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Abstract

An idealised decentralised exchange (DEX) provides a medium in which players wishing to exchange
one token for another can interact with other such players and liquidity providers at a price which reflects
the true exchange rate, without the need for a trusted third-party. Unfortunately, extractable value is an
inherent flaw in existing blockchain-based DEX implementations. This extractable value takes the form
of monetizable opportunities that allow blockchain participants to extract money from a DEX without
adding demand or liquidity to the DEX, the two functions for which DEXs are intended. This money
is taken directly from the intended DEX participants. As a result, the cost of participation in existing
DEXs is much larger than the upfront fees required to post a transaction on a blockchain and/or into a
smart contract.

We present FairTraDEX, a decentralised variant of a frequent batch auction (FBA), a DEX protocol
which provides formal game-theoretic guarantees against extractable value. FBAs when run by a trusted
third-party provide unique game-theoretic optimal strategies which ensure players are shown prices equal
to the liquidity provider’s fair price, excluding explicit, pre-determined fees. FairTraDEX replicates
the key features of an FBA that provide these game-theoretic guarantees using a combination of set-
membership in zero-knowledge protocols and an escrow-enforced commit-reveal protocol. We extend
the results of FBAs to handle monopolistic and/or malicious liquidity providers, and provide a detailed
pseudo-code implementation of FairTraDEX based on existing mainstream blockchain protocols.

1 Introduction

One of the most prominent and widely-used classes of protocols being run on smart-contract enabled
blockchains are decentralised exchange (DEX) protocols. DEX protocols allow a specific set of players,
whom we call clients, to exchange one token for another in the presence of market-makers (MMs), who
provide liquidity to clients, usually in exchange for a fee. Interacting with a blockchain-based DEX requires
a client or MM to first interact with the players who add transactions to the blockchain, known as miners
or block producers. These interactions typically reveal a player’s intention to trade to the block producer
before the transaction is confirmed on the blockchain, and in doing so present the block producer with what
has become known as a miner-extractable value (MEV) opportunity. MEV, first coined in [15], refers to any
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expected profits the miner of a block can extract from other players trying to interact through the miner
with the blockchain. This extraction is performed by manipulating the ordering of, injecting, or censoring
transactions in prospective blocks.

However, MEV is merely the tip of the iceberg. In blockchain-based protocols such as DEXs, it is also
possible for one player to extract value from another by disobeying the protocol instructions, an attack we
refer to as selective participation. Many decentralised protocols do not bind players to correctly performing
protocol actions. In such protocols, players are given a form of optionality, the option to correctly perform
protocol actions or not, which is typically not intended by the protocol. Optionality is well understood in
derivative markets, and is something which must be charged for. Otherwise, players receive this optional-
ity/value at a discount/for free. Given optionality exists in a protocol, this value can be used by one player,
and taken from others. As such, value can theoretically be extracted by every player in the blockchain
ecosystem, not just the miners. We refer to any value which can be extracted from players in a blockchain-
based protocol other than fixed upfront fees as expected extractable value (EEV) in line with recent work
[23] on the generalisation of extractable value.

A significant advancement in DEX protocols was the advent of automated market makers (AMMs) such
as Uniswap1, based on the principle of maintaining a constant ratio of two tokens in a pool which forms the
basis for the price of swapping one token for another. AMM pools are built to reflect the market-implied
fair price of one token expressed in another, and to provide a permanent source of liquidity for the token
swap, accessible by any player in the blockchain ecosystem. Over large time horizons, both of these purposes
have been fulfilled. However, on a transaction-by-transaction level view, projects like Flashbots (a direct
spin-off to [15]) have identified that AMMs are the main source of known EEV (> 90% of the $500 million
in EEV identified by Flashbots since August, 2020)2. Furthermore, Flashbots only observes basic forms of
EEV, meaning in reality (and as stated by the Flashbots team3), this amount of EEV is a lower bound
for the total amount of value being extracted from clients and MMs alike through participation in AMMs.
Although many attempts have been taken to address this significant source of EEV [1, 3, 12, 17, 24], no
satisfactory solution has been found. The protocols presented in these works remain vulnerable to basic
EEV attacks in the case where all transactions are eventually added to the blockchain (a property we call
censorship-resistant), with such attacks outlined in Section 2.

Therefore, there is a clear gap, both in literature and in practice, to provide a DEX protocol which defini-
tively eliminates all sources of EEV. In this paper, we provide such a protocol. We outline FairTraDEX4,
a DEX protocol based on an existing auction process called frequent batch auctions (FBAs) [8] and zero-
knowledge (ZK) tools for set-membership. FairTraDEX is, to the best of our knowledge, the first DEX proto-
col outlining specific practical conditions under which EEV is prevented in a censorship-resistant blockchain.
We formally prove this security against EEV by utilising results from ZK literature and game-theory.

Specifically, we show that given a sufficient number5 of registered participants in FairTraDEX, the strat-
egy of players trading tokens with each other at the market-implied fair price, minus fees, forms a strict Nash
equilibrium. This is compared to DEX protocols in which EEV opportunities exist, where for example, a
potential value-extractor responds differently to buy orders vs. sell orders, or once-off clients vs. professional
MMs. FairTraDEX replicates the private submission of orders to a trusted third-party in an FBA, revealing
no public information to the blockchain protocol other than set of all registered players, and the number
of players in an auction. Many protocols in-use today6 replicate this exact proving of set-membership in
zero-knowledge functionality. These, coupled with our precise pseudo-code implementations (Appendix F.5)
for the settling of orders and the utilisation of generic ZK set-membership protocols within FairTraDEX
provide a clear guide for the adoption of FairTraDEX on every major smart-contract enabled blockchain.

1https://uniswap.org/
2https://explore.flashbots.net/ Accessed: 28/01/2022
3https://explore.flashbots.net/faq “Are you quantifying all MEV in this dashboard” Accessed: 28/01/2022
4A Fair Trade-price Decentralised EXchange.
5This number of participants is described in Section 5.3, and used analogously to Zerocash[4], and it’s derivatives. An

increase in minted tokens (registrations in FairTraDEX) decreasing the probability that a randomly selected token corresponds
to the player who minted it.

6ZCash [28], TornadoCash https://tornado.cash/, and Semaphore https://semaphore.appliedzkp.org/, to name but a
few.
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1.1 Our Contribution

We first describe a width-sensitive frequent batch auction (WSFBA), an idealised commit-reveal token-
exchange protocol between clients and MMs, based on an FBA [8]. In the first phase, clients and MMs
anonymously generate orders (price, direction, and an amount of tokens to trade) and markets (bid price,
offer price, and token amounts to trade at both prices) respectively. Any client wishing to trade commits to
their order, and the maximum width (distance between the bid and ask) of a MM-provided market on which
the client will trade. Clients committing to an order with maximum width w only trade if a MM commits
a to market with width less than or equal to w. Any player wishing to participate as a MM commits to a
market (bid and offer) in a specified minimum size used to ensure the MM cannot perform value extraction
attacks (discussed in the proof of Theorem 4.4). In the final phase, all private information regarding client
orders and MM markets is revealed. The revealed orders and markets are then settled at a clearing price
CP which maximises the total (notional) value (described specifically in Section 3) traded by all players.
We then prove that the optimal strategy for rational clients is to submit market orders (buy/sell at any
price) and for rational non-colluding MMs to show markets with bid, equal to the market-implied fair-value
(MIFP) for the swap, equal to the offer. Furthermore, given the decentralised nature of the protocol, we
also consider the case where there is a single monopolistic MM. For such a MM, we show the strategy of
showing a market geometrically centred around the MIFP with width equivalent to at most the fee clients
are willing to pay to participate in the protocol forms a strict Nash equilibrium.

We describe FairTraDEX, a blockchain-based implementation of a WSFBA. To ensure the correct reve-
lation of information as in the second phase of WSFBA, clients and MMs who commit to orders in the first
phase must deposit an escrow which is destroyed if revelation is not performed correctly. A representation of
the information and escrow flow in FairTraDEX prior to order settlement is presented in Figure 1. As com-
mits are recorded on-chain (to enforce the corresponding escrow punishment), we utilise ZK set-membership
proofs to allow clients to commit to their orders anonymously. As such, in FairTraDEX, every client must
initially register to the protocol, and deposit their escrow in the registration. Then, whenever a client wants
to commit to an order, the client only has to prove that they are a member of the set of players who reg-
istered in the protocol. Given enough registrations, the probability a client’s ZK set-membership proof and
committed order relates to the actual order contents approaches 0 (we formalise this notion in Section 5)
such that no other player in the system can see the committed order and use it to infer anything about what
the order is. To definitively hide a client’s order-information, orders are committed, including the ZK-proof,
by using a relayer. A relayer, as discussed in Section 3.3, is a third-party who receives a fee for including
relayed transactions in the blockchain.

This combination of tools serves as a subtle, yet crucial, improvement to previous attempts to imple-
ment blockchain-based FBAs [13, 17] where game-theoretic guarantees are dependent on the hiding of order
information until all markets and orders have been committed. In these previous attempts, on-chain order
commitment reveals client/order-specific information which allows observant counterparties to improve their
ability to guess client order information. With sufficiently many registered clients, no counterparty using
FairTraDEX can learn information that can be used to bias prices against clients with positive expectancy.
As such, EEV is effectively prevented in FairTraDEX when enough clients register to the protocol.

We provide a detailed pseudo-code implementation of FairTraDEX, and given the importance of deploying
such an EEV-resistant DEX, we discuss the practical considerations that must be taken when implementing
FairTraDEX for real-world usage.

1.2 Organisation of the Paper

Section 2 analyses all previous work related to the construction of EEV-proof DEX protocols. Section 3
outlines the financial terminology used in the paper, the player definitions (3.1), the ZK primitives (3.2)
and relayer functionalities (3.3) needed to formally reason about FairTraDEX. Section 4 defines the ideal
WSFBA functionality, and identifies the strategies of both clients and MMs. Section 5 maps the ideal
WSFBA functionality to a series of algorithms which form the FairTraDEX protocol. It is then proved that
rational players follow FairTraDEX, and as such, implement a WSFBA. We conclude in Section 6. The
Appendices include an extended related work (App. A), extended discussion on ZK literature (App. B),
proofs not included in the main body of the paper (App. C), a detailed description of the FairTraDEX
algorithms (App. D), a description of a clearing price verifier for settling orders in FairTraDEX (App. E),
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Figure 1: FairTraDEX phases before order settlement. B : indicates the transfer of some tokens, but not
necessarily in the same denomination.

the pseudo-code for encoding FairTraDEX as a smart-contract (App. F), and notes on FairTraDEX (App.
G).

2 Related Work

The main works aimed at protecting DEX users from EEV either focus on preventing front-running of
orders [3, 12], the fair ordering of transactions based on their delivery time [24], or on hiding client trade
information until the trade has been committed to the blockchain [1, 13, 17]. Of these works, the closest to
our proposal are [3, 12, 13, 17]. All of these works critically depend on honesty from MMs, auction operators
and/or the block proposers. In Appendix A, we provide high-level explanations of the DEX protocols while
in this section, we briefly outline how, when all players in the respective DEX protocols are rational, EEV
opportunities exist.

In [12], the MM is always allowed to see orders from clients and can choose to abort them. In Section 2.4
of [12], it is argued that MMs are happy to trade against all orders, including informed orders. Furthermore,
it is assumed that clients are independent, with random information. This is not true in real-world trading
environments, and as such, Theorem 3 may not hold in practice. The paper references [16] as justification
for the quality of price/service provided by the MM, however there is a subtle but crucial difference between
the games in [16]: in [16] the client has the final decision on whether or not to execute the trade, while in
[12] the MM has the final decision. This optionality has an implicit, but not explicit, cost for the client and
provides a source of EEV to the MM. In FairTraDEX, no optionality is given to the MM or clients, while
given enough registered clients, the direction of any individual client remains hidden until the trade has been
committed. As such, FairTraDEX is able to benefit from the results of [16] in a single MM game, that is,
liquid (tradeable and of a client-specified width) markets centred around the pre-trade market-implied fair
value (MIFP) when a trade is accepted by the MM.

