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Abstract. The Groth-Sahai proof system is a highly efficient pairing-based proof system for a specific class of group-
based languages. Cryptographic primitives that are compatible with these languages (such that we can express, e.g.,
that a ciphertext contains a valid signature for a given message) are called “structure-preserving”. The combination of
structure-preserving primitives with Groth-Sahai proofs allows to prove complex statements that involve encryptions
and signatures, and has proved useful in a variety of applications. However, so far, the concept of structure-preserving
cryptography has been confined to the pairing setting.
In this work, we propose the first framework for structure-preserving cryptography in the lattice setting. Concretely,
we

– define “structure-preserving sets” as an abstraction of (typically noisy) lattice-based languages,
– formalize a notion of generalized structure-preserving encryption and signature schemes (capturing a number of

existing lattice-based encryption and signature schemes),
– construct a compatible zero-knowledge argument system that allows to argue about lattice-based structure-

preserving primitives,
– offer a lattice-based construction of verifiably encrypted signatures in our framework.

Along the way, we also discover a new and efficient strongly secure lattice-based signature scheme. This scheme
combines Rückert’s lattice-based signature scheme with the lattice delegation strategy of Agrawal et al., which yields
more compact and efficient signatures.
We hope that our framework provides a first step towards a modular and versatile treatment of cryptographic
primitives in the lattice setting.
Keywords. Structure-preserving cryptography, lattice-based cryptography, public-key cryptography.

1 Introduction

Structure-preserving cryptography. Groth-Sahai (GS) proofs [35] are practical non-interactive zero-knowledge (NIZK)
proof systems for a very general class of group-based languages. Essentially, GS proofs allow to argue in zero-knowledge
about the satisfiability of systems of equations over groups that may involve exponentiation, of course group operations,
and even pairing operations. When used in conjunction with “suitably algebraic” group-based cryptographic primitives
(like encryption or signature schemes), GS proofs allow to efficiently prove complex statements like “This ciphertext
contains an electronic passport for John Smith that is certified by a government authority.”3 In comparison to a generic
approach (with, say, a generic NIZK system for NP [27]), such a “native” approach is significantly more practical.

“Suitably algebraic” cryptographic primitives are called structure-preserving [2, 33] (or, in a slightly different
formulation, automorphic [29]). Numerous examples of structure-preserving signature (e.g., [34, 20, 2, 3, 1, 21]) and
public-key encryption schemes (e.g., [24, 15, 39, 26]), as well as other primitives (e.g., [12, 53]) are known, based on
different computational assumptions, and having different efficiency and security features.

All of these building blocks can be combined, and GS proofs can be used to argue about such combinations
efficiently. However, so far, the paradigm of structure-preserving relies on a particular algebraic setting (of pairing-
friendly cyclic groups), and it is unclear whether a similar modular combination of cryptographic primitives is also
possible over other domains.4

†Work carried out during the author’s time at ETH Zurich.
3Such a combination has been suggested before (e.g., [13, 11, 10]), but GS proofs allow a much more general treatment, and a

broader class of languages and potential applications.
4Of course, dedicated protocols for concrete tasks (such as identity escrow [37] or verifiable encryption [16]) exist also based

on other assumptions. Also, very efficient lattice-based commit-and-prove protocols for general classes of languages exist in the
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This work: structure-preserving cryptography over lattices. In this work, we initiate the study of structure-preserving
cryptography over lattices. We put forward suitable definitions of structure-preserving signature and encryption schemes,
and present a suitable NIZK system for proving statements about combinations of these primitives. Hence, in short, our
core contributions are

– a suitable definition of lattice-based structure-preserving cryptographic primitives (including the modeling of a
number of existing signature and encryption schemes according to this definition),

– a suitable zero-knowledge argument system that allows to show statements about lattice-based structure-preserving
primitives,

– as an application (and to demonstrate the usefulness of our approach), a modular lattice-based protocol for verifiably
encrypted signatures.

As we will explain, our notion of lattice-based structure-preserving primitives is not quite as universal as in the GS
setting. This allows us to model a large class of primitives, but also asks for some degree of compatibility among the
used primitives. We still believe that our abstract framework is a step towards plug-and-play lattice-based cryptography.
Indeed, one benefit of our approach is modularity: It is true that the security analysis for each lattice-based component
(i.e., signature or encryption scheme) needs to keep track of noise growth and failure probabilities. However, due to
our interface, this analysis needs to be done only once per component, not once for every possible combination of
components.

Contribution 1: a definition of lattice-based structure-preserving primitives. First, we cannot use or easily adapt existing
(group-based) definitions of structure-preserving primitives: with computations over lattices, there is no equivalent of
“exponentiation” or “pairing”. Besides, typically lattice-based ciphertexts or signatures often feature a “noise term”,
which may grow with operations on these values. Once the noise term becomes too large, decryption or verification
becomes unreliable. Hence, operations on these values are limited in a quantitative way, and this limitation should be
reflected in a definition of structure-preserving cryptography.

Since lattice-based cryptographic constructions usually work over the ring Zq (for a suitable integer q), it is tempting
to call the solutions to arbitrary systems of linear equations over Zq , possibly with boundaries on norms (to accommodate
noise terms), structure-preserving. Unfortunately, we do not know how to instantiate a proof system for such general
sets in the standard model.5

So instead of trying to match the group-based definition, we start from scratch with a relatively simple definition of
“structure-preserving sets” modelling exactly the noise terms of lattice-based cryptography. We present a standard-model
non-interactive proof system for these sets, and aim to interpret signatures and ciphertexts (or, rather, the randomness of
ciphertexts) as structure-preserving sets. To express more powerful statements in terms of structure-preserving sets,
we additionally require our structure-preserving signature and encryption schemes to allow for suitable homomorphic
operations (that, e.g., allow to verify a signature inside an encryption scheme).

Fortunately, we discover that several existing signature and encryption schemes satisfy our definitions. Examples
include Regev encryption [48] and its dual variant [31], the GSW leveled homomorphic encryption scheme [32], and
the signature schemes of Boyen [14] and Rückert [49].6

At this point, the mentioned required compatibility among used primitives is crucial: we unfortunately cannot
combine arbitrary lattice-based structure-preserving encryption and signature schemes. Essentially, we require that the
encryption scheme allows to homomorphically verify an encrypted signature. This allows to combine, e.g., the GSW
FHE scheme with all of the mentioned signature schemes; alternatively, we can combine any additively homomorphic
scheme (such as Regev’s scheme or its dual variant) with Rückert’s scheme or its mentioned new and more compact
variant, but not with Boyen’s scheme.

random oracle model [42]. However, nothing comparable to the full “structure-preserving cryptography” paradigm (that ensures a
non-interactive and conceptually simple plug-and-play combination of different primitives) exists in other algebraic settings.

5We note that in the random oracle model, very efficient such proof systems exist [25, 44].
6Rückert’s scheme uses the “Bonsai trees” lattice delegation method of [19]. As an aside, we also make explicit a vastly more

compact version of Rückert’s scheme that uses the more compact lattice delegation strategy of [5]. While this modification entails no
significant technical complications, it may be worthwhile to point out.
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Contribution 2: a compatible NIZK argument system. To allow arguing about combinations of encryption and signature
schemes, we also introduce an analogue of GS proofs. In our case, we use the LWE-based NIZK system of Libert et
al. [38] as a basis. This proof system is based upon a Σ-protocol [22] for proving that an LWE encryption contains a
certain value. (That Σ-protocol is later converted to a NIZK system by applying the Fiat-Shamir transform [28] in the
standard model, with a correlation-intractable hash function.) To suit our needs, however, we need to generalize this
proof system to structure-preserving sets (i.e., to statements that are valid “up to noise”). This requires a more careful
analysis, and in particular a liberal use of rejection sampling [40].

We should emphasize that we are interested in a standard-model proof system. Indeed, while our application does
not require this, we would like to be able to argue about encrypted proofs (and thus achieve the “nestable” property of
Groth-Sahai proofs). If proof verification involves random oracle queries, this is not possible transparently. We should
note, however, that our proof system supports only linear languages, while its verification itself is not linear. Hence,
nesting proofs of our proof system is only possible when using leveled homomorphic encryption schemes (that allow
to verify even a nonlinear encrypted proof through homomorphic evaluation). We leave open the construction of a
lattice-based proof system for a language that includes its own verification.

Contribution 3: lattice-based verifiably encrypted signatures. Finally, we demonstrate the usefulness of our approach
using the setting of verifiably encrypted signatures [7, 13, 50, 30]. Concretely, we show how to combine lattice-based
structure-preserving signature and an encryption schemes to obtain a scheme that allows to prove that a given ciphertext
contains an encryption of a valid signature for given (publicly known) message. While generic constructions (e.g., using
lattice-based zero-knowledge for NP [46]) for this task are possible, and very efficient techniques for related problems
exist in the random oracle world [25, 44], it appears that our protocol is the first non-generic (i.e., at least somewhat
efficient) lattice-based verifiably encrypted signature scheme in the standard model.

More related work. As already mentioned, there is a very successful line of work [42, 8, 25, 43] that aims at practical
(non-interactive) zero-knowledge proofs from lattices in the random oracle model. The supported languages are very
general and include typical “noisy linear” languages, as crucial for many lattice-based schemes. Conceptually, these
schemes are commit-and-prove schemes, much like Groth-Sahai proofs.

On the other hand, the use of random oracles appears inherent. For instance, the scheme from [42] is obtained by
using the Fiat-Shamir transform on a suitable Σ-protocol. Unlike in our setting, these Σ-protocols do not appear to
satisfy the requirements for the use of correlation-intractable hash functions as replacements for random oracles. Still,
when one is not interested in nesting proofs (and if one accepts random oracles), then these protocols appear to be
excellent replacements for our proof system.

1.1 Technical overview

We now take a closer look at our framework. Our first step will be to define structure-preserving sets, an abstraction of
“noise terms” that are omnipresent in lattice-based cryptography.

Structure-preserving sets. We call a set S ⊆ Zd
q structure-preserving if there is a (“noise”) distribution D such that

– D “smudges” elements from S in the sense that for any s, s′ ∈ S and d ← D, the values s + d and s′ + d are
statistically close.7

– Smudging with D preserves (non-)membership in S, in the sense that for S = Zd
q \ S, we have that S + supp(D)

and S + supp(D) are disjoint.8 This condition guarantees that the smudging process is non-trivial.
The set of short-norm vectors is structure-preserving according to (the non-oversimplified version of) this definition. But
structure-preserving sets also cover more complex cases, such as the set of vectors close to a given vector, (the union of)
intervals, or the cartesian product of structure-preserving sets. In essence, we only require that a structure-preserving set
is “non-trivially smudgeable”.

7This is an oversimplification. In particular, for, e.g., the set of short vectors S to be structure-preserving, we need a slightly more
relaxed definition. Our actual definition involves rejection sampling and actually only requires “closeness in a significant portion of
cases”.

8Again, this oversimplifies. We really only require this for almost all vectors of S and a large enough subset of supp(D).
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Jumping ahead, structure-preserving sets will be used to model, e.g., the “raw” (i.e., un-rounded) verification
output of signature schemes. This verification output only encodes a bit (the verification verdict), but may need to be
smudged for further processing to avoid leakage about the signature. In fact, we now proceed to (informally) define
structure-preserving signature and encryption schemes.

Structure-preserving signatures. A (lattice-based) signature scheme is called structure-preserving for a family F of
functions if each verification key vk and message msg defines an f ∈ F such that a given signature σ is valid if and
only if f(σ) ∈ S for a (fixed) structure-preserving set S.9 We will be particularly interested in families F of linear
functions, since such F will allow for (non-generic) zero-knowledge proofs. This is also the reason for the need to
smudge f ’s output: existing lattice-based signature schemes usually postprocess the result of a linear operation with a
rounding step obtain the verification verdict bit. Instead of this rounding step, we require that f(σ) ∈ S.

We show that Rückert’s signature scheme [49] is structure-preserving for a linear F , and that Boyen’s signature
scheme [14] is structure-preserving for an F that contains linear functions and functions computed by low-depth
Boolean circuits. Additionally, we present a more compact variant of Rückert’s scheme (that is also strongly secure and
structure-preserving for a linear F). This new scheme is retrieved by replacing the “Bonsai trees” lattice delegation
method of [19] with the more compact lattice delegation strategy of [5].

Structure-preserving encryption. We say that a (lattice-based) encryption scheme is structure-preserving if ciphertexts
are of the form

ct = Br+ g(msg)

for a matrix B ∈ Zd×r
q , r ∈ S for a structure-preserving set S, and an invertible and additively homomorphic “message

encoding function” g.10 Intuitively, we require that r ∈ S to be able to argue about “valid encryptions” (for which the
encrypted message is uniquely determined).

For our applications, it will also be beneficial if the scheme is F -homomorphic, in the sense that ct = Br+ g(msg)
allows to efficiently compute ct′ = Br′ + g(f(msg)) for any f ∈ F (possibly at the price of a larger noise).

We observe that Regev’s encryption scheme [48], its dual variant [31], and the GSW leveled homomorphic
encryption scheme [32] fit our framework (for linear functions, resp. low-depth circuits). While itself not technically
involved, this provides a helpful uniform way to reason about these schemes.

A zero-knowledge protocol for encrypted structure-preserving sets. Our last ingredient is a suitable (lattice-based, non-
interactive) zero-knowledge proof system that allows to argue about structure-preserving primitives (and in particular
structure-preserving sets). More concretely, we start with a Σ-protocol that shows that a given ciphertext (from an
arbitrary structure-preserving encryption scheme) encrypts an element msg ∈ S from a structure-preserving set S.

This Σ-protocol is derived from a Σ-protocol due to Libert et al. [38] for proving equality of encrypted messages
(where the used encryption scheme is a variant [6] of Regev encryption). The basic protocol of [38] (following Schnorr’s
blueprint [52]) proceeds as follows. Say that we want to show that a given ciphertext ct is an encryption of 0.11 The
prover P then starts by sending a fresh 0-encryption ct0 to the verifier V . Then V chooses to either open ct0 or ct0 + ct
(by sending the random coins of that ciphertext).

Soundness follows from the fact that if ct is not a 0-encryption, then at least one of the two ciphertexts ct0 and
ct0 + ct encrypts a nonzero value. (Of course, to obtain a negligible soundness error, the above protocol will have to
be repeated.) Zero-knowledge follows from the fact that if one knows in advance which ciphertext is opened, one can
program ct0 such that the to-be-opened ciphertext surely encrypts 0.

In our setting, we want to prove that ct encrypts some s ∈ S (without revealing s). Since S is a structure-preserving
set, we can smudge s with a suitable smudging vector d← D. When we set up ct0 as an encryption of such a d, we
obtain that

– opening ct0 reveals only a smudging value d, and

9Our actual definition also considers signatures which carry “tags” which can be used to preprocess messages prior to verifying
(but whose publication does not harm security).

10We also define the notion of a “noise level” of a ciphertext which we ignore in this overview.
11Since the used homomorphic encryption scheme is homomorphic, we can reduce proving equality of ciphertexts to proving

0-encryptions.
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– opening ct0 + ct reveals a smudged value s+ d, which is (almost) statistically independent of s.
Hence, using a similar strategy as in [38], we obtain zero-knowledge. Moreover, since smudging preserves (non-
)membership in S, we obtain soundness (after sufficiently many repetitions). The actual proof is more involved than
this overview, of course, largely because of the already mentioned rejection sampling necessary for statistical closeness.

We only briefly mention that our protocol is compatible with recent standard-model techniques [17, 46] to transform
Σ-protocols in the lattice setting into non-interactive zero-knowledge (NIZK) proofs. We use a sophisticated variant [38]
of this approach 12 that even achieves unbounded simulation-soundness for specific classes of Σ-protocols. In the end,
we obtain a NIZK argument system for encrypted structure-preserving sets.

From structure-preserving sets to structure-preserving primitives. As an application (and to demonstrate the usefulness
of our proof system), we construct a verifiably encrypted signature (VES [7, 13, 50, 30]) scheme. Intuitively, in a VES
scheme, a dedicated signer hands out encrypted signatures (i.e., signatures generated using the signer’s secret key, and
encrypted under the public key of a designated “adjudicator”). Such encrypted signatures also contain a NIZK proof of
validity (i.e., of the fact that the given ciphertext really contains a valid signature for a given message). In case of a
conflict, however, the adjudicator can extract (by decrypting) a “proper” (i.e., non-simulatable) signature from a given
encrypted signature. VES schemes are useful, e.g., in contract signing applications [7, 13].

Using our framework, a lattice-based VES scheme can be obtained generically from a structure-preserving signature
scheme, a structure-preserving encryption scheme with compatible message space (and such that it allows to homo-
morphically verify signatures), and our zero-knowledge proof system for (encrypted) structure-preserving sets. These
primitives are combined in a straightforward way. Perhaps the most interesting part of this construction is the fact that it
suffices to prove that an encrypted value comes from a structure-preserving set. Indeed, to prove that a given encryption
contains a valid signature, we (a) first homomorphically verify that signature inside the encryption, and (b) then prove
that the result corresponds to an “accept”. Recall that by our definition of structure-preserving signatures, this means
proving membership in a structure-preserving set.

Our formal proof is similar to a proof for an existing VES scheme by Fuchsbauer [30] that uses pairing-based
structure-preserving cryptography.

