baseline B1 does not have an explicit metadata-retrieval

round. It uses 48 worker machines to retrieve metadata and

data together for K = 16 documents. This choice of 48 ma-

chines is based on parameters for SealPIR and the size of

the document library. For instance, SealPIR’s multi-retrieval

scheme requires partitioning the document library into a

number of buckets that is a multiple of K . We choose 48

buckets and assign each bucket to a distinct worker machine.

 0

 20

 40

 60

 80

 100

B1 B2 C B1 B2 C B1 B2 C

L
at

en
cy

 (
se

co
n

d
s)

Query-scoring
Metadata-retrieval

Document-retrieval

10.37
5.63

1.83

29.39

17.62

2.39

93.92

64.48

3.90

n=5Mn=1.2Mn=300K

Figure 7. User-perceived latency for Coeus (C) and the baseline

systems (B1 and B2) with a varying number of documents (n) in

the document library. The number of keywords is 65,536. The text

provides details of the machines for these experiments.

In contrast to B1, the baseline B2 and Coeus have an explicit

metadata-retrieval round. We configure these systems to use

6 worker machines for the metadata-provider and 38 ma-

chines for the document-provider. Again, these choices are

based on SealPIR parameters and the size of the metadata

and document libraries. For instance, the largest object after

document packing is 142.5 KiB, which encrypts into 38 BFV

ciphertexts in SealPIR, where each is processed in parallel.

Coeus’s (and B2’s) separation of metadata retrieval from

document retrieval significantly improves latency over B1.

For example, for n = 5M, B1 takes 30.5s, while Coeus takes

0.55s for metadata retrieval and 0.54s for document retrieval.

This gain is for two reasons. First, B1 retrieves K = 16 doc-

uments each of size 140.7 KiB privately from a document

library via multi-retrieval PIR, whereas Coeus retrieves a

single document and 320 byte metadata for each of the K

documents. Second, B1’s document library is much larger

than Coeus’s: 670.8 GiB versus 13.1 GiB. This is because B1

pads each document in its library to the size of the largest

document (140.7 KiB), whereas Coeus packs multiple smaller

documents into 96,151 objects each of size 142.5 KiB (§3.3).

Summary. Coeus’s latency is dominated by that of query-

scoring. Further, Coeus’s techniques are effective: the decou-

pling of metadata from document retrieval reduces latency

from 93.9s to 63.5s for 5M documents and 65,536 keywords,

and the optimizations to secure matrix-vector product fur-

ther reduce this latency to 3.9s (an improvement of 24×).

6.2 Resource overheads of Coeus

This section explores the overhead Coeus imposes on clients

and estimates the combined overhead in terms of dollars.

Client-side overhead. Figure 8 shows client-side cpu time,

network upload, and network download for Coeus and the

baselines with a varying number of documents (n) in the

server’s document library. Coeus’s network overhead is sub-

stantial and thus Coeus requires significant download band-

width at the client. This is because the query-scoring re-

sponse contains a score for each document, and thus grows

with the number of documents (§2.1, §3.3). Meanwhile, the

11

n=300K n=1.2M n=5M

Client cpu (sec)

B1 4.04 4.43 5.54

B2/Coeus 0.34 0.61 1.64

Upload (MiB)

B1 12.29 12.29 17.89

B2/Coeus 14.31 14.31 14.31

Download (MiB)

B1 460.27 470.02 508.02

B2/Coeus 18.78 28.53 66.53

Figure 8. Client-side costs per request for Coeus and the baseline

systems (B1 and B2) for a keyword dictionary with 65,536 keywords

and a varying number of documents (n).

upload bandwidth does not change with n, as (a) the length

of the input vector to query-scoring depends on the number

of keywords (and not on the number of documents), and b)

the size of the inputs to PIR (specifically, SealPIR) follows a

step function and changes only for a value n > 16M.

Coeus’s overheads, particularly the network downloads,

are significantly lower than that of the baseline B1. The

reason is that B1 privately downloads K = 16 documents

while Coeus retrieves a single object and K smaller metadata.

Dollar cost. We convert both the network and the server-

side resource overhead to a dollar amount. For the former,

we use a network pricing model of $0.05 per GiB, which

is Amazon’s price for bulk network downloads (Amazon

does not charge for uploads) [77]. For the server’s cost, we

multiply the machine rent for Amazon EC2 (c5.12xlarge
and c5.24xlarge machines cost $0.744 and $1.488 per hour,

respectively [76]) with the number and type of machines we

use and the time for which we use them to service a request.

For Coeus, the per-request dollar cost for the configuration

of 5M documents and 65,536 keywords is 6.5 cents, of which

5.9 cents is due to query-scoring. The baseline B2 increases

this cost to 1.29 dollars, of which 1.28 dollars is due to query

scoring. Further, B1 increases this cost to 1.62 dollars, where

the additional 34 cents is due to the more expensive docu-

ment retrieval. Thus, Coeus’s improvements take oblivious

document ranking and retrieval a level up in affordability.

6.3 Performance of secure matrix-vector product

Amajor part of Coeus’s gain over the baselines is courtesy of

the improvements to secure matrix-vector product (§4). This

section zooms into the performance of this primitive in isola-

tion. We first focus on a matrix that fits into a single machine,

and then on Coeus’s distributed implementation over a clus-

ter of machines. The results also shed light on when Coeus’s

construction could be beneficial to other applications.

Single machine performance.We run the server compo-

nent of the secure matrix-vector product on a single CPU of

an AWS machine of type c5.12xlarge. We compare (a) the

baseline Halevi-Shoup construction extended to process mul-

tiple blocks block-by-block, (b) this baseline plus Coeus’s

 10

 100

 1000

 10000

 1 2 4 8 16 32 64S
er

v
er

 c
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Number of matrix blocks

Baseline (Halevi-Shoup)
Coeus-opt1

Coeus-opt1-opt2

Figure 9. Server cpu time to perform secure matrix-vector product.

first optimization (§4.2) to reduce the overhead of rotations

(Coeus-opt1), and c) this previous variant extended with

Coeus’s technique (§4.3) to amortize rotation time across

blocks (Coeus-opt1-opt2).