In P2DEX [3], clients deposit tokens to trade publicly in the same time frame as the order matching takes
place, exposing clients to all of the standard identity- and directional-based EEV exploits unless the number
of clients per-auction in [3] is equal to the total number of registered clients in FairTraDEX. Separating token
deposit and identity revelation from a client’s commitment to a specific auction are important advancements
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used in FairTraDEX to protect against EEV. Furthermore, at least one of the servers in charge of fairly
executing orders is required to be honest-by-default. If the servers, a minority subset of players in the
P2DEX protocol, are rational and monopolised/colluding, the servers can front-run orders. In FairTraDEX,
such value-extraction is prevented by keeping all order information hidden until every order in a particular
settlement round has been committed. Furthermore, the set of servers act as a point-of-failure as server
participation is required to finalise order-settlement. No subset of players in FairTraDEX can prevent the
matching of correctly-revealed orders, while in P2DEX, any majority of servers can prevent order-matching.

Similar commit-reveal protocols to FairTraDEX for blockchain-based token-exchange are proposed in [13,
17]. The protocol in [17] is exposed to several game-theoretic exploits which contradict its protection against
front-running. These include the necessity to reveal order direction a-priori, and the non-trivial handling
of the linkability between commitments and account-balances. The protocol also depends on an operator
who does not participate in token-exchange, gains exclusive access to order information, and is depended
on for protocol completion. In [13], clients commit their own orders to the blockchain, revealing their
identities, and corresponding token balances/execution patterns which can be used by a basic professional
MM to skew prices and extract value from the client. Both of [13, 17] aim to protect unmatched orders from
being revealed, but to do so, both protocols depend on a third party selected before the auction begins to
execute order-matching (no one else in the ecosystem can finalise the auction, a single point of failure). Both
protocols assume that the operator does not reveal unexecuted order information.

3 Preliminaries

This section introduces the terminology and definitions necessary to understand the main results of the
paper. By negl() we denote any function f : N→ R that decreases faster than any (positive) polynomial p:
∀ p ∃ λ0 ∈ N : ∀λ > λ0 : f(λ) < 1

p(λ) .

For protocol correctness, we must assume that some of the involved players may be malicious trying to
force the protocol into incorrect execution, and without any direct benefit for themselves. However, for the
game-theoretic part of the analysis, we assume that all players are rational. Accordingly, the analysis of our
protocol is based on two security parameters, a cryptographic security parameter κ bounding the probability
that the protocol execution is incorrect by negl(ψ)(κ); and a game-theoretic extractable-value parameter ψ
bounding the extractable value by any player by negl(ψ)(ψ).

3.1 Definitions and Terminology

In this section, we review the financial and game-theoretical terms used in this paper. Although not manda-
tory for all readers, this section serves as a useful reference point towards understanding the results and
discussions that follow.

• Decentralized Exchange (DEX): A distributed marketplace which allows players to swap one token for
another.

• Limit Order : Specifies an amount of tokens to be bought (sold), and a maximum (minimum) price at
which to buy (sell) these tokens. This price is known as the limit price.

• Market Order : Specifies an amount of tokens to be sold, but no limit price. Market orders are to be
executed immediately at the best available price based on the liquidity of buy orders.

• Market : A market in a DEX between two tokens Atkn and Btkn consists of two limit orders, a bid and
offer. When the market is quoted from token Atkn to Btkn, the offer price indicates the quantity of
token Btkn a player receives for 1 token Atkn, while the bid price indicates the quantity of token Btkn

a player must sell to receive 1 token Atkn. In this paper, we represent such a market as bid @ offer,
with 0 < bid ≤ offer.

• Direction: With respect to an order on a market quoted from token Atkn to Btkn, if the order is trying
to buy token Btkn, the direction is buying, while if the order is trying to sell token Btkn, the direction
is selling.
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• Notional Value: The value of a set of tokens expressed in some common reference token. In this paper,
we use the symbol B as the reference token in which we measure notional, and with which we reason
about utility.

• Market-Implied Fair Price (MIFP, denoted y) [8]: The MIFP of a token/token swap is a publicly
observable signal (all players in the system observe the MIFP) from all players in the system which is
perfectly informative of the fundamental fair price of the underlying token/token swap 7. Moreover,
a random order of fixed notional generated by a player in the system is equally likely to buy or sell
tokens at the MIFP, distributed symmetrically around the MIFP.

• Reference Price (yref): For a market bid@ offer, the reference price yref is the price such that bid
yref

=
yref
offer .

This yref is known as the geometric mean of bid and offer.

• (Market) Width (w): For a market bid @ offer, the width is calculated as w = offer
bid (As such w ≥ 1).

It can be seen that
yref√
w
= bid @ offer =

√
wyref

• Multiplicative Market-Impact Coefficient (δ): If the pre-trade MIFP is y, the expected post-trade MIFP
given a buy order is δy for some δ ≥ 1, while the expected post-trade MIFP given a sell order is y

δ .
It is common in literature to implicitly assume δ = 1, indicating trades have no impact on MIFP. In
reality, trades act as signals for the fundamental fair price, and as such, we consider trade impact in
our analysis. In this paper, for clients trading on a market of width w with yref = y, we assume δ < w.
8

• Forward Price: This is the price at which a seller delivers a token to the buyer at some predetermined
date. In any exchange protocol without instantaneous delivery, the forward price at expected delivery
time is the price at which trades should happen. The difference between current (spot) price and
forward price is known as carry, and can be due to storage/opportunity costs, interest rates, etc. In
this paper, we set carry to 0 for complexity and ease-of-notation purposes.

• Strict Nash Equilibrium [30]: Consider a set of non-cooperative players P1 , ..., Pn, with strategies
(series’ of actions) str1 , ..., strn describing the actions which each player takes throughout a particular
protocol. These strategies form a strict Nash Equilibrium if any individual player deviation from these
strategies strictly reduces that player’s utility.

• Strong Incentive Compatible in Expectation (SINCE) [26]: With respect to a protocol strategy, a
protocol strategy is SINCE for a player if all other strategies have strictly smaller expected utility.

Definition 3.1. A client is any player in a DEX protocol who, for an MIFP y, there exists some minimum
client utility fmcf > 1 such that client buyers (sellers) have positive expected utility to trade for or below√
fmcfy (at or above y√

fmcf

). A market maker (MM) is a player in a DEX protocol with large supplies of all

tokens, who has positive expected utility trading with clients on markets of any width w > 1 with reference
price equal to the MIFP.

Every player in a DEX can be classified as either a client or MM (sometimes referred to as a liquidity
provider), with some players classifiable as both a client and a MM, although they are treated separately in
the analysis that follows. In creating a DEX protocol, we must ensure that there is a strict Nash Equilibrium
in which rational client and MMs trade at the MIFP with pre-determined fees bounded by the utility gained
by any individual player, effectively removing EEV.

As stated in Section 1, FairTraDEX is based on an FBA [8]. We define an FBA here using the terminology
of our paper. FBAs are use in many of the largest centralised exchanges 9. As FBAs were initially intended for

7For a market quoted from token Atkn to token Btkn, given MIFPs with respect to B of yA and yB respectively, the MIFP of
the market from Atkn to Btkn is yA→B = yB

yA
. As yA represents the amount of Bs equivalent to 1 Atkn, so yA→B is the amount

of Atkns per 1 Btkn. For n Btkns, given an MIFP of yA→B , this is equivalent to nyA→B Atkns.
8Without this assumption, the proof of Theorem 4.4 will not hold in general. We leave deeper analysis of δ as future work.
9FCA https://www.fca.org.uk/publications/research/periodic-auctions, CBOE https://www.cboe.com/europe/

equities/trading/periodic_auctions_book/, ESMA https://www.esma.europa.eu/sites/default/files/library/

esma70-156-1035_final_report_call_for_evidence_periodic_auctions.pdf
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a centralised setting, we consider them being run by a trusted third party (TTP) who enforces the correct
participation of all players. In FairTraDEX, the key TTP functionalities needed to instantiate an FBA
are replicated using ZK set-membership proofs, incentivisation and a blockchain as a censorship-resistant
bulletin-board.

Definition 3.2. A frequent batch auction (FBA) (sometimes referred to as a periodic auction) involves
clients and MMs privately submitting either limit or market orders to the TTP. These orders are collected
until a specified deadline. After this deadline, the orders are settled at the clearing price. A single clearing
price is chosen which maximises the total notional traded based on the specified sizes and prices of all orders.
If there is more supply (quantity of tokens being sold) at the clearing price than demand (quantity of tokens
being bought), all sell orders offered at the highest price at or below the clearing price are pro-rated based
on size such that supply equals demand at the clearing price. Similarly, if there is more demand than supply
at the clearing price, all buy orders bid at the lowest price at or above the clearing price are pro-rated based
on size such that demand equals supply at the clearing price. Any limit buy orders below/sell orders above
the clearing price are not executed.

There are two key differences between this definition and the specification in [8]:

1. In our definition, if an order is not fulfilled, it is revealed with any tokens not being sold returned to
the seller. This does not affect the game-theoretic guarantees of the paper, as the results in [8] only
depend on the hiding of order information while players are submitting orders to the auction.

2. As every order in our auction must be submitted independently for each auction, there is no time
priority applied when pro-rating orders in case of a supply-demand imbalance. This is a sub-case of
the FBAs as defined in [8], and consequently, our protocol retains the same game-theoretic guarantees.

3.2 Zero-Knowledge Primitives

The aim of this section is to outline the generic non-interactive zero-knowledge (NIZK) tools for set mem-
bership as used in this paper, such as those stemming from papers like [4, 6, 21, 22, 28]. We generalise these
formal works, allowing for the adoption of any secure NIZK set-membership protocol into FairTraDEX, as
we only require a common functionality that is shared by all of them. Further elaboration on these protocols
is deferred to Appendix B.

In a nutshell, set membership is the problem of a prover P proving to a verifier V (or a set of verifiers)
that an element x is in a (usually public) set S. The prover computes a proof π and sends it to the verifier,
who should be able to efficiently check its validity. Due to the large number of applications in the last decade,
especially related with blockchain technology, research has intensively focused on two fronts: reducing the
amount of resources that are needed to check membership (scalability), and guaranteeing membership while
keeping x secret (privacy).

The zero-knowledge proofs used in FairTraDEX allow, for a given set of commitments Com to user-
generated secrets, that any user knowing the secret corresponding to a commitment com ∈ Com can prove
the knowledge of a secret corresponding to a commitment in the set, without revealing which secret, or
commitment. Moreover, we require that more than one proof relating to the same commitment is identifiable
by a verifier.

To participate in FairTraDEX, clients privately generate two bit strings, the serial number S and ran-
domness r, with S, r ∈ {0, 1}O(κ). To describe FairTraDEX we define a commitment scheme fcom, a set
membership proof scheme SetMembership, a NIZK proof of knowledge scheme NIZKPoK and a NIZK sig-
nature of knowledge scheme (NIZKSoK ). We do not specify which instantiation of these schemes to use, as
the exact choice will depend on several factors, such as efficiency, resource limitations and/or the strength
of the assumptions used.

• fcom(m) : A deterministic, collision-resistant function taking as input an arbitrary length string m ∈
{0, 1}∗, and outputting a string com ∈ {0, 1}O(κ).

• SetMembership(com,Com): Compresses a set of commitments Com and generates a membership proof
that com is in Com if and only if com ∈ Com.
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• NIZKPoK (r,S,Com): For a set of commitments Com, returns a string S and NIZK proof of knowledge
if and only if the person running NIZKPoK () knows a r producing a proof when running SetMem-
bership(fcom(S||r),Com). In FairTraDEX, this revelation identifies to a verifier when a proof has
previously been provided for a particular, albeit unknown, commitment10 11 as the prover must repro-
duce S. This is used in FairTraDEX, in conjunction with an escrow, to enforce the correct participation
of both clients and MMs.

• NIZKSoK (m): Returns a signature of knowledge that the person who chose m can also produce
NIZKPoK.

3.3 Relayers

A fundamental requirement for transaction submission in blockchains is the payment of some transaction
fee to simultaneously incentivise block producers to include the transaction, and to prevent denial-of-
service/spamming attacks. However, in both the UTXO- and account-based models, this allows for the
linking of player transactions, balances, and their associated transaction patterns. With respect to DEX
protocols, if clients are required to deposit money into a UTXO/account before initiating a trade, any other
player in the system can infer who the client is, what balances the client owns, what transactions the client
usually performs, etc., and use this information to give the client a worse price.

