
Trellis: Robust and Scalable Metadata-private Anonymous Broadcast

Simon Langowski
MIT CSAIL

slangows@mit.edu

Sacha Servan-Schreiber
MIT CSAIL
3s@mit.edu

Srinivas Devadas
MIT CSAIL

devadas@mit.edu

November 7, 2022

Abstract
Trellis is a mix-net based anonymous broadcast system with
cryptographic security guarantees. Trellis can be used to
anonymously publish documents or communicate with other
users, all while assuming full network surveillance. In Trellis,
users send messages through a set of servers in successive
rounds. The servers mix and post the messages to a public
bulletin board, hiding which users sent which messages.

Trellis hides all network metadata, remains robust to chang-
ing network conditions, guarantees availability to honest users,
and scales with the number of mix servers. Trellis provides
three to five orders of magnitude faster performance and better
network robustness compared to Atom, the state-of-the-art
anonymous broadcast system with a comparable threat model.
In achieving these guarantees, Trellis contributes: (1) a

simpler theoretical mixing analysis for a routing mix net-
work constructed with a fraction of malicious servers, (2)
anonymous routing tokens for verifiable random paths, and
(3) lightweight blame protocols built on top of onion routing
to identify and eliminate malicious parties.

We implement and evaluate Trellis in a networked deploy-
ment. With 128 servers, Trellis achieves a throughput of 320
bits per second. Trellis’s throughput is only 100 to 1000×
slower compared to Tor (which has 6,000 servers and 2 mil-
lion daily users) and is potentially deployable at a smaller
“enterprise” scale. Our implementation is open-source.

1 Introduction

Communication on the internet is prone to large-scale surveil-
lance and censorship [15, 39, 44, 53, 75, 96]. People
trying to hide their communication from powerful (e.g.,
state-sponsored) adversaries rely on anonymity tools such
as Tor [33] or I2P [101] to hide their identities [102, 103, 108].
With Tor, users proxy their traffic through a chain of servers
which breaks the link between the identity of the user and
the traffic destination. With I2P, users proxy traffic through
a chain of peer nodes. While these tools serve an important

role, and help obfuscate the identity of the user, they can
be insufficient against determined adversaries capable of ob-
serving large swaths of traffic (e.g., malicious ISPs). Such
adversaries (e.g., ISPs or nation states) can easily identify
users and the traffic content through metadata such as packet
timing, packet size, and other identifying features—even when
all traffic is encrypted [10, 14, 38, 47, 51, 61, 79, 84, 86, 99].
State-of-the-art attacks can deanonymize encrypted Tor traffic
with upwards of 90% accuracy by analyzing the encrypted
packet traffic [10, 47, 84].
This problem has motivated many systems [2, 20, 21,

36, 37, 63, 65, 80, 106, 112] for anonymous broadcast.
Anonymous broadcast consists of anonymously posting a
message to a public bulletin board and is the most general
form of anonymous communication possible; it can be used
for file sharing and to instantiate weaker primitives such as
anonymous point-to-point communication [28, 64, 67, 68,
89, 95, 104, 107]. Anonymous broadcast provides sender
anonymity: fully hiding which user sent which message. Most
mix-net based systems, in contrast, only provide relationship
anonymity [28, 64, 67, 68, 89, 95, 104, 107] (hiding who
is communicating with whom). Other systems [20, 21, 80,
106, 112] exploit a non-collusion assumption (which inhibits
scalability) to instantiate anonymous broadcast or just focus
on recipient anonymity (without sender anonymity) [6].
As with prior work, Trellis is metadata-private, which

guarantees that sender anonymity is preserved in the face of an
adversary monitoring the entire network. Trellis also provides
horizontal scalability—the ability to increase throughput with
the number of (possibly untrusted) servers participating in
the network. Horizontal scalability is key to real-world
efficiency: Tor and I2P are only capable of handling millions
of users [73] on a daily basis thanks to similar scalability
guarantees. Moreover, horizontal scalability is important for
real-world security: the more users an anonymity system can
support, the more “plausible deniability” each user in the
system has.
The state-of-the-art system for anonymous broadcast with

horizontal scalability is Atom [63]. Unfortunately, Atom

1



suffers from practical barriers to deployment even though it is
theoretically optimal. (See Section 2.2 for overview of related
work.) For example, Atom achieves a throughput of roughly
0.01 bits per second and is six to eight orders of magnitude
slower than practical systems such as Tor [73].

All other systems either focus on weaker anonymity notions
(e.g., point-to-point communication [3, 5, 16, 64, 67, 68, 95,
104, 107]) or sacrifice scalability by assuming non-colluding
servers [2, 20, 21, 36, 37, 62, 80, 112].

��
��
��
��
��
��
���
��
��
��

�������

Figure 1: Trellis arranges the set of servers into “layers,”
(each server appears once per layer) to instantiate a mix-net.
Users send messages through a random path which guarantees
that all messages are mixed before reaching the public bulletin
board, even when a subset of servers are malicious (colored
in red).

Trellis is designed for fast anonymous broadcast with large
messages. Trellis is inspired by a long line of work [17, 63,
65, 92] which augments mix-nets to instantiate anonymous
broadcast. Trellis innovates on these works in three important
ways: (1) Trellis decouples the use of expensive cryptography
required for system setup from the broadcasting phase, (2)
Trellis is robust to malicious parties and server churn, and
(3) Trellis provides message delivery guarantees even when
a majority1 of servers and users are malicious (note that
performance degrades with a larger proportion of adversarial
servers; see Section 8). With these three key contributions,
Trellis brings metadata-private anonymous broadcast a step
closer to real-world deployment. However, we note that Trellis
is still limited by challenges outside of the system design itself,
such as requiring that all users remain online and contribute
messages to ensure metadata privacy. These limitations will
be present in any anonymous communication system design
with strong anonymity guarantees [44]. Even so, in Section 8,
we find that Trellis is only 100 to 1000× slower compared
to systems like Tor and I2P, both of which sacrifice strong
anonymity in favor of concrete performance.

Ideas, challenges, and contributions. We start by using a
mix-net topology known as a random routing network [63, 65]
(see Section 2 for an overview of mix-nets). In such mix-nets,
servers are organized into ! layers (with all servers appearing
in each layer, see Figure 1). The user selects a random path
through the servers and sends a message through the path for

1In the case of a dishonest majority of servers, Trellis reconfigures itself into
a new network containing a dishonest minority; see Section 6.3.2.

mixing. Adding more servers increases the throughput, which
achieves horizontal scalability. While this simple idea seems
promising at first (and also proposed in prior work [63, 65]),
there are several practical hurdles associated with it:
• Malicious users or servers might deviate from protocol,
select non-random paths, or otherwise attack the system.
The difficulty is detecting and blaming the responsible
parties while preserving anonymity for honest users.

• Mix-nets that model permutation networks traditionally
require that all servers are honest to achieve mixing guaran-
tees. Atom [63] resolves this by emulating honest “servers”
using random groups of servers. However, this technique
is suboptimal and contributes to slow mixing times in
practice (see Section 2).

• Real-world networks consisting of disparate servers are not
perfect: server churn and elimination can occur frequently.
Classic mix-nets are not designed to gracefully handle and
adapt to changing network conditions on-the-fly.

In Trellis, we overcome the above challenges as follows.

Preventing deviation from protocol. To ensure availability
and message delivery, we develop two new tools: anonymous
routing tokens (Section 5.1) and boomerang encryption (Sec-
tion 4.2). Routing tokens force all users to choose random
paths through the mix-net. Boomerang encryption ensures
that all servers along a path route messages correctly and
enables efficient blaming of malicious servers when required.
The combination of these two primitives allows us to port our
mix-net to a setting with malicious users and servers actively
deviating from protocol without compromising on anonymity.

Modeling a mix-net with malicious servers. Kwon [65]
develops a novel theoretical mixing analysis for routing mix-
nets constructed with some fraction of adversarial servers.
In Trellis, we use a routing mix-net topology in conjunction
with the analysis of Kwon [65] to avoid the inefficiencies
of “emulating” honest servers (see Section 5). Additionally,
we derive a more straightforward analysis and bound on the
number of mix layers required. Our mixing analysis may be
of independent interest to other systems in this area.

Efficient blame, server elimination, and network healing. We
design Trellis so that honest servers can efficiently detect
failures and deviations from protocol, assign blame, and
eliminate responsible parties from the network. Our blame
protocols (described in Section 6) handle malicious servers
and users without ever deanonymizing honest users. Trellis
gracefully handles network changes (e.g., offline or eliminated
servers) using proactive secret sharing (explained in Section 6),
which permits on-the-fly state recovery following server churn.

Contributions. In summary, this paper contributes:
1. the design of Trellis: a novel system for anonymous broad-

cast providing cryptographic anonymity guarantees for
users, network robustness, and concrete efficiency,

2



2. a simpler theoretical mixing analysis for routing mix-nets
instantiated with a subset of mix servers that are malicious
and colluding with a network adversary,

3. anonymous routing tokens: a new tool for anonymously
enforcing random path selection in mix-nets, with conceiv-
able applications to other networking systems,

4. boomerang encryption: a spin on onion encryption that al-
lows for efficient proofs of delivery and blame assignment,

5. and an open-source implementation which we evaluate on
a networked deployment, achieving a throughput of 320
bits per second with 100,000 users and 10 kB messages.

Limitations. Trellis shares the primary limitation of other
metadata-private systems [21, 28, 63–65, 67, 80, 104, 106,
107]: it provides anonymity only among honest online users
and therefore requires all users to contribute a message in
each round—even if they have nothing to send—so as to hide
all network metadata [44]. (Users who stop participating
correlate themselves with patterns or content of messages that
stop being output [25, 26, 113].) Trellis does not, however,
preclude the use of any external solutions to this problem
(e.g., [113]).

2 Background and related work

We start by describing mix-nets and their guarantees in Sec-
tion 2.1. We then describe related work and existing use of
mix-nets for anonymous communication in Section 2.2.

2.1 Mix networks
In 1981, Chaum [17] developed the first mix network (mix-
net) for the purpose of anonymous email. The idea behind
Chaum’s mix-net is simple. A set of servers is arranged in
a sequence. Each server has a public key. Each user recur-
sively encrypts their message under the sequence of server
public keys. We call this recursive encryption a sequence of
envelopes (a.k.a. onions [33]), with each envelope encrypted
under all subsequent public keys in the sequence. All users
send the first envelope to the first server in the sequence.
Each server, in sequence, decrypts the envelopes it receives,
randomly shuffles the decrypted envelopes, and forwards them
to the next server in the sequence. This repeats for # layers.
The use of onion encryption prevents intermediate servers
from learning which messages they are routing (a server can
only decrypt one layer of encryption). At the end of the
sequence, the innermost envelope is decrypted to reveal the
plaintext message. The mix-net guarantees that the ordering
of the messages is uniformly random and independent from
the input, which in turn guarantees unlinkability between each
user and their submitted message. As such, classic mix-net
architectures can be used for anonymous broadcast. Unfortu-
nately, this architecture suffers from security and practicality
challenges:

1. Mix-nets do not inherently guarantee metadata privacy: a
network adversary observing all traffic can link messages
to users through metadata, such as timing information.

2. Mix-nets are vulnerable to active attacks (e.g., dropped
envelopes), which can be exploited by malicious servers to
link users to their messages [72, 77, 81, 97, 111].

3. Sequential mix-nets do not provide scalability: adding
more servers does not improve performance since all
servers must process all envelopes.

Scalable mix-nets. Scalable systems built using mix-net
architectures are designed around parallel mix-nets [46, 92],
where users are assigned to amix-net instantiated from a subset
of servers in the network. Adding more servers thus propor-
tionally increases the total capacity of the network. However,
naïvely parallelizing mix-nets does not provide privacy, since
a message may end up mixed with only a small subset of
other users’ messages. To avoid this, parallel mix-nets must
model a random permutation network [23, 109] (a theoretical
framework for modeling mixing in a communication network)
to guarantee that all messages are mixed [46, 65, 92]. This is
the strategy taken in Atom [63].

2.2 Related work
In this section, we focus on comparing Trellis to other sys-
tems that achieve anonymous broadcast. We pay particular
attention to mix-net-based systems as other architectures have
incomparable threat models.

Anonymous broadcast using mix-nets. Rackoff and Simon
[92] put forth the idea of anonymous broadcast using parallel
mix-nets based on permutation networks but do not build
or evaluate their approach. Kwon et al. [63] are the first to
use their ideas to build a prototype system called Atom. A
problem with mix-nets instantiated as permutation networks
is that they only guarantee mixing if all servers are honest.
The insight in Atom is to use anytrust groups—sets of
random servers such that at least one server in each set is
honest with high probability—to emulate a trusted network
from groups of possibly malicious servers. That is, each
“server” in the mix-net is emulated by an anytrust group
selected at random. Instantiating the mix-net in this way
comes with a high concrete performance cost. The problem
is that Atom requires expensive zero-knowledge proofs to
ensure servers in each group behave correctly. These quickly
become computational bottlenecks limiting the throughput and
preventing scaling to largemessage sizes (Kwon et al. [63] only
evaluate Atom on up to 160 byte messages). Another problem
is that emulating honest servers with anytrust groups wastes
resources and introduces large communication overheads.
These performance barriers make Atom impractical to deploy.

Quark is a followup proposal for anonymous broadcast
that appears in Kwons’s PhD thesis [65] but is primarily
of theoretical interest. Like Atom, Quark is designed on

3



top of a random routing mix-net. However, Quark avoids
emulating honest servers by developing a novel theoretical
mixing analysis for a network containing malicious servers.
Unfortunately, Quark does not prevent disruption attacks: any
malicious user or server can cause the entire protocol to restart
by dropping (or not sending) amessage. Moreover, we find that
Quark may not be secure: the blind Schnorr multi-signatures
around which Quark is designed can be forged using parallel
signing attacks [34, 82] (these attacks were discovered after
Quark). In Trellis, we salvage the theoretical underpinning of
Quark and use a routing mix-net as a starting foundation. We
also contribute an improved mixing analysis for this routing
mix-net when instantiated with malicious servers, inspired
by the ideas of Kwon [65] (see Section 5.5 and Appendix C).
Apart from the mix-net, all other components of Trellis are
different.

Anonymous communication using mix-nets. Chaum [17],
cMix [16], MCMix [5], Karaoke [67], Stadium [104], Vu-
vuzela [107], XRD [64], are all anonymous point-to-point
communication systems built on top of mix-net architectures.
Of these, Karaoke, Stadium, and XRD provide horizontal
scalability. However, only XRD provides cryptographic pri-
vacy. Karaoke, Stadium, and Vuvuzela provide differential
privacy, which introduces a host of practical challenges (see
discussion of Kwon et al. [64, Section 1]). Other systems, such
as Loopix [89], Streams [28], and Tor [33] are examples of
free-route mix-nets [27, 41, 70, 78, 93], i.e., parallel mix-nets
where users asynchronously route messages via a small subset
of mix servers. Free-route mix-nets do not achieve metadata
privacy in the face of network adversaries and are susceptible
to traffic analysis and active attacks [10, 47, 84].

Other architectures. Other anonymous broadcast systems [2,
5, 8, 20, 21, 36, 74, 80, 112] are instantiated under different
threat models. Dining cryptographer networks (DC-nets) and
multi-party computation [2, 5, 36, 74] require two ormore non-
colluding servers to process messages and prevent malicious
users from sending malformed content. Because of this, these
techniques inherently do not provide horizontal scalability
and impose high overheads on the servers. Other anonymous
communication systems [4, 6, 18, 42, 62, 68, 69, 71, 95]
focus on specific applications (e.g., group messaging [18]
and voice-communication [4, 68, 69]) or focus on one-sided
anonymity (e.g., only recipient anonymity [6]). We refer the
reader to the excellent survey of systems in Piotrowska’s PhD
thesis [88].

3 System overview

In Section 3.1, we describe the core ideas and intuition
underpinning the overall design of Trellis. In Section 3.2, we
describe the threat model and guarantees achieved by Trellis.

3.1 Main ideas
Following other mix-net based systems [16, 28, 63, 65, 67,
68, 92, 95, 104, 107], Trellis is instantiated using a set of #
servers and " users. The servers are organized into a network
of ! layers and users’ messages are routed by servers from
one layer to the next (see Figure 1). Trellis is organized in
two stages. A one-time path establishment stage followed by
a repeated message broadcasting stage. In both stages, Trellis
resolves failures and attacks by malicious users and servers
through on-demand blame protocols (see Section 6).

Do once: Path establishment. We reference the steps in Fig-
ure 2. The path establishment protocol proceeds layer-by-layer.
1 Users obtain signed anonymous routing tokens (Section 5.1)
from an anytrust group of signers, which guarantees the re-
sulting path assigned to the user is uniformly random. Each
token issued for a layer determines the server at the next layer
and contains all the necessary routing information needed to
route messages between the two layers (details in Sections 5
and 5.1). 2 Users distribute the ! tokens anonymously using
boomerang encryption (Section 4.2). All servers obtain the
necessary routing tokens without learning the full path.

����� ������� ������� ��������

������������������������������������


�	����������

������������������
�����������������

1

2

Figure 2: Users are assigned a server in each layer through a
one-time setup protocol involving an anytrust group of signers.

Repeat: Anonymous broadcasting. We reference the steps
in Figure 3. Anonymous broadcasting repeats indefinitely on
the pre-established path. 1 Each user sends their envelope
(containing the user’s message) through the server assigned
by the routing token, for each of the ! layers. 2 Servers
collect all the envelopes, decrypt one layer of encryption, and
group the resulting envelopes based on their destination server
in the next layer. Servers shuffle and pad each group with
dummy envelopes as necessary. Each group is then sent to
the destination server in the next layer. 3 Once envelopes
reach the final layer, they are guaranteed to be shuffled and
unlinkable to the users that sent them, at which point the final
layer of encryption is removed to reveal the plaintext message.

On-demand: Blame, elimination, and recovery. It could
be the case that a server goes offline or acts maliciously, both
during path establishment and the broadcasting stages. To
deal with such failures (intentional and otherwise) we develop
on-demand blame and recovery protocols that automatically
reassign affected paths. Importantly, failure resolution is
handled locally on the link between two layers and does not

4



����� ��������������������� ������� ��������

����������������������
�����	�����������������������������

31 2

Figure 3: Users send messages through the layers, based
on their paths. Users can repeat this process indefinitely to
broadcast many different messages.

involve the users. (Failures caused by a malicious user cause
the user to be eliminated by other means; see Section 6.) We
follow the steps of Figure 4. Blame and recovery is invoked
whenever an error is detected (e.g., wrong signature, dropped
envelopes). 1 A server detects an error in the received batch
of envelopes in layer (8+2) and proceeds to blame the server in
layer (8+1) that sent the batch. 2 Servers evaluate evidence
from both parties to decide which of the two is malicious. 3

Servers vote for the honest party by providing their secret
share of the eliminated server’s state. The state is used by the
replacement server to take the place of the eliminated server.

