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Abstract. Sealed bid auctions are used to allocate a resource among a set of interested parties.
Traditionally, auctions need the presence of a trusted auctioneer to whom the bidders provide
their private bid values. Existence of such a trusted party is not an assumption easily realized in
practice. Generic secure computation protocols can be used to remove a trusted party. However,
generic techniques result in inefficient protocols, and typically do not provide fairness – that is, a
corrupt party can learn the output and abort the protocol thereby preventing other parties from
learning the output.
At CRYPTO 2009, Miltersen, Nielsen and Triandopoulos [MNT09], introduced the problem of
building auctions that are secure against rational bidders. Such parties are modeled as self-interested
agents who care more about maximizing their utility than about learning information about bids
of other agents. To realize this, they put forth a novel notion of information utility and introduce a
game-theoretic framework that helps analyse protocols while taking into account both information
utility as well as monetary utility. Unfortunately, their construction makes use a of generic MPC
protocol and, consequently, the authors do not analyze the concrete efficiency of their protocol.
In this work, we construct the first concretely efficient and provably secure protocol for First Price
Auctions in the rational setting. Our protocol guarantees privacy and fairness. Inspired by [MNT09],
we put forth a solution concept that we call Privacy Enhanced Computational Weakly Dominant
Strategy Equilibrium that captures parties’ privacy and monetary concerns in the game theoretic
context, and show that our protocol realizes this. We believe this notion to be of independent
interest.
Our protocol is crafted specifically for the use case of auctions, is simple, using off-the-shelf crypto-
graphic components. Executing our auction protocol on commodity hardware with 10 bidders, with
bids of length 10, our protocol runs to completion in 0.141s and has total communication of 30KB.
Keywords: Auctions, rational adversaries
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1 Introduction

From Psychology, to Economics, to Computer Science, the wide perspectives from which auctions have
been studied is a testimony to their relevance in society. Auctions have been in vogue since time im-
memorial and [Kri09] refers to auctions as early as 500 BC. In fact, the Roman Empire was auctioned
in the year 193AD! While the modern age offers far less dramatic use-cases of auctions, the ubiquity
and the monetary stakes of the use-cases make up for it. Governments accrue huge revenues through
spectrum auctions. Sotheby’s auctions for the art works have been legendary in terms of works that have
gone under their hammer. Search engines such as Google use auctions to determine which advertisements
show up for a certain search and in what order. Broadcasting rights for sporting events are distributed
through auctions. Sports franchisees use auctions for player-selection. It would not be too far from the
truth to say that what can be auctioned is limited only by one’s imagination.

An auction consists of a set of parties (also known as bidders) who are bidding for a particular object
or resource. Such parties submit their bids i.e., the amount at which the parties are willing to buy the
auctioned item. There are mainly two types of auctions: sealed bid and open bid auctions. As the name
itself suggests, in the case of open bid auctions, the individual bids are not private. In sealed bid auctions,
we can have either First Price Auctions or Second Price Auctions (Vickrey Auctions). In both these types,
the winner of auction is the bidder who bids the highest. However, the price paid by the winner differs
in these two auctions. In the case of first price auctions, the winner pays the same price that it bid
(and won). For second price auctions, winner pays the price which equals the bid value of second highest
bidder. First price auctions (FPA) are widely believed to be fairer to everyone involved and companies
like Google are shifting to FPA for auctioning advertisement spaces [Mor22]. In this work, we focus on
first price sealed bid auctions.

Traditional auctions take place in presence of a trusted auctioneer – to whom the bidders provide
their private bid values. However, the notion of a trusted party is difficult to realize in practice. In this
digital age, with e-auctions being the norm, there is a need to replace such a trusted party with a secure
protocol that does not leak any private bid values. Auctions also tend to be a high-stakes game for the
participants, offering plenty of incentives for corruption. Therefore an auction protocol needs to ensure
fairness (i.e., if one party learns the output, so do the other parties). Maliciously Secure Multi-Party
Computation (MPC) offers a solution to this problem: the set of bidders, who may be mutually non-
trusting and possibly corrupt, may simply run an MPC protocol to compute the maximum bid value.
However, securing against malicious parties, that too using generic MPC, comes at a heavy cost: such
solutions incur huge computational and communication overheads, making them inefficient for use in
practice. Fortunately, for typical use-cases of auctions, safeguarding against malicious parties, who can
deviate arbitrarily, is an overkill. Indeed, malicious strategies include those that parties may never adopt
in real-life.

At Crypto 2009, Miltersen, Nielsen and Triandopoulos [MNT09], introduced the problem of building
auctions that are secure against rational bidders. Such parties are modeled as a self-interested agents
who care more about the monetary payoffs rather than learning information about bids of other agents.
An important contribution of their work is that they put forth a novel notion of information utility
and introduce game-theoretic framework that helps us capture the interplay between monetary and
information utilitites. Formalizing this is not trivial because the utility of the same information may be
different for different parties. Yet, this abstract concept, which cannot be concretized, must play a role for
privacy-enhanced auctions in the rational setting and this makes it very challenging. Our work is inspired
by this beautiful work.

In this work, we build auctions that are secure against rational parties who simply wish to maximize
their utility. Our protocol is relevant in scenarios when parties can be disincentivized against certain
kinds of “bad behavior” through monetary penalties. This is true, for example, in cases where parties
register for the auction by paying a security deposit, which they will forego if cheating is detected. Prior
work such as [MNT09,DGP22] have considered auctions for rational adversaries. We offer a detailed
comparison of the efficiency improvements of our protocol in Section 1. Additionally, [DGP22] has no
formal proof of security for rational adversaries. In fact, as the authors themselves point out, their
work as well as that of [BHSR19] has some non-trivial leakage – the highest bidder learns information
where he overtook the bid of the second highest bidder. We offer a rigorous, game-theoretic treatment of
secure auctions and demonstrate that our protocol achieves “Privacy Enhanced Computational Dominant
Strategy Equilibrium”, a notion that we introduce. Intuitively, this means, following the protocol is the
preferred option for each party, irrespective of what other parties might choose to do.
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Our Contribution. We present the first concretely efficient protocol for First Price Auction with guar-
anteed privacy that achieves Computational Weakly Dominant Strategy Equilibrium for rational parties
without the need for any trusted setup while ensuring fairness. We have implemented our protocol in
C++ with 1840 lines of code. We build upon OpenSSL and Boost open source libraries. Running our
protocol on a commodity hardware (with Intel core i7 processor, 2.9 GH), with 10 bidders, 10 bit length
bids resulted in 0.03MB communication and took 0.141s. We have shown that our protocol is concretely
more efficient than other secure auction implementations, including ones using generic MPC protocols.

Table 1: Comparison of protocols
Protocol Security model Equilibrium

SEAL [BHSR19] Passive
[Non-trivial Leakage]

NA

FAST [DGP22] Malicious
[Non-trivial Leakage]

NAa

Protocol
in [MNT09]

Rational Computational Nash Equi-
librium

Our Protocol Rational Computational Weakly
Dominant Strategy Equilib-
rium

a The authors analyze incentives for a rational party to cheat, but do not provide a proof for rational security.

1.1 Technical Overview

The starting point of our work is the work of [BHSR19] which in turn uses the Anonymous Veto Pro-
tocol(AVP) due to [HZ06]. Originally, AVP was designed for computing the logical-OR of a set of 1-bit
private inputs from different parties. This was enhanced to compute the maximum bid value (for auc-
tions) in the work of [BHSR19]. We call this protocol Anonymous Bid Protocol (ABP) and it runs for l
rounds, where l is the number of bits in the binary representation of bid values. Technically, in ABP, bits
are written onto the bulletin board in the clear. However, when used in auctions, it is combined with a
specific encoding scheme for the sake of privacy. Here, we give an overview of ABP with the encodings
incorporated into it. The high level idea of the l-round ABP protocol [BHSR19] is as follows:

1. All messages are written onto a bulletin board.

2. Parties learn the highest bid value bit-by-bit. Let bij denote Pi’s bit used in jth round. We say that
a party Pi drops out of the race at the end of round j, if bij = 0 but ∃i′ such that Pi′ is still in the
race and bi′j = 1. Once a party Pi drops out of the race, it continues to participate in the protocol
using only the dummy bid value of bij = 0 for all subsequent rounds.

3. INPUT SPECIFICATION. Parties specify their inputs in any round by encoding it using an
encoding scheme with a specific structure. Encoding of a 1 bit is gr for a random r and where g is
the generator of an appropriately chosen group G. Pi’s encoding of 0 is a value with the following
property: if all parties have a zero bit, then multiplying their encodings will result in 1.

4. HIGHEST BID EVALUATION. To evaluate, the parties simply multiply all the encoded bid
values. (This can be done publicly by any of the parties which has access to the encoded bids.) If, in
round j, the product is 1, then we conclude that all parties contributed only 0 in that round and in
particular, the highest bidder Pi∗ had a 0 in the index j i.e., bi∗j = 0. If the product is not 1, then
the parties conclude that the highest bit value in that round/index is 1. Note that this conclusion
would indeed be correct, because of a) the property which encodings of 0 satisfy and b) the fact that
as long as at least one party contributes gr for a random r, the product of the encodings is unlikely
to be 1.

At a high level, privacy follows from the Decisional Diffie Hellman (DDH) assumption. To use ABP to
build secure auctions, [BHSR19,DGP22] do the following:

– All parties commit to their bid values.

– They run ABP using a bulletin board to communicate and at the end of which they learn the highest
bid value.

– The highest bidder opens out his commitment to prove that he did have the highest bid.
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– To secure against malicious adversaries, parties simply use NIZKs at every step in order to offer a
proof of correct computation.

There are two issues with this protocol: first, as mentioned before, the use of NIZKs makes it inefficient
and second, the highest bidder, through some offline computations, can learn information on the bid of the
second highest bidder. The idea to learn this leakage is as follows: when a party contributes the encoding
of a 1 bit in any round j, he can easily check if there is any other party who has a 1 in that round. To
do so, instead of the encoding of 1 that he used, he computes an encoding of 0 and multiplies it with the
rest of the encodings that have been written onto the bulletin board. (Note that he can do this offline.)
If the product is equal to 1, he knows that all other parties have contributed encodings of 0. If not, he
knows that the rest of the parties contributed with encodings of 1. The highest bidder, specifically, can
use this technique to determine the round at the end of which the second highest bidder dropped out of
the race and learn first few bits of second highest bid.