1.2 Roadmap

After recalling some notation and standard building blocks in Section 2, we present our definition of structure-preserving
sets in Section 3. Building on this definition, we proceed with our notions of structure-preserving signatures (Section 4)
and structure-preserving encryption schemes (Section 5). We identify and construct example schemes in Sections 4.1
and 5.1 and Appendices A and B. Our Σ-protocol for (encrypted) structure-preserving sets appears in Section 6,
followed by its conversion to a NIZK proof system in Section 7. The VES application follows in Section 8 where we
also discuss its efficiency.

2 Preliminaries

2.1 Notation

A function f is negligible if for every polynomial p(·), there exists an n0 ∈ N such that for every n > n0 it holds that
f(n) < 1

p(n) . We write negl to denote an arbitrary negligible function. Let X and Y be two probability distributions over
a domain Ω. The statistical distance between X and Y is defined as ∆(X,Y ) := 1

2

∑
ω∈Ω |Pr[X = ω]−Pr[Y = ω]|.

We say that two ensembles {Xn}n∈N and {Yn}n∈N of distributions are statistically indistinguishable, denoted as
{Xn}n∈N ≈s {Yn}n∈N, if ∆(Xn, Yn) = negl(n). We say that two ensembles {Xn}n∈N and {Yn}n∈N of distributions
are computationally indistinguishable, denoted as {Xn}n∈N ≈c {Yn}n∈N, if for every probabilistic polynomial time
(PPT) adversary A, we have |Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| = negl(n).

Let S be a finite set. Then by x ←R S we mean that x was sampled from the uniform distribution over S. For a
probability distribution D on S we denoted the support by supp(D) ⊆ S.

12One important advantage of [38] is that it only requires the homomorphic evaluation of a low-depth circuit in the computation
of the CI-Hash function from [46].
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Let x ∈ Rn be a column vector. The xi, for i ∈ {1, . . . , n} denotes the i-th coordinate of x. The ℓ2-norm of x is
defined as ∥x∥ :=

√∑n
i=1 x

2
i . The ℓ2 norm of a matrix M ∈ Rn×m is defined as ∥M∥ = supx∈Rm,x̸=0

∥Mx∥
∥x∥ . We

denote M the Gram-Schmidt orthogonalization of the matrix M.
For two sets A,B ⊆ Zn

q , we define the sets A \B,A+B,A−B ⊆ Zn
q as follows:

A \B := {x | x ∈ A ∧ x ̸∈ B},
A+B := {(a1 + b1, . . . , an + bn) | (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B},
A−B := {(a1 − b1, . . . , an − bn) | (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B}.

If A = ∅ or B = ∅, then we define A+B := ∅ and A−B := ∅.
We use Bδ(S) := {v ∈ Zn

q | (mins∈S,x∈Zn∥v − s+ qx∥) ≤ δ} to denote the closed δ-ball around a set of vectors
S ⊆ Zn

q .
We write H ≤ G to denote that H is a subgroup of a group G.
We say that a function f : X → Y is invertible if there exists a function f−1 : Y → X ∪ {⊥} such that (i) f−1

is efficiently computable, (ii) for every x ∈ X it holds f−1(f(x)) = x, and (iii) for every y ∈ Y \ Img(f) it holds
f−1(y) = ⊥.

2.2 Lattices

Let us recall various basic lattice notions and hardness problems that we need in later sections of this work.
Let Σ ∈ Rn×n be a symmetric positive-definite matrix, and c ∈ Rn. Then the Gaussian function on Rn is defined

as ρΣ(x) := exp{−πx⊤Σ−1x}. The function extends to sets in the usual way. That is, for any countable set A ⊂ Rn,
ρΣ(A) :=

∑
x∈A ρΣ(x). Moreover, for every countable set A ⊂ Rn and any x ∈ A, the discrete Gaussian function is

defined by ρA,Σ(x) :=
ρΣ(x)
ρΣ(A) and we denote the corresponding discrete Gaussian distribution as DA,Σ. If Σ = σ2 · In,

where In is the n× n identity matrix, we denote the Gaussian function as ρσ, the discrete Gaussian function as ρA,σ

and the discrete Gaussian distribution as DA,σ for short. We will make use of the following tail bound for the discrete
Gaussian distribution for Zn.

Lemma 2.1 ([41, Lemma 4.4]). For any k > 1 we have Prx←DZn,σ
[∥x∥ > kσ

√
n] < kne

n
2 (1−k2).

Let B ∈ Rm×n be a matrix with linearly independent columns b1, . . . ,bn ∈ Rm for m ≥ n. The m-dimensional
lattice Λ with lattice basis B is defined as Λ = {y ∈ Rm | ∃s ∈ Zn, y = Bs}. The dual lattice of Λ is defined as
Λ∗ := {z ∈ Rm | ∀y ∈ Λ, z⊤y ∈ Z}. For q ≥ 2 and a matrix A ∈ Zn×m

q we define two m-dimensional integer
lattices Λ⊥(A) := {x ∈ Zm | Ax = 0 mod q} and Λ(A) = {y ∈ Zm | ∃s ∈ Zn, A⊤s = y mod q}.

Definition 2.2 (Learning With Errors). Let q,m, n be positive integers and χ be a probability distribution on Z.
The LWEm,n,q,χ problem is to distinguish the following two distributions: {(A,b) | (A,b) ←R Zn×m

q × Zm
q } and

{(A,b) | A←R Zn×m
q , s←R Zn

q , e← χm,b := A⊤s+ e}.

Definition 2.3 (LWE with short secrets). Let q,m, n be positive integers and χ be a probability distribution on Z.
The SSLWEm,n,q,χ problem is to distinguish the following two distributions: {(A,b) | (A,b)←R Zn×m

q × Zm
q } and

{(A,b) | A←R Zn×m
q , s← χn, e← χm,b := A⊤s+ e}.

Definition 2.4 (Short Integer Solution). Let q,m, n be positive integers, A ∈ Zn×m
q and β ∈ R. The SISm,n,q,β

problem in ℓ2 norm is to find a non-zero vector x ∈ Zm such that Ax = 0 mod q and ∥x∥ ≤ β.

Definition 2.5 (Inhomogeneous Short Integer Solution). Let q,m, n be positive integers, A ∈ Zn×m
q , y ∈ Zn

q and
β ∈ R. The ISISm,n,q,β problem in ℓ2 norm is to find a non-zero vector x ∈ Zm such that Ax = y mod q and
∥x∥ ≤ β.

Remark 2.6. When the SISm,n,q,β problem is hard, the ISISm,n,q,β′ problem is hard as well where β′ is only slightly
larger than β.
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We will use the following variant of the Rejection Sampling Lemma by Lyubashevsky to “smudge” small noise –
despite working with a polynomial modulus – by rejection sampling.

Lemma 2.7 ([41, Theorem 4.6]). For all T ∈ N and σ ≥ T
√
n there exists a constant M such that for all v ∈ Zn

with ∥v∥ ≤ T the distribution

d← DZn,σ , z := v + d, Output :

{
z with prob. min

(
ρZn,σ(z)

MρZn,σ(d)
, 1
)

⊥ otherwise

is within statistical distance 1/(M2n) of

d← DZn,σ , Output :

{
d with prob. 1/M

⊥ otherwise
.

2.3 Cryptographic primitives

We first recall the definition of a gap Σ-protocol and a trapdoor gap Σ-protocol. Our definitions are adapted from the
work of Libert et al. [38] which in turn closely follow the definitions put forward by Canetti et al. [17].

Definition 2.8 (Gap Σ-protocol). Let L = (Lzk,Lsound) be a language associated with two NP relationsRzk,Rsound

s.t. Lzk ⊆ Lsound (i.e., L is a gap language).
Let Setup(1λ,L) be an algorithm that takes an unary encoded security parameter λ ∈ N and a language description

L as input and outputs a common reference string crs. An interactive proof system Π = (Setup,P,V) in the common
reference string model is a Gap Σ-protocol for L if it has the following 3-move form, where crs← Setup(1λ,L), x is a
statement and w is a witness:

Prover P = (P1,P2) Verifier V

Input : (crs, x, w) Input : (crs, x)

(a, st)← P1(crs, x, w) a

Chal←R CChal

z← P2(st, a,Chal) z

b← V(crs, x, a,Chal, z)
Output : b

and the following properties holds:

Completeness: If (x,w) ∈ Rzk and both P and V follow the protocol, then V accepts with probability 1− negl(λ).
Formally, for every (x,w) ∈ Rzk, we have

Pr

V(crs, x, a,Chal, z) = 1

∣∣∣∣∣∣
crs← Setup(1λ,L),

(a, st)← P1(crs, x, w),
Chal←R C, z← P2(st, a,Chal)

 ≥ 1− negl(λ).

Special zero-knowledge: There exists a PPT simulator ZKSim such that for any crs ∈ Setup(1λ,L), any (x,w) ∈ Rzk

and any challenge Chal ∈ C, the following distributions are computationally indistinguishable:

{(a,Chal, z) | (a, z)← ZKSim(crs, x,Chal)} ≈c

{(a,Chal, z) | (a, st)← P1(crs, x, w), z← P2(st, a,Chal)} .
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Special soundness: For any CRS crs ∈ Setup(1λ,L) , any x ̸∈ Lsound, and any first prover’s message a, there
exists at most one challenge Chal = f(crs, x, a) ∈ C for which there exists a valid prover’s reply z, i.e.,
V(crs, x, a,Chal, z) = 1. The function f is called the bad challenge function of Π .

Definition 2.9 (Trapdoor gap Σ-protocol). Let L = (Lzk,Lsound) be a language associated with two NP relations
Rzk,Rsound, s.t. Lzk ⊆ Lsound. A gap Σ-protocol Π = (Setup,P,V) for L with a bad challenge function f is a trapdoor
gap Σ-protocol if there exist PPT algorithms (TrapSetup,BadChallenge) with the following syntax:

TrapSetup(1λ,L, τL): Given public parameters par, language L and a membership trapdoor τL for the language
Lsound as input, it outputs a CRS crs and a trapdoor τΣ ∈ {0, 1}ℓτ for some ℓτ (λ);

BadChallenge(τΣ , crs, x, a): Given a trapdoor τΣ , a CRS crs, a statement x and a first prover message a as input, it
outputs a challenge Chal;

and satisfying the following properties:

CRS indistinguishability: For any trapdoor τL for the language Lsound, the following distributions are computation-
ally indistinguishable

{crs | crs← Setup(1λ,L)} ≈c {crs | crs← TrapSetup(1λ,L, τL)}.

Correctness: There exists a language-specific trapdoor τL s.t. for any instance x ̸∈ Lsound, all pairs (crs, τΣ) ∈
TrapSetup(1λ,L, τL) and any first prover message a, we have BadChallenge(τΣ , crs, x, a) = f(crs, x, a).

Let us now recall the definition of a Non-Interactive Zero Knowledge (NIZK) proof. We closely follow the definition
given by Libert et al. [38].

Definition 2.10 (NIZK). Let L = (Lzk,Lsound) be a language associated with two NP relations Rzk, Rsound, such
that Lzk ⊆ Lsound and statements are of bit-length N . A non-interactive zero-knowledge (NIZK) argument system Π
for a language L consists of three PPT algorithms (Setup,P,V) with the following syntax:

Setup(1λ,L, τL) : Given an unary encoded security parameter λ, a language L and a membership testing trapdoor τL
for L as input, it outputs a CRS crs.

P(crs, x, w): Given a CRS crs, a statement x ∈ {0, 1}N , and a witness w as input, the proving algorithm outputs a
proof π.

V(crs, x, π): Given a CRS crs, a statement x ∈ {0, 1}N , and a proof π as input, the verification algorithm outputs a
decision bit.

Moreover, Π should satisfy the following properties.
Completeness: For any (x,w) ∈ Rzk, any lbl ∈ {0, 1}∗ and any membership testing trapdoor τL for L, we have

Pr[V(crs, x, π) = 1 | crs← Setup(1λ,L, τL), π ← P(crs, x, w)] ≥ 1− negl(λ).

Soundness: For any x ∈ {0, 1}N \ Lsound, any membership testing trapdoor τL for L and any PPT prover P∗, we have

Pr[V(crs, x, π) = 1 | crs← Setup(1λ,L, τL), π ← P∗(crs, x)] ≤ negl(λ).

Zero-Knowledge: There is a PPT simulator (Sim0,Sim1) such that for any PPT adversary A, we have that for all
trapdoors τL:

|Pr[1← AOP(crs,·,·)(crs) | crs← Setup(1λ,L, τL)]
− Pr[1← AOSim(crs,τzk,·,·)(crs) | (crs, τzk)← Sim0(1

λ,L)]| ≤ negl(λ),

where OP(crs, x, w) outputs ⊥ if (x,w) ̸∈ Rzk and π ← P(crs, x, w) otherwise, and OSim(crs, τzk, x, w) outputs ⊥ if
(x,w) ̸∈ Rzk and Sim1(crs, τzk, x) otherwise.

Finally we recall the standard definition for digital signature and a public key encryption scheme.
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Definition 2.11 (Digital Signature). A digital signature scheme Σ for a message spaceM and signature space S
consist of three PPT algorithms (KeyGen,Sign,Ver) with the following syntax

KeyGen(1λ): Given an unary encoded security parameter λ as input, it outputs a verfication key vk and a signing key
sk.

Sign(sk,msg): Given a signing key sk and a message msg ∈M as input, it outputs a signature sig ∈ S.
Ver(vk,msg, sig): Given a verification key vk, a message msg ∈ M and a signature sig ∈ S as input, it outputs 1

(indicating a valid signature) or 0 (indicating an invalid signature).

A digital signature scheme Σ = (KeyGen,Sign,Ver) is correct, if for every message msg ∈M, we have

|Pr[Ver(vk,msg, sig) = 1 | (vk, sk)← KeyGen(1λ), sig← Sign(sk,msg)]|
≥ 1− negl(λ).

Definition 2.12 (Public-Key Encryption). A public key encryption scheme Π for a message spaceM consist of three
PPT algorithms (KeyGen,Enc,Dec) with the following syntax

KeyGen(1λ): Given an unary encoded security parameter λ as input, it outputs a public key pk and a secret key sk.
Enc(pk,msg): Given a public key pk and a message msg ∈M as input, it outputs a ciphertext ct.
Dec(sk, ct): Given a secret key sk and a ciphertext ct as input, it outputs a message msg ∈ M or ⊥ (indicating a

failure).

A PKE scheme Π = (KeyGen,Enc,Dec) is correct, if for every msg ∈M, we have

|Pr[Dec(sk, ct) = msg | (pk, sk)← KeyGen(1λ), ct← Enc(pk,msg)]| ≥ 1− negl(λ).

3 Structure-Preserving Sets

The first building block in our framework is the notion of a structure-preserving set, which is a crucial tool in capturing
the defining characteristics of a specific family of lattice-based signatures, encryption schemes and NIZKs which are
compatible with each other. The properties that lead to such structure-preserving cryptographic primitives are described
in later sections.

Let q be a large prime. A structure-preserving set S is a special subset of Zd
q that can be rerandomized to obtain a

rerandomized set S′ = S +D (where D is a set which contains the rerandomizing terms). Given a vector s ∈ S, we
can rerandomize s to obtain s′ ∈ S +D. The structure-preserving property of S ensures that given s′, one is able to
check whether the original vector s ∈ Zd

q belonged to S or whether it lied outside of S. In particular, vector s′ allows to
check membership of the original s, but it hides its original value.

Definition 3.1 (Uniformly Structure-Preserving Set). We say that a set S ⊆ Zd
q is uniformly structure-preserving if

(i) there exists a subset D ⊆ Zd
q such that for all messages s, s′ ∈ S

d←R D, Output : s+ d ≈s d←R D, Output : s′ + d

(ii) for S := Zd
q \ S it holds that (S +D)∩ (S +D) = ∅, and the membership problem for D and S +D are easy and

we can efficiently sample uniformly at random from D. We call the maximal statistical distance between the first two
boxed distributions the structure-preserving error.

To provide some intuition about the introduced notion, let us demonstrate the definition of a concrete example that
we use later in the paper. Namely, we show that cosets of subgroups are uniformly structure-preserving.

Example 3.2 (Cosets of subgroups). Every coset S of an additive subgroup G ≤ Zd
q is uniformly structure-preserving.
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Proof. By definition of a coset, all the sets Ss = {s+d | d ∈ G} (for s ∈ S) are the same set S again. Thus by picking
D := G, we get that for all s, s′ ∈ S, s+ d and s′ + d for d←R D are identically distributed. Hence the first part of
the definition is satisfied and the structure-preserving error is 0.

For x ∈ Zd
q \ S, we know that x ∈ S′ for S′ ̸= S being another coset of G. Thus for every d ∈ G, we have

x+ d ∈ S′. Since different cosets are disjoint, the second part of the definition is satisfied as well. ⊓⊔

Remark 3.3. The above example, in particular, implies that

1. all additive subgroups of Zd
q are uniformly structure-preserving; and

2. all singleton sets are uniformly structure-preserving, because they are cosets of the trivial subgroup {0}.

In order to define lattice-based structure-preserving signatures and encryptions, we will need a more generic
definition of a structure-preserving set. Namely, we do not want to restrict ourselves to d being sampled uniformly
at random, but from any distribution on Zd

q . Looking ahead, since we work with lattice-based primitives, we are
particularly interested in Gaussian distributions. Along with the change of distribution for d, we generalize the definition
by loosening some of its condition. At a high level, in both the first and the second part of the definition, we allow for
small errors with some probability.

