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Abstract. The so-called ω-encoding, introduced by Goudarzi, Joux and
Rivain (Asiacrypt 2018), generalizes the commonly used arithmetic en-
coding. By using the additionnal structure of this encoding, they pro-
posed a masked multiplication gadget (GJR) with quasilinear (random-
ness and operations) complexity. A second contribution by Goudarzi,
Prest, Rivain and Vergnaud in this line of research appeared in TCHES
2021. The authors revisited the aforementioned multiplication gadget
(GPRV), and brought the IOS security notion for refresh gadgets to al-
low secure composition between probing secure gadgets.
In this paper, we propose a follow up on GPRV. Our contribution stems
from a single Lemma, linking algebra and probing security for a wide
class of circuits, further exploiting the algebraic structure of ω-encoding.
On the theoretical side, we weaken the IOS notion into the KIOS notion,
and we weaken the usual t-probing security into the RTIK security. The
composition Theorem that we obtain by plugging together KIOS, RTIK
still achieves region-probing security for composition of circuits.
To substantiate our weaker definitions, we also provide examples of com-
petitively efficient gadgets verifying our weaker security notions. Explic-
itly, we give 1) a refresh gadget that uses d ´ 1 random field elements
to refresh a length d encoding that is KIOS but not IOS, and 2) multi-
plication gadgets asymptotically subquadratic in both randomness and
complexity. While our algorithms outperform the ISW masked compiler
asymptotically, their security proofs require a bounded number of shares
for a fixed base field.

Keywords: Masking, Refresh Gadget, Multiplication Gadget, Probing Se-
curity

1 Introduction

Since their introduction in the late 90’s by Kocher [KJJ99, Koc96], side-channel
attacks have proven to be a major threat to cryptography. While cryptanalysis
can evaluate the black-box security of cryptographic protocols, their security can
be totally compromised by physical attacks. In a nutshell, side-channel attacks
refer to any attack taking advantage of the implementation of a cryptographic
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protocol, rather than only the public parameters and public communications.
If a hardware device is manipulating carelessly a secret value, many observable
signals (such as its temperature, power consumption, electromagnetic field, etc)
are likely to leak secret information, and might even lead to a full-key recovery.
These practical security flaws call for a solid non-ad hoc response.

Of all the side-channel adversary models such as the noisy leakage model
[PR13, DDF14, DFS15] or the random probing model [ADF16], arguably the
easiest to deal with is the so called (threshold) t-probing model [ISW03]. A t-
probing adversary may choose adaptively and learn any t intermediate values of
the circuit.

Masking is a countermeasure that provably prevents recovering information
when the adversary is snooping on the circuit. Informally, masking uses secret-
sharing techniques to provide probing security to a circuit. A sensitive interme-
diate value x of the cryptographic protocol is encoded into a vector of d shares
px1, . . . , xdq. While the knowledge of all d shares allows to recover the secret
it encodes, masking requires that any d ´ 1 shares are independent of the se-
cret value x. Any partial knowledge of the shares is therefore made useless in
masking schemes, so as to provide t-probing security for t ă d. The operations
(additions, negations and multiplications for arithmetic circuits) then have to be
performed securely in the encoded domain, so as to never manipulate secret vari-
ables directly. Each operation (or gate) of the circuit is transformed into a secure
counterpart (or gadget), that takes as input encodings of the secrets, and outputs
an encoding of the evaluation of the corresponding operation. Usually, masking
schemes admit a coordinate-wise secure addition, leaving the multiplication the
most challenging operation to perform securely in the encoded domain.

Replacing every gate with probing secure gadgets does not imply probing
security for the whole circuit[BCPZ16, CPRR13], and extra efforts have to be
put into composition security. Composition of gadgets is a line of research that
has received a lot of attention, and is still an active field of research [ADF16,
CS20, BCPZ16, GPRV21, BBD`16].

The first masked multiplication was introduced in 2003 in [ISW03], and sev-
eral variants achieving different trade-offs have been proposed [RP10, BBP`16,
BBP`17]. The encoding used by ISW is the so called arithmetic masking (origi-
nally for boolean masking, but the arithmetic masking translation remains secure
[RP10]), where the shares x “ px1, . . . , xdq of some field element x P F are such
that x1`¨ ¨ ¨`xd “ x. Another way to interpret arithmetic masking is to say that
the shares are the coefficients of a polynomial such that its evaluation in 1 is the
secret. From a high level, the multiplication of two sharings a,b of two secrets
a, b in ISW computes the coefficients of the polynomial c “ ab and rearranges
the coefficients so as to have c of the same length d as a and b. This polynomial
multiplication is performed following the schoolbook multiplication algorithm
mixed up with some randomness for security. This yields a multiplication gad-
get running in Opd2q time with Opd2q randomness. The first attempt to build
an asymptotically subquadratic secure masked multiplication is the multiplica-
tion from [GJR18], based on Fast Fourier Transform. GJR uses a different type
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of encoding called ω-encoding, where the a’s evaluation is taken in some field
element ω rather than 1. Arithmetic masking seems to be incompatible with the
FFT since a1 ` ¨ ¨ ¨ ` ad is an intermediate value of the FFT algorithm, which
the adversary may therefore probe, and immediately break the masking scheme.
There was a flaw in the original security proof of the GJR multiplication gadget,
which was patched later in [GPRV21] and named GJR+. While GJR is a the-
oretical breakthrough, its range of application excludes AES for example. The
security relies on the random choice of ω, hence for reaching a reasonable level
of security, GJR+ requires a gigantic underlying field, which limits its practi-
cal applications. Recently, [GPRV21] proposed a masked multiplication gadget
for ω-encodings also based on the FFT. This multiplication gadget which we
will call GPRV achieves Opd log dq time and randomness complexity, where d
is the order of masking. One significant drawback of their construction is that
the security proof relies on a non-standard ad-hoc assumption. This assumption,
roughly speaking assumes that the computation of the FFT and inverse FFT
of a polynomial are both probing secure. While one can check this hypothe-
sis by exhaustive search, the computation becomes very costly as d increases.
The authors raise the open problem to build a strong theoretical foundation for
replacing their assumption with a full proof.

The randomness complexity of a compiler (meaning the transformation of
a circuit that replaces operation gates with secure masked gadgets) is of ma-
jor importance. The predilection physical support for masked implementation is
embedded systems, where randomness is expensive to produce. In this consider-
ation, one of the goals in the field of masking is to achieve notions of security
using as little randomness as possible. The authors of [GPRV21] give a generic
composition Theorem that only requires t-probing security for the operation gad-
gets, and mask refreshing (they give such refresh algorithm verifying the desired
Input-Output-Separation property) in between any two gadgets. This theorem
ensures that the obtained compiler achieves the r-region-probing-security no-
tion. Informally, region probing security means that the circuit can be split into
independent regions, in which the side-channel adversary may probe a fixed
ratio of the intermediate values yet learns no information on the secrets. The
authors prove that a variant of the refresh gadget from [BCPZ16] achieves the
IOS property and only requires d log d

2 random field elements.

1.1 Our contribution

From a high level, we propose a retake on the circuit compiler from the recent
paper [GPRV21]. Indeed, similarly as [GPRV21], we deal with polynomial encod-
ings (i.e an encoding of x P F is a degree d´1 polynomial x such that x “ xpωq)
and our contributions can be summarized as

1. Definitions of security notions for operation gadgets (RTIK) and refresh
gadgets (KIOS)

2. A composition Theorem linking the security notions from 1.
3. Examples of multiplication gadgets and refresh gadgets achieving the afore-

mentioned notions
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We detail separately each of these items in the following.

Bridging algebra and probing security.We deal with polynomial encodings,
using some field element ω P F, where the underlying field F is given by the
cryptographic algorithm to be masked. The number of shares d of this encoding
is given by the number of probes that we tolerate from the adversary. The
contributions of this paper stem from Lemma 3.6. Consider a circuit C taking
as input an encoding x. This lemma says, in a nutshell, that if there exists a
subfield K of F such that every intermediate value that can be probed by the
adversary is a K-linear function of the input encoding x, and if d ď rF : Ks,
then there exists a choice of ω for which C is d ´ 1-probing secure. This choice
of ω is actually any ω of algebraic degree greater than d over K.

We consequently define security notions based on the aforementioned obser-
vation. We fix some subfield K of F and write k “ rF : Ks. The subfield K
has to be chosen such that, waving hands, the intermediate values involved in
the gadget computations are K-linear. For the sake of simplicity, one may take
F “ Fpk for some prime p and K “ Fp. The security notion that we introduce
for gadgets is the so-called Reducible-To-Independent-K-Linear (RTIK) prop-
erty, which requires a gadget G to be such that for any set of probes P that
the adversary may chose, there exists another set of probes Q that gives the
adversary just as much or more information on the secret inputs of G, but those
probes in Q are K-linear. This way, we reduce the t-probing security game of
G1 to a setup that fits the requirements of our core Lemma whenever d ď k.
When the condition d ď k is satisfied, RTIK implies d ´ 1-probing security,
but we need a stronger assumption for composition. We note that similarly as
the Probe-Isolating-Non-Interfering security notion [CS20], RTIK gadgets can
be composed directly without refresh to form a t-probing secure circuit.

The security notion that we introduce for refresh gadgets is inspired by the
Input-Output Separative (IOS) property. We briefly recall the idea behind the
IOS property. Consider an IOS refresh gadget R and two encodings x and y with
y “ Rpxq. Let us also assume that x is an output of some gadget G1, and y is
an input of some gadget G2. We now let the t-probing adversary pick and learn
t intermediate variables in either G1, R, or G2. In this setting, the IOS property
claims that any probe inside of the refresh gadget can be ”moved” to a probe on
a coordinate of x and/or a probe on a coordinate of y. The probes on x are then
considered as probes in G1, the probes on y are then considered as probes on
G2, and R itself is no more probed by the adversary. This reduces the security
of the composition of the two gadgets G1, G2 to the individual security of each
of the two gadgets. The security notion α-KIOS that we define is identical to
the IOS property, except the probes on x and y do not have to be coordinates,
but any K-linear function of those inputs.2 Executing the same reduction as the

1 Actually, we use the slightly more general r-region probing security model.
2 We also add a coefficient α to its definition, which upper bounds the ratio of K-
linear probes on x, y after the reduction and the count of initial probes in the KIOS
gadget.
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one explained above for IOS refresh gadgets, one ends up with K-linear probes
on x, y, which in turn fall into the requirements of our core Lemma.