Preventing Leakage in [BHSR19,DGP22] Observe that it is the presence of the encodings on the
bulletin board that allows all parties to learn the output (the winning bid value and identity of winner) in
a publicly verifiable and fair manner. However, in order to prevent leakage, we need to prevent the parties
from running offline computations with these encodings. This would in turn require us to ensure that
the bulletin board does not directly contain encodings. At the same time, for the sake of efficiency, we
need to avoid using generic MPC protocols. Our first idea is to designate a specific party as an Evaluator
who, in addition to being a bidder, also handles the computation of the winning bid. To accomplish this,
parties send their encodings to the evaluator. This can be accomplished by having the parties encrypt
their encodings with the evaluator’s public key and writing these on to the bulletin board. This will
enable her to learn the per-round outputs (i.e., the highest bid value for that round) and reveal it to the
other parties. One obvious issue which arises is that this violates fairness but we can enforce by imposing
monetary penalties if that happens, thereby making that strategy irrational for the evaluator .

A bigger challenge is that if the evaluator has all the encodings, then in a case when the evaluator
herself has the highest bid, she can learn the exact same leakage as before. The following observation is
critical to our protocol: the evaluator does not need to learn the encodings when she is contributing a 1
bit herself as she can directly set the output of that round to be 1. We therefore need to ensure that she
does not learn the encodings in such cases. At the same time, the protocol cannot leak to other parties
that the evaluator has a 1 bit. Oblivious transfer (OT) to the rescue! Parties run a maliciously secure
OT protocol with the evaluator wherein, if the evaluator ’s contributing bit in a round is 0, she learns
the bit encodings as before and if it is 1, she learns cipher texts of dummy messages. This introduces a
further problem: the evaluator could cheat and ask for real encodings even though she has a 1 and is still
in the race. While this can easily be solved using NIZKs, the main challenge is in figuring out how the
evaluator can prove correctness of computation without relying on NIZKs. One way would be to insist
that she “open out” all the randomness used in her OT computations (as well as the commitment to
her input) so that the other parties can verify correctness. Revealing her own input is a violation of her
privacy unless she has the highest bid. While this might seem like a deadlock situation, we argue that
it is not. The key idea of this protocol is that the evaluator only learns information if she is the highest
bidder. If she is not the highest bidder, she learns nothing other than the winning bid by cheating and it
is fine for the other parties to not detect this cheating. In other words, she does not need to give a proof
when she is not the highest bidder. (We stress that in the entire protocol, we will have several cheating
strategies which may go undetected; this won’t be a problem – we will argue that in all such strategies
too, the parties will learn nothing extra and have no incentive to cheat.) To sum up, when the evaluator
is the highest bidder, we will have the evaluator offer a proof of correct computation by revealing the
randomness used to compute the OT messages as well as her input. This does not leak any information
because the evaluator’s bid is the highest and is therefore not a secret!

As it turns out, even with this modification, the highest bidder could potentially learn information
by deviating from the protocol. Consider a case when a party with the highest bid uses a 0 bit instead of
a 1 bit in some round j. For the rest of the rounds, he follows the protocol as though he did not deviate.
Now consider a scenario where he actually wins – this means that there was another party who had a
1 in round j. This is auxiliary information that he is not authorized to learn. Intuitively, what we need
is a way for parties to give a proof of correct computation, in the event that they win. However, this is
complicated by the fact that the evaluator does not even use the true input of the party in cases where
she herself contributes a 1. Added to this, we also need to deter the evaluator from cheating. All of this
results in a few more extensions to the protocol which we describe informally in the overview below.

Finally, it may also be possible that when the evaluator announces the winning bid, no one comes
forward to claim the bid. In such a case, parties need to give a proof of not winning. Note that here too
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we avoid the use of NIZKs by carefully analyzing the ABP protocol and providing an alternate proof
that will help detect the deviating party. Specifically, we observe that there exists a certain round, which
we call as last decider round in which the winning party alone uses a 1-bit code and all other parties use
0-bit codes. This means, an honest losing bidder can prove that it indeed used a 0-bit code during the
last decider round. This important observation leads us to design proofs of not winning when the winner
fails to turn up.

To obtain the final protocol, we carefully consider these and many other subtle adversarial strategies.
We refer the reader to Section 3. For now, we present a high level overview of the protocol.

Protocol Overview

1. Set-up Phase We assume that all Pi who wish to participate in the auction, register by paying a
deposit D.

2. Each party Pi has as input its private valuation of auctioned item vi, bid value bi.

3. Pi receives the public parameters pp.

4. Party Pi commits to its bid value as well as to the hash of the randomness he will use in the rest of
the protocol. (This will be used to verify correctness of P ′i s computations, in the event that he claims
to have the winning bid.)

5. One of the parties is chosen to be the evaluator and we denote it by Pe.

6. Computation Phase The protocol proceeds in rounds and in each round parties run the ABP
protocol as explained earlier. This roughly translates to running an OT protocol with the evaluator
to reveal the encoding of bit it chooses to contribute in that round (or the encoding of a dummy bit,
depending on the evaluator ’s input). We use the terminology “contributing to a round” to stress the
point that the party may not input its true bid value for that index, if it is no longer in the race. At
the end of this phase, the evaluator announces the winning bid.

7. If no one comes to claim the winning bid, all parties offer a proof of not winning.

8. A party, Pw, claiming to have the winning bid, needs to give a proof of winning. First, he opens the
commitment to his bid value which matches the winning bid. Additionally, he engages in a protocol
with the evaluator to convince the evaluator that he did play honestly. Roughly this consists of the
following steps:

(a) Pw opens his commitments to reveal his bid as well as the hash of the randomness. He also shares
the randomness to enable verification of the hash value.

(b) The evaluator uses her own randomness which she uses to generate the OT first message to check
the consistency of the encodings. Informally, the evaluator verifies the following statement for
each round: “When I contributed a 0 bit, the prover did send me his true encoding which is
consistent with the bit in that index. When I contributed a 1 bit, the prover’s second message is
computed correctly as a function of the encoding of his true input, encoding of his dummy input,
the randomness he committed to, as well as my OT first message.” This is easy to accomplish
given that the Pe has the randomness that Pw has used to generate the OT second message as
well as the encodings.

9. Whenever a party’s deviation is detected, the protocol terminates and the party forgoes their deposit.

Security In order to argue security, we note that a rational party may see value in a) increasing
his monetary utility by winning the protocol and b) learning information about other players’ inputs.
To capture the latter, we use the term information utility, as introduced in [MNT09]. We introduce
the notion of Privacy Enhanced Computational Weakly Dominant Strategy Equilibrium for analyzing the
privacy concerns of rational parties. This equilibrium states that as long as parties value monetary utility
much more than information utility, there is no incentive for them to deviate from the protocol. Next,
for parties that do not deviate from the protocol, we argue privacy using the simulation paradigm.

While there have been works on cryptographic protocols achieving Computational Nash Equilibrium
(e.g. in [MNT09,MR12,DHR00]), to the best of our knowledge, ours is the first work that is able to
establish Privacy Enhanced Computational weakly Dominant Strategy Equilibrium for first price auction
protocols. This equilibrium notion can be of independent interest.
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1.2 Related Work

Rational Secure Computation. The work of Dodis, Halevi and Rabin [DHR00] initiated a line of work
on capturing game-theoretic notions of incentives in cryptographic definitions. The work of Halpern and
Teague [HT04] considered secret sharing and secure computation in the rational setting where parties are
rational with a utility function that is curious-then-exclusive: parties primarily prefer to learn the output,
and secondarily, if they learn the output, have as few other parties learn it as possible. They define a
solution concept that is a notion of Nash equilibrium. Further works define more variants of equilibrium
like computational versions, modeling collusion etc. [ADGH06,GK06,Hal08,KN08,HP10]. Note that while
a Nash equilibrium ensures that following the protocol is the optimal strategy when all other protocols do
follow the strategy, it does not say anything in scenarios where parties are likely to deviate. A dominant
strategy equilibrium, on the other hand, does not care for other people’s strategies: following the protocol
is indeed the most preferred strategy for a party regardless of what other people’s strategy might be. Biçer,
Yildiz and Küpçü make use of Weakly dominant strategy for coalitions in their work [BYK21] to develop
the notion of m-stability which offers threshold security against a coalition of size m. Another rich line of
work in rational cryptography is in the Rational Protocol Design (RPD) framework introduced by Garay,
Katz, Maurer, Tackmann and Zikas [GKM+13] and employed subsequently in [GKTZ15,BGM+18]. In
RPD, a two-party game is considered between a protocol designer and an external attacker where the
attacker’s goal is to break security properties, and the goal of the protocol designer is to prevent the
attacker from succeeding. RPD makes analysis of collusions, adaptive corruptions etc. easier, and also
provides compositional guarantees. In [MR14], Micali and Rabin discuss prevention of collusion among
bidders, participating in Vickrey auctions. In our work, modeling incentive-driven behaviour of mutually
distrustful parties suffice, and we leave extending our protocol to the RPD framework and Vickrey auctions
to future work.

Covert Secure Computation. A different line of work on covert adversaries incorporates some types
of incentives into cryptographic definitions. Aumann and Lindell [AL07] proposed the notion of covert
adversaries that are in between standard semi-honest and malicious adversaries: these are parties who
will cheat but only as long as they do not get caught cheating. This “fear” of getting caught is used to
build more efficient protocols [AO12,Lin13]. This model is also captured by the rational model by defining
the utility to be negative when an abort happens in an identifiable way.

Rational Secure Auctions. In the context of auctions, our work is closely related to three works. The
work of Miltersen, Nielsen and Triandopoulos [MNT09] defines a rational security framework for auctions
and introduce the notion of Privacy enhanced ε-Nash Equilibrium. We use the notions of monetary and
information utility as in [MNT09], but put forth a different solution concept. Additionally, the protocol of
[MNT09] uses generic MPC techniques secure against active corruptions. In our work, however, we take
advantage of parties being rational, and not arbitrarily malicious, to construct an efficient protocol. Our
protocol is relevant in scenarios where (a) monetary penalties can be imposed on parties whose cheating is
detected and (b) parties have access to a bulletin board. Both these assumptions are easily implementable
in practice. Many auctions require parties to register with a fee anyway. The latter can be implemented
with a simple webpage. Needless to say, for blockchain applications of auctions, the blockchain itself is a
bulletin board, and one can simply use a smart contract for managing the deposits. On-chain auctions
have applications in bootstrapping a virtual ASIC blockchain system [GOTZ21], and in auction-based
minting mechanisms [DDM+20].

The work of Bag, Hao, Shahandashti, and Ghosh [BHSR19] construct an auction scheme called SEAL
that works without any trusted party, and secure against passive adversaries. David, Gentile, and Pour-
pouneh propose FAST [DGP22] that builds on SEAL to provide security against active adversaries. While
FAST also informally argues that the protocol enforces honest behavior among rational bidders, a for-
mal rational security analysis is missing. Like SEAL and FAST, our protocol uses the Anonymous Veto
Protocol (AVP) introduced in [HZ06] as a building block. Our protocol is more efficient than both SEAL
and FAST, and is proven to be secure in the presence of rational adversaries.

1.3 Comparison with other approaches

We now compare with other straightforward approaches, highlight why they do not work and their
shortcomings.

