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Abstract

Various systematic modifications of vectorial Boolean functions have
been used for finding new previously unknown classes of S-boxes
with good or even optimal differential uniformity and nonlinear-
ity. In this paper, a new general modification method is given
that preserves the bijectivity property of the function in case the
inverse of the function admits a linear structure. A previously
known construction of such a modification based on bijective Gold
functions in odd dimension is a special case of the new method.
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1 Introduction

Differential uniformity is one of the most extensively studied cryptographic
property of vectorial Boolean functions. By definition, an APN function is
differentially δ-uniform with δ = 2, which is the lowest attainable value of
δ. Differential uniformity is motivated by differential cryptanalysis: the lower
differential uniformity, the smaller probabilities of differentials. Another prop-
erty of a Boolean function of cryptanalytic interest is nonlinearity, that is, the
minimum Hamming distance to all affine Boolean functions. All components
of an APN function have also high nonlinearity, but already a 4-uniform func-
tion can have affine components, in which case the function is said to have null
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nonlinearity. An early example of such a phenomenon was achieved by replac-
ing one component of an APN function by all-zero Boolean function Nyberg
(1994).

APN permutations are known to exist in all odd dimensions. Their exis-
tence in even dimension is unknown with the exceptions of dimensions 2 and
4, where no APN permutations exist, and dimension 6, where only one APN
permutation has been found so far. In the hunt of new examples, researchers
are using various smart heuristics. For example, one can start from a known
highly nonlinear permutation and search over its modifications.

Beierle and Leander suggested that a differentially 4-uniform permutation
with a linear component could be a good starting point when constructing a
4-uniform 2-1 function, which in turn could be extended to a 4-uniform, or
possibly even to an APN permutation Beierle and Leander (2020). Further,
they give a construction of a differentially 4-uniform permutation with null
linearity. In odd dimension, their construction is based on Gold functions,
while in even dimension the starting point is the finite field inversion function.

Related work

Charpin and Kyureghyan studied permutation polynomials of the shape

F (X) = G(X) + γTr (H(X))

where γ ∈ F2n , and G(X) and H(X) are polynomials over the finite field
F2n Charpin and Kyureghyan (2008). They characterised the polynomials of
this shape in the case where G(X) is a permutation polynomial based on the
known properties of the support of the Walsh transform of a Boolean function
with a linear structure of type 0. A linear structure of a Boolean function is an
element which, when added to the input, either keeps the value the same for all
inputs, or flips the value for all inputs. In the former case, the linear structure
is said to be of type 0, while in the latter case, it is said to be of type 1.

In terms of functions over F2n the characterisation by Charpin and
Kyureghyan can be stated as follows: A function of the shape

x 7→ G(x) + γTr (H(x))

where γ ∈ F2n , G is a permutation over F2n , and H is a function from F2n

to F2n , is a permutation if and only if there is a function R : F2n → F2n

such that H = R ◦ G and γ is a linear structure of type 0 of the Boolean
function x 7→ Tr (R(x)). This result was generalised to the case of odd cha-
racteristic by Charpin and Kyureghyan (2009) and later applied to monomial
functions with linear structures to obtain infinite families of sparse permutation
polynomials Charpin and Kyureghyan (2010).

By applying this result to the case where G is the identity function one
obtains that for a given Boolean function g, the mapping

π : x 7→ x+ γg(x), x ∈ F2n ,
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is a permutation if and only if γ is a linear structure of type 0 of g. The fact
that π is an involution was later used in construction of infinite families of
involutions Charpin et al (2015).

Contribution of this paper

The permutation π discussed above is in the core of our construction. When
composed with a function, the permutation π changes half of the components
of the function by adding the Boolean function g to them, while the second
half of the components remain intact.

In this paper, we study conditions under which the components of a per-
mutation can be changed in such a way that one component becomes linear.
We show that this can be achieved if the inverse of the permutation has a
component that admits a linear structure of type 1. It is well known that the
components of certain Gold functions have linear structures of type 1. Inter-
estingly, when applied to the inverse of a Gold function in odd dimension, our
construction is identical to the one given by Beierle and Leander (2020).