We finally give the equivalent of the composition Theorem from [GPRV21]
that links t-probing security and IOS. This composition Theorem 3.16 links the
RTIK property of gadgets and the KIOS property of refresh gadgets to the
region-probing security of compound circuits.

A 2-KIOS refresh gadget using d ´ 1 randomness for length d input
encoding. To substantiate the KIOS notion, we give examples of KIOS refresh
gadgets. Notice that 1-KIOS is strictly weaker than IOS, and therefore any IOS
refresh is an example of 1-KIOS refresh, including the one from [GPRV21] which
uses d log d

2 random elements. We also give an example of a 2-KIOS refresh gadget
that is not IOS. This gadget is obtained by simply adding coordinate-wise an
encoding of 0, obtained by running the algorithm PolyGenZero presented in
Algorithm 4, which uses d ´ 1 random field elements. We highlight that for
security, we need the algebraic degree of ω over K to be greater than d, and for
PolyGenZero to be correct, we also need the algebraic degree of ω over K to be
less than d. In other words, we need ω to have algebraic degree exactly d over
K, and such choice of ω is only possible when d divides rF : Ks. The intuition
on the construction of this 2-KIOS gadget is detailed in Section 4.2.

A tight compression algorithm. The masked multiplication of two order
d encodings should remain an order d encoding, but the computation of the
polynomial product of two polynomials a,b of degree d ´ 1 yields a polynomial
z of degree 2d ´ 1. The compression algorithm proposed in [GJR18, GPRV21]
entails a loss of a factor 2 on the number of tolerated probes in the (region)
probing security of the multiplication gadget. We define a folding algorithm
that achieves the conversion of order 2d ´ 1 encoding into order d encoding,
and such that each of its intermediate values are K-linear. As a consequence,
it can be composed without refresh and without tightness loss at the end of
a multiplication gadget. Nonetheless, our folding algorithm is a bigger circuit
(we left as an interesting open question estimating the count of operations in
this algorithm depending on ω and K) than the compression algorithm from
[GJR18, GPRV21], which mildly decreases the tolerated probing rate of the
adversary.

Multiplication gadgets with subquadratic randomness and multipli-
cations.3 We propose two generic transformations that turn polynomial multi-
plication algorithms verifying some conditions into RTIK multiplication gadget.
The polynomial multiplication algorithm to be transformed defines the subfield
K, see Definition 5.1. For instance, if F is the finite field with pk elements, where
p is a prime, then Karatsuba induces the subfield K “ Fp.

The class of polynomial multiplication algorithms that are suited to our first
transformation is broad: it contains the most common efficient algorithms such

3 Please note that while we discuss about the asymptotic behaviour of the perfor-
mances of our multiplication gadgets, their security only falls into our framework for
bounded order of masking d, for a fixed F.
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as Karatsuba algorithm[KO62], all Toom-Cook variants [Too63, Coo66] and the
Fast Fourier Transform. Let M be such a polynomial multiplication algorithm.
We assume that M has identical time complexity and multiplication complexity
T pdq, where d is the degree of the inputs. The multiplication complexity of the

gadget xM is T pdq, and the randomness complexity of xM is T pdq log T pdq{2.
When the instantiation of our transformation on the FFT is supported, our
gadget achieves similar time and randomness complexities as the multiplication
gadget from [GPRV21], but does not rely on a non-standard assumption for
security, nor extensive precomputations.

The class of polynomial multiplications that are suited to our second transfor-
mation is narrower than the first one, but still contains Karatsuba for example.
The transformation of a suitable M is written |M, it has multiplication com-
plexity T pdq and randomness complexity d log d. The transformation |M offers

a different trade-off than xM: while both are RTIK, when projected to region-
probing security, xM splits into shorter circuits than |M, and therefore has a
higher tolerance in probing ratio. On the other hand, the number of random
elements used per run in |M is lower than the number of random elements per
run in xM.

Limitations and open questions.
Lack of concreteness. Our contribution mostly stands on the theoretical side.
While we give examples of instantiations in Section 6, the concrete evaluation
of the algorithms developed in this paper, even on their own, would deserve a
thorough investigation that is left for future work. Determining if masking an
actual cryptographic algorithm using our techniques can be more efficient than
state-of-the-art masked implementation is another interesting open question.

Range of applications. Let us consider that when working in F “ Fpk with p a
prime, we have K “ Fp. In this regime, we can perform masked multiplication
with either transformation applied to Karatsuba, whenever the number d of
shares is at most k. Whenever there does not exist ω of degree exactly the desired
d (which happens, for example, when the desired d is not a factor of k), both our
2-KIOS algorithm and our compression algorithm from Section 4 cannot apply,
and we use their respective replacements Algorithm 2 and Algorithm 3 instead.

For example, in the AES field F256, we have k “ 8, thus our masking scheme
tolerates a number of shares d up to 8, with possibility to use our 2-KIOS algo-
rithm and our compression algorithm for d P t2, 4, 8u, which may seem restric-
tive. We notice that [DKR`21] proposes a variant of AES running in F232 , which
would extend significantly the range of applications of our masking scheme. An
example where this restriction is virtually absent is in the NTRUprime field
[BCLV17]. This field is chosen as Fpq , where both q and p are primes, and q is
a few hundreds.

Gadget expansion [AIS18, BCP`20, BRTV21, BRT21] (which consists, wav-
ing hands, at applying a masking scheme on a circuit several times in a row)
could be a solution to lift the upper bound on the number of shares of our mask-
ing scheme. We leave open the question to improve the upper bound on the
number of shares of our masking scheme.
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Finally, we believe that the new techniques and algorithms given in this
paper may find other applications. In particular, with the standardization of
lattice-based schemes [DKL`18, BDK`18], it is an interesting open question
to see to what extent our techniques apply to rings. In particular for Kyber
[BDK`18], there has been some interest in comparison gadgets (or equality-
testing gadget)[DVBV22, CGMZ21, BC22] and it would be interesting to see if
such gadget can be constructed from the building blocks presented in this paper.

2 Preliminaries

2.1 Notations

Throughout the paper, F denotes a field and K Ă F a subfield of F. We write Fq

the finite field with q elements. Field elements are written in lower-case letters,
vectors are written in bold lower-case letters and matrices are written in bold
upper-case letters. Unless stated otherwise, vectors are column vectors, and for
a vector x, we denote xT its transpose. We write d the component-wise product
of two vectors. We write FdrXs the set of polynomials in X of degree at most
d that have coefficients in F. Abusing notation, we identify a polynomial to its
list of coefficients and treat an element a P Fd as an element of Fd´1rXs, e.g by
writing apωq the evaluation of the polynomial whose coefficients list is a in a field
element ω. We write πKpωq the minimal polynomial of ω over K, and we write
degKpωq the degree of πKpωq. For a distribution D, we do not have notation
conventions whether the support of D is a scalar or a vector, but rather rely on
context. The notation rns shall denote the set t1, . . . , ns. For random variables
X,Y , we write X K Y when X is independent of Y.

A circuit is a directed acyclic graph whose vertices are operations, and each
edge is an intermediate value, intermediate variable or wire. We shall call inter-
nal randomness of a circuit the list ρ of the elements sampled by random gates
in the circuit. This way, every intermediate value of the circuit is a determin-
istic function of its input and the internal randomness of the circuit. For a set
of intermediate values P “ pp1, . . . , pnq of a circuit with input χ and internal
randomness ρ, we write P pχ,ρq “ pp1pχ,ρq, . . . pnpχ,ρqq. When ρ is not in the
argument of P , we shall write P pχq the random variable P pχ,ρq for a uniformly
random ρ. We assume throughout the paper that the secret information manipu-
lated by a circuit is a deterministic function of its input and internal randomness.
For a circuit C, we shall write |C| the number of intermediate variable of C.

2.2 Masking

Encodings For a vector v P pFzt0uqd, a v-linear sharing of an element x P F is a
vector x satisfying vTx “ x. Arithmetic masking is a particular case of v-linear
sharing, where v “ p1 . . . 1q. For ω an element of F, we let ωd “ pωiq0ďiďd´1.
We say that a vector x P Fd is an ωd-encoding of a field element x P F when
ωTx “ x (or equivalently xpωq “ x), which is also a particular case of linear
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sharing. For x P F, the set of v-encodings of x is Hv
x “ tx P Fd, vTx “ xu and

can be seen both as an affine hyperplane (with the convention Hv
0 “ Hv). We

shall omit the supscript v when it is clear from context, and we notice that Hωd
x

can also be seen as the set of degree d polynomials x such that xpωq “ x. We
define Uvpxq to be the uniform distribution over Hv

x , and extend it coordinate-
wise when applied on multiple entries.

We call an addition gadget (respectively a multiplication gadget) with respect
to ωd-encodings a circuit that takes as input two ωd-encodings a,b and returns
an ωd-encoding of ωT

d a`ωT
d b (respectively ωT

d a ¨ωT
d b). A correct refresh gadget

with respect to ωd-encodings is a circuit that takes as input an ωd-encoding and
returns an ωd-encoding of the same secret. In general, for a gate g in a circuit C,
we say that G is a correct ωd-encoding gadget for g when G takes as input ωd-
encodings of the sensitive inputs of g, and returns ωd-encodings of the sensitive
outputs of g.

Security properties

Definition 2.1 (t-probing security game). Let n, t ě 1, C be a circuit
inducing a set of intermediate variables W, χ be the input random variable of
C and x1, . . . , xn be secret variables. A t-probing adversary A on pC, χq against
x1, . . . , xn plays the following game :

1. A chooses a set of probes P Ă W with |P | ď t
2. The challenger runs Cpχq and sends P pχq to A
3. A returns py1, . . . , ynq. He wins if py1, . . . , ynq “ px1, . . . , xnq.

A circuit C for which there is no unbounded adversary A, playing the t-
probing security game with respect to secrets x1, . . . , xn, that has an advantage
against an adversary who skips steps 1) and 2) is called t-probing secure. In the
context of masking, the input χ of C contains encodings of the secret inputs, and
the decoding of these are then hidden secrets of this circuit.