To counteract this, we utilise the concept of transaction relayers12. In the smart-contract encoding of
FairTraDEX (App. F.5), clients must publicly register to a smart contract, and in doing so, deposit some
escrow. In addition to this escrow, we also require the clients to deposit a relayer fee. When the client wishes
to submit a transaction anonymously to the blockchain, the client publishes a proof of membership in the set
of registered clients to the relayer mempool, as well as the desired transaction and a signature of knowledge
cryptographically binding the membership proof to the transaction, preventing tampering. As the relayer can
verify the proof of membership, the relayer can also be sure that if the transaction is sent to the FairTraDEX
contract, the relayer will receive the corresponding fee. With this in mind, a relayer observing the client
transaction includes it in a normal blockchain transaction, with the first relayer to include the transaction
receiving the fee. As such, relayers are a straightforward extension of the standard transaction-submission
model. Furthermore, if the proof of membership is NIZK and the message is broadcast anonymously (using
the onion routing (Tor) protocol13 for example), the relayer can only infer that the player sending the
transaction is a member of the set of clients.

4 Frequent Batch Auctions

In this section we outline the properties of an idealised FBA towards constructing a variation of FBAs which
we define as a width-sensitive FBA. Width-sensitive FBAs maintain the desirable properties of FBAs with
respect to optimal strategies for MMs and clients, while also adding important protections for clients in a
decentralised setting where monopolistic MMs may exist.

4.1 Game-Theoretic Guarantees of a Frequent Batch Auction

In this section we investigate the properties of an FBA between rational MMs and rational clients, where
MMs do not know the desired trade direction of the clients.

We first restate, using the terminology from this paper, the main result from [8] which applies to our
game-theoretically equivalent definition of an FBA. To do this, we let D represent the net trade imbalance
of clients in a particular instance of an FBA in terms of B. A positive D indicates a client buy imbalance
(more client buyers than sellers of the swap), while a negative D indicates a client sell imbalance. We require
a finite bound on the absolute imbalance, which we denote Qimb < ∞, for the existence of optimal MM

10In Z(ero)cash [4], serial numbers are also used for the same purpose; to prevent double-spending of coins.
11In Semaphore [22], a similar technique using one-time nullifiers prevents the reuse of a commitment for protocols where one

interaction per commitment is required, such as one-person one-vote voting.
12Ox https://0x.org/docs/guides/v3-specification, Open Gas Station Network https://docs.opengsn.org/, Rockside

https://rockside.io/, Biconomy https://www.biconomy.io/
13https://www.torproject.org/
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strategies. As in [8], we assume that |D| ≤ Qimb, and in-keeping with the notion of an MIFP, D is symmetric
around 0 at the MIFP.

Theorem 4.1. [8] For an FBA with at least two non-cooperative MMs, there is a strict Nash equilibrium
where clients only submit market orders and MMs show a market of width 1 (bid = offer) centred around
the MIFP in size greater than Qimb.

This is a useful result in the case of at least two non-cooperative MMs, with clients receiving a game-
theoretic guarantee that they can exchange one token for another at the MIFP in expectancy in an FBA.
Furthermore, as MM liquidity is greater than the net client trade size, the implicit impact to these trades
in [8] is bounded by the width, which is 1. As clients have a strictly positive utility for exchanging tokens,
this is equivalent to clients always having positive expectancy to participate in an FBA. However, it is also
shown in this equilibrium that MMs have 0 expected utility. A basic adjustment to the protocol in that
setting would then be to charge clients a fee for the service and pro-rate these fees to the MMs to ensure the
long-term participation of MMs.

4.2 Width-Sensitive Frequent Batch Auctions

The important assumption in the above result is the presence of at least two non-cooperative MMs. In a
decentralised setting, this can be seen as insufficient. To reach a similar equilibrium in the presence of a
monopolistic MM, we must amend the basic FBA protocol. In this section, we define a width-sensitive FBA
(WSFBA) to handle monopolistic MMs, while retaining the desirable properties of an FBA in the presence
of two or more non-cooperative MMs. Towards this definition, we now describe how trades at prices other
than the MIFP affect the MIFP, and (re)introduce the variables necessary to define a WSFBA.

When considering a trade against an order with unknown direction, we assume a multiplicative market-
impact coefficient of δ. Furthermore, in the results that follow, for a token swap between any two tokens Atkn

and Btkn with pre-trade MIFP yA→B = yB
yA

, and symmetric impact coefficient δ, the post-token swap trade

MIFP for Btkn has multiplicative market-impact coefficient of
√
δ, while the post-token swap-trade MIFP for

Atkn has multiplicative market impact coefficient of 1√
δ
. Specifically, if a token swap with pre-trade MIFP

yA→B has an expected post-token swap trade MIFP in the case of a client buyer of δyA→B , given a client
buyer of the swap from Atkn and Btkn, the expected post-token swap trade MIFP of Atkn is 1√

δ
yA while the

expected post-token swap trade MIFP of Btkn is
√
δyB .

In the presence of a single rational MM, we need to utilise the value gained by clients for exchanging
token. That is, recall from Section 3, clients in our protocol observe a positive utility of at least the minimum
client fee fmcf for exchanging tokens. We introduce a notional amount Qnot which upper-bounds the total
notional allowable in the auction through limit and market orders (as total auction notional must be greater
than auction imbalance, we have Qnot ≥ D), and which lower-bounds the notional at the bid and offer of a
market. This upper-bound on the notional of orders allowable in a particular WSFBA being the lower-bound
on the notional of a MM’s bid and offer is used when reasoning about the strategy of a monopolistic MM
in Theorem 4.4. Informally, it ensures a monopolistic MM providing a market cannot synthetically remove
the market bid or offer from the auction (through self-trading) without preventing clients interacting with
the MM (a strictly dominated strategy). To self-trade all of either the market bid or offer and change the
MM’s net order would use all of the available market notional bandwidth. We now define a WSFBA.

Definition 4.2. A width-sensitive frequent batch auction (WSFBA) with notional bound Qnot involves MMs
submitting markets to the TTP with total notional on the bid and offer of at least Qnot. Clients and MMs
also privately submit limit and market orders to the TTP including a requested maximum width from the
tightest MM, above which the order is not executed. This can be set to any, indicating the client will trade
regardless of width. Orders are collected until a specified deadline while the total notional of orders is less
than or equal to Qnot. After this deadline, clients orders with requested width greater than or equal to the
tightest MM width, along with a randomly-selected market from the tightest provided markets, are settled
at the clearing price. A single clearing price is chosen which maximises the total notional traded, and then
minimises the net trade imbalance, based on the specified sizes and prices of all orders. If there is more
supply at the clearing price than demand, sell orders at the highest price at or below the clearing price are
pro-rated based on size such that supply equals demand at the clearing price. Similarly, if there is more
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demand than supply at the clearing price, buy orders at the lowest price at or above the clearing price
are pro-rated based on size such that demand equals supply at the clearing price. Any limit buy orders
below/sell orders above the clearing price are not executed.

The key differences between a conventional FBA and a WSFBA are the specification of MM widths by
clients, the minimum MM notional requirement on the bid and offer which also stands as the maximum
allowable size of the auction, the exclusive access of the MM with the tightest market width to the auction,
and the requirement for the clearing price to minimise the imbalance over all prices which maximise the
notional traded. Minimising imbalance is a small optimisation which produces a reasonable and precise
clearing price when MMs do not show width 1 markets as in an FBA. The other amendments are intended
to protect clients against monopolistic MMs, and are discussed in the proceeding section.

4.3 Properties of Width-Sensitive Frequent Batch Auctions

In Theorem 4.4, we show that the strict Nash equilibrium in a WSFBA under more than 1 non-cooperative
MMs is equivalent to that of an FBA. The case of a single monopolistic MM is more complex. First, we
observe that an MM in a WSFBA always shows a market with reference price equal to the MIFP. In the
proceeding lemmas, proofs omitted from the main body of the paper are included in Appendix C.

Lemma 4.3. For an MM in a WSFBA between Atkn and Btkn with MIFP equal to yA→B = yB
yA

and a client

order of notional XB > 0, it is strong incentive compatible in expectation to show a market with reference
price yref = yA→B for any fixed width w ≥ 1.

This result is independent of the choice of width and impact coefficient. However, it assumes that the MM
trades with the client on either the bid or the offer. With respect to a WSFBA without notional restrictions
and a monopolistic MM, if clients submit market orders, there are fringe cases (large imbalances) which
incentivise MMs to show markets far from the MIFP. Without restrictions on the number of markets allowed
into the auction or on notional of client orders, a MM can manipulate the width restriction and increase the
expected utility of the MM. Removing these restrictions from a WSFBA makes for interesting future work.

Recall. clients have a strictly positive utility to exchange tokens described by the minimum client fee
fmcf , which is equivalent to being strongly incentivised to trade on a market with reference price yref and
width w ≤ fmcf . With this in mind, we can now apply the main result of [8] to a WSFBA.

Theorem 4.4. For a WSFBA, the strict Nash equilibria strategies given the number of non-cooperative
MMs submitting markets being N are:

• N = 1: Clients submit market orders of requested width fmcf and the MM shows a market of width
at most fmcf with reference price equal to the MIFP in size of at least Qnot.

• N ≥ 2: Clients submit market orders of requested width greater than 1 and MMs show a market of
width 1 with reference price equal to the MIFP in cumulative size of at least Qnot.

Proof. We now investigate each of the cases described in the theorem statement in terms of the number of
non-cooperative MMs N .

N = 1: Consider first the strategy of a client. For buy orders, the strategy of submitting a limit order
with price p less than

√
fmcfy is dominated by all prices greater than p and less than or equal to

√
fmcfy.

For limit sell orders, this limit is y√
fmcf

. As such, the equilibrium for clients involves submitting orders

equivalent to a market of width equivalent to at least fmcf with reference price equal to the MIFP. If a
client knows a MM submits a market of width less than or equal to fmcf with reference price equal to
the MIFP, this strategy is further dominated by submitting a market order with requested width fmcf , as
market orders strictly increase the client’s probability of trading. Furthermore, any strategy for a client
which involves trading on a price outside [ y√

fmcf

,
√

fmcfy] is strictly dominated by not trading. As such, the

only possibilities for equilibria can occur on a market of y√
fmcf

@
√
fmcfy. Furthermore, the submission of

market orders (increasing probability of trading) with requested width fmcf is strictly dominant if the MM
shows a market with reference price equal to the MIFP.
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Considering now the MM strategy, we can immediately see the MM only submits one market, as only
the tightest market in every auction is included for settlement. For the MM submitting a market market =
bid@offer, observe that the MM does not submit an order which bids higher than or equal to offer, or offers
lower than or equal to bid. By definition, the total notional of orders in a WSFBA is bounded by Qnot. For
the MM to synthetically offer through bid for example, the MM needs to first trade with all notional bid
at bid, which is lower-bounded by Qnot. Therefore, if the MM wants to trade on a price other than those
indicated by market, the MM can only do so on prices within (bid, offer). In other words, the MM can only
trade on another price by implicitly providing a tighter market within the original market.

We have seen in Lemma 4.3 that a MM trading on a market against a random client shows a market
with reference price equal to the MIFP. Furthermore, from Equation 3 we can see that the expected utility
of a MM is strictly increasing in width. Any strategy involving a market with width greater than fmcf has
0 expectancy as clients do not trade on such markets, as argued above. Therefore, the MM maximises her
expectancy against a random client by showing a market of width fmcf with reference price equal to the
MIFP. Against multiple clients, a positive notional imbalance at the MIFP is decreasing in price (resp. a
negative notional imbalance is increasing as price decreases), which may cause the MM to provide a market
of width less then fmcf .

Given the MM submits a market of width less than or equal to fmcf with reference price equal to
the MIFP, this implies clients submit market orders with requested width fmcf , which is a client’s strictly
dominant strategy. Consider the strategy of a MM providing a market of width less than or equal to fmcf
with reference price equal to the MIFP, and the strategy of clients submitting market orders with requested
width fmcf . We have shown that any player deviation strictly decreases that player’s expectancy, making
this a strict Nash Equilibrium.

N ≥ 2: As MMs in a standard FBA provide markets of width 1 when the width is not a restriction,
applying the requested width adjustments of a WSFBA, further incentivising tighter markets, does not
change the unique equilibrium of Theorem 4.1. Similarly, as there is a unique clearing price when a width-1
market is submitted, it must also minimise the imbalance over prices that maximise total notional traded.
The restriction on the notional of markets in a WSFBA is in line with the inequality of Theorem 4.1.
Furthermore, any requested width > 1 in this equilibrium ensures a client’s order trading through the MIFP
is included in the final auction settlement, with the maximum allocation occurring when a client submits a
market order. ⊠

Theorem 4.4 identifies that clients always submit market orders, and in settings where it is unclear
whether there is a single monopolistic MM, or many non-cooperative MMs, it can be seen that clients always
submit market orders with requested width fmcf .