Outline

We start by introducing the most important notation and definitions in
Section 2. For unexplained terminology we refer to Carlet (2021). In Section 3
we recall the properties of the Walsh transform of a Boolean function admit-
ting a linear structure. A linear structure gives rise to a specific involution as
will be shown in Section 4. Our general construction of the bijective modifi-
cations of S-Boxes is given in Section 5 followed by an application to Gold
functions in Section 6 and conclusions in Section 7.

2 Linear Structures

We consider the vector space Fn2 of dimension n over F2 where n is a positive
integer. A vector x ∈ Fn2 can be represented as an n-tuple x = (x1, . . . , xn) of
coordinates xi ∈ F2, i = 1, . . . , n. For two vectors x = (x1, . . . , xn) ∈ Fn2 and
y = (y1, . . . , yn) ∈ Fn2 we define an inner product denoted as x · y by setting

x · y = x1y1 ⊕ · · · ⊕ xnyn.

We denote by ‘⊕’ the addition in Fn2 , while we omit a product sign when
denoting multiplication by an element in F2. The zero element in Fn2 is denoted
by 0n, where the subscript is omitted if n = 1.

Let f : Fn2 → F2 be a Boolean function. Then f is said to have a linear
structure if there is a vector w ∈ Fn2 , w 6= 0n, such that

f(x⊕ w)⊕ f(x) = δ, for all x ∈ Fn2 ,

where δ ∈ F2 is a constant Meier and Staffelbach (1989). Then we say that w is
a linear structure of type δ of f . Let us denote by W a complemented subspace
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of {0, w}. Then Fn2 = {0, w} ⊕W and any x ∈ Fn2 has a unique expression of
the form x = u⊕ v, where u ∈ {0, w} and v ∈W . Then the function f can be
written as

f(x) = f(u⊕ v) = λ · u⊕ g(v), (1)

for a suitable λ ∈ Fn2 and a Boolean function g : Fn2 → F2, which is independent
of the part u ∈ {0, w} of the input x ∈ Fn2 , see e.g. Carlet (2021). On the
other hand, a Boolean function of the form (1) has a linear structure w, and
moreover, f(x) ⊕ f(x ⊕ w) = λ · w, for all x ∈ Fn2 meaning that the type of
the linear structure is determined by λ ·w. The vector λ in the representation
is not unique as any λ satisfying λ · w = δ can be used there. In particular,
we can choose λ = 0 for type 0 linear structure. The function g is not unique
either and depends on the choice of the complemented subspace W of {0, w}.

3 Balancedness and Linear Structures

A Boolean function f : Fn2 → F2 is said to be balanced if the size of its support
is equal to 2n−1. This is equivalent to saying that the Walsh transform of f at
0n is equal to 0. All non-constant linear functions are balanced, and therefore,
any function f of the form (1) with λ ·w = 1 is balanced. The following result
is a straightforward consequence of this property.

Proposition 1. Suppose that a Boolean function f : Fn2 → F2 has a linear
structure w. Let γ ∈ Fn2 and assume that one of the following two conditions
holds:

1. w is of type 0 and γ · w = 1, or
2. w is of type 1 and γ · w = 0.

Then the function x 7→ f(x)⊕ γ · x is balanced.

Proof Let us express the function f in the form (1). Then

f(x)⊕ γ · x = (λ⊕ γ) · u⊕ (g(v)⊕ γ · v) ,

from where we see that x 7→ f(x)⊕γ ·x is balanced if (λ⊕ γ) ·w = 1. Both conditions
1 or 2 make this happen. �

Recalling that the value of the Walsh transform of x 7→ f(x)⊕γ ·x at 0n is
equal to the value of the Walsh transform of f at γ we see that the following
result is equivalent to Proposition 29 of Carlet (2021).

Corollary 1. Suppose that a Boolean function f : Fn2 → F2 has a linear
structure w. Then the following statements hold:

1. w is of type 0 if and only if the function x 7→ f(x)⊕ γ ·x is balanced for all
γ such that γ · w = 1.
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2. w is of type 1 if and only if the function x 7→ f(x)⊕ γ ·x is balanced for all
γ such that γ · w = 0.