Definition 2.2 (r-region probing security game). Let n ě 1, 0 ă r ă 1, C
be a circuit, C1, . . . , Cm be subcircuits of C such that pC1, . . . , Cmq is a covering
of C, W1, . . . ,Wm be the induced sets of intermediate variables, χ be the input
random variable of C and x1, . . . , xn be secrets. A r-region probing adversary
against pC, χq with regions C1, . . . , Cm plays the following game :

1. A chooses m sets of probes pPi Ă Wiqiďm with |Pi| ď rr|Wi|s

2. The challenger runs Cpχq and sends pPipχqqiďm to A
3. A returns py1, . . . , ynq. He wins if py1, . . . , ynq “ px1, . . . , xnq.

With identical input and secrets to hide, any t-probing secure circuit C is
trivially t{|C|-region probing secure. Conversely, if a circuit is r-region probing
secure with m “ 1, it is tr|C|u-probing secure.

Definition 2.3 (t-input-output separation). Let v P pFzt0uqd. A refresh
gadget GR is called t-input-output separative when for any x,y with y “ GRpxq,
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we have that y follows UpvTxq and for any set of intermediate values W with
|W| ď t, we have that there exists a two-stage simulator SGR,W “ pS1

GR,W ,S2
GR,Wq

with the following properties.

1. The first one S1
GR,W , returns two sets of indices I,J Ă rds such that

|I|, |J | ď |W|.
2. The second one S2

GR,W , ran on input x|I ,y|J , returns an output identically

distributed as Wpx, rq, where r is the internal randomness of GR, x|I is x
restricted to the coordinates that appear in I and similarly for y|J .

The following composition Theorem claims that if a circuit C is split into
t-probing secure subcircuits separated by t-IOS refresh gadgets, then the whole
circuit is r-region probing secure for some ratio r. The statement of the Theorem
deals with so-called standard masked compilers of arithmetic circuits, but similar
proof techniques could aim for a more general claim.

Theorem 2.4 (Composition Theorem, adapted from Theorem 1 [GPRV21]).
Let C be an arithmetic circuit. If G` is a t`-probing secure addition gadget, Gˆ

is a tˆ-probing secure multiplication gadget and GR is a tR-IOS refresh gad-
get, then the circuit pC taking as input an encoding of the input of C obtained
by replacing addition gates with G`, multiplication gates by Gˆ and applying a
refresh gadget GR to any input of an operation gadget is r-region probing secure,
with

r “ max
tďtR

min

ˆ

t` ´ 3t

|G`|
,
tˆ ´ 3t

|Gˆ|
,

t

|GR|

˙

.

3 Polynomial masking probing security toolbox

In this section, we provide a series of tools - from elementary ones to masked com-
piler composition Theorem. The main result of this section is the latter compo-
sition Theorem 3.16. Towards this Theorem, we introduce some security notions
such as RTC Definition 3.8, KIOS Definition 3.14 and RTIK Definition 3.15.
These definitions are based on a somewhat new formalism of threshold probing
security and probe sets introduced in Section 3.1, and are hinted by an algebraic
approach to probing security introduced in Section 3.2.

3.1 Probabilistic approach to probing security

The t-probing security game, as defined in Definition 2.1, is usually translated as
the simulatability of the leakage. In this subsection, we redefine t-probing security
(as well as r-region probing security) in a formalism that relies on distributions
rather than simulation. These probabilistic versions are a first step towards a
reduction of probing security to algebra. The point of this subsection is to give
formal tools, which allows to highlight the key arguments in our probing security
proofs, and arguably makes those probing security proofs clearer. We first define
a binary relation written ď on sets of probes, from which we derive that various
elementary operations on sets of probes at least preserve the information learnt
by the adversary.
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Definition 3.1 (Partial order of probe sets). Let P,Q be two sets of probes
on a circuit C, taking as input a random variable χ and manipulating secret vari-
ables x1, . . . , xn. Let ϕ be the sensitive part of χ, i.e there exists a deterministic
function F such that px1, . . . , xnq “ F pϕq. We say that Q contains more infor-
mation than P , and we write P ď Q, when

pϕ|pP pχq, Qpχqqq “ pϕ|Qpχqq.

When P ď Q, intuitively, all the sensitive information on the input χ of
C carried by P is also carried by Q. The binary relation ď verifies reflexivity
and transitivity, but not antisymmetry. Since antisymmetry is irrelevant for our
purposes, we chose to write this binary relation as a partial order relation.

We now provide an illustration of elementary operations on a set of probes P1.
The obtained sets P2, P3 are such that P3 ě P2 ě P1, thus P3 ě P1. Consider
some circuit C that takes as input a sharing order d “ 2 and two arithmetic
encodings px0, x1q, py0, y1q. Assume that the secrets manipulated by the circuit
are x “ x0 ` x1 and y “ y0 ` y1. Then, the sensitive part of the input is
ϕ “ px0, x1, y0, y1q. Now consider that a 3-probing adversary choses the set of
probes P1 “ p2x0, y0, x0 ` y0q. The first operation that we can do on this set
of probes while preserving the information it contains is to remove the constant
factor 2: with P2 “ px0, y0, x0 ` y0q, we have P2 ě P1. Second, we can remove
the redundancy : if the adversary learns x0 and y0, he might as well compute
x0 ` y0 himself. With P3 “ px0, y0q, we have P3 ě P2. Adding extra relations
to a set of probes also yields that it contains more information. For instance if
Q1 “ px0 ` y0q, then Q2 “ px0, y0q is such that Q2 ě Q1. Examples of practical
use can be found in the proofs of Proposition 4.1 and Theorem 5.3.

We now proceed to define t-probing security for masked circuit from a prob-
ability perspective.

Definition 3.2 (t-probing security of linear-masked circuits, convenient
version). Let v P pFzt0uqd, C be a circuit taking as input v-encodings x1, . . . ,xn

and W be the set of intermediate variables of C. Then C is t-probing secure when
@P Ă W with |P | ď t, we have

pvTx1, . . . ,v
Txnq K P px1, . . . ,xnq.

Definition 3.3 (r-region-probing security of linear-masked circuits, con-
venient version). Let v P pFzt0uqd, 0 ă r ă 1, C be a circuit, C1, . . . , Cm be sub-
circuits of C such that pC1, . . . , Cmq is a covering of C, W1, . . . ,Wm be the induced
sets of intermediate variables of the subcircuits. We let x1, . . .xn be the input
v-encodings of C. Then C is r-region-probing secure when @P “ pP1, . . . , Pmq,
with Pi Ă Wi and |Pi| ď rr|Ci|s, we have

pvTx1, . . . ,v
Txnq K P px1, . . . ,xnq.

In both definitions, the information learnt by the adversary (i.e P px1, . . . ,xnq)
is therefore independent of the secrets hidden in the circuit (i.e each sensitive
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entry xi “ vTxi). Since there is information-theoretically no information learnt
by the adversary by probing, if a masked circuit verifies one of the definitions
above, it also verifies the corresponding usual game-based definition. The follow-
ing Proposition links the relation ď to region probing security.

Proposition 3.4. Let v P pFzt0uqd, 0 ă r ă 1, C be a circuit taking as input
v-encodings x1, . . . ,xn. Assume that there exists a covering set of subcircuits
C1, . . . , Cm, inducing sets of intermediate variables pW1, . . . ,Wmq, such that for
all set of probes P “ pP1, . . . , Pmq with |Pi| ď rr|Wi|s for all i ď m, there exists
a set of probes Q “ pQ1, . . . , Qmq such that

1. @ i ď m, Pi ď Qi

2. pvTx1, . . . ,v
Txnq K Qpx1, . . . ,xnq.

Then C is r-region probing secure.

Proof. Let 0 ă r ă 1, C be a circuit taking as input v-encodings x1, . . . ,xn and
C1, . . . , Cm be a covering set of subcircuits of C. We take a set of probes P “

pP1, . . . , Pmq with |Pi| ď rr|Wi|s for all i ď m. Since P verifies the requirements
of the Proposition, we take Q “ pQ1 . . . , Qmq verifying the conditions above. We
have

pvTx1 . . . vTxnq “
`

pvTx1 . . . vTxnq|Qpx1, . . . ,xnq
˘

(1)

“
`

pvTx1 . . . vTxnq|pP px1, . . . ,xnq, Qpx1, . . . ,xnq
˘

, (2)

where Equation (1) follows from independence and Equation (2) follows from the
hypothesis of the proposition. It follows that ppvTx1 . . . vTxnq|P px1, . . . ,xnqq “

pvTx1 . . . vTxnq thus C is r-region-probing secure.

Using the correspondence between t-probing security and r-region probing
security with m “ 1, the Proposition above then implies that if for any set P of
t probes on a circuit C, there exists a set Q with P ď Q and Q is independent
of the secrets, then the latter circuit is C is t-probing secure.

3.2 Probing security of K-linear circuits

This subsection contains three technical results Lemmas 3.5 to 3.7 that are
building blocks for proving t-probing security of ω-masked circuits.

From a high level, the first Lemma 3.5 claims that when degKpωq ě d,
the vector ωd is never in the span of ℓ ă d vectors over K. The intuition of
the connexion between this statement and probing security is as follows : This
statement says, roughly speaking, that the probes are linearly independent of the
decoding operation, and this statement is in turn used to prove the probabilistic
independence between probes and secret in Lemma 3.6. The third Lemma 3.7 is
only here for technical reasons, and it is very similar to Lemma 3.6.

To illustrate, consider a t-probing adversary against some circuit C, taking
as input a uniform ωd-encoding of the secret. We assume that the adversary
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has no prior knowledge on the secret a “ ωT
d a manipulated by C, hence from

the adversary’s perspective, before probing, a is distributed uniformly over Fd.
Now, say we can force every intermediate value of our circuit C to be K-linear
in a. Then, when the adversary probes t ă d linearly independent equations
on the encoding a, he receives some values v P Ft of the form v “ Pa where
P P Ktˆd. The probability that the secret is some a1 P F, from the adversary’s
perspective, is then proportional to the number of solutions to the equations
v “ Pa and ωT

d a “ a1. When degKpωq ě d is satisfied, Lemma 3.5 tells us
that ωd R Span PT , from which follows that the set of solutions to the latter
equations is an affine subspace of dimension d ´ t ´ 1, of cardinality |F|d´t´1|

no matter what a1 P F is. In other words, the secret in the adversary’s view is
distributed uniformly random, therefore the adversary did not learn anything
by probing, which is t-probing security.

