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Abstract. Various systematic modifications of vectorial Boolean functions have been
used for finding new previously unknown classes of S-boxes with good or even optimal
differential uniformity and nonlinearity. In this paper, a new general modification
method is given that preserves the bijectivity property of the function in case the
inverse of the function admits a linear structure. A previously known construction of
such a modification based on bijective Gold functions in odd dimension is a special
case of the new method.

1 Introduction
Differential uniformity is one of the most extensively studied cryptographic property
of vectorial Boolean functions. By definition, an APN function is differentially δ-
uniform with δ = 2, which is the lowest attainable value of δ. Differential uniformity
is motivated by differential cryptanalysis: the lower differential uniformity, the smaller
probabilities of differentials. Another property of Boolean functions of cryptanalytic
interest is nonlinearity, that is, distance from the set of affine functions. An APN
function cannot have linear components, but already a 4-uniform vectorial Boolean
function can have components with null nonlinearity. An early example of such a
phenomenon was achieved by replacing one component of an APN function by all-zero
Boolean function [Nyb94].
APN permutations are known to exist in all odd dimensions. Their existence in
even dimension is unknown with the exception of dimensions 2 and 4, where no
APN permutations exist, and dimension 6, where only one APN permutation has
been found so far. In the hunt of new examples, researchers are using various smart
heuristics. For example, one can start from a known highly nonlinear permutation
and search over its modifications.
Beierle and Leander suggested that a differentially 4-uniform permutation with a
linear component could be a good starting point when constructing a 4-uniform 2-1
function, which in turn could be extended to a 4-uniform, or possibly even to an APN
permutation [BL20]. Further, they give a construction of a differentially 4-uniform
permutation with null linearity. In odd dimension, their construction is based on
Gold functions, while in even dimension the starting point is the finite field inversion
function.
In this paper, we give a new general construction using which a component of a
permutation can be replaced by a linear function while preserving the bijectivity
property. The only assumption needed in this construction is that the inverse of
the permutation has a component that admits a linear structure. It is well known
that the components of Gold functions have linear structures. Interestingly, when
applied to the inverse of a Gold function, our construction is identical to the one
given by [BL20].
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More accurately speaking, our construction for replacing a component by a linear
function requires the linear structure to be of type 1. When added to the input,
a linear structure of type 1 flips the value of the function. Another type of linear
structures are those of type 0, which have no effect to the value of the function when
added to the input.
We show that also linear structures of type 0 of the components of the inverse of
a permutation can be exploited in constructions of bijective modifications of the
permutation. In that case, the modification is done by adding a linear function to a
component of the permutation in which case the nonlinearity remains unchanged.
These constructions are based on the known properties of the support of the Walsh
transform of a Boolean function with a linear structure.

Outline. We start by introducing the necessary notation and definitions in Section 2.
In Section 3 we recall the properties of the Walsh transform of a Boolean function
admitting a linear structure. A linear structure gives rise to a specific involution as
will be shown in Section 4. Our general construction of the bijective modifications of
S-Boxes is given in Section 5 followed by an application to Gold functions in Section 6
and conclusions in Section 7.

2 Linear Structures
We consider the vector space Fn2 of dimension n over F2 where n is a positive intger. A
vector x ∈ Fn2 can be represented as an n-tuple x = (x1, . . . , xn) of coordinates xi ∈ F2,
i = 1, . . . , n. For two vectors x = (x1, . . . , xn) ∈ Fn2 and y = (y1, . . . , yn) ∈ Fn2 we
define an inner product denoted as x · y by setting

x · y = x1y1 ⊕ · · · ⊕ xnyn.

We denote by ‘⊕’ the addition in Fn2 , while we omit a product sign when denoting
multiplication by an element in F2. The zero element in Fn2 is denoted by 0n, where
the subscript is omitted if n = 1.
Let f : Fn2 → F2 be a Boolean function. Then f is said to have a linear structure if
there is a vector w ∈ Fn2 , w 6= 0n, such that

f(x⊕ w)⊕ f(x) = δ, for all x ∈ Fn2 ,

where δ ∈ F2 is a constant [MS89]. Then we say that w is a linear structure of type δ
of f . Let us denote by W a complemented subspace of {0, w}. Then Fn2 = {0, w}⊕W
and any x ∈ Fn2 has a unique expression of the form x = u⊕ v, where u ∈ {0, w} and
v ∈W . Then the function f can be written as

f(x) = f(u⊕ v) = λ · u⊕ g(v), (1)

for a suitable λ ∈ Fn2 and a Boolean function g : Fn2 → F2, which is independent of the
part u ∈ {0, w} of the input x ∈ Fn2 , see e.g. [Car21]. On the other hand, a Boolean
function of the form (1) has a linear structure w, and moreover, f(x)⊕f(x⊕w) = λ·w,
for all x ∈ Fn2 meaning that the type of the linear structure is determined by λ ·w. The
vector λ in the representation is not unique as any λ satisfying λ · w = δ can be used
there. In particular, we can choose λ = 0 for type 0 linear structure. The function g
is not unique either and depends on the choice of the complemented subspace W of
{0, w}.