Figure 9 shows the cpu time to compute the product. Each

block is of dimension N ×N , where N = 2
13
, and new blocks

are added vertically on top of existing blocks.

Coeus-opt1 reduces computation time by a constant factor

of ≈ 4.4× relative to the baseline. This reduction in time is

due to the constant log(N)/2 = 6.5 factor savings in the time

for the Rotate operations (§4.2). Coeus-opt1-opt2 further

reduces overhead by amortizing the cost of rotations across

blocks (§4.3). For instance, for the baseline Halevi-Shoup

construction, increasing the number of blocks from one to

sixty-four increases time linearly from 75s to 4,834s (an in-

crease of 64.4×), but for Coeus-opt1-opt2, the time increases

from 17.1s to 74.2s (a factor of 4.34). Overall, for the data

point with 64 blocks, the baseline Halevi-Shoup construction

takes 4,834s, Coeus’s first variant (Coeus-opt1) reduces that

time to 1,094s, and Coeus’s version with both optimizations

(Coeus-opt1-opt2) reduces time to 74.2s.

Multiple machine performance. Coeus distributes secure

matrix-vector product computation efficiently onto a cluster

of machines, by optimally shaping the submatrices for the

worker nodes (§4.4). We compare Coeus’s performance with

and without this optimization. We run the server compo-

nent of the secure matrix-vector product over a cluster of

64 machines of type c5.12xlarge while utilizing all CPUs
on each machine. We measure the wall-clock time for the

computation while varying the submatrix width.

Figure 10 shows the wall-clock time for various phases of

secure-matrix vector computation (input distribution from

the master to the workers, processing of submatrices at all

worker nodes, and the aggregation of intermediate outputs

generated by the workers) for an example matrix with 2
20

rows and 2
16
columns. The figure also shows the end-to-end

(total) time measured by the client.

Overall, the total time curve is convex: the time is higher

than its lowest value when submatrices are either too thin

(left side of the x-axis) or too wide (right side of the x-axis).

This convex shape is due to two competing forces. On the

one hand, the time to process the submatrices increases with

12

 0

 2

 4

 6

 8

 10

2
10

2
11

2
12

2
13

2
14

2
15

2
16

W
al

l-
cl

o
ck

 t
im

e
(s

ec
)

Width of submatrix at each worker

Input-dist.
Compute

Aggregation
Total

Figure 10. Wall-clock time for various phases of computation of

Coeus’s secure matrix-vector product: input distribution, computa-

tion at the workers, and aggregation of intermediate results. The

curve labeled “total” is the end-to-end time measured at a client.

width due to a reduction in the amortization of Rotate cost.

(The time for input distribution also increases with width but

slowly.) On the other hand, the cost of aggregation decreases

with width. Coeus balances these two forces by finding and

setting the optimal width for the submatrices (§4.4). Indeed,

if Coeus had used the solution of square submatrices, then

its time would be 4.76s (the point with width of 2
15
) rather

than 2.46s (width of 2
12
)—an improvement of 1.93×.

The above experiment clarifies that statically setting square

submatrices is suboptimal. But could we statically set sub-

matrices to a rectangular shape and get most of the benefit

provided by Coeus’s scheme? This question is especially

compelling as the total time curve (Figure 10) changes slowly

around the optimal point of 2
12
width. Thus, as a concrete

example, could one always set submatrix width to 2
12
?

To answer this question, we rerun the experiment above

for three different matrix dimensions: 1M rows and 64K

columns, 1M rows and 16K columns, and 256K rows and 16K

columns. Figure 11 shows the results. The inflection (optimal)

point differs significantly—4096, 1024, and 512, respectively—

for the three dimensions. Further, statically picking either of

these widths is detrimental for the other configurations. For

instance, if we pick 4096 as the submatrix width, then Coeus

would incur 41% more latency (1.47s instead of 1.04s) relative

to the optimal point for the matrix with 256K rows and 16K

columns. On the other hand, picking a submatrix width of

512 will be optimal for this matrix with 256K rows and 16K

columns but increase latency by 16% for the matrix with di-

mensions 1M rows and 16K columns. In general, the optimal

point depends on various factors such as matrix dimensions,

machine performance characteristics, and network connec-

tivity between machines. Besides, these factors change over

time due to updates to the document library and upgrades

to the infrastructure.

6.4 Comparison of Coeus to a non-private baseline

We implemented a tf-idf based system that does not hide user

query and the matched documents. This baseline implements

a two-round protocol. In the first round, a client sends a

 0

 2

 4

 6

 8

 10

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

W
a
ll

-c
lo

c
k

 t
im

e
 (

se
c
)

Width of submatrix at each worker

1M rows 64K columns

1M rows 16K columns

256K rows 16K columns

Figure 11. Wall-clock time for Coeus’s secure matrix vector product

protocol over 64 machines for different matrix dimensions and

varying submatrix widths.

query to the server in plaintext. The server computes the

tf-idf scores for each document and returns metadata for the

top K = 16 documents. In the second round, the client selects

one document from the top-K and retrieves it from the server.

With 5M documents and 65,536 keywords in the tf-idf matrix,

and after distributing the server’s workload over 48 machines

of type c5.12xlarge, the end-to-end latency experienced by
a client is ≈90ms, which is 44× lower than Coeus. The dollar

cost for a single query is 0.09 cents, 72× cheaper than Coeus.

Coeus is different to a non-private baseline also in terms

of expressiveness of queries. It supports tf-idf-based ranking

over a multi-keyword query, but not other forms of queries

such as Boolean queries with AND, OR, and NOT operators,

fuzzy queries that auto-correct words that are spelled in-

correctly, and wildcard and regular expression queries that

enable search for patterns. Supporting these queries in Coeus

requires future research, though we note that limited query

processing, e.g., checking for typographical errors for fuzzy

queries, could be done at the client-side.