Proof The “only if” parts of the statements are given by Proposition 1. Let us assume
now that the function x 7→ f(x) ⊕ γ · x is balanced for all γ such that γ · w = 1. If
then w is of type 1, it follows by Proposition 1 that this function is balanced also for
all γ such that γ · w = 1, that is, for all γ ∈ Fn2 , which is impossible by Parseval’s
theorem. It follows that w is of type 0 as claimed. The proof of the “if” part of the
second statement is analogical. �

4 Permutations Related To Linear Structures

Let F : Fn2 → Fm2 be a vectorial Boolean function. Given a vector β ∈ Fm2 ,
β 6= 0, we define a component of F as the Boolean function

x 7→ β · F (x), x ∈ Fn2 ,

and denote this function by β · F .
A vectorial Boolean function from Fn2 to Fn2 is a permutation (bijection) if

and only if all its components are balanced. For a proof of this known fact, see
e.g. Nyberg (1994), Appendix.

Given a non-zero vector w ∈ Fn2 , the orthogonal complement of {0, w},
denoted as {0, w}⊥, is a vector subspace of dimension n − 1 of Fn2 consisting
of all x ∈ Fn2 such that w ·x = 0. Assume that we have a function π : Fn2 → Fn2
such that all its components γ ·π are given, where γ ∈ {0, w}⊥. Then it suffices
to give one component of π, say α · π, where α ·w = 1 to determine the entire
function π : Fn2 → Fn2 . We use this approach for two alternative constructions
of a permutation related to a linear structure of a Boolean function. The results
of Theorem 1 and Corollary 2 follow also from Theorem 2 of Charpin and
Kyureghyan (2008). The proofs are given here in the linear algebraic setting
to illustrate the properties of our construction.

Theorem 1. Let f : Fn2 → F2 be a Boolean function with a linear structure
w. We define a function π : Fn2 → Fn2 by setting

(γ · π) (x) = γ · x, x ∈ Fn2 ,

for all γ ∈ {0, w}⊥. The remaining components are defined by first fixing an
α /∈ {0, w}⊥, that is, α · w = 1.

1. If w is of type 0, we set

α · π(x) = f(x)⊕ α · x, x ∈ Fn2 .
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2. If w is of type 1, we set

α · π(x) = f(x), x ∈ Fn2 .

Then π is a permutation.

Proof In the second case, as follows from Proposition 1, the Boolean function x 7→
f(x)⊕ γ · x is balanced for all γ ∈ {0, w}⊥. Then all components of π are balanced,
and hence, π is a bijection.

In the first case, we observe that w is a linear structure of type 1 of the function
x 7→ f(x)⊕α ·x, and then apply the result of the second case to this function. �

Corollary 2. In the context of Theorem 1, the permutation π has the following
representations:

1. π(x) = x⊕ f(x)w, if w is of type 0, or
2. π(x) = x⊕ (α · x⊕ f(x))w, if w is of type 1.

The permutation π is not only a permutation but an involution, see
also Charpin et al (2015). To prove it, let us start with the following property.

Lemma 1. Let w be a linear structure of type δ of a Boolean function f ,
α ∈ Fn2 satisfying α·w = 1, and π the permutation constructed as in Theorem 1.
Then

f(π(x)) =

{
f(x), if δ = 0,
α · x, if δ = 1.

Proof If δ = 0, then

f(π(x)) = f(x⊕ f(x)w) =

{
f(x), if f(x) = 0,
f(x⊕ w) = f(x), if f(x) = 1.

If δ = 1, then

f(π(x)) = f (x⊕ (α · x⊕ f(x))w)

{
f(x), if α · x⊕ f(x) = 0,
f(x⊕ w) = f(x)⊕ 1, if α · x⊕ f(x) = 1,

from where we see that the equality f(π(x)) = α · x holds for all x. �

Corollary 3. In the context of Theorem 1, the permutation π is an involution.

Proof If the linear structure is of type 0, then by Lemma 1 and Corollary 2 we get

π (π(x)) = π(x)⊕ f(π(x))w = x⊕ f(x)w ⊕ f(x)w = x.