5 FairTraDEX

In this section we construct the FairTraDEX protocol as a sequence of algorithms. We then provide a series
of results regarding the incentive compatibility of these algorithms with the goal of proving FairTraDEX
instantiates a WSFBA, and that following the protocol is SINCE.

In Section 4 we constructed a WSFBA using a TTP to enforce correct player balances, order sizes,
revelation of orders, correct calculation of the clearing price and the settlement of orders. In a decentralised
setting with rational players, such a TTP does not exist. However, we do have access to censorship-resistant
public bulletin boards in the form of blockchain-protocols. As discussed in the Section 1, these bulletin boards
have many caveats such as the ordering of transactions based on transaction send time not being preserved
(transaction re-ordering attacks). However, if we are able to bound the delay of updates being added to such
a bulletin board (transactions being confirmed on the blockchain), we can implement a WSFBA in such a
setting. We now formalise the model we use when describing FairTraDEX.

5.1 System Model

1. All players P1, ...,Pn are members of a blockchain-based distributed ledger, and a corresponding PKI.
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2. The ledger is represented by a linear blockchain with its state progressing by having new blocks
sequentially appended. For simplicity, we assume instant finality of blocks meaning that such an
appended (valid) block cannot be replaced at any later point in time.14

3. A transaction submitted by a player for addition to the blockchain (either directly or relayed) while
observing blockchain height H, is included (and thus finalised) in a block of height at most H + T , for
some known T > 0, given that the transaction remains valid for sufficiently many intermediate ledger
states15.

4. The public NIZK parameters are set-up in a trusted manner16.

We do not make any assumptions regarding transaction ordering in blocks. Specifically, the order in
which transactions are executed is at the discretion of the block proposer.

A further consideration when choosing the value of T needs to be the cost to censor a transaction for T
blocks vs. the maximum loss incurrable by either a client or MM by allowing a trade to be executed. In a
WSFBA, notice that this max loss is Qnot for all players. For a transaction tx with fee ftx (not to be confused
with the minimum client fee) payable to the producer of the block in which tx is contained, and producers
not participating as MMs/clients, a rational player can only bribe block producers to censor a transaction

paying ftx for T ≤ Qnot

ftx
blocks. This is because a producer needs to receive at least ftx to censor tx.

If block producers are participating as MMs/clients, we need to adjust T . Let 0 < α < 1 bound the
fraction of blocks produced over chains of length greater than T by a MM responding to/the set of clients
requesting trades in a particular instance of a FBA (we need to consider all clients in a request phase, as
they may all have the same direction, and as such, some positive expectancy to preventing a MM revelation).
We need to increase T by a factor of 1

1−α (similar to the methodology behind the Chain Quality property
in [18, 31]).

5.2 FairTraDEX Algorithms

Each player Pi owns (has exclusive access to) a set of token balances bali which are stored as a global
variable. For a token tkn, bali(tkn) is the amount of token tkn that Pi owns. Keeping the notation from
Section 3.2, outputs included in round brackets () are known only to the player running the algorithm, with
all other outputs posted to the public bulletin board, updating existing variables/balances where appropriate.
Algorithm outputs are not signed, so players observing the output of an algorithm instance can only infer
information about the player running the algorithm from public outputs and any corresponding global
variable updates.

We now outline FairTraDEX as a set of algorithms: Setup(), Register(), CommitClient(), CommitMM(),
RevealClient(), RevealMM() and Resolution(). A FairTraDEX instance is initialised by running Setup(),
and proceeds indefinitely in rounds of three distinct, consecutive phases: Commit, Reveal and Resolution,
each of length T blocks (see Section 5.1). We provide here the intuition to the algorithms of FairTraDEX,
with a detailed explanation of each algorithm provided in Appendix D.

Players in the underlying blockchain protocol can enter FairTraDEX as clients by running an instance of
Register(), which for a given client deposits an escrow escrowclient, and generates private information (S,
r ∈ {0, 1}O(κ)) which is used in CommitClient() to prove that the client indeed deposited an escrow, without
revealing which deposit.

In the Commit phase, all players can run any number of CommitClient() and/or CommitMM() instances.
CommitClient() generates a client order, commits to that order publicly and proves in ZK that the player
deposited an escrow. If such a proof cannot be generated, or a proof has already been generated for the same
S, no order can be committed. A correctly run CommitMM() instance generates a market for a prospective
MM, commits to that market publicly and deposits an escrow escrowMM.

In the Reveal phase, players can run any number of RevealClient() and/or RevealMM() instances. Re-
vealClient() publishes an order generated through CommitClient(), returning the escrow corresponding to

14An example for instant finality is Algorand [11] which stands in contrast to, e.g., Bitcoin which only guarantees eventual
finality.

15This can be seen as a ‘block-based’ variant of the time-based liveness property defined in [18, 31].
16Such as a Perpetual Powers of Tau ceremony, as used in Zcash https://zkproof.org/2021/06/30/setup-ceremonies/
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the CommitClient() instance, and as such the Register() instance, to the client. RevealMM() publishes a
market corresponding to a CommitMM() instance, and returns the corresponding escrow. Both Reveal phase
algorithms assert that the client and MM have sufficient token balances to submit their order and market
respectively. These assertions are also ensured in the Commit phase, but must be rechecked to ensure correct
balances at the point of token transfer.

In the Resolution phase, any number of Resolution() instances can be run. The first correct Resolution()
instance selects the tightest market from the set of revealed markets, revealedMkts, for inclusion in order
settlement, and any tie-breaks settled using fcom(revealedMkts), as a random seed17. The clearing price
which maximises notional traded, and then minimises the notional imbalance of the remaining market and
orders is computed18. Orders and markets are then settled based on this clearing price. Finally, the arrays
tracking active commitments, orders and markets clientCommits,MMCommits, revealedOrders , revealedMkts
are cleared, so unsuccessfully revealed commitments during this round cannot be used to run RevealClient()
or RevealMM() in future rounds. This effectively destroys the deposited escrows of such commitments. .

5.3 Properties of FairTraDEX

We now argue that FairTraDEX possesses all of the necessary properties to instantiate a WSFBA, and
discuss the practical implications of these properties. As the Register() and CommitClient() algorithms
are constructed analogously to the Mint() and Spend() functions in [28], we can make use of the results as
provided therein. These can be stated informally as:

1. Linkability: Consider a player Pj , a set of registrations RegIDs to which Pj does not know the privately
committed values, and a valid ZK signature of knowledge π and serial number S corresponding to some
regIDi ∈ RegIDs. Pj in has no advantage in linking π and S to the corresponding regIDi over probability

1
|RegIDs| + negl(κ).

2. Double-spending: Given a set of registrations RegIDs, and any number of valid (π, S) pairs corre-
sponding to elements in RegIDs, it is computationally infeasible to generate a new serial number S′

and corresponding valid proof of registration π′ in RegIDs.

Given that all players in the system are registered as clients, by definition of MIFP, the expected trade
imbalance implied by their orders is 0. However, in reality, we cannot expect this ‘full level’ of client
participation19, meaning less client registrations typically results in a greater advantage for rational players
in predicting the implied trade imbalance of committed orders.

To account for this in our analysis, we thus introduce nψ denoting the minimal number of registrations
required to guarantee that EEV is negl(ψ)(ψ). Note that in certain blockchain systems, as the total number
of players may be unknown to players within the system, precisely defining nψ may not be possible. In that
sense, our analysis demonstrates achievablility under a sufficient level of registration, but not necessarily
that a client can detect whether this level is met in a given auction instance.

In practice, a client’s decision whether or not to commit to an order in FairTraDEX will be based on
heuristics involving the number nc of observed client registrations, noting that non-negligible EEV may be
tolerable if the total expected participation fees are less than fmcf .

Observation 5.1. It can be seen that FairTraDEX with at least nψ previous Register() calls implements
a WSFBA when all players follow the protocol. In the Commit phase, CommitClient() specifies a client

17Given all markets are revealed, the final value of revealedMkts, and as such fcom(revealedMkts), is unpredictable in the pres-
ence of two or more non-cooperative MMs. We prove in Lemma 5.4 that all MMs running CommitMM() also run RevealMM().
The blockchain-based implementation of this function is described in Appendix F.3

18A precise algorithm for verifying the clearing price is included in Appendix F.5, Algorithm 4, and described in Appendix E.
The intuition behind the algorithm is as follows: Given more tokens are sold than bought at the proposed price, it can be seen
that checking the next price point lower, first for higher traded notional, and then for a greater or equal absolute imbalance is
sufficient to verify the proposed price is a valid clearing price. The equivalent check at the next price point above holds when
more tokens are bought than sold at the proposed price.

19Practical approaches to ensure the equivalent to nψ Register() calls are taken in existing anonymity protocols.
For example, Tornado Cash rewards players proportionally to the (Tornado Cash equivalent of the) number of Regis-
ter() calls, as well as the length of time between calling Register() and CommitClient(). https://torn.community/t/

anonymity-mining-technical-overview/15 Accessed: 07/02/2022
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order which is committed to, while CommitMM() specifies a market which is also committed to. As clients
commit to these orders and sign this commitment using a NIZKSoK, nothing is revealed about the client’s
order, as there are are least nψ Register() calls. This is equivalent to privately submitting the order.

CommitMM() and RevealMM() ensure MMs provide the equivalent of at least Qnot notional on the
bid and offer. Furthermore, as MMs are indistinguishable under Definition 3.1, a MM commitment reveals
nothing about the liquidity on the bid or offer20.

When the Commit phase is finished, no further orders or markets can be submitted for that auction round,
and as such, the clearing price is predetermined. During the Reveal phase, RevealClient() and RevealMM()
reveal the orders corresponding to CommitClient() and CommitMM() instances from the previous phase,
which are settled in the Resolution phase according to clearing price rules which maximise the amount of
notional to be traded, as is in a WSFBA.

When players are rational however, running these algorithms might not be SINCE (Section 3.1). Only
if a protocol is SINCE can we be sure that rational players correctly follow the protocol. Towards proving
FairTraDEX is SINCE for all rational clients and MMs, we prove that some player in the blockchain protocol
runs a Resolution() instance every round in Lemma 5.2. Then, in Lemma 5.3 (resp. 5.4) we prove that given
a rational client (resp. MM) runs an instance of Register() (resp. CommitMM()), that same player correctly
runs CommitClient() and RevealClient() (resp. RevealMM()) in the proceeding phases. After this, we
show in Lemma 5.5 (resp. 5.6) that it is indeed SINCE for a client (resp. MM) to run Register() (resp.
CommitMM()). Composing these results gives us the result we need, as presented in Corollary 5.7, that
FairTraDEX is SINCE for clients and MMs.

Lemma 5.2. At least one player runs Resolution() in every round.

Lemma 5.3. A rational client who correctly runs an instance of Register() also runs correct corresponding
instances of CommitClient() and RevealClient().

Lemma 5.4. A rational MM who correctly runs an instance of CommitMM() also runs a correct instance
of RevealMM() in the proceeding phase.

Lemmas 5.3 and 5.4 only guarantee that rational clients or MMs who enter the protocol correctly follow
the protocol. We also want to ensure rational players join the protocol. i.e. clients run an instance of
Register(), and MMs run an instance of CommitMM(). To show this is the case, we use our results from
Section 4.1. We assume a rational player observes no utility (positive of negative) for doing nothing, and
has no cost for running the algorithms. In reality, all of these algorithms have costs to run (blockchain
transaction fees, proof generation, etc.). FairTraDEX requires these costs to offset against (and be strictly
less than) the utility gained by clients (by definition in Section 3) for participation, and MMs from buying
below and selling above the MIFP. Thus, the choice of blockchain and it’s transaction fees dictate the type
of clients who can avail of the guarantees provided by FairTraDEX.

Lemma 5.5. Consider an instance of FairTraDEX between Atkn and Btkn. A rational client Pi with
bali(B) > escrowclient runs an instance of Register().

Lemma 5.6. Consider an instance of FairTraDEX between Atkn and Btkn, and at least 1 previously called
instance of Register(). Any rational MM Pi with bali(B) ≥ escrowMM and bali(Atkn), bali(Btkn) > 0 runs
an instance of CommitMM().

With these lemmas in hand, we have it that rational clients and rational MMs correctly execute all
algorithms as outlined by FairTraDEX. This can be expressed concisely in the following corollary. In this
corollary, and the theorem that follows, we assume clients and MMs satisfy the token-balance requirements
as described in Lemmas 5.5 and 5.6 respectively.