�������������������������������������������

������i ������i+1 ����� i+2

�����
1

2

3

����

Figure 4: On-demand blame and recovery protocols are
invoked by servers to automatically reassign affected paths
and eliminate malicious servers from the network.

3.2 Threat model and assumptions
The threat model and assumptions underpinning Trellis mirror
those of existing anonymous broadcast [63, 65] (and com-
munication [5, 16, 64, 67, 68, 104, 107]) systems based on
mix-nets that provide metadata-privacy guarantees.

Assumptions and adversarial model.

Observed network. We assume that all communication on
the network is observed by a passive network adversary but
that the communication content is encrypted using standard
authenticated public key infrastructure (PKI)—e.g., TLS [94].

Malicious users and servers. We assume that a fixed fraction
0 ≤ 5 < 1 of servers and any number of users are malicious,
may arbitrarily deviate from the protocol, and collude with
the network adversary. Note: in the case of a dishonest
majority ( 5 ≥ 0.5), our blame protocols in Section 6 cause

successive network reconfigurations which converge to an
honest majority (details in Section 6.3.2).

Cryptography. We make use of standard cryptographic as-
sumptions. We require digital signatures, symmetric-key
encryption, and the computational Diffie-Hellman (CDH)
assumption [32] (and variants of the CDH assumption for gap
groups [59]; see Appendix B.2). We also require pairings on
elliptic curves [13, 55] and hash functions modeled as random
oracles when constructing our routing tokens (Section 5.1).

Liveness. We require two liveness assumptions: synchronous
communication and user liveness. Both assumptions are
standard in all prior work on metadata-private anonymous
communication [2, 5, 6, 20, 21, 36, 63–65, 80, 104, 107, 112].
• Synchronous communication: Servers are expected to be
able to receive all envelopes for each layer before processing
the next layer. This is equivalent to assuming all servers
have access to a global clock [98].

• User liveness: We assume that all users submit a mes-
sage for every round—even if they have nothing to send—
to prevent the risk deanonymization via intersection at-
tacks [25, 26, 113]. We do not assume server liveness.

Non-goals. Trellis does not aim to prevent denial-of-service
(DoS) attacks on the network or handle infrastructure failures.
However, Trellis is fully compatiblewith existing solutions [19,
22] for network availability and reliability.

Trellis guarantees. Under the above threat model and
assumptions, Trellis provides the following guarantees.

Robustness and availability. No subset of malicious servers
or colluding users can disrupt availability for honest users.

Message delivery. All messages submitted by honest users
are guaranteed to be delivered and result in a “receipt” that
can be efficiently verified by each user.

Unlinkability. Fix any small n > 0 and any subset of honest
users. After mixing, no message (or set of messages) can
be linked with any honest user (or set of honest users) with
probability n over random guessing by the adversary.

Metadata privacy. The unlinkability guarantee holds even
when all network communication is visible to the adversary
who is controlling the malicious users and servers.

4 Building blocks

In this section, we describe the cryptographic tools and con-
cepts that we use to instantiate Trellis in Section 5.

4.1 Cryptographic foundations
We briefly describe classic cryptographic primitives that we
use as building blocks in Trellis. We point to excellent

5



textbooks for more details on these standard primitives [12,
45, 57].

Diffie-Hellman key agreement. The Diffie-Hellman key agree-
ment protocol [32] allows two parties to establish a shared
secret key over an authenticated communication channel. Let
G be a suitable group of prime order ? with generator 6.
DHKeyGen(G, 6) → (�,0):
1: Sample 0 ∈ Z? .
2: Output (� := 60 , 0).

DHKeyAgree(�, 1) → sk:
1: Output sk := (�)1 .

Observe that for all (�,0) and (�, 1) sampled according to
DHKeyGen(G, 6), DHKeyAgree(�, 1) = DHKeyAgree(�,0).
Thus, two parties derive the same secret key sk.

Digital signatures. Adigital signature (DS) scheme consists of
three algorithms (KeyGen,Sign,Verify) satisfying correctness
and unforgeability. Informally, correctness requires Verify to
output yes on all valid signatures and unforgeability states
that no efficient adversary should be able to produce a forged
signature under vk that is accepted by Verify.

Symmetric key encryption. An encryption scheme (e.g.,
AES [24, 83]) consists of three algorithms (KeyGen,Enc,Dec)
satisfying correctness and IND-CCA security. Informally,
correctness requires that Decsk (Encsk (<)) = < for all mes-
sages < and secret keys sk sampled according to KeyGen.
IND-CCA security requires the distribution of ciphertexts
induced by any pair of messages to be computationally indis-
tinguishable and authenticated (see Boneh and Shoup [12]
for definitions).

Anytrust groups. Let ^ be a statistical security parameter.
Given a set of servers where some fraction 0 ≤ 5 < 1 are
malicious, there exists an integer B such that the probability
that any group of B random servers contains at least one
honest server is 1− 2−^ (proof: it is enough to pick B such
that 5 B < 2−^ ) [63].

4.2 New tool: Boomerang encryption

A core challenge in a mix-net is ensuring that all envelopes
get to the appropriate server on the path. A user complain-
ing of protocol deviation (e.g., dropped messages) runs the
risk of deanonymization. Boomerang encryption—a simple
extension of onion encryption [17]—solves this problem by
providing “receipts” that can be used by servers to anony-
mously blame on a user’s behalf. Boomerang encryption is
designed to (1) ensure that all servers on a path receive mes-
sages addressed to them and (2) allow honest servers to trace
the source of active attacks and assign blame accordingly.

Onion encryption and routing. Onion encryption [17, 33]
involves recursively encrypting a message under a sequence of
keys. Only the corresponding secret-key holders can recover
the message by “peeling off” the layers of encryption one by

one. Formally, given any symmetric-key encryption scheme
with algorithm Enc, onion encryption is defined as:

−−−−→
onion(sk,<) := Encsk1 (Encsk2 (. . .Encskℓ (<) . . . )),

where sk := (sk1, . . . ,skℓ) and < is the message.

Onion routing. Onion encryption is the backbone of onion
routing, where a chain of servers route onion-encrypted mes-
sages, removing one layer of encryption at a time. Onion
routing prevents any intermediate server from learning the
plaintext message. We will use the term envelope to describe
the intermediate ciphertexts of an onion-encrypted message.

Boomerang encryption and routing. Onion routing works
in one “direction:” routing envelopes forward through the
chain of servers such that only the destination server learns
the plaintext message. In contrast, boomerang routing is
bidirectional: it applies onion encryption twice, once in
the forward direction and once in reverse (hence the name,
boomerang). If we define reverse-onion encryption as:

←−−−−
onion(sk,<) := Encskℓ (Encskℓ−1 (. . .Encsk1 (<) . . . )),

then boomerang encryption is defined as:

←−−−−−−−→
boomerang(sk,−→<,←−<) := −−−−→onion(sk,−→< ‖ ←−−−−onion(sk,←−<)),

where−→< is the forwardmessage and←−< is the returnedmessage.
We note that the←−< cannot be returned without first decrypting
all envelopes in the forward onion chain.

Boomerang decryption as an anonymous proof-of-delivery.
We make the following somewhat surprising observation: a
successful boomerang decryption can be turned into a proof of
message delivery when applied to onion routing.2 Specifically,
letting←−< (the returned message) be a random nonce acts as a
message delivery receipt: it guarantees that every server along
the path decrypted the correct onion layer and forwarded it to
the next server. To see why this holds, observe that in order
to successfully recover←−< , all envelopes in the forward onion
must be decrypted to recover −→< ‖ ←−−−−onion(sk,←−<). Therefore,
message −→< must have been delivered to the server at the end of
the path (i.e., the last envelope in the forward onion chain must
have been decrypted). We formalize this in Appendix A.3.

5 The Trellis system

In this section, we provide further details on the path establish-
ment and broadcasting protocols (overviewed in Section 3).
The formal protocol descriptions are in Appendix D. We start
by describing anonymous routing tokens (Section 5.1), which
are integral to the design of Trellis.

2Note that proof-of-delivery requires the underlying encryption scheme to be
IND-CCA secure (such as Encrypt-then-MAC [12] with AES).

6



5.1 New tool: Anonymous routing tokens
Anonymous routing tokens (ARTs) are used in Trellis to
determine and verify routing paths. Our construction of ARTs
is inspired by anonymous tokens based on blind signatures [29,
35, 59], but has two key differences: namely, ARTs are signed
by a group of signers and are publicly verifiable. Specifically,
tokens are signed by an anytrust group. This guarantees
that at least one honest signer is present when signing each
token and forms the basis for integrity in Trellis. The blind
signature serves two purposes: ensuring that (1) the payload
encapsulated by the ART comes from an (anonymous) user,
and (2) the path through the mix-net, as determined by the
ART, is uniformly random (even for malicious users).

How our routing tokens work. Routing tokens are generated
by users and signed by an anytrust group. Each token encap-
sulates the necessary information a server requires to route
envelopes on a link in the mix-net. Each signer (a server in an
anytrust group) holds a partial signing key G8 associated with
a global public signature verification key tvkℓ for the ℓth layer.
The user has each group member provide a partial signature
for the blinded token. The user then unblinds and recovers the
multi-signature with respect to tvkℓ by combining the partial
signatures. If at least one signer is honest, then the signature
is unforgeable and cannot be traced to the tokens seen during
signing. The randomness of each token signature—which
is uniform and independent provided at least one signer is
honest—determines how envelopes are routed through the
network.

Definition 1 (Anonymous Routing Tokens; ARTs). Fix a
security parameter _, integers B, # > 1, a common reference
string crs generated using a trusted Setup process, and a set S
of # server identifiers. An ART scheme consists of algorithms
KeyGen, NextServer, Verify, and an interactive protocol Sign
instantiated between a user and B signers.
• KeyGen(crs) → (tvk, G1, . . . , GB): takes as input the crs;
outputs a public key tvk and B partial signing keys.

• Sign〈User(tvk,payload),Signers(G1, . . . , GB)〉 → 〈t,⊥〉.
The user inputs a payload consisting of the server identity
( ∈ S, a new Diffie-Hellman message and a new digital
signature verifcation key. The 8th signer provides as input
the partial signing key G8 . The user obtains a (signed)
routing token t committing to the payload. The signers
obtain no output (⊥). See Figure 5 for an overview.

• NextServer(tvkℓ , tℓ) → ((ℓ+1): takes as input the layer
public key tvkℓ , the token tℓ ; outputs the identity of the
next server (ℓ+1 deterministically chosen based on tℓ .

• Verify(tvkℓ , (ℓ+1,payloadℓ , tℓ) → yes or no: takes as input
the public key for layer ℓ, the payload payloadℓ , identity
of the next server (ℓ+1, and signed token tℓ ; outputs yes if
((ℓ+1 and payloadℓ are valid under tℓ and no otherwise.

The above functionality must satisfy the standard properties of
blind digital signatures [90] (and anonymous tokens [29, 59]):

�����������

����������������

����������������������

�������������������������������

	���
�������������

Figure 5: Overview of the ART signing protocol (Sign).

completeness, unforgeability, unlinkability, in addition to a
new property we call unpredictability. Unforgeability ensures
that if the ART verifies under the public key tvk, then the
encapsulated payload came from some user and was not
tampered with. Unlinkability for ARTs guarantees that the
encapsulated payload is random and independent of any user
(thus the Diffie-Hellman message and a signature verification
key are sampled randomly). Finally, unpredictability requires
that (ℓ+1 (as output by NextServer) be unpredictable given
the payload. We formalize these properties in Appendix B.1.

5.1.1 ART construction

We realize an ART scheme satisfying Definition 1 follow-
ing the blueprint of BLS signatures [13] and anonymous
tokens [29, 59]. InAppendix B.2, we prove security of our con-
struction under a variant of the computational Diffie-Hellman
(CDH) assumption in gap groups [11, 13, 59]. Let G and GT
be groups of prime order ? with generator 6 and equipped
with an efficiently computable non-degenerate bilinear pairing
4 :G×G→GT [12]. We let crs := (Z? ,G, 6) ← Setup(1_)
for a security parameter _.
KeyGen(crs):
1: G1, . . . , GB←R Z?
2: G←∑B

8=1 G8

3: tvk← (6G1 , . . . , 6GB , 6G)
4: return (tvk, G1, . . . , GB)

NextServer(tvkℓ , tℓ ):
1: (ℓ+1 := HashZ# (tvkℓ | |tℓ )
2: return (ℓ+1

Verify(tvkℓ , (ℓ+1,payloadℓ , tℓ ):
1: parse tvkℓ = (6G1 , . . . , 6GB , 6G)
2: H← HashG (payloadℓ )
3: (′

ℓ+1←NextServer(tvkℓ , tℓ )
4: return 4(tℓ , 6) = 4(H, 6G)

and (′
ℓ+1 = (ℓ+1

Token signing protocol. We instantiate the token signing
protocol in one round between the user and each signer. The
user begins by generating a fresh Diffie-Hellman key exchange
message that will later be used to derive the encryption key for
its ℓth link. The user also generates a fresh digital signature key
pair, which will be used to verify integrity of its encryptions
on the ℓth link.
Step 1 (user):
1: (�ℓ , 0ℓ ) ← DHKeyGen(G, 6); (vkℓ ,skℓ ) ← DS.KeyGen(1_).
2: A←R Z? ; )ℓ ← HashG ((ℓ | |�ℓ | |vkℓ

payloadℓ

)1/A .
3: send )ℓ to all signers.
Step 2 (8th signer): Upon receiving )ℓ , the 8th signer partially
signs the blind hash using their share G8 of the signing key:
1: ,ℓ,8 ← )

G8
ℓ
.

2: send ,ℓ,8 to the user.

7



Step 3 (user): The user combines the partial signatures and
outputs an unblinded token:

1: t←
(∏B

8=1,8

)A
.

The user then checks that tℓ was signed correctly:
2: (ℓ+1← NextServer(tvkℓ , tℓ).
3: Verify(tvkℓ , (ℓ+1,payloadℓ , tℓ)

?
= yes.

If Verify outputs no, then the user discards the token and
outputs ⊥. Otherwise, the user stores (payloadℓ , tℓ ,skℓ , 0ℓ).

Generalization. We remark that our construction of ARTs
can be generalized to support more generic anonymous tokens
such as the ones described in Kreuter et al. [59] and Davidson
et al. [29] but instantiated with a set of signers rather than just
one signer as in previous work [29, 59, 105]. Additionally,
unlike prior constructions, ARTs are publicly verifiable. These
features make ARTs potentially of independent interest. For
simplicity, we restrict our definition of ARTs to Trellis.

5.2 Putting things together

We decouple the expensive cryptographic operations from
the lightweight ones (similarly to cMix [16]). During key
generation and path establishment, all necessary cryptographic
key material is distributed via the ARTs to servers on the path.
During the mixing phase, messages are routed through the
established paths. This is a lightweight procedure: each
server only needs to decrypt and shuffle envelopes. The
mixing phase can be repeated indefinitely (with many different
messages) and does not involve the setup overhead of the path
establishment phase.

Key generation. Each server uses DHKeyGen and pub-
lishes the Diffie-Hellman public key (“�”) to the PKI. Each
server uses Feldman’s verifiable secret sharing (VSS) scheme
[40] (described in Appendix D.2 for completeness) to share
the Diffie-Hellman secret, for state recovery purposes (Sec-
tion 6.3.1). In addition, we use proactive secret shar-
ing [50, 76] to generate shares of a common ART blind
signature key for each anytrust group. With proactive secret
sharing, multiple independent sets of shares are generated
for the same secret. This ensures that each anytrust group
holds shares of the secret key while preventing subsets of
colluding servers across different groups from recovering the
secret key. We provide details on proactive secret sharing in
Appendix D.1 for completeness.

ART generation. Each user is issued one ART per layer by a
random anytrust group. Each user can only send (boomerang
encrypted) messages through the network according to the
path dictated by the ARTs. All invalid or duplicate envelopes
are discarded by the honest servers. Servers that improperly
route envelopes are blamed by the next honest server on the
path (blame protocols are described in Section 6).

Routing tokens and path selection. During the path estab-
lishment protocol (described in further detail in Section 5.3),
each server (anonymously) receives ARTs for the links it is
responsible for. Each token determines the next server on a
link (and can be checked with ART.NextServer), which allows
each server to (1) determine where to send envelopes in the
subsequent layer and (2) anonymously verify path adherence
(without knowledge of the full path, only the local link).

Boomerang routing on a path. We use boomerang encryp-
tion to route envelopes through the mix-net. We assume
that the boomerang encryption scheme is instantiated using
IND-CCA secure encryption (where the shared encryption
key is derived from the Diffie-Hellman message in the ART
payload). Each intermediate layer ciphertext (i.e., envelope)
is signed and can be verified by the server using the signature
verification key given in the corresponding ART payload. See
Protocol 1 in Appendix D for details. This gives us authenti-
cated boomerang routing which ensures that: (1) each server
receives every envelope for each link and (2) all envelopes
on a link are valid authenticated encryptions under the asso-
ciated link public keys. Any failure of these two properties
(e.g., failed decryption, bad signatures, or missing envelopes)
triggers a blame protocol (described in Section 6.1.2).

Dummy envelopes. To prevent leaking how many messages
are passed between servers in each layer (required to avoid
leaking parts of the mixing permutation applied on the mes-
sages to the network adversary), each server batches the
envelopes (intermediate boomerang ciphertexts) it sends to
the destination server(s) in the next layer, padding the batch
with “dummy” envelopes as needed. The dummy envelopes
are then discarded by the receiving server(s).

Assigning blame. All communication between parties is
additionally signed using a digital signature (DS) scheme for
lightweight blaming of malicious parties. See Section 6.