7 Related work

Searching over encrypted private data. Starting with the

seminal work of Song et al. [80], a large body of literature

has focused on searching on encrypted private data held at

a remote server (we refer the reader to surveys and recent

papers on this problem [20, 24, 29, 30, 49, 91]).

Two characteristics differentiate this problem from the

problem Coeus addresses. First, this problem considers a sce-

nario where the documents are owned by one or more users,

while their storage is outsourced. Thus, the data owner can

encrypt its documents using a symmetric encryption scheme

(e.g., [27]) or include an encrypted index that later helps with

search. As noted earlier (§1), such encryption is not possible

when data is public. Second, schemes in this category fo-

cus on searching rather than ranking. For example, a recent

system DORY [29] supports retrieval of documents exactly

matching a keyword.

Ranking over encrypted private data.A body of literature

extends the capability of searching on private encrypted data

with the capability to rank the search results [8, 31, 48, 53, 57,

13

67, 67, 79, 82, 83, 88, 90, 94, 99]. Among these, the schemes

of Yu et al. (two-round searchable encryption or TRSE) [99]

and Strizhov and Ray [82] are related to Coeus.

Both these schemes support ranking using tf-idf over a

two-round protocol that is similar to the two-round baseline

B1 discussed and evaluated in this paper (§2.1, §6). In the first

round, a user sends a homomorphically encrypted query to

a remote server and learns relevance scores for each docu-

ment. Then, in the second round, the user retrieves the top-K

documents. Despite the similarities to B1, we compare Coeus

to B1 rather than these existing schemes, for two reasons.

First, in these existing schemes, the tf-idf matrix is en-

crypted as the data is private and owned by a data owner.

Thus, the remote server multiplies an encrypted matrix with

an encrypted vector. In contrast, in the baseline B1 (and in

Coeus), the matrix is in plaintext and only the vector is en-

crypted which results in cheaper server-side operations. Sec-

ond, these existing schemes inefficiently compute the matrix-

vector product. TRSE uses the homomorphic encryption

scheme of van Dijk et al. [87] which has large parameters and

lacks support for vectorized operations. Meanwhile, Strizhov

and Ray’s scheme uses the more efficient BGV scheme [22]

but computes the product naively by multiplying the vector

with each matrix row. In contrast, B1 uses the state-of-the-art

construction of Halevi and Shoup [46, 58] (§3.2).

Searching over public data. PIR [26, 59] and its extensions

are designed for public data. Indeed, PIR in its basic form

allows retrieval by index from a public library. With PIR-by-

keywords [25, 37], a user specifies a keyword and retrieves

one of the documents that contains the keyword. Therefore,

PIR-by-keywords is most applicable to a setting where key-

words are unique, for example, key-value stores [13]. SQL-

PIR [66] and Splinter [89] extend the PIR-by-keywords inter-

face to support data retrieval using a subset of SQL. However,

they do not support selective, oblivious aggregation across

columns as in tf-idf scoring computations. Moreover, they

assume non-colluding servers unlike Coeus which does not

make such assumptions about the server (§2.2). Finally, pri-

vate stream searching [19, 28, 68] extends search to a stream

of public documents such as Google News alerts [36, 65, 95–

98, 100]. But, as mentioned earlier (§1), these works do not

consider ranking. In contrast to all these works, one can view

Coeus as an extension to PIR that prefixes a ranking stage to

the private document retrieval stage.

Other related work.Other approaches to searching or rank-

ing privately include trusted execution environments (TEEs)

such as Intel SGX [51, 55, 64, 78, 84], anonymous commu-

nication systems such as Tor [85], and obfuscation-based

techniques that send dummy queries besides real queries [15,

32, 92]. These approaches are either orthogonal or do not pro-

vide strong guarantees: TEE-based solutions require trusting

the manufacturer of the TEE, anonymous communication

systems hide identity but reveal the personally identifiable

information (PII) in the query that can in turn reveal a user’s

identity [16], and obfuscation-based techniques are heuristic

in nature and thus susceptible to attacks that separate out

real queries from dummy queries [15, 92]. In contrast to these

solutions, Coeus hides the content of user queries (and not

user identity), and does so provably by incorporating and

refining advanced primitives from cryptography.

8 Summary and future work

Coeus, to our knowledge, is the first end-to-end system that

supports oblivious ranked retrieval over large scale public

data and an untrusted infrastructure. Prior approaches either

did not support ranking or only managed private data. One

can view Coeus as an extension to the PIR domain that effi-

ciently supports ranking by exploiting standard tf-idf statis-

tical methods. At Coeus’s core is a new three round protocol

that separates metadata retrieval from document retrieval

(§2.1, §3.3), and a novel secure and efficient matrix-vector

product protocol (§4) based on the Halevi and Shoup method.

This latter scheme, although designed primarily for oblivious

document retrieval may be useful in other application con-

texts. Coeus demonstrates that oblivious ranked document

retrieval, which up to now was practically impossible due its

high overhead costs, has come to the realm of the possible.

Our hypothetical, privacy conscious Ziv can now use Coeus

to obliviously retrieve from Wikipedia, with its corpus of

about 5 million documents, the history of any event of inter-

est in under 4 seconds (rather than minutes) and at a cost of

single digit cents (rather than dollars). Needless to say, this

is not a panacea, but a significant improvement that paves

the way for a practical future where privacy is within the

reach of the masses.

In terms of further improvements, one avenue is to reduce

the server-side compute overhead, which is still the main

bottleneck. Here, accelerators such as GPUs may drive down

costs for both secure matrix-vector product and PIR. The

sparsity of the tf-idf matrix too presents an opportunity as it

contains many zero entries. One can also consider concur-

rent queries and batch processing opportunities that are not

applicable with a single query. Finally, besides performance,

one can improve expressiveness by adding more types of

queries such as fuzzy queries, as discussed earlier (§6.4).