We prove (in a slightly more general fashion) the result sketched above in
Lemma 3.6. This Lemma is central in our framework : every security notion
introduced in the next subsection points to it, and it is the last step in the
proof of our main Theorem 3.16. We believe that Lemma 3.6 can be also very
convenient for constructing other ω-masking gadgets. For example, constructing
efficient equality test gadgets, square gadgets, inverse gadget etc is still an open
question as of today, and we believe that this result is a step towards these
objectives.

Lemma 3.5. Let F be a finite field, K be a subfield of F, P P Kℓˆd such that
rank P “ t and ω P F. If degKpωq ě d and t ă d, then

rank

„

P
ωT

d

ȷ

“ t ` 1.

Proof. Let us assume for one moment that rank

„

P
ωT

d

ȷ

“ t, i.e ωd P Span MT .

This means that there exists t coefficients λi P Ft such that PTλ “ ωd. Now,
since t ă d, there exists vectors pt`1, . . . ,pd with coefficients in K that complete
P into an invertible matrix. We let Q be its inverse, and we write q the last row
of Q. We have

“

PT |pt`1| . . . |pd

‰

»

—

—

—

–

λ
0
...
0

fi

ffi

ffi

ffi

fl

“ ωd

»

—

—

—

–

λ
0
...
0

fi

ffi

ffi

ffi

fl

“ Qωd.

Taking the last row in the last equality, we get qTωd “ 0. In other words, the
polynomial with coefficients q cancels ω and has degree at most d, which is a
contradiction with degKpωq ě d, and the claim follows.
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Lemma 3.6. Let d be an order of masking, C be a circuit taking as input a
uniform ωd-encoding x. If all the intermediate variables p of C are of the form
ppxq “ pTx for some vector p P Kd, then C is d ´ 1-probing secure.

Proof. Let A be a d´1-probing adversary against C, probing a set P of interme-
diate values of C. Let χ be the distribution of the secret input x, inducing by uni-
formity a distribution χ̄pxq “ 1

|F|d´1χpωTxq. There exists a matrix P P Kpd´1qˆd

such that P pxq “ Px. We assume without loss of generality that P is full-rank.
For x P F,v P Fd´1, we have

PpωT
d x “ x X P pxq “ vq “ PpωT

d x “ x X Px “ vq (3)

“ χ̄

ˆ

ker

„

P
ωT

d

ȷ

` x˚

˙

(4)

“ χ̄ px˚q “
1

|F|d´1
χpxq (5)

“ PpP pxq “ vqq ¨ PpωT
d x “ xq, (6)

where Equation (3) is the hypothesis of the Lemma, Equation (4) holds for some

solution x˚ to the equation

„

P
ωT

d

ȷ

“

„

v
x

ȷ

, Equation (5) follows from Lemma 3.5

which implies that the matrix

„

P
ωT

d

ȷ

is of rank d, therefore its kernel is 0, and

Equation (6) holds because PpP pxq “ vq “ Ppx P Dq “ 1
|F|d´1

ř

yPF χpyq “

1
|F|d´1 , where D is a one-dimensional affine space.

Lemma 3.7. Let d be an order of masking, n,m positive integers with n ě m,
M P Knˆm be a tall full-rank matrix over K, and C be a circuit taking as input
a uniform Mωd-encoding x. If all the intermediate variables p of C are of the
form ppxq “ pTx for some vector p P Km, then C is d ´ 1-probing secure.

Proof. We let Px be the probes of the adversary, for some full-rank matrix P P

Kpd´1qˆm. We want to prove that those probes on the vector x are independent
of pMωdqTx. Following the proof of Lemma 3.6, we only need to prove that
„

P
ωT

d M
T

ȷ

is full-rank to conclude that the distribution of pMωdqTx does not

depend on the value of Px. Let us assume that the latter matrix is not full-
rank. Since we assume without loss of generality that P is full-rank, this means
that there exists λ P Fd´1 such that PTλ “ Mω. We multiply by the left on
both sides with MT , then we multiply on both sides by the left by pMTMq´1,
and we obtain P1λ “ ωd, where P1 “ pMTMq´1MTP is a d by d ´ 1 matrix.
We can now use Lemma 3.5 to conclude that such λ does not exist, hence the
d ´ 1-probing security.

3.3 Refreshing ωd-encodings and composition of gadgets

For our own technical purposes (e.g the proof of Theorem 5.3) and for showing
its close relation with Definition 3.14, we redefine the Input-Output Separa-
tion property introduced in [GPRV21]. The property Reducible-To-Coordinates
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(RTC) for generators of v-encodings of 0 is closely connected to the ℓ-free prop-
erty defined in the proof of Theorem 2 from [GPRV21] (from which the authors
deduce the IOS property), thus we redefine the IOS property based on this RTC
property. We prove that our new definition encompasses the original one, and
show a template on how to build an IOS refresh gadget Algorithm 2 and Propo-
sition 3.12 from an RTC generator of encodings of 0.

Definition 3.8. (Reducible-To-Coordinates) Let v P pFzt0uqd, t be an integer
and R be a gadget taking as input a dimension d, and returning a uniform v-
encoding r of 0. We say that R is Reducible-To-Coordinates (RTC) when the
distribution of r is uniform conditioned on vT r “ 0 and for every set of t probes
P on R, there exists two sets of probes Q1, Q2 such that

1. |Q1| ď t
2. pQ1, Q2q ď P
3. Every probe in Q1 is a coordinate of r
4. The distributions Q2 and pr|Q1q are independent

Notice that in the definition above, the binary relation ď is taken with respect
to the secret r0, . . . , rd´1, i.e all the coordinates of the fresh vector r, where for
t-probing security of masked circuits we take the secrets to be the decoding of
the masked inputs.

Proposition 3.9. Algorithm 1 is RTC with v “ p1, . . . , 1q.

The Proposition above is a mild generalization of Theorem 2 from [GPRV21].
They prove that the refresh gadget obtained by adding coordinate-wise an en-
coding of 0 generated using ArithGenZero is IOS when d is a power-of-two. We
adapt their result from IOS to RTC, and extend it to any d ě 1 by considering
the refresh gadget from Appendix C [BCPZ16].

Proof. Uniformity. If d “ 1, then the algorithm returns p0q and it is indeed a
uniform arithmetic encoding of 0. If d “ 2, then the algorithm returns pr,´rq

for some uniformly random r, which is also distributed uniformly among the
arithmetic encodings of 0.

For d ě 3, we assume by induction that the uniformity holds for every order
less than d ´ 1. In particular, rL “ pr0, . . . , rtd{2u´1q and rR “ prtd{2u, . . . , rd´1q

are uniform independent encodings of 0 of respective orders td{2u and rd{2s. Let

x P Fd. We let tL “ rL ` s and tR “ rR ` s and u “
řd{2´1

i“0 si.
If d is even, then tL is distributed uniformly random among the arithmetic

encodings of length d{2 of u. We have

Ppt “ xq “ PptL “ xL X tR “ xRq

“ Ppu “

d{2´1
ÿ

i“0

pxLqi X tL “ xL X tR “ xRq

“ Ppu “

d{2´1
ÿ

i“0

pxLqi X rL “ xL ´ u X rR “ xR ` uq
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First, we rule out the case
řd{2´1

i“0 pxLqi ‰ ´
řd{2´1

i“0 pxRqi. On one hand we
have

ř

yi “
ř

pyLqi `
ř

pyRqi “
ř

prLqi `
ř

prRqi “ 0, and on the other hand
ř

pyLqi `
ř

pyRqi “
ř

pxLqi `
ř

pxRqi ‰ 0, therefore this event has probability 0.

Otherwise,
řd{2´1

i“0 pxLqi “ ´
řd{2´1

i“0 pxRqi, hence xL ´ u is in the domain of rL
and xL ´ u is in the domain of rR. The random variables u, rL, rR are uniform
over their respective domains, mutually independent, hence Ppt “ xq is constant
uniform over the set of x such that

ř

xi “ 0.

RTC. If d “ 1, then t “ 0 hence Q1 “ Q2 “ H, and 1) 2) 3) 4) are trivially
verified. If d “ 2, either t “ 0 and 1) 2) 3) 4) are trivially verified, or t “ 1. The
one probe can only be r or ´r, hence Q1 “ prq, Q2 “ H and 1) 2) 3) 4) are
verified.

If d ě 3, we assume by induction that ArithGenZero is RTC for all 3 ď i ď

d ´ 1. We let P be a set of probes with |P | “ t ď d ´ 1, and split this set
of probes into pPL, PR, PP q, with respectively PL in the first recursive call and
|PL| “ tL, PR in the second recursive call and |PR| “ tR and PP with |PP | “ tP
in the post-processing layer. We first deal with PP , and more precisely we split
PP into subsets P i

P for each i P rtd{2us as follows : P i
P contains the probes taken

from the variables that are together in the ith step of the loop:

ti “ ri ` si (7)

ttd{2u`i “ rtd{2u`i ´ si. (8)

For each of these P i
P , we create a set Qi

P , so as to have Qi
P ě P i

P and the
probes in Qi

P are only coordinates of t and r, except when the si gives away no
information. Explicitly, unless when P i

P “ tsiu, we set Qi
P “ P i

P , and replace
si with a variable among tti, ti`d{2, ri, ri`d{2u such that si can be deduced from
Qi

P . When P i
P “ tsiu, we set Q

i
P “ tsiu. Finally, we create QP , P

1
L, P

1
R as follows

: QP is the concatenation of all the Qi
P ’s, P

1
L “ PL, P

1
R “ PR, and we move the

probes of QP of the form ri to P 1
L and ri`d{2 to P 1

R. Notice that for some integers
kL, kR such that kL ` kR ď tP , we have |QP | “ tP ´ kL ´ kR, P

1
L “ tL ` kL and

P 1
R “ tR ` kR.
We then use the induction hypothesis on P 1

L and P 1
R and we obtain Q1

L, Q
2
L

satisfying

1 |Q1
L| ď tL ` kL,

2 pQ1
L, Q

2
Lq ď P 1

L,
3 Every probe in Q1

L is a coordinate of rL,
4 The distributions Q2

L and prL|Q1
Lq are independent,

and similarly for pQ1
R, Q

2
Rq.

We now construct two sets of probesQ1, Q2 from the setsQ1
L, Q

2
L, Q

1
R, Q

2
R, QP ,

and show that they verify 1) 2) 3) and 4). First, the sets of probes Q2
L, Q

2
R are

added to Q2. The probes in QP that are coordinates of t are added to Q1. Only
remains probes that are coordinates of r and probes of the form si. For each
probe of the form si, there exists two options. Either ri P Q1

L or ri`d{2 P Q1
R,

in which case we add the ti and/or the ti`d{2 that can be deduced to Q1. Else,
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we add si to Q2. The probes that are coordinates of r are added to Q2, with
one exception. When ri P Q1

L, ri`d{2 P Q1
R and ti P QP , then ti`d{2 is added to

Q1(and similarly when ri P Q1
L, ri`d{2 P Q1

R and ti`d{2 P QP , then ti is added
to Q1).