Definition 3.4 (Structure-Preserving Set). We say that a set S ⊆ Zd
q is structure-preserving with noise growth δ

if there exists an efficiently sampleable probability distribution D on Zd
q , a constant α ∈ (0, 1], that we will call the

no-abort constant, and a function success : S × S × supp(D)→ (0, 1], that we will call the no-abort function, such
that (i) for all messages s, s′ ∈ S

d← D

Output :


s+ d with prob.

success(s, s′,d)

⊥ otherwise

≈s

d← D

Output :

{
s′ + d with prob. α

⊥ otherwise

and (ii) there exists a set D′ ⊆ Zd
q , that we will call the smudging set, such that Prd←D[d ∈ D′] ≥ 1 − negl(λ)

for a negligible function negl, and for Sδ := Zd
q \ Bδ(S), it holds that (S +D′) ∩

(
Sδ +D′

)
= ∅. Moreover, the

membership problem for D′ and (S +D′) are easy.13 We call negl the soundness error.

It is easy to see that uniformly structure-preserving sets sets are special cases of structure-preserving sets.

Lemma 3.5. Let S be an uniformly structure-preserving set. Then S is a structure-preserving set with noise growth 0
and soundness error 0.

Proof. By setting D to be the uniform distribution on D, success to be the constant function 1, α := 1 and D′ = D,
we directly obtain that S is a structure-preserving with noise growth 0 and soundness error 0. ⊓⊔

Let us provide an example of a structure-preserving set which is not uniformly structure-preserving.

Example 3.6 (Close vectors). Every set S ⊆ Zd
q where S − S is T -bounded (i.e., S − S ⊆ BT ({0})) is structure-

preserving with noise growth 4Td+ 1, when d grows polynomially with the security parameter.

Proof. Pick D := DZd,σ with σ := T
√
d. For all s, s′ ∈ S, by Lemma 2.7, the distribution that outputs s− s′ + d for

d← DZd,σ with probability success(s, s′,d) := min
(

ρZd,σ
(s−s′+d)

MρZd,σ
(d) , 1

)
is statistically close to outputting d← DZd,σ

with probability α := 1/M for a constant M . By adding s′ to the output of these two distributions, we get that the first
condition for a structure-preserving set is satisfied.

Pick D′ := B2Td({0}) as smudging set. By the tail bound for Gaussian distributions (Lemma 2.1) we have
Prd←DZd,σ

[∥d∥ > 2Td] < 2de
−3d
2 =

(
2e−3/2

)d
< 1

2d
, which shows that this choice is valid. For x ∈ Sδ :=

Zd
q \B4Td+1(S) and d ∈ D′ we have x+d ∈ Zd

q \B2Td(S). On the other hand, for s ∈ S we have s+d ∈ B2Td(S).

This implies that (S +D′) ∩ (Sδ +D′) = ∅ which is the second condition for a structure-preserving set. ⊓⊔
13The membership problem for S does not need to be easy.
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Remark 3.7. This example, in particular, implies that sets of small vectors are structure-preserving. Namely, let S ⊆ Zd
q

be a T -bounded set. Then by triangular inequality, S − S is 2T -bounded and hence S structure-preserving with noise
growth 8Td+ 1.

Next, we show that structure-preserving sets are closed under the cartesian product.

Example 3.8. When S1 ⊆ Zd1
q is a structure-preserving set with noise growth δ1 and S2 ⊆ Zd2

q is a structure-preserving
set with noise growth δ2, then S1 × S2 ⊆ Zd1+d2

q is structure-preserving with noise max{δ1, δ2}.

Proof. Let D1, success1, α1 be the distribution, abort function and abort constant that make S1 a structure-preserving
set with noise δ1 and D2, success2, α2 be the distribution, abort function and abort constant that make S2 a structure-
preserving set with noise δ2. Then the distributionD1×D2 with the success function success((m1,m2), (m

′
1,m

′
2),d) :=

success1(m1,m
′
1,d) · success2(m2,m

′
2,d) and success probability constant α := α1α2 makes the set S1 × S2

structure-preserving with noise max{δ1, δ2}. ⊓⊔

We complete this section with an alternative formulation of the structure-preserving set property that is easier to use
in some of the proofs.

Lemma 3.9. For a structure-preserving set S with noise growth δ and smudging set D′ we have S+D′−D′ ⊆ Bδ(S).

Proof. We prove this Lemma by contradiction. Suppose there exist s ∈ S and d,d′ ∈ D such that x := s+ d− d′ /∈
Bδ(S), i.e. x ∈ Sδ := Zd

q \Bδ(S). But then

S +D′ ∋ s+ d = x+ d′ ∈ Sδ +D′,

which is in contradiction to part (ii) of Definition 3.4. ⊓⊔

4 Lattice-Based Structure-Preserving Signatures

A lattice-based structure-preserving signature (SPS) scheme Σ expresses its verification algorithm in the framework
of structure-preserving sets. Namely, a signature σ can be split into two separate parts σ = (core, tag). In order to
verify that σ is valid, the Σ verification algorithm checks whether f(core) belongs to a structure-preserving set S. The
function f is publicly computable from tag, along with public verification key vk and the message m.

The requirement to use tag arises from specific properties of known lattice-based SPS schemes. The tag is publicly
samplable and, for example, it could be a random string. At a technical level, the tag is usually required in all known
lattice-based signatures that satisfy strong-unforgeability, and can remain unused in some schemes that are only
existentially-unforgeable.

Definition 4.1 (Lattice SPS). A lattice-based F -structure-preserving signature Σ for a family F of functions f : S→
Zd′

q is a digital signature with signature space S× T where for every verification key vk, every message msg and every
signature (core, tag) ∈ S× T

Ver(vk,msg, (core, tag)) = 1⇐⇒ f(core) ∈ S

where f ∈ F and S ⊆ Zd′

q are derived from vk, msg and tag. Furthermore, S is a structure-preserving set. Finally, we
require that tags are publicly samplable. That is, there exists an algorithm TagGen that, given the verification key vk
and a message m generates a tag tag that has the same distribution as the tag part of the signatures generate with the
signing algorithm.

Remark 4.2. Since we do not require the membership problem for the sets S to be easy, this definition does not give
immediately rise to an alternative verification procedure.
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(vk, sk)←R KeyGen(1λ)
Q := ∅
(m⋆, sig⋆)←R AOsign(vk)
b← Ver′(vk,m⋆, sig⋆)

return b ∧m⋆ /∈ Q

return b ∧ (m⋆, sig⋆) /∈ Q

Osign(m):
sig←R Sign(sk,msg)

Q← Q ∪ {m}

Q← Q ∪ {(m, sig)}
return sig

Ver′(vk,m, sig = (core, tag)):
return (f(core) ∈ BδS (S))

Fig. 1. Security experiment for SPS-EUF-CMA and SPS-sEUF-CMA security of lattice-based structure-preserving signatures.

We are particularly interested in the cases where F is the set of linear functions or the set of functions that can be
computed by bounded-depth Boolean circuits after encoding the signature as a binary string.

For structure-preserving signatures we require a slightly stronger security notion (defined below) than standard
(strong) existential unforgeability under chosen message attacks ((s)EUF-CMA). Compared to (s)EUF-CMA, we relax
the verification of the forged signature as follows: Instead of requiring that the forged signature sig = (core, tag)
satisfies f(core) ∈ S, we only require f(core) ∈ BδS (S).

Definition 4.3 (SPS-(s)EUF-CMA). We call a structure-preserving signature scheme (KeyGen,Sign,Ver) SPS-EUF-CMA
or SPS-sEUF-CMA-secure, if every PPT adversary can win the respective game in Fig. 1 with at most negligible
probability.

4.1 SPS instantiation

Examples of structure-preserving signatures are Boyen’s signature scheme [14], Rückert’s signature scheme [49] and a
new scheme, that combines the advantages of these two schemes. Namely, it achieves strong unforgeablity and has a
simpler verification (because it does not need the non-zero signature check). Furthermore, it is more efficient (due to
shorter signatures) than Rückert’s scheme. We only show that the new scheme satisfies Definition 4.1 here and present
the remaining details in Appendix A.

As a prerequisite, we state some facts that are needed in the signature scheme description, and define and construct
chameleon hash functions.

Fact 1 ([14, Fact 5]) There is a PPT algorithm TrapGen that, on input the security parameter λ, an odd prime
q = poly(λ), and two integers n = Θ(λ) and m ≥ 6n log q, outputs a matrix A ∈ Zn×m

q statistically close to uniform,
and a basis TA for Λ⊥(A) such that ∥T̄A∥ ≤ Θ̃(

√
m) ≤ L with overwhelming probability. We assume L = Ω̃(

√
m).

Fact 2 ([14, Lemma 22]) For a security parameter λ, let q = poly(λ) be an odd prime, n = Θ(λ), m ≥ 6n log q,
L = Ω̃(

√
m) and σ ≥ Lω(

√
logm). Then there exist a PPT algorithm SamplePre that on input a Gaussian parameter

σ, a modulus q, a matrix F := [A|B] ←R Zn×2m
q , and a basis TA ⊂ Λ⊥(A) of norm ∥T̄A∥ ≤ L, and a vector u,

outputs d ∈ Λ⊥(F) from the distribution DZm,σ conditioned on Fd = u.

Fact 3 ([4, Section 4.2]) Given matrices A,B ∈ Zn×m
q , B needs to have rank n, a short basis TB for B and a short

matrix R ∈ Zm×m
q , one can compute efficiently a short basis TF for F := (A|AR+B) with ∥T̃F∥ ≤ ∥T̃B∥(∥R∥+1).

Definition 4.4 (Chameleon hash function). A chameleon hash function with message spaceM and hash space N
consists of an efficiently sampable distribution R on some randomness space R and two PPT algorithms (GenCH,
TrapColl) with the following syntax

GenCH(1λ): Given an unary encoded security parameter λ as input, it outputs an efficiently computable chameleon
hash function ch :M×R→ N and a trapdoor τ .
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TrapColl(τ,m ∈M, r ∈ R,m∗ ∈M): Given the trapdoor τ for a chameleon hash function ch, two messages m,m∗

and one randomness r this algorithm outputs r∗ such that ch(m, r) = ch(m∗, r∗) and r∗ is distributed according
toR.

The security property we require for chameleon hash functions is collision resistance. That is, for every PPT adversary
A, the following probability is negligible

Pr[(ch, τ)←R GenCH, (m, r,m∗, r∗)←R A(1λ, ch) : ch(m, r) = ch(m∗, r∗)

∧ (m, r) ̸= (m∗, r∗)].

An example of a chameleon hash function based on the SIS assumption is by [19]. It has message spaceM :=
{0, 1}k and randomness space R := {r ∈ Zm | ∥r∥ < s

√
m} with a tail-truncated discrete Gaussian distribution DR,s

where s = L · ω(
√
logm) and n,m, and L are as in Fact 1. It works as follows:

GenCH(1λ) samples A0 ←R Zn×k
q and A1 ∈ Zn×m

q with short basis S using TrapGen. Output A := (A0|A1) to
describe the chameleon hash function

chA : {0, 1}k ×R→ Zn
q

(m, r) 7→ A ·
(
m
r

)
TrapColl(τ,m ∈M, r ∈ R,m∗ ∈M) samples and outputs a vector r∗ according to (a distribution statistically close

to) DR,s condition on chA(m∗, r∗) = chA(m, r) using Fact 2.

Lemma 4.5 ([19, Lemma 4.1]). The above chameleon hash function is collision-resistant under the SISm,n,q,β problem
where β :=

√
k + 4s2m.

The ISIS-based signature scheme requires a chameleon hash function (GenCH,TrapColl) with message spaceM,
randomness space R and hash space N = {0, 1}ℓ and is described as follows:

KeyGen(1λ): Given unary encoded security parameter λ as input, proceed as follows:
1. Execute the TrapGen algorithm to obtain a matrix A ∈ Zn×m

q and a basis TA ∈ Λ⊤(A) such that ∥T̄A∥ ≤ L.
2. Sample y←R Zn

q , (C0, . . . ,Cℓ)←R Zn×m
q × . . . ,Zn×m

q .
3. Sample (ch, τ)←R GenCH(1λ).
4. Output vk := (A,C0, . . . ,Cℓ,y, ch) and sk := TA.

Sign(sk,msg): Given a signing key sk = TA and a message msg ∈M as input proceed as follows:
1. Sample r ← R and set msg′ := ch(msg, r).
2. Compute Cmsg := C0 +

∑ℓ
i=1 msg′iCi and set Fmsg := [A | Cmsg] ∈ Zn×2m

q .
3. Execute the algorithm SamplePre on Fmsg, TA and σ ≥ 2Lω(

√
logm) to obtain a short non-zero random

point d with Fmsgd = y.
4. Output the signature sig := (core = d, tag = r).

Ver(vk,msg, sig): Given a verification key vk = (A,C0, . . . ,Cℓ,y, ch), a message msg ∈ M and signature
sig = (d ∈ Z2m

q , r) as input, set msg′ := ch(msg, r) and output 1 if (1) ∥d∥ ≤
√
2m · σ and (2) [A |

C0 +
∑ℓ

i=1 msg′iCi]d = y mod q. Otherwise, output 0.

Lemma 4.6. The ISIS-based signature scheme from above is a SPS scheme.

Proof. A signature sig is of the form (core, tag) = (d, r). Clearly, these tags are publicly samplable.
According to definition Definition 4.1, what remains to show is that the signature verification can be expressed as

f(core) ∈ S for some function f : Z2m
q → Zd′

q and some set S ⊆ Zd′

q which is structure-preserving. Both the function
f and the set S might depend on the message being signed, the verification key and the public parameters of the scheme.
We show that the signature verification can be expressed as two checks of the type fi(core) ∈ Si (i ∈ {1, 2}). These
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check can then be combined to a single check by setting f(core) := (f1(core), f2(core)) and S := S1 × S2. The set S
is structure-preserving when S1 and S2 are structure-preserving by Example 3.8.

The first check is ∥core∥ ≤
√
2m · σ, i.e., that core is a small vector. For this, we can set n′1 := 2m and

f1(core) := core, and S1 := {x ∈ Z2m
q | ∥x∥ ≤

√
2m · σ} = B√2m·σ({0}).

By triangular inequality, we have that S1 − S1 ⊆ B2
√
2m·σ({0}). By Remark 3.7, we can conclude that S1 is

structure-preserving with noise growth 16mσ + 1.
For the second check, we can set n′2 := n and

f2(core) :=

[
A

∣∣∣∣∣C0 +

ℓ∑
i=1

msgiCi

]
core and S2 := {y} ⊂ Zn

q .

Note that the function f2 is defined by the message and the verification key. Moreover, S2 is a singleton set and hence
by Remark 3.3 and Lemma 3.5, we know that it is structure-preserving with noise growth 0. ⊓⊔

We prove SPS-sEUF-CMA-security of our scheme in Appendix A.

5 Lattice-Based Structure-Preserving Encryption

Our notion of a structure-preserving encryption (SPE) captures the common properties of known lattice-bases encryption
schemes which are compatible with efficient lattice-based sigma protocols and NIZKs that prove statements about
ciphertexts. In particular, the randomness space needs to be a structure-preserving set (Definition 3.4) and ciphertexts
are of the form ct = Bαr+ gα(msg), where Bα is a public matrix depending on the message dimension α, and gα is
an invertible encoding function.

In addition, SPE needs to satisfy a series of technical properties on the noise, which provides bounds on the noise
levels. This is a crucial property that allows for compatibility with the sigma protocols in later sections.

Definition 5.1 (Lattice SPE). A PKE scheme (KeyGen,Enc,Dec) is a lattice-based structure-preserving encryption
scheme if it satisfies the following properties:

– It has message spaceM∗ for some base setM. That is, we can encrypt arbitrary dimensional vectors of some
base setM. The ciphertexts will reveal the dimensions of the vectors.

– Public key: The public key implicitly defines matrices (Bα ∈ Zd(α)×r(α)
q )α∈N+ and efficiently sampleable distribu-

tion (Rα)α∈N+ such that r← Rα lies with overwhelming probability in a structure-preserving set Rα ⊆ Zr
q . The

parameter α denotes the dimension of the message, i.e. to encrypt a message msg ∈Mα we will use Bα andRα.
– Message encoding: The public key implicitly defines for every α ∈ N+ an additively homomorphic invertible

function gα :Mα → Zd(α)
q such that Enc is equivalent to an algorithm that samples a vector r← Rα and outputs

ct = Bαr+ gα(msg).
– Noise Levels: There exists a polynomial time algorithm NoiseLevel(sk, ct) that computes a noise level ν ∈ N0 for

each ciphertext and satisfies the following:
• Initial noise level: For every security parameter λ there is a constant νinit ∈ N0 such that for every key

pair (pk, sk) in the range of KeyGen(1λ) and every ciphertext ct in the range of Enc(pk,msg) for a message
msg ∈Mα we have NoiseLevel(sk, ct) ≤ νinit.

• Maximum noise level: For every security parameter λ there is a constant νmax ≥ 2νinit such that for every key
pair (pk, sk) in the range of KeyGen(1λ) and every ciphertext ct = Bαr+gα(msg) with NoiseLevel(sk, ct) ≤
νmax we have Dec(sk, ct) = msg.

• Symmetry: For every secret key sk and ciphertext ct

NoiseLevel(sk, ct) = NoiseLevel(sk,−ct).