Coeus’s source code is available at

https://github.com/ishtiyaque/Coeus_artifact.

Acknowledgments

We thank Dheeraj Baby, John Gilbert, our shepherd Jon

Crowcroft, and the anonymous reviewers of SOSP 2021 for

their feedback and insightful comments that helped improve

this paper. This work is funded in part by DARPA under

agreement number HR001118C0060 and NSF grants CNS-

1703560 and CNS-1815733.

14

https://github.com/ishtiyaque/Coeus_artifact

A Security proof (not peer-reviewed)

This appendix is included to show that Coeus’s protocol (§3.3,

§4) for oblivious document ranking and retrieval satisfies the

notion of query privacy (§2.2), however readers should note

that this section has not been peer-reviewed.

We first define an abstract protocol for oblivious docu-

ment ranking and retrieval, then describe a cryptographic

security game that captures the notion of query privacy,

and finally show why an adversary cannot win this game

with non-negligible probability when the abstract protocol

is instantiated with Coeus’s protocol (§3.3).

A.1 An abstract description of protocol

A protocol for oblivious document ranking and retrieval

runs between a server and a client. The server begins with a

data structure for scoring document relevance given a client

query, a metadata library containing n metadata objects for

n documents, and a document library that contains the n

documents packed into npkd equal-sized objects, where a

document does not span more than one object. Meanwhile,

the client begins with a multi-keyword search query q. At

the end of the protocol, the client receives one object in the

document library.

This protocol consists of three algorithms: SQuery,MQuery,

and DQuery.

SQuery(1𝜆 ,Dict, q) takes as inputs a security parameter 1
𝜆
,

a dictionary of keywords Dict, and a multi-keyword search

query q, and outputs a query qs for scoring relevance of q

against all n documents in the server’s document library.

MQuery(1𝜆 , n, {idx1, . . . , idxK }) takes as input a security
parameter 1

𝜆
, an integer n that represents the number of

objects in the server’s metadata library, and a set of K indices

whose values are between (and inclusive of) 1 and n, and

outputs a query qm that is suitable for retrieving objects

in the metadata library whose indices are those in the set

{idx1, . . . , idxK }.
DQuery(1𝜆 , npkd , idx) takes as input a security parameter

1
𝜆
, an integer npkd representing the number of objects in

a suitable encoding of the document library, and an index

whose value is between 1 and npkd , and outputs a query qd

for retrieving one of the objects from the document library.

The protocol proceeds in three rounds. In the first round,

the client runs the SQuery algorithm and sends qs to the

server. The server responds with an answer which consists

of relevance scores for n documents in the server’s document

library. The client processes these scores to extract the value

n and a set of K indices corresponding to the highest scoring

documents. In the second round, the client feeds the outputs

from the first round as inputs to MQuery, and sends the

output qm to the server. The server processes this query and

returns metadata for K documents. The server also returns

the number of objects npkd in the encoded document library.

The client postprocesses the metadata returned by the server

Simulate(A,𝜋 ,Dict,K , q
b
)

1: // Run query-scoring round of protocol

2: qs ← 𝜋 .SQuery(1𝜆 ,Dict, q
b
)

3: scores← A.GetScores(qs)
4: n← |scores | // n is the number of documents

5: // Obtain indices for the highest scoring documents

6: // if K > n, Top-K fills missing values randomly

7: {idx1, . . . , idxK } ← Top-K(scores)

8: // Run the metadata-retrieval round of the protocol

9: qm ← 𝜋 .MQuery(1𝜆 , n, {idx1, . . . , idxK })
10: (n

pkd
, {M

idx1
, . . . ,M

idxK
}) ← A.GetMetadata(qm)

11: // Process metadata to get an integer between 1 and n
pkd

12: idx ← SelectDocument(n
pkd

, {M
idx1

, . . . ,M
idxK
})

13: // Run the document-retrieval round of the protocol

14: q
d
← 𝜋 .DQuery(1𝜆 , n

pkd
, idx)

15: obj ← A.GetDocument(q
d
)

16: return all messages sent to or received from A
Figure 12. Pseudocode for the challenger to simulate the protocol 𝜋

for one of the queries supplied by the adversary.

to obtain an integer idx whose value is between 1 and npkd .

Finally, in the third round, the client runs DQuery by feeding

the outputs of the second step as inputs to DQuery. The client

sends the output of DQuery to the server, who processes it

against the document library to return one object from this

library.

A.2 The security game for query privacy

We define a security game that a challenger and an adversary

play that captures the notion of query privacy.We denote this

game as GA,𝜋 ,Dict,K (1𝜆), whereA is an probabilistic polyno-

mial time adversary, 𝜋 is a protocol for oblivious document

ranking and retrieval consisting of the three algorithms of

SQuery, MQuery, and DQuery, Dict is a set of keywords, K

is an integer greater than or equal to 1 that represents the

number of metadata objects a client wants to get, and 𝜆 is a

security parameter. The game has three phases: setup, simu-

lation, and guess.

During setup, the adversary chooses two multi-keyword

queries q0 and q1 and sends them to the challenger. These

queries may or may not contain keywords in the Dict.

During simulation, the challenger simulates the protocol

𝜋 for one of the queries. The challenger first flips a coin and

picks either q0 or q1 depending on the outcome of coin flip

(b ∈ {0, 1}). It then simulates 𝜋 for qb using the Simulate

function described in Figure 12. Finally, the challenger shares

the output of simulate with the adversary.

During the final guess phase, the adversary takes the out-

put of Simulate corresponding to the scenario which the

challenger simulated and outputs b
′
, which is the adversary’s

guess for whether the challenger simulated the protocol for

q0 or q1. The adversary wins the game if b
′ = b.