We now prove that Q1, Q2 verify the conditions 1) 2) 3) and 4) so Algorithm 1
is RTC. First, we count the number of probes in Q1. These probes are either
i) transferred directly from QP , ii) or computed from the knowledge of si and
some ri, or iii) computed from ri, ri`d{2 and ti`d{2. We write kS the number of
probes in QP that are not coordinates of t. The number of probes that are added
during i) is tP ´kL ´kR ´kS . The number of probes that are added during ii) is
bounded by kS . The number of probes that are added during iii) is bounded by
minpQ1

L, Q
1
Rq. Thus we have |Q1| ď tP ď |P |. Second, pQ1, Q2q are constructed

so as to fulfil 2). Again by construction the probes in Q1 are of the form ti, and
finally we carefully constructed Q2 so it verifies 4), which completes the proof.

Algorithm 1 ArithGenZero, adapted from Appendix C [BCPZ16]
.

Require: Masking order d
Ensure: t P Fd such that

ř

ri “ 0

1: if d “ 1 then
2: return 0
3: end if
4: if d “ 2 then
5: r Ð F
6: return p´r, rq

7: end if
8: pr0, . . . , rtd{2u´1q “ ArithGenZeroptd{2uq

9: prtd{2u, . . . , rd´1q “ ArithGenZeroprd{2sq

10: for i “ 0 to td{2u ´ 1 do
11: si Ð F
12: ti “ ri ` si
13: ttd{2u`i “ rtd{2u`i ´ si
14: end for
15: return t

Definition 3.10. (Input-Output Separative) Let v P pFzt0uqd, t be an integer
and G be a gadget taking as input a v-encoding x, and returning an encoding y
of the same secret as x. We say that G is t-IOS when the distribution of y is
uniform conditioned on vTy “ vTx and for every set of t probes P on G, there
exists three sets of probes Qx, Qy, Q2 such that

1. |Qx| ď t, |Qy| ď t
2. pQx, Qy, Q2q ď P
3. Every probe in Qx is a coordinate of x and every probe in Qy is a coordinate

of y
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4. The distributions Q2 and ppx,yq|pQx, Qyqq are independent

Proposition 3.11. Let v P pFzt0uqd, t be an integer and G be a gadget taking
as input a v-encoding x, and returning an encoding y of the same secret as x.
If G is t-IOS according to Definition 3.10, then it is also t-IOS according to
Definition 2.3.

Proof. Let G be a t-IOS gadget for Definition 3.10. First, the output distribution
of G is a uniform v-encoding of vTx, hence we only need to prove the existence
of the simulator.

Let P be a set of probes on G. There exists pQx, Qy, Q2q that satisfy the
conditions of Definition 3.10. From 3), the probes in Qx, Qy define two sets of
indices I,J , such that every probe in Qx is some xi for i P I and every probe
in Qy is some yj for j P J . From 1), both of these sets are such that |I| ď t and
|J | ď t. These sets are therefore valid outputs for the first simulator. From 2),
the distribution of P px,yq is determined by the distribution of Qxpxq, Qypyq and
Q2px,yq. From 4), Q2 is independent of ppx,yq|pQx, Qyqq (here ppx,yq|pQx, Qyqq

is the distribution of the remaining unknown coordinates of x and y). Therefore,
one way the second simulator can perfectly simulate the distribution of the
probes is to first pick a uniform y1 such that y1

j “ yj for all j P J , then pick x1

so that x1 encodes the same element as y1 and x1
i “ xi for all i P I, and finally

return a sample from the distribution P px1,y1q.

Algorithm 2 IOS refresh template

Require: Masking order d, v P pFzt0uq
d, RTC generator of arithmetic encodings of 0

R, v-encoding x
Ensure: y P Fd such that vTy “ vTx

1: r “ Rpdq

2: for i “ 0 to d ´ 1 do
3: si “ v´1

i ri
4: end for
5: y “ x ` s
6: return y

Proposition 3.12. If R is an RTC generator of arithmetic encodings of 0, then
the refresh gadget obtained by instantiating Algorithm 2 with R is an IOS refresh
gadget for v-encodings.

Proof. Let P be a set of t probes on Algorithm 2 instantiated with R. These
probes are either in R or coordinates of x, or coordinates of y. We split P into
those three sets of probes PR, Px, Py, and we have |PR|`|Px|`|Py| “ t. Because
R is assumed RTC, there exists Q1, Q2 such that

1. |Q1| ď |PR|
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2. pQ1, Q2q ď PR

3. Every probe in Q1 is a coordinate of r
4. The distributions Q2 and pr|Q1q are independent

We construct pQ1
x, Q

1
y, Q3q that verify the conditions of Definition 3.10 as follows:

for each probe of the form ri in Q1, we add xi to Q
1
x. We add every probe from Px

to Q1
x. Similarly, we construct Q1

y as the merge of Py and the probes yi for each
ri in Q1. Notice that we can remove Q1 from the set of probes as they are now
redundant with pQ1

x, Q
1
yq. We set Q3 “ Q2. We have 1) |Q1

x| ď |Px| ` |Q1| ď t
and |Q1

y| ď |Py| ` |Q1| ď t, 2) holds since we only used elementary operations
on sets of probes as detailed in the early section Definition 3.1, 3) holds by
construction and 4) holds under the RTC of R, which completes the proof.

We now move on to the definitions that exploit the algebraic structure of
F{K, starting with the translation of the Reducible-To-Coordinate property to
the Reducible-To-K-Linear property. Notice that although RTK seems more ap-
propriate to our techniques, we use the RTC property in the proof of Theorem 5.3
as the RTK property is insufficient in this case.

Definition 3.13. (Reducible-To-K-Linear) Let ω P F and K be a subfield of F.
Consider a gadget R taking as input a dimension d and returning an ωd-encoding
r of 0. Let α ą 0 be the slack factor of R. We say that R is α-Reducible-To-K-
Linear (RTK) when the output distribution of R is a uniform ωd-sharing of 0,
and for any set of independent probes P on R with |P | “ t ă d, there exists sets
of probes Q1, Q2 such that

1) |Q1| ď αt.
2) pQ1, Q2q ď P
3) Every probe in Q1 is K-linear in r.
4) The distributions Q2 and pr|Q1q are independent.

Notice that with this definition, if R is RTC with respect to ωd, then R is
1-RTK. We now define the security notion achieved by the ωd-encoding refresh
gadget obtained by adding coordinate-wise a fresh ωd-encoding of 0 to the input.
The intuition why the KIOS security notion for refresh gadget brings composition
security is similar to the one for IOS refresh gadgets. If we have y “ r`x, where
x is some input ωd-encoding and r is generated using an α-RTK generator of
encodings of 0, then we can reduce the probes in the α-RTK to K-linear probes
on r, given by some matrixP. In the next reduction step, we give to the adversary
Px and Py, which are still both K-linear. We can then remove the probes on r
as they are redundant, and that way we achieve separation between x and y.

Definition 3.14. (K-Input-Output Separative) Let ω P F, K be a subfield of F,
α ą 0 and G be a gadget taking as input an ωd-encoding x, and returning an ωd-
encoding y of the same secret as x. We say that G is K-Input-Output Separative
(KIOS) when the distribution of y is uniform conditioned on ypωq “ xpωq and
for every set of t probes P on G, there exists three sets of probes Qx, Qy, Q2 such
that
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1. |Qx| ď αt, |Qy| ď αt
2. pQx, Qy, Q2q ď P
3. Every probe in Qx is K-linear in x, and every probe in Qy is K-linear in y
4. The distributions Q2 and ppx,yq|pQx, Qyqq are independent

Finally, we plug together all the ideas of the section to define the RTIK
property, and show how we can use this stronger notion of t-probing security for
KIOS composition.

Definition 3.15 (Reducible-To-Independent-K-Linear (RTIK)). Let C
be a circuit taking as input n uniform and independently generated4 ωd-encodings
x1, . . . ,xn. We say that C is RTIK when for all set of probes P , there exists
Miωd-encodings xn`1, . . . ,xn`m for some tall full-rank matrices Mi over K
and a set of probes Q “ pQiqiďn`m such that

1. Any set of vectors pyiqiďn`m with yi strict subset of xi, the pyiqiďn’s are
mutually independent

2. For all i ď n ` m, |Qi| ď |P |

3. For all i ď n ` m, every probe q P Qi is of the form qTxi for some q P Kd

Rephrasing (and simplifying) the definition above: an ωd-masked circuit is
said RTIK when any set of probes P can be reduced to a set of probes Q in
which every probe is K-linear in a single ωd-masked entry. Given this reduction,
the straight-forward naive composition of RTIK circuits is then also RTIK. Since
this definition directly falls into the requirements of Lemma 3.6, we can directly
claim that when degKpωq ď d, any RTK circuit is d´ 1-probing secure, thus the
composition of RTIK circuits is also d ´ 1-probing secure.

We finally state in the Theorem below that placing a refresh in between RTIK
circuits achieves region-probing security. The idea behind this composition The-
orem is very similar to the intuition detailed in [GPRV21] on IOS composition.
The basic idea is that when C2 takes as input the output of some circuit C1, one
applies a KIOS refresh gadget on each input encoding of C2. In the reduction,
using the KIOS property, the leakage of the refresh is transferred to K-linear
probes on C1 and C2. The leakage from the two subcircuits are then indepen-
dent, and from the RTIK property, those leakages are K-linear, and Lemma 3.6
yields the region probing security.