Timed primitives. Timed commitments [BN00,MT19]: These are an extension to standard commit-
ments to have a forced opening phase wherein one can solve a time lock puzzle in order to “open” the
commitment. It may appear that these automatically give sealed bid auctions achieving fairness. However,
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there are several issues with this approach. First, they offer privacy only for a certain period of time.
While this may be sufficient for some applications, our auctions are designed to satisfy long-term privacy.

Covert secure MPC. An MPC protocol is said to be secure against covert adversaries if honest parties
are guaranteed to detect malicious behavior. If we impose monetary penalties on such detected parties,
does it help achieve our goal? It does not. First, such protocols only detect cheating with a constant
probability, and when cheating goes undetected, the adversary learns private inputs. Increasing the de-
tection probability to be all but negligible, will result in higher communication cost in existing covert
secure protocols [GMS08]. In the vanilla covert mode (without identifiable abort) [SSS21], the detection
is not necessarily unanimous among honest parties. Therefore, it is unclear how the penalty is imposed,
and who it is distributed to. One way to fix this is by requiring protocols with identifiable abort/public
verifiability, but these are achieved through the use of expensive TLPs.

However, in general it is non-trivial to modify protocols based on timed commitments and covert
secure MPC to achieve privacy preserving auctions.

Using NIZKs. Using NIZKs on top of the ABP protocol as described in Section 1.1 makes the protocol
inefficient. The languages that need NIZKs (like composition of proofs of knowledge of discrete log or
opening of a Pedersen commitment) admit Sigma protocols. However, concretely, since a NIZK proof
needs to be sent per party per round, this adds to the communication overhead (roughly, 2n`|G| where
n is the number of parties, ` is the bit length of the bid and |G| is the size of the group element used
by the protocol). Prior work on auctions, FAST [DGP22] and SEAL [BHSR19] do make use of NIZKs in
their protocols, but are inefficient. Moreover, even with NIZKs, the resulting ABP-based protocol admits
leakage on the second highest bid. Our approach avoids this overhead, results in a reduced number of
public key operations thus giving better concrete efficiency, and provides full privacy.

2 Preliminaries

Notation. We denote the security parameter by λ. Let G be the description of the group of order q, and
g, g1, h be the generators of G. A function negl is said to be negligible if negl(n) < 1/p(n) for all positive
polynomial functions p(·) and for all n > n0 for some n0 ∈ N. We denote Probabilistic Polynomial Time
by PPT. We also use ≈c to denote computational indistinguishability between two distributions.

2.1 Equilibrium notions

We now describe some game theoretic notations and definitions used in our work. We assume that there
are n parties (P1, . . . , Pn) participating in a game.

Definition 1 (Normal Form Game [Kat08]). A normal form game is a tuple {{Γi}ni=1, {Ui}ni=1}
where for each party Pi, a set of possible actions Γi along with a utility function Ui are specified.

Depending on its private inputs, each party Pi uses strategy πi ∈ Γi where Γi is the space of strategies
available for party Pi, during the game. We also assign utility functions Ui(πi, π−i) to each party Pi.
These functions represent the perceived utility of game for the party. We say that the party Pi prefers
the action πi over action πi

′ if and only if Ui(πi) > Ui(πi
′).

Definition 2 (Dominant Strategy [Kat08]). Given a normal form game:

{{Γi}ni=1, {Ui}ni=1}

we say πi ∈ Γi is a Dominant Strategy if Ui(πi, π−i) > Ui(π
′
i, π−i) for all πi 6= π′i ∈ Γi and for all

π−i ∈ Γ−i.
Such a strategy πi guarantees that the party Pi can accrue best utility among all strategies available to
it. In the above case, π′i is also termed as Dominated Strategy. Dominated strategies are typically avoided
by the rational parties, whereas dominant strategies are pursued.

We also have a weaker notion of Dominant Strategy known as Weakly Dominant Strategy.

Definition 3 (Weakly Dominant Strategy [Kat08]). Given a normal form game:

{{Γi}ni=1, {Ui}ni=1}

we say πi ∈ Γi is a Weakly Dominant Strategy if Ui(πi, π−i) ≥ Ui(π
′
i, π−i) for all πi 6= π′i ∈ Γi and for

all π−i ∈ Γ−i.
In addition, there exists some π−i ∈ Γ−i such that Ui(πi, π−i) > Ui(π

′
i, π−i).
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As can be seen, a Weakly Dominated Strategy can realize the same utility as the Dominant Strategy for
certain strategies.

Definition 4 (Weakly Dominant Strategy Equilibrium (W-DSE) [Nar14]). For a normal form
game {{Γi}ni=1, {Ui}ni=1}, the strategy profile π = (π1, . . . , πn) ∈ Γ is a Weakly Dominant Strategy
Equilibrium if ∀Pi, i ∈ [n], πi is a Weakly Dominant Strategy for party Pi.

A Dominant Strategy Equilibrium, whenever it is present, guarantees that every party has a unique
Dominant Strategy available to it. Thus, each party can realize maximum utility by adopting its Dominant
Strategy. Since such a strategy becomes a preferred choice for every party in the game, the chosen strategy
profile is an equilibrium. In our case, we show that every party has a weakly dominant strategy – which
is to follow the protocol.

2.2 Building Blocks

Here we describe some of the key building blocks that we make use of in our protocol.

Definition 5 (Commitment scheme). Let M, C, R be the message space, commitment space and
randomness space respectively.
A commitment scheme consists of a tuple (Setup,Commit,Open) of PPT algorithms where:

– Setup(1λ)→ pp generates public parameters pp

– Commit(pp;m)→ (c; r) takes a message m ∈ M, randomness r ∈ R and outputs a commitment c ∈ C

– Open(pp, c,m, r)→ B ∈ {0, 1} checks if the commitment c opens to the message m

The security of commitment scheme guarantees two properties: hiding and binding. Informally, the
hiding property guarantees that for any two messages m0,m1, no PPT algorithm can distinguish between
commitments to m0 and m1. The binding property guarantees that no PPT algorithm can open a com-
mitment to two different messages. We use the Pedersen Commitment Scheme that is computationally
binding and perfectly hiding.

Definition 6 (Pedersen Commitment Scheme [Ped92]). The Pedersen Commitment Scheme Com
instantiates the Commitment Scheme defined above as:

– c = Com(m, r) = gmhr where m ∈ Zq, r ←R Zq is chosen uniformly at random and c ∈ G.

– Open(c,m, r) → B ∈ {0, 1} verifies if c is indeed the right commitment for message m with opening
randomness r.

The Vector Pedersen Commitment Scheme allows one to commit to m = (m1, . . . ,mn) ∈ Znq as follows:
given generators h, g1, . . . , gn, such that the discrete logarithm between any two generators is unknown,
c = Com(m, r) = hr

∏n
i=1 g

mi
i .

Oblivious Transfer. We make use of Oblivious Transfer for securely sharing messages between parties.
Let M,R be the message space and randomness space respectively. An OT protocol proceeds as follows
for two PPT parties R and S:

– OT.R1(α, β) → (otr1, state) is invoked by R with inputs α ∈ {0, 1}, randomness β ∈ R. otr1 is the
first message sent by R to S. state denotes the state of protocol.

– OT.S(m0,m1, γ) → ots takes messages m0,m1 ∈ M, randomness γ ∈ R and outputs message to be
sent by S to R.

– OT.R2(ots, state)→ mα uses the message from S and internal state to retrieve the message mα.

The security of OT protocol ensures that the receiver does not learn about m1−α and sender does not
learn about α.

Collision Resistant Hash Function. A collision resistant hash function (CRH) is a function family
for which it is hard to find inputs that map to the same output. More formally, a family Hk is a CRH
if for every PPT A, Prhash←Hk

((x1, x2) ← A(hash)|x1 6= x2, hash(x1) = hash(x2)) ≤ negl(λ) where each
hash maps ` bit strings to k bit strings.

Bulletin Board. The Bulletin Board (BB) is an abstraction for authenticated broadcast channel with
memory. In our protocol, parties can write messages on to the BB for public consumption. The BB is
expected to satisfy following properties: (i) Every message written on the BB is associated to a party
and is readable by all other parties. (ii) The messages written on BB are immutable. A bulletin board
can be realized using blockchains. However, for several real-world use cases of auctions – tech auctions,
sporting auctions, for example – we might be willing to place a minimal assumption on the availability
of a bulletin board (a website, for example).
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3 Auction Protocol

We first describe our security model. We then present some building blocks used by the protocol followed
by a detailed protocol specification.

3.1 Security Model

We consider rational PPT parties that are not viewed as being either honest or corrupt; instead, they
are simply rational and are motivated by some utility function.

We are interested in strategies that are self-enforcing – i.e., each party chooses such a strategy that
there is no incentive to deviate from it. In other words, the choice of strategies is an equilibrium. We
seek a Dominant Strategy Equilibrium for computationally bounded parties for non-adaptive strategies.
However, such a preference to follow the protocol among parties, in itself does not address privacy concerns
of the parties. We need more guarantees from the protocol for addressing privacy. For this, we introduce
the notion of Privacy Enhanced Computational Weakly Dominant Strategy Equilibrium, inspired by the
work of [MNT09].

Definition 7 (Privacy Enhanced Computational Weakly Dominant Strategy Equilibrium).
Let (P1, . . . , Pn) be a set of rational PPT parties with their respective efficiently computable utility func-
tions Ui. Let πi ∈ Γi be the strategy for Pi of following Π. Let π′i ∈ Γi be an arbitrary efficiently computable
strategy.

We say that the protocol Π is a Privacy Enhanced Computational Weakly Dominant Strategy Equi-
librium if the following hold with probability (1− negl(λ)), where λ is the security parameter.

1. Π is a Weakly Dominant Strategy Equilibrium; i.e.,

Ui(πi, π̂−i) ≥ Ui(π′i, π̂−i)

for all arbitrary efficiently computable π̂−i.

2. For every Pi, there exists a simulator SimPi such that the view of Pi in a real execution of the protocol
is computationally indistinguishable from the output of the simulator:

ViewΠPi,real ≈c Sim
Π
Pi

where ViewΠPi,real is the random variable of the transcript of Pi in protocol Π.

3.2 Anonymous Bidding Protocol

In constructing our protocol, we use the Anonymous Bidding Protocol (ABP) to compute the highest
bid value which is a variation of the Anonymous Veto Protocol (AVP) first described in [HZ06] and later
used with modifications in [BHSR19] and [DGP22].

ABP runs for l rounds – where l is the number of bits in the binary representation of the bid values.
The protocol proceeds as below:

– Each bidder Pi participates in ABP by inputting one bit from their bid value at a time. This continues
until he is in the race. If in a round, there is a bidder who inputs a 1 while the party Pi has 0 in that
index, he drops out of the race at the end of that round.

– A party who has lost out on the race, continues to participate in the protocol but only contributes a
0 to the rest of the computation.