3 Balancedness and Linear Structures
A Boolean function f : Fn2 → F2 is said to be balanced if the size of its support is
equal to 2n−1. This is equivalent to saying that the Walsh transform of f at 0n is
equal to 0. All non-constant linear functions are balanced, and therefore, any function
f of the form (1) is balanced if λ · w = 1. The following result is a straightforward
consequence of this property.
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Proposition 1. Suppose that a Boolean function f : Fn2 → F2 has a linear structure
w. Let γ ∈ Fn2 and assume that one of the following two conditions holds:

1. w is of type 0 and γ · w = 1, or

2. w is of type 1 and γ · w = 0.

Then the function x 7→ f(x)⊕ γ · x is balanced.

Proof. Let us express the function f in the form (1). Then

f(x)⊕ γ · x = (λ⊕ γ) · u⊕ (g(v)⊕ γ · v) ,

from where we see that x 7→ f(x)⊕γ ·x is balanced if (λ⊕ γ) ·w = 1. Both conditions
1 or 2 make this happen.

Recalling that the value of the Walsh transform of x 7→ f(x)⊕ γ · x at 0n is equal to
the value of the Walsh transform of f at γ we see that the following result can also
be derived from Proposition 29 of [Car21].

Corollary 1. Suppose that a Boolean function f : Fn2 → F2 has a linear structure w.
Then the following statements hold:

1. w is of type 0 if and only if the function x 7→ f(x)⊕ γ · x is balanced for all γ
such that γ · w = 1.

2. w is of type 1 if and only if the function x 7→ f(x)⊕ γ · x is balanced for all γ
such that γ · w = 0.

Proof. The “only if” parts of the statements are given by Proposition 1. Let us
assume now that the function x 7→ f(x)⊕γ ·x is balanced for all γ such that γ ·w = 1.
If then w is of type 1, it follows by Proposition 1 that this function is balanced also
for all γ such that γ · w = 1, that is, for all γ ∈ Fn2 , which is impossible by Parseval’s
theorem. It follows that w is of type 0 as claimed. The proof of the “if” part of the
second statement is analogical.

4 Permutations Related To Linear Structures
Let F : Fn2 → Fm2 be a vectorial Boolean function. Given a vector β ∈ Fm2 , β 6= 0, we
define a component of F as the Boolean function

x 7→ β · F (x), x ∈ Fn2 ,

and denote this function by β · F .
A vectorial Boolean function from Fn2 to Fn2 is a permutation (bijection) if and only
if all its components are balanced. For a proof of this known fact, see e.g. [Nyb94],
Appendix.
Given a non-zero vector w ∈ Fn2 , the orthogonal complement of {0, w}, denoted as
w⊥, is a vector subspace of Fn2 of dimension n− 1 consisting of all x ∈ Fn2 such that
w · x = 0. Assume that we have a function π : Fn2 → Fn2 such that all its components
γ · π are given, where γ ∈ w⊥. Then it suffices to give one component of π, say α · π,
where α · w = 1 to determine the entire function π : Fn2 → Fn2 . We use this approach
for two alternative constructions of a permutation related to a linear structure of a
Boolean function.

Theorem 1. Let f : Fn2 → F2 be a Boolean function with a linear structure w. We
define a function π : Fn2 → Fn2 by setting

(γ · π) (x) = γ · x, x ∈ Fn2 ,

for all γ ∈ w⊥. The remaining components are defined by first fixing an α /∈ w⊥, that
is, α · w = 1.
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1. If w is of type 0, we set

α · π(x) = f(x)⊕ α · x, x ∈ Fn2 .

2. If w is of type 1, we set

α · π(x) = f(x), x ∈ Fn2 .

Then π is a permutation.

Proof. In the second case, as follows from Proposition 1, the Boolean function
x 7→ f(x)⊕ γ · x is balanced for all γ ∈ w⊥. Then all components of π are balanced,
and hence, π is a bijection.
In the first case, we observe that w is a linear structure of type 1 of the function
x 7→ f(x)⊕ α · x, and then apply the result of the second case to this function.