5.3 Do once: Path establishment
We now describe how we resolve the first challenge: anony-
mously establishing random paths. The difficulty is that paths
must be created in a way that (1) does not reveal the path
to any party other than the user and (2) guarantees that all
paths are uniformly random, even when generated by mali-
cious users. Each server on the path must receive an ART
associated with the path link but must not learn which user
provided it. We solve this with an incremental approach: we
inductively extend an existing path from one server to another
while simultaneously forcing all users to choose random paths.
Each user starts with a random path of length one, with the
choice of this first server assigned by the first ART. This base
case does not yet provide anonymity since the first server
knows the user’s identity. We then proceed by induction, as
follows. Given a path of length ℓ ending at server (ℓ , the
user extends the path to length ℓ +1 using boomerang routing

8



through (1→ (2→ ·· · → (ℓ to communicate with the new
server (ℓ+1. The user sends the routing information (ℓ+1
needs: the ART tℓ for the link ((ℓ → (ℓ+1), the ART tℓ+1
for the link ((ℓ+1→ (ℓ+2), and the associated Diffie-Hellman
messages and signature verification keys. (The user also sends
a signature on the ART tℓ+1 under the verification key tℓ to
prove that tℓ and tℓ+1 are part of the same path.) Because
the user communicates exclusively through the existing path
and because ARTs are unlinkable, the path extension proce-
dure reveals no information to any server. After receiving
and verifying the tokens, (ℓ+1 routes the reverse boomerang
envelopes backwards along the path. Each server verifies the
authenticated encryption, which implicitly ensures that the
user and all servers (ℓ → (ℓ−1→ ·· · → (1 know that (ℓ+1
received (and validated) the tokens. This process is repeated
! times until the full path to (! is established.

Anytrust group bookends. The Trellis mix-net consists of
! mix-net layers “bookended” between two layers of anytrust
groups (see Figure 6). The anytrust groups at the entry and
exit layers ensure that the start and end of a mix-net path are
always processed by an honest server, which prevents dropped
messages and denial-of-service attacks. The anytrust group at
the entry layer verifies the boomerang receipts on behalf of the
user: when the boomerang receipt comes back, each member
of the group can check the attached signature and ensure that
the receipt was correctly decrypted. Additionally, the entry
group stores the envelopes it is given so as to prevent denial-
of-service: if the first : servers in the mix-net are malicious
and drop messages, the entry group can resend the envelopes
after the adversarial servers are eliminated. The anytrust
group at the exit layer outputs the messages to the world (the
“broadcast” part of anonymous broadcast), ensuring that all
messages make it out. During path establishment, these exit
groups are at the “peak” of the boomerang and use a group
decryption protocol to decrypt the !th boomerang envelopes.
In this protocol, each group verifies the ART for layer ! and
retains the included signature verification key. (Note that the
verification keys are unlinkable to the start of the path because
of the mixing guarantees provided by the mix-net.) Then,
during the repeated broadcast rounds, these exit groups check
that one message is received for each of the verification keys
they have, ensuring delivery of all messages. See Protocol 2
in Appendix D for details.

Why path establishment works. Both the incremental approach
and boomerang message receipts are required to prevent
dropped messages. The incremental approach to path estab-
lishment enables immediate blame assignment and prevents
errors from propagating. The message receipt is designed to
allow servers on the existing path to assign blame on a user’s
behalf if the new server deviates from protocol. Specifically,
each server expects to receive an envelope for each established
key, in both the forward and reverse direction. This gives
rise to a simple blame protocol in the case of a dropped

���������������������������������������
����������������

����������������
	�����������������������������������������
���������

��������������������������������
����������������������������������������

��������������

��������������

��������������

��������������


������

����������������������������

Figure 6: Detailed overview of the Trellis mix-net “book-
ended” by anytrust groups to prevent denial-of-service attacks
at the entry and exit points. Users send boomerang-encrypted
messages through a pre-selected random path in the network.
The anytrust group at the last layer ensures that all messages
get published to the bulletin board.

envelope: blame the previous server. The previous server, if
innocent, should have reported the envelope missing during
the last synchronous layer; because it did not do so, it must be
malicious (see Section 6 for details).

5.4 Repeat: Mixing rounds
The repeated broadcasting rounds use the established paths to
mix (different) message anonymously and quickly. Messages
in Trellis are of fixed size (e.g., 10kB), and all users must
submit a message of that size, padding if necessary. Because
mixing rounds can be repeated many times, users with larger
messages can split their broadcasts across several rounds.
The random routes guarantee that all messages are mixed
before reaching the final layer (see mixing analysis in the next
section).

5.5 Number of layers required
We now turn to analyzing the number of layers required to
achieve a random permutation on the deliveredmessages. This
analysis forms the crux of our security argument in Section 7.
Previous theoretical work [48, 92] performs similar analyses
in the context of permutation networks. Unfortunately, such
analyses are only applicable to networks consisting exclusively
of honest servers. The analysis of Kwon [65] is the first to
consider networks containing a fraction of malicious servers.
We improve the mixing analysis of Kwon and give a simpler
analysis of mixing guarantees to bound the number of layers
required in a random routing mix-net.

Modeling the network. We consider an information-
theoretic view of an adversary observing the network and
learning a fraction 5 of the permutation applied to the mes-
sages in each layer (obtained from the servers that collude with

9



Number of users
100 K 500 K 1 M 5 M 10 M

5 = 0.1 56 58 58 60 60
5 = 0.2 86 88 89 92 93
5 = 0.3 124 128 129 133 134
5 = 0.4 179 184 186 191 194
5 = 0.5 266 273 277 284 288
5 = 0.6 419 431 436 448 453
5 = 0.7 736 757 767 787 796
5 = 0.8 1603 1649 1668 1715 1734
5 = 0.9 6069 6244 6319 6494 6569

Table 1: Number of layers required for mixing as a function
of the malicious server fraction 5 and the number of users.
See Theorem 7 of Appendix C for derivation.

the adversary in Trellis). We construct a Markov chain where
each state consists of a list of which server each message is
in and also a deck of " cards, with each card uniquely corre-
sponding to a message. We make one step in the Markov chain
with each layer-to-layer transition. The servers are chosen
randomly, which corresponds to the random path assignment
dictated by the ARTs. We shuffle the deck according to the
hidden part of the permutation, summarized by the following
observation: only messages sent between two honest servers
(in adjacent layers) are mixed, meaning that messages passing
between two malicious servers are not mixed.

We model the adversary’s view as a probability distribution
over all possible permutations of the deck and message loca-
tions. At the start, the adversary knows who submitted each
message, and can choose the starting state. We determine
the probability distribution for subsequent layers through the
Markov process. The above process operates on the entire
group of permutations, and so eventually converges to the
uniform distribution where each deck permutation is equally
likely (see [9, Lemma 15.1]). This corresponds to a uniformly
random permutation of the messages.

Determining the number of layers. To determine the num-
ber of layers required, we must find the “time” to convergence.
Computing this value requires additional analysis. This analy-
sis, while straightforward, is somewhat tedious to derive (and
is similar in nature to the analysis of Kwon [65]). Therefore,
we defer the calculation to Appendix C. We report the number
of layers as a function of the corruption fraction 5 in Table 1.
We note that the number of layers is logarithmic in " (the
number of users) and is not dependent on # (the number
of servers). This is because the probability of being routed
through an honest server only depends on 5 .

6 Blame, adversary removal, and recovery

If all parties behave honestly, then all envelopes are present
and well-formed. In this case, boomerang routing and mixing
analysis (Section 5.5) ensure that all messages are delivered

and mixed (see security analysis; Section 7). However, an
adversarial user or server may deviate from the protocol in
arbitrary ways. To prevent system disruption, or worse, user
deanonymization following active attacks, each (honest) server
is expected to verify all envelopes it receives for layer ℓ before
sending the shuffled batch of envelopes to layer ℓ+1. If any of
the checks do not pass, the server must notify (all) the other
servers before the protocol finishes layer ℓ (note that this server
will not send messages for ℓ+1 until the error is resolved, and
so layer ℓ should not complete). This prevents errors from
propagating through honest servers; honest servers blame
immediately in the layer where a check fails and recovery
protocols are initiated to eliminate the blamed server(s) and
find suitable replacements.

Blaming without deanonymization. We make an important
observation which allows us to maintain the anonymity of
honest users when blaming malicious servers: if we can show
that at least one of the two servers on a link misbehaved,
then we can reveal the envelopes along that link without
compromising user anonymity. We formalize this in Claim 1.

Claim 1 (Malicious links provide no anonymity). Links
between two servers, where at least one of the servers is an
adversary, can be revealed without compromising anonymity.

Proof. Consider the view of an adversarial server on a link
consisting of at least one malicious server. The adversary
knows all encrypted envelopes on the link. Revealing any of
this information (to all of the servers) does not further the
adversary’s knowledge. Our analysis of Section 5.5 relies only
on links between pairs of honest servers for this reason. �

6.1 Blame protocols
In order to illustrate our blame protocols, we need to provide
more details about what exactly is sent between servers (which
we fully specify in Appendix D). First, all signatures sign
the round, layer, source server (which may be different from
the signer), destination server, protocol, length, and direction
of travel. This will allow anyone to publicly verify which
step of which protocol a message corresponds to. Second,
servers sign the batch of envelopes and corresponding ART
keys. Signing the concatenation of the batch ensures that no
server can equivocate on the number of envelopes it sent for a
given round and layer. These signatures can use any standard
public-key signature scheme [12, 57].
We assume that all blame messages are sent to all servers

(e.g., using a standard gossip protocol [66, 85]). If we assume
an honest majority of servers ( 5 < 0.5; see Section 6.3.2
for why this assumption is without loss of generality), the
majority vote assigns blame and selects a replacement server.
In Section 7, we cover how blame protocols support our
delivery guarantees. In short, we ensure that no honest server
or honest user can ever be blamed through a blame protocol,

10



and thus only adversaries are blamed. The blame protocols
ensure that the tokens, signatures, and envelopes are present
and well-formed, which will imply successful delivery.

6.1.1 Duplicate envelopes for the same ART

There should be exactly one message per ART per round and
layer. In the case of duplicates, a server can blame a user
by producing as evidence two unique signed envelopes with
the same round and layer. This evidence is submitted to all
of the servers, who vote to remove the user if the evidence
is valid (or to remove the server if the evidence is invalid).
We set # (1− 5 ) as the minimum threshold of votes required
to remove a server, as described in Section 6.3.1. All of the
protocols below follow this format: a party will produce some
publicly verifiable evidence, which the servers will check and
vote on accordingly.

6.1.2 Missing envelope

Since their is one message per ART per round and layer, each
server expects to receive the corresponding envelope and
blames if it is not received. In the event that an envelope is
missing, (ℓ+1 blames server (ℓ for not sending the envelope
(as (ℓ did not report the envelope missing during the previous
layer). We have two cases to consider:
• (ℓ+1 is maliciously invoking the blame protocol, or
• (ℓ is malicious and dropped an envelope.
By Claim 1, (ℓ+1 can reveal the signed concatenation of the
envelopes on link ((ℓ → (ℓ+1). Specifically, (ℓ+1 provides
the signed batch (with the missing envelope) that it claims
to have received from (ℓ in addition to a signed batch from
a previous round showing that (ℓ sent an envelope with the
ART in question. We can then apply the protocol described
in Section 6.3.1 to remove the offending server.

Remark 1 (An edge case). At the peak of the boomerang
during path establishment, note the pattern of sending ((ℓ →
(ℓ+1→ (ℓ). Because (ℓ+1 does not know which tokens it is
supposed to receive yet, it cannot blame (ℓ for not sending
them. Therefore, we allow (ℓ+1 to respond to claims from
(ℓ (who is the party responsible for blaming if (ℓ+1 drops
an receipt envelope) by complaining that (ℓ never sent the
ART in the first place. It does this by presenting the signed
concatenation from ((ℓ → (ℓ+1) which is secure by Claim 1.

6.1.3 Envelope decryption failure

If an envelope fails to decrypt, then server (ℓ+1 can request
that the previous server (ℓ be blamed. This means that we are
in one of three cases:
1. a malicious user sent an ill-formed envelope,
2. (ℓ tampered with the envelope, or
3. (ℓ+1 is maliciously invoking the blame protocol.

Since the potentially malicious user, (ℓ , and (ℓ+1 all know
both the envelope and the verifying ART token, (ℓ+1 can
reveal these to prove the envelope is ill-formed (in a similar
argument to Claim 1). In response, (ℓ may claim it never sent
the ill-formed envelope and token. It then requests that (ℓ+1
reveal the signed concatenation of envelopes on the link to
prove that the ill-formed envelope and ART were sent by (ℓ .
In this case, either (ℓ or (ℓ+1 is blamed.
Otherwise, (ℓ agrees that the envelope was ill-formed

with respect to the corresponding ART, and we won’t blame
(ℓ+1. We still need to decide if the user sent the ill-formed
envelope, or (ℓ tampered with it. If (ℓ is honest, then it
will be able to present a proof that it acted correctly. This
proof involves revealing each step taken by (ℓ and proving
that each step was executed correctly. To prove this, (ℓ first
reveals the ART tℓ and the encapsulated payload (containing
a partial Diffie-Hellman message and verification key). Using
a discrete log equivalence proof [29, 52, 59], (ℓ proves
correct decryption (without revealing its long-term secret
key). Finally, it provides the user’s signature on tℓ+1 under the
key from tℓ to show that tℓ+1 is the correct next token. With
these elements the other servers can verify the following:
• (ℓ received an envelope that was well-formed (signed),
and therefore (ℓ was not required to blame earlier.

• The decryption of said envelope was computed correctly,
but the output of the decryption was ill-formed.

• The keys are correct and came from the user who created
both of the ARTs, as tℓ signs the payload.

With this information, it can only be that the user is to blame,
and we apply the protocol in Section 6.3.3 to deanonymize
and remove the malicious user. This well-formed envelope is
signed (anonymously) by the user under some key vkℓ , and so
could only have been created by them. Similarly, the token
tℓ+1 is signed by vkℓ and so is the correct next token, and the
correct vkℓ+1. Therefore, the server has produced a proof that
the decryption was performed correctly, but the decryption
output is ill-formed.

6.1.4 Arbitration protocol

Our final blame protocol deals with a missing or incorrect
server signature of the concatenated envelopes. The arbitration
protocol begins when a server (ℓ+1 reports that the signature
given by (ℓ is missing (including if no envelopes were sent
at all) or incorrect. In this case, we have either that (ℓ
is adversarial or (ℓ+1 is maliciously initiating the blame
protocol. An anytrust group randomly chooses an arbitrator
from the other servers (the honest member will contribute true
randomness and ensure the selection is random). We then
require (ℓ to send messages to the arbitrator, denoted �ℓ,ℓ+1,
who forwards them to (ℓ+1. The arbitrator also checks that the
signature on the batch is correct (using (ℓ ’s public verification
key). If messages are delivered successfully (from (ℓ to
(ℓ+1) through �ℓ,ℓ+1, then �ℓ,ℓ+1 continues to arbitrate for

11



future rounds. The performance of Trellis is only minimally
impacted by arbitration, as it simply adds an extra forwarding
and signature check for one layer.
If the arbitrator itself has a dispute with (ℓ or (ℓ+1, then

it can determine which server is honest from its perspective.
When the arbitrator is honest, it will never have a dispute
with the honest server. Once an arbitrator decides who the
malicious server is (because it has a dispute), a new arbitrator
is randomly selected by an anytrust group. If there is an
honest majority of servers, then there will be more disputes
involving the dishonest server than there are involving the
honest server. For a dishonest majority, we can track all server
disputes with a trust graph [110]: a graph in which each
edge represents if two servers trust each other. Although the
initial disagreement breaks only one trust graph link, we can
choose arbitrators who trust both parties. Then, each dispute
between the arbitrator and a party breaks another trust graph
link. Wan et al. [110] prove that such an algorithm eventually
converges to the honest clique, who can then reform without
the troublesome members.
Because of the synchronous communication assumption,

messages are always delivered between honest parties in a
timely manner, and so the arbitration protocol is only invoked
with adversaries. Arbitration can introduce a maximum
overhead of a factor of 2×, as each message is forwarded one
extra time.

6.2 Malicious anytrust group member
First, if one of the signers in an anytrust group incorrectly
signs the ART during the signing protocol described in Sec-
tion 5.1, the user receives an invalid signature (which it locally
determines is invalid using ART.Verify). In this case, the user
can request that each signer (publicly) proves it computed
the partial signature correctly. In our construction, each
signer can do so efficiently by providing a zero-knowledge
proof of discrete log equivalence [29, 52, 59], proving that
,ℓ,8 was calculated correctly with respect to 6G8 . Second,
during path establishment, we require the anytrust group to
compute a group decryption at the last layer. If decryption
fails, each signer can prove it computed the partial decryption
correctly also with a zero-knowledge discrete log equivalence
proof. Any signer that does not comply is eliminated using
the protocol of Section 6.3.1.

6.3 Removal and recovery protocols
Once we have identified the adversarial party, we can proceed
to remove them from the system. To remove adversarial
servers, we ensure that each server’s secret keys are C-out-of-=
shared, using a verifiable secret sharing [91] (VSS) scheme,
with C > # 5 at setup time (see Appendix D.2 for details).
Blame decisions are made as a group, using the C-out-of-
= secret key shares as votes. Using the shares allows the

server receiving C (or more) shares (i.e., votes) to recover the
offending server’s secrets and replace it.

6.3.1 Server removal and state recovery

When servers vote to blame a malicious server, a replacement
server is chosen randomly from among the remaining servers
by an anytrust group (as the arbitrator was in Section 6.1.4).
Each server sends its share of the blamed server’s secret key
sk to the replacement server, who can use the VSS scheme to
reconstruct sk if at least C servers agree that the server is at
fault. Next, to reconstruct the routing information, the ARTs
and corresponding information can be resent by the other
servers. We note that the replacement server may additionally
need to show that it did not receive an ART during this replay
and pass blame for a missing message accordingly, which
it can do using the signature of the replay batch. With the
keys, the replacement can decrypt and forward the messages
encrypted to the old server. Note that the replacement server
does not recover the batch signature key. Instead, it signs
batches with a new signing key which lets other servers know
that envelopes came from the replacement rather than the
eliminated server.3

Remark 2 (Server churn). In the event of server churn, where
an (honest or adversarial) server leaves the network and stops
responding, we can also apply the state recovery protocol to
select a replacement and continue.