– Any round 1 ≤ j ≤ l which has at least one bidder bidding a 1 bit is considered as the decider round.

– Thus, a bidder Pi uses the bid dij during round j as

dij =


0, if Pi is not in race

or Pi bid 0 in any of previous decider rounds.

bij , if Pi is in the race

or Pi bid 1 in all previous decider rounds.
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– Logical OR of all individual bids used in jth round is evaluated to be the jth winning bit. i.e.,

bwj =

n∨
i=1

dij

Observe that, decider round j has the corresponding winning bit bwj = 1.

– Winning bid bw is computed as bw = bi1|| · · · ||bil
We make use of this protocol for computing the highest bid value. Although the ABP protocol has

been described above using raw bits, for the actual computation, raw bits are not used. Instead we make
use of encoded bits that hide the actual bit values – thus preserving privacy.

3.3 Bit Encoding Scheme

In order to ensure the privacy of the bits used during computation, we require the bits to be encoded
such that no PPT party can distinguish between the encoding of 0 and encoding of 1. For this we make
use of Bit Encoding Scheme (BES). This scheme is adopted from [BHSR19]. It follows from the DDH
assumption holding in the group G that the distributions of 0-bit code and 1-bit code are computationally
indistinguishable. The encoding and corresponding computation on the coded bits are performed as
follows:

1. Each bidder Pi, i ∈ [n] allocates private keys xij , rij ←R Zq, i ∈ [n], j ∈ [l]. Public keys Xij = gxij

are published to the bulletin board.

2. Once public keys from all bidders are available, each bidder computes:

Yij =

∏i−1
k=1Xkj∏n
k=i+1Xkj

3. Each contributed bit 1 dij is encoded as : Bij = BESEncode(dij) where

BESEncode(bij) =

{
0-bit code : Y

xij

ij if dij = 0

1-bit code : grij if dij = 1

4. The jth winning bit is computed as the logical-OR of individual bidding bits bij for the jth position:
bwj =

∨n
i=1 bij . This is computed using the bit codes as follows:

bwj =

{
0, if

∏n
i=1Bij = 1

1, if
∏n
i=1Bij 6= 1

We refer the reader to [BHSR19] for proofs establishing the indistinguishability of the distributions of
0-code and 1-code which follows from DDH.

3.4 Our Protocol

In this section, we describe the protocol Π for running a First Price Auction. For the sake of simplicity,
we assume that the bid values are all distinct. However, we can easily extend our protocol to include
a simple tie-breaking mechanism. We also make use of fixed value of security deposit amount of D for
all parties. Since most practical auctions have a reserve price, that is the minimum bidding amount, the
deposit D can be chosen to be equal to the reserve price of the auction. Of this deposit, D/2 is used
exclusively in the last phase of the protocol where the potential winner (who claims to have the winning
bid) engages with the evaluator to verify that he does indeed have the winning bid. The remainder of the
deposit is something that any party may forfeit if they are caught cheating in other parts of the protocol.

Protocol Specification The protocol for running first price auctions is specified below. We make use
of a maliciously secure OT protocol ΠOT : (OT.R1,OT.R2,OT.S).

We note that selecting public parameters(pp) in our protocol does not require any central authority or
use of a separate protocol. Our pp – comprising of a DDH hard group G, generator g – can be generated
using off-the-shelf parameters as recommended by NIST (e.g. secp256k1 elliptic curve). Other generators
of the group can be chosen by hashing the generator g.

1 We denote by dij the bit that a party Pi contributes or uses in round j; this may or may not be equal to bij
which is P ′

i s true bid value in index j
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Setup Phase:

1. Each party Pi is initialized with its private valuation of auctioned item vi, bid value bi.

2. Each party Pi registers for the auction by depositing its security deposit D. In turn Pi receives the
public parameters pp = (q,G, g, g1, h).

3. The party Pi samples the private keys xij , rij ←R Zq, j ∈ [l]

4. Pi generates a CR hash for the concatenated private randomness

– For i 6= e, ρi = xi1|| · · · ||xil||ri1|| · · · ||ril||γi1|| · · · ||γil. Note that xijs and rijs are used to encode
bit 0 and bit 1, respectively. γijs are used as randomness for generation of OT messages by OT
sender Pi.

– For i = e, ρi = xi1|| · · · ||xil||ri1|| · · · ||ril||β11|| · · · ||βnl. Again, xijs and rijs are used to encode
bit 0 and bit 1, respectively. βkjs are used as randomness for generation of OT messages by OT
receiver (evaluator Pe) while interacting with the party Pk.

– Hi = hash(ρi)

5. Party Pi chooses Ri ←R Zq. Computes commitment (as per Definition 6) ci = Com(bi, Hi, Ri) =

gbigHi
1 hRi . These commitments are written to BB.

6. Writes the public keys Xij = gxij for 1 ≤ j ≤ l to BB.

Computation Phase

1. For j ∈ [l], each party Pi chooses his contributing bidding bit dij following ABP as specified in §3.2.
Pi generates the bit codes Bij ← BESEncode(dij) (with either xij or rij as appropriate).

2. Pe plays the role of the Receiver in pair-wise OT with all other parties Pi, i 6= e, to obtain the bit
codes as follows for rounds j = 1 to l:

– Pe sets αj = dej , βij ←R Zq and invokes OT.R1(αj , βij)

– OT sender Pi sets M
(0)
ij = Bij , M

(1)
ij ←R G. Samples γij ←R Zq. Pi invokes

OT.S
(
M

(0)
ij ,M

(1)
ij , γij

)
to obtain C

(0)
ij , C

(1)
ij , which are written to BB.

– When αj = 0, Pe retrieves the bit code Bij , i 6= e from OT using OT.R2(C
(0)
ij ), computes the bit

bwj as mentioned in BES description §3.3 and writes the same to BB. If the bit bwj = 0, Pe also
writes the bit-codes for each bidder to the BB as a proof of correct computation of 0-bit.

– When αj = 1, Pe writes bwj = 1 to BB.

After l rounds, the protocol proceeds to Verification Phase.

3. If any party Pi fails to write its messages or if Pe doesn’t output the bit bwj to BB within τ time
units, they are considered to have aborted and protocol proceeds to terminate and the deposits are
redistributed.

4. After l rounds, each party constructs the value of winning bid as bw = bw1||bw2|| . . . ||bwl.
We denote the evaluator by Pe in the specification.
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Verification Phase – Winner verification

1. The party Pw claims auction by opening its commitment. Pw writes Rw to BB.

2. If winner is not the evaluator , Pw opens its OT sender randomness γwj for all j ∈ [l] and writes the
same to BB.

3. Pw writes all its private keys xwj , rwj for rounds j ∈ [l] to BB.

4. Evaluator verifies validity of private randomness:

Hw
?
= hash (xi1|| · · · ||xil||ri1|| · · · ||ril||γi1|| · · · ||γil)

5. Evaluator uses the OT sender randomness γwj and C
(0)
ij to retrieve the bit codes used by Pw during

the computation phase.

6. Evaluator also uses the private keys shared by Pw to compute the bit codes and checks if they match
with retrieved bit codes. For each j ∈ [l]:

if bwj = 1 : Bij = grij

if bwj = 0 : Bij = Y
xij

ij ,where Yij =

∏i−1
k=1Xkj∏n
k=i+1Xkj

and Xkj is public key for round j posted by parties Pk.

If there is a match, confirms that Pw is the winner.

7. If there is discrepancy in some round j, Evaluator flags the same against Pw. In case there is any
rebuttal from Pw, then evaluator opens its OT sender randomness βwj during round j to prove that
Pw is indeed cheating. In such a case, Pw loses its entire deposit D such that, D/2 is redistributed
among remaining parties and D/2 is paid out to evaluator to compensate for its loss of information
during rebuttal.

8. In case evaluator Pe is the winner, Pe opens its OT first message randomness βij for all i ∈ [n] \ {e}
to prove that winning bits are same as those used as choice bits of OT.

Note that if cheating is detected by any of the parties, the protocol terminates and the deposits are
appropriately redistributed. If there is no cheating, the protocol terminates and Pw wins the auction.

Verification Phase – No Claim verification

1. If Pw doesn’t announce itself, each party provides proof of not winning for the last decider round j
to prove that it has used 0-bit code in that round.

(a) Each party Pi writes its secret key xij used to generate the 0-bit code to BB.

(b) Evaluator Pe opens its OT first message to prove that it has used choice bit as 0 during round j.
Pe also opens its OT receiver randomness βij for each party during round j.

(c) Party Pi, i 6= e opens randomness used for sending OT messages, γij . This helps to reconstruct
the bit code. These values are written to BB.

(d) Pi’s proof can be verified as: Compute M
(0)
ij , use the secret key xij to generate the 0-bit code Bij

and check if Bij
?
= M

(0)
ij . Pi is deemed cheating if the equality doesn’t hold.

2. If every party Pi is able to send correct proof of not-winning, this means, the computed value bw is
incorrect. This can happen only when Pe has cheated. Thus, in such a case, Pe is considered to be
cheating. The protocol terminates and the deposits are appropriately redistributed.

Fig. 1: Specification for First Price Auction Protocol Π
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4 Correctness of Protocol

In this section, we will show that the protocol specified in Fig. 1 correctly computes the winning bid value.
The correctness proof is adopted from [BHSR19]. However, we have simplified the argument and notation
as per our protocol. First we show that each round of the protocol correctly computes the logical-OR
of the bits supplied by the individual parties. Then we establish that the combined computation of all
rounds indeed computes the highest bid.

Lemma 1. For each round j ∈ [l], the protocol specified in Fig. 1 correctly computes the logical-OR of
the bits supplied by each bidder for that round.

Proof. Consider an arbitrary round j of the protocol and an arbitrary party Pi. At the beginning of
the round, each party Pi and the evaluator compute dij to be used during the ABP computation. The
computation is done as follows:

– If dij = 1, Pi samples rij ←R Zq.
Generates the 1-bit code as Bij = grij .

– If dij = 0, Pi computes Yij =

∏i−1
k=1Xk∏n
k=i+1Xk

.

Generates 0-bit code as Bij = Y
xij

ij .

Each round starts with the evaluator initiating OT with the bidders. Recall that the evaluator uses the
bit dej as per the ABP to be its choice bit. Accordingly, we will consider two cases.

1. Evaluator has choice bit as 1:
Pe in this case recovers a random group element as Pi’s message for each i ∈ [n − 1]. Since dej = 1,
Pe writes bwj = 1 on to BB.

2. Evaluator has choice bit as 0:
Pe recovers the bit codes from each party and computes the winning bit as:

bwj =

{
1, if

∏n
i=1Bij 6= 1

0, if
∏n
i=1Bij = 1

Observe that if there exists at least one party Pi which has dij = 1 and thus shares a 1-bit code Bij
with evaluator , the product

∏n
i=1Bij 6= 1 with overwhelming probability. Thus, when at least one

of the parties has a 1 bit, the winning bit is computed as 1 which is indeed a logical-OR of the bits
used by bidders in jth round. On the other hand, if every party shared a 0-bit code during the round
j, then

∏n
i=1Bij = 1 and hence the output bit is computed correctly as 0.