Corollary 5.7. FairTraDEX is strong incentive compatible in expectation for rational clients and MMs.

20MMs are also allowed to participate as clients if privacy is a concern. CommitMM() provides professionals with a function-
ality to efficiently provide liquidity in a decentralised setting. It is possible to introduce a RegisterMM() function analogous
to Register(), allowing MMs to relay markets in ZK. We believe this has negligible benefit for professionals who already have
price and market-size hidden through the commitment scheme.
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Now we are in a position to state the main result regarding FairTraDEX. Namely, that for an instance of
FairTraDEX between any two tokens Atkn and Btkn, rational players follow the protocol. Moreover, we show
that with at least nψ Register() calls, the optimal strategy for a client is to submit market orders, while the
optimal strategy for a MM with MIFP yA→B is to show a market bid @ offer with bid ≈ yA→B ≈ offer in
the case where there are at least 2 non-cooperative MMs, and of width w ≤ fmcf otherwise.

Theorem 5.8. Consider an instance of FairTraDEX between Atkn and Btkn with MIFP yA→B and at least
nψ previously called instances of Register(). For N non-cooperative MMs, the following strategies form strict
Nash equilibria:

• N = 1: Clients run Register(), followed by CommitClient() producing market orders of width fmcf .
The MM runs CommitMM() producing a market of width at most fmcf with reference price equal to
yA→B in size Qnot. Clients and MMs then run RevealClient() and RevealMM() respectively.

• N ≥ 2: Clients run Register(), followed by CommitClient() producing market orders of width greater
than 1. MMs run CommitMM() producing markets of width 1 with reference price equal to yA→B in
size of at least Qnot. Clients and MMs then run RevealClient() and RevealMM() respectively.

Proof. From Corollary 5.7, we know the running of FairTraDEX is SINCE. Furthermore, from Observation
5.1, we have seen that FairTraDEX with at least nψ previously called instances of Register() implements a
WSFBA. Given FairTraDEX is a WSFBA, the statement follows by applying Theorem 4.4. ⊠

Remark 5.9. To minimise expected absolute trade imbalances in a DEX auction, existing protocols, in-
cluding FairTraDEX, require the hiding/mixing of order-information. Consider how FairTraDEX compares
to previous DEXs aimed at ensuring client privacy [3, 13, 17]. In these previous protocols, each order com-
mit reveals the same, and in some cases more information per-order than a Register() call in FairTraDEX.
EEV protection guarantees in these previous protocols which require nψ orders per auction are achieved in
FairTraDEX for every order in every auction when nψ players are registered to participate in the protocol.
This is an nψ factor improvement in EEV protection/block-space requirements per auction.

More than this, these previous protocols face liveness issues when players are concerned about EEV.
The first players entering one of these previous protocols must choose to do so without any guarantees
of protection against EEV attacks based on information leaked from order commitment (trade direction,
identity, trading patterns, etc.). In FairTraDEX, a client wanting ψ-EEV protection merely waits until nψ
players have registered, while retaining the option to withdraw their tokens at any time.

5.4 Smart Contract Implementation of FairTraDEX

A blockchain-based pseudo-code implementation of FairTraDEX, and code description, are provided in Ap-
pendix F. We outline here the key differences between the algorithmic description of Section 5.2, and the
blockchain-based implementation in Appendix F. As a blockchain-based implementation under the model of
Section 5.1 involves a PKI for message sending, all public algorithm outputs must now be signed using the
PKI. These messages must now be included in blockchain transactions, with a transaction fee required to
ensure the transaction gets added to the blockchain.

For a player to publish a transaction to a blockchain-based smart contract without revealing her identity,
she must utilise a relayer. Otherwise, the transaction fee is payable from her account, revealing sensitive
information such as trading patterns and account balances. Furthermore, this relayer must be rewarded
on-chain for relaying the transaction. This reward is added by the client when depositing her escrow, and
retrievable by the first relayer publishing the transaction to the blockchain. Furthermore all checks, such as
those for the previous use of serial numbers in CommitClient(), or the recording of the tightest MM width
in Resolution(), are explicitly encoded in the blockchain-based implementation.

5.5 Existence of irrational players and coalitions

When analysing the optimal strategies of rational players in WSFBAs, our results are based on all players
being rational and that nψ instances of Register() are called. If we consider the presence of irrational players
in the system, we can apply the following adjustments:
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• Irrational MM: In Lemma 4.3, it is shown that the optimal strategy for a MM is to show markets
centred around the MIFP. Any other (irrational) strategy must therefore result in reduced expectancy
for the MM, and higher expectancy for clients. Therefore, given the presence of irrational MMs, sub-
mitting market orders maximises client expectancy (with greater expected utility than in the presence
of rational MMs, although with increased variance).

• Irrational client: Given the optimal strategy for rational clients is to submit market orders, a irra-
tional client may then submit limit orders. This merely reduces the irrational client’s chance of trading
vs. other clients. This would not change the strategy of non-colluding rational MMs, but may have
some affect on a monopolistic MM’s interpretation of fmcf .

Furthermore, if less than nψ instances of Register() are called, clients resort to submitting limit orders.
This can be seen in the proof of Theorem 4.4. In the proof, if clients are not sure that a MM will show a
market with reference price equal to the MIFP, the case when less than nψ instances of Register() are called,
the optimal strategy for clients is to submit limit orders, which only stands to reduce the clients’ probability
of trading. As the number of non-cooperative players in FairTraDEX decreases towards two, the guarantees
of FairTraDEX approach those of an AMM. However, as client price and order size remain hidden until
the counterparty chooses her strategy, and before the clearing price is fixed (end of the Commit phase),
FairTraDEX maintains advantages over AMMs against client-based EEV attacks, such as price/order-size
specific front-running and selective participation.

6 Conclusion

We provide FairTraDEX, a blockchain-based DEX protocol based on FBAs in which we formally prove the
strategies of rational participants have strict Nash equilibria in which all trades occur at the MIFP plus or
minus bounded upfront costs (specified market widths) which approach 0 in the presence of non-cooperative
MMs. This is an attractive alternative to existing mainstream protocols such as AMMs where rational
players effectively and systematically prevent such an equilibrium from happening. Compared to previous
blockchain-based attempts to implement EEV-proof DEXs, FairTraDEX is the first to practically allow for
indistinguishable client-order submissions by decoupling order submission from escrow deposit and order
revelation. The FairTraDEX properties outlined in Section 5.3, and summarised in Remark 5.9, provide
important improvements on previous protocols regarding EEV protection, setting a new standard for EEV
protection in DEXs.

To do this, we show that FairTraDEX implements a width-sensitive FBA, an FBA variant that benefits
from the game-theoretic guarantees of an FBA in a distributed blockchain-based setting. We prove our
construction is strong incentive compatible in expectation for all rational participants, and combine these
results in Theorem 5.8 which outlines the conditions under which clients and MMs trade at the MIFP.
In this equilibrium, all fees are known a-priori, with EEV effectively prevented when enough players have
registered to participate in the protocol. Implementing, analysing and optimising FairTraDEX for wide-scale
deployment makes for exciting future work.
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A Extended Related Work

Estimating (Miner) Extractable Value is Hard [23]

This paper paper attempts to formalise extractable value and generalise it beyond value extractable be
miners. We also believe it is necessary to model the decision of all rational players based on expected
extractable value (EEV) that can generated by particular orderings of transactions/blocks by any player in
the system, and not just the miner. The approach taken is to consider EEV as the maximum of all non-
protocol strategies, with protocols considered secure if the EEV of following the protocol is strictly dominated
by following the protocol strategy, which is further formalised in [26]. In our paper, we also consider an
additional case of EEV not necessarily considered in [23] which is prevalent in commit-reveal protocols such
as [12]. In such protocols, honest behaviour usually involves sending a valid second transaction (the reveal
transaction in a commit-reveal protocol), but where players can extract value in expectancy by not sending
these transactions. However, we believe the definition of EEV in [23] can be extended to include these
attacks. As such, we also move away from the legacy use of MEV, and focus instead on the prevention of
the more general EEV.

Publicly Verifiable and Secrecy Preserving Periodic Auctions [17]

This protocol also attempts to implement an FBA, and as such has many similarites to FairTraDEX. As in
FairTraDEX, the protocol progresses in rounds of Commit, Reveal and Resolution phases. In [17], there is a
designated operator who is in charge of settling the auction. Players commit to orders in the Commit phase,
as well as providing cryptographic information, which is used to prove correct settlement in the Resolution
phase. Unlike FairTraDEX, these commit messages are sent by players directly to the blockchain, revealing
identity and trade direction. In the Reveal phase, players encrypt their orders using the operator’s public
key, and send the encryptions to the operator. In the Resolution phase, the operator then chooses a clearing
price which intersects the buy and sell liquidity, maximising the notional to be traded. The operator then
publishes a list of all matched orders to the blockchain, along with a range proof which is used to verify the
correct execution of orders, while not revealing any information about unexecuted orders other than that
already revealed in the commit phase.

Block Auction [13]

This protocol attempts to implement an FBA, and is the most similar to FairTraDEX. It is an improvement
on [17], with a direct comparison of the two protocols forming the main basis of the justification of [13]. As
in [17], the protocol is overseen by an operator who is in charge of receiving orders privately from players and
correctly executing the auction. As in FairTraDEX, the protocol progresses in rounds of Commit, Reveal
and Resolution phases. In the Commit phase, players commit to orders and publish these commitments to
the blockchain. Although not revealing the trade direction as is the case in [17], these commit messages are
sent by players directly to the blockchain, and as such reveal identity In the Reveal phase, players encrypt
their orders using the operator’s public key, and send these encryptions to the operator. The operator then
publishes all executed orders, while revealing nothing about unexecuted orders. The validity of execution
depends on all players who submitted orders verifying that their order should not have been executed given
the list of executions.

P2DEX [3]

The P2DEX protocol is an off-chain MPC protocol run by servers where players can submit orders to
exchange tokens from one blockchain to another (although it also appears applicable to one blockchain with
many tokens). The orders are encrypted using a threshold secret-sharing scheme with each server receiving
a unique share. The protocol has mechanisms to identify double-spending of player funds sent to the servers,
and deviation (failure/ misbehaviour) of servers, as the MPC matching protocol is publicly verifiable. As
such, all players in the blockchain can verify that a set of orders have been matched correctly, or some of the
servers deviated from the protocol. The exchange depends on all servers participating in a secret-sharing
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protocol to match orders, with at least one server being honest/not colluding with other servers. As with
[13, 17], an emphasis is placed on not revealing unmatched orders.

FairMM [12]

Clients submit orders to a single (monopolistic) MM in an off-chain Σ-protocol. Clients contact the MM
with a size, direction (communicated on-chain) and price (communicated off-chain). If the MM accepts, the
MM then publishes the trade on the blockchain, otherwise aborts. Client orders are sequentialized so only
one order can be executed at a time, preventing the MM from reordering client orders.

FuturesMEX [25]

The FuturesMEX protocol is an MPC version of a DEX with claims of anonymity. In [25], client token
balances are kept privately by owners in an off-chain database, so the protocol has limited applicability
to a blockchain-based setting. Furthermore, orders are submitted publicly to all participants before being
settled. For smaller clients with less connectivity, this is equivalent to showing the order to more-connected
counterparties before it is executed. This is a typical source of EEV in existing blockchain protocols (through
front-running attacks), and something which is protected against in FairTraDEX.

B Background on Zero-Knowledge Primitives

Proving membership has been traditionally solved using cryptographic accumulators [5], where the prover
P computes a value (the accumulator) and, based on it, a set of short membership proofs that the verifier
V can easily verify. Three are the approaches to construct set membership proofs: Merkle trees [27], RSA
accumulators [2, 7], and pairing-based accumulators [29, 32].

Each approach has its own benefits for public parameters, accumulator or witness size or need of trusted
setup. The exact choice depends on the resource constraints of the system. We direct interested readers to
[6] for a nice review of the main features of each of the approaches.