Theorem 3.16 (KIOS Composition Theorem, adapted from GPRV).
Let N, d be positive integers, ω P F such that degKpωq ě d, C be a circuit and
pgiqiďN be the list of gates of C. Assume that for all i ď N, there exists a correct
ωd-encoding gadget Gi for gi. Let G

R be a correct refresh gadget with respect to
ωd-encodings. If the following properties hold :

1. @i ď N, Gi is RTIK
2. GR is α-KIOS

4 Meaning that for any pyiqiPrns strict subsets yi Ă xi of coordinates of the xi, the
pyiqiPrns are uniform and mutually independent.
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the circuit C1 obtained by replacing every gate gi by Gi, and applying GR to all
inputs of the Gi’s is r-region-probing-secure, with r ď d´1

maxjďN1 |Cj |
and the Cj’s

are defined in the proof.

Proof. We arrange the number N 1 of refresh gadgets in C1 into a list of GR
j ’s. Let

us consider any set of probes P “ ppPiqiďN , pPR
j qjďN 1 q on C1, where the probes

from Pi are in gadget Gi, and the probes in PR
j are in GR

j .

By using the α-KIOS property of GR, we obtain a set of probes P 1 “ pP 1
i qiďN ,

with P 1
i on Gi and P 1 ě P . In other words, the probes from P 1 are exclusively

in the gadgets Gi, and due to the uniformity of GR, we have that the probes in
different gadgets are mutually independent.

We now use the RTIK property of the Gi’s, and we obtain a set of probes
Q “ pQjqjďN 1`M , with Q ě P 1, and Qj contains K-linear probes on either a
ωd-encoding xj of the circuit, or a Miωd-encoding of the circuit for some tall
matrix Mi with coefficients in K. Notice that thanks to 1. in Definition 3.15,
the Qj ’s are still mutually independent.

Now, for all j ď N 1, we define a subcircuit Cj containing all the wires that
would end up in Qj via the reduction from P to Q. These subcircuits form
a covering of C1, hence we simply need to chose r ď d´1

maxjďN1 |Cj |
, so that non

of these subcircuits contains more than d ´ 1 probes, after which Lemmas 3.6
and 3.7 complete the proof.

4 Elementary gadgets for polynomial masking

This section contains two polynomial masking building blocks. Both algorithms
rely on a severe restriction on d and degKpωq: For security, we need d ď degKpωq

and for correctness, we need d ě degKpωq. In other words, we need d to divide
rF : Ks, so that there exists an ω that satisfies the condition. The reason why
we add the restriction d ě degKpωq for correctness is that we will exploit the
minimal polynomial πω of ω, in ways that are detailed in the subsections below.

4.1 Folding gadget

This subsection is dedicated to a folding gadget that exploits the algebraic struc-
ture brought by ωd-encodings. Folding gadgets are those that on input some
ωd1

-encoding x return an ωd2
-encoding y of the same secret, where d1 ď d2.

Since we only need pd1, d2q “ p2d ´ 1, dq, we shall particularize to these spe-
cific values in the following. We first recall the so-called NaiveFold algorithm, as
used in [GJR18, GPRV21]. This folding algorithm does not require any extra
condition to be correct, but entails a factor two loss in probe tolerance.

As stated above, one problem with this compression is that in the current
state-of-the-art methods for proving probing security, when the adversary probes
some xi ` ωdxd`i, we have to give away both xi and xd`i. This doubles the
number of probes of the adversary, hence in the end halves the number of probes
tolerated in the region. While our folding matrix described below can tolerate
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Algorithm 3 NaiveFold
Require: ω2d´1-encoding x
Ensure: y P Fd such that xTω2d´1 “ yTωd

1: for i “ 0 to d ´ 2 do
2: yi “ xi ` ωdxd`i

3: end for
4: yd´1 “ xd´1

5: return y

up to d ´ 1 probes, it also entails more basic operations and therefore yields a
mitigated gain in probing ratio.

The intuition of the construction is as follows: we define a full-rank folding
matrix F P Kdˆp2d´1q, with coefficients in the subfield K, and mapping the
ω2d´1-encodings of some x P F to the ωd-encodings of this same x. This way,
the computation of y “ Fx is K-linear and Lemma 3.6 applies. The existence
of this matrix is only guaranteed when degKpωq ď d, therefore, so we can also
use Lemma 3.6, we actually need the equality.

We now proceed to describe how to construct such a matrix, for a given ω and
d. Suppose degKpωq “ d. Then, the minimal polynomial πω of ω over K has
degree d, therefore π “ ωd ´πω is of degree d´ 1 and is such that πpωq “ ωd. In
general, any ωd`i for 0 ď i ď d ´ 2 is a polynomial in ω with coefficients in K
and degree ď d ´ 1. Let us therefore write πi the column vector of coefficients
of the i-th polynomial, for example π0 “ π. One can check that the matrix

F “
“

Id π0 π1 . . . πd´2

‰

satisfies the equation FTωd “ ω2d´1. This implies that ωT
2d´1x “ ωT

d Fx “ ωT
d y.

Finally, we emphasize on the fact that one should chose ω so as to minimize
the count of operations in the folding process, to in turn minimize the ratio of
tolerated probes per gate in the region. The element ω has to be chosen from a
fixed field F, among the elements of given degree d over some fixed subfieldK and
it seems hard to make a general statement about the sparsity of the matrix F.
Nonetheless, in very specific cases, F can be very sparse. For example, if K “ Fp,
and d ` 1 is a prime, one can chose ω to be a primitive d-th root of unity. This
way, the minimal polynomial of ω is 1 ` X ` ¨ ¨ ¨ ` Xd, and ωd`1 “ 1. Then,
for any 0 ď d ´ 3, we have ωd`1`i “ ωi and ωd “

řd´1
i“0 ωi. In this particular

setting, the computation of y “ Fx takes approximately 3d operations in F.

4.2 Refresh gadgets

In this subsection, we describe a 2-RTK generator of ωd-encodings of 0 that only
uses d ´ 1 random field elements. We may recall that we are using the minimal
polynomial πω of ω, which can only be made possible if d|rF : Ks. On top of
this condition, we also require that the greatest common divisor of ωd ´ πω and
Xd ´ ωd is X ´ ω.
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The intuition how Algorithm 4 works is as follows. First, the algorithm sam-
ples a uniformly random vector x P Fd´1. Next, we compute s “ πωx, and we
obtain a polynomial s of degree d ` d ´ 2. The algorithm then returns r as the
naive fold of s as described in the subsection above. The correctness is verified
by construction: the evaluation of r in ω is 0 since πω divides s and the evalu-
ation in ω is invariant through the naive fold. Remember that as explained in
the previous section, the algorithm that takes as input an ωd-encoding x and
returns y “ x`r where r is generated by such an α-RTK generator of encodings
of 0 is α-KIOS.

Algorithm 4 PolyGenZero

Require: Masking order d with d “ degKpωq

Ensure: r P Fd such that rTωd “ 0

1: x Ð Fd´1

2: s “ πωx
3: r “ NaiveFoldpsq

4: return r

Proposition 4.1. If degKpωq “ d and the greatest common divisor of πω and
Xd ´ ωd is X ´ ω, then PolyGenZero is 2-RTK.

Proof. Correctness : First, since r “ NaiveFoldpsq, we have rpωq “ spωq. Now
since πωpωq “ 0, we have spωq “ πωpωqxpωq “ 0, which completes the proof of
correctness.
Uniformity. One can check that the NaiveFold algorithm performs a reduction
modulo Xd ´ ωd. This way, we have r “ πωx mod pXd ´ ωdq “ x ¨ pπω

mod pXd ´ ωdq. If the greatest common divisor of ωd ´ πω and Xd ´ ωd is
X ´ ω,5 then as x varies across Fd´1, r takes |F|d´1 different values, which
completes the proof.

2-RTK: We consider a set of probes P on PolyGenZero. We split the probes into
three subsets : A set P1 made of t1 probes that are K-linear in x, a set of t2
probes P2 that are coordinates of s and a set of t3 probes P3 made of probes
that are coordinates of r. We define an increasing sequence of sets of probes.

Set of probes 1: pP1, P2, P3q, with t1 ` t2 ` t3 ď t. Any set of at most t probes on
PolyGenZero is of this form. Since πω has coefficients in K, P1 is indeed K-linear
in x.

Set of probes 2: pP 1
1, P3q, with |P 1

1| “ t1
1 ď t1`t2. The set P

1
1 is the concatenation

of P1 and P2, where since πω has coefficients in K, each coordinate of s is K-
linear in x, therefore P 1

1 is K-linear in x.

5 This condition seems to be always satisfied in finite fields, but we have no rigorous
proof of that statement at the moment.
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Set of probes 3: pP 1
2, P3q, with |P 1

1| “ t1
2 ď t1

1. We transform the K-linear probes
P 1
1 on x to K-linear probes on s. The probes from P 1

1 are of the form P1x “ v
with P1 P Kt1

1ˆpd´1q and v P Ft1
1 . Multiplication with πω is a full-rank K-linear

operation, therefore there exists a matrix M P Kpd´1qˆp2d´1q such that Ms “ x,
hence the matrix P2 “ MP1 yields a set of probes P 1

2 over s such that P 1
2 ě P 1

1.

Set of probes 4: pQ2, P3q with |Q2| ď 4pt1 ` t2q and Q2 is K-linear in s. We
define PL (respectively PR) the first d ´ 1 columns of P2 (respectively the
remaining d columns of P2), and accordingly we define sL, sR. The set Q2 is the
concatenation of the probes PLsL,PRsR,PLsR,PRsL. The set P

1
2 is determined

by PLsL ` PRsR hence Q2 ě P 1
2.