6.3.2 Dishonest majority blame and recovery

If there is a dishonest majority, then the vote described in
Section 6.3.1 can deadlock, with neither side meeting the
threshold required to find a replacement. However, note that
all honest servers will vote together, and only adversaries will
vote incorrectly. If we partition into a new instance along
the voting lines, then the partition with the honest servers
(who all voted together) will have a higher fraction of honest
servers than before. If we let ℎ := 1− 5 be the fraction of
honest servers, then we will require no more than b1/ℎc −1
restarts after voting deadlocks in order to achieve an honest
majority. For example, if 1/2 < 5 < 2/3, we will need at most
1 restart. This is because in order to deadlock the vote, at least
1/3 of the servers must vote incorrectly (all servers that vote
incorrectly are adversaries), who will form one partition. The
other partition will then consist of at most 2/3 of the servers,
including all of the (at least 1/3) honest servers, giving it
an honest majority. Since the evidence is publicly verifiable,
it can also be verified by the users, who can decide which
partition to join. The honest users will evaluate the evidence

3We note that VSS-based key recovery is only necessary to finish the current
round of the protocol without restarting. In future rounds, the replaced
servers can post new public keys, which users can use for authenticated
encryption.

12



the same as the honest servers, and so they will choose to send
messages to the honest partition.

6.3.3 Blocking malicious users

Once a user has been blamed, we can revoke their keys by
having each server on the user’s path reveal the user’s ARTs.
Specifically, a server can produce both of the user’s ARTs
and the signature binding them together. Then, we can repeat
this for each server on the path (by following the identities
committed in the ARTs), to remove all of the user’s tokens
from the servers’ lists. We assume that the set of users is fixed,
as users who join late are inherently hard to anonymize due
to statistical disclosure attacks (see Section 3.2). Users that
are late must wait until the next restart of the protocol to join.

7 Security analysis

In this section, we analyze the security properties of Trellis.
We show that (1)messages aremixed and nometadata is leaked
in the process, (2) messages are guaranteed to be delivered,
and (3) blame protocols eliminate adversarial parties—users
or servers—without compromising anonymity.

Claim 2 (Path establishment). All honest users establish a
random path through the layers and each server on the path
obtains a decryption key and a signature verification key.

Proof. Boomerang encryption verifies that the anonymous
routing tokens are delivered to each server along the path (see
Claim 8 in Appendix A.3). The blame and recovery protocols
(Section 6) ensure this process completes. In particular, note
that the user establishes a key with the final anytrust group. �

Claim 3 (Path adherence). All messages submitted by honest
users are routed through all honest servers along the chosen
path determined by the ARTs.

Proof. Each honest user follows the ART signing protocol
and obtains valid ARTs for each link. Suppose, towards
contradiction, that the envelope sent by the user does not
travel through an honest server, say (ℓ , as dictated by the ART
on the ℓth layer. The presence of a correctly signed message
in the final anytrust group at the last layer implies that all
preceding onion layers were decrypted correctly (see Lemma 1
in Appendix A.3). In turn, this means that (ℓ decrypted a
layer, which is a contradiction. �

Claim 4 (Metadata-private shuffling). All envelopes sent
between two honest servers on a link appear indistinguishable
to the network adversary.

Proof. The dummy messages ensure that each batch of en-
velopes exchanged between two honest servers is of fixed
size � (and TLS prevents the network adversary from seeing
the contents of the batch). Crucially, no malicious server or

user can overload an honest-honest link such that there are
more than � envelopes. This holds because (1) the envelopes
expected by each server are uniquely associated with ARTs
provided during path establishment and (2) no honest server
would forward any envelope not uniquely associated with
an ART. By (1) and (2), the size of the batch sent to the
second honest server is always � (padded with dummies as
needed). �

Claim 5 (User anonymity). All messages contributed by
honest users are mixed, resulting in a random permutation of
all messages being output to the public bulletin board.

Proof. We combine Claim 3 and Claim 4. Since all honest
messages travel through all honest servers, they travel through
all honest-honest links. Since themessages travel along honest-
honest links, these messages are shuffled. Then, by Section 5.5
we have that all honest messages become unlinkable with
their senders as the total variation distance of the applied
permutation is n-close to a truly random permutation of all
messages. �

Claim 6. An honest user is never blamed as a result of any
blame protocol described in Section 6, except with negligible
probability in the computational security parameter _.

Proof. A user is only blamed if either (1) there exist two
envelopes for the same round and layer (Section 6 ) or (2) if
there is an ill-formed envelope at some layer ℓ (Section 6.1.3).
Because an honest user’s envelopes are always well-formed,
(1) and (2) do not apply to honest users. Furthermore, a user
cannot be blamed by a malicious invocation of Section 6.3.3
(user removal) because each ART used to trace back the path
to the user is signed by the verification key in the next ART,
and an honest user would never sign a different user’s ART.
Hence, if an honest user is blamed then a malicious party was
capable of forging the honest user’s signature, which can only
happen with negligible probability. �

Claim 7. An honest server is never blamed as a result of a
blame protocol described in Section 6, except with negligible
probability in the computational security parameter _.

Proof. A server is only blamed if (1) there is a (signed) batch
of envelopes showing deviation from the protocol or (2) the
server refuses to produce a valid proof of correct decryption.
(1) and (2) do not apply to honest servers who follow the
protocol. Hence, if an honest server is blamed then amalicious
party was capable of forging the honest server’s signature,
which can only happen with negligible probability. �

8 Implementation and evaluation

Implementation. We implement Trellis in Go 1.17. Our im-
plementation is open source [1] and consists of approximately

13



0

200

400

La
te

nc
y 

(s
)

100 Mbps network

10K 25K 50K 75K 100K
Number of users

0

200

La
te

nc
y 

(s
)

200 Mbps network

Real Simulated

Figure 7: Comparison between broadcasting round latency
on an international (Oregon, Virginia, Frankfurt, and Stock-
holm) network and our simulated network. Top: 100 Mbps
bandwidth connections. Bottom: 200 Mbps bandwidth con-
nections.

11,000 lines of code. We implement distributed key genera-
tion [56] and proactive secret-sharing [31] using the Kyber
library [30]. We use the BLS12-381 [13, 115] elliptic curve to
implement ARTs. Symmetric-key encryption is instantiated
using AES [24, 83] and digital signatures using EdDSA [54].
Diffie-Hellman key agreement is performed over the ed25519
elliptic curve to match EdDSA. For our empirical comparison
to Atom, we use their open source implementation [60].

Environment. We distribute the servers evenly among four
geographic regions: Oregon, Virginia, Frankfurt, and Stock-
holm, to roughly match the distribution of Tor servers [73].
We use the general purpose m5.xlarge instances (quad-core;
16 GiB of RAM). We measured median round trip ping times
of approximately 150 ms, with rare latency spikes of up to
one second.

Due to high international networking costs, we run most of
our evaluations on a simulated network environment informed
from our real network deployment. In Figure 7, we report the
latency of Trellis (broadcast round) under a 100 Mbps and
200 Mbps real network and compare latency to our simulated
network deployment. We ensure that the simulated network
accurately approximates the real network by evaluating the
broadcasting rounds (on pre-established paths). We observe
modest differences in latency (less than 20% in either direction)
between the real and simulated networks.
We use the Linux NetEm [49] tool to model latency and

packet loss rates for each geographic region. We apply a Pareto
distribution to simulate the infrequent, but large, latency spikes
observed in the real network. Properly simulating these latency
spikes is important because the all-to-all nature of the mixnet
in Trellis is sensitive to the highest latency observed across
all links. As such, tail latencies can significantly impact
performance and lead to high variance in overall broadcast
latency.

Systems optimizations. We describe a few basic system-
level and network optimizations that we incorporate into our

implementation in Appendix E.

Parameters. We set n := 2−64 for the total variational distance
of the mixing (see Appendix C). (We also set the size of
each anytrust group so that the probability that any anytrust
group has all adversaries is at most 2−64.) Note that both
of these parameters set the statistical security of Trellis. To
simplify our evaluation, we fix the message size to 10 kB
(over 60× larger compared to the 160B messages evaluated
in Atom [63]). We vary the number of users ", number of
servers # , and the fraction of malicious servers 5 (which
influences the number of layers ! and anytrust group size B).

8.1 Evaluation
The goals of our evaluation are to:
• determine the processing overheads of Trellis on the user
and on the servers through microbenchmarks,

• measure the network overhead as a function of the number
of users and fraction of malicious servers in the mix-net,

• evaluate the overhead of dummy envelopes between layers,
• evaluate how Trellis scales with additional servers, and
• compare Trellis to Atom—the state-of-the-art mix-net
based system for metadata-private anonymous broadcast.

Computational andnetworkoverheads. The computational
overhead of the broadcasting round is minimal given the rela-
tively lightweight cryptography required: AES-decryption of
envelopes and digital signature verification. All the computa-
tionally expensive cryptographic operations (e.g., pairings and
token generation) are precomputed during path establishment.
These computational workloads scale with the number of
servers, as we show in Figure 9. However, the network latency
incurred by routing through ! layers does not scale with the
number of servers and thus the scalability (for a given number
of users) eventually plateaus. Furthermore, as #2 approaches
" , the overhead of dummy envelopes increases, as we must
always send at least one dummy envelope between each pair
of servers. This results in a limit on the horizontal scalabil-
ity of Trellis. To illustrate this point further, in Figure 10,
we compare a broadcast round in Trellis on a real network
deployment with and without dummy envelopes. We find
that dummy envelopes account for roughly 2.5× in latency
overhead.

Path establishment. Path establishment can be seen as
running consecutive broadcasting rounds with ℓ = 1,2, . . . , !
layers in each consecutive round. Therefore, the asymptotic
time complexity for path establishment is $ (!2), and the
concrete time it takes follows accordingly (see Figure 8).
Path establishment can take one to five hours, depending
on parameters. We note that path establishment depends
only on the number of users, and not on the message size
or number of subsequent broadcast rounds. We report two
micro-benchmarks:

14



10K 25K 50K 75K 100K
Number of users

100

200

300

La
te

nc
y 

(m
in

)
Adversary fraction f

0.1 0.2 0.3

10K 25K 50K 75K 100K

100
200
300
400
500
600

La
te

nc
y 

(s
ec

) f = 0.1

10K 25K 50K 75K 100K
Number of users

100
200
300
400
500
600

f = 0.2

Message size
1 kB 5 kB 10 kB 20 kB

10K 25K 50K 75K 100K

100

200

300

400

500

600
f = 0.3

Figure 8: Left: Path establishment with different fractions of malicious servers ( 5 ). Right: Broadcast round scaling with
number of users " (messages), message sizes, and different adversary fractions. Both experiments are run on a simulated 200
Mbps network configuration with # = 128 servers. Shaded regions represent a 95% confidence interval (mostly invisible).

32 64 128 192 256
Number of servers

2000

4000

6000

La
te

nc
y 

(s
ec

) Adversary fraction f
0.1 0.2 0.3

Figure 9: Latency decreases with the number of servers
added to the network (until reaching a constant overhead)
with 200Mbps bandwidth cap. Number of messages is " =

2,000,000 and message size is set to 1 kB. Shaded regions
represent a 95% confidence interval.

10K 25K 50K 75K 100K
Number of users

100

200

300

La
te

nc
y 

(s
ec

) With dummies
Without dummies

Figure 10: Dummy envelopes between layers incur a large
overhead due to increased bandwidth requirements. Broadcast
round (with and without dummy envelopes) evaluated on the
real network with 200Mbps bandwidth cap, 5 = 0.2, and
message size set to 10 kB. Shaded regions represent a 95%
confidence interval.

• ART.PartSign: 0.08 ms (per token). // Signer overhead.
• ART.Verify: 1.09 ms (per token). // Token verification.

Broadcasting rounds. Once the path establishment com-
pletes, broadcasting rounds can be run indefinitely to broadcast
messages (even following server churn and elimination). In
Figure 8, we report the latency of the broadcasting rounds on
four different message sizes (ranging between 1 kB and 20 kB)
and fraction of adversarial servers. The broadcasting rounds
are 10-120× faster compared to a path establishment round.
With 5 = 0.2 and 100,000 users, broadcasting a 10 kB mes-
sage incurs approximately four minutes of latency. We report

micro-benchmarks for the decryption and signing (performed
by servers on each link):
• AES.Dec: 16 µs for 10 kB. // Envelope decryption.
• DS.Verify: 71 µs for 10 kB. // Signature verification.

Blame protocols. The primary computational overhead of
blame protocols is generating a proof-of-decryption. In Trellis,
this is done using a discrete-log equivalence proof (DLEQ),
as explained in Section 6. We run a microbenchmark to
determine the proving (and verification) time of each DLEQ:
• DLEQ.Prove: 152 µs. // Proving signing and correct decryption.
• DLEQ.Verify: 310 µs. // Proof verification by server and user.
The low overheads of the DLEQ proofs make our blame
protocols lightweight. Similarly, arbitration (in case of a
dispute) incurs one extra hop, which translates to an overall
latency increase of 150ms (in our network configuration).

Throughput. In Table 2, we report the throughput (in bits per
second) with 32, 64, and 128 servers and 100,000 users. The
throughput decreases with more users and increases with more
servers but eventually plateaus (see Figure 9 for scaling). For
comparison, Tor achieves around 400,000 bits per second [73].

Trellis Throughput (bits/s)
32 64 128

5 = 0.1 234±9 435±6 534±15
5 = 0.2 169±3 220±4 324±8
5 = 0.3 84±1 168±2 222±5

Table 2: Throughput of Trellis’s broadcast as a function of
the adversary fraction 5 and number of servers for 20 kB
messages. Includes 95% confidence interval.

8.2 Comparison to Atom
To the best of our knowledge, Atom [63] is the state-of-the-art
system for metadata-private anonymous broadcast. Compared
to Atom, Trellis achieves four orders of magnitude lower
latency (and proportionally higher throughput). Trellis scales
easily to support large message sizes (e.g., in the kilobytes);
in contrast, Atom does not, due to the zero-knowledge proofs

15



and message passing within each anytrust group. We eval-
uate Atom on 32B messages and multiply out to obtain the
estimate time required to broadcast a 1MB file (Kwon et al.
[63] explicitly state that latency grows linearly with larger
messages). We report the result for varying number of users
and match Atom’s 5 = 0.2 in Figure 11.

3.8 years 9.5 years
19.0 years

28.5 years

Atom

10K 25K 50K 75K 100K
Number of users

2.5 hours 3.6 hours
4.9 hours

6.7 hours

Trellis

Figure 11: Latency of Trellis vs. Atom to broadcast a 1MB
file. We vary the number of users and set 5 = 0.2 for both
systems (we run Atom on 32B messages and extrapolate)
with 200Mbps bandwidth cap.

8.3 Discussion and practical considerations
By decoupling path establishment and expensive operations
from the message size, Trellis handles large messages bet-
ter than all existing horizontally-scalalble metadata-private
anonymous broadcast systems, especially as the number of
users increases. While Trellis is targeted to asynchronous
applications (e.g., email, document uploads, surveys, etc.) due
to concrete performance limitations (notably, high latency),
further reducing latency and bandwidth overheads would re-
quire sacrificing security guarantees. If then adversary has
a full view of the entire network, then user anonymity can
only be guaranteed by providing metadata privacy. However,
metadata privacy comes at the high cost of requiring extra
bandwidth. Therefore, all metadata-private systems, including
Trellis, will inherently have to pay this cost so as to maintain
a uniform view of all network traffic.
In Trellis, to achieve metadata privacy, we must introduce

dummy envelopes between servers and fix the set of par-
ticipating users. Our evaluation in Section 8 demonstrates
that Trellis pushes metadata-private anonymous broadcast to
its limit by being bandwidth—rather than computationally—
bottlenecked. As a consequence, any further improvements in
performance (beyond minor optimizations) will require sacri-
ficing metadata privacy. Specifically, there are three possible
security compromises that can be made: (1) removing dummy
envelopes between layers, (2) allowing user churn, and (3)
reducing the number of layers in the mixnet. All three of these
compromises are made by systems like Tor so as to scale to
millions of daily users and achieve real-time (synchronous)
communication (e.g., web browsing). We briefly elaborate
on the consequences of applying (1) and (2) on the practical
security guarantees of Trellis. Applying (3) would result in
messages not being mixed and therefore voids all guarantees.

• Not using dummy envelopes would maintain all the guaran-
tees of Section 3.2, except for metadata privacy. In return,
however, removing dummy envelopes would reduce the
bandwidth overhead on the servers and improve the overall
scalability of Trellis (see Figure 10). Of course, in practice,
it may be reasonable to assume a weaker adversary that
is only capable of corrupting a subset of the servers and
without a view of the entire network. Under this (weaker)
threat model, the metadata privacy guarantee of Trellis can
be sacrificed in favor of performance (without impacting
the cryptographic anonymity guarantees of Trellis).

• Choosing to let users come and go makes Trellis (and
all anonymous communication systems) vulnerable to
intersection attacks [25, 26, 113]. Online (or offline) users
correlate themselves with the message output patterns,
making it possible to link messages back to the set of
users that sent them. In practice, however, with sufficiently
many users and a high churn rate (e.g., 50% of users churn
in each round) the effectiveness of such attacks can be
mitigated. Other methods, such as buddy sets [113], can
also be applied to reduce the effectiveness of intersection
attacks.

Future work. The theoretical mixing analysis of Kwon [65]
and our analysis in Section 5.5 assumes that the same number
of envelopes are exchanged on each link, hence servers need
to pad each envelope batch with dummy envelopes. One
direction for improving the performance of Trellis would be
to incorporate different sized batches into the mixing analysis
and avoid adding dummy envelopes in Trellis (at the cost of
increasing the number of layers). Doing so may reduce latency
and improve the horizontal scalability of Trellis, as illustrated
in Figure 10. Another avenue could be proving a tighter bound
on the number of layers required for mixing. Additionally,
eliminating the need for digital signatures (currently required
for our blame protocols) would concretely improve efficiency
of mixing by a small factor, which may have a cumulative
impact when the number of layers becomes very large. For
example, it is conceivable that message authentication codes
(MACs) [12] could be suitable replacements to our digital
signatures and result in smaller boomerang envelopes.

9 Conclusions

Scalability and support for large messages plays a key role
in many applications. For example, web browsing requires
megabytes of data transfer (the median web page in 2021 was
2MB in size [100]). Additionally, in the real world, scalability
and concrete efficiency play an important role in anonymity
as well: the more users there are, the larger the anonymity set,
and the more plausible deniability each user obtains.
Trellis is the first system to support large messages and

horizontal scalability, advancing the state-of-the-art for anony-
mous broadcast. Our prototype of Trellis is potentially efficient

16



enough to deploy at a small “enterprise” scale with a few
hundred thousand users. In such a deployment, Trellis would
incur a few hours of overhead to broadcast megabyte-sized
files (e.g., PDF documents). There is still an efficiency gap to
bridge in terms of performance when compared to systems
like Tor and I2P, which provide weaker anonymity guarantees
but better performance. However, Trellis is a step toward
closing this gap.