If the linear structure is of type 1, we get similarly as above and recalling α · π = f
that

π (π(x)) = π(x)⊕ (α · π(x)⊕ f (π(x)))

= x⊕ (α · x⊕ f(x))w ⊕ (α · π(x)⊕ α · x)w = x.

�
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5 Modifications of S-Boxes

Let F : Fn2 → Fn2 be a bijective S-box. Let us assume that one of its com-
ponents, say β · F , has a linear structure of type 1 and let us construct the
permutation π for this Boolean function. Then one component of π equals β ·F
meaning that one component of π ◦F−1 is linear. By the construction of π we
also see that 2n−1 other components of π ◦ F−1 are just components of F−1.
In this way, we obtain a bijective modification of F−1 where one component
has been replaced by a linear function. For a linear structure of type 0 the
corresponding replacement does not give a linear function. We state the result
as the following theorem.

Theorem 2. Let F : Fn2 → Fn2 be a bijective vectorial Boolean function and
assume that one of its components, say β · F has a linear structure w. Let
α ∈ Fn2 be such that α ·w = 1. Then F−1 can be modified in such a way that the
new function is also a permutation, all components γ · F−1 with γ ∈ {0, w}⊥
remain intact, and the component α · F−1 is replaced

1. by the function x 7→ α · F−1(x) ⊕ β · x, if the linear structure w is of type
0, or

2. by the linear function x 7→ β · x, if the linear structure w is of type 1.

Proof Let us recall the constructions of a bijective function π given in Theorem 1 and
apply them to the Boolean function f = β ·F and the given α. Since in both cases π

is bijective, also π ◦ F−1 is bijective. We also observe that γ ·
(
π ◦ F−1

)
= γ · F−1

for all γ ∈ {0, w}⊥. So those components of F−1 remain unchanged. Let us now
consider the component α · F−1.

1. If the linear structure w of β · F is of type 0, then

α ·
(
π ◦ F−1

)
(x) = β · F

(
F−1(x)

)
⊕ α · F−1(x)

= β · x⊕ α · F−1(x),

for all x ∈ Fn2 .
2. If the linear structure w of β · F is of type 1, then

α ·
(
π ◦ F−1

)
(x) = β · F

(
F−1(x)

)
= β · x,

for all x ∈ Fn2 .

Hence in both cases, the composition π◦F−1 gives the claimed bijective modification
of F−1. �

Recalling that π is an involution we get the following corollary.
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Corollary 4. In the context of Theorem 2 we have(
π ◦ F−1

)−1
= F ◦ π.

This gives a modification of the original permutation F . By Lemma 1, the
component β ·(F ◦ π) of this modification is equal to β ·F if the linear structure
is of type 0, that is, this component remains unchanged, while in the case of
type 1 we have

β · (F ◦ π) (x) = α · x,

for all x ∈ Fn2 , that is, this component of F , which has a linear structure, is
changed to a linear function.

6 Application to APN Gold Functions

Let F2n be an extension field of F2 of dimension n. The absolute trace function
Tr : F2n → F2 is then defined as

Tr(x) = x+ x2 + x2
2

+ · · ·+ x2
n−1

, x ∈ F2n .

The trace function is a linear function, and any linear function L : F2n → F2

can be given in a form

L(x) = Tr(ωx), where ω ∈ F2n .

The identification (Fn2 ,⊕) = (F2n ,+) induces a linear space structure to F2n .
Using a suitable linear isomorphism the identification of vectors in Fn2 and field
elements in F2n can be done in such a way that

x · y = Tr(xy), x, y ∈ F2n = Fn2 ,

where we omit a product sign for field multiplication.
The power monomials x 7→ x2

i+1, x ∈ F2n , where i is a positive integer, are
known as Gold functions. Gold functions are differentially 2s-uniform, where
s = gcd(i, n), and permutations if and only if n/s is odd Gold (1968); Nyberg
(1993). The nonlinearity of a Gold function is equal to