Corollary 2. In the context of Theorem 1, the permutation π has the following
representations:

1. π(x) = x⊕ f(x)w, if w is of type 0, or

2. π(x) = x⊕ (α · x⊕ f(x))w, if w is of type 1.

The permutation π is not only a permutation but an involution. To see this, let us
first prove the following property.

Lemma 1. Let w be a linear structure of type δ of a Boolean function f , α ∈ Fn2
satisfying α · w = 1, and π the permutation constructed as in Theorem 1. Then

f(π(x)) =
{

f(x), if δ = 0,
α · x, if δ = 1.

Proof. If δ = 0, then

f(π(x)) = f(x⊕ f(x)w) =
{

f(x), if f(x) = 0,
f(x⊕ w) = f(x), if f(x) = 1.

If δ = 1, then

f(π(x)) = f (x⊕ (α · x⊕ f(x))w)
{

f(x), if α · x⊕ f(x) = 0,
f(x⊕ w) = f(x)⊕ 1, if α · x⊕ f(x) = 1,

from where we see that the equality f(π(x)) = α · x holds for all x.

Corollary 3. In the context of Theorem 1, the permutation π is an involution.

Proof. If the linear structure is of type 0, then by Lemma 1 and Corollary 2 we get

π (π(x)) = π(x)⊕ f(π(x))w = x⊕ f(x)w ⊕ f(x)w = x.

If the linear structure is of type 1, we get similarly as above and recalling α · π = f
that

π (π(x)) = π(x)⊕ (α · π(x)⊕ f (π(x)))
= x⊕ (α · x⊕ f(x))w ⊕ (α · π(x)⊕ α · x)w = x.
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5 Modification of S-Boxes
Let F : Fn2 → Fn2 be a bijective S-box. Let us assume that one of its components,
say β · F , has a linear structure of type 1 and let us construct the permutation π
for this Boolean function. Then one component of π equals β · F meaning that one
component of π ◦ F−1 is linear. By the construction of π we also see that 2n−1 other
components of π ◦F−1 are just components of F−1. In this way, we obtain a bijective
modification of F−1 where one component has been replaced by a linear function.
For a linear structure of type 0 the corresponding replacement does not give a linear
function. We state the result as the following theorem.

Theorem 2. Let F : Fn2 → Fn2 be a bijective vectorial Boolean function and assume
that one of its components, say β · F has a linear structure w. Let α ∈ Fn2 be such
that α · w = 1. Then F−1 can be modified in such a way that the changed function is
a bijection by replacing the component α · F−1

1. by the function x 7→ α · F−1(x)⊕ β · x, if the linear structure w is of type 0, or
2. by the linear function x 7→ β · x, if the linear structure w is of type 1.

Proof. Let us recall the constructions of a bijective function π given in Theorem 1 and
apply them to the Boolean function f = β · F and the given α. Since in both cases π
is bijective, also π ◦ F−1 is bijective. We also observe that γ ·

(
π ◦ F−1)

= γ · F−1

for all γ ∈ w⊥. So those components of F−1 remain unchanged. Let us now consider
the component α · F−1.

1. If the linear structure w of β · F is of type 0, then

α ·
(
π ◦ F−1)

(x) = β · F
(
F−1(x)

)
⊕ α · F−1(x)

= β · x⊕ α · F−1(x),

for all x ∈ Fn2 .
2. If the linear structure w of β · F is of type 1, then

α ·
(
π ◦ F−1)

(x) = β · F
(
F−1(x)

)
= β · x,

for all x ∈ Fn2 .

Hence in both cases, the composition π ◦F−1 gives the claimed bijective modification
of F−1.

Recalling that π is an involution we get the following corollary.

Corollary 4. In the context of Theorem 2 we have(
π ◦ F−1)−1 = F ◦ π.

This gives a modification of the original permutation F . By Lemma 1, the component
β · (F ◦ π) of this modification is equal to β · F if the linear structure is of type 0,
that is, this component remains unchanged, while in the case of type 1 we have

β · (F ◦ π) (x) = α · x,

for all x ∈ Fn2 , that is, this component of F is changed to a linear function.

6 Application to APN Gold Functions
Let F2n be an extension field of F2 of dimension n. The absolute trace function
Tr : F2n → F2 is then defined as

Tr(x) = x+ x2 + x22
+ · · ·+ x2n−1

, x ∈ F2n .
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The trace function is a linear function, and any linear function L : F2n → F2 can be
given in a form

L(x) = Tr(ωx), where ω ∈ F2n .