• Subadditivity: For every secret key sk and any two ciphertexts ct1, ct2 with NoiseLevel(sk, ct1),NoiseLevel(sk, ct2) ≤
νmax/2 satisfy

NoiseLevel(sk, ct1 + ct2) ≤ NoiseLevel(sk, ct1) + NoiseLevel(sk, ct2).
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• Boundedness: For every security parameter λ there exists an efficiently computable function MaxNoiseLevel :
N0 → N0 such that for every message dimension α and vector r of suitable length

∥r∥ < δ → NoiseLevel(sk,Bαr+ gα(0)) ≤ MaxNoiseLevel(δ)

holds with overwhelming probability over the choice of the secret key sk. We will later require in Section 6 that
MaxNoiseLevel is small for small inputs.

Definition 5.2. We say that a lattice-based SPE scheme is F -homomorphic for a family of functions F if for all f ∈ F ,
f :Mαin →Mαout when there exists a maximum noise level νin ≥ νinit and a deterministic polynomial time algorithm
Evalf that takes pk and a ciphertext ct = Bαinr+ gαin(msg) that encrypts a αin-dimensional message msg under pk
with noise level NoiseLevel(sk, ct) ≤ νin. It outputs a new ciphertext Bαoutrf + gαout(f(msg)) with rf ∈ Rf , where
Rf is a structure-preserving set with noise growth δRf

such that every ciphertext ct = Bαoutr + gαout(msg) with
r ∈ BδRf

(Rf ) and msg ∈Mαout has NoiseLevel(sk, ct) ≤ νmax.

We further require that there is a deterministic polynomial time algorithm Evalrandf that takes the public key pk and
r ∈ R and outputs rf such that

Bαoutrf + g(f(msg)) = Evalf (pk,Bαinr+ g(msg))

Note that every SPE scheme is linearly homomorphic. In more detail, given two ciphertexts ct1 = Bαr1 +
gα(msg1) and ct2 = Bαr2 + gα(msg2) with NoiseLevel(sk, ct1), NoiseLevel(sk, ct2) ≤ νmax/2, the ciphertext
Eval+(pk, ct1, ct2) := ct1+ct2 is a valid ciphertext for msg1+msg2 with randomness Evalrandf (pk, r1, r2) := r1+r2,
since gα is additively homomorphic. This can be extended to linear functions (with sufficiently small coefficients) of
multiple ciphertexts.

5.1 SPE instantiation

Examples of SPE schemes are Regev’s encryption scheme, the Dual Regev encryption scheme and the GSW encryption
scheme. We only prove that Regev’s scheme is a SPE scheme here and present the proof for the remaining two schemes
in Appendix B. As Regev’s original scheme [48] allows to encrypt a single bit only, we recall its variant, put forward
by Peikert et al. [47], that allows to encrypt messages from the message spaceM = Zp for p s.t. q

p is sufficiently large.
We assume that q = pk, for a sufficiently large k ∈ N, and we denote c := q

p = pk−1. In addition to the LWE modulus
q, the scheme is parametrized by a dimension n, number of samples m ≥ n log q and an error distribution χ = DZ,σ.
We recall this scheme with α = 1. To encrypt a higher-dimensional message (msg1, . . . ,msgα)

⊤ ∈Mα, we encrypt
each component individually, i.e. generate cti = Enc(pk,msgi) for i ∈ {1, . . . , α} and chain the ciphertext together,
i.e. ct⊤ = (ct⊤1 , . . . , ct

⊤
α ).

KeyGen(1λ): Sample A ←R Zn×m
q , s ←R Zn

q and e ← χm. Output the secret key sk := s and the public key
pk = (A, s⊤A+ e⊤) ∈ Zn×m

q × Z1×m
q .

Enc(pk,msg): Parse pk as (A,x). Sample z←R {−1, 0, 1}m and compute c0 := Az ∈ Zn
q and c1 := xz+ c ·msg ∈

Zq . Then output the ciphertext ct := (c0, c1) ∈ Zn
q × Zq .

Dec(sk, ct): Parse ct as (c0, c1) and set s := sk. Compute d := c1− s⊤c0 ∈ Zq and output x ∈ Zp, such that d− c · x
mod q is closest to 0.

Lemma 5.3. Regev’s encryption scheme is a lattice-based SPE scheme.

Proof. For a public key pk = (A,x) ∈ Zn×m
q × Z1×m

q , dimension α, and a message msg ∈ Mα, let us define the

matrix B ∈ Zα(n+1)×αm
q and the function gα :Mα → Zα(n+1)

q as follows :

B := Iα ⊗
(
A
x

)
=


A
x

. . .
A
x

 , gα

msg1
...

msgα

 :=


0

c ·msg1
...
0

c ·msgα

 .
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LetR be the uniform distribution over R := {−1, 0, 1}αm. Clearly, r← R lies in R with probability 1. We need
to show that R is a structure-preserving set. R = {−1, 0, 1}αm ⊆ Zαm

q is a
√
αm-bounded set which, by Remark 3.7,

implies that R is structure-preserving with noise growth δR := 8m+ 1.
As a next set, we need to argue that g is invertible and additively homomorphic. Let g−1α : Img(gα) → Zp be a

function that on input y = (0⊤, y1, . . . ,0
⊤, yα)

⊤ ∈ Img(gα), outputs x ∈ Zα
p , such that yi − cxi mod q = 0 for all

i ∈ {1, . . . , α}. It is easy to see that g−1 is the inverse of g. It is easy to see that gα is additively homorphic, because it
is composed of additively homomorphic functions.

Furthermore, we need to prove that the encryption algorithm is equivalent to sampling r ← Rα and computing
Bαr+ gα(msg). For msg ∈ Zα

p and r← Rα, we have, for r⊤ = (r⊤1 , . . . , r
⊤
α ) with ri ∈ Zm

q ,

Bαr+ gα(msg) =


Ar1

xr1 + c ·msg1
...

Arα
xrα + c ·msgα

 =

 ct1
...

ctα

 = ct

which shows that this procedure indeed gives us a well-distributed ciphertext.
Finally, we need to prove that the existence of the NoiseLevel(sk, ct) algorithm. Let us define NoiseLevel(sk, ct) as

follows: Parse ct as (ct1, . . . , ctα) and each cti as (ci,0, ci,1) and set s := sk. Compute di := c1,i − s⊤ci,0 ∈ Zq and
νi := |di − c · Dec(sk, cti)|. Output max1≤i≤α νi.

To show that this definition satisfies the desired properties, it suffices to prove it for dimension α = 1, because all
these properties only talk about upper bounds14 of the noise level and the noise level of a ciphertext for α > 1 is simply
the maximum of the noise levels of the ciphertexts for each component of the message.

To show boundedness, define MaxNoiseLevel(δ) := 2σ
√
mδ. Then, for ∥z∥ < δ, we have

NoiseLevel(sk, ct = (Az, ((s⊤A+ e⊤)z+ cmsg)) = |e⊤z|
(1)

≤ ∥e∥∥z∥
(2)

≤ 2σ
√
mδ,

where inequality (1) follows from the Cauchy-Schwartz inequality and inequality (2) follows from the Gaussian tail
bound (Lemma 2.1).

The maximal initial noise level is νinit := 2σm: An honestly generated ciphertext has randomness z ∈ {0, 1}m and
thus ∥z∥ ≤

√
m. Plugging this in the MaxNoiseLevel function yields the desired bound.

The maximum noise level is νmax := ⌈c/2⌉, because then for a ciphertext ct = (c0, c1) for msg, the value
d := c1 − s⊤c0 deviates at most by ⌈c/2⌉ from cmsg and so the Dec algorithm will round to msg.

The Symmetry property of NoiseLevel follows immediately from the definition and the subadditivity property
follows immediately from the triangle inequality. ⊓⊔

6 Σ-Protocol Constructions

In this section, we describe a generalization of the sigma protocols in [38] that, at a high level, allow to prove that the
value encrypted in an SPE scheme belongs to a structure-preserving set S (up to an additional inherent error that comes
from the noises of the encryption scheme and the structure-preserving set S).

More formally, we construct a trapdoor gap Σ-protocol that can prove for a lattice-based SPE scheme Π =
(KeyGen,Enc,Dec⋆) that a ciphertext encrypts a message msg ∈ S where S is a structure-preserving set with noise
growth δS and BδS (S) ⊆Mα. Let:

– α be the dimension of the message in the ciphertext
– Bα ∈ Zd(α)×r(α)

q be the matrix defined by the public key for messages of length α,
– gα be the message encoding function for messages of length α,

14Note that the symmetry property is equivalent to NoiseLevel(sk, ct) ≤ NoiseLevel(sk,−ct).
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– Rα be the randomness space with maximum noise level νR (i.e. for all r ∈ Rα and messages msg we have
NoiseLevel(sk,Bαr+ gα(msg)) ≤ νR). We also require Rα to be structure-preserving with noise growth δR using
the distribution DR, smudging set D′R, no-abort function successR and no-abort constant αR.

– S be a structure-preserving set with noise growth δS using distributionDS , smudging set D′S with S,D′S , S+D′S ⊆
M, no-abort function successS and no-abort constant αS ,

– r′ ∈ Rα be an arbitrary fixed element of Rα,
– and msg′ ∈ S be an arbitrary fixed element of S.
– And assume that the parameters of the SPE scheme are selected such that

νinit + νR +MaxNoiseLevel(δR) < νmax/2. (1)

We construct a gap Σ-protocol for:

Lzk = {Bαr+ gα(msg) | r ∈ Rα,msg ∈ S}
Lsound = {ct | NoiseLevel(sk, ct) ≤ 2 · νinit + νR + 2 ·MaxNoiseLevel(δR),

Dec(sk, ct) ∈ BδS (S)}

From the SPE definition we get Lzk ⊆ Lsound.
The language is described by the modulus q, the matrix Bα and the structure-preserving sets Rα and S and

the message encoding function gα. The Setup algorithm will output as crs simply the language description, i.e.
crs = (q,Bα, Rα, S, gα). The membership testing trapdoor for the language is the secret key sk of the structure-
preserving encryption scheme and TrapSetup will simply output as trapdoor this secret key, i.e. τΣ = sk. The definition
of the prover and verfier can be found in Fig. 2.

Prover P = (P1,P2) Verifier V

Input : (crs = (q,Bα, Rα, S, gα),
x = Br+ g(msg), w = r)

Input : (crs = (q,Bα, Rα, S, gα), x)

rR ← DR; mS ← DS

a := BαrR + gα(mS) a

Chal←R {0, 1}Chal
if Chal = 0 then
z := rR

else
z := r+ rR

θ1 := successR(r,Chal · r′ + (1−
Chal) · r, rR)
Abort with probability 1− θ1
θ2 := successS(msg,Chal ·msg′ +
(1− Chal) ·msg,mS)
Abort with probability 1− θ2

z
if Chal = 0 then
Output : z ∈ D′

R∧g−1
α (a−Bz) ∈ D′

S

else
Output : z ∈ Rα +D′

R ∧ g−1
α (a+x−

Bz) ∈ S +D′
S

Fig. 2. The interaction between Prover and Verfier in our Σ-protocol.

Theorem 6.1. The above construction is a trapdoor gap Σ-protocol for (Lzk,Lsound).
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Proof. Completeness: Suppose that rR ∈ D′R and mS ∈ D′S . Both of these events happens with overwhelming
probability by the second part of the structure-preserving set definition. Given this, it is easy to verify that the protocol
accepts for both Chal = 0 and Chal = 1 when x ∈ Lzk.

Special Soundness: Suppose that for a statement x and a first flow message a there exist responses z0 and z1 that
an honest verifier accepts for challenge Chal = 0 resp. Chal = 1. Then

z0 ∈ D′R (2)
z1 ∈ D′R +Rα (3)

g−1α (a−Bαz0) ∈ D′S (4)

g−1α (x+ a−Bαz1) ∈ D′S + S (5)

holds. By subtracting Eq. (4) from Eq. (5) and using the additive homomorphism of gα, we get

g−1α (x+ a−Bαz1 − (a−Bαz0)) = g−1α (x−Bα(z1 − z0)) ∈ S +D′S −D′S ⊆ BδS (S),

where the last relation follows using Lemma 3.9. Since we also have z1 − z0 ∈ Rα +D′R −D′R ⊆ BδR(Rα) (again
using Lemma 3.9) this proves x ∈ {Bαr + gα(msg) | r ∈ BδR(Rα),msg ∈ BδS (S)} ⊆ {ct | NoiseLevel(sk, ct) ≤
νR + MaxNoiseLevel(δR), Dec(sk, ct) ∈ BδS (S)} ⊆ Lsound. For the first subset relationship we use that we can
write r = r′ + y with r′ ∈ Rα and ∥y∥ ≤ δR since r ∈ BδR(Rα). The statement then follows from using
NoiseLevel(sk,Bαr

′ + gα(msg)) ≤ νR, NoiseLevel(sk,Bαy) ≤ MaxNoiseLevel(δR) (boundedness property of the
NoiseLevel function) and combining this with the subadditivity property of the NoiseLevel function, which we can use
due to Eq. (1).

Special Zero-Knowledge: We show that there exists a zero-knowledge simulator, that outputs statistically close
transcripts and has statistically close aborting behavior as the real protocol. The simulator ZKSim works as follows on
input (crs = (q,Bα, Rα, S, gα), x ∈ Lzk,Chal

⋆ ∈ {0, 1}):

1. Sample r⋆R ← DR; m
⋆
S ← DS .

2. Compute a⋆ := Bαr
⋆
R + Chal⋆(Bαr

′ + gα(msg′)− x) + gα(m
⋆
S).

3. Compute z⋆ := r⋆R + Chal⋆ · r′.
4. Abort with probability 1− αR.
5. Abort with probability 1− αS .
6. Output (a⋆, z⋆).

For x ∈ Lzk, we have x = Bαr+ gα(msg) for r ∈ Rα and msg ∈ S.
First, we will focus on the case Chal⋆ = 0. In the real protocol, the randomness rR of the first flow a is sampled

from DR and the protocol continues with probability θ1 := successR(r, r, rR). The zero-knowledge simulator samples
the first flow randomness from the same distribution, but continues with probability αR. We use now that Rα is a
structure-preserving set. By plugging in r and r (in the role of s and s′) in the first part of the structure-preserving set
definition, we get that the distribution of the first flow randomness in the real and the simulated protocol is statistically
close.

Similarly, the distribution of the message part of the first flow is DS both in the real protocol and the simulated one,
but the real protocol continues with probability θ2 := successS(msg,msg,mS) while the simulated one continues with
probability αS . By using that S is a structure-preserving and plugging in msg and msg (in the role of s and s′) in the
first part of the definition, it follows that the distribution of the first flow message in real and the simulated protocol is
statistically close.

Next, we will discuss the remaining case Chal⋆ = 1. In the real protocol, the randomness part rR of the first flow
a is sampled again from DR and the protocol continues with probability θ1 := successR(r, r

′, rR). The simulated
protocol samples r⋆R ← DR and uses r⋆R + r′ − r as randomness and continues with probability αR. We use again
that Rα is a structure-preserving set, but plug in r and r′ in the first part of the structure-preserving set definition. This
gives us that outputting r + rR with probability successR(r, r

′, rR) is statistically close to outputting r⋆R + r′ with
probability αR.

The message part of the first flow is mS , sampled from DS in the real protocol and the protocol aborts with
probability successS(msg,msg′,mS). The simulator samples m⋆

S ← DS and uses msg′ −msg +m⋆
S as message part
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of the first flow. Furthermore, the simulator aborts with probability αS . Using that S is a structure-preserving set and
plugging in msg and msg′ in the first part of the definition, we get that these two distributions are also statistically close.

Putting this together, we see that the simulated first flow is statistically close to an honest first flow. And the third
flow outputted by ZKSim is always the correct third flow with respect to the first flow and challenge, so ZKSim is
a correct simulator. Furthermore, the zero knowledge simulator only aborts with a constant probability, so the real
protocol also aborts only with constant probability.

Correctness of BadChallenge: We show that the following BadChallenge algorithm outputs for any x /∈ Lsound a
bad challenge. The BadChallenge algorithm proceeds on input (τΣ = sk, crs, x, a) as follows:

1. If NoiseLevel(sk, a) > νinit +MaxNoiseLevel(δR) ∨Dec(sk, a) /∈ D′S , output Chal = 1 (indicating that the prover
cannot finish the protocol for Chal = 0).

2. Otherwise, if NoiseLevel(sk, x + a) > νinit + νR + MaxNoiseLevel(δR) ∨ Dec(sk, x + a) /∈ S + D′S , output
Chal = 0.

3. Otherwise, output ⊥.

First, assume that NoiseLevel(sk, a) > νinit+MaxNoiseLevel(δR) or Dec(a) /∈ D′S holds. Then a can not be written
as a = BαrR + gα(mS) with rR ∈ D′R,mS ∈ D′S because then it would have both of the above properties. In this
scenario there is no third flow that would make the Verifier accept for Chal = 0, so the BadChallenge correctly returns
0.

Second, assume that NoiseLevel(sk, x + a) > νinit + νR +MaxNoiseLevel(δR) or Dec(x + a) /∈ S +D′S holds.
Then x + a can not be written as x + a = Bαr + gα(msg) with r ∈ Rα +D′R,msg ∈ S +D′S because then it
would have both of the above properties. In this scenario there is no third flow that would make the Verifier accept for
Chal = 1, so the BadChallenge correctly returns 1 (if the first case does not apply as well).

Finally, assume that neither of the two cases above applies. Then

NoiseLevel(sk, x) = NoiseLevel(sk, x+ a− a)

≤ NoiseLevel(sk, x+ a) + NoiseLevel(sk,−a)
= NoiseLevel(sk, x+ a) + NoiseLevel(sk, a)

≤ 2 · νinit + νR + 2 ·MaxNoiseLevel(δR).