15

We note that the Simulate algorithm calls several func-

tions exposed by the adversary. For instance, it calls the

GetScores function to learn the relevance scores for qs . Sim-

ilarly, it calls the GetMetadata and GetDocument func-

tions to retrieve K metadata objects and one object from the

document library. The adversary may arbitrarily misbehave

when responding to these calls. For instance, when replying

to GetScores, it may or may not send the actual scores for

the scoring query. It may even send back less or more num-

ber of scores than n, which is the number of documents in

the server library. Similarly, GetMetadata may return an

incorrect value of npkd , and incorrect number or incorrect

content of metadata objects.

A.3 Proof of query privacy

We want to show that the adversary’s advantage in winning

the game is negligible when 𝜋 is instantiated with Coeus’s

protocol. We use a series of hybrid games to calculate the

adversary’s advantage.

Game 0: This game is the original game as described above

with 𝜋 instantiated with Coeus’s protocol. The SQuery con-

verts q to a binary vector using the dictionary of keywords

Dict and then encrypts this binary vector using a secure-

matrix vector product primitive (§3.2, §4). The MQuery algo-

rithm calls the query generation function of a multi-retrieval

PIR query (e.g., [12]) with n as the total number of objects in

the library and the K indices as the positions of the metadata

objects client wants to retrieve. The DQuery algorithm calls

the query generation function of a single-retrieval PIR with

npkd as the number of objects in the library and idx as the

position of the object that is retrieved.

Game 1: This game is the same as game 0 except that

the DQuery algorithm calls the query generation function

of a single-retrieval PIR with npkd and an index sampled

uniformly at random from the range 1 to npkd .

Game 2: This game is the same as game 1 except that the

MQuery algorithm calls the query generation function of

a multi-retrieval PIR with K indices sampled uniformly at

random from the set {1, . . . , n}.
Game 3: This game is the same as game 2 except that the

SQuery algorithm calls the request generation algorithm of

secure matrix-vector product with a binary vector of length

|Dict| whose each element is sampled uniformly at random

from {0, 1}.
Let S0 be the event that b = b

′
in Game 0, where qb is the

query chosen by the challenger, and b
′
is the adversary’s

guess. Similarly, let S1 be the event b = b
′
in Game 1, S2 be

the event b = b
′
in Game 2, and S3 be the event that b = b

′

in Game 3.

Lemma A.1. Pr[S3] = 1/2.

Observe that in game 3 none of the requests to the adver-

sary depend on the query picked by the challenger. Specifi-

cally,DQuery andMQuery generate PIR queries for uniformly

sampled indices, and SQuery generates a query for a uni-

formly sampled binary vector. Therefore, an adversary par-

ticipating in game 3 cannot distinguish between the two

scenarios.

Lemma A.2. |Pr[S2] − Pr[S3] | ≤ 𝜖Secure−matrix−vec

The difference between game 3 and game 2 is the input

to secure matrix-vector product. Specifically, in game 3, the

input is dependent on the actual query selected by the chal-

lenger, while in game 2, it is a uniformly sampled Boolean

vector. But given the security of secure matrix-vector product

(which in turn depends on the semantic security of an under-

lying encryption scheme), the adversary cannot differentiate

the two cases with non-negligible probability.

Lemma A.3. |Pr[S1] − Pr[S2] | ≤ 𝜖Multi−retrieval−PIR

The difference between game 2 and game 1 are the indices

input to multi-retrieval CPIR: in game 2, the indices are sam-

pled uniformly at randomwhile in game 1 they are dependent

on the scores returned by the query-scoring round. However,

given the security of multi-retrieval CPIR that hides the value

of these indices, the adversary cannot distinguish between

the two games with non-negligible probability.

Lemma A.4. |Pr[S0] − Pr[S1] | ≤ 𝜖Single−retrieval−PIR

The difference between game 1 and game 0 is the index

input to single-retrieval PIR: in game 1, the index is sampled

uniformly at random while in game 0 it is dependent on the

metadata returned by metadata-retrieval round. Again, given

the security of single-retrieval CPIR that hides the value of

the index, the adversary cannot distinguish between the two

games with non-negligible probability.

Combining the four lemmas, we get the proof that |Pr [S0]−
1/2| <= 𝜖Secure−matrix−vec+𝜖Multi−retrieval−PIR+𝜖single−retrieval−PIR.
Therefore, an adversary cannot win the security game with

non-negligible probability.

References

[1] gensim – topic modelling in python. https://github.com/RaRe-
Technologies/gensim/.

[2] SealPIR: A computational PIR library that achieves low communi-

cation costs and high performance. https://github.com/microsoft/
SealPIR. Microsoft Research, Redmond, WA.

[3] Wikimedia downloads: enwiki dump progress on 20210201.

https://dumps.wikimedia.org/enwiki/20210201/enwiki-20210201-
pages-articles-multistream.xml.bz2/.

[4] Wikipedia:short description. https://en.wikipedia.org/wiki/
Wikipedia:Short_description#Formatting/.

[5] Wikipedia:wikipedia_records. https://en.wikipedia.org/wiki/
Wikipedia:Wikipedia_records#Title_length/.

[6] S. Agrawal, S. Badrinarayanan, P. Mukherjee, and P. Rindal. Game-Set-

MATCH: Using mobile devices for seamless external-facing biometric

matching. In ACM Conference on Computer and Communications

Security (CCS), pages 1351–1370, 2020.

[7] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O. Killijian. XPIR:

Private Information Retrieval for Everyone. In Privacy Enhancing

Technologies Symposium (PETS), 2016.