When the prover P does not want to reveal the value of x, the membership proof should not leak any
information on the value of x. At a high level, the general approach is to guarantee privacy using zero
knowledge proofs. Zero knowledge proofs [20] are powerful cryptographic primitives that allow a prover
P to prove knowledge of the truth of some statement without revealing the statement contents, to some
honest verifier V who needs to be convinced of the truth of the statement provided by the prover. Special
mention for its applicability should be made of zero-knowledge proofs that are also non-interactive, that
is, proofs that only depend on the prover’s private information about the statement and publicly available
information21. As such, proofs do not depend on interaction with the verifier. The main features in a NIZK
argument are completeness, soundness, and zero-knowledge. Completeness guarantees that if the statement
is true, the prover behaving honestly can convince the verifier that the statement is true, while soundness
ensures that a dishonest prover cannot convince an honest verifier. Zero-knowledge maintains that the
only information learned by the verifier is that the statement is true. However, in practice it is required
that the prover knows a witness for the statement, that is, a zero-knowledge proof of knowledge. In this
case, soundness is not enough and is required that a prover cannot produce a valid proof unless she knows
a witness, even if the prover has seen an arbitrary number of simulated proofs. This is what is known, as
simulation intractability. Furthermore, NIZK arguments are interesting for constructing other cryptographic
primitives, such as signature of knowledge (SoK) [10].

In literature, there are several constructions that add the privacy layer using zero knowledge proofs for
set membership based on RSA Accumulators or Merkle Trees are [4, 9, 28]. In these works the prover proves
statements about values that are committed, that is, they follow what is known as a commit-and-prove
zero knowledge proof. More recent approaches propose new commit-and-prove for set-membership based on
SNARKs [6, 14] or Bulletproofs [19].

21This public information can come in many forms, but in [4, 6, 21, 28], it must be generated honestly in a process known as
a trusted setup. If a prover knows the private information used to generate public proof parameters, the knowledge extraction
property cannot exist.
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C Proofs

Lemma 4.3

Proof. Let us define the market in terms of yref and w as described in Section 3, namely,
yref√
w

@
√
wyref. In

the cases of a client buyer and client seller of the swap, we convert client notional orders into the tokens
being sold, mark the trades to their post-trade MIFPs using a symmetric impact coefficient of the token
swap δ, then reconvert the tokens into notional.

If the client is a buyer of the swap, the client is selling Atkn, with trade size of XB
yA

in Atkn. The trade

occurs on the token swap offer of
√
wyref, resulting in the sale of XByA

1√
wyref

token Btkns by the MM. Finally,

the Btkns bought by the client have an expected post-trade per-token value of
√
δyB , while the notional

acquired by the MM (Atkns) has an expected value of XB√
δ
. This is an expected net profit for the MM

measured in notional of:
XB√
δ
− XB

yA
√
wyref

√
δyB =

XB√
δ
−
√
δXB√
w

yA→B
yref

. (1)

If the client is a seller of the swap, the client is selling Btkn, with trade size of XB
yB

in Btkn. The trade

occurs on the token swap bid of
yref√
w
, resulting in the sale of XB

yB

yref√
w

token Atkns by the MM. Finally, the

Atkns bought by the client have an expected post-trade per-token value of
√
δyA, while again, the notional

acquired by the MM (Btkns) has an expected value of XB√
δ

This is an expected net profit for the MM of:

XB√
δ
−
√
δXB√
w

yref
yA→B

. (2)

We know the buying and selling of XB notional at yA→B are equally likely by the definition of an MIFP
as a perfectly-informed signal. Therefore, the total expected profit is:

XB
(1
2
(
1√
δ
−
√
δ√
w

yA→B
yref

) +
1

2
(
1√
δ
−
√
δ√
w

yref
yA→B

)
)
. (3)

To find the maximum with respect to yref, we take the first derivative of this formula, and let it equal to
0:

yA→B
y2ref

− 1

yA→B
= 0. (4)

Solving for yref gives yref = yA→B , which is equivalent to the MM strictly maximizing her expected profits
by letting yref = yA→B . ⊠

Lemma 5.2

Proof. Consider a Resolution phase where at least one player has not called a CommitClient() or Com-
mitMM() instance in the preceding Commit phase. This player is indifferent to the settlement of orders, and
as such the only payoff for that player by running Resolution() correctly is the receipt of resBounty ∈ R+.

Consider instead the case where all players in the system called at least one instance of CommitClient()
and/or CommitMM() in the preceding Commit phase. In this case, all players have an additional payoff for
receipt of the tokens currently locked in the protocol. As at least one of the buyers or sellers of the swap
must receive a non-zero amount of tokens, the receipt of which having at worst 0 utility. This, in addition
to the receipt of resBounty makes the calling of Resolution() positive expectancy for at least one player in
the system. ⊠

21



Lemma 5.3

Proof. By correctly running Register(), a player deposits escrowclient. The only way to receive escrowclient

back is to correctly run a RevealClient() instance, which itself can only be run after having run a Commit-
Client() instance in the previous phase. By construction, escrowclient is greater than any incurrable losses
by running CommitClient() and RevealClient(), with maximal losses occurring where the client’s order is
settled for tokens that have 0 notional (price goes to 0). As the client’s initial deposit had notional value
strictly less than escrowclient, so must the incurred loss. The result follows. ⊠

Lemma 5.4

Proof. By correctly running CommitMM(), a player deposits escrowMM. The only way to receive escrowMM

back is to correctly run a RevealMM() instance in the proceeding. By definition, as the MM’s bid and offer
has notional value greater than or equal to the total notional in the auction, Qnot, so must the incurred loss
of not revealing a market. Therefore, players running CommitMM() always correctly run RevealMM(). ⊠

Lemma 5.5

Proof. Consider such a client Pi with minimum client utility fmcf to exchange one token for another. To
execute the swap, Pi must first call Register(). Given Pi calls Register(), we know from Lemma 5.3 that Pi
also calls CommitClient() and RevealClient(). We know from Lemma 5.2, Resolution() will be run in every
round, meaning Pi either trades or the tokens are returned. Given a trade occurs, Pi realises the utility of
trading given the restrictions of the order generated by Pi in CommitClient(), which can be chosen to be
any value with positive utility (buy below the MIFP/sell above the MIFP). If no trade occurs, Pi’s realised
utility (of 0) does not change. Therefore, Pi runs Register(). ⊠

Lemma 5.6

Proof. Consider such a player Pi. Given Register() was called by some player Pj , Pi knows Pj must call
CommitClient() and RevealClient(). Furthermore, Pi knows the total order size is bounded by Qimb (Section
4.1). Given MIFP yA→B and the definition of a MM, there is some market market ← (bid@offer) at which
Pi observes positive utility to trade with Pj . Therefore, Pi submits market to the auction. We must now
ensure Pi submits the order by calling CommitMM(). By the calculation of order settlement, if Pi submits
market through the necessary Register() and CommitClient() calls and Pi submits a market order with finite
requested width, no trade happens. As such, Pi runs CommitMM(). ⊠

D FairTraDEX Algorithms

We now describe in detail the algorithms which together form FairTraDEX, and then describe the main
differences between FairTraDEX and a WSFBA.

• Setup(κ,Qnot)→ [params, yA, RegIDs, MMCommits, clientCommits, revealedOrders,
revealedMkts]: For a given cryptographic-security parameter κ, output the necessary public crypto-
graphic and ZK parameters in params. Set yA ∈ R+ as the indicative price of token Atkn (used to
convert restrictions based on escrows into token amounts). Choose escrowclient ∈ R+ such that the
notional of any client order is bounded by escrowclient, and escrowMM ← c ·Qnot, for some c > 1, with
Qnot as described in Section 4. Choose a bounty resBounty ∈ R+ to reward players for successfully call-
ing Resolution(). Add escrowclient, escrowMM,Qnot, resBounty to params. Set RegIDs, clientCommits,
MMCommits, revealedOrders, revealedMkts← [].

• Register(params,Pi,RegIDs) → [(S, r), regID, RegIDs]: If {bali(B) ≥ escrowclient}, set bali(B) ←
bali(B) − escrowclient. Then, randomly generate S, r ∈ {0, 1}O(κ), and compute regID ← fcom(S, r).
Add regID to RegIDs.
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• CommitClient(params, regID,RegIDs, S, r, clientCommits, yA) → [(order), π, S, com,
clientCommits]: If {regID ∈ RegIDs}: select a token tkn ∈ {Atkn,Btkn}, a trade price p ∈ R+, and a
trade size amount size ∈ R+. If token tkn = Atkn, set y ← yA. Otherwise, set y ← yA ·p (used to verify
client order is less than the escrow given the indicative price for Atkn). If {size ≤ bali(tkn),

escrowclient

y }:
select a minimum trade width w ≥ 1. Set order ← (tkn, size, p,w) and com ← fcom(order). Finally,
generate the signature of knowledge π ← NIZKSoK [com]{(regID, r) : MemVerify (RegIDs, regID)
= 1 & regID = fcom( S, r) }. If no proof corresponding to S has been computed before, add S to
clientCommits. Otherwise, output ⊥.

• CommitMM(params,Pi,MMCommits, yA)→ [(market), com,MMCommits] : If {bali(B) ≥ escrowMM}:
select a bid size sizebid ∈ R+, offer size sizeoffer ∈ R+ and prices 0 ≤ bid ≤ offer such that Qnot ≤
sizebid ·yA ≤ escrowMM, (bali(Atkn) ·yA) ∧ Qnot ≤ sizeoffer ·yA ·offer ≤ escrowMM, (bali(Btkn) ·yA ·offer)
(ensures the bid, offer prices, and sizes fall within the bounds of the minimum size required by aWSFBA
and the escrow). Set market ← (bid, sizebid, offer, sizeoffer) and compute com ← fcom(market).
Finally, set bali(B)← bali(B)− escrowMM and add com to MMCommits. Otherwise, output ⊥.

• RevealClient(params, π,S, r, order← (tkn, size, p, w, yA) , clientCommits, revealedOrders, Pi )→
[revealedOrders]: If token tkn = Atkn, set y ← yA. Otherwise, set y ← yA · p. If {π ∈ clientCommits ∧
π = NIZKSoK [fcom(order)]{(regID, r) : MemVerify(RegIDs, regID) = 1 & regID = fcom(S, r) }
∧ size ≤ bali(tkn),

escrowclient

y (Repeat checks from CommitClient()): set bali(tkn) ← bali(tkn) − size,

bali(B) ← bali(B) + escrowclient (return escrow), and add order to revealedOrders. Otherwise, output
⊥.

• RevealMM(params, com,market← (bid, sizebid, offer, sizeoffer), yA, MMCommits,
revealedMkts, Pi) → [revealedOrders]: If {com ∈ MMCommits, com = fcom(market) ∧ Qnot ≤
sizebid ·yA ≤ escrowMM, (bali(Atkn) ·yA) ∧ Qnot ≤ sizeoffer ·yA ·offer ≤ escrowMM, (bali(Btkn) ·yA ·offer)
(Repeat checks from CommitMM()): set bali(Atkn) ← bali(Atkn) − sizebid, bali(Btkn) ← bali(Btkn) −
sizeoffer, bali(B) ← bali(B) + escrowMM (return escrow), and add the orders (Atkn, sizebid, bid, any),
(Btkn, sizeoffer, offer, any) to revealedMkts. Otherwise, output ⊥.

• Resolution(params, revealedOrders, revealedMkts, clientCommits, MMCommits,Pi) → [CP,
imbalance, wtight clientCommits, MMCommits, revealedOrders, revealedMkts]: If this is not the first
time Resolution() was called, output ⊥. Otherwise, calculate the tightest market width wtight of a
market in revealedMkts. Remove all markets in revealedMkts except one with width equal to wtight,
chosen using revealedMkts as a random seed to fcom() 22. Remove all orders in revealedOrders with
requested width greater than wtight. Calculate the clearing price CP which first maximises notional of
orders traded from revealedOrders ∪ revealedMkts, and then minimises the imbalance imbalance.

If CP does not maximise notional traded, and then minimise imbalance, output ⊥. Otherwise, if
imbalance > 0 at CP, pro-rate all buy orders with the lowest bid price above CP based on order size.
If imbalance < 0, pro-rate all sell orders with the highest offer price below CP based on order size.
Then, settle all other buy orders with price greater than or equal to CP, and all other sell orders with
price less than or equal to CP. Set clientCommits,MMCommits, revealedOrders, revealedMkts ← [],
and bali(B)← bali(B) + resBounty.

D.1 FairTraDEX vs. WSFBA

The main differences between FairTraDEX and a WSFBA are as follows:

• Escrows are used to enforce the correct revelation of players who commit to orders or markets. Escrows
are only returned to players if orders are revealed and correspond to a valid commit. Furthermore,
escrows are chosen large enough to ensure the reclamation of escrows has strictly higher utility than
not, ensuring rational players follow the protocol.