Set of probes 5 : Q3 with |Q3| ď 2pt1 ` t2q ` t3. The set Q3 is the concatenation
of P3 and PLr,QLr, which is K-linear in r as required. We finish the proof by
showing that pr|Q3 X Q2q “ pr|Q3q, i.e the extra probes from Q2 do not give
any information to the adversary. Due to the uniformity of x, the distribution
ppr, sL, sRq|Q3 X Q2q is uniform over the set of solutions of

»

—

—

–

´I I ω´dI
Q 0 0
0 Q 0
0 0 Q

fi

ffi

ffi

fl

»

–

r
sL
sR

fi

fl “

»

—

—

–

0
v1

vL

vR

fi

ffi

ffi

fl

,

for some probed value vectors v1,vL,vR. In particular, the first row of the left
hand side matrix is redundant, hence this matrix induces the same affine sub-
space of solutions as the matrix

»

–

Q 0 0
0 Q 0
0 0 Q

fi

fl .

The latter matrix is block-wise diagonal, hence the distributions of sL, sR are
independent of the distribution of r, which completes the proof.

5 Subquadratic multiplication gadgets

In this section, we give two generic transformations that turn a suitable polyno-
mial multiplication algorithm into an RTIK multiplication gadget.

Both transformations entail different trade-offs:p yields a multiplication gad-
get that uses more random field elements, but a smaller circuit than q, hence
higher probing ratio eventually, as discussed in Section 6.

5.1 Generic GPRV-type Transformation

In this subsection, we show that (almost) any polynomial multiplication algo-
rithm can be turned into a masked multiplication gadget. More precisely, the
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polynomial multiplication gadgets that fit our transformation p are those algo-
rithms that are based on evaluation-interpolation. This definition encompasses
Karatsuba’s algorithm, all Toom-Cook variants (which contains Karatsuba) and
the FFT.

Definition 5.1 (Evaluation-Interpolation-Based Polynomial Multipli-
cation Algorithms). Let M be an algorithm taking as input two polynomials
of degree d ´ 1 that returns the product of the two inputs and K a subfield
of F. We say that M is a K-Interpolation-Multiplication algorithm (K-IM for
short) when there exists matrices M1,M2 with coefficients in K such that for
any pa,bq P Fd´1rXs2, we have Mpa, bq “ M2 ¨ pM1a d M1bq.

The architecture of our transformation applied to the FFT follows the blueprint
from [GPRV21], whose security relies on a non-standard ad-hoc assumption. The
security of our gadgets on the other hand is theoretically sound as it relies on no
assumption, but rather a condition relating the multiplication algorithm M, the
order of masking d and to some extent the size of F (we need d ď log |F|). More
precisely, we need Lemma 3.5 to apply, i.e we need to be able to pick ω such that
degKpωq ě d where the field K is derived from M. To be specific, K is defined
as the subfield K such that M is a K-IM, as defined in Definition 5.1, meaning
that K is the smallest subfield of F such that the evaluation and interpolation
operations induced by M are K-linear.

The transformation of a suitable multiplication algorithm M taking as input
two polynomials a,b into a secure multiplication gadget works as follows. Since
M can be split into two phases, namely evaluation and interpolation, our gadget
xM starts by computing the evaluation of both polynomial entries a,b. This
step is proven d ´ 1-probing secure under Lemma 3.6 which is optimal. Then,
xM computes the evaluation x of the product ab by multiplying coordinate-
wise their evaluations. In the proof, when the adversary probes a coordinate of
x, we give him both factors to keep no dependency between a and b. Before
proceeding to interpolation, we need to cut the bilinear dependencies. Splitting
the evaluation and interpolation regions is done using the IOS refresh template
Algorithm 2, with a suitably chosen v (that depends on the interpolation of
M) and ArithGenZero Algorithm 1. Notice that since the length of x is T pdq

(the multiplication complexity of M), the cost of this refresh in randomness is
T pdq log T pdq{2.

The IOS property of the refresh ensures that in the security proof, we can split
the probing security of the whole gadget into two (actually three) regions: before
and after the refresh step independently (actually the evaluation region can be
split further into a region on the first input and a region in the second input).
xM now computes the interpolation of the refreshed encoding y, which yields
the 2d ´ 1 coefficients of a polynomial z encoding ab. Notice that if apωq “ a,
bpωq “ b, we want to find a polynomial c that encodes ab, for the same ω and
masking order d. To this end, we multiply z with the folding matrix F so c “ Fz
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has degree d ´ 1, and cpωq “ zpωq “ apωqbpωq “ ab, and the algorithm finally
returns this c. The construction of the matrix F is detailed in Section 4.1.6

Algorithm 5 Multiplication gadget xMpa,bq. The algorithm R on line 4 is
Algorithm 2 instantiated with ArithGenZero

Require: A K-IM M with matrices M1,M2, folding matrix F (see Subsection 4.1)
and two input encodings a,b P Fd

Ensure: c P Fd such that ωT
d a ¨ ωT

d b “ ωT
d c

1: a1
“ M1a Ź Evaluation of a

2: b1
“ M2b Ź Evaluation of b

3: x1
“ a1

d b1
Ź Component-wise multiplication of evaluations

4: y1
“ Rpx1,MT

2 ω2d´1q Ź Refresh
5: z “ M2y

1
Ź Interpolation of the product

6: c “ Fz Ź Folding
7: return c

Theorem 5.2. Let d be an order of masking, K be a subfield of F, M be a
K-IM and ω P F such that degKpωq “ d. Then, the instantiation of Algorithm 5
with M is a correct RTIK multiplication gadget.

Proof. Correctness. Let a,b P Fd. We have:

ωT
d Mpa,bq “ ωT

d FM2RpM1a d M1b,M
T
2 ω2d´1q (9)

“ ωT
d FM2pM1a d M1bq “ ωT

d Fpa ¨ bq (10)

“ ωT
2d´1a ¨ b, (11)

where Equation (9) is the definition of xMpa,bq, Equation (10) follows from
the correctness of R and M, and Equation (11) holds since F is crafted so

Fω2d´1 “ ωd. Therefore xM is a valid multiplication gadget.
RTIK. We consider the ωd-encodings a,b, the pFM2qTωd-encoding y, and

let P be a set of t probes chosen by the adversary. Remind that a and b are
the two inputs of the algorithm, thus are assumed to follow independently gen-
erated distributions of the form Uωd

pHxq. Due to the uniformity of R, y is also
generated independently from a distribution of this form, and therefore 1. from
Definition 3.15 is verified by a,b,y. We now proceed to construct an increasing
sequence of probes until we reach Q that satisfies 2. and 3.

Set of probes 1: P1 “ P “ pPa, Pb, Px, PR, Py, Pz, Pcq, where the subset of probes
PX is a set of probes that are a function of X for X P ta,b,x1,y1, z, cu, and PR

6 We assume that the folding matrix exists i.e d|rF : Ks. If this condition is not verified,
one can still use the NaiveFold at the cost of roughly halving the tolerated probing
ratio.
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is the subset of probes within the refresh R. This is the set of t probes chosen
by the adversary.

Set of probes 2: P2 “ pPa, Pb, P
1
x, P

1
y, Pz, Pcq. We obtain this set by using the

IOS property Definition 3.10 on R, and add the probes on x1 to Px to obtain
P 1
x, and similarly for y1.

Set of probes 3: P3 “ pQa, Qb, P
1
y, Pz, Pcq. We obtain this set of probes as follows.

Notice that every probe from P 1
x is a coordinate of x1. For each of these probes,

we add the corresponding coordinate of a1 to Pa and similarly for b1.

Set of probes 4: Q “ pQa, Qb, Qcq. We obtain this set of probes by merging
P 1
y, Pz, Pc into Qy. One can check that |Qa|, |Qb|, |Qc| ď |P |, and that all these

probes are indeed K-linear, which completes the proof.

5.2 Generic transformation with linear randomness

In this subsection, we detail a second transformation ofK-IM into secure masked
multiplication gadget. We still need degKpωq ě d, with equality for improved
folding step (c.f Section 4.1). Unfortunately, we could only prove the security
of this transformation for K-IM that satisfy an extra condition: we require that
every intermediate value in the computation of y “ M1x for some x P Fd is
a coordinate of y. While this condition seems very restrictive, this nonetheless
still includes Karatsuba’s algorithm, while excluding the FFT. This construction
offers a different trade-off between randomness and probing ratio.

The transformation presented in Section 5.1 yields a multiplication gadget
running in the same time OpT pdqq as M, and requiring OpT pdq log T pdqq random
field elements. The randomness cost of the multiplication comes solely from the
use of ArithGenZero on the evaluation vector of the product. Intuitively, it may
seem expensive to spend T pdq log T pdq{2 random field elements on refreshing an
encoding that masks the product of the two inputs, as those contain only linear
entropy. More specifically, the vector x is computed as M1a d M1b, which can
take at most |F|2d different values (much less in practice), while the vector y
obtained by using the IOS refresh template with v “ MT

2 ω2d´1 can take exactly
|F|T pdq´1 values. The gadget described in Algorithm 6 takes advantage of this
remark to reduce the randomness requirement to linear.

Quasilinear randomness.
We present the idea that allows us to cut the bilinear dependencies between

a,b with quasilinear randomness. In a nutshell, Algorithm 6 computes a1 “

M1a, b
1 “ M1b and coordinate-wise multiply them to get the vector x1, just like

the transformation in Subsection 5.1. The fork between both algorithms happens
at this stage. Waving hands, in the place where we IOS refresh the whole vector
x1 in |M, we instead refresh the masks of a and b. More specifically, Algorithm 6
calls ArithGenZero and samples two ωd-encodings of 0 r1 and r2, computes
r1
1 “ M1r1 and r1

2 “ M1r2, and then sets y1 “ x1 ` r1
1 d b1 ` a1 d r1

2 ` r1
1 d r1

2.
Rearranging the terms, we have y1 “ M1pa ` r1q d M1pb ` r2q, where due to
the RTC of Algorithm 4, pa ` r1q and pb ` r2q are IOS refreshed masks of the
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inputs. Due to technical reasons detailed in the proof, we can only claim region
probing security of this gadget if the probes in the left-multiplication by M1 are
probes on the output of the latter multiplication.