16

https://github.com/RaRe-Technologies/gensim/
https://github.com/RaRe-Technologies/gensim/
https://github.com/microsoft/SealPIR
https://github.com/microsoft/SealPIR
https://dumps.wikimedia.org/enwiki/20210201/enwiki-20210201-pages-articles-multistream.xml.bz2/
https://dumps.wikimedia.org/enwiki/20210201/enwiki-20210201-pages-articles-multistream.xml.bz2/
https://en.wikipedia.org/wiki/Wikipedia:Short_description#Formatting/
https://en.wikipedia.org/wiki/Wikipedia:Short_description#Formatting/
https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_records#Title_length/
https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_records#Title_length/

[8] D. Agun, J. Shao, S. Ji, S. Tessaro, and T. Yang. Privacy and efficiency

tradeoffs for multiword top k search with linear additive rank scoring.

In International World Wide Web Conference (WWW), pages 1725–

1734, 2018.

[9] I. Ahmad, Y. Yang, D. Agrawal, A. El Abbadi, and T. Gupta. Addra:

Metadata-private voice communication over fully untrusted infras-

tructure. In 15th USENIX Symposium on Operating Systems Design

and Implementation (OSDI), pages 313–329, 2021.

[10] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,

S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,

D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan. Homomor-

phic encryption security standard. Technical report, Homomorphi-

cEncryption.org, November 2018.

[11] A. Amirbekyan and V. Estivill-Castro. A new efficient privacy-

preserving scalar product protocol. In The Australasian Data Mining

Conference (AusDM), 2007.

[12] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with compressed queries

and amortized query processing. In IEEE Symposium on Security and

Privacy (S&P), pages 962–979, 2018.

[13] S. Angel and S. Setty. Unobservable communication over fully un-

trusted infrastructure. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 551–569, 2016.

[14] J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras, and J. Risen.

AT&T helped US spy on Internet on a vast scale. The New York Times,

2015.

[15] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS: Obfuscation-based

private web search. In IEEE Symposium on Security and Privacy (S&P),

pages 491–505, 2012.

[16] M. Barbaro and T. Zeller Jr. A Face Is Exposed for AOL Searcher No.

4417749. The New York Times, Aug. 2006.

[17] B. Barrett. Security news this week: Russia’s SolarWinds hack is a

historic mess. Wired, Dec. 2020. https://www.wired.com/story/russia-
solarwinds-hack-roundup/.

[18] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers computation

in private information retrieval: PIR with preprocessing. In Advances

in Cryptology—CRYPTO, pages 55–73, 2000.

[19] J. Bethencourt, D. Song, and B. Waters. New techniques for private

stream searching. ACM Transactions on Information and System Secu-

rity (TISSEC), 12(3):1–32, 2009.

[20] C. Bösch, P. Hartel, W. Jonker, and A. Peter. A survey of provably se-

cure searchable encryption. ACM Computing Surveys (CSUR), 47(2):1–

51, 2014.

[21] Z. Brakerski. Fully homomorphic encryptionwithoutmodulus switch-

ing from classical GapSVP. InAdvances in Cryptology—CRYPTO, pages

868–886, 2012.

[22] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully ho-

momorphic encryption without bootstrapping. ACM Transactions on

Computation Theory (TOCT), 6(3):13, 2014.

[23] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, andM.Walfish.

Verifying computations with state. In ACM Symposium on Operating

Systems Principles (SOSP), Nov. 2013.

[24] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and

M. Steiner. Dynamic searchable encryption in very-large databases:

Data structures and implementation. In Network and Distributed

System Security Symposium (NDSS), 2014.

[25] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by

keywords. Cryptology ePrint Archive, Report 1998/003, 1998. https:
//eprint.iacr.org/1998/003.

[26] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private infor-

mation retrieval. In Symposium on Foundations of Computer Science

(FOCS), 1995.

[27] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable sym-

metric encryption: improved definitions and efficient constructions.

Journal of Computer Security, 19(5):895–934, 2011.

[28] G. Danezis and C. Diaz. Space-efficient private search with appli-

cations to rateless codes. In International Conference on Financial

Cryptography and Data Security (FC), pages 148–162. Springer, 2007.

[29] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica. DORY: An

encrypted search systemwith distributed trust. InUSENIX Symposium

on Operating Systems Design and Implementation (OSDI), pages 1101–

1119, 2020.

[30] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre. SEAL:

Attack mitigation for encrypted databases via adjustable leakage. In

USENIX Security Symposium (SEC), pages 2433–2450, 2020.

[31] X. Ding, H. Pang, and J. Lai. Verifiable and private top-k monitoring.

In ACM ASIA Conference on Computer and Communications Security

(CCS), pages 553–558, 2013.

[32] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca. h(k)-private in-

formation retrieval from privacy-uncooperative queryable databases.

Online Information Review, 2009.

[33] C. Dong and L. Chen. A fast secure dot product protocol with appli-

cation to privacy preserving association rule mining. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), 2014.

[34] C. Dwork. Differential privacy. In International Colloquium on Au-

tomata, Languages, and Programming, pages 1–12, 2006.

[35] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive, Report 2012/144, 2012.

[36] R. A. Fink, D. R. Zaret, R. B. Stonehirsch, R. M. Seng, and S. M. Tyson.

Streaming, plaintext private information retrieval using regular ex-

pressions on arbitrary length search strings. In IEEE Symposium on

Privacy-Aware Computing (PAC), pages 107–118. IEEE, 2017.

[37] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search

and oblivious pseudorandom functions. In Theory of Cryptography

Conference, pages 303–324. Springer, 2005.

[38] C. Gentry. Fully homomorphic encryption using ideal lattices. In

ACM Symposium on Theory of Computing (STOC), 2009.

[39] T. George. Takeaways from the Shopify hack. SecurityWeek, Sept.

2020. https://www.securityweek.com/takeaways-shopify-hack.
[40] A. Gersho. Principles of quantization. IEEE Transactions on circuits

and systems, 25(7):427–436, 1978.

[41] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar

product computation for privacy-preserving data mining. In Inter-

national Conference on Information Security and Cryptology (ICISC).

2004.

[42] O. Goldreich and R. Ostrovsky. Software protection and simulation

on oblivious RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[43] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,

volume 1. MIT press Cambridge, 2016.