Theorem 1. The auction protocol specified in Fig. 1 computes the highest bid value correctly when all
parties follow the protocol.

Proof. Let Pw be the winning party with winning bid bw. Let the l bits output by the protocol be
(win[1], . . . , win[l]). We now show that winning bit in jth position is same as the computed bit in jth
round. I.e., win[j] = bwj ∀j ∈ [l].

Letm be the first decider round of the computation. According to the protocol, win[m] =
∨n
i=1 bim = 1

and for all j ∈ [1,m− 1], win[j] = 0. Note that this exactly corresponds to the first m bits of the winning
bid as well. I.e., the first (m− 1) bits of winning bid value are all 0 and mth bit is 1. If this was not the
case, then bwj = 1 for some j < m. Then Pw would have used 1-bit for computation of logical-OR during
jth round, thus obtaining win[j] = bwj = 1. Then, j would be the first decider and not m contradicting
our assumption above.

For the subsequent iterations, all bidders who bid 0-bit codes during the mth iteration would continue
bidding only 0-bit codes for rest of the protocol. Hence, they would not contribute to the winning bid
value. On the other hand, all bidders who bid 1-bit code during mth iteration would bid their actual bid
value for other iterations. In particular, winning bidder would always bid 1-bit code during each of the
decider rounds.

Let dij denote the bid value used by the bidder Pi during jth iteration. Then we have

dij =

{
0, if bim = 0

bij , if bim = 1
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Thus, we need to prove that in any iteration j > m if win[j] =
∨n
i=1 dij = 1, then bwj = 1 and if

win[j] =
∨n
i=1 dij = 0, then bwj = 0. We prove it by method of induction on the iteration number j after

m.

For the base case, consider the iteration j = m+ 1. In this round evidently,
∨n
i=1 bi,m+1 = 1 whenever

bw,m+1 = 1. On the other hand, when bw,m+1 = 0, it must be the case that all other bid bits are also
zero and hence

∨n
i=1 di,m+1 = 0. If this is not the case, there exists a party Pk who has bk,m+1 = 1 and

hence with higher bid than Pw – which contradicts our assumption.

For the induction step, let us assume that the assertion holds for all j ∈ [1, k − 1], for some arbitrary
m+ 1 ≤ k ≤ l. We need to prove that win[k] = bwk. Observe that for iteration k,

win[k] =

n∨
i=1

dik

=

 ∨
i∈[n]\{w}

dik

∨ dwk

=

 ∨
i∈[n]\{w}

dik

∨ bwk

Here we have used dwk = bwk since winner Pw would have used 1-bit code for the round m and other
decider rounds till (k − 1)th round. The win[k] trivially evaluates to 1 whenever bwk = 1. So let us
consider the case when bwk = 0.

Claim. bwk = 0 =⇒
∨
i∈[n]\{w} dik = 0

Proof. Towards contradiction, assume that bwk = 0, but∨
i∈[n]\{w} dik = 1.

This means, ∃Ps, s ∈ [1, n] such that bsj = 1 and Ps has been bidding 1-bit codes during all decider
rounds. This implies that Ps’s bid is higher than that of Pw. This follows because, from the claim’s
assertion, kth bit for bw is 0 whereas kth bit of bs is 1. This means, Pw is not the winner of the bid, but
Ps is the winner. This is a contradiction, since we have assumed that Pw is the winner of bid. Thus it
follows that bwk = 0 =⇒

∨
i∈[n]\{w} dik = 0.

This completes the inductive argument and we have also shown that bw is indeed the highest bid value.
Hence we conclude that the protocol correctly computes the winning bid value for all 1 ≤ j ≤ l.

5 Security against Rational adversaries

The security of our construction relies on the DDH assumption as well as security of the following building
blocks: a) Security of the commitment scheme Com, b) Malicious security of the OT protocol ΠOT and
c) Collision resistance of the hash function hash.

Our goal, informally, is to show that following properties hold:

1. Equilibrium (Part (1) of Definition 7). We first show that the dominant strategy is for parties to
follow the protocol. This property relies on the security of our ABP encoding scheme (DDH), security
of Pedersen commitments, collision resistance of the hash function as well as malicious security of the
OT protocol .

2. Simulation (Part (2) of Definition 7). When parties follow the protocol, we show privacy using the
simulation paradigm. Specifically, we show the existence of a simulator such that the view of the parties
in the real world is indistinguishable from that output by the simulator. Here we use hiding property
of Pedersen commitments, only semi-honest security of the OT protocol and indistinguishability of
ABP encoding scheme (DDH).
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5.1 Existence of Weakly Dominant Strategy Equilibrium (weak DSE)

We begin by setting some notation.

– bi: Bid value of party Pi.

– vi: Perceived private valuation of the auction item by Pi. Note that, motivation for Pi to participate
in auction requires vi > bi.

– ui : Γ×{0, 1}∗ 7→ R is the monetary utility function of party Pi mapping a strategy and all information
on the BB to a value.

– zi : Γ × {0, 1}∗ 7→ R is the information utility function of party Pi mapping a strategy and all
information on the BB to a value.

– Ui : Γ × {0, 1}∗ 7→ R is the total utility function.

– C: Set of parties caught deviating.

A party’s utility function considers the gains or losses incurred by the party because of its actions. In
addition to monetary considerations, parties are also curious to learn information about the bid values
of other parties. For this, we consider a information utility function zi. The total utility is a linear
combination of the two components. Parties can have arbitrary privacy concerns (and value information
differently). However, we assume certain restrictions on zi, like not valuing “less” information higher than
learning “more” information. These are reasonable, since it does not make sense to value learning, for
instance, first bit of a certain party more than learning the first two bits of the same party. Similarly,
parties do not value positively leaking their own information. Finally, we assume that parties value the
monetary component of the utilities higher than the information component. That is, primarily, they
want to win the auction; secondarily, they are concerned about revealing their information and learning
information about other parties’ inputs.

We now consider the monetary utility function of an individual party Pi from participating in Π:

ui =



= vi − bi max(b1, . . . , bn) = bi and Pi doesn’t deviate

= 0 max(b1, . . . , bn) 6= bi and Pi doesn’t deviate

= −D/2 Pi deviates and gets caught

= −D Pe identifies Pi’s cheating

but Pi rebuts and loses

= D/2 if i 6= e, Pe identifies cheater.

But cheater does not rebut

= D|C|
2(n−|C)| Pi doesn’t deviate, C is set of parties caught

deviating

In an ideal execution with a trusted party, each party Pi learns the winning bid value and the identity
of the winning party. Let this information be valued at Zi ∈ R+ by Pi. By correctness of our protocol,
the information utility of the honest strategy of following the protocol is Zi. We show that a deviating
bidder never realizes more utility than when it is not deviating (Lemmas 3, 2 for monetary utility, and
Lemma 4 for information utility).

Remark 1. We emphasize that an evaluator is also a bidder in the auction. Hence, all arguments in the
security proofs below are applicable to evaluator as well. Wherever necessary, the role of evaluator and
its impact on security are analyzed separately.

5.2 Strategies for Rational Parties

At the beginning of each round, a party can evaluate its utility based on the outcome of previous rounds
and choose a strategy adaptively. During each round of the protocol, a party can choose either a 0-bit
code, a 1-bit code or choose to abort based on its private random coins. A winning bidder not playing
evaluator role has a deviating strategy incorrectRebuttal. Additionally, if a party is also the evaluator
(Pe), it can choose to compute the winning bid correctly or incorrectly. Since we are not considering any
collusion among the parties, such a choice would be independent of choices made by other parties. As a
result, we have following set of strategies available to the parties at the beginning of each round:

Γi = {s0→0, s0→1, s1→0, s1→1, incorrectRebuttal, abort},∀i ∈ [n] \ e
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Γe ={s0→0, s0→1, s1→0, s1→1, abort, correctCompute,

incorrectCompute, correctVerify, incorrectVerify}

where (i)sa→b denotes that the protocol requires bidder to use a bit a and bidder uses bit b. (ii)abort: The
bidder stops participating in the protocol. (iii) correctCompute: The evaluator chooses to compute the win-
ning bid value correctly. (iv) incorrectCompute: The evaluator chooses to compute the winning bid value
incorrectly. (v) correctVerify: The evaluator chooses to verify winner’s claim correctly. (vi) incorrectVerify:
The evaluator chooses to verify winner’s claim incorrectly. Among these s0→0, s1→1, correctCompute
and correctVerify correspond to honest behavior or no deviation; and, s0→1, s1→0, incorrectRebuttal,
incorrectCompute and incorrectVerify correspond to deviating strategies.

We can specify the strategies chosen by a party Pi for the entire auction as πi = (πi1, . . . , πil). For each
round j ∈ [l], Pi adaptively chooses its strategy based on the outcome of previous j−1 rounds and its bid
value. Let πij denote the strategy used by Pi while following the protocol during jth round and π′ij denote
a deviating strategy. Then we have πij ∈ {s0→0, s1→1} and π′ij ∈ {s0→1, s1→0, incorrectRebuttal, abort}.
Because of its special role, the evaluator Pe has two additional strategies available to it apart from the
ones available to it as a bidder. Hence,

πej ∈ {s0→0, s1→1, correctCompute, correctVerify} and

π′ej ∈ {s0→1, s1→0, incorrectCompute, abort, incorrectVerify}

For each party Pi, the choice of strategies by all other parties in the auction is denoted by π−i. To
emphasize the fact that these choices by other parties could be either honest or cheating strategies, we
denote it by π̂−i. Every rational bidder’s desire is to achieve their maximum utility. This means that,
rational bidders will avoid any strategy that will push them out of the race. Once a party does drop out
of the race too, it will avoid strategies which would further reduce its utility. (This, for example, is sure
to happen if the party cheats and is detected.) In the following, we will show that honestly following the
protocol is the Weakly Dominant Strategy. Utility realized as a result of any deviation is no better than
what can be realized by following the protocol.

We want to establish that for a rational party, any deviation is irrational; i.e., certainly not utility
enhancing and potentially utility diminishing. We will show this for the two deviations in next two
Lemmas. Firstly observe that, if any bidder Pi aborts, the bidder gains nothing from its participation in
auction. Moreover, the bidder ends up forfeiting its security deposit; thus having a net negative utility.
Hence abort as a strategy is always utility decreasing and dominated by non-deviating strategies (either
s0→0 or s1→1). Similarly the strategy incorrectRebuttal is not rational either. For this, consider a party Pi
who claims win but is correctly caught cheating by the evaluator. If Pi chooses to rebut incorrectly, the
opening of OT first message randomness by evaluator would certainly implicate Pi making him lose full
deposit D. On the other hand, Pi can choose to accept the cheating and only lose deposit of D/2. Thus
this strategy would not be adopted by any rational party.