The inequality follows from subadditivity of the NoiseLevel-function which we can use due to Eq. (1). This guarantees
that

Dec(sk, x) = Dec(sk, x+ a)− Dec(sk, a) ∈ S +D′S −D′S ⊆ BδS (S)

which shows that x ∈ Lsound, in contradiction to our initial assumption. ⊓⊔

7 Lattice-Based Structure-Preserving NIZK Arguments

Definition 7.1 (SPNIZK). Let S be a structure-preserving set with noise growth δS and SPE be a structure-preserving
public key encryption scheme with message spaceMα and randomness distribution Rα, where r ←R R lies with
overwhelming probability in a structure-preserving set Rα ⊆ Zr

q with noise growth δR. A NIZK argument system
(Genpar,GenL,P,V) is a structure-preserving NIZK (SPNIZK) argument with respect to S and SPE if for any (pk, ·)←
SPE.Setup(1λ), encryption randomness r←R R and m ∈ S, SPNIZK supports the following functionality:

– ProveMembershipSS(crs, pk,m, ct, r) outputs a proof π that ct encrypts a message m which belongs to the structure-
preserving set S.

– VerifyMembershipSS(crs, pk, ct, π) verifies that ct indeed encrypts a message m which belongs to the structure-
preserving set S.

As in Definition 2.10, the SPNIZK must satisfy completeness, computational soundness, and zero-knowledge. Moreover,
we require our SPNIZK argument system to satisfy unbounded simulation soundness [51, 23]. We refer the reader to
Appendix C for the definition of these properties.
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Due to lack of space, we defer to Appendix D an instantiation of Definition 7.1 with unbounded simulation
soundness and multi-theorem zero-knowledge. Our instantiation is obtained by compiling the sigma protocol from
Section 6 into an SPNIZK argument using the Fiat-Shamir transformation. As mentioned in Section 1, we implement
the used hash function with a correlation-intractable hash function in this.

8 Verifiably Encrypted Signatures (VES)

Using a verifiable encrypted signature (VES), a signer can encrypt a signature under the public key of a trusted-third
party (the adjudicator) and then generate a proof that the ciphertext encrypts a valid signature for a known message.

The main application of VES is online contract signing, in which two parties Alice and Bob agree on a contract by
using the help of a trusted third party called an adjudicator. Alice and Bob start the protocol by producing a VES ΩAlice,
ΩBob on the agreed contract m, using the public key apk of the adjudicator. Upon receipt of the VES ΩAlice, ΩBob, both
Alice and Bob reveal the unencrypted versions σAlice, σBob of their signatures, agreeing to the contract. If any one of the
parties, for example Bob, refuses to release his signature σBob, Alice can contact the adjudicator and ask them to extract
σBob from ΩBob. This prevents Bob from not completing the protocol and using σAlice to negotiate a better contract
elsewhere.

We recall the formal definition of VES in Appendix E. We discuss it here only informally. A VES is a tuple of
PPT algorithms (Kg,AdjKg,Sig,Vf,Create,VesVf), where Kg, Sig and Vf are defined similarly to a digital signature
scheme. AdjKg generates a key pair (apk, ask) for the adjudicator, Create computes a VES on a given message,
and VesVf allows to verify that a given VES is a encryption of a valid signature on a given message. In addition to
completeness, VES is required to satisfy four security properties: unforgeability, abuse freeness, extractability and
opacity.

Unforgeability guarantees that no PPT adversary given the public key and oracle access Create and Adj, is able to
compute a VES Ω for a message m that they have never queried to its oracles. Abuse freeness requires that no malicious,
PPT adjudicator with access to a Create oracle is able to output a valid VES for a message that they have never queried.
Extractability requires that no malicious signer which can create their own vk and is granted oracle access to Adj is
able to efficiently output a valid VES Ω, from which the Adj algorithm is unable to extract a valid signature. Opacity
requires that no PPT adversary, given public keys vk and apk and oracle access to Create and Adj, can return a valid
signature σ∗ for some message m∗, provided it has not queried Adj on m∗.

8.1 The VES Construction

We are now ready to show how to use our notions of structure-preserving signatures, encryptions and NIZK arguments
to obtain verifiably encrypted signatures. Our construction is given in Fig. 3 and informally discussed below.

The starting point of our construction is any structure-preserving SPS (see Definition 4.1), over a modulus q. Recall
that signatures are tuples σ = (core, tag), which consist of a vector core ∈ Zγ

q and a public string tag ∈ {0, 1}ζ . To
compute a VES Ω, we encrypt the core part of the signature core and obtain a ciphertext ct1. The public tag is not
encrypted, and is revealed together with ct1 as part of Ω.

If we stop at this point, the verifier has no way of checking if core is valid, as it is only given in its encrypted form.
Therefore, we now want to convince the verifier that the ciphertexts encrypt a vector core that is part of a valid signature.
To this end, we first compute efficiently the structure-preserving set and function (S, f) that correspond to signature
verification in the sense of Definition 4.1. Note that in our notation, f is a function that takes γ inputs and outputs
a vector in Zτ

q . We then compute ciphertexts ct2 that correspond to homomorphic evaluation using function f over
ct1. Then, we use our SPNIZK argument to compute a proof π that ct2 actually encrypts a vector that belongs to the
structure-preserving set S. The resulting VES is hence Ω = (ct1, π, tag).

We can combine an SPE scheme with an SPS scheme if the SPE scheme is F-homomorphic where F is the set of
all functions f that can appear in the signature verification procedure in the sense of Definition 4.1. Table 1 summarizes
which SPE scheme can be combined with which SPS scheme.

Verification is now straightforward. Namely, we recompute (S, f) using vk,m and the public tag, and check that the
SPNIZK proof π is indeed valid. Finally, adjudication is performed by simply decrypting ciphertexts ct1 and revealing
the vector core.
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Generic Construction of a Verifiable Encrypted Signature Scheme VES
based on any Structure-Preserving Signature SPS

VES.Kg(1λ):
Return (vk, sk)←R SPS.KeyGen(1λ).

VES.Sig(sk,m):
Return σ ←R SPS.Sign(sk,m).

VES.Ver(vk,m, σ):

Return (SPS.Ver(vk,m, σ)
?
= 1).

VES.AdjKg(1λ):
Return (apk, ask)←R SPE.KeyGen(1λ).

VES.Create(sk, apk,m):
σ = (core, tag)←R SPS.Sig(sk,m) ∈ Zγ

q × {0, 1}ζ
r1 ←R Rγ

ct1 ← SPE.Enc(apk, core; r1)
(S, f)← ComputeSPSetsAndFunctions(vk,m, tag)
val← f(core) ∈ Zτ

q

ct2 ← Evalf (apk, ct
1)

r2 ← Evalrandf (apk, r1)
π ←R SPNIZK.ProveMembershipSS(crs, apk, val, ct

2, r2)
Return Ω ← (ct1, π, tag)

VES.VesVf(apk, vk, Ω,m):
Parse Ω as (ct1, π, tag)
(S, f)← ComputeSPSetsAndFunctions(vk,m, tag)
ct2 ← Evalf (apk, ct

1)
If SPNIZK.VerifyMembershipSS(crs, apk, ct

2, π) = 0, then return 0
Else, return 1

VES.Adj(ask, apk, vk, Ω,m):
Parse Ω as (ct1, π, tag)
(S, f)← ComputeSPSetsAndFunctions(vk,m, tag)
ct2 ← Evalf (apk, ct

1)
If SPNIZK.VerifyMembershipSS(crs, apk, ct

2, π) = 0, then return ⊥
corei ← SPE.Dec(ask, ct1i )
Return σ = (core, tag)

Fig. 3. A verifiably-encrypted signature (VES) scheme (Kg,AdjKg,Sig,Vf,Create,VesVf). SPS denotes a structure-preserving
signature scheme, while SPE is a lattice-based structure-preserving encryption. SPNIZK is a structure-preserving NIZK argument
for SPE, allowing to prove that encryptions encode plaintexts that belong to a structure-preserving set S.
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Our ISIS-based signature scheme Rückert’s scheme Boyen’s scheme
Regev ✓ ✓ ✗

Dual Regev ✓ ✓ ✗

GSW ✓ ✓ ✓

Table 1. The table indicates which of the SPE schemes can be combined with which SPS scheme to obtain VES.

We present the concrete parameters of our VES scheme in Appendix F and refer the reader to Appendix G for the
security proof.

8.2 Efficiency Considerations

Let λ be the security parameter. Then SPE has dimension n′ = λ and modulus q′ = poly(λ). The CI-Hash of [46]
is implemented using GSW encryption. The decryption algorithm of SPE must be expressible as an NC1 circuit of
depth O(log λ)—which is the case with the schemes analysed in this paper. Such an NC1 circuit can be translated to
a branching program of size O(poly(λ)), and the GSW parameters are q = poly(λ) = q′poly(λ) and n = λc−o(1),
where c is a constant that depends on the SPE decryption circuit. The output of the CI hash function consists of m bits,
where m = n⌈log(q)⌉. In addition, the compiler for obtaining an unbounded simulation-sound NIZK also contains the
ciphertexts of a generalised lossy encryption scheme—and the entire construction requires a θ(λ) number of parallel
repetitions.

While this machinery might sound daunting relative to pairing-based NIZK systems, the NIZK presented here
remains the most efficient lattice-based construction which is secure in the standard model (for proving membership to
structure-preserving sets). There are several reasons for this:

1. The CI-Hash requires homomorphic encryption, but no bootstrapping is required since SPE decryption circuits
have low depth cDec · κSPE, where κSPE is the size of SPE ciphertexts and cDec is a small constant cDec ≤ 44 (for
example using the results of [9]).

2. It avoids expensive Karp reductions, which would be necessary if one used general purpose NIZKs such as the one
of [46].

The standard model NIZK incurs a significant overhead when compared to the usage of lattice NIZKs in the ROM,
which is why the proposed NIZK is only semi-efficient. For this reason, we do not provide more detailed efficiency
comparisions with random-oracle implementations. At the same time, we note that a gap can also be observed between
the Groth-Sahai NIZK and Fiat-Shamir compilations of more restricted sigma protocols that only lead to secure NIZKs
in the ROM. Nevertheless, such a gap in the group setting appears to be smaller than in the lattice case.
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Supplementary Material

A Deferred instantiations of Lattice-Based Structure-Preserving Signatures

A.1 SIS-based instantiation

In this section, we show that the SIS-based signature scheme put forward by Boyen [14] is a SPS scheme. To this end,
we briefly recall Boyen’s construction. Parts of the description below are taken verbatim from the work of Boyen. For
the definition of algorithms TrapGen and SamplePre used in the construction, see Section 4.

KeyGen(1λ): Given unary encoded security parameter λ as input, proceed as follows:
1. Execute the TrapGen algorithm to obtain a matrix A ∈ Zn×m

q and a basis TA ∈ Λ⊤(A) such that ∥T̄A∥ ≤ L.
2. Sample (C0, . . . ,Cℓ)←R Zn×m

q × · · · × Zn×m
q .

3. Output as verification key vk := (A,C0, . . . ,Cℓ) and as signing key sk := TA.
Sign(sk,msg): Given a signing key sk = TA and a message msg ∈ {0, 1}ℓ as input proceed as follows:

1. Compute Cmsg := C0 +
∑ℓ

i=1 msgiCi.
2. Set Fmsg := [A | Cmsg] ∈ Zn×2m

q .
3. Execute the algorithm SamplePre on Fmsg, TA and σ ≥ 2Lω(

√
logm) to obtain a short non-zero random

point d ∈ Λ⊥(Fmsg).
4. Output the signature sig := (core = d, tag = ∅).

Ver(vk,msg, sig): Given a verification key vk = (A,C0, . . . ,Cℓ), a message msg ∈ {0, 1}ℓ and signature sig =
(core, tag) where core ∈ Z2m

q as input, output 1 if
1. 0 < ∥core∥ ≤

√
2m · σ and

2. [A | C0 +
∑ℓ

i=1 msgiCi]core = 0 mod q.
Otherwise, output 0.

Lemma A.1. The SIS-based signature scheme of Boyen [14] is a SPS scheme.

Proof. This signature does not use a tag (formally we set the tag to always be the empty string).
According to definition Definition 4.1, what remains to show is that the signature verification can be expressed

as f(core) ∈ S for some function f : Z2m
q → Zd′

q and some set S ⊆ Zd′

q which is structure-preserving. Both the
function f and the set S might depend on the message being signed, the verification key and the public parameters
of the scheme. We show that the signature verification can be expressed as three checks of the type fi(core) ∈ Si

(i ∈ {1, 2, 3}). These check can then be combined to a single check by setting f(core) := (f1(core), f2(core), f3(core))
and S := S1×S2×S3. The set S is structure-preserving when S1, S2, and S3 are structure-preserving by Example 3.8.

Let us first focus on the check 0 < ∥core∥. Equivalently, we need to verify that core is a non-zero vector. For this,
we can set n′1 := 1 and

f1(core) :=

{
1, if core = 0

0, otherwise.
and S1 := {0}.

By Remark 3.3 and Lemma 3.5, we know that S1 is structure-preserving with a noise growth 0. Let (s1, . . . , sk) ∈
{0, 1}k, for k = 2m(⌊log q⌋+ 1), be the binary representation of core. Then f1 can be expressed as

∧k
i=1 ¬si which

can be computed by a Boolean circuit of depth ⌊log k⌋+ 2.
Secondly, we need to express the check ∥core∥ ≤

√
2m · σ, i.e., that core is a small vector. For this, we can set

n′2 := 2m and

f2(core) := core, and S2 := {y ∈ Z2m
q | ∥y∥ ≤

√
2m · σ} = B√2m·σ({0}).

By triangular inequality, we have that S2 − S2 ∈ B2
√
2m·σ({0}). By Remark 3.7, we can conclude that S2 is structure-

preserving with noise growth 16mσ + 1.
For the final check, we can set n′3 := n and
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f3(core) :=

[
A

∣∣∣∣∣C0 +

ℓ∑
i=1

msgiCi

]
core and S3 := {0} ⊂ Zn

q .

Note that the function f3 is defined by the message and the verification key. Moreover, S3 is a singleton set and hence
by Remark 3.3 and Lemma 3.5, we know that it is structure-preserving with noise growth 0. ⊓⊔

Remark A.2. One may wonder whether we could not express the non-zero check as a negation of a zero check (i.e.,
f1(core) = core and S1 = {0}). This would avoid the need of Boolean circuits as f1, and hence f , would be linear
function. Unfortunately, this does not work as structure-preserving sets (and also languages we can prove with our
NIZK) are not closed under negations.

The original security proof of Boyen showed only that this scheme is secure when the number of signing queries in
the UF-CMA security game is a priori bounded. Namely, their reduction had a security loss of O(q) (so the modulus
q has to be polynomial) and they restricted the adversary makes to make at most q/2 signing queries. We give an
improved security proof that is tighter and has no restriction on the number of signing queries.

Theorem A.3. The SIS-based signature scheme of Boyen [14] is SPS-EUF-CMA-secure under the SISm,n,q,β problem
where β grows polynomial in the security parameter.

Proof. The reduction gets as input a uniformly random matrix A0 ∈ Zn×m
q and is supposed to output a short vector

e0 ̸= 0 with ∥e0∥ ≤ β and A0e0 = 0. Let Q be the number of signing queries of the adversary. The reduction proceeds
as follows:

1. Sample a n×m matrix with a short basis: (B0,TB0
)← TrapGen(1λ, q, n,m).

2. Sample short m×m matrices R0, . . . ,Rℓ ← {−1, 0, 1}m×m.
3. Sample hi as results of random walks of length L. In more detail, sample for i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , L}

for L ∈ O(Q2) hi,j ←R {−1, 0, 1} and set hi :=
∑L

j=1 hi,j .15

4. Set Ci := A0Ri + hiB0 for all i ∈ {0, . . . , ℓ}.
5. Give the verification key vk := (A0, (Ci)0≤i≤ℓ) to the adversary.

The reduction answers each of the adversaries signing queries for a message msg as follows:

1. Compute hmsg := h0 +
∑ℓ

i=1 msgihi.
2. Abort, if hmsg = 0.
3. Define Fmsg := (A0|A0Rmsg + hmsgB0 with Rmsg := R0 +

∑ℓ
i=1 msgiRi.

4. Compute a short basis TFmsg for Fmsg using the short basis TB0 for B0 via Fact 3. This basis will have ∥T̃Fmsg∥ ≤
T̃B0
∥(∥R∥+ 1) ≤ 2L.

5. Sample a short vector d ∈ Λ⊥(Fmsg) using the SamplePre algorithm from Fact 2 and TFmsg with σ ≥ 2Lω(
√
logm).

6. Give d as signature for msg to the adversary.

When the adversary outputs a forgery (msg⋆,d⋆), the reduction solves the SIS instance as follows:

1. Compute hmsg⋆ := h0 +
∑ℓ

i=1 msg⋆i hi and Rmsg⋆ := R0 +
∑ℓ

i=1 msg⋆iRi.
2. Abort, if hmsg⋆ ̸= 0.
3. Define ((d⋆

1)
⊤|(d⋆

2)
⊤) := (d⋆)⊤ with d⋆

1,d
⋆
2 ∈ Zm

q .
4. Output e0 := d⋆

1 +Rmsg⋆d
⋆
2 as solution to the SIS instance.