Acknowledgements

We thank Jun Wan for helping us develop the blame replace-
ment strategy and answering many questions we had related to
consensus. We thank Kyle Hogan, Manon Revel, and Mayuri
Sridhar for reading several drafts of this paper and giving us
insightful feedback on how to improve it. We thank Albert
Kwon for many helpful discussions pertaining to Atom and
Quark as well as giving us useful pointers for improving
the mixing analysis. Finally, we would like to thank the
NDSS 2023 reviewers and our shepherd Qiang Tang for many
insightful comments and valuable suggestions.

References

[1] Source code for Trellis. https://github.com/

SimonLangowski/trellis, 2022.

[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. Blin-
der: Scalable, robust anonymous committed broad-
cast. In Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’20, pages 1233–1252, New York, NY, USA,
2020. Association for Computing Machinery. ISBN
9781450370899. doi: 10.1145/3372297.3417261.
URL https://doi.org/10.1145/3372297.3417261.

[3] Ben Adida and Douglas Wikström. Offline/online mix-
ing. In International Colloquium on Automata, Lan-
guages, and Programming, pages 484–495. Springer,
2007.

[4] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
private voice communication over fully untrusted in-
frastructure. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), 2021.

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste,
and Thomas Zacharias. MCMix: Anonymous mes-
saging via secure multiparty computation. In 26th
USENIX Security Symposium (USENIX Security 17),
pages 1217–1234, 2017.

[6] Sebastian Angel and Srinath Setty. Unobservable com-
munication over fully untrusted infrastructure. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551–569, 2016.

[7] Richard Arratia and Louis Gordon. Tutorial on large
deviations for the binomial distribution. Bulletin of
mathematical biology, 51(1):125–131, 1989.

[8] Ludovic Barman, Italo Dacosta, Mahdi Zamani, En-
nan Zhai, Apostolos Pyrgelis, Bryan Ford, Joan
Feigenbaum, and Jean-Pierre Hubaux. Prifi: Low-
latency anonymity for organizational networks. Proc.
Priv. Enhancing Technol., 2020(4):24–47, 2020. doi:
10.2478/popets-2020-0061. URL https://doi.org/

10.2478/popets-2020-0061.

[9] Ehrhard Behrends. Introduction to Markov chains
: with special emphasis on rapid mixing. Ad-
vanced lectures in mathematics. Vieweg, Braun-
schweig/Wiesbaden, 2000. ISBN 3528069864.

[10] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas
Devadas. Var-CNN: A data-efficient website finger-
printing attack based on deep learning. Proceedings
on Privacy Enhancing Technologies, 2019(4):292–310,
2019.

[11] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In International
Workshop on Public Key Cryptography, pages 31–46.
Springer, 2003.

[12] Dan Boneh and Victor Shoup. A graduate course in
applied cryptography. Draft 0.5, 2020.

[13] Dan Boneh, Ben Lynn, and Hovav Shacham. Short
signatures from the Weil pairing. In International
conference on the theory and application of cryptology
and information security, pages 514–532. Springer,
2001.

[14] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security? In
Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 92–102, 2007.

[15] Bryan Burrough, Sarah Ellison, and Suzanna
Andrews. The Snowden saga: A shadowland
of secrets and light. Vanity Fair, 2014. URL
https://www.vanityfair.com/news/politics/

2014/05/edward-snowden-politics-interview.
Accessed September 2022.

[16] David Chaum, Debajyoti Das, Farid Javani, Aniket
Kate, Anna Krasnova, Joeri De Ruiter, and Alan T
Sherman. cMix: Mixing with minimal real-time asym-
metric cryptographic operations. In International con-
ference on applied cryptography and network security,
pages 557–578. Springer, 2017.

17

https://github.com/SimonLangowski/trellis
https://github.com/SimonLangowski/trellis
https://doi.org/10.1145/3372297.3417261
https://doi.org/10.2478/popets-2020-0061
https://doi.org/10.2478/popets-2020-0061
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview
https://www.vanityfair.com/news/politics/2014/05/edward-snowden-politics-interview


[17] David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–90, 1981.

[18] Raymond Cheng, William Scott, Elisaweta Masserova,
Irene Zhang, Vipul Goyal, Thomas Anderson, Arvind
Krishnamurthy, and Bryan Parno. Talek: Private group
messaging with hidden access patterns. In Annual
Computer Security Applications Conference, pages
84–99, 2020.

[19] Cloudflare. Comprehensive DDoS protection. https:
//www.cloudflare.com/ddos/, 2021. Accessed
September 2022.

[20] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Ac-
countable anonymous group messaging. In Proceed-
ings of the 17th ACM Conference on Computer and
Communications Security, pages 340–350. ACM, 2010.

[21] Henry Corrigan-Gibbs, Dan Boneh, and David Maz-
ières. Riposte: An anonymous messaging system
handling millions of users. In 2015 IEEE Symposium
on Security and Privacy, pages 321–338. IEEE, 2015.

[22] Cybersecurity and Infrastructure Security Agency. Se-
curity tip (ST04-015): Understanding denial-of-service
attacks. https://www.cisa.gov/uscert/ncas/tips/
ST04-015/, 2021. Accessed September 2022.

[23] Artur Czumaj and Berthold Vöcking. Thorp shuffling,
butterflies, and non-Markovian couplings. In Inter-
national Colloquium on Automata, Languages, and
Programming, pages 344–355. Springer, 2014.

[24] Joan Daemen and Vincent Rĳmen. The design of
Rĳndael: AES — the Advanced Encryption Standard.
Springer-Verlag, 2002. ISBN 3-540-42580-2.

[25] George Danezis. Statistical disclosure attacks. In IFIP
International Information Security Conference, pages
421–426. Springer, 2003.

[26] George Danezis and Andrei Serjantov. Statistical dis-
closure or intersection attacks on anonymity systems. In
International Workshop on Information Hiding, pages
293–308. Springer, 2004.

[27] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a type III anonymous
remailer protocol. In 2003 Symposium on Security and
Privacy, 2003., pages 2–15. IEEE, 2003.

[28] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Divide and funnel: a scaling
technique for mix-networks. Cryptology ePrint Archive,
2021.

[29] Alex Davidson, Ian Goldberg, Nick Sullivan, George
Tankersley, and Filippo Valsorda. Privacy Pass: By-
passing internet challenges anonymously. Proc. Priv.
Enhancing Technol., 2018(3):164–180, 2018.

[30] DEDIS. Dedis advanced crypto library for Go. https:
//github.com/dedis/kyber, 2022. Accessed August
2022.

[31] Yvo Desmedt and Sushil Jajodia. Redistributing secret
shares to new access structures and its applications.
Technical report, Technical Report ISSE TR-97-01,
George Mason University, 1997.

[32] Whitfield Diffie and Martin Hellman. New directions
in cryptography. IEEE transactions on Information
Theory, 22(6):644–654, 1976.

[33] Roger Dingledine, NickMathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical
report, Naval Research Lab Washington DC, 2004.

[34] Manu Drĳvers, Kasra Edalatnejad, Bryan Ford, Eike
Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs.
On the security of two-round multi-signatures. In 2019
IEEE Symposium on Security and Privacy (SP), pages
1084–1101, 2019. doi: 10.1109/SP.2019.00050.

[35] Saba Eskandarian. Fast privacy-preserving punch
cards. Proceedings on Privacy Enhancing Technolo-
gies, 2021(3):289–307, 2021. doi: doi:10.2478/
popets-2021-0048. URL https://doi.org/10.2478/

popets-2021-0048.

[36] Saba Eskandarian and Dan Boneh. Clarion: Anony-
mous communication from multiparty shuffling proto-
cols. In Proceedings of the Network and Distributed
Systems Security Symposium, 2022.

[37] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Za-
haria, and Dan Boneh. Express: Lowering the cost of
metadata-hiding communication with cryptographic
privacy. In 30thUSENIX Security Symposium (USENIX
Security 21), Vancouver, B.C., August 2021. USENIX
Association.

[38] Nathan S Evans, Roger Dingledine, and Christian
Grothoff. A practical congestion attack on Tor using
long paths. In USENIX Security Symposium, pages
33–50, 2009.

[39] Ernesto Falcon. The FCC must update ISP privacy
rules. https://www.eff.org/deeplinks/2016/05/

fcc, 2016. Accessed September 2022.

[40] Paul Feldman. A practical scheme for non-interactive
verifiable secret sharing. In 28th Annual Symposium on
Foundations of Computer Science (sfcs 1987), pages
427–438. IEEE, 1987.

18

https://www.cloudflare.com/ddos/
https://www.cloudflare.com/ddos/
https://www.cisa.gov/uscert/ncas/tips/ST04-015/
https://www.cisa.gov/uscert/ncas/tips/ST04-015/
https://github.com/dedis/kyber
https://github.com/dedis/kyber
https://doi.org/10.2478/popets-2021-0048
https://doi.org/10.2478/popets-2021-0048
https://www.eff.org/deeplinks/2016/05/fcc
https://www.eff.org/deeplinks/2016/05/fcc


[41] Michael J Freedman and Robert Morris. Tarzan: A
peer-to-peer anonymizing network layer. In Proceed-
ings of the 9th ACM Conference on Computer and
Communications Security, pages 193–206, 2002.

[42] Nethanel Gelernter, Amir Herzberg, and Hemi Lei-
bowitz. Two cents for strong anonymity: The anony-
mous post-office protocol. In International Conference
on Cryptology and Network Security, pages 390–412.
Springer, 2017.

[43] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. In International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 295–310. Springer, 1999.

[44] Yossi Gilad. Metadata-private communication for the
99%. Communications of the ACM, 62(9):86–93, 2019.

[45] Oded Goldreich. Foundations of cryptography: a
primer, volume 1. Now Publishers Inc, 2005.

[46] Philippe Golle and Ari Juels. Parallel mixing. In
Proceedings of the 11th ACM conference on Computer
and communications security, pages 220–226, 2004.

[47] Maohua Guo and Jinlong Fei. Website fingerprinting
attacks based on homology analysis. Security and
Communication Networks, 2021, 2021.

[48] Johan Håstad. The square lattice shuffle. Random
Structures and Algorithms, 29(4):466–474, 2006.

[49] Stephen Hemminger et al. Network emulation with
NetEm. InLinux conf au, volume 5, page 2005. Citeseer,
2005.

[50] Amir Herzberg, Stanisław Jarecki, Hugo Krawczyk,
and Moti Yung. Proactive secret sharing or: How to
cope with perpetual leakage. In annual international
cryptology conference, pages 339–352. Springer, 1995.

[51] Nicholas Hopper, Eugene YVasserman, and Eric Chan-
Tin. How much anonymity does network latency leak?
ACM Transactions on Information and System Security
(TISSEC), 13(2):1–28, 2010.

[52] Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In
International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pages
233–253. Springer, 2014.

[53] Rebecca Jeschke. Internet advocates call on
ISPs to commit to basic user privacy protec-
tions. https://www.eff.org/deeplinks/2021/03/
internet-advocates-call-isps-commit-basic-

user-privacy-protections, 2021. Accessed
September 2022.

[54] Simon Josefsson and Ilari Liusvaara. Edwards-curve
digital signature algorithm (EdDSA). RFC, 8032:1–60,
2017.

[55] Antoine Joux. A one round protocol for tripartite Diffie–
Hellman. In International algorithmic number theory
symposium, pages 385–393. Springer, 2000.

[56] Aniket Kate and Ian Goldberg. Distributed private-key
generators for identity-based cryptography. In Interna-
tional Conference on Security and Cryptography for
Networks, pages 436–453. Springer, 2010.

[57] Jonathan Katz and Yehuda Lindell. Introduction to
modern cryptography. CRC press, 2020.

[58] Andreas Klappenecker. Coupling of Markov
chains. https://people.engr.tamu.edu/andreas-

klappenecker/csce658-s18/coupling.pdf, 2018.
Accessed September 2022.

[59] Ben Kreuter, Tancrède Lepoint, Michele Orrù, and
Mariana Raykova. Anonymous tokens with private
metadata bit. In Annual International Cryptology
Conference, pages 308–336. Springer, 2020.

[60] Albert Kwon. Source code for Atom. https://github.
com/kwonalbert/atom, 2017. Accessed August 2022.

[61] Albert Kwon, Mashael AlSabah, David Lazar, Marc
Dacier, and Srinivas Devadas. Circuit fingerprinting
attacks: Passive deanonymization of Tor hidden ser-
vices. In 24th USENIX Security Symposium (USENIX
Security 15), pages 287–302, 2015.

[62] Albert Kwon, David Lazar, Srinivas Devadas, and
Bryan Ford. Riffle: An efficient communication system
with strong anonymity. Proc. Priv. Enhancing Technol.,
2016(2):115–134, 2016.

[63] Albert Kwon, Henry Corrigan-Gibbs, Srinivas De-
vadas, and Bryan Ford. Atom: Horizontally scaling
strong anonymity. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 406–422,
2017.

[64] Albert Kwon, David Lu, and Srinivas Devadas. XRD:
Scalable messaging system with cryptographic privacy.
In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pages 759–776,
2020.

[65] Young Hyun Kwon. Towards anonymous and metadata
private communication at Internet scale. PhD thesis,
Massachusetts Institute of Technology, 2019.

19

https://www.eff.org/deeplinks/2021/03/internet-advocates-call-isps-commit-basic-user-privacy-protections
https://www.eff.org/deeplinks/2021/03/internet-advocates-call-isps-commit-basic-user-privacy-protections
https://www.eff.org/deeplinks/2021/03/internet-advocates-call-isps-commit-basic-user-privacy-protections
https://people.engr.tamu.edu/andreas-klappenecker/csce658-s18/coupling.pdf
https://people.engr.tamu.edu/andreas-klappenecker/csce658-s18/coupling.pdf
https://github.com/kwonalbert/atom
https://github.com/kwonalbert/atom


[66] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, 2001.

[67] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Karaoke: Distributed private messaging immune to
passive traffic analysis. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 711–725, 2018.

[68] David Lazar, Yossi Gilad, and Nickolai Zeldovich.
Yodel: Strong metadata security for voice calls. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 211–224, 2019.

[69] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review,
43(4):303–314, 2013.

[70] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Pe-
ter Druschel, Hitesh Ballani, and Paul Francis. Towards
efficient traffic-analysis resistant anonymity networks.
ACM SIGCOMM Computer Communication Review,
43(4):303–314, 2013.

[71] Stevens Le Blond, David Choffnes, William Caldwell,
Peter Druschel, and NicholasMerritt. Herd: A scalable,
traffic analysis resistant anonymity network for VoIP
systems. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
pages 639–652, 2015.

[72] Brian N Levine, Michael K Reiter, Chenxi Wang, and
Matthew Wright. Timing attacks in low-latency mix
systems. In International Conference on Financial
Cryptography, pages 251–265. Springer, 2004.

[73] Karsten Loesing, Steven J. Murdoch, and Roger Din-
gledine. A case study on measuring statistical data
in the Tor anonymity network. In Proceedings of the
Workshop on Ethics in Computer Security Research
(WECSR 2010), LNCS. Springer, January 2010.

[74] Donghang Lu and Aniket Kate. Rpm: Robust
anonymity at scale. Cryptology ePrint Archive, 2022.

[75] Ewen MacAskill and Gabriel Dance. NSA files: de-
coded. The Guardian, 1, 2013.

[76] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang,
AndrewLow, YupengZhang, Ari Juels, andDawnSong.
Churp: dynamic-committee proactive secret sharing.
In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages
2369–2386, 2019.

[77] Nick Mathewson and Roger Dingledine. Practical traf-
fic analysis: Extending and resisting statistical disclo-
sure. In International Workshop on Privacy Enhancing
Technologies, pages 17–34. Springer, 2004.

[78] PrateekMittal andNikita Borisov. Shadowwalker: peer-
to-peer anonymous communication using redundant
structured topologies. In Proceedings of the 16th ACM
conference on Computer and communications security,
pages 161–172, 2009.

[79] Prateek Mittal, Ahmed Khurshid, Joshua Juen,
Matthew Caesar, and Nikita Borisov. Stealthy traf-
fic analysis of low-latency anonymous communication
using throughput fingerprinting. In Proceedings of the
18th ACM conference on Computer and communica-
tions security, pages 215–226, 2011.

[80] Zachary Newman, Sacha Servan-Schreiber, and Srini-
vas Devadas. Spectrum: High-bandwidth anonymous
broadcast. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
229–248, 2022.

[81] Lan Nguyen and Rei Safavi-Naini. Breaking and
mending resilient mix-nets. In International Work-
shop on Privacy Enhancing Technologies, pages 66–80.
Springer, 2003.

[82] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2:
simple two-round Schnorr multi-signatures. In Annual
International Cryptology Conference, pages 189–221.
Springer, 2021.

[83] NIST. Specification for the Advanced Encryption Stan-
dard (AES). Federal Information Processing Standards
Publication 197, 2001. URL http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[84] Se EunOh, NateMathews,MohammadSaidur Rahman,
Matthew Wright, and Nicholas Hopper. GANDaLF:
GAN for data-limited fingerprinting. Proc. Priv. En-
hancing Technol., 2021(2):305–322, 2021.

[85] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[86] Lasse Overlier and Paul Syverson. Locating hidden
servers. In 2006 IEEE Symposium on Security and
Privacy (S&P’06), pages 15–114. IEEE, 2006.

[87] Torben Pryds Pedersen. Non-interactive and
information-theoretic secure verifiable secret sharing.
In Annual international cryptology conference, pages
129–140. Springer, 1991.

20

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


[88] Ania M Piotrowska. Low-latency mix networks for
anonymous communication. PhD thesis, UCL (Univer-
sity College London), 2020.

[89] Ania M Piotrowska, Jamie Hayes, Tariq Elahi, Sebas-
tianMeiser, andGeorgeDanezis. The loopix anonymity
system. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1199–1216, 2017.

[90] David Pointcheval and Jacques Stern. Provably secure
blind signature schemes. In International Conference
on the Theory and Application of Cryptology and
Information Security, pages 252–265. Springer, 1996.

[91] Tal Rabin and Michael Ben-Or. Verifiable secret shar-
ing and multiparty protocols with honest majority. In
Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 73–85, 1989.

[92] Charles Rackoff and Daniel R Simon. Cryptographic
defense against traffic analysis. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of
computing, pages 672–681, 1993.

[93] Michael K Reiter and Aviel D Rubin. Anonymous
web transactions with crowds. Communications of the
ACM, 42(2):32–48, 1999.