We therefore need to focus our attention on only two strategies for a regular party Pi: s1→0, s0→1.

Proof while using Strategy s1→0 Consider an arbitrary bidder Pi who has followed the protocol till
some arbitrary round j during the computation phase and is still in the race. Suppose that Pi has the
bit bij = 1; i.e., Pi needs to use 1-bit code for computation during the jth round. Suppose Pi’s strategy
during the round j is s1→0 – i.e., uses a 0-bit code instead of 1-bit code during round j. For such a
deviation we establish the following result.

Lemma 2. For any PPT party Pi, let πi be the honest strategy profile, and π′i be the strategy profile in
which Pi deviates using s1→0 in some round. Then, assuming that DDH assumption holds in G, Com is
a secure commitment scheme, and hash is a CRH, the strategy πi weakly dominates the strategy π′i for
all i ∈ [n] during all rounds as per Definition 4.

Proof. Consider the round j where Pi deviates for the first time and uses the deviating strategy s1→0.
Let π̂−i denote strategies of parties other than Pi. Let us consider following cases on the winning bid at
the end of the protocol

1. CASE: Winning Bid = bi. It is easy to see that, regardless of his subsequent strategies, Pi will
be detected as a cheating party and will have negative utility. If he chooses to not declare himself
the winner, he will be caught during proof of not winning (because we assumed unique bids). If he
declares himself the winner, he will get caught in his post-win verification protocol he runs with the
evaluator. There’s of course a chance that Pi is the evaluator i.e., Pe. In this case, any cheating is
easily detected by as the evaluator will not be able to provide a proof of winning.
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2. CASE: Winning Bid 6= bi. Here we need to consider a few cases:

(a) Pi was actually the highest bidder. In this case, Pi would have won the auction. It is easy to see
that his utility in this case is strictly less than what it would have been if he was honest.

(b) Pi was not the highest bidder and someone gets caught for cheating. In this case, either Pi also
gets caught for cheating or he doesn’t. In the former case, his utility has diminished and in the
latter case, his utility is no more than what it would have been if he was honest.

(c) Pi was not the highest bidder and someone else wins the auction. In this case, his utility is no
more than what it would have been if he was honest.

To argue that the protocol is a weakly dominant strategy, we need to show that there exists a
strategy profile for other players, where P ′i s utility from following the protocol is strictly more than
not following it. To see this, consider the strategy profile π̂−i wherein every party other than Pi uses
the strategy s1→0 during every round. In this case case if Pi chooses to be honest, Pi is guaranteed
to win. On the other hand, Pi’s deviation would result in either losing the auction or getting caught
to lose security deposit. Thus in this case, ui(πi, π̂−i) > ui(π

′
i, π̂−i).

Remark 2. What this lemma demonstrates is that no party has monetary incentive to deviate using s1→0

as their first deviating strategy. Going forward, we will show this for all strategies and this will effectively
mean that no party has a monetary incentive to deviate.

Proof while using Strategy s0→1 Now consider an arbitrary bidder Pi who deviates for the first time
in round j and uses the strategy s0→1. We show that such a strategy is dominated by the honest strategy.

Lemma 3. For any PPT party Pi, let πi be the honest strategy profile, and π′i be the strategy profile in
which Pi deviates for the first time in round j and uses s0→1. Then, assuming that DDH assumption
holds in G, Com is a secure commitment scheme, and hash is a CRH, the strategy πi weakly dominates
the strategy π′i as per Definition 4.

Proof. Let π̂−i denote strategies of parties other than Pi. Consider the round j where Pi has decided to
use the deviating strategy s0→1 for the first time. We will show that irrespective of the strategic choices
of other bidders, Pi cannot realize utility better than what it would have done without deviation.

The first observation is that whenever a party plays this strategy, he will forgo his chances of winning
the auction. Even if his “fake” bid is the winning bid, he will never be able to prove his claim. Therefore,
in this case, Pi will either get caught cheating or he will go under the radar, i.e., undetected. With the
former, his utility diminishes compared to what it would have been if he had played honestly. With the
latter, his utility is either the same as what it would have been if he had been honest (if his “true” bid
was never the highest bid) or it diminishes (if his “true” bid was actually the highest bid).

To show that following the protocol is a weakly dominant strategy, we need to show that there exists
a strategy profile for other players, where P ′i s utility from following the protocol is strictly more than
not following it. To see this, consider the strategy profile π̂−i wherein every party other than Pi uses
the strategy s1→0 during every round. In this case case if Pi chooses to be honest, Pi is guaranteed to
win. On the other hand, Pi’s deviation would result in either losing the auction or getting caught to lose
security deposit. Thus in this case, ui(πi, π̂−i) > ui(π

′
i, π̂−i).

Remark 3. To summarize, this lemma demonstrates that no party has monetary incentive to deviate
using s0→1 as their first deviating strategy.

We now show that there is no monetary incentive to deviate for Pe.

Lemma 4. For PPT evaluator Pe, let πe be the honest strategy profile, and π′e be the strategy profile in
which Pe deviates in round j for the first time and uses incorrectCompute in some round during computa-
tion phase or using incorrectVerify during verification phase. Then, assuming that DDH assumption holds
in G, Com is a secure commitment scheme, ΠOT is a malicious secure OT implementation and hash is
a CRH, the strategy πe dominates the strategy π′e. where π̂−i denotes arbitrary strategies of parties other
than Pi.

ue(πe, π̂−e) ≥ ue(π′e, π̂−e) ∀π̂−e ∈ Γ−e

Proof. We first show that a rational evaluator Pe who deviates for the first time in round j and adopts
the strategy π′ej = incorrectCompute (to compute an incorrect winning bid value) could have used
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correctCompute as the strategy and realized at least the same or better utility.

In our protocol, the evaluator Pe has a special role to play – that is to compute the winning bid value
and also to verify winner’s claim. At the end of the computation phase, suppose Pe declares the winning
bid to be some value br 6= bw where bw is the value of winning bid when the evaluator does not deviate.
Note that bw may be the result of some other parties deviating. Let us consider the following cases:

1. bw > br: Then there exists party Pw such that there is at least some bit position j ∈ [l] such that
bwj = 1 but brj = 0. Since Pe is expected to provide the 0-bit codes of each party whenever the
computed output bit is 0, this means, Pe would have to compute the 0-bit code for Pw during round
j. However, since Pe does not know the private key for Pw, this would be computationally infeasible
for a PPT party Pe – assuming DDH assumption holds in the group G. In such a case Pe would end up
losing its deposit with overwhelming probability. On the other hand, if Pe had followed the protocol
without deviation, then its utility would have been non-negative. Thus, ue(πe, π̂−e) > ue(π

′
e, π̂−e)

2. bw < br: This means, br > bi, ∀i ∈ [n]. Suppose that bw and br differ in jth bit. Consider a case
where no party (other than the evaluator ) deviates after round j. For all rounds after j, every bidder
would be using a 0-bit code for computation. Thus the protocol would proceed in such a way that
during the last decider round, all other parties would have used 0-bit code. Thus, every party would
be able to produce a not-winning proof. As per the protocol, since all Pi (i 6= e) have produced a
not-winning proof, Pe stands implicated for wrong computation. Pe ends up losing its deposit.
On the other hand if any other party cheats after jth round, that party would get caught and Pe
gets paid. However, Pe would have anyway got paid even if Pe had followed the protocol without
deviation. Hence, ue(πe, π̂−e) ≥ ue(π′e, π̂−e).
Thus, any strategic choice by Pe for incorrect computation of winning bid is dominated by the strategy
to compute correctly.

Now let us consider the case when Pe uses strategy incorrectVerify during the verification phase. Recall
that during verification phase Pe is engaged in an interaction with the winning party Pw to verify latter’s
claim. Pe starts by using the private randomness presented by the winning party Pw to compute the bit
codes for each round j ∈ [l]. Then Pe uses the OT randomness shared by Pw to retrieve the bit codes
actually used by party Pw during each round.

Now consider case when Pe claims that Pw’s bit codes do not match. If Pe’s claim is correct, Pw
would be identified as cheating. On the other hand, if Pe’s claim is incorrect, then Pw would refute the
claim. In that case Pe would be forced to open its OT first message randomness and the choice bit βwj
corresponding to party Pw during round j. Recall that, during round j, Pe would have already written
the OT first message for Pw to BB. Now if Pe is able to generate OT randomness such that it corresponds
to the same OT first message, Pe can use the it to retrieve both messages of sender. This would violate
security of OT. Since we are assuming a maliciously secure OT implementation, Pe can not succeed,
except with negligible probability. As a result, Pe would get caught cheating and lose its deposit.
On the other hand, if Pe had not deviated, its utility would have been non-zero. Thus, ue(πe, π̂−e) >
ue(π

′
e, π̂−e).

Remark 4. To summarize, this lemma demonstrates that the evaluator has no monetary incentive to
deviate using incorrectCompute or incorrectVerify as her first deviating strategy. (We already demonstrated
that the evaluator has no monetary incentive to deviate using s0→1, s1→0 as the first deviating strategy.)

Remark 5. We can argue that our protocol ensures fairness. Observe that evaluator can learn the output
(i.e. the highest bid value) and decide not to write the same to BB – thus denying the output to other
parties. However, such an action by evaluator would be considered as abort by the protocol and as a
result evaluator would forfeit its deposit. Again, assuming a rational evaluator, fairness is ensured.

Remark 6. Combining the above lemmas, we have demonstrated that no party has a monetary incentive to
deviate using strategies s0→1, s1→0, incorrectCompute and incorrectVerify as their first deviating strategy.
They may offer information utility which we discuss next.

5.3 Information Utility

Recall that the information utility realized by Pi as a result of the protocol run without any deviation is
zi(πi, π−i) = Zi. In the following, we show that this is the maximum information utility that any bidder
can realize, unless the party Pi is willing to loose monetary utility.
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Lemma 5. For any PPT party Pi, let πi be the honest strategy profile, and π′i be the strategy profile in
which Pi deviates using s0→1 or s1→0 in some round. Let zi(π

′
i, π̂−i) be the information utility gained by

Pi using the deviations. Then, assuming that DDH assumption holds in G, Com is a secure commitment
scheme, and hash is a CRH, the information utility realized by Pi is no more than what it would have
realized without deviation; i.e.,

zi(π
′
i, π̂−i) ≤ Zi

(unless Pi diminishes his monetary utility), where π̂−i denotes arbitrary strategies of parties other than
Pi.

Here is a high-level idea of the proof. We make use of the fact that deviation using strategy s1→0 is
not rational since party has to forego auction to learn the information. On the other hand, any deviation
with s0→1 masks the bits used by other bidders. Thus we show that any party learns no more information
as a result of deviation than it would have learnt by following the protocol. We also argue that the not-
winning-proofs provided in a scenario resulting from adversarial action do not divulge any information
about the bid values.