2n−1 − 2
n+s
2 −1,

and its algebraic degree is equal to 2.
Let us denote by F the Gold function x 7→ x2

i+1 with n/s odd. Then the
inverse F−1 is also a power permutation with the exponent d = (2i + 1)−1.
The inverse F−1 has the same differential uniformity and nonlinearity as F . Its
algebraic degree is equal to the Hamming weight of the binary representation
of d which in general is higher than 2.
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Beierle and Leander studied Gold functions with s = 1 and n odd. They
showed that the inverse of such a Gold function, which is APN and has high
nonlinearity, can be modified by replacing one component by a linear function
in such a way that the resulting modification is also a permutation Beierle and
Leander (2020). In such a modification, in general, the differential unifomity is
at most doubled, see e.g. Nyberg (1994), and in the APN case, strictly doubled
to become 4. Since the algebraic degree of all components is the same, lowering
the degree of one component does not change the algebraic degree. As a result,
they obtained an example of a permutation with differential uniformity 4, high
algebraic degree, and null nonlinearity.

Using the notation of Beierle and Leander (2020) this construction is given
as

Gα,d : x 7→ xd + Tr
(
αxd + x

)
,

where α ∈ F2n is any element with Tr(α) = 1. To prove that Gα,d is a bijection,
they express Gα,d(x) as G′α,d(x

d) where

G′α,d(x) = x+ Tr
(
αx+ x2

i+1
)
,

and show that G′α,d is an involution and hence a permutation.
Next we show that this result, with an identical construction of the

modification, can be obtained by application of Theorem 2.
It is easy to see that the component x 7→ Tr(F (x)) has a linear structure

w = 1 of type 1. Indeed,

(x+ 1)2
i+1 + x2

i+1 = x2
i

+ x+ 1,

which has the absolute trace Tr(1) = 1 for all x ∈ F2n and odd n. We fix
an α ∈ F2n with Tr(α) = 1. It follows that Tr(αw) = Tr(α) = 1. Then the
permutation π given in Theorem 1 for f(x) = Tr(F (x)) can be expressed as
follows

π(x) = x⊕ (α · x⊕ f(x))w = x+ (Tr(αx) + Tr(F (x)) = x+ Tr (αx+ F (x))

using the representation of π given in Corollary 2. We observe that π = G′α,d
and conclude that Gα,d = π ◦ F−1. Let us also note that the inverse of Gα,d
given as

F ◦ π(x) = x2
i+1 + (x2

i

+ x+ 1)Tr
(
αx+ x2

i+1
)

gives another example of a differentially 4-uniform permutation with a linear
component Tr (F ◦ π(x)) = αx .

The proof of the bijectivity of the function G′α,d by Beierle and Leander
(2020) depends heavily on the form of the Gold function and many arithmetical
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properties of the field Fn2 . Our approach to this modification is more general
and works for any permutation from the linear space Fn2 to Fn2 that has a
component with a linear structure. The modification F ◦ π, which can be
applied even if F is not a permutation, remains to be studied.

7 Conclusions

In this paper, we presented a new general method of how, given a permutation
that has a component with a linear structure of type 1, one can construct a
permutation from Fn2 to Fn2 with null nonlinearity.

We also showed that the bijective transform, with the help of which the
modification of the permutation is done, is the same as the one appeared
already in Beierle and Leander (2020) in the context of APN Gold functions in
odd dimension. Against this background our main contribution is the discovery
of the connection between the existence of linear structures of type 1 and
this modification method. This connection also allowed us to generalise the
method and extend its applicability beyond bijective APN Gold functions in
odd dimension. Note that the modification is independent of the APN property,
and when applying it, the differential uniformity is at most doubled. For APN
functions, it is strictly doubled, but in general it may remain less. Potential
applications to be studied are bijective Gold functions in even dimension, which
in the best case are differentially 4-uniform, and more generally, permutations
with partially bent components.

Finally, let us note that the existence of a linear structure of type 1 of the
inverse permutation is also a necessary condition for the modification made
with the help of the involution π as described in Theorem 2 and its second
point. For the details including discussion about the example of Beierle and
Leander (2020) in even dimension we refer to Nyberg (2022).
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