15This is the part where our proof differs from Boyen’s original proof. There the coefficients hi are chosen uniformly random
over Zq .

27



First, we verify that the reduction correctly simulates the game. Therefore we need that the matrices Ci :=
A0Ri + hiB0 look uniformly random to the adversary. The matrix A0 is uniformly random and thus, by the left over
hash lemma, A0Ri is statistically close to uniformly random because Ri has at least nm log q + λ bits of min-entropy.
Thus also the coefficients hi are hidden from the adversary.

Next, we verify that the reduction solves the SIS instance when the adversary successfully forges a signature and
the reduction does not abort. In this case we have

A0e0 = A0d
⋆
1 +A0Rmsg⋆d

⋆
2 = (A0|A0Rmsg⋆)d

⋆ = 0,

where the last inequality follows from the third signature check. From the second check we know that ∥d⋆∥ ≤√
2m · σ + 16mσ + 1 and from the first check we know that d⋆ ̸= 0. Then with high probability also e0 is a short and

non-zero vector. Details for this step can be found in [14, Lemma 26].
Finally, we need to analyze the probability of an abort. This argument follows [36], and we only give a brief

summary here. For any two messages msg,msg⋆ we have

Pr[hmsg ̸= 0 | hmsg⋆ = 0] ≥ 1− 1/Θ(Q)

because hmsg differs from hmsg⋆ by a random walk of length at least Q2 and random walk with n steps is back at its
origin with probability 1/Θ(

√
n). Let msg1, . . . ,msgQ be the messages the adversary queried a signature for. By the

union bound we get
Pr[hmsg1 , . . . , hmsgQ ̸= 0 | hmsg⋆ = 0] ≥ Θ(1).

Furthermore, since hmsg⋆ is a random walk of length at most Q2ℓ we have

Pr[hmsg⋆ = 0] ≥ 1/Θ(Q
√
ℓ)

and thus
Pr[no abort] = Pr[hmsg1 , . . . , hmsgQ ̸= 0 ∧ hmsg⋆ = 0] ≥ 1/Θ(Q

√
ℓ).

⊓⊔

A.2 ISIS-based instantiation

We presented a new signature scheme that combines the techniques of Boyen’s and Rückert’s signature scheme in
Section 4.1, where we also proved that it is a SPS scheme. What remains to prove is that it satisfies SPS-sEUF-CMA-
security.

Theorem A.4. The signature scheme presented in Section 4.1 is SPS-sEUF-CMA-secure under the SISm,n,q,β where
β grows polynomial in the security parameter.

Proof. The reduction starts by guessing a bit b←R {0, 1}. b = 0 indicates that the reduction hopes that the adversary
outputs a forgery (msg⋆, (r⋆,d⋆)) where (msg′)⋆ := ch(msg⋆, r⋆) is fresh, i.e. does not match with one of the
signatures outputted by the signing oracle. b = 1 indicates that the reduction hopes for the opposite event.

In this case b = 0, the reduction works very similar to the one for the SIS-based signature, but reduces to the ISIS
problem instead (by Remark 2.6 we can reduce the ISIS problem to the SIS problem in the end). The reduction gets
as input a uniformly random matrix A0 ∈ Zn×m

q and a vector y ∈ Zn
q and is supposed to output a short vector with

∥e0∥ ≤ β and A0e0 = y.
In the case b = 1, the reduction reduces to the SIS problem. Here the reduction gets as input a uniformly random

matrix A0 ∈ Zn×m
q and is supposed to output a short vector e0 ̸= 0 with ∥e0∥ ≤ β and A0e0 = 0. Let Q be the

number of signing queries of the adversary. In this case the reduction also guesses an index i⋆ ∈ {1, . . . , Q} and hopes
that the adversary uses the message and randomness of the i⋆-th signing query for the forgery. The reduction proceeds
as follows:

1. Sample a n×m matrix with a short basis: (B0,TB0)← TrapGen(1λ, q, n,m).
2. Sample short m×m matrices R0, . . . ,Rℓ ← {−1, 0, 1}m×m.
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3. Sample hi as results of random walks of length L. In more detail, sample for i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , L}
for L ∈ O(Q2) hi,j ←R {−1, 0, 1} and set hi :=

∑L
j=1 hi,j .16

4. Set Ci := A0Ri + hiB0 for all i ∈ {0, . . . , ℓ}.
5. If b = 1, compute y as follows:

(a) Sample m̂sg←R M, r̂ ←R R.
(b) Set m̂sg

′
:= ch(m̂sg, r̂).

(c) Compute Fm̂sg′ := C0 +
∑ℓ

i=1 m̂sg
′
Ci.

(d) Sample d̂←R D2m
σ , where D2m

σ is the distribution of 2m-dimensional vectors where each entry is sampled
according to a discrete Gaussian distribution.

(e) Set y := Fm̂sg′ d̂.
6. Give the verification key vk := (A0, (Ci)0≤i≤ℓ,y) to the adversary.

The reduction answers each of the adversaries signing queries, except the i⋆-th signing query if b = 1, for a message
msg as follows:

1. Sample r ∈ {0, 1}ℓ/2 and set msg′ := msg||r.
2. Compute hmsg′ := h0 +

∑ℓ
i=1 msg′ihi.

3. Abort, if hmsg′ = 0.
4. Define Fmsg′ := (A0|A0Rmsg′ + hmsg′B0 with Rmsg′ := R0 +

∑ℓ
i=1 msg′iRi.

5. Compute a short basis TFmsg′ for Fmsg′ using the short basis TB0 for B0 via Fact 3. This basis will have

∥T̃Fmsg′∥ ≤ T̃B0∥(∥R∥+ 1) ≤ 2L.
6. Sample a short vector d with Fmsg′d = y using the SamplePre algorithm from Fact 2 and TFmsg′ with σ ≥

2Lω(
√
logm).

7. Give (d, r) as signature for msg to the adversary.

If b = 1, the i⋆-th signing query for a message msg is answered as follows:

1. Compute r := TrapColl(τ, m̂sg, r̂,msg).
2. Give (d̂, r) as signature for msg to the adversary.

If b = 0, when the adversary outputs a forgery (msg⋆, (d⋆, r⋆)), the reduction solves the ISIS instance as follows:

1. Set (msg′)⋆ := ch(msg⋆, r⋆).
2. Compute h(msg′)⋆ := h0 +

∑ℓ
i=1(msg′)⋆i hi and R(msg′)⋆ := R0 +

∑ℓ
i=1(msg′)⋆iRi.

3. Abort, if h(msg′)⋆ ̸= 0.
4. Define ((d⋆

1)
⊤|(d⋆

2)
⊤) := (d⋆)⊤ with d⋆

1,d
⋆
2 ∈ Zm

q .
5. Output e0 := d⋆

1 +R(msg′)⋆d
⋆
2 as solution to the ISIS instance.

If b = 1, when the adversary outputs a forgery (msg⋆, (d⋆, r⋆)), the reduction solves the ISIS instance as follows:

1. Set (msg′)⋆ := ch(msg⋆, r⋆).
2. Abort if (msg′)⋆ ̸= m̂sg

′.
3. Compute h(msg′)⋆ := h0 +

∑ℓ
i=1(msg′)⋆i hi and R(msg′)⋆ := R0 +

∑ℓ
i=1(msg′)⋆iRi.

4. Abort, if h(msg′)⋆ ̸= 0.
5. Define d′ := d⋆ − d̂.
6. Define ((d′1)

⊤|(d′2)⊤) := (d′)⊤ with d′1,d
′
2 ∈ Zm

q .
7. Output e0 := d′1 +R(msg′)⋆d

′
2 as solution to the SIS instance.

16This is the part where our proof differs from Boyen’s original proof. There the coefficients hi are chosen uniformly random
over Zq .

29



First, we verify that the reduction correctly simulates the game. Therefore we need that the matrices Ci :=
A0Ri + hiB0 look uniformly random to the adversary. The matrix A0 is uniformly random and thus, by the left over
hash lemma, A0Ri is statistically close to uniformly random because Ri has at least nm log q + λ bits of min-entropy.
Thus also the coefficients hi are hidden from the adversary. By a similar argument, we can also argue that in the b = 1

case, the vector y is statistically close to uniformly random using the entropy of d̂.
Next, we verify that the reduction solves in the b = 0 case the ISIS instance when the adversary successfully forges

a signature and the reduction does not abort. In this case we have

A0e0 = A0d
⋆
1 +A0Rmsg⋆d

⋆
2 = (A0|A0Rmsg⋆)d

⋆ = y,

where the last inequality follows from the third signature check. From the second check we know that ∥d⋆∥ ≤√
2m · σ + 16mσ + 1. Then ∥e0∥ ≤ 2∥d⋆∥ ≤ 2

√
2m · σ + 32mσ + 2 and thus e0 is a solution to the ISIS problem.

Similarly, the reduction solves in the b = 1 case the SIS instance when the adversary successfully forges a signature
and the reduction does not abort. In this case we have

F(msg′)⋆d
⋆ = y = F(msg′)⋆ d̂

and thus
F(msg′)⋆(d

⋆ − d̂) = F(msg′)⋆d
′ = 0

which we can use to argue that

A0e0 = A0d
′
1 +A0R(msg′)⋆d

′
2 = (A0|A0R(msg′)⋆)d

′ = 0,

From the second signature check we know that ∥d⋆∥ ≤
√
2m ·σ+16mσ+1 and with high probability ∥d′∥ ≤

√
2m ·σ

and thus ∥d′∥ ≤ 2
√
2m · σ + 16mσ + 1. If the forgery is not trivial, we have d′ ̸= 0. Then with high probability also

e0 is a short and non-zero vector. Details for this step can be found in [14, Lemma 26].
Finally, we need to analyze the probability of an abort. Assume that the reduction guesses the bit b and the index i⋆

correctly. This happens with probability at least 1/2Q. In this case the abort in step 2 of the procedure handling the
forgery for b = 1 does not occur.

Also assume that no messages queried by the adversary to the signing oracle or used as forgery produce a collision
with the chameleon hash function. Then we can bound the remaining abort probability as follows. The argument follows
[36], and we only give a brief summary here. For any two hashed messages msg′, (msg′)⋆ we have

Pr[hmsg′ ̸= 0 | h(msg′)⋆ = 0] ≥ 1− 1/Θ(Q)

because hmsg′ differs from h(msg′)⋆ by a random walk of length at least Q2 and random walk with n steps is back at
its origin with probability 1/Θ(

√
n). Let msg′1, . . . ,msg′Q be the messages the adversary queried a signature for with

appended randomness. By the union bound we get

Pr[hmsg′1
, . . . , hmsg′Q

̸= 0 | h(msg′)⋆ = 0] ≥ Θ(1).

Furthermore, since h(msg′)⋆ is a random walk of length at most Q2ℓ we have

Pr[h(msg′)⋆ = 0] ≥ 1/Θ(Q
√
ℓ)

and thus

Pr[no abort | i∗ and b are guessed correctly]

= Pr[hmsg′1
, . . . , hmsg′Q

̸= 0 ∧ h(msg′)⋆ = 0] ≥ 1/Θ(Q
√
ℓ).

⊓⊔
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A.3 Rückert’s scheme

Rückert [49] describes a signature based on Bonsai trees [19] that is also an SPS scheme (Definition 4.1) and satisfies
strong existential unforgeability. We begin by recalling the construction. The construction relies on the following facts
about lattice trapdoors.

Fact 4 ([49, Proposition 2.3], [19]) Let δ > 0 be any fixed real constant and let q ≥ 3 be odd. There is a polynomial
time algorithm ExtLattice(A1,m2) that, given uniformly random A1 ∈ Zn×m1

q for any m1 ≥ (1 + δ)n log(q) and
poly(n)-bounded m2 ≥ (4 + 2δ)n log(q), outputs (A2 ∈ Zn×m2

q ,S ∈ Zm×m), where m = m1 + m2, such that
A = (A1|A2) is within negligible statistical distance of uniform, S is a basis of Λ⊥q (A1|A2), ∥S∥ ≤ L = Cn log(q)

with overwhelming probability, and for the Gram-Schmidt orthogonalization S̃ of S we have ∥S̃∥ ≤ L̃ = 1 +
C
√
(1 + δ)nlog(n) ≤ 1 + C

√
m1 with overwhelming probability.

Fact 5 ([19, Proposition 2.4]) There exists a deterministic polynomial time algorithm ExtBasis(S1,A1,A2) that takes
a short basis S1 of Λ⊥q (A1) and two matrices A1 ∈ Zn×m1

q and A2 ∈ Zn×m2
q with m1 ≥ 2n log(q). It outputs a short

basis S for Λ⊥q (A := (A1|A2)) with ∥S̃∥ = ∥S̃2∥, where S̃ and S̃2 are the Gram-Schmidt orthogonalization of S and
S2, respectively.

The lattice trapdoor can be used to sample efficiently short preimages, as described by the following fact.

Fact 6 The algorithm SamplePre(S, s,y) takes as input a shot basis S ∈ Zm×m
q of a lattice Λ⊥q (A), a parameter s

and a vector y ∈ Zn
q and outputs a vector from the set

x ∈ Zm
q |∥x∥ ≤ s

√
m,x ̸= 0,Ax = y

according to Gaussian distribution.

The construction uses a chameleon hash function (GenCH,TrapColl) and is described as follows:

KeyGen(1λ): Given unary encoded security parameter λ as input, proceed as follows:
1. Choose q, L̃,m1,m2 as in Fact 4.
2. Set s := L̃ω(

√
log(n) and d := s

√
m1 + (λ+ 1)m2.

3. Sample A1 ←R Zn×m1
q .

4. Sample (A2,S
⋆)←R ExtLattice(A1,m2).

5. Set A⋆ := (A1|A2).
6. Sample a sequence ⟨B⟩ :=

(
(B

(0)
i ,B

(1)
i )

)
1≤i≤λ

of uniformly random matrices in Zn×m2
q .

7. Sample y←R Zn
q .

8. Sample (ch, τ)←R GenCH(1λ).
9. Output the signing key sk := (A⋆, ⟨B⟩,y,S⋆, ch) and the verification key vk := (A⋆, ⟨B⟩,y, ch).

Sign(sk,msg): Given a signing key sk = (A⋆, ⟨B⟩,y,S⋆, ch) and a message msg ∈ {0, 1}∗ as input, proceed as
follows:
1. Sample r ← R.
2. Compute h := ch(m, r)

3. Set Bh := (B
(h1)
1 | · · · |B(hλ)

λ )
4. Sh := ExtBasis(S∗,A∗,Bh)
5. Sample d←R SamplePre(Sh, s,y).
6. Output the signature sig = (core = d, tag = r).

Ver(vk,msg, sig): Given a verification key vk = (A⋆, ⟨B⟩,y), a message msg ∈ {0, 1}∗ and signature (d, r) as input,
proceed as follows:
1. Compute h := ch(m, r)

2. Set Ah := (A⋆|B(h1)
1 | · · · |B(hλ)

λ )

3. Output 1 if ∥d∥ ≤ s
√

m1 + (λ+ 1)m2 and Ahd = y.
4. Otherwise, output 0.
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Lemma A.5. Rückert’s signature scheme is a SPS scheme.

Proof. For a signature (d, r), d will be the core and r will be the tag. Clearly, these tags are publicly samplable.
According to definition Definition 4.1, what remains to show is that the signature verification procedure can be

expressed as f(core) ∈ S for some function f : Zm1+(λ+1)m2
q → Zd′

q and some structure-preserving set S ⊆ Zd′

q . We
show that the signature verification can be expressed as two checks of the type fi(core) ∈ Si (i ∈ {1, 2}). These check
can then be combined to a single check by setting f(core) := (f1(core), f2(core)) and S := S1 × S2. The set S is
structure-preserving when S1 and S2 are structure-preserving by Example 3.8.

First, we need to express the check ∥d∥ ≤ s
√
m1 + (λ+ 1)m2, i.e., that core is a small vector. For this, we can set

f1(core) := core, and S1 :={x ∈ Z2m
q | ∥x∥ ≤ s

√
m1 + (λ+ 1)m2}

=B
s
√

m1+(λ+1)m2
({0}).

By triangular inequality, we have that S1 − S1 ∈ B
2s
√

m1+(λ+1)m2
({0}). By Remark 3.7, we can conclude that S1 is

structure-preserving with noise growth 8s(m1 + (λ+ 1)m2) + 1.
For the other check, we can set

f2(core) := Ahcore for Ah := (A⋆|B(h1)
1 | · · · |B(hλ)

λ ) and h := ch(m, r)

and S2 := {y},

where x :=
(

0
msg

)
. Note that the function f2 is defined by the message, the signatures tag and the verification key.

Moreover, S2 is a singleton set and hence by Remark 3.3 and Lemma 3.5, we know that it is structure-preserving with
noise growth 0. ⊓⊔

Theorem A.6. Rückert’s signature scheme achieves SPS-sEUF-CMA security under the SISm,n,q,β problem where β
grows polynomial in the security parameter.

Proof. The proof works exactly as for [49, Theorem 4.1]. The only difference is that for SPS-sEUF-CMA security,
we allow the forged signature to be larger by a summand of 8s(m1 + (λ+ 1)m2) + 1, due to the noise growth of the
“short vector” structure-preserving set. But this only increases β by a polynomial summand compared to the original
proof. ⊓⊔

B Instantiations of Lattice-Based Structure-Preserving Encryption

In Section 5.1, we showed that Regev’s encryption scheme is a SPE scheme as of Definition 5.1. Here we prove that the
same holds for the Dual Regev’s and the GSW encryption schemes. The schemes are parametrized by a LWE modulus
q, dimension n, number of samples m ≥ n log q and an error distribution χ = DZ,σ .