Proof. Suppose that the protocol had run through without any deviation. Let j′ be last decider round
in such run. In other words, round j′ would be the last one in which the winner would have a 1-bit.
Moreover, all rounds after j′ would have every party using a 0-bit code. The information utility realized
by a party Pi in such a case is, by definition Zi.

Firstly we would like to consider the strategy s1→0. If any party Pi uses this strategy in some round
j, then bit used by Pi would have no impact on the computation. As a result, the jth output bit would
be same as the jth bit in winning bid value. Hence, Pi doesn’t learn anything extra. However, in case
Pi had the highest bid value, then Pi would end up learning jth bit of the second highest bidder. But
for this, as shown in Lemma 2, Pi has to relinquish winning the auction. Since we have assumed that
every rational party would value winning auction to be higher value than learning about others’ bids, this
strategy would not be considered by any rational party for learning information about other bid values.

Now we consider that Pi cheats between the rounds 1 and j′ by using the strategy s0→1. For each
such deviation, the round output would be a 1-bit independent of bits used by any other party, thus
effectively masking inputs from all other parties. As a result, the information utility that can be realized
by party Pi can not be more than Zi.

If any party deviates beyond round j′, the output would again be 1 for that round – and importantly,
independent of bid values of any other party. This follows because for all rounds beyond j′, every party
uses 0-bit codes. Thus these deviations do not yield any extra information at all. Thus we conclude that
the information utility zi that a party Pi can realize from the computed output cannot be more than Zi.

Now consider the winner of auction Pw who proves to the evaluator that it has used the correct bit
codes during computation. If Pw has deviated during any round, the bit codes do not match and as a
result the evaluator would identify Pw’s cheating. But Pw might attempt to learn Pe’s bits by rebuttal.
However, as argued in section 5.2, this would incur monetary loss for Pw and hence not pursued.

We will also argue that, Pi does not gain any information from the proofs of not winning which are
sought from all parties when there are no claimants for auction. This situation arises when the output is
corrupted as a result of deviations and does not match any party’s bid value.

Suppose that j 6= j′ is the last decider round, because of deviations. Since the output is corrupted
because of deviations, no party claims the auction and everyone is asked to provide proofs of not-winning.
For this, parties follow the protocol as described in Figure 1. Recall that, each party chooses its private
key and OT random values independently, uniformly at random for each round. Hence, revealing these
values for the round j as part of not-winning-proof does not divulge any information regarding the bits
in position 1 to j − 1 or j + 1 to l (latter are all 0).

Moreover, as a proof of not-winning, each party proves that it had used a 0-bit code during the round
j. But this does not reveal any information regarding the actual bit in position j for the party – since
the 0-bit used during computation could be either the actual bit corresponding to bid value or it could
be 0-bit because the party had fallen out of race. Thus the party Pi does not gain any extra information
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from the proofs of not-winning shared for the last decider round j.

For the remaining rounds j + 1 ≤ k ≤ l, the computed winning bits would be 0. A bidder could have
used 0-bit for these rounds since it had a valid 0-bit for these positions in bid value. Or bidder might be
using 0-bits since it has fallen out of race. Hence Pi would not learn anything extra.

Since we have considered an arbitrary bidder Pi, this holds for all Pi, i ∈ [n]. In summary, no PPT
party Pi can realize any more information as a result of deviations than what it would have realized
during an honest run:

zi(π
′
i, π̂) ≤ Zi

The equality holds in cases when the winner uses 1-bit code during the same rounds when Pi deviates.
Thus the claim of lemma follows.

Putting Together Proof of Rational Security. Lemmas 2, 3, 4 and 5 show that no rational party
will deviate from the protocol. Together, these establish Part (1) of Definition 7.

Theorem 2. Let Pi, i ∈ [n] be any PPT party participating in the first price auction, the protocol Π
described in Figure 1. Then, assuming that DDH assumption holds in G, Com is a secure commitment
scheme, ΠOT is a malicious secure OT implementation and hash is a CRH, the protocol Π is a weakly
dominant strategy equilibrium as per Definition 4.

Proof. For party Pi, let πi denote the strategy to follow the protocol, and π′i denote any arbitrary efficient
deviation. Let π̂−i be arbitrary efficient strategies of other parties. From Lemmas 2, 3, and 4, we have
∀π′i ∈ Γi,

ui(πi, π̂−i) ≥ ui(π′i, π̂−i)

From Lemma 5 we have,

Zi ≥ zi(π′i)

It follows that, for all Pi, Ui(πi, π̂−i) ≥ Ui(π
′
i, π̂−i),∀π′i ∈ Γi and ∀π̂−i ∈ Γ−i. We have that πi is a

weakly dominant strategy for Pi for all i. Thus, Π is a Weakly Dominant Strategy Equilibrium.

5.4 Privacy Enhanced weak DSE

Given the equilibrium from Theorem 2, to argue privacy, it suffices to show that nothing beyond the
output is learned by parties who are non-deviating. We show security of our protocol against such semi-
honest parties who follow the protocol but might attempt to learn more information from the protocol
transcript, thus establishing Part (2) of Definition 7. We use the ideal world – real world paradigm.

We first present the ideal functionality, followed by the description of a simulator. We then show
that the view of a semi-honest Pk in a real run of protocol is indistinguishable from the output of the
simulator. We denote by ViewΠPk,real, the distribution of the transcript of the protocol.

Ideal Functionality Let us denote the ideal functionality by F which operates with a set of parties
P = {P1, . . . , Pn} and an adversary Sim.

– Receives bids bi ∈ {0, 1}l from each party Pi

– Computes bw = max(b1, . . . , bn), and sends (Pw, bw) to all parties and Sim.

Theorem 3. Assuming Com is secure commitment scheme, DDH assumption holds in group G, ΠOT is
a semi-honest secure OT protocol and hash is a CRH, protocol Π specified in Figure 1 securely realizes
the functionality F in the presence of semi-honest adversaries.

Proof. We will construct a simulator for a PPT semi-honest party Pk, such that

ViewΠPk,real ≈c Sim
Π
Pk

Simulator for evaluator (k = e). The simulator is invoked with: public parameters pp, bid value be of
Pe and the output of ideal function, (Pw, bw). Sim works as follows:

1. Setup Phase:

21



– Sim samples secret keys and randomness xij , rij ←R Zq on behalf of all parties Pi, i ∈ [n]. It
samples OT sender randomness γij and OT receiver randomness βij for all i 6= e and j ∈ [l].
Computes the public keys Xij = gxij ,∀i ∈ [n] and writes them to the BB. Sim also computes the
hash Hi of concatenated string of private keys and OT randomness for each party.

– For each party Pi, i 6= k, i 6= w: Sim constructs commitments to bid values of 0, chooses Ri ←R Zq,
computes ci = gbigHi

1 hRi where bi = 0 and writes the commitments to BB. For i = w, Sim
chooses Rw ←R Zq. Computes cw = gbwgHw

1 hRw . If bk 6= bw, Sim chooses Rk ←R Zq. Computes

ck = gbkgHk
1 hRk . These commitments are written to the BB.

2. Computation Phase: We consider following cases:

(a) e = w (Pe is the winner): Sim generates 0-bit codes Bij for all bidders Pi, i 6= e for all rounds.
For each round j ∈ [l] and each party Pi, i 6= e, Sim samples βij and invokes OT.R1(bwj , βij) to
obtain otr1ij and writes them to BB. It also generates 0-bit codes Bej whenever bwj = 0. Using
γij sampled during setup phase and Mij ←R G it runs OT.S(Bij ,Mij , γij) to obtain otsij for all
parties i 6= e and writes them to BB.

Sim writes the winning bits bwj on BB for every round j ∈ [l]. Whenever bwj = 0, 0-bit codes for
all parties, Bij , i ∈ [n] are written to BB as Pe’s proof of computation.

During verification phase, Sim writes randomness used for Pe’s commitment Re, all secret keys
xej , rej and OT.R randomness βkj for all j ∈ [l], for all k ∈ [n] \ {e} to BB.

(b) e 6= w (Pe is not the winner): For party Pw, Sim generates bit codes Bwj for bits of winning bid
bw using the secret keys generated during the setup phase. For all other bidders, 0-bit codes Bij
are generated for all rounds. Sim runs the ABP between the bid values (bw, be) to identify the
bits dej that Pe uses during computation phase and generates 0-bit codes Bej whenever bwj = 0.
For each round j ∈ [l] and each party Pi, i 6= e, Sim samples βij and invokes OT.R1(dej , βij) to
obtain otr1ij and writes them to BB. Sim uses γij sampled during setup phase and Mij ←R G to
run OT.S(Bij ,Mij , γij) and obtains otsij for all parties i 6= e and writes them to BB.

Sim writes the winning bits bwj on BB for all j ∈ [l]. For all j ∈ [l] where bwj = 0, 0-bit codes for
all parties are written to BB as Pe’s proof of computation.

During verification phase, Sim writes randomness used for Pw’s commitment, Rw, all secret keys
xwj , rwj and OT.S randomness γwj for all j ∈ [l] to BB.

In order to prove the indistinguishability, we consider the following hybrids:

– H0: This is the real run of the protocol Π where real values for commitments and public keys are
written to BB during setup phase. Real OT messages, proofs of computation are written to BB during
computation phase, and real secret keys, OT.S randomness of the winner are written to BB during
verification phase.

– H1: This is same as H0 except the following. During setup phase, all commitments are generated
for bid values of 0, with random values of secret keys and OT.S randomness γij – except for parties
Pe and Pw. For these two parties, same values as in H0 are retained. H0 and H1 are identically
distributed since Pedersen Commitments are perfectly hiding (6).

– H2: This is same as H1 except for the following during computation phase rounds j ∈ [l]. If Pe is the
winner, 0-bit codes Bij are generated for all parties. Mij ←R G and OT.S(Bij ,Mij , γij) is invoked to
obtain otsij for each party and written to BB.

If Pe is not the winner: ABP is run between the bid values (bw, be) to identify the bits dej that Pe
uses during computation phase and 0-bit codes Bej are generated whenever bwj = 0. Bitcodes Bwj
corresponding to winning bid bw are computed, and for all other parties 0 bitcodes are generated.
For all i 6= e, Mij ←R G and OT.S(Bij ,Mij , γij) is invoked to obtain otsij and written to BB.

H1 and H2 are indistinguishable because of sender security of ΠOT .

– H3: This is same as H2 except for the following: During computation phase, ∀j ∈ [l], if Pe is the
winner, βij is sampled for all i 6= e, OT.R1(bej , βij) is invoked to obtain otr1ij and written to BB. If Pe
is not the winner, βij is sampled for all i 6= e, OT.R1(dej , βij) is invoked to obtain otr1ij and written
to BB.

H2 and H3 are indistinguishable because of receiver security of ΠOT .