The identification (Fn2 ,⊕) = (F2n ,+) induces a linear space structure to F2n . Using
a suitable linear isomorphism the identification of vectors in Fn2 and field elements
in F2n can be done in such a way that

x · y = Tr(xy), x, y ∈ F2n = Fn2 ,

where we omit a product sign for field multiplication.
The power monomials x 7→ x2i+1, x ∈ F2n , where i is a positive integer, are known
as Gold functions. Gold functions are differentially 2s-uniform, where s = gcd(i, n),
and permutations if and only if n/s is odd [Gol68, Nyb93]. The nonlinearity of a
Gold function is equal to

2n−1 − 2
n+s

2 −1,

and its algebraic degree is equal to 2.
Let us denote by F the Gold function x 7→ x2i+1 with n/s odd. Then the inverse
F−1 is also a power permutation with the exponent d = (2i + 1)−1. The inverse F−1

has the same differential uniformity and nonlinearity as F . Its algebraic degree is
equal to the Hamming weight of the binary representation of d which in general is
higher than 2.
Beierle and Leander studied Gold functions with s = 1 and n odd. They showed
that the inverse of such a Gold function, which is APN and has high nonlinearity,
can be modified by replacing one component by a linear function in such a way that
the resulting modification is also a permutation [BL20]. In such a modification, in
general, the differential unifomity is at most doubled, see e.g. [Nyb94], and in the
APN case, strictly doubled to become 4. Since the algebraic degree of all components
is the same, lowering the degree of one component does not change the algebraic
degree. As a result, they obtained an example of a permutation with differential
uniformity 4, high algebraic degree, and null nonlinearity.
Using the notation of [BL20] this construction is given as

Gα,d : x 7→ xd + Tr
(
αxd + x

)
,

where α ∈ F2n is any element with Tr(α) = 1. To prove that Gα,d is a bijection, they
express Gα,d(x) as G′α,d(xd) where

G′α,d(x) = x+ Tr
(
αx+ x2i+1

)
,

and show that G′α,d is an involution and hence a permutation.
Next we show that this result, with an identical construction of the modification, can
be obtained by application of Theorem 2.
It is easy to see that the component x 7→ Tr(F (x)) has a linear structure w = 1 of
type 1. Indeed,

(x+ 1)2i+1 + x2i+1 = x2i

+ x+ 1,

which has the absolute trace Tr(1) = 1 for all x ∈ F2n and odd n. We fix an α ∈ F2n

with Tr(α) = 1. It follows that Tr(αw) = Tr(α) = 1. Then the permutation π given
in Theorem 1 for f(x) = Tr(F (x)) can be expressed as follows

π(x) = x⊕ (α · x⊕ f(x))w = x+ (Tr(αx) + Tr(F (x)) = x+ Tr (αx+ F (x))

using the representation of π given in Corollary 2. We observe that π = G′α,d and
conclude that Gα,d = π ◦F−1. Let us also note that the inverse of Gα,d gives another
example of a differentially 4-uniform permutation with a linear component.
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The proof of the bijectivity of the function G′α,d by [BL20] depends heavily on the
form of the Gold function and many arithmetical properties of the field Fn2 . Our
approach to this modification is more general and works for any permutation from the
linear space Fn2 to Fn2 that has a component with a linear structure. The modification
F ◦ π, which can be applied even if F is not a permutation, remains to be studied.

7 Conclusions
In this paper, we presented a new general method of how to modify a component
of a permutation from Fn2 to Fn2 using a linear function while preserving bijectivity.
This method allows to replace the component by a linear function or to add a linear
function to the component depending on the type of the linear structure. Only a
linear structure of type 1 allows a modification that changes the nonlinearity of the
permutation.
We also showed that the bijective transform, using which the modification of the
permutation is done, has appeared already in [BL20] in the context of APN Gold
functions in odd dimension. Against this background our main contribution is the
discovery of the connection between the existence of linear structures of type 1 and
this modification method. This connection also allowed us to generalise the method
and extend its applicability beyond bijective APN Gold functions in odd dimension.
Note that the modification is independent of the APN property, and when applying
it, the differential uniformity is at most doubled. For APN functions, it is strictly
doubled, but in general it may remain less. Potential applications to be studied are
bijective Gold functions in even dimension, which in the best case are differentially
4-uniform, and more generally, permutations with partially bent components.
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