[94] Eric Rescorla and Tim Dierks. The transport layer
security (TLS) protocol version 1.3. RFC, 2018.

[95] David Schatz, Michael Rossberg, and Guenter Schae-
fer. Hydra: Practical metadata security for contact
discovery, messaging, and dialing. In ICISSP, pages
191–203, 2021.

[96] Adam Schwartz, Andrew Crocker, and Kit Walsh. EFF
to court: Broadband privacy law passes first amend-
ment muster. https://www.eff.org/deeplinks/

2020/05/eff-court-broadband-privacy-law-

passes-first-amendment-muster, 2020. Accessed
September 2022.

[97] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analy-
sis in low-latency mix networks: Attacks and defenses.
In European Symposium on Research in Computer
Security, pages 18–33. Springer, 2006.

[98] Robert Shostak, Marshall Pease, and Leslie Lamport.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401,
1982.

[99] Payap Sirinam, Nate Mathews, Mohammad Saidur
Rahman, and Matthew Wright. Triplet fingerprinting:
More practical and portable website fingerprinting
with n-shot learning. In Proceedings of the 2019 ACM
SIGSACConference onComputer andCommunications
Security, pages 1131–1148, 2019.

[100] John Teague. 2021 Page Weight: The web almanac
by HTTP Archive. https://almanac.httparchive.

org/en/2021/page-weight, 2021. HTTP Archive.

[101] The Invisible Internet Project. I2P anonymous net-
work, 2022. URL https://geti2p.net/en/. Ac-
cessed September 2022.

[102] The New York Times. Got a confidential news tip?
https://www.nytimes.com/tips, 2022. Accessed
September 2022.

[103] The Wall Street Journal. Got a tip? https://www.wsj.

com/tips, 2022. Accessed September 2022.

[104] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Za-
haria, and Nickolai Zeldovich. Stadium: A distributed
metadata-private messaging system. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 423–440, 2017.

[105] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick
Sullivan, Stefano Tessaro, and Christopher A Wood.
A fast and simple partially oblivious PRF, with appli-
cations. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 674–705. Springer, 2022.

[106] Adithya Vadapalli, Kyle Storrier, and Ryan Henry.
Sabre: Sender-anonymous messaging with fast audits.
In 2022 IEEE Symposium on Security and Privacy (SP),
pages 1953–1970. IEEE, 2022.

[107] Jelle Van Den Hooff, David Lazar, Matei Zaharia,
and Nickolai Zeldovich. Vuvuzela: Scalable private
messaging resistant to traffic analysis. InProceedings of
the 25th Symposium on Operating Systems Principles,
pages 137–152, 2015.

[108] VonSpiegel Staff. Inside theNSA’swar on internet secu-
rity. Der Spiegel, 2014. URL https://www.spiegel.

de/international/germany/inside-the-nsa-

s-war-on-internet-security-a-1010361.html.
Accessed September 2022.

[109] Abraham Waksman. A permutation network. Journal
of the ACM (JACM), 15(1):159–163, 1968.

[110] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas
Devadas. Expected constant round byzantine broadcast
under dishonest majority. In Theory of Cryptography
Conference, pages 381–411. Springer, 2020.

[111] Douglas Wikström. Five practical attacks for “opti-
mistic mixing for exit-polls”. In International Work-
shop on Selected Areas in Cryptography, pages 160–
174. Springer, 2003.

21

https://www.eff.org/deeplinks/2020/05/eff-court-broadband-privacy-law-passes-first-amendment-muster
https://www.eff.org/deeplinks/2020/05/eff-court-broadband-privacy-law-passes-first-amendment-muster
https://www.eff.org/deeplinks/2020/05/eff-court-broadband-privacy-law-passes-first-amendment-muster
https://almanac.httparchive.org/en/2021/page-weight
https://almanac.httparchive.org/en/2021/page-weight
https://geti2p.net/en/
https://www.nytimes.com/tips
https://www.wsj.com/tips
https://www.wsj.com/tips
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html
https://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-internet-security-a-1010361.html


[112] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Dissent in numbers: Making
strong anonymity scale. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 179–182, 2012.

[113] David Isaac Wolinsky, Ewa Syta, and Bryan Ford.
Hang with your buddies to resist intersection attacks.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 1153–

1166, 2013.

[114] Theodore M. Wong, Chenxi Wang, and Jeannette M.
Wing. Verifiable secret redistribution for threshold
sharing schemes. Technical report, Carnegie Mellon
University, 2002.

[115] Shoko Yonezawa, Tetsutaro Kobayashi, and Tsunekazu
Saito. Pairing-friendly curves. NetworkWorking Group.
Internet-Draft. January, 2019.

22



A Onion and boomerang encryption

A.1 Onion encryption properties
Remark 3. We require that the onion encryption (and later boomerang encryption) provide Indistinguishability under Chosen-
Ciphertext Attacks (IND-CCA security) [12]. While it is conceivable to require weaker security guarantees from the encryption
(e.g., Indistinguishability under Chosen-Plaintext Attacks; IND-CPA security), our use of these primitives in Trellis requires
IND-CCA security for efficient blame assignment.

Let E := (KeyGen,Enc,Dec) be any symmetric-key encryption scheme and ℓ ≥ 2. For convenience, we define:
−−−−→
onion.Enc(sk,<) := Encsk1 (Encsk2 (. . .Encskℓ (<) . . . )),
−−−−→
onion.Dec(sk, 2) := Decsk1 (Decsk2 (. . .Decskℓ (2) . . . )),
←−−−−
onion.Enc(sk,<) := Encskℓ (Encskℓ−1 (. . .Encsk1 (<) . . . )),
←−−−−
onion.Dec(sk, 2) := Decskℓ (Decskℓ−1 (. . .Decsk1 (2) . . . )),

where sk := (sk1, . . . ,skℓ) are secret keys sampled i.i.d. according to KeyGen.
Onion encryption must satisfy correctness and IND-CCA security, defined as follows.
Correctness. For all security parameters _, integers ℓ ≥ 2, and messages < in the message space,

Pr
[

sk := (sk1, . . . ,skℓ) where sk8←E .KeyGen(1_) ∀8 ∈ {1, . . . , ℓ} :
−−−−→
onion.Dec(sk,

−−−−→
onion.Enc(sk,<)) =←−−−−onion.Dec(sk,

←−−−−
onion.Enc(sk,<)) = <

]
= 1,

where the probability is over the randomness of E .KeyGen, −−−−→onion.Enc, and←−−−−onion.Enc.
IND-CCA security. Let E := (KeyGen,Enc,Dec) be an IND-CCA secure symmetric-key encryption scheme. For all integers
ℓ ≥ 2, there exists a negligible function negl and security parameter _ such that for all PPT adversaries A it holds that:

Pr
[
OnionCCAonion,E,ℓ,A (_) = yes

]
≤ 1

2
+negl(_),

where OnionCCAonion,E,ℓ,A (_) is defined in Figure 12 and onion ∈
{−−−−→
onion,

←−−−−
onion

}
. In words, the adversary can corrupt an

arbitrary subset of keys in an attempt to win the CCA game. Additionally, when given the challenge ciphertext 21 , the adversary
can continue to query for arbitrary decryptions provided it does not query for any envelopes present in the challenge 21 .

Theorem 1 (Correctness and security of onion encryption [17, 33] (informal)). Fix integer ℓ ≥ 2. If E := (KeyGen,Enc,Dec) is
a correct and IND-CCA-secure symmetric-key encryption scheme, then onion ∈

{−−−−→
onion,

←−−−−
onion

}
is correct and IND-CCA secure

(as defined in Figure 12).

Proof (sketch). Correctness follows immediately from the correctness of E. The proof of IND-CCA security for onion
encryption is folklore and follows from a straightforward reduction to the IND-CCA security of E. If a PPT A wins the
OnionCCAonion,E,ℓ,A (_) game, then there exists a PPT B that wins the IND-CCA game for the underlying encryption scheme
by simulating all but one of the encryption keys and answering queries issued byA by querying its own IND-CCA oracles for the
one key it does not have. B outputs exactly as A does. Therefore, if the underlying encryption scheme is IND-CCA secure, then
the IND-CCA security of onion encryption follows. �

A.2 Boomerang encryption

In this section, we formalize the properties required of boomerang encryption. Let −−−−→onion and←−−−−onion be as defined in Appendix A.1.
For convenience, we define sk = (−→sk,

←−
sk) and

boomerang.Enc(sk,−→<,←−<) := −−−−→onion(−→sk,−→< ‖ ←−−−−onion(←−sk,←−<)),

boomerang.Dec(sk, 2) := −−−−→onion.Dec(−→sk, 2) [0] ‖ ←−−−−onion.Dec(←−sk,
−−−−→
onion.Dec(−→sk, 2) [1]),

where −−−−→onion.Dec(−→sk, 2) is parsed as a tuple (−→<,←−−−−onion(←−sk,←−<)) so that −−−−→onion.Dec(−→sk, 2) [0] = −→< and −−−−→onion.Dec(−→sk, 2) [1] =
←−−−−
onion(←−sk,←−<).

23



Game OnionCCAonion,E,ℓ,A (_)
1 : for 8 ∈ {1, . . . , ℓ} do
2 : sk8 ←E .KeyGen(1_)
3 : sk := (sk1, . . . ,skℓ )
4 : � := {}
5 : (st,<0,<1) ← ACorrupt,Enc,Dec (1_)
6 : 20← onion.Enc(sk,<0); 21← onion.Enc(sk,<1)
7 : 1←R {0,1}
8 : 1′←ACorrupt,Enc,Dec (st, 21)
9 : return ({1, . . . , ℓ} \� ≠ ∅ and 1′ = 1)

Oracle Corrupt( 9)
1 : � := � ∪ { 9}
2 : return sk 9

Oracle Enc( 9 ,<;A)
// encrypt with randomness A

1 : 2←E .Encsk 9 (<;A)
2 : return 2

Oracle Dec( 9 , 2)
1 : 20 := 21 // challenge ciphertext

2 : for 8 ∈ {0, . . . , ℓ−1} do

3 : if onion =
−−−−→
onion then

4 : 28+1←E .Decsk8+1 (28)
5 : else
6 : 28+1←E .Decskℓ−8 (28)
7 : if 2 ∈ {20, . . . , 2ℓ } then return ⊥
8 : else return E .Decsk 9 (2)

Figure 12: Onion encryption IND-CCA security game.

Remark 4. For notational convenience, in our proofs we will denote sk as a vector of 2ℓ keys (sk1, . . . ,sk2ℓ) instead of (−→sk,
←−
sk).

Boomerang encryption must satisfy correctness and IND-CCA security, defined as follows.

Correctness. Let E := (KeyGen,Enc,Dec) be a IND-CCA secure symmetric key encryption scheme. For all security parameters
_, integers ℓ ≥ 2, and pairs of messages (−→<,←−<) in the message space,

Pr
[

sk := (sk1, . . . ,sk2ℓ) where sk8←E .KeyGen(1_) ∀8 ∈ {1, . . . ,2ℓ} :
boomerang.Dec(sk,boomerang.Enc(sk,−→<,←−<)) = −→< ‖←−<

]
= 1,

where the probability is over the randomness of KeyGen and boomerang.Enc.

IND-CCA security. Let E := (KeyGen,Enc,Dec) be a IND-CCA secure encryption scheme. For all integers ℓ ≥ 2, there exists
a negligible function negl and security parameter _ such that for all PPT adversaries A it holds that:

Pr
[
BoomerangCCAboomerang,E,ℓ,A (_) = yes

]
≤ 1

2
+negl(_),

where BoomerangCCAboomerang,E,ℓ,A (_) is defined in Figure 13.

Theorem 2 (Security of boomerang encryption). Fix integer ℓ ≥ 2. If onion ∈
{−−−−→
onion,

←−−−−
onion

}
meets the correctness and IND-CCA

security properties of onion encryption, then the boomerang encryption scheme is correct and IND-CCA secure (as defined in
Figure 13).

Proof (sketch). Suppose, towards contradiction, that there exists a PPT A that wins the IND-CCA security game of boomerang
encryption with non-negligible advantage X(_). Construct a PPT B that wins the onion IND-CCA security game with the same
advantage. On input (1_), B samples ℓ keys according to KeyGen and either sets these keys as the keys for −−−−→onion or←−−−−onion (either
is without loss of generality). At this point, boomerang is defined over 2ℓ keys, of which B only knows ℓ. B runsA on (1_) and
answers all Corrupt, Enc, and Dec queries as follows. If queried on an index for which it knows the secret key sk 9 , B answers the
query accordingly; otherwise, it queries the Corrupt, Enc, or Dec oracle for onion encryption and responds as they do. Upon
receiving (st,−→<0,

−→<1,
←−<0,
←−<1), B outputs (st,−→<0 ‖

←−−−−
onion(sk,←−<0),−→<1 ‖

←−−−−
onion(sk,←−<1)) (by querying the Enc oracle as needed

24



Game BoomerangCCAboomerang,E,ℓ,A (_)
1 : for 8 ∈ {1, . . . ,2ℓ} do
2 : sk8 ←E .KeyGen(1_)
3 : sk := (sk1, . . . ,sk2ℓ )
4 : � := {}
5 : (st,−→<0,

−→<1,
←−<0,
←−<1) ← ACorrupt,Enc,Dec (1_)

6 : 20← boomerang.Enc(sk,−→<0,
←−<0)

7 : 21← boomerang.Enc(sk,−→<1,
←−<1)

8 : 1←R {0,1}
9 : 1′←ACorrupt,Enc,Dec (st, 21)

10 : if ℓ ∈ � and −→<0 ≠
−→<1 then

11 : return no // trivial edge case 1

12 : if 2ℓ ∈ � and ←−<0 ≠
←−<1 then

13 : return no // trivial edge case 2

14 : return ({1, . . . ,2ℓ} \� ≠ ∅ and 1′ = 1)

Oracle Corrupt( 9)
1 : � := � ∪ { 9}
2 : return sk 9

Oracle Enc( 9 ,<;A)
// encrypt with randomness A

1 : 2←E .Encsk 9 (<;A)
2 : return 2

Oracle Dec( 9 , 2)
1 : 20 := 21 // challenge ciphertext

2 : for 8 ∈ {0, . . . , ℓ−1} do
3 : 28+1←E .Decsk8+1 (28)
4 : for 8 ∈ {0, . . . , ℓ−1} do
5 : 2ℓ+8+1←E .Decskℓ−1 (2ℓ+8)
6 : if 2 ∈ {20, . . . , 22ℓ } then
7 : return ⊥
8 : else return E .Decsk 9 (2)

Figure 13: Boomerang encryption IND-CCA security game.

to generate the onion encryption). Upon receiving challenge (st, 21), B runsA on input (st, 21). B answers Enc and Dec queries
as before, but outputs ⊥ when queried on any challenge ciphertext (B can check the necessary condition by using the secret keys
it knows and querying the Dec oracle). Finally, B outputs as A does. It is easy to check that B succeeds whenever A succeeds,
contradicting the assumption that onion ∈

{−−−−→
onion,

←−−−−
onion

}
meets the IND-CCA security property of onion encryption. �

A.3 Boomerang routing and proof-of-delivery

In Trellis, boomerang encryption is used to route a messages through a chain of ℓ servers (and back). Here, we formalize the key
property of boomerang routing that we used in Trellis: proof of delivery.

Lemma 1 (Boomerang decryption requires all keys). If the boomerang scheme satisfies the correctness and IND-CCA security
definitions of boomerang encryption, then a successful boomerang decryption of a ciphertext implies that each of the 2ℓ secret
keys were used to decrypt the boomerang ciphertext.

Proof. If a secret key was not used in the decryption process, then it is possible to construct an adversary A that can decrypt
a layer in the nested ciphertext without the secret key for that layer. This immediately gives rise to an adversary that wins
the BoomerangCCAboomerang,E,ℓ,A (_) game (Figure 13), contradicting the IND-CCA security of the boomerang encryption
scheme. �

Claim 8 (Boomerang decryption as proof-of-delivery). Let A ∈ {0,1}^ be a random secret nonce known only to the encryptor
where ^ is a statistical security parameter. A successful boomerang decryption consisting of←−< = A given a boomerang encryption
of (−→< ∈ {0,1}∗, ←−< = A) implies that −→< was decrypted using secret key skℓ . In boomerang routing, this implies that the ℓth server
decrypted (and thus received) −→< , with probability at least 1−2−^ .

Proof. Suppose the claim is false. Then, either (1) the secret key skℓ was not used which contradicts Lemma 1 or (2) a different
(potentially shorter) boomerang encryption of A was generated, without using skℓ . However, because A is random and kept secret
by the decryptor, this can only happen with probability 2−^ . �

25



B Anonymous routing tokens

B.1 ART properties
We present the syntax of ARTs in Definition 1. Here, we present the formal properties we require from ARTs.

Notation. We define the Setup algorithm to output a crs := (Z? ,G, 6) where G is a group of prime order ? with generator 6; we
assume that the prime ? is proportional to the security parameter _. We let B ≥ 1 be the number of signers holding partial token
signing keys. Finally, for a fixed integer # ≥ 2 we let S be the set of # server identifiers.

Modeling the signing protocol. To simplify our analysis, we will model the signing protocol as a triple of (non-interactive)
algorithms. This model captures one-round protocols instantiated between the user and the signers and corresponds to the three
steps in the construction described in Section 5.1. For convenience, we let P be a distribution over ((ℓ , �ℓ ,vkℓ) where (ℓ is the
ℓth server identity, �ℓ is a random Diffie-Hellman message, and vkℓ is a signature verification key. We denote by payload a
random sample from P.
• User0 (tvk,payloadℓ) → (stℓ ,)ℓ): takes as input a token payload payloadℓ ; outputs secret user state st and blind token )ℓ .
• PartSign(tvk, G8 ,)ℓ) →,ℓ,8: takes as input a partial signing key G8 and blind token )ℓ ; outputs a partial signature,ℓ,8 .
• User1 (stℓ ,,ℓ,1, . . . ,,ℓ,B) → tℓ : takes as input the secret user state stℓ and B partial signatures; outputs signed token tℓ .

Completeness. An honest user engaging with honest signers obtains a valid token which makes Verify output yes. Formally, for
all security parameters _ and all payloads payloadℓ , it holds that:

Pr



crs← Setup(1_);
(tvk, G1, . . . , GB) ← KeyGen(crs);
(stℓ ,)ℓ) ← User0 (tvk,payloadℓ);
,ℓ,8← PartSign(tvk, G8 ,)ℓ) ∀8 ∈ {1, . . . , B};
tℓ ← User1 (stℓ ,,ℓ,1, . . . ,,ℓ,B);
(ℓ+1← NextServer(tvk, tℓ)

: Verify(tvk, (ℓ+1,payloadℓ , tℓ) = yes


= 1,

where the probability is over the randomness of Setup, KeyGen, User0, PartSign, and User1.