[44] T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and M. Walfish.

Scalable and private media consumption with popcorn. In USENIX

Symposium on Networked Systems Design and Implementation (NSDI),

pages 91–107, 2016.

[45] T. Gupta, H. Fingler, L. Alvisi, and M. Walfish. Pretzel: Email en-

cryption and provider-supplied functions are compatible. In ACM

SIGCOMM Conference, 2017.

[46] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in

Cryptology—CRYPTO, pages 554–571. Springer, 2014.

[47] S. Halevi and V. Shoup. Faster homomorphic linear transformations

in HElib. InAdvances in Cryptology—CRYPTO, pages 93–120. Springer,

2018.

[48] R. Handa, C. R. Krishna, and N. Aggarwal. Document clustering for

efficient and secure information retrieval from cloud. Concurrency

and Computation: Practice and Experience, 31(15):e5127, 2019.

[49] R. Handa, C. R. Krishna, and N. Aggarwal. Searchable encryption:

A survey on privacy-preserving search schemes on encrypted out-

sourced data. Concurrency and Computation: Practice and Experience,

31(17):e5201, 2019.

17

https://www.wired.com/story/russia-solarwinds-hack-roundup/
https://www.wired.com/story/russia-solarwinds-hack-roundup/
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/1998/003
https://www.securityweek.com/takeaways-shopify-hack

[50] R. Henry, Y. Huang, and I. Goldberg. One (block) size fits all: PIR and

SPIR with variable-length records via multi-block queries. In Network

and Distributed System Security Symposium (NDSS), 2013.

[51] T. Hoang, M. O. Ozmen, Y. Jang, and A. A. Yavuz. Hardware-supported

ORAM in effect: Practical oblivious search and update on very large

dataset. Privacy Enhancing Technologies Symposium (PETS), 2019(1),

2019.

[52] A. Holmes. 533 million facebook users’ phone numbers and

personal data have been leaked online. Business Insider, Apr.

2021. https://www.businessinsider.com/stolen-data-of-533-million-
facebook-users-leaked-online-2021-4.

[53] A. Ibrahim, H. Jin, A. A. Yassin, and D. Zou. Secure rank-ordered

search of multi-keyword trapdoor over encrypted cloud data. In 2012

IEEE Asia-Pacific Services Computing Conference, pages 263–270. IEEE,

2012.

[54] I. Iliashenko and V. Zucca. Faster homomorphic comparison opera-

tions for BGV and BFV. Privacy Enhancing Technologies Symposium

(PETS), 3:246–264, 2021.

[55] Intel. Intel Software Guard Extensions. https://software.intel.com/en-
us/sgx.

[56] I. Ioannidis, A. Grama, and M. Atallah. A secure protocol for com-

puting dot-products in clustered and distributed environments. In

International Conference on Parallel Processing (ICPP), 2002.

[57] S. Ji, J. Shao, D. Agun, and T. Yang. Privacy-aware ranking with tree

ensembles on the cloud. In International ACM SIGIR Conference on

Research & Development in Information Retrieval, pages 315–324, 2018.

[58] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. Gazelle: A low

latency framework for secure neural network inference. In USENIX

Security Symposium (SEC), pages 1651–1669, 2018.

[59] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single data-

base, computationally-private information retrieval. In Symposium

on Foundations of Computer Science (FOCS), 1997.

[60] D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Distributed private

messaging immune to passive traffic analysis. In USENIX Symposium

on Operating Systems Design and Implementation (OSDI), pages 711–

725, 2018.

[61] Q. Lou, B. Feng, G. C. Fox, and L. Jiang. Glyph: Fast and accurately

training deep neural networks on encrypted data. arXiv preprint

arXiv:1911.07101, 2019.

[62] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learn-

ing with errors over rings. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques (EUROCRYPT),

pages 1–23, 2010.

[63] L. McKenzie. Secure file sharing compromises university security.

Inside Higher Ed, Apr. 2021. https://www.insidehighered.com/news/
2021/04/07/accellion-data-security-breach-latest-hit-universities.

[64] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An

efficient oblivious search index. In IEEE Symposium on Security and

Privacy (S&P), pages 279–296. IEEE, 2018.

[65] M. Oehler and D. S. Phatak. A conjunction for private stream search-

ing. In International Conference on Social Computing, pages 441–447.

IEEE, 2013.

[66] F. Olumofin and I. Goldberg. Privacy-preserving queries over re-

lational databases. In Privacy Enhancing Technologies Symposium

(PETS), pages 75–92. Springer, 2010.

[67] C. Örencik and E. Savaş. An efficient privacy-preserving multi-

keyword search over encrypted cloud data with ranking. Distributed

and Parallel Databases, 32(1):119–160, 2014.

[68] R. Ostrovsky and W. E. Skeith. Private searching on streaming data.

Journal of Cryptology, 20(4):397–430, 2007.

[69] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly

practical verifiable computation. In IEEE Symposium on Security and

Privacy (S&P), May 2013.

[70] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling

with Large Corpora. In LREC Workshop on New Challenges for NLP

Frameworks, pages 45–50, May 2010.

[71] D. Rushe. Yahoo $250,000 daily fine over NSA data refusal was set to

double “every week”. The Guardian, 2014.

[72] G. Salton and M. J. McGill. Introduction to Modern Information Re-

trieval. McGraw-Hill, Inc., 1986.

[73] M. D. Schatz, R. A. Van de Geijn, and J. Poulson. Parallel matrix

multiplication: A systematic journey. SIAM Journal on Scientific

Computing, 38(6):C748–C781, 2016.

[74] H. Schütze, C. D. Manning, and P. Raghavan. Introduction to infor-

mation retrieval, volume 39. Cambridge University Press Cambridge,

2008.

[75] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL,
Apr. 2020. Microsoft Research, Redmond, WA.

[76] A. W. Services. Amazon EC2 Instance Savings Plans. https://
aws.amazon.com/savingsplans/compute-pricing/.