Note that hybrid H3 does not have any information about the bid values of parties other than Pe
and that of Pw. Thus Pe cannot learn anything about losing bid values in H3. In H0, the view of Pe
corresponds to the real run whereas H3 corresponds to Sim’s output. Moreover, by transitivity, H0 ≈c H3.
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Thus,

ViewΠPk,real ≈c Sim
Π
Pk

Simulator for Pk (k 6= e). The simulator is invoked with: public parameters pp, bid value bk of Pk,
identity of Pe and the output of ideal function, (Pw, bw). Sim works as follows:

1. Setup Phase: Sim in this phase is identical to the simulator for Pe described earlier.

2. Computation Phase:

(a) k = w (Pk is the winner): For Pk, Sim generates bit codes Bkj corresponding to winning bid
bk. For each round j ∈ [l] and each party Pi i 6= e, Sim samples βij and invokes OT.R1(0, βij)
to obtain otr1ij and writes them to BB. Using γkj sampled during setup phase and Mkj ←R Zq,
Sim runs OT.S(Bkj ,Mkj , γkj) to obtain otskj for Pk and writes to BB. For all parties i 6= k,
0-bit codes Bij are computed and Mij ←R Zq. OT.S(Bij ,Mij , γij) is invoked to obtain otsij and
written to BB. Sim writes bwj to BB for all j ∈ [l]. Whenever bwj = 0, 0-bit codes for all parties
are written to BB as proof of computation from evaluator .

During verification phase Sim writes randomness used for Pk’s commitment Rk, all secret keys
xkj , rkj and OT.S randomness γkj for all j ∈ [l] to BB.

(b) k 6= w (Pk is not the winner): Sim uses the ABP between (bw, bk) to identify the bits dkj that Pk
uses during computation phase and generates bit codes Bkj accordingly. For each round j ∈ [l]
and each party Pi i 6= e, Sim samples βij and invokes OT.R1(0, βij) to obtain otr1ij and writes
them to BB. For all parties i 6= k, i 6= w, 0-bit codes are computed. For i = w, computes bit codes
as per bw. Using γij sampled during setup phase and Mij ←R Zq invoking OT.S(Bij ,Mij , γij),
Sim obtains otsij for all Pi and writes the same to BB. Sim writes bwj on BB for all j ∈ [l]. In
case bwj = 0, 0-bit codes for all parties are written to BB as proof of computation from evaluator.

During verification phase Sim writes randomness used for Pw’s commitment Rw, all private keys
xwj , rwj and OT.S randomness γwj for all j ∈ [l] to BB.

In order to prove the indistinguishability we consider the following hybrids:

– H0: This is the real run of the protocol Π where real values for commitments and public keys are
written to BB during Setup Phase. Real OT messages, proofs of computation are written to BB
during Computation Phase, and real secret keys, real OT.S randomness of the winner are written to
BB during verification phase.

– H1: This is same as H0 except the following. During setup phase, all commitments are generated
for bid values of 0, with random values of secret keys and OT.S randomness γij – except for parties
Pk and Pw. For these two parties, same values as in H0 are retained. H0 and H1 are identically
distributed since Pedersen Commitments are perfectly hiding (6).

– H2: This is same as H1 except for the following. During computation phase, if Pk is the winner,
generate 0-bit codes for all senders except Pk. Generate Pk’s bitcodes as per the winning bid bk.
Sample Mij ←R G and using γij sampled during Setup Phase, invoke OT.S(Bij ,Mij , γij) for all
i 6= e, and write otsij to BB.

If Pk is not the winner, for all i 6= k, i 6= w generate 0-bit codes. ABP is run between the bid values
(bw, bk) to identify the bits dkj that Pk uses during computation phase. 0-bit codes Bkj are generated
whenever bwj = 0. For Pw, bitcodes as per the winning bid bw are generated. Finally, for all i, sample
Mij ←R G and invoke OT.S(Bij ,Mij , γij), to obtain otsij which are written to BB. H1 and H2 are
indistinguishable because of sender security of ΠOT .

– H3: This is the same as H2 except for the following: During computation phase, βij is sampled for
all Pi, OT.R1(0, βij) is invoked to obtain otr1ij and written to BB.

H2 and H3 are indistinguishable because of receiver security of ΠOT .

Observe that the hybrid H3 does not have any information about the bid values of parties other than Pk
and Pw. Thus Pk cannot learn anything about losing bid values in H3. Also, in H0, view of Pk corresponds
to the real run whereas H3 corresponds to Sim’s output. Moreover, by transitivity, H0 ≈c H3. Thus it
follows that,

ViewΠPk,real ≈c Sim
Π
Pk

The following theorem stating that Π is a Privacy Enhanced Computational Dominant Strategy Equi-
librium, follows as a corollary of Theorems 2 and 3.
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Theorem 4. Let Pi, i ∈ [n] be rational parties with respective utility functions (U1, . . . , Un) as described
above. Assuming Com is a secure commitment scheme, DDH in group G, ΠOT is a maliciously secure OT
protocol and hash is a CRH, the protocol Π described in Figure 1 is a privacy enhanced computational
weakly dominant strategy equilibrium as per Definition 7.

6 Experimental Results

Our protocol was implemented in C++ with 1840 lines of code. We built upon OpenSSL and Boost
open source libraries. The overwhelming cost of the protocol is computation over the group (even for
30 bidders, the total communication in the protocol was under 100 KB). Of this, exponentiation over
Elliptic curve group using the secp256k1 curve forms bulk of the cost. In Table 2, we compare the number
of exponentiations required by our protocol with other prior protocols such as [BHSR19,DGP22] (even
though they suffer from non trivial leakage). Even so, we observe that our protocol makes 2X lesser
exponentiation calls than prior works.

Protocol Communication Complexitya Number of exponentiationsb

SEAL 53nl|G| 48nl + 44l

FAST (9nl + 10n)|G| 23nl + 20l + 8 log l + 2

Protocol in
[MNT09]

O(n3) NA c

Our
Protocol

(4nl + 7l + 5)|G| 10nl + 5n− 9l

Table 2: Comparison of efficiency of protocols.

a We have assumed that a group element from G is at least twice the size of element from Zq
b l is the number of bits in bid values, n is the number of parties participating in the auction.
c The work makes use of generic MPC protocols for auction.

We implemented our protocol and executed it on a single machine with Intel core i7 processor, 2.9
GHz. Figure 2 depicts the overall runtime of our protocol as a function of the number of bidders for
different number of bits used to represent the bid values. This is plot of average of 3 runs for each number
of bidders, with number of bidders ranging from 5− 70.

The run time for our protocol T is a function of number of group exponentiations N = 10nl+ 5n−9l.
For a fixed number of bits l, the computation time T ∝ n. Thus the run time scales linearly with the
number of parties. This is corroborated by Figure 2.

Protocol a Data sent (in MB) Run time (in sec)

SEAL (has non-trivial leakage) 0.339 0.775

MP-SPDZ MASCOT (malicious) 995 0.81

MP-SPDZ MASCOT(semi-honest) 10.52 0.02

MP-SPDZ BMR (malicious) 8671 70.1

MP-SPDZ BMR (semi-honest) 1469 10.02

Our Protocol 0.03 0.141

Table 3: Comparison of implementation of protocols for n = 10 parties, l = 10 bits.

a The rows indicate the amount of data communicated and run time for computing the highest bid value.

The concrete efficiency of protocols is compared in Table 3. Among similar works, we only compare
with SEAL implementation since a public implementation of FAST is not available. We have chosen the
values of n and l to be same as the ones used in SEAL implementation – for better comparison and also
as an optimum value for generic MPC protocols which do not scale well with number of parties. Note
however that the choice of l = 10 need not be a limitation since the bid values can always be scaled by a
constant factor. We have also used Multi-Protocol SPDZ (MP-SPDZ) [Kel20] library to benchmark MPC
protocols that can evaluate the max value (i.e. identify the highest bid value) among a given set of 30
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Fig. 2: Protocol Run time vs number of bidders

private inputs. The MP-SPDZ is an implementation of several MPC protocol variants, with a common
high-level programming interface. Among these, we use MASCOT [KOS16] and BMR [LPSY19] protocols
in malicious and semi-honest security modes for comparison.

7 Conclusion

We construct a protocol for First Price Auction that is provably secure in the rational setting. Our
implementation demonstrates that our construction is concretely efficient. We introduce the notion of
Privacy Enhanced Computational Weakly Dominant Strategy Equilibrium as a solution concept, which we
believe can be used to construct and analyse other cryptographic protocols. Our work leaves open several
interesting questions about extending the protocol to other flavors of auctions such as Vickrey auctions,
multi-unit auctions; and analysing other adversarial models like adaptive strategies, and colluding rational
parties.

Acknowledgment

The research of the first author was supported by Core Research Grant CRG/ 2020/ 004488, SERB,
Department of Science and Technology, India and a Google India Faculty Research Award. The research
of the second author was supported, in part, by a Microsoft Collaborative Research Grant.

References

ADGH06. Ittai Abraham, Danny Dolev, Rica Gonen, and Joseph Y. Halpern. Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation. In Eric Ruppert
and Dahlia Malkhi, editors, 25th ACM PODC, pages 53–62. ACM, July 2006.

AL07. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols for
realistic adversaries. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 137–156.
Springer, Heidelberg, February 2007.

AO12. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 681–698.
Springer, Heidelberg, December 2012.

25



BGM+18. Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. But why does
it work? A rational protocol design treatment of bitcoin. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 34–65. Springer, Heidelberg,
April / May 2018.

BHSR19. Samiran Bag, Feng Hao, Siamak F. Shahandashti, and Indranil G. Ray. SEAL: Sealed-bid auction
without auctioneers. Cryptology ePrint Archive, Report 2019/1332, 2019. https://eprint.iacr.

org/2019/1332.
BN00. Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, CRYPTO 2000, volume

1880 of LNCS, pages 236–254. Springer, Heidelberg, August 2000.
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A Oblivious Transfer Instantiation.

For our protocol, we use Oblivious Transfer (OT) for the interaction between the evaluator and other
bidders. For the implementation, we have adopted the construction of Oblivious Transfer from [CSW20]
which is described below. We consider two parties: sender S and receiver R for this.

1. Public Input: Group G with a generator g, group Zq, h, T1 ∈ G.

2. R:

T2 ←R G
β ←R Zq and sets G = gβTα1 and H = hβTα2

Send (T2, (G,H)) to S.

3. S:

Samples s, t← Zq and computes z = gsht.

Computes C(0) = GsHt ·M (0) and C(1) =

(
G

T1

)s(
H

T2

)t
·M (1)

Send z and (C(0), C(1)) to R.

4. R:
R computes M (α) = C(α)z−β

Fig. 3: Oblivious Transfer Protocol

B Contract Functionality

A contract is used for managing the security deposits in our protocol. Such a functionality can be realized
as a contract within a legal framework using fiat currency or using Smart Contract using crypto currency.
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