Dual Regev’s Encryption. Gentry et al. [31] defined an LWE-based encryption scheme that is often refer to as dual to
the one of Regev. Note that in Regev’s encryption scheme, public keys have an LWE (i.e., non-uniform) distribution
with a unique secret key. Moreover, given a public key, there are many choices of encryption randomness that produce
the same ciphertext. At a high level, the dual encryption scheme flips these two properties around. Namely, public keys
are uniformly random with many possible secret keys. But, given a public key, the encryption randomness that produce
a certain ciphertext is unique.

We now present the dual Regev’s encryption scheme with message spaceM = Zp for p s.t. q
p is sufficiently large.

Again, we assume q = pk and denote c := q
p = pk−1. We recall this scheme with α = 1.

KeyGen(1λ): Sample A ←R Zn×m
q , z ←R {−1, 0, 1}m. Output the secret key sk := z and the public key pk =

(A,Az) ∈ Zn×m
q × Zn

q .
Enc(pk,msg): Parse pk as (A,u). Sample s ← χn and e ← χm and e′ ← χ. Compute c0 := A⊤s + e ∈ Zm

q and
c1 := u⊤s+ c ·msg + e′ ∈ Zq . Then output the ciphertext ct := (c0, c1).
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Dec(sk, ct): Parse ct as (c0, c1) and set z := sk. Compute d := c1 − z⊤c0 and output x ∈ Zp, such that d − c · x
mod q is closest to 0.

To encrypt a higher-dimensional message (msg1, . . . ,msgα)
⊤ ∈Mα, we encrypt each component individually, i.e.

generate cti = Enc(pk,msgi) for i ∈ {1, . . . , α} and chain the ciphertext together, i.e. ct⊤ = (ct⊤1 , . . . , ct
⊤
α ).

Lemma B.1. Dual Regev’s encryption scheme is a lattice-based SPE scheme.

Proof. For a public key pk = (A,u) ∈ Zn×m
q × Zn

q , and a message msg ∈ Zp, let us set r := n+m+ 1, and define
the matrix B and the function g follows:

B := Iα ⊗
(
A⊤

u⊤

∣∣∣∣ Im0
∣∣∣∣01

)
∈ Zα(m+1)×αr

q ,

gα

msg1
...

msgα

 :=


0

c ·msg1
...
0

c ·msgα

 ∈ Zα(m+1)
q

LetR := DZαr,σ and R = B2σ
√
αr({0}). Then, by Lemma 2.1, we have that

Pr
r←R

[r ̸∈ R] = Pr
r←DZαr,σ

[∥r∥ > 2σ
√
αr] < 2αre−

3αr
2 <

1

2αr
.

Hence, with overwhelming probability, r ← R lies in R. Moreover, by Remark 3.7, we know that R is a structure-
preserving set with noise growth δR := 16σαr + 1.

We can argue as in the proof of Lemma 5.3 that g is invertible and additively homomorphic.
Next, we need to prove that the encryption algorithm is equivalent to sampling r← R and computing Br+ g(msg).

For msg = (msg1, . . . ,msgα)
⊤ ∈ Zα

p , and r⊤ = (s1, e1, e
′
1, . . . , sα, eα, e

′
α), we have

Br+ g(msg) =

(
Iα ⊗

(
A⊤

u⊤

∣∣∣∣ Im0
∣∣∣∣01

))


s1
e1
e′1
...
sα
eα
e′α


+


0

c ·msg1
...
0

c ·msgα



=


A⊤s1 + e1

u⊤s1 + e′1 + c ·msg1
...

A⊤sα + eα
u⊤sα + e′α + c ·msgα

 =


c1,0
c1,1

...
cα,0
cα,1

 = ct

Finally, we need to prove that the existence of the NoiseLevel algorithm. Similar to Regev’s encryption, let use
define NoiseLevel(sk, ct) as follows: Parse ct as (ct1, . . . , ctα) and each cti as (ci,0, ci,1) and set z := sk. Compute
di := ci,1 − z⊤ci,0 ∈ Zq and νi := |di − c · Dec(sk, cti)|. Output max1≤i≤α νi.

As for Regev’s encryption, we show that this definition of the NoiseLevel function has the desired properties for
α = 1. This implies that it also has the desired properties for α > 1, because all these properties only talk about upper
bounds of the noise level and the noise level of a ciphertext for α > 1 is simply the maximum of the noise levels of the
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ciphertexts for each component of the message. To show boundedness, define MaxNoiseLevel(δ) := (
√
m+ 1)δ. Then

for ∥z∥ < δ we have

NoiseLevel(sk, ct = (A⊤s+ e, z⊤A⊤s+ c ·msg + e′))

= |(z⊤A⊤s+ e′ − z⊤(A⊤s+ e)|

= |e′ − z⊤e| ≤

∣∣∣∣∣
(

1
−z

)⊤(
e′

e

)∣∣∣∣∣ (1)

≤
∥∥∥∥( 1
−z

)∥∥∥∥∥∥∥∥(e′e
)∥∥∥∥

(2)

≤ (
√
m+ 1)δ,

where inequality (1) follows from the Cauchy-Schwartz inequality.
The maximal initial noise level is νinit := 2σ(m+ 1): An honestly generated ciphertext uses

(
e′

e

)
← χm+1 and

thus has ∥
(
e′

e

)
∥ ≤ 2σ

√
m+ 1 with overwhelming probability by the Gaussian tail bound (Lemma 2.1). Plugging this

in the MaxNoiseLevel function yields the desired bound.
The maximum noise level is νmax := ⌈c/2⌉, because then for a ciphertext ct = (c0, c1) for msg, the value

d := c1 − z⊤c0 deviates at most by ⌈c/2⌉ from cmsg and so the Dec algorithm will round to msg.
The Symmetry property of NoiseLevel follows immediately from the definition and the subadditivity property

follows immediately from the triangle inequality.
⊓⊔

GSW Encryption. The third lattice based scheme that we recall here is the FHE scheme put forward by Gentry, Sahai
and Waters in 2013 [32]. We refer to this scheme as GSW for short.

Let L := ⌊log q⌋ + 1 and m := (n + 1) · L. We describe the GSW construction using a gadget matrix G [45]
defined as G := In+1 ⊗ g for g = (20, 21, . . . , 2L−1). This means that G is a (n+ 1)×m matrix whose rows consist
of shifts of the vector g.

Pick j ∈ {0, . . . , L − 1}. This parameter controls the tradeoff between message space size and the maximum
tolerated noise level. The base message space isM = {0, . . . , ⌊q/2j⌋}. We recall this scheme with α = 1.

KeyGen(1λ): Sample s←R Zn
q , A←R Zn×m

q , e← χm. Output secret key sk and public key pk defined as

sk :=

(
−s
1

)
∈ Zn+1

q , pk :=

(
A

s⊤A+ e⊤

)
∈ Z(n+1)×m

q .

Enc(pk,msg): Let U := pk. Sample R←R {−1, 0, 1}m×N . Then output the ciphertext

ct := UR+msg ·G ∈ Z(n+1)×m
q

Dec(sk, ct): Let t := sk and v be the (m− j)-th column of ct. Output x ∈ Zq such that t⊤v−x ·2j mod q is closest
to 0.

To encrypt a higher-dimensional message (msg1, . . . ,msgα)
⊤ ∈Mα, we encrypt each component individually, i.e.

generate cti = Enc(pk,msgi) for i ∈ {1, . . . , α} and chain the ciphertext together, i.e. ct = (ct1, . . . , ctα).

Lemma B.2. GSW encryption scheme is a lattice-based SPE scheme.

Before we prove the lemma, let us define an auxiliary algorithm vec that takes as input a matrix M and outputs a column
vector m obtained by “stacking” all columns of M. More precisely, let M = (mi,j)i∈[n0],j∈[n1] for some n0, n1 ∈ N.
Then

vec(M) = (m1,1, . . . ,mn0,1,m1,2, . . . ,mn0,2, . . . ,m1,n1
, . . . ,mn0,n1

)⊤.

Since according to the SPE definition the ciphertexts have to be vectors, we will apply vec(ct) to the ciphertexts for this
definition.
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Proof. For a public key U := pk ∈ Z(n+1)×m
q , and a message msg ∈ M = Zq, let define the matrix B and the

function g as follows:

B := Iα ⊗ (Im ⊗U) ∈ Zα(n+1)m×αmm
q ,

g(msg) := vec(msg⊤ ⊗G) ∈ Zα(n+1)m
q .

LetR be the uniform distribution over R := {−1, 0, 1}αmm.
Clearly, r ← R lies in R with probability 1. We need to show that R is a structure-preserving set. R =

{−1, 0, 1}αmm ⊆ Zαmm
q is a

√
αmm-bounded set which, by Remark 3.7, implies that R is structure-preserving

with noise growth δR := 8αmm+ 1.
As a next step, we need to prove that g is invertible and additively homomorphic. It is easy to recover msg ∈Mα

from g(msg), for example by taking every (n+ 1)m-th entry. Thus g is invertible. Let us fix msg1,msg2 ∈ Zq. Then
we have

g(msg1 +msg2) = vec((msg1 +msg2)
⊤ ⊗G)

= vec(msg⊤1 ⊗G+msg⊤2 ⊗G)

= vec(msg⊤1 ⊗G) + vec(msg⊤2 ⊗G)

= g(msg1) + g(msg2)

proving that g is additively homomorphic.
Next, we need to prove that the encryption algorithm is equivalent to sampling r ∈ R and computing Br+ g(msg).

For r ←R R, let us write r⊤ =: (r⊤1 , . . . , r
⊤
α ) such that for each i ∈ {1, . . . , α} ri ∈ Z(n+1)m

q and let Ri be the
(n+ 1)×m matrix such that ri = vec(Ri). Then for msg ∈Mα we have

Br+ g(msg) = (Iα ⊗ (Im ⊗U))r+ vec(msg⊤ ⊗G)

=

 (Im ⊗U)r1 + vec(msg1 ·G)
...

(Im ⊗U)rα + vec(msgα ·G)

 =

 vec(UR1 +msg1 ·G)
...

vec(URα +msgα ·G)


=

 ct1
...

ctα

 = ct

Finally, we need to prove that the existence of the NoiseLevel algorithm. Let us define NoiseLevel(sk, ct) as follows:
Parse ct as (ct1, . . . , ctα) and for each i ∈ {1, . . . , α} let vi be the (m − j)-th column of cti (in matrix form) and
t := sk. Then define νi := |t⊤vi − Dec(sk, cti)2

j | and output max1≤i≤α νi.
As before, we show that this definition of the NoiseLevel function has the desired properties for α = 1. This implies

that it also has the desired properties for α > 1, because all these properties only talk about upper bounds of the noise
level and the noise level of a ciphertext for α > 1 is simply the maximum of the noise levels of the ciphertexts for each
component of the message. To show boundedness, define MaxNoiseLevel(δ) := 2σ

√
mδ. Then, for ∥vec(R)∥ < δ, we

have

NoiseLevel(sk =

(
−s
1

)
, ct =

(
A

s⊤A+ e⊤

)
R+msg ·G)

= |e⊤Rj |
(1)

≤ ∥e∥∥Rj∥ ≤ ∥e∥δ
(2)

≤ 2σ
√
mδ,

where inequality (1) follows from the Cauchy-Schwartz inequality and inequality (2) follows from the Gaussian tail
bound (Lemma 2.1).

The maximal initial noise level is νinit := 2σm3/2
√
m: An honestly generated ciphertext has randomness R ∈

{−1, 0, 1}m×N and thus

∥vec(R)∥ =
√
∥R1∥2 + · · ·+ ∥Rm∥2 ≤

√
m2m = m

√
m.
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Plugging this in the MaxNoiseLevel function yields the desired bound.
The maximum noise level is νmax := 2j−1, because then for a ciphertext ct for msg, the value t⊤v (where v is the

(m− j)-th column of ct) deviates at most by 2j−1 from 2jmsg and so the Dec algorithm will round to msg.
The Symmetry property of NoiseLevel follows immediately from the definition and the subadditivity property

follows immediately from the triangle inequality. ⊓⊔

C Formal definition of SPNIZK

Definition C.1 (SPNIZK). Let S be a structure-preserving set with noise growth δS and SPE be a structure-preserving
public key encryption scheme with message space Mα and randomness distribution Rα, where r ←R Rα lies
with overwhelming probability in a structure-preserving set Rα ⊆ Zr

q with noise growth δR. A NIZK argument
system (Genpar,GenL,P,V) is a structure-preserving NIZK (SPNIZK) argument with respect to S and SPE if for any
(pk, ·)← SPE.Setup(1λ), encryption randomness r←R R and m ∈ S, SPNIZK supports the following functionality:

– ProveMembershipSS(crs, pk,m, ct, r) outputs a proof π that ct encrypts a message m which belongs to the structure-
preserving set S.

– VerifyMembershipSS(crs, pk, ct, π) verifies that ct indeed encrypts a message m which belongs to the structure-
preserving set S.

As in Definition 2.10, the SPNIZK must satisfy completeness, computational soundness, and zero-knowledge:

1. Completeness, meaning that for every (pk, ·)← SPE.Setup(1λ), r←R Rα and m ∈ S, we have: VerifyMembershipSS(crs, pk, ct,ProveMembershipSS(crs,
pk,m, ct, r)) ≥ 1− negl(λ).

2. Computational soundness holds only with respect to slightly larger message sets S′ and randomness space R′,
with S′ = BδS (S) and R′ = BδR(R). This means that if VerifyMembershipSS(pk, ct, π) = 1, it holds with
overwhelming probability that ct encodes a message in S′, encrypted with randomness in the set R′.

3. Statistical zero-knowledge: let L = (Lzk,Lsound) be the language of SPE ciphertexts from Section 6. The zero-
knowledge property allows us to simulate proofs computed for messages in S and honestly-generated randomness
inR, for statements in the language L (formally expressed in Definition 2.10).

The following definition follows the write-up of [38], and is the security notion we require from our SPNIZK
argument system.

Definition C.2 (Unbounded Simulation Soundness [51, 23]). Consider a language L = (Lzk,Lsound). A NIZK
argument system for L satisfies unbounded simulation soundness if no PPT adversary A wins the following game with
non-negligible advantage:

1. The challenger chooses a membership testing trapdoor τzk for Lzk. Let Sim = (Sim0,Sim1) be the efficient NIZK
simulator for L. The challenger computes (crs, τzk)←R Sim0(1

λ,L). Then, it sends (crs, τzk) to adversary A.
2. Adversary A is given oracle access to Sim1(crs, τzk, ·). At each oracle query, A chooses a statement x, and obtains

a simulated proof π ←R Sim1(crs, τzk, x).
3. Finally, A outputs (x∗, π∗).

We denote by Q the set of all simulation queries and responses (xi, πi) made by A to Sim1(crs, τzk, ·). Adversary A
wins if all the following conditions hold:

1. (x∗, π∗) /∈ Q, meaning that x∗ was not queried.
2. x∗ /∈ Lsound.
3. V(crs, x∗, π∗) = 1, meaning that π∗ is an accepting proof.
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D Compiling the Sigma Protocol of Section 6 into an SPNIZK Argument with Unbounded
Simulation Soundness

The following results show how to compile the sigma protocol from section Section 6 into an SPNIZK with unbounded
simulation soundness, by using correlation-intractable hashing and a construction by [38].

Definition D.1 (Searchable Relation [17]). A relation R ⊆ X × Y is said to be searchable in time T if there exists a
function f : X → Y , which is computable in time T , and if there exists y with (x, y) ∈ R, we have that f(x) = y.

Note that for every x ∈ X , Definition D.1 ensures that there exists at most one y ∈ Y with (x, y) ∈ R.

Definition D.2 (Correlation-Intractable Hash Function (CI-Hash) [18]). Let R = {Rλ ⊆ Iλ × Oλ} be a set of
relations for each security parameter λ. A collectionH = {Hλ : Kλ×Iλ 7→ Oλ}λ∈N of (efficient) keyed hash functions
is aR-correlation intractable hash (CIH) family forR, if for every (non-uniform) PPT adversary A, it holds that

Pr
k←RKλ

x←RA(k)

[(x,Hλ(K,x)) ∈ Rλ] = negl(λ).

Theorem D.3 (CI-Hashing based on SIS, from [46]). Consider C to be the class of functions that have output length
m, and which can be implemented by boolean circuits of size S and depth d. Assuming that SISm,n,q,β is hard for
sufficiently large β = mO(d), one can construct a correlation-intractable hash family for class C.

Lemma D.4 (Bad-Challenge Relation is Efficiently Searchable). Consider sigma protocol Σ for language L given
in Section 6. Let x denote the first flow of the sigma protocol Σ, Chal denote the challenge, and consider the relation
Rbad, defined as follows:

Rbad = {(x,Chal) : x /∈ L and there exists a third flow z s.t Σ.V(x,Chal, z) = 1}

Then, it holds that relation Rbad is efficiently searchable.

The proof of Lemma D.4 is straightforward. Rbad is efficiently searchable due to the BadChallenge function being
efficiently computable. Moreover, we note that decryption of SPE ciphertexts is in NC1.