[77] A. W. Services. Amazon EC2 On-Demand Pricing (Data transfer).

https://aws.amazon.com/ec2/pricing/on-demand/.
[78] J. Shao, S. Ji, A. O. Glova, Y. Qiao, T. Yang, and T. Sherwood. Index

obfuscation for oblivious document retrieval in a trusted execution

environment. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management, pages 1345–1354, 2020.

[79] J. Shao, S. Ji, and T. Yang. Privacy-aware document ranking with

neural signals. In International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 305–314, 2019.

[80] D. X. Song, D.Wagner, and A. Perrig. Practical techniques for searches

on encrypted data. In IEEE Symposium on Security and Privacy (S&P),

pages 44–55, 2000.

[81] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM.

In Network and Distributed System Security Symposium (NDSS), 2012.

[82] M. Strizhov and I. Ray. Multi-keyword similarity search over en-

crypted cloud data. In IFIP international information security confer-

ence, pages 52–65. Springer, 2014.

[83] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li.

Privacy-preserving multi-keyword text search in the cloud support-

ing similarity-based ranking. In Proceedings of the 8th ACM SIGSAC

symposium on Information, computer and communications security,

pages 71–82, 2013.

[84] W. Sun, R. Zhang, W. Lou, and Y. T. Hou. REARGUARD: Secure key-

word search using trusted hardware. In IEEE International Conference

on Computer Communications (INFOCOM), pages 801–809. IEEE, 2018.

[85] P. Syverson, R. Dingledine, and N. Mathewson. Tor: The second-

generation onion router. In USENIX Security Symposium (SEC), pages

303–320, 2004.

[86] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich. Stadium: A

distributed metadata-private messaging system. In ACM Symposium

on Operating Systems Principles (SOSP), pages 423–440, 2017.

[87] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully

homomorphic encryption over the integers. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques

(EUROCRYPT), pages 24–43. Springer, 2010.

[88] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword

search over encrypted cloud data. In International Conference on

Distributed Computing Systems (ICDCS), pages 253–262. IEEE, 2010.

[89] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia.

Splinter: Practical private queries on public data. In USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI), pages

299–313, 2017.

[90] Y. Wang, H. Pang, Y. Yang, and X. Ding. Secure server-aided top-k

monitoring. Information Sciences, 420:345–363, 2017.

[91] Y. Wang, J. Wang, and X. Chen. Secure searchable encryption: a

survey. Journal of communications and information networks, 1(4):52–

65, 2016.

18

https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.insidehighered.com/news/2021/04/07/accellion-data-security-breach-latest-hit-universities
https://www.insidehighered.com/news/2021/04/07/accellion-data-security-breach-latest-hit-universities
https://github.com/Microsoft/SEAL
https://aws.amazon.com/savingsplans/compute-pricing/
https://aws.amazon.com/savingsplans/compute-pricing/
https://aws.amazon.com/ec2/pricing/on-demand/

[92] C. Wei, Q. Gu, S. Ji, W. Chen, Z. Wang, and R. Beyah. OB-WSPES: A

uniform evaluation system for obfuscation-based web search privacy.

IEEE Transactions on Dependable and Secure Computing, 2019.

[93] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical

optimizations of software and the ATLAS project. Parallel computing,

27(1-2):3–35, 2001.

[94] Z. Xia, X. Wang, X. Sun, and Q. Wang. A secure and dynamic multi-

keyword ranked search scheme over encrypted cloud data. IEEE

transactions on parallel and distributed systems, 27(2):340–352, 2015.

[95] X. Yi and E. Bertino. Private searching for single and conjunctive

keywords on streaming data. InWorkshop on Privacy in the Electronic

Society (WPES), pages 153–158, 2011.

[96] X. Yi, E. Bertino, J. Vaidya, and C. Xing. Private searching on streaming

data based on keyword frequency. IEEE Transactions on Dependable

and Secure Computing, 11(2):155–167, 2013.

[97] X. Yi, R. Paulet, and E. Bertino. Private searching on streaming data.

InHomomorphic Encryption and Applications, pages 101–126. Springer,

2014.

[98] X. Yi and C. Xing. Private (t, n) threshold searching on streaming data.

In International Conference on Privacy, Security, Risk and Trust and

International Conference on Social Computing, pages 676–683. IEEE,

2012.

[99] J. Yu, P. Lu, Y. Zhu, G. Xue, and M. Li. Toward secure multikey-

word top-k retrieval over encrypted cloud data. IEEE transactions on

dependable and secure computing, 10(4):239–250, 2013.

[100] P. Zhang, Y. Li, Q. Liu, and H. Lin. A scalable distributed private

stream search system. In International Conference on Distributed

Computing Systems Workshops, pages 128–135. IEEE, 2015.

[101] J. Zobel and A. Moffat. Exploring the similarity space. In ACM SIGIR

Forum, volume 32, pages 18–34, 1998.

19

	Abstract
	1 Introduction
	2 Architecture and overview
	2.1 Approach and architecture
	2.2 Assumptions and guarantees
	2.3 Challenges

	3 Background and protocol
	3.1 Term frequency-inverse document frequency
	3.2 Cryptographic building blocks
	3.3 Coeus's protocol

	4 Large-scale secure matrix-vector product
	4.1 Overview
	4.2 Reducing expense of homomorphic rotations
	4.3 Amortizing rotations across blocks
	4.4 Setting submatrix dimensions optimally

	5 Implementation details
	6 Evaluation
	6.1 Latency performance of Coeus
	6.2 Resource overheads of Coeus
	6.3 Performance of secure matrix-vector product
	6.4 Comparison of Coeus to a non-private baseline

	7 Related work
	8 Summary and future work
	A Security proof (not peer-reviewed)
	A.1 An abstract description of protocol
	A.2 The security game for query privacy
	A.3 Proof of query privacy

	References