22Given all markets are revealed, the final value of revealedMkts, and as such fcom(revealedMkts||∗), is unpredictable in
the presence of two or more non-cooperative MMs. We prove in Lemma 5.4 that all MMs running CommitMM() also run
RevealMM(). The blockchain based implementation of this function is described in App. F.3
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• An algorithm involving deposits and/or withdrawals updates the set of balances for all players, iden-
tifying the player calling the algorithm.

• FairTraDEX separates the depositing of client escrow and client order commitments. This is a key
functionality necessary to preserve client anonymity and the guarantees of a WSFBA. If a client
deposits an escrow in the same instance as committing to an order, that information can be used to
identify the player, and imply information about the player’s order. By separating the two, commitment
does not require the update of global variables that can be used to identify the client.

• Set-membership proofs in ZK in the CommitClient() algorithm are used to prove that a player com-
mitting to a client order has deposited a client escrow. As FairTraDEX separates the deposit and
commitment steps, these proofs allow a client who deposited an escrow to generate one (and only one,
as ZK proofs reveal S) order per escrow, while only revealing that the order corresponds to a deposited
escrow. As the number of deposited escrows increases, the probability that an order commitment
matches any particular escrow approaches 0. This replicates the anonymous order submission of a
WSFBA.

• Tokenised incentives are used to ensure some player in the blockchain calculates the clearing price, and
settles orders correctly.

E Clearing Price Verification

The protocol in Algorithm 4 checks that a given clearing price CP clears the highest notional with respect
to Atkn. To do this, it checks the imbalance and total notional that would be settled at CP. Note, that the
statements that follow are true given some volume trades at the proposed clearing price, which is asserted
in the protocol (line 92).

If the imbalance is 0 (line 97), it can be seen that this price must maximise the volume trade while
minimising the absolute value of the imbalance. Higher prices reduces the buying notional/ strictly increases
the selling notional, while lower prices strictly reduces the selling notional/increases the buying notional,
which creates an imbalance without increasing the notional traded.

If the imbalance is positive (line 99), this implies there will be buy orders (partially) unfilled at or above
CP. We can see that the only prices at which more notional can trade must be greater than CP. Thus, the
contract checks the next price increment above (line 100), and verifies the total notional traded at that price
is less than at CP, or equal, but with a larger absolute imbalance (line 109). If the notional traded is lower
at this higher price, the clearing price is correct as a lower price reduces the value of the selling notional,
and increases the value of the buying notional. If the notional traded is the same, but the absolute value
of the imbalance is higher, this imbalance must be a sell imbalance by the same reasoning (buying notional
decreases, selling notional increases). If the absolute value of the imbalance is higher (although negative),
the imbalances at all price points above that price are increasing (buying notional decreases, selling notional
increases).

The same holds for sell imbalances at a proposed clearing price (line 105). Checking the price point
below (line 106) and ensuring the notional is lower, or that the notional traded is the same but with a large
absolute imbalance (line 109) guarantees that the proposed clearing price is valid.

F Encoding of FairTraDEX

The following is an overview of the blockchain-based encoding of FairTraDEX, as described algorithmically
in Section 5 and encoded in Appendix F.5.

For an arbitrary bit-string m ∈ {0, 1}∗, relay(m) indicates broadcasting m to the relay transaction
mempool, where m is included as a transaction in the blockchain if and only if it gives the including relayer
access to a relayer fee fr.
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F.1 Register

Clients randomly generate S, r ∈ {0, 1}n(κ), and compute regID ← fcom(S, r). Then, the client sends a
⟨CLIENT-REGISTER, regID⟩ to the blockchain using the blockchains PKI. Upon addition to the blockchain,
this deposits an escrow of escrowclient and a relayer fee of fr to the blockchain (line 22), with regID added
to clients (line 23).

F.2 Commit

A client wishing to submit an order of the form order← (tkn, size, p,w), first generates a commitment to the
order com← fcom(order). The client then generates a NIZK signature of knowledge π ← NIZKSoK(com){(
regID, r) : MemVerify(RegIDs, regID) = 1 & regID = fcom(S, r) } on the commitment. The client then
relays a message of the form ⟨COMMIT, com, S, π⟩ to the relayer mempool, which is then sent to the smart
contract by a relayer. The transaction is only valid if Verify(π) returns 1, and as such, a relayer cannot
tamper with com. The contract first checks that the maximum auction notional has not been reached
(currAucNotional < Qnot, line 24).

Furthermore, a valid ⟨COMMIT, com,S, π⟩ message must not reveal a serial number S which has previ-
ously been added to blacklistedSNs (initialised line 18). Serial numbers in blacklistedSNs correspond to client
commits that were not revealed according to the protocol during a previous Reveal phase. The escrow corre-
sponding to serial numbers of blacklistedSNs are effectively burned by the protocol, with clients permanently
losing access to them. If S is not in blacklistedSNs, the order commitment is recorded in clientCommits (line
26), and the relayer who relays the transaction to the blockchain receives the fee (line 27).

MMs who wish to participate generate a market of the form market ← (bid, sizebid, offer, sizeoffer),
and submit a transaction directly to the blockchain of the form ⟨COMMIT, fcom(market)⟩. This transaction
deposits an escrow of escrowMM to the smart contract. The commitment is then recorded in MMCommits
(line 30).

Client and MM Commit transactions are collected until the Commit phase deadline, requestDeadline
(line 11), has passed (line 31).

F.3 Reveal

A client who committed to trade through a ⟨COMMIT, com,S, π⟩ transaction in the Commit phase submits
a Reveal transaction directly to the blockchain of the form ⟨CLIENT-REVEAL, tkn, size, p,w, S, r, regID
regIDNew⟩ (line 34). If the client intends to ren-enter the protocol as a client, regIDNew is a commitment
to a new serial number and randomness. Otherwise, it is the null value.

This ⟨CLIENT-REVEAL, ∗⟩ transaction reveals the token being sold, token amount to sell, and requested
width of the order. The p either reveals a limit price at which the client is selling, that the order is the
market order if p = mkt, or that the client is withdrawing their escrow if p = withdraw. The contract checks:

• S ∈ clientCommits to verify a commitment corresponding to that serial number has been recorded.

• regID = fcom(S, r) to ensure that client was indeed the same player that generated the regID and
that the client order is the same as that committed in the Commit phase fcom(tkn, size, p,w) =
clientCommits[S].com.

If the transaction is valid, the order is added to revealedBuyOrders or revealedSellOrders, depending on
direction. If the token being sold by the client is Atkn, the effective order size for clearing price calculation
and trade size allocation is the minimum of size and escrowclient/yA, the maximum token Atkn order size
allowable (line 37), with the order recorded in revealedOrders (line 38). If the token being sold by the client
is Btkn, the order size is the minimum of size and escrowclient/(yA · offer) (line 45), with the order recorded
in revealedOrders (line 46).

Finally, if regIDNew is the null value, the escrow is returned (line 41 or 48), while if it is not, it corresponds
to re-entering the protocol as a new client (saving on an additional transaction to re-enter as a client).

A MM who committed to a market through a ⟨COMMIT, com⟩ transaction in the commit phase submits
⟨MM-REVEAL, market← (bid, sizebid, offer, sizeoffer)⟩ (line 56). The contract verifies:
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• The market market matches the previously commitment from the commit phase (fcom( market) =
MMCommits[MM].com) (line 56).

• For the bid, Qnot/yA ≤ sizebid, which verifies the MM has provided the minimum notional required by
a WSFBA (line 57).

• For the offer, Qnot/(yA · offer) ≤ sizeoffer, which again verifies the MM has provided the minimum
notional required by a WSFBA (line 57).

Any MM not revealing a market (line 84) loses their escrow (line 85) and is prevented from partici-
pating in the Resolution phase. Otherwise, from the set of all valid revealed markets revealedMkts, the
tightest market is selected, including a tie-breaking procedure for more than one market with width equal
to the tightest width. The tie-breaker used in our implementation of FairTraDEX takes, for a MM MM
(identified by a unique public key) and submitted market market, the market corresponding to the largest
value of fcom(fcom(revealedMkts) || MM || market) (lines 64-80). Given the tightest market market← (bid,
sizebid, offer, sizeoffer) after tie-breaks, the two implicit limit orders are added to the set of revealed orders
revealedBuyOrders and revealedSellOrders. As was the case with client orders, the effective order size for
clearing price calculation and trade size allocation of the bid is the minimum of sizebid and escrowMM/yA,
while the effective offer size is the minimum of sizeoffer and escrowMM/(yA · offer).

Reveal transactions are collected until the Reveal deadline, revealDeadline (line 11), has passed (line 31).

F.4 Resolution

Once the protocol enters the Resolution phase, any player in the system can propose a clearing price by
submitting a ⟨CP, ∗⟩ message. Players submitting such a message must deposit a token amount (which we
set as resBounty, although any significantly large value to prevent invalid calls to the smart contract will
do). This deposit, along with a bounty is returned to the player if CP is a valid clearing price.

The orders are then settled based on the clearing price CP (lines 114-134). If the quantity of Atkn being
sold is greater than the quantity being bought, the sell orders at the highest sell price below the clearing
price are pro-rated based on the quantity of Atkn being sold. If the quantity of token Atkn being bought
is greater than the quantity being sold, the buy orders at the lowest buy price above the clearing price are
pro-rated based on the quantity of Atkn being bought. Remaining unexecuted order balances and escrows
are returned to the owners.

F.5 Protocol Encoding

In the following, for arrays containing array objects, the array objects are uniquely identifiable by the first
item in the array (i.e. client identifier, serial number, ZKProof).
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Algorithm 1 Register

1: players← generatePopulation()
2: RegIDs← []
3: clientCommits← []
4: MMCommits← []
5: phase←
6: wtight ← any
7: revealedBuyOrders, revealedSellOrders, revealedMkts← []
8: lastPhaseChange← 0 ▷ tracks the block number of last step update
9: fr ← getRelayerFee()
10: minTickSize← getMinimumTickSize()
11: requestDeadline, revealDeadline← T ▷ Deadline for responses equal to the maximal reveal delay described in the Threat Model
12: escrowclient ← Y ▷ Escrow required to show each market, in line with the Threat Model
13: Qnot ← getMaxAuctionNotional()
14: c← random(R>1)
15: escrowMM ← c ·Qnot ▷ Escrow required to show each market, some amount greater than Qnot
16: yA ← getTokenAIndicativePrice()
17: currAucNotional← 0
18: blacklistedSNs← [] ▷ Tracks revealed serial numbers that misbehaved

19: function Initialise()
20: phase← Commit

21: upon ⟨CLIENT-REGISTER, regID⟩ from player ∈ players with player.balance(B) > escrowclient + fr do ▷ register player as a
client

22: player.transfer(escrowclient + fr,B, protocolContract) ▷ Add client deposit to the contract account
23: clients.append(regID)

Algorithm 2 Commit

24: upon relay(⟨COMMIT, com,S, π⟩) from player ∈ players with currAucNotional < Qnot ∧ Verify(π, com) = 1
∧ phase = Commit ∧ ¬(S ∈ blacklistedSNs) do

25: currAucNotional← currAucNotional + escrowclient

26: clientCommits.append([S, com])
27: protocolContract.transfer(fr,B, player)) ▷ Reward relayer

28: upon ⟨COMMIT, com⟩ from player ∈ players with player.balance(B) > escrowMM∧ ¬(player ∈ MMCommits) phase = Commit
do ▷ Allow only one market per player address

29: player.transfer(escrowMM,B, protocolContract) ▷ Transfer escrow to the protocol contract account
30: MMCommits.append([player, com])

31: upon phase = Commit ∧ Blockchain.height() = lastPhaseChange + requestDeadline do
32: phase← Reveal
33: lastPhaseChange← Blockchain.height()
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Algorithm 3 Reveal

34: upon ⟨CLIENT-REVEAL, tkn, size, p,w, S, r, regID , regIDNew⟩ from player ∈ players with S ∈ clientCommits
∧ regID = fcom(S, r) ∧ fcom(tkn, size, p = clientCommits[S].com ∧ phase = Reveal do

35: if p ̸= withdraw then
36: if tkn = Atkn ∧ player.balance(Atkn) ≥ size then
37: size← minimum(size, escrowclient/yA)
38: revealedBuyOrders.append([player, size, p,w]) ▷ Add client order to array of orders to trade
39: player.transfer(size,Atkn, protocolContract)
40: if regIDNew = ∅ then
41: protocolContract.transfer(escrowclient,B, player))
42: else
43: clients.append(regIDNew)