Theorem D.5 ([38], Theorems 3.2, 3.4). Let SPE be a structure-preserving encryption scheme and consider the
language L = (Lzk,Lsound) for the sigma protocol from Section 6 defined with respect to SPE. There exists a SPNIZK
argument system for L with unbounded simulation soundness, assuming that the SISm,n,q,β is hard (where n grows
with the security parameter, m = n log q and β grows polynomial with the security parameter), and relying on the
security of the following primitives:

– A trapdoor Σ-protocol Π ′ = (Gen′par,Gen
′
L,P

′,V′) with challenge space C for the same language L = (Lzk,Lsound),
where the BadChallenge function of Π ′ runs in time at most T . Protocol Σ must have statistically special zero-
knowledge.

– A correlation-intractable hash family H = (Gen,Hash) with output length κ ∈ poly(λ), for the class of re-
lations RCI, efficiently searchable in time at most T , where T denotes the maximal running time of algorithm
BadChallenge(·, ·, ·, ·).

The proof of this theorem follows the steps in [38], and uses the construction of a CI-Hash function from Theorem D.3.

E Formal definition of VES

We now present the formal definitions of VES and its security, taken almost verbatim from [50]:

Definition E.1 (Verifiably Encrypted Signatures (VES) [50]). Let λ ∈ N denote the security parameter andM the
message space. A verifiable encrypted signature (VES) is a tuple of PPT algorithms (Kg,AdjKg,Sig,Vf,Create,VesVf),
where:
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– Kg, Sig and Vf are defined similarly to a digital signature scheme, namely: Kg(1λ) generates signature keys (vk, sk),
Sig(sk,m) is the signing algorithm run on a message m ∈ M and Vf(vk,m, σ) is the signature verification
algorithm.

– AdjKg(1λ) generates keys (apk, ask) for the adjudicator.
– Create(sk, apk,m) outputs a VES Ω.
– VesVf(apk, vk, Ω,m) allows to verify a VES Ω, without knowing an unencrypted signature of m.
– Adj(ask, apk, vk, Ω,m) is given a VES Ω, and it computes a corresponding signature σ for m with respect to vk.

Definition E.2 (Completeness of a Verifiably Encrypted Signatures (VES) [50]). We say that a VES (Kg,AdjKg,
Sig,Vf,Create,VesVf) is complete if for all λ ∈ N:

VesVf(apk, vk,Create(sk, apk,m),m) = 1) and
Vf(vk,Adj(ask, apk, vk,Create(sk, apk,m)),m) ≥ 1− negl(λ)

for all m ∈M, (apk, ask)←R AdjKg(1λ) and (sk, vk)←R Kg(1λ).

Definition E.3 (Security of a Verifiably Encrypted Signatures (VES) [50]). We say that a VES (Kg,AdjKg,
Sig,Vf,Create,VesVf) is secure if the following properties hold:

– Unforgeability There does not exist a PPT adversary A which given access to the public keys and oracle access to
Create and Adj, is able to compute a VES Ω for a message m that it has never queried to its oracles. Namely, for all
λ ∈ N and for all PPT A:

Pr[(apk, ask)←R AdjKg(1λ), (vk, sk)←R Kg(1λ),

(m∗, Ω∗)←R ACreate(sk,apk,·),Adj(ask,apk,vk,·,·)(vk, apk) :

VesVf(apk, vk, Ω∗,m∗) = 1 ∧
A has not queried Create(sk, apk, ·) or Adj(ask, apk, pk, ·, ·) on m∗] ≤ negl(λ)

– Abuse freeness requires that no malicious, PPT adjudicator with access to a Create oracle is able to output a valid
VES for a message that it has never queried. Namely, for all λ ∈ N and for all PPT A:

Pr[(apk, ask)←R AdjKg(1λ), (vk, sk)←R Kg(1λ),

(m∗, Ω∗)←R ACreate(sk,apk,·)(apk, ask, vk) : VesVf(apk, vk, Ω∗,m∗) = 1 ∧
A has not queried Create(sk, apk, ·) on m∗] ≤ negl(λ)

– Extractability requires that no malicious signer which can create its own vk and is granted oracle access to Adj is
able to efficiently output a valid VES Ω, from which the algorithm Adj is unable to extract a valid signature. Namely,
for all λ ∈ N and for all PPT A:

Pr[(apk, ask)←R AdjKg(1λ), (m∗, Ω∗, vk∗)←R AAdj(ask,apk,·,·,·)(apk),

σ∗ ← Adj(ask, apk, vk∗, Ω∗,m∗) :

VesVf(apk, vk∗, Ω∗,m∗) = 1 ∧ Vf(vk∗,m∗, σ∗) = 0] ≤ negl(λ)

– Opacity requires that no PPT adversary, given public keys vk and apk and oracle access to Create and Adj, can
return a valid signature σ∗ for some message m∗, provided it has not queried Adj on m∗. Namely, for all λ ∈ N and
for all PPT A:

Pr[(apk, ask)←R AdjKg(1λ)), (vk, sk)←R Kg(1λ),

(m∗, σ∗)←R ACreate(sk,apk,·),Adj(ask,apk,vk,·,·)(vk, apk) :

Vf(vk, σ∗,m∗) = 1 ∧ A has not queried Adj(ask, apk, vk, ·, ·) on m∗]

≤ negl(λ)
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F Parameters for the VES Construction

SPS is anF -structure-preserving signature with parameters f and S that can be efficiently computed using ComputeSPSetsAndFunctions
and depend on vk,m and tag. Our framework supports this general case, although in all our concrete instantiations, the
set S is part of the vk and does not depend on m or tag. The noise growth of the structure-preserving set S can be upper
bounded by:

δmax = max
vk,tag,m

{
δ
∣∣∣ δ is the noise growth of S, where
(S, ·)← ComputeSPSetsAndFunctions(vk,m, tag)

}
,

and recall that f corresponds to the signature verification function (as of Definition 4.1) and belongs to F .
SPE is a structure-preserving encryption scheme as in Definition 5.1 and message space Zq. The SPE parameters

comprise a structure-preserving set R with noise growth δR, along with noise levels νinit, νmax.
In order to have correctness, the chosen SPE must be F -homomorphic and the maximum noise level has to be large

enough to satisfy Eq. (1). For all of our concrete proposals of SPE schemes, νmax can be chosen arbitrarily large (as
long as it grows at most exponential in the security parameter) by increasing the size of the modulus. Thus among the
SPE and SPS schemes presented in this paper the combinations shown in Table 1 are possible.

G Deferred Proofs for our VES Construction from Section 8

Lemma G.1. Assuming the correctness of SPS,SPE and of the SPNIZK argument, the VES scheme from Fig. 3 is
complete, in the sense of Definition E.2, for the choice of parameters from Appendix F.

The proof follows directly from the correctness of Sig, SPNIZK and the properties of SPE. The verification checks
for ct2 succeed because the noise growth of the homomorphic operations does not exceed the νmax parameter of SPE.

Lemma G.2. Assuming the unbounded simulation soundness of SPNIZK and the unforgeability of SPS with parameters
as in Appendix F, the VES scheme from Fig. 3 is unforgeable, in the sense of Definition E.3.

Proof. We exhibit a hybrid argument between adversary A and the challenger of the unforgeability game. Game0 is the
VES unforgeability game from Definition E.3. In Game1, we use unbounded simulation soundness to switch the crs to a
simulated crs for which the challenger knows a simulation trapdoor τzk. Responses to Create queries are now VES Ω
which contain simulated proofs computed with trapdoor τzk.

Game2 is identical to Game1, except that the challenger receives the adversary’s forgery (m∗, Ω∗). It parses Ω∗

as (ct1,∗, π∗, tag∗) and decrypts ct1,∗ to obtain core∗. The challenger aborts if σ∗ = (core∗, tag∗) is an invalid SPS
signature, but Ω∗ is accepted by VES.VesVf. The probability of aborting is precisely the probability that the adversary
breaks the unbounded simulation soundness of SPNIZK. Finally, we argue that the success probability of A in Game2
is bounded by the probability to successfully break the existential unforgeability of SPS. This is the case because σ∗ is
a valid signature for m∗, but A has not queried m∗ to its oracles, which corresponds precisely to producing a forgery
for SPS. ⊓⊔

Lemma G.3. Consider the choice of parameters from Appendix F. Assuming the unbounded simulation soundness of
SPNIZK and the unforgeability of SPS, the VES scheme from Fig. 3 has abuse-freeness, in the sense of Definition E.3.

Proof. We need to show that an adversary A that possesses ask and has access to the Create oracle, cannot output a
valid VES for a message that it hasn’t queried to its oracle. The argument is similar to the proof of Lemma G.2. ⊓⊔

Lemma G.4. Consider the choice of parameters from Appendix F. Assuming the unbounded simulation soundness of
SPNIZK and the unforgeability of SPS, the VES scheme from Fig. 3 satisfies extractability, in the sense of Definition E.3.

Proof. AdversaryA is allowed to create its own vk and has oracle access to Adj, with the objective of outputting a valid
VES Ω∗ from which Adj is unable to extract a valid signature σ∗. After switching to a hybrid where the crs and proofs
are simulated, this directly contradicts the unbounded simulation soundness of SPNIZK. ⊓⊔
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Lemma G.5. Consider the choice of parameters from Appendix F and let SPS be a structure-preserving signature with
superpolynomially-large tag space and uniform public tag distribution. Assuming the unbounded simulation soundness
of the SPNIZK argument and the strong unforgeability of SPS, the VES scheme from Fig. 3 satisfies opacity, in the
sense of Definition E.3.

Proof. We follow the outline of the standard proof from [29, Section 5.1], but there are some differences with the
group-based structure-preserving signatures in [29]. We need to account for the random tags which are part of the
underlying signature, but which are not encrypted and are revealed in the VES. At the same time, the tags allow
us to obtain a modified proof strategy. We proceed by a hybrid argument, where Game0 is the opacity game from
Definition E.3. We denote by ϵi = Pr[Gamei = 1], the probability that the adversary successfully wins Gamei.

– Game1 is identical to Game0, but we switch the crs of the SPNIZK to a simulated crs. The proofs of the SPNIZK
argument are now switched with simulated proofs. From the zero-knowledge property of the NIZK, we have:

ϵ0 ≤ ϵ1 + negl(λ)

– Game2 is identical to Game1, but we abort if any two Create queries for messages m1, m2 yield Ω1 and Ω2 that contain
the same unencrypted public value tag. Since we assumed that the tag space is superpolynomial and tags are chosen
uniformly at random during honest signature generation, the probability of tag collisions is negligible. We therefore
have:

ϵ1 ≤ ϵ2 + negl(λ)

– Game3 is identical to Game2, except that we abort if the adversary makes a query to its Adj oracle on a valid VES
Ω′ = (ct′1, π′, tag′) and message m′, where ct1 decrypts to core′ and the tuple (m′, tag′, core′) has not been previously
used to answer a previous Create oracle query on m′ (meaning that at least one of m′, tag′ or core′ is fresh). The crucial
aspects of this abort condition are that the VES Ω′ must be a valid signature and that the abort condition is efficiently
checkable by the challenger.
Because Game3 has an additional abort condition, we have that ϵ2 ≥ ϵ3, since it is now harder for the adversary to win
the experiment. Nevertheless, we will show that ϵ3 cannot decrease too much.
In fact, the adversary can induce an abort if it either manages to find a valid SPS signature σ′ for m′, or by forging a
proof for an invalid signature σ′. By the strong existential unforgeability of the SPS signature and unbounded simulation
soundness of the NIZK, we have:

ϵ2 ≤ ϵ3 + negl(λ)

– Game4 This game is identical to Game3, except that we change how the Adj and Create oracles work. Notice first
that the modifications in Game2 allow us to argue that every response Ω = (ct1, π, tag) from the Create oracle can
be uniquely mapped to the corresponding message and core generated during signing, but crucially without requiring
decryption. This is because we have assumed in Game2 that every auxiliary information tag appears only once, so it
uniquely links every queried message m to the signature (core, tag) that was generated for it during that Create query.
(Multiple queries on the same message would lead to multiple signatures, but the tags are always unique.)
Every Create query on a message m∗ first generates an SPS signature (core∗, tag∗) and then computes Ω∗ =
(ct1,∗, π∗, tag∗). The challenger then stores the tuple (m∗, tag∗, core∗) in a list.
On input (Ω = (ct1, π, tag),m), Adj doesn’t decrypt. Instead Adj first checks if the queried Ω contains a valid proof
π. If π is not valid, then Adj simply returns ⊥. Otherwise, Adj uses (m, tag) to search the stored list for a tuple that
contains (m, tag, core) and recover the proper vector core corresponding to m. If (m, tag) does not appear in any of
the stored tuples, then the challenger aborts and the adversary fails the experiment.
We now analyze the differences between Adj behavior in Game3 and Game4:
• Type 0 queries: the adversary queries Adj on a VES Ω that contains an invalid proof. In both Game3 and Game4,
Adj simply returns ⊥.
• Type 1 queries: the adversary queries Adj on a VES Ω that contains a valid proof, but for a tuple (m, tag) that hasn’t

appeared in a previous Create query. From the changes in Game2, the challenger aborts in this situation and the
adversary loses the game in both Game3 and Game4.

40



• Type 2 queries: the adversary queries Adj on a VES Ω = (ct′1, π′, tag′),m) that contains a valid proof π′, but for a
tuple (m′, tag′) that has appeared in a previous Create query. Since (m′, tag′) appears in the list, we can recover a
corresponding vector core′ and return it as the result of the Adj oracle. In this case, the view of the adversary might
start diverging from its view in Game3.

We analyze more carefully the difference between the adversary view in Game4 and the differences from its view in
Game3. First we observe that Create queries have the same effect in the two games. The only oracle queries that can
lead to an increase in adversary advantage are Adj queries. Let DIFFi denote the event that the ith Adj query leads to an
abort in Game3, but not in Game4. For Adj queries of type 0 and 1, event DIFFi always has probability 0.
Only Adj queries of type 2 have potentially non-zero probability. Denote by event DIFF the event that at least one
DIFFi occurs, for i = 1 . . . QAdj. Then we have that:

ϵ4 = Pr[Game4 = 1 | ¬DIFF] Pr[¬DIFF] + Pr[Game4 = 1 | DIFF] Pr[DIFF]
(∗)
= Pr[Game3 = 1 | ¬DIFF] Pr[¬DIFF] + Pr[Game4 = 1 | DIFF] Pr[DIFF]
≥ Pr[Game3 = 1 | ¬DIFF] Pr[¬DIFF] + Pr[Game3 = 1 | DIFF]︸ ︷︷ ︸

=0

Pr[DIFF] = ϵ3,

where (∗) uses that Game3 and Game4 proceed identically until DIFF occurs. We have thus shown that:

ϵ3 ≤ ϵ4

– Game5 This game is identical to Game4, except that we switch all encryptions in VES signatures to encryptions of 0.
We can do this because the NIZK argument proofs are simulated using the simulation trapdoor, and we do not need to
decrypt any encryption submitted through an Adj query. From the IND-CPA security of the encryption scheme,

ϵ4 ≤ ϵ5 + negl(λ)

As a technical subtlety, we remind the reader that the BadChallenge function requires the decryption key of the
encryption scheme in order to ensure the unbounded simulation soundness of the underlying NIZK. Nevertheless, we
do not require simulation soundness at this point in the hybrid argument.

We now prove that the probability to win Game5 is negligible, by exhibiting a reduction to the strong unforgeability
of the SPS signature scheme. The reduction interacts with the challenger of the strong unforgeability experiment, and it
receives the verification key of the signature, which it uses to construct the public parameters of the verifiably encrypted
signature.

First, our reduction guesses whether the adversary will forge on a message it has not has not queried to the Create
oracle before, or on a message mk, where mk is the input to the kth Create query. (The second situation is why we need
strong unforgeability here.) The probability of a correct guess is 1

QCreate+1 .
The guessing step is necessary. Even though Create queries are answered using encryptions of 0, it is not possible

to only request signatures from the strong unforgeability challenger during Adj calls. This is because in order to answer
Create queries on messages mi, we cannot simply simulate the entire verifiable encrypted signature, since the public
auxiliary tag must correspond to the core part of an actual signature. During an eventual Adj query, the adversary will
be able to check whether (core, tag) are valid. This is due to the adversary being able to ask Adj queries on VES Ωi,
which should output valid signatures as long as they correspond to a Create query on mi, with i ̸= k.

Therefore, for each Create query on message mi with i ̸= k, the reduction asks for a signature (corei, tagi) on
message mi. It then encrypts corei as ct1i and outputs Ωi = (ct1i , πi, tagi).

The adversary outputs a signature σ∗ = (core∗, tag∗) on its chosen message m∗, and the reduction forwards
(σ∗,m∗) to the challenger.

To summarize, the guessing phase distinguishes between the following two scenarios:

– The adversary will forge on a message mk, where mk is the input to the kth Create query. The challenger will
generate a random tag for the response of the kth Create query. The other Create queries are answered with tags that
correspond to valid signatures obtained from the strong-unforgeability challenger.
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– The adversary will forge on a message m∗ that was never asked in a Create query. Then we can deal with Create
queries by asking for valid signatures from the strong-unforgeability challenger. Existential unforgeability is sufficient
in this second scenario.

Therefore, from the strong unforgeability of the SPS scheme,

ϵ5 ≤ negl(λ)

At a high level, the proof strategy ensures that the adversary cannot get any additional advantage by somehow
manipulating the Adj and Create oracles in unintended ways. Create queries correspond to encryptions of 0, ensuring
that each Adj query will correspond to a query that can be bijectively mapped to a query to the strong-unforgeability
challenger. ⊓⊔
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