Unforgeability. No (strict) subset of signers and/or user should be able to generate valid tokens that are accepted by Verify, even
after seeing ℓ−1 valid tokens. Formally, an ART scheme is said to be one-more unforgeable if there exists a negligible function
negl such that for all PPT adversaries A, and any ℓ ≥ 1:

Pr
[
OmuART,A,ℓ (_) = yes

]
≤ negl(_),

where OmuART,A,ℓ (_) is defined in Figure 14. In words, the adversary’s task is to forge a fresh token after seeing ℓ−1 signed
tokens of its choosing, without corrupting all the signing keys.

Game OmuART,A,ℓ (_)
1 : crs← Setup(1_)
2 : (tvk, G1, . . . , GB) ← ART.KeyGen(crs)
3 : @1, . . . , @B := 0; � := {}
4 : {(_,payload8 , t8) | 1 ≤ 8 ≤ ℓ} ←ACorrupt,PartSign,Verify (crs, tvk)
5 : for 8 ∈ {1, . . . , ℓ} do
6 : (8+1← ART.NextServer(t8)
7 : �̃ := {1, . . . , B} \�
8 : return (�̃ ≠ ∅ and ∀8 ∈ �̃ @8 ≤ ℓ−1 and
9 : ∀8 ≠ 9 ∈ {1, . . . , ℓ} t8 ≠ t 9 and

10 : ∀8 ∈ {1, . . . , ℓ} ART.Verify(tvk, (8+1,payload8 , t8) = yes)

Oracle Corrupt( 9)
1 : � := � ∪ { 9}
2 : return G 9

Oracle PartSign( 9 ,)8)
1 : @ 9 := @ 9 +1

2 : ,8, 9 ← ART.PartSign(tvk, G 9 ,)8)
3 : return,8, 9

Oracle Verify(( 9+1,payload 9 , t 9 )
return ART.Verify(tvk, ( 9+1,payload 9 , t 9 )

Figure 14: One-more unforgeability game for anonymous routing tokens (ARTs).

26



Unlinkability. Each token produced through the Sign protocol should be unlinkable to the inputs given to the signers (even if all
signers collude, which we model as the adversary choosing secret keys after being given the crs). Formally, an ART scheme is
said to be unlinkable if there exists a negligible function negl such that for all PPT adversaries A, and any ℓ ≥ 2:

Pr
[
UnlinkART,P,A,ℓ (_) = yes

]
≤ 1
ℓ
+negl(_),

where UnlinkART,P,A,ℓ (_) is defined in Figure 15.

Game UnlinkART,P,A,ℓ (_)

1 : crs← ART.Setup(1_)
2 : (st, tvk, G1, . . . , GB) ← A(crs)
3 : @0 := 0; @1 := 0; & := {}
4 : (st,)1, . . . ,)ℓ ) ← AUser0 ,User1 (st)
5 : if & = ∅ then return no

6 : for 8 ∈ {1, . . . , ℓ} do
7 : for 9 ∈ {1, . . . , B} do
8 : ,8, 9 ← ART.PartSign(G 9 ,) 9 )
9 : t8 ← ART.User1 (ŝt8 ,,8,1, . . . ,,8,B)

10 : 9 ←R &

11 : 9 ′←A(st, (payload 9 , t 9 ))
12 : return 9 ′ = 9

Oracle User0 ()
1 : @0 := @0 +1

2 : payload@0 ←R P
3 : (ŝt@0 ,)@0 ) ← ART.User0 (tvk,payload@0 )
4 : & :=&∪ {@0}
5 : return )@0

Oracle User1 ( 9 ,,1, . . . ,,B)
1 : if 9 ∉& then return ⊥
2 : t 9 ← ART.User1 (ŝt 9 ,,1, . . . ,,B)
3 : ( 9+1← ART.NextServer(t 9 )
4 : if Verify(tvk 9 , ( 9+1,payload 9 , t 9 ) = yes then

5 : & :=& \ { 9}
6 : @1 := @1 +1

7 : return (payload 9 , t 9 )

Figure 15: Unlinkability game for the anonymous routing tokens (ARTs).

Unpredictability. The output of NextServer should be unpredictable given only the payload payloadℓ . Formally, the ART
scheme is said to generate unpredictable links if there exists a negligible function negl such that for all (ℓ ∈ S and all (∗ ∈ S,

Pr



crs← Setup(1_);
(tvk, G1, . . . , GB) ← KeyGen(crs);
(stℓ ,)ℓ) ← User0 (tvk, (ℓ);
,ℓ,8← PartSign(tvk, G8 ,)ℓ) ∀8 ∈ {1, . . . , B};
tℓ ← User1 (stℓ ,,ℓ,1, . . . ,,ℓ,B);
(ℓ+1← NextServer(tvk, tℓ)

: (ℓ+1 = (∗


=

1
|S| −negl(_),

where the probability is over the randomness of Setup, KeyGen, User0, PartSign, and User1.

B.2 ART security analysis

Chosen-target Gap Diffie-Hellman (CTGDH). We prove the unforgeability property of our ART tokens under the CTGDH
assumption, following prior work on anonymous tokens [59]. Informally, the assumption is related to the computational
Diffie-Hellman (CDH) assumption in gap groups where decisional Diffie-Hellman (DDH) is easy but the CDH assumption is
assumed to be computationally intractable. Specifically, certain bilinear groups (such as the ones we use to construct ARTs) have
an efficiently computable pairing, which makes the decisional variant of Diffie-Hellman easy [13]. In these groups, the gap
Diffie-Hellman (GDH) assumption is the bilinear counterpart to the classic CDH assumption. The chosen-target variant of GDH,
is introduced by Kreuter et al. [59] to capture a setting where the adversary can compute ℓ−1 instances of CDH with the help of
an oracle and an oracle for DDH. The adversary is tasked with generating ℓ CDH instances (one more than it queried for, hence
one-more unforgeability). This assumption is rather natural (see Kreuter et al. [59, Section 2.1 & Appendix A.2] for details and
how it relates to prior work) and makes our analysis straightforward. We describe the CTGDH security game in Figure 16 and
refer the reader to Kreuter et al. [59] for additional information.

27



Assumption 1 (CTGDH [59]). Let Setup be a group generator algorithm that, given a security parameter 1_, outputs a group G
of prime order ? where _ =

⌈
log2 ?

⌉
and a nothing-up-my-sleeve generator4 6 of G. CTGDH is said to hold if there exists a

security parameter _ and negligible function negl such that for all PPT A and any ℓ ≥ 1:

Pr
[
ctgdhSetup,A,ℓ (_) = yes

]
≤ negl(_),

where ctgdhSetup,A,ℓ (_) is defined in Figure 16.

Game ctgdhSetup,A,ℓ (_)
1 : (G, ?, 6) ← Setup(1_)
2 : G←R Z? ; pk← 6G

3 : @ := 0; & := []
4 : {(F8 , I8) | 1 ≤ 8 ≤ ℓ} ←ATarget,Help,DDH ((G, ?, 6),pk)
5 : for 8 ∈ {1, . . . , ℓ} do
6 : if F8 ∉& then return no

7 : H8 :=& [F8]
8 : return (@ ≤ ℓ−1 and
9 : ∀8 ≠ 9 ∈ {1, . . . , ℓ} F8 ≠ F 9 and

10 : ∀8 ∈ {1, . . . , ℓ} (H8)G = I8)

Oracle Target(F)
1 : if F ∈ & then
2 : H :=& [F]
3 : else
4 : H←R G
5 : & [F] := H
6 : return H

Oracle Help(H)
1 : @ := @ +1

2 : return HG

Oracle DDH(H, I)
1 : return H = IG

Figure 16: The Chosen-target gap Diffie–Hellman game [59].

Theorem 3 (ART Completeness). The ART construction presented in Section 5.1 satisfies the completeness property of
Appendix B.1.

Proof. Consider any (ℓ ∈ S. The output of User0 is )ℓ := HashG (payload)1/A where A is random in Z? . The output of PartSign is
then,ℓ,8 :=) G8ℓ and so it follows that tℓ =

∏B
8=1,ℓ,8 =

∏B
8=1)

G8
8
=

(∏B
8=1)8

) G
=HashG (payload)G/A . Given this, the output ofUser1

is tℓ . By the above, we have that tℓ =
(
HashG (payload)G/A

)A
=HashG (payload)G . It follows that 4(tℓ , 6) =HashG (payload)G ∈GT

and 4(Hℓ , 6G) = HashG (payload)G ∈ GT, only when Hℓ := HashG (payload). As such, we have that the following two conditions
are satisfied:

(1) 4(tℓ , 6) = 4(Hℓ , 6G) and
(2) (′

ℓ+1 = HashZ? (t) = (ℓ+1.
Together, (1) and (2) imply that Verify outputs yes, as required. �

Theorem 4 (ART Unforgeability). The ART construction presented in Section 5.1 satisfies the unforgeability property of
Appendix B.1 under the CTGDH assumption.

Proof. Suppose that A wins the OmuART,A,ℓ (_) game with probability X(_), for some non-negligible function X. Construct an
adversary B that wins the ctgdhSetup,A,ℓ (_) with probability X (_)

B
, where B is the number of signers. B works as follows.

1. On input (Z? ,G, 6) and pk := 6G , set crs := (Z? ,G, 6).
2. Sample 9∗←R {1, . . . , B}, G1, . . . , GB←R Z? and set pk′ = 6G ·∏B

8=1,8≠ 9∗ 6
G8 .

3. Run A(crs,pk′) and answer HashG, Corrupt, PartSign, and Verify queries as follows.
• For each query to HashG, query the Target oracle and respond as it does.
• For each Corrupt query of the form 9 :

– If 9 = 9∗ then abort,
– Else respond with G 9 .

4In practice, this simply means that Setup must be computed by a trusted setup process to avoid having any party unfairly choosing the generator.

28



• For each PartSign query of the form ( 9 ,)8):
– If 9 = 9∗ then query the Help oracle on input )8 to get,8, 9∗ := ()8)G ,
– Else set,8, 9 := ()8)G 9 .
– Respond with,8, 9 .

• For each Verify query of the form (( 9+1,payload 9 , t 9 ):
– Query the Target oracle on input payload 9 to get H.
– Query the DDH oracle on input (t 9 , 6) and (H, 6G) to get answers 00 and 01, respectively.
– If 00 ≠ 01 return no,
– Else query the random oracle on input t 9 to get (′

9+1.
– If (′

9+1 ≠ ( 9+1 return no.
– Else return yes.

4. Obtain from A the output (_,payload8 , t8) for 8 ∈ {1, . . . , ℓ}.
5. Set F8 := payload8 for 8 ∈ {1, . . . , ℓ}.
6. Compute Δ :=

∑B
8=1,8≠ 9∗ G8 .

7. Set I8 := t86−Δ.
8. Output {(F8 , I8) | 1 ≤ 8 ≤ ℓ}.

We now analyze the reduction and argue why B succeeds with probability X (_)
B

. First, observe that pk′ is a uniformly random
element of G and hence matches the distribution expected by A. Similarly, each partial signing key, G8 is a uniformly random
element of Z? and hence also distributed identically. The responses to the PartSign and Verify queries are distributed identically
to the distribution expected by A in the OmuART,A,ℓ (_) game. As such, if A wins the OmuART,A,ℓ (_) game, it must output ℓ
tuples of the form (_,payload8 , t8) such that:
1. the total queries to PartSign for 9 = 9∗ was at most ℓ−1,
2. the total unique queries to Corrupt was at most B−1,
3. ∀8 ≠ 9 t8 ≠ t 9 , and
4. ∀8 ART.Verify(tvk, ( 9+1,payload8 , t8) = yes.
Because the total number of queries to PartSign for 9 = 9∗ was at most ℓ− 1, B queries the Help oracle at most ℓ− 1 times.
Because the total unique queries to Corrupt was at most B−1, the probability thatA doesn’t query 9∗ is at least 1

B
. By the last two

properties (and the construction of ART.Verify), it holds that each t8 is unique and, moreover, t8 = HashG (payload8)G . It follows
that I8 = (H8)G , where H8 =& [F8] =& [payload] is as defined in Figure 16. In sum, we get that ∀8 ≠ 9 F8 ≠ C 9 and ∀8 (H8)G = I8 .
These conditions make B win with the same probability as A, provided that B doesn’t abort. The probability that B aborts
is entirely conditioned on A querying Corrupt on index 9∗ (for which B doesn’t have the secret key). Because 9∗ is chosen at
random, the probability that B aborts is at most 1

B
(A queries at most B− 1 keys). As such, the probability that B wins the

ctgdhSetup,A,ℓ (_) game is X (_)
B

, concluding the proof.
�

Theorem 5 (ART Unlinkability). The ART construction presented in Section 5.1 unconditionally satisfies the unlinkability
property described above.

Proof. Each blind token )8 output by User0 is of the form HashG (payload) 1
A . Because A ∈ Z? is random and HashG is a random

oracle, it follows that )8 is uniformly random in G. The output of User1 is t8 where t8 = (()8)G)A = (()8)A )G = HashG(payload)G
(recall that the user verifies that the token is computed correctly with respect to tvk using Verify, which prevents “tagging” the
token with a maliciously computed G∗ ≠ G [29]). As such, t8 is independent of )8 and well-formed if the user accepts. Finally,
the payload payload8 is chosen independently of A and hence is also independent of )8 . This means that the outputs of User0
and User1 are also independent of each other. It then follows that because A does not query User1 on at least one index 9 in
UnlinkART,P,A,ℓ (_) (otherwise & = ∅) and because (payload 9 , t 9 ) is only revealed by the User1 oracle (which we know A did
not query for the chosen challenge), A has no advantage in correctly guessing 9 . Thus, unlinkability holds unconditionally. �

Theorem 6 (ART Unpredictability). If HashG and HashZ# are hash functions modeled as random oracles, then the ART
construction presented in Section 5.1 satisfies the unpredictability property described above.

Proof. Each signature t8 is uniformly random due to HashG and unpredictable due to the signing process (without knowledge of
G it is not possible to generate t8 by the one-more unforgeability property). In turn, (8+1 := HashZ# (t8) is uniformly random over
Z# and cannot be predicted by any subset of colluding signers or the user. �

29



C Full analysis for the number of layers required

In this section, we provide the full analysis for the number of layers required to achieve a random permutation on the messages
with variation distance at most n , for any n (e.g., n < 2−64).

Theorem 7. Let " be the number of messages being shuffled (equivalent to the number of users) and # ≥ 2 be the number of
servers in the network. Fix 0 ≤ 5 < 1 to be a fraction of corrupted servers and let n < 1 be a statistical security parameter. If each
message is routed through a random server ! times and it holds that:

! ≥

− logn + log" + log(2

√
4 5 −3 5 2) + log(2− 5 +

√
4 5 −3 5 2)

log( 2
5 +
√

4 5 −3 5 2
)

 +1,

then the distrubtion of messages output by servers in the !th layer is “n-close” to a uniformly random permutation of all messages
(the output distribution has variation distance at most n to the distribution of random permutations on all messages).

Proof. Without loss of generality, we assume that (1) the servers are numbered 1,2, . . . # with the honest servers first and that (2)
each message is represented as a card labeled from 1 to " .

We construct a deck of cards which maps to the ordering given from the first message in server 1 to the last message in server
# , and then we consider how this deck is shuffled as the messages transition between the servers. Each state of the network can
be thought of as a " ×2 matrix. In this matrix, each row corresponds to the card labeled 8. The first column indicates the current
position of the 8th message in the deck. The second column indicates the server currently holding the 8th message. Messages
move between the servers at random5 and we track how the deck of cards (messages) is shuffled from the adversary’s view.
Crucially, we must consider how this view changes when cards (messages) are located in adversarial servers. We model this
process as follows.
1. Choose the next server for each message uniformly at random. This corresponds to a vector of length " with entries chosen

uniformly at random from Z# .
2. All messages that start and end in an honest server in one time step are shuffled together. We represent this by selecting the

corresponding cards out of the deck, shuffling them, and placing them back on the top of the card deck. We use this to model
the following behaviors:
• Cards that travel between honest servers are shuffled in the view of the adversary, and placed on the top of the deck (the top
of the deck consists of the honest servers).

• The remaining cards are pushed down the deck, but do not change ordering. The only shuffling we consider is during
honest-to-honest transitions. All of the remaining cards stay in the same relative order.

• Some cards are pushed from the honest section of the deck to the adversarial, modeling honest-to-adversary transitions.
• Some cards remain in order in the adversary section of the deck, and correspond to adversary-to-adversary transitions.
• Finally, there are adversary-to-honest transitions, which we ignore for simplicity. 6

3. Finally, we output the new state, consisting of the new arrangement of cards in the deck.
We now define a Markov chain coupling (see the excellent exposition of Klappenecker [58]) by using the randomness in step

one to run two Markov chains in parallel [9]. We select the next server position for each message in both chains to be the same,
so we will transition from honest to honest servers at the same time (after the first step). We choose the shuffles in step two so that
each of the shuffled cards (messages) we place at the top of the deck are given the same position in both chains (all permutations
of the selected set are equally likely). We consider cards that are at the same server and position in the deck at a given timestep to
be coupled. Coupled cards have the same state row in both chains, and will continue to have the same state indefinitely given that
they are either (1) pushed down the stack together or (2) both selected and shuffled to the same position.

We start one of the chains in the uniform distribution of permutations, and the other chain in an arbitrary starting distribution
chosen by the adversary. We know, however, that the total variation distance between the two distributions must decrease over
time given that when all cards are coupled, both chains become identical and transition in the same way (the two chains have the
same distribution once all cards are coupled). In particular, the uniform distribution is stationary for this chain, so any distribution
will eventually become uniform.

The time to coupling (and hence the number of layers required) can be derived as follows. For each card, the probability the
card does not couple in the first ℓ steps is the probability it is not in consecutive honest servers. The probability of being in an

5In Trellis this is guaranteed by the verifiable randomness of the ART tokens, which chooses the next server uniformly at random.
6Shuffling within an honest server does not significantly decrease the number of layers required (and greatly increases the complexity of our proof) which is why
we can ignore the details of this transition.