44: else if tkn = Btkn ∧ player..balance(Btkn) ≥ size then
45: size← minimum(size, escrowclient/(yA · p))
46: revealedSellOrders.append([player, size, p,w]) ▷ Add client order to array of orders to trade
47: if regIDNew = ∅ then
48: protocolContract.transfer(escrowclient,B, player))
49: else if player.balance(B) > fr then
50: player.transfer(fr,B, protocolContract)
51: clients.append(regIDNew)

52: else ▷ Client wants to withdraw
53: protocolContract.transfer(escrowclient,B, player))

54: clients.remove(regID)
55: clientCommits.remove(S)

56: upon
⟨MM-REVEAL,market← (bid, sizebid, offer, sizeoffer)⟩ from MM ∈ MMCommits with fcom(market) = MMCommits[MM].com
∧ phase = Reveal do

57: if (Qnot/(yA · offer) ≤ sizeoffer ≤ player.balance(Btkn)) ∧ (Qnot/yA ≤ sizebid ≤ player..balance(Atkn)) then ▷ Check MM has
provided the minimum required liquidity, Qnot

58: revealedMkts.append(MM,market)
59: MMCommits.remove(MM)

60: upon phase = Reveal ∧ len(MMCommits) = 0 ∧ len(clientCommits) = 0 do ▷ All reveals published
61: phase← Resolution
62: lastPhaseChange← Blockchain.height()

63: upon phase = Reveal ∧ Blockchain.height() = lastPhaseChange + revealDeadline do
64: tieBreaker← 0
65: tightMkt← ()
66: tieBreakSeed← fcom(revealedMkts) ▷ Generate seed for tie-breaks before revealed markets is changed
67: for MM ∈ revealedMkts do ▷ Select the unique market corresponding to the tie-breaker in the proceeding If statement
68: if (Qnot/(yA ·MM.offer) ≤ MM.sizeoffer ≤ MM.balance(Btkn)) ∧ (Qnot/yA ≤ MM.sizebid ≤ MM.balance(Atkn)) then ▷

Check MM still has provided the minimum required liquidity
69: protocolContract.transfer(escrowMM,B, MM))

70: if wtight = any ∨ ( offer
bid < wtight) ∨ ( offer

bid = wtight ∧ fcom(tieBreakSeed||MM||MM.market) > tieBreaker) then

71: wtight ← offer
bid

72: tieBreaker← fcom(tieBreakSeed||MM||MM.market)
73: tightMkt← [MM,market]

74: revealedMkts.remove(MM)

75: sizebid ← minimum(tightMkt.sizebid, escrowMM/yA)
76: sizeoffer ← minimum(tightMkt.sizeoffer, escrowMM/(yA · tightMkt.offer))
77: revealedBuyOrders.append([player← tightMkt.MM, size← sizebid, p← tightMkt.bid,w← any]) ▷ Add tightest market to set

of orders to be settled
78: revealedSellOrders.append([player← tightMkt.MM, size← sizeoffer, p← tightMkt.offer,w← any])
79: tightMkt.MM.transfer(sizebid,Atkn, protocolContract)
80: tightMkt.MM.transfer(sizeoffer,Btkn, protocolContract)
81: for S ∈ clientCommits do ▷ Add all clients who did not reveal order to blacklist, preventing further commitments
82: blacklistedSNs.append(S)
83: clientCommits.remove(S)

84: for MM ∈ MMCommits do ▷ MMs who did not reveal market in time
85: MMCommits.remove(MM) ▷ Remove from protocol without adding to revealedOrders, effectively burning escrow

86: phase← Resolution
87: lastPhaseChange← Blockchain.height()
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Algorithm 4 Resolution: Clearing Price Verification

88: upon ⟨CP, volumeSettled, imbalance⟩ fromplayer ∈ players with player.balance(B) > resBounty ∧ phase = Resolution do
89: player.transfer(resBounty,B, protocolContract) ▷ To prevent Sybil attacks, player must deposit funds which are returned if

CP is valid
90: revealedSellOrders← revealedSellOrders[revealedSellOrders..width() > wtight ∨ revealedSellOrders.width() = any] ▷ Remove

sell orders that cannot trade due to requested width
91: revealedBuyOrders← revealedBuyOrders[revealedBuyOrders..width() > wtight ∨ revealedBuyOrders.width() = any]
92: Assert(volumeSettled > 0 ∨ minimum(revealedSellOrders.p) < maximum(revealedBuyOrders.p)) ▷ If the indicated clearing

price is below the lowest offer/above highest bid, all of the proceeding checks pass.
93: buyVolume← sum(revealedBuyOrders[revealedBuyOrders.p ≥ CP].size)
94: sellVolume← sum(revealedSellOrders[revealedSellOrders.p ≤ CP].size)
95: Assert(minimum(buyVolume/CP, sellVolume) = volumeSettled))
96: Assert((buyVolume/CP)− sellVolume = imbalance )
97: if imbalance = 0 then ▷ We are done
98: SettleOrders(CP, buyVolume, sellVolume)

99: if imbalance > 0 then ▷ As the auction is bid at CP, check if next price increment above clears higher volume OR smaller
imbalance

100: priceToCheck← CP + minTickSize
101: buyVolumeNew← (buyVolume− sum(revealedBuyOrders[CP ≤ revealedBuyOrders.p < priceToCheck].size))/CP
102: sellVolumeNew← sellVolume + sum(revealedSellOrders[CP < revealedSellOrders.p ≤ priceToCheck].size)
103: Assert((minimum(buyVolumeNew, sellVolumeNew) < volumeSettled) ∨

(minimum(buyVolumeNew, sellVolumeNew) = volumeSettled ∧ imbalance ≤ |buyVolumeNew− sellVolumeNew|)) ▷ If the next
price clears less volume, or clears the same volume with a larger imbalance, the proposed CP is valid

104: SettleOrders(CP, buyVolume, sellVolume)

105: if imbalance < 0 then ▷ As the auction is offered at CP, check if next price increment below clears higher volume OR
smaller imbalance

106: priceToCheck← CP−minTickSize
107: buyVolumeNew← (buyVolume + sum(revealedBuyOrders[CP > revealedBuyOrders.p ≥ priceToCheck].size))/CP
108: sellVolumeNew← sellVolume− sum(revealedSellOrders[CP ≥ revealedSellOrders.p > priceToCheck].size)
109: Assert((minimum(buyVolumeNew, sellVolumeNew) < volumeSettled) ∨

(minimum(buyVolumeNew, sellVolumeNew) = volumeSettled ∧ imbalance ≤ |buyVolumeNew− sellVolumeNew|))
110: SettleOrders(CP, buyVolume, sellVolume)

111: protocolContract.transfer(2resBounty,B, player)) ▷ Return deposit, and reward player for submitting valid clearing price

Algorithm 5 Resolution: Settle Orders

112: function SettleOrders(CP, buyVolume, sellVolume)
113: buyVolume← buyVolume/CP ▷ Convert sell volume to equivalent in Atkn

114: if buyVolume > sellVolume then ▷ pro-rate buy orders at the min price above (or equal to) the clearing price
115: ppro-rate ← minimum(revealedBuyOrders[revealedBuyOrders.p ≥ CP].p)

116: sizepro-rate ← sum(revealedBuyOrders[revealedBuyOrders.p = ppro-rate].size)/CP

117: for order ∈ revealedBuyOrders[revealedBuyOrders.p = ppro-rate] do

118: protocolContract.transfer(order.size · (1− buyVolume−sellVolume
sizepro-rate

),Atkn, order.player) ▷ return tokens not going to be

exchanged

119: order.size← order.size · buyVolume−sellVolume
sizepro-rate

120: else if sellVolume > buyVolume then ▷ pro-rate sell orders at the max price below (or equal to) the clearing price
121: ppro-rate ← maximum(revealedSellOrders[revealedSellOrders.p ≤ CP].p)

122: sizepro-rate ← sum(revealedSellOrders[revealedSellOrders.p = ppro-rate].size)

123: for order ∈ revealedSellOrders[revealedSellOrders.p = ppro-rate] do

124: protocolContract.transfer(order.size · (1− sellVolume−buyVolume
sizepro-rate

),Btkn, order.player) ▷ return tokens not going to be

exchanged

125: order.size← order.size · sellVolume−buyVolume
sizepro-rate

126: for order ∈ revealedBuyOrders, revealedSellOrders do ▷ iterate through orders
127: if order ∈ revealedBuyOrders ∧ (order.p ≥ CP ∨ order.p = mkt) then ▷ execute buy order if bid greater than clearing

price
128: tokenTradeSize← order.size/CP
129: protocolContract.transfer(tokenTradeSize,Btkn, order.player)
130: else if order ∈ revealedSellOrders ∧ (order.p ≤ CP ∨ order.p = mkt) then ▷ execute sell order if bid greater than

clearing price
131: tokenTradeSize← (order.size)/CP
132: protocolContract.transfer(tokenTradeSize,Atkn, order.player)
133: else ▷ Order not executed
134: protocolContract.transfer(order.size, order.tkn, order.player)

135: phase← Commit
136: currAucNotional← 0
137: revealedBuyOrders, revealedSellOrders← []
138: wtight ← any
139: lastPhaseChange← Blockchain.height()
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G Practical Considerations for FairTraDEX

Escrow choices

Choosing escrow amounts for clients and MMs should reflect the emergent use cases of the protocol. It is
possible to create different FairTraDEX instances for the same pair of tokens based on trade size, both for
liquidity purposes (MMs will require wider markets for larger-sized orders, but the corresponding increased
escrow requirements might prevent smaller clients from participating) and auction use-cases (day-trading
vs. end-of-day balancing). Furthermore, as the escrow denomination (B) in our description is different to at
least one of the tokens, there needs to be some way to translate the escrow amount into order sizes. This
will depend on the environment, but on Ethereum for example, price oracles (existing AMMs, Chainlink23,
etc. ) can be used. It is also possible to use previous clearing prices from within the FairTraDEX ecosystem,
although a self-referential oracle must be implemented carefully as there may be game-theoretic implications.
If a satisfactory price oracle exists, deposits can be made in the respective tokens of the swap, further reducing
the capital requirements for players and encouraging adoption.

Incentive compatibility given transaction fees

In Section 5, we mention that our Nash equilibria are dependent on the utility gained by clients and MMs
being greater than the cost for participation. The choice of smart-contract enabled blockchain on which
to deploy will dictate the barrier of entry for clients and MMs alike. Like existing attempts to implement
blockchain-based FBAs [13, 17], we have an amortised number of transactions per player of two. A naive
comparison to AMMs, where this is reduced to 1 for clients, and 0 for MMs, certainly has less direct costs
than FairTraDEX. However, when factors like impermanent loss, slippage24, front-running, and EEV attacks
in general, the value being extracted from DEXs incurs a significant indirect cost for clients. Immediately, we
can increase the expected cost of using AMMs by the slippage required by AMMs (set to 0.5% as of writing
in Uniswap V3, but for larger orders this must increase by the nature of AMMs). We can increase this
further by the probability orders are not executed (where prices move more than the slippage, potentially
due to front-running) but are added to the blockchain. As such, the indirect costs are substantial, are
increasing in order-size increases and proportionally to improvements in client trading ability as strategies
can be replicated/front-run. A thorough comparison of the monetary costs of FairTraDEX vs. AMMs over
various order-sizes, and trading scenarios makes for interesting future work as FairTraDEX begins to be
deployed and tested in the wild.

It can be seen from the proof of Theorem 4.4 that the client strategies identified are strong incentive
compatible in expectation as the MM always shows markets of width less than or equal to fmcf . However, the
MM strategy of showing width 1 markets is not strong incentive compatible. In addition to the fees described
in the protocol, an additional fee can be applied within the protocol itself to incentivise the participation of
MMs. This can be a function of MM participation/market widths. As with all additional fees/rewards, the
game-theoretic implications of such an incentivisation scheme must be considered.

In our encoding of FairTraDEX, we do not explicitly introduce a cost for clients and MMs in Com-
mit/Reveal phases to reward the submission of the clearing price. In reality, the result in Lemma 5.2 holds
without the introduction of an explicit reward, as there all participating clients and MMs will have positive
expectancy to receive tokens through correct order resolution. The use of an explicit reward is for illustrative
purposes, and to avoid complications regarding transaction fees for running the clearing price checks. The
costs of running the Resolution contracts must be ensured to be less than the utility gained by at least one
player in the blockchain protocol for calling the contract.

23https://chain.link/
24https://docs.uniswap.org/protocol/concepts/V3-overview/swaps
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