Algorithm 6 Multiplication gadget |Mpa,bq

Require: a,b P Fd

Ensure: c P Fd such that ωT
d a ¨ ωT

d b “ ωT
d c

1: a1
“ M1a Ź Evaluation of a

2: b1
“ M1b Ź Evaluation of b

3: x1
“ a1

d b1
Ź Share-wise multiplication

4: r1 Ð ArithGenZeropdq Ź Fresh encoding of 0 to refresh the mask a
5: r2 Ð ArithGenZeropdq Ź Fresh encoding of 0 to refresh the mask b
6: r1

1 “ M1r1 Ź Evaluation of r1
7: r1

2 “ M1r2 Ź Evaluation of r2
8: y1

“ x1
` r1

1 d b1
` a1

d r1
2 ` r1

1 d r1
2 Ź Refresh

9: z “ M2y
1

Ź Interpolation of the product
10: c “ Fz Ź Folding
11: return c

Theorem 5.3. Let d be an order of masking, K be a subfield of F, M be a K-IM
and ω P F such that degKpωq “ d. Consider the circuit CM1

that takes a vector
x P Fd and returns M1x. Assume that CM1

is such that every intermediate value
is a coordinate of its output. Then, the instantiation of Algorithm 6 with M is
a correct RTIK multiplication gadget.

Proof. Correctness. From the correctness of PolyGenZero, r1
1, r

1
2 are ωd encod-

ings of 0, hence y1 is a MT
2 ω2d´1-encoding of 0. From the correctness of M, z

is a ω2d´1-encoding of aTωd ¨ ωT
d b, and finally from the correctness of F, c is a

ωd-encoding of ωd ¨ ωT
d b.

Reduction to K-linear independent probes. LetA be a t-probing adversary
against the multiplication gadget in Algorithm 6 probing a set P “ tpi, 1 ď

i ď tu of intermediate values in the circuit. In all generality, we split the set of
probes into subsets Pa, Pb, Px, Pr1 , Pr1

1
, Pr2 , Pr1

2
, Py, Pz, Pc, where Pa is the set of

probes on Line 1, Pb is the set of probes on Line 2, Px is the set of probes on
Line 3, Pr1 is the set of probes on Line 4, Pr2 is the set of probes on Line 5,
Pr1

1
is the set of probes on Line 6, Pr1

2
is the set of probes on Line 7, Py is the

set of probes on Line 8, Pz is the set of probes on Line 9 and Pc is the set of
probes on Line 10. We construct an increasing sequence of set of probes reaching
Q “ pQa, Qb, Qyq, which satisfies the conditions of Definition 3.15.

Set of probes 1: This is the set of probes

P1 “ pPa, Pb, Px, Pr1 , Pr2 , Pr1
1
, Pr1

2
, Py, Pz, Pcq

chosen by the adversary.
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Set of probes 2: This set of probes is

P2 “ pPa, Pb, Px, P
1
r1 , P

1
r2 , Pr1

1
, Pr1

2
, Py, Pz, Pcq,

where both P 1
r1 , P

1
r2 are defined as follows. We use the RTC property of ArithGenZero

to obtain sets of output-coordinate probes P 1
r1 , P

1
r2 with P 1

r1 ě Pr1 and P 1
r2 ě

Pr2 .

Set of probes 3: This set of probes is

P3 “ pPa, Pb, Px, Qr1
1
, Qr1

2
, Py, Pz, Pcq,

where Qr1
1
is the merge of P 1

r1 , Pr1
1
, and Qr1

2
is the merge of P 1

r2 and Pr1
2
. Notice

that we have r1
1 “ CM1pr1q, therefore Qr1

1
only contains probes that are coordi-

nates of r1
1. Same thing for Qr1

2
. This step is made possible by the assumption

on CM1
.

Set of probes 4: This is the set of probes

P4 “ pP 1
a, P

1
b, P

1
x, Q

1
r1
1
, Q1

r1
2
, P 1

y, Pz, Pcq,

where the sets of probes P 1
a, P

1
b, P

1
x, Q

1
r1
1
, Q1

r1
2
, P 1

y are defined as follows. The com-

putation on Line 8 is done coordinate-wise, meaning that any probe in Py is
a deterministic function of the coefficient in a single common position i of the
vectors a1,b1,x1, r1

1, r
1
2,y

1. For every probe in this line, we give away to the ad-
versary the value of each of the vectors a1,b1,x1, r1

1, r
1
2,y

1 in the corresponding
position i, and update the sets of probes P 1

a, P
1
b, P

1
x, P

1
r1 , P

1
r2 , Q

1
r1
1
, Q1

r1
2
, P 1

y accord-

ingly. Notice that Q1
r1
1
is still only made of probes that are coordinates of r1

1, and

similarly Q1
r1
2
is only made of probes that are coordinates of r1

2.

Set of probes 5: This set of probes is

P5 “ pQa, Qb, Qx, Qy, Pz, Pcq,

where the sets Qa, Qb, Qx, Qy are defined as follows. Every probe in Q1
r1
1
, Q1

r1
2
is

given by a coordinate in some position i of r1
1 or r1

2. For each of these probes,
we give away the i-th coordinate of a1,b1,x1,y1, and update Qa, Qb, Qx, Qy ac-
cordingly. To finish, we claim that with similar arguments as in the last step of
the proof of Proposition 4.1, the information on the vectors a,b,y contained in
the adversary’s probes on r1, r2 is already contained in Qa, Qb, Qx, Qy, and we
can therefore remove them from the set of probes.

Set of probes 5: This set of probes is

P6 “ pQ1
a, Q

1
b, Qy, Pz, Pcq

, where Q1
a and Q1

b are defined as follows. Every probe from Qx is by construction
a coordinate of x1. Those coordinates are of the form xi “ a1

ib
1
i. For each of these

probes, we give away both a1
i, b

1
i to the adversary, and remove Qx from the set

of probes for redundancy.
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Set of probes 6: This set of probes is Q “ pQ1
a, Q

1
b, Q

1
yq, where Qy is the merge

of Qy, Pz and Pc. We claim that through the sequence of probes, we achieve that
Q1

a is only made of K-linear probes on a, Q1
b is only made of K-linear probes on

b, and Q1
y is only made of K-linear probes on y1.

As a conclusion, we showed that if A probes a set P , there exists a set of
probes Q “ pQ1

a, Q
1
b, Q

1
yq that verify the conditions 2. and 3. from Definition 3.15.

Remains to prove that Qy is independent of Qa, Qb. We have y1 “ x1 ` r1
1 d

b1 ` a1 d r1
2 ` r1

1 d r1
2 “ M1pa ` r1q d M1pb ` r2q. From the uniformity of R in

Lines 4 and 5, pa ` r1q follows Uωd
pωT

d aq and pb ` r2q follows Uωd
pωT

d bq, thus
y is independent of a,b and the result follows.

Note on the probing ratio. The parameter r for the region probing security
of this gadget is given by d´1 divided by the size of the biggest subcircuit. There
are 3 subcircuits defined from Qa, Qb, Qy. The subcircuit of Qa is the one that
contains all the probes from P that ended up in Q1

a through the sequence of sets
of probes detailed above. In the end, the set of probes Qa gathers probes from
the subcircuit computing Lines 1 and 3 to 8. We obtain that this subcircuit has
size 10T pdq log T pdq ` 2d log 2. By symmetry, the subcircuit of b has the same
size and probe tolerance. The last subcircuit’s size depends on F pdq, that is,
the number of gates in the computation of z “ M2y

1. This subcircuit has size
9T pdq log T pdq ` F pdq ` 2d log 2.

6 Instantiations and performances

In this section, we give examples of simple and practical instantiations of the
algorithms described in Sections 4 and 5. The K-IM that we use to instantiate
our multiplication gadgets is Karatsuba’s algorithm. The reason for this choice
is threefold: the algorithm is very simple, its range of competitiveness against
other multiplication algorithms is within the range of the number of shares in
masking and its subfield K is optimal. It seems that - depending on the metric
- our multiplication algorithms are competitive with ISW multiplication around
d “ 8 and on, but more experiments have to be run to assess this statement.

We’ll write Karatsuba’s algorithm for polynomial multiplication M. Again,
Karatsuba’s algorithm is a good candidate for our transformation as it is com-
petitively fast for multiplying polynomials whose degree is in the masking range,
and it can be used in any characteristic. We describe below the matrices M1,M2

that make Karatsuba a Fp-IM, where p is the characteristic of F. As a conse-
quence, if F “ Fpk , we’ll assume that d|k so we can use the Folding matrix, and

in this case, xM and |M both support d ď k.

Karatsuba matrices.
We define recursively the matrices M1,M2 associated to Karatsuba algo-

rithm. We will write Md
1 P Kdlog 3

ˆd,Md
2 P Kp2d´1qˆlog 3 the matrices for degree

d ´ 1 input. Remind that here, K is the smallest subfield of F that contains
´1, 0, 1, that is Z{pZ where p is the characteristic of F. We assume for simplicity
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that d “ 2ℓ is a power of 2. Otherwise, one can fill the coefficients of the inputs
with zeros until the degree indeed is a power of 2. For clearer exposition, we
introduce another sequence of matrices Bd.

We have M1
1 “ p1q,M1

2 “ p1q and for d a power of two:

M2d
1 “

»

–

Md
1 0d

Md
1 Md

1

0d Md
1

fi

fl B2d “

»

–

0d 0d 0d

´Md
2 Md

2 ´Md
2

0d 0d 0d

fi

fl M2d
2 “

»

–

Md
2 0d 0d

0d 0d 0d

0d 0d Md
2

fi

fl ` B2d.

The two block columns of M2d
1 are of length d, and the block rows are of size 3ℓ,

so the dimensions of Md
1 are 3ℓ ˆ d. The rows of B2d are of length respectively

d, 2d ´ 1, d, while its columns are of length 3ℓ. The matrix Md
2 has the same

dimensions p2d ´ 1q ˆ 3ℓ as Bd. With a,b two polynomials of degree d ´ 1, we
have

a ¨ b “ Md
2

`

Md
1a d Md

1b
˘

.

Comparison of the performances of multiplication gadgets.
In the graphs that can be found below, we measure the number of multipli-

cations in F, additions in F, random elements from F, and the probing ratio of
an algorithm as the minimum ratio between the probe tolerance per subcircuit
divided by the size of the subcircuit across all regions. We take into account for
the size of the subcircuits operation gates, copy gates and randomness gates as
1 each. We mention that both xM and |M are considered in their worse regime,
that is, when the folding matrix does not exist. Doubling the probing ratio give
the value to be expected when the folding matrix may be used.

We also remind the reader that the probing ratios are only indications, as the
security proof of GPRV does not cover all the orders d depicted, and similarly,
without more precision on F, xM and |M may not have a security proof available.
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