30



honest server is 1− 5 (recall that we select the next server uniformly among all of the servers). This can be modeled as flipping a
coin which comes up heads with probability (1− 5 ) a total of ℓ times and asking what the probability is of not coming up heads
twice in a row. We can solve for this probability using a linear recurrence relation. Then, we union bound the probability that any
message has not coupled, and require this to be less than n = 2−^ . The dominant term of the solution7 yields at least ℓ layers,
where

ℓ :=
^ log2+ log" + log(2

√
4 5 −3 5 2) + log(2− 5 +

√
4 5 −3 5 2)

log( 2
5 +
√

4 5 −3 5 2
)

.

Accounting for the first step, the number of layers required is ! ≥ dℓ +1e. �

D Formal protocols

D.1 Anytrust key generation
ARTs signed by different groups must be indistinguishable. Therefore, each group needs to have the same public key to prevent
leaking information (using different signing keys would leak which anytrust group signed the token). One simple (but flawed!)
way to achieve this would be to give the same secret shares to all of the anytrust groups. Unfortunately, the failure of this approach
is that an adversary controlling different servers across different groups can learn the entire set of (secret) signing keys. (The
adversary can corrupt different members in each group to obtain all B signing keys.)
Fortunately, this is the exact use case for proactive secret sharing [50, 76] (and redistributable secret sharing [114]). The

beautiful idea behind proactive secret sharing is that is is possible to generate secret shares of secret shares. Doing so generates a
fresh set of secret shares encoding the same secret. The end result is that the anytrust groups have (1) a common public key but
(2) different secret shares of the secret signing key G.

Generating ART signing keys in Trellis. One anytrust group, which we call the main group, runs a distributed key generation
protocol [43, 56, 87] to generate secret shares of the signing key G corresponding to a public verification key tvk. The shares of G,
denoted G8 where the 8th group member holds G8 satisfy the property that G =

∑B
8=1 G8 . The challenge, as described above, is to

efficiently generate shares G ′
8
, for each 8, such that G =

∑B
8=1 G

′
8
(specifically, we want to avoid inefficient multi-party computation

or re-running distributed key generation again). Using the idea of proactive secret sharing, each group member uses a verifiable
secret sharing scheme [91] to generate fresh secret shares of their share G8 , which we will call sub-shares of G8 and denote by
(G (1)
8
, . . . , G

(B)
8
). Each set of sub-shares sums to one of the original shares, so G8 =

∑B
9=1 G

( 9)
8

. Then, one sub-share from each
set is distributed to each member of the new group. This group member can sum the sub-shares to get a share of the original
secret, since the sum of all of the sub-shares is equal to the sum of the shares. Specifically, the 8th member in the new group
computes: G ′

8
=

∑B
9=1 G

(8)
9
. Observe that G ′1 . . . G

′
B held by the members in the new group satisfy G =

∑B
8=1 G

′
8
, and each share is

random given that one of the original group members is honest. This can be seen by flipping the order of summation: we have∑B
8=1 G

′
8
=

∑B
8=1

(∑B
9=1 G

(8)
9

)
=

∑B
8=1 (G8) = G.

D.2 Verifiable secret sharing for Diffie-Hellman messages
A C-out-of-= verifiable secret sharing scheme (VSS) allows any subset of C shares to reconstruct the secret. Furthermore, every
share is verifiable, meaning the share can be verified for consistency against the secret. In particular, we use the Feldman scheme
[12, 40, 57]: Each server will act as the dealer for a VSS instance and create a random polynomial %(G) = 00 + 01G + . . . 0C−1G

C−1,
where 00 is the Diffie-Hellman secret. For each coefficient, the dealer publishes a binding commitment 608 , and note that 600 is
the Diffie-Hellman public message. This dealer gives to each of the other servers a share B8 = U8 , %(U8), where U8 is a point on
the polynomial. To avoid duplicate shares, it is standard to choose U8 = 8 for 8 = 1 . . . =, for some public ordering of the servers.
Anyone can verify a share is valid by checking that

(600 ) (601 )U8 (602 )U2
8 . . . (60C−1 )UC−1

8
?
= 6% (U8) .

In particular, all servers will verify their share from the dealer, and blame the dealer by producing a signed message containing an
incorrect share (or signed messages with equivocating commitments, etc.). In our case, the first commitment is the Diffie-Hellman

7See https://puzzling.stackexchange.com/questions/29256/no-two-heads-in-a-row for how to solve the linear recurrence relation (with unbiased
coins).

31

https://puzzling.stackexchange.com/questions/29256/no-two-heads-in-a-row


public message 600 . Or, in other words, the commitment value is used as the Diffie-Hellman public message for encryption, and
the dealer will be unable to decrypt messages if it uses a different value.
If the dealer is to be replaced in blame protocols, servers vote using their secret shares for the corresponding VSS instance.

These shares are sent to the (randomly) chosen replacement, who tallies the votes by verifying each share it is given. With C (valid)
shares, the replacement can interpolate the coefficients of the polynomial and recover the Diffie-Hellman secret, 00. For any given
U8 , the value 6% (U8) can be computed using only the public commitments and is itself a binding commitment to %(U8). There
is only one possible share value, %(U8), which is the discrete log of the publicly computable value 6% (U8) =

∏
9=0...C−1 (60 9 )U8 .

Since there is only one value that matches the verification equation, it is not possible for a server to provide a fake share.

D.3 Onion-routing on a pre-established path
A common building block that we will use repeatedly is to route envelopes on a pre-established path, formalized in Protocol 1.
Protocol 1: Onion routing on a pre-established path

This protocol is used by servers to route envelopes on paths consisting of pre-established links through ART tokens. The servers verify that
envelopes are signed and on routes matching the tokens, and that all envelopes are accounted for.

Server state:
• List of digital signature public keys, one for each server, and the secret signing key for this server,
• list of ART tokens and corresponding information (tℓ , �ℓ ,vkℓ ,vkℓ+1) for each layer ℓ ∈ {1, . . . , !},
• Diffie-Hellman key agreement secret 1,
• and set of redeemed tokens ) := {}.

Server (: input: Signed batches of envelopes (B 9 ,: := {�8, 9 | 1 ≤ 8 ≤ �},f9 ,:,ℓ ) from each server ( 9 ∈ S for layer ℓ.
Server (: output: Signed batches of envelopes (B:, 9 := {�8, 9 | 1 ≤ 8 ≤ �},f:, 9,ℓ+1) for each server ( 9 ∈ S for layer ℓ +1.

Procedure: Run once for each layer ℓ
1: for each incoming batch, from server ( 9

1: Verify f9 ,:,ℓ signs B 9 ,: with server ( 9 ’s public key.
2: for each received non-dummy envelope �8, 9 ∈ B 9 ,:

2.1: Parse �8, 9 = (vkℓ , 2ℓ ).
2.2: Find the token and corresponding information (tℓ , �ℓ ,vkℓ ,vkℓ+1) in the server state that has (vkℓ ).

• If the token with vkℓ does not exist, or does not have as the previous server ( 9 , blame with the protocol in Section 6.1.3.
2.3: sk8 ← DHKeyAgree(�ℓ , 1).
2.4: Verify(vkℓ , 2ℓ ).

• If verification fails, blame with the protocol in Section 6.1.3.
2.5: 2ℓ+1← Decsk8 (2ℓ ).
2.6: (ℓ+1← NextServer(tvkℓ , tℓ ).
2.7: Add (vkℓ+1, 2ℓ+1) to the batch B:,I to send to (ℓ+1.
2.8: Add tℓ to the list of redeemed tokens.

2: Check that there are no duplicates in ) . If there exist duplicates, blame with the protocol in Section 6.1.1.
3: Check that |) | is equal to the number of ARTs for layer ℓ. If not, blame with the protocol in Section 6.1.2.
4: for each server ( 9 ∈ S

1: Pad batch B:, 9 with dummy envelopes to length �.
2: Randomly permute B:, 9 .
3: Compute f:, 9,ℓ+1 on B:, 9 using sk: .
4: Send each batch and signature (B:, 9 ,f:, 9,ℓ+1) to server ( 9 .

D.4 Path establishment protocol
In Protocol 2, we formalize path establishment, and we describe how a user can (anonymously) establish a path through the
layers through an inductive path establishment procedure. First, a user constructs ARTs with an anytrust group. The ART for the

32



first layer determines which entry group the user should send the (boomerang encrypted) message to. We can then view this
as a path of length one (ℓ = 1), and call it the current path. Then, the user uses the current path to communicate with a new
server at layer ℓ +1 using the same ideas as in Protocol 1. The only difference is that the new server, at layer ℓ +1, checks and
records the routing information it receives through boomerang encryption from the server at layer ℓ. Then, Protocol 1 is used
again, but in the reverse direction for the return onion in the boomerang encryption. The roles of ℓ and ℓ +1 will be swapped:
server (ℓ now needs to decrypt (whereas (ℓ+1 was decrypting before). Specifically, the shared key is computed with (ℓ’s public
Diffie-Hellman message (rather than (ℓ+1’s) and the Diffie-Hellman message from the payload of tℓ+1. Each server on the reverse
direction checks that each tℓ+1 appears exactly once (rather than tℓ), and the identity of the next server in reverse order can be
found in the payload of the corresponding tℓ .

D.5 Broadcast round protocol
The last protocol combines authenticated onion routing on a pre-established path with a simple check by the anytrust groups that
all messages are present at the end of the mix net.
Protocol 3: Broadcast round
Round r, where a user has message <. Same assumptions as in Protocol 2.
User
1: f!+1 = Signsk!+1 (r| |<).

2: 20←
−−−−→
onion (sk1...! ,< | |f!+1).

3: Send 20 to (1.
Servers
1: Servers apply authenticated onion routing (Protocol 1) using the pre-established paths to route and decrypt 20 to (! .
2: The last server, (! , sends each (vk!+1, 2!+1) to each member of the anytrust group handling vk!+1.
Anytrust group members
1: for each received message (vk!+1, 2!+1):

1: Parse <,f!+1 = 2!+1.
2: Check VerifySignaturevk!+1 (r| |<,f!+1). If the signature is incorrect, blame with the protocol in Section 6.1.3.

2: Check that each verification key vk!+1 was used exactly once. If not, blame with the protocol in Section 6.1.2.
3: Forward messages to the final destination.

E Optimizations and extensions

In this section, we briefly highlight some practical optimizations we can exploit to improve concrete performance on Trellis in a
deployed environment (we use these straightforward optimizations in our implementation).
• Reduced authentication overhead: Since each AES ciphertext is signed, we do not need to include MACs to verify integrity.
• Synchronizing rounds: After each server receives and checks the signed message from the other servers for layer ℓ, it can
start processing layer ℓ +1, provided it avoids the computational side channel of revealing the time to process the last received
message. With this optimization, the servers do not need to wait for the worst-case latency, and each server can adapt to the
current network conditions on-the-fly.

• Latency ordering: Signing and then sending the messages along the longest latency connections first enables the signing and
verification computation latency to occur in parallel with the networking latency.

• Path establishment receipt latency: The key feature of the boomerang receipt is that it must pass through an honest server
to detect that the message was dropped. However, we can compute the number of servers it must pass through to have passed
through one honest server with cryptographically high probability (e.g., with probability greater than 1−2−64) in the same
manner as we do for computing the anytrust group size. Then, the backward onion can be truncated at ! ′ < ! layers.

• Message overhead: The key corresponding to each envelope can be appended by the server from the stored data instead of
being included as part of the ciphertext. This reduces the overhead added for each layer. The first non-token containing an
envelope along a link should include the key within the ciphertext, but the key can be omitted for later envelopes on that link
(so envelopes only contain the next onion ciphertext). The block public signature signs the keys so servers can prove which
ones they were told to decrypt with. During traceback, a server produces and proves correct decryption of the first envelope to
show a key decrypts into another and is the correct key to send with later envelopes.

33



• Path establishment forwarding latency: We need to wait for the receipt to be processed before we extend the path, but we
do not need to wait for the first part of the path that has already been established. Therefore, the forward sending can take place
beforehand, in parallel. We can then further reduce overhead by combining the forward envelopes with the same key together.

• The overhead of dummy envelopes is significant, especially when setting the statistical security to 2−64. To reduce this
overhead, we first bound the probability that more envelopes are sent on any link than the dummy cover traffic allows for to 2−8.
This ensures that the probability that any 8 links are observable to the network adversary is less than 2−64. To compensate,
we increase the number of layers to ! +8, in order to have ! layers with unobservable mixing guarantees, as required by
Section 5.5. We calculate a theoretical bound by modeling each link as a binomial distribution and bound accordingly [7]. In
practice, we observe that the overhead of dummy messages is typically between 100% and 200% and decreases as " increases.

34



Protocol 2: Path extension

This protocol is used by the user and servers to extend an existing path of length ℓ to a new path of length ℓ + 1. This proto-
col is run simultaneously by all users in synchronous rounds. We assume that all messages to and from anytrust groups during
ART signing are authenticated using a digital signature. Let gpk be an anytrust group public key generated as in Appendix D.1 for the DH group.

One-time setup for servers.
Each server generates and posts the public part of a Diffie-Hellman messages:
1: �, 1← DHKeyGen(G, 6).
2: Publish � to a publicly accessible bulletin board (or send to all users).

User-side ART generation and path initialization.
Each user generates ART tokens for all ! layers. The ℓth token encapsulates a new Diffie-Hellman message and new signature verification
key for the ℓth layer.

1: for ℓ = 1 . . . (! +1):
1.1: (vkℓ ,sskℓ ) ← DS.KeyGen(1_); (�ℓ , 0ℓ ) ← DHKeyGen(G, 6); payloadℓ := ((ℓ , �ℓ ,vkℓ ). // (1 := ⊥
1.2: (stℓ ,)ℓ ) ← User0 (tvkℓ ,payloadℓ ).
1.3: Send )ℓ to an anytrust group for signing; receive in return,ℓ,8 from the 8th group member, for 8 ∈ {1, . . . , B}.
1.4: tℓ ← ART.User1 (stℓ ,,ℓ,1, . . . ,,ℓ,B); (ℓ+1← ART.NextServer(tvkℓ , tℓ ).
1.5: Check the signature using ART.Verify(tvkℓ , (ℓ+1,payloadℓ , tℓ ). // If Verify outputs no, blame with the protocol in Section 6.2).
1.6: �ℓ ← the public Diffie-Hellman message published by server (ℓ .
1.7: skℓ ← DHKeyAgree(�ℓ , 0ℓ ) // (key for forward boomerang); sk′

ℓ
← DHKeyAgree(�ℓ−1, 0ℓ ). // (key for reverse boomerang).

2: sk := (sk1, . . . ,skℓ ,sk′
ℓ
, . . . ,sk′1). // Boomerang encryption keys

1: for ℓ = 1 . . . !:
1.1: A←R {0,1}^ . // Random nonce for receipt of delivery
1.2: f← DS.Sign(sskℓ , tℓ | |tℓ+1).
1.3: 2ℓ,0← boomerang.Enc(sk, tℓ | |tℓ+1 | |�ℓ | |vkℓ | |�ℓ+1 | |vkℓ+1 | |f,A) and each intermediate envelope is signed against the corresponding

vkℓ . If ℓ is !, then additionally encrypt the reverse onion with DHKeyAgree(gpk, 0!+1).
1.4: Submit 2ℓ,0 to (1. When all users have submitted, servers run path establishment for layer ℓ (below).
1.5: Verify that the returned message is properly formed. If not, blame with the protocol in Section 6.1.3.

Path establishment for layer ℓ.
Servers apply authenticated onion routing (Protocol 1) to route and decrypt←−−−−onion to (ℓ (the path is pre-established through ℓ−1).
Each server (denoted by (ℓ ):
1: Run Protocol 1 with the following modifications:

• After step 2.5,
1: −→< ← Decsk8 (2ℓ ) and parse

−→< = tℓ | |tℓ+1 | |�ℓ | |vkℓ | |�ℓ+1 | |vkℓ+1 | |f | |2′ℓ .
2: Check the following signatures:

– ART.Verify(tvkℓ , ( 9 , (ℓ , (�ℓ ,vkℓ ), tℓ ),
– ART.Verify(tvkℓ+1, (ℓ , (ℓ+1, (�ℓ+1,vkℓ+1), tℓ+1), and
– Verify(vkℓ , tℓ | |tℓ+1).
If any check fails, blame with the protocol in Section 6.1.3.

3: Store (tℓ , �ℓ ,vkℓ ,vkℓ+1) in the server state list for layer ℓ.
• For step 2.7, instead add (vkℓ , 2

′
ℓ
) to the batch for ( 9 , the server that the envelope came from, rather than the next server.

• If ℓ = !, then also:
1: Send (�!+1,vk!+1, t!+1) to each member of an anytrust group. Each group member:

– Check ART.Verify(tvk!+1, (!+1, ((! , �!+1,vk!+1), t!+1) = yes. // If Verify outputs no, blame with the protocol in Section 6.1.3.
– Store vk!+1 for future use.
– Output (�!+1)G 9 where G 9 is the member’s share of the anytrust group secret key.

2: Compute the product
∏
9 (�!+1)G 9 = DHKeyAgree(gpk,sk!+1) to decrypt one layer of 2′

ℓ
.

3: If any decryption fails, blame with the protocol in Section 6.2.
2: All servers: Apply authenticated onion routing (Protocol 1) in reverse to route and decrypt 2′

ℓ
back to the user.

35


	Introduction
	Background and related work
	Mix networks
	Related work

	System overview
	Main ideas
	Threat model and assumptions

	Building blocks
	Cryptographic foundations
	New tool: Boomerang encryption

	The Trellis system
	New tool: Anonymous routing tokens
	ART construction

	Putting things together
	Do once: Path establishment
	Repeat: Mixing rounds
	Number of layers required

	Blame, adversary removal, and recovery
	Blame protocols
	Duplicate envelopes for the same ART
	Missing envelope
	Envelope decryption failure
	Arbitration protocol

	Malicious anytrust group member
	Removal and recovery protocols
	Server removal and state recovery
	Dishonest majority blame and recovery
	Blocking malicious users


	Security analysis
	Implementation and evaluation
	Evaluation
	Comparison to Atom
	Discussion and practical considerations

	Conclusions
	Onion and boomerang encryption
	Onion encryption properties
	Boomerang encryption
	Boomerang routing and proof-of-delivery

	Anonymous routing tokens
	ART properties
	ART security analysis

	Full analysis for the number of layers required
	Formal protocols
	Anytrust key generation
	Verifiable secret sharing for Diffie-Hellman messages
	Onion-routing on a pre-established path
	Path establishment protocol
	Broadcast round protocol

	Optimizations and extensions

