
EXTENSIBLE DECENTRALIZED SECRET SHARING AND
APPLICATION TO SCHNORR SIGNATURES

MICHELE BATTAGLIOLA, RICCARDO LONGO, AND ALESSIO MENEGHETTI

Abstract. Starting from links between coding theory and secret sharing we develop an
extensible and decentralized version of Shamir Secret Sharing, that allows the addition
of new users after the initial shares distribution.

On top of it we design a totally decentralized (t, n)-threshld Schnorr signature scheme
that needs only t users online during the key generation phase, while the others join
later.

Under standard assumptions we prove our scheme secure against adaptive malicious
adversaries. Furthermore, we show how our security notion can be strengthen when
considering a rushing adversary. Using a classical game-based argument, we prove that
if there is an adversary capable of forging the scheme with non-negligible probability, then
we can build a forger for the centralized Schnorr scheme with non-negligible probability.

1. Introduction

Decentralized systems are slowly becoming a desirable alternative to centralized ones,
due to the advantages of distributing the management of data, such as avoiding single-
points-of-failures or the secure storage of crypto-assets. For them to become a viable
alternative, it is necessary to use secure decentralized cryptoghraphic schemes. In particu-
lar, digital signature schemes assume a central role in this setting, as hinted by the amount
of recent works on multi-user schemes and threshold variant of signature protocols (see e.g.
[1, 2, 5, 4]).

Roughly summarizing, a threshold variant of a scheme is composed by three algorithms:
a multi-party key-generation algorithm, a multi-party signature algorithm, and a verifica-
tion algorithm which is the same as the one of the centralized scheme. In this context, the
multi-party key-generation algorithms usually employ a secret-sharing scheme to obtain a
set of shares of the keys used to sign and verify signatures. The most established scheme is
Shamir’s Secret Sharing Scheme, a secure protocol based on polynomial evaluation. Even
though efficient and secure, this scheme relies on a central authority that generates the
shares and provides them to the participants to the threshold scheme. In order to achieve
a completely decentralized scheme it is therefore necessary to utilize a variant of Shamir’s
scheme in which the dealer is not a single authority, such as for example the scheme
described in [7, Section 5.2]. In this work we present a (t, n) generalisation of Schnorr’s
(2, 3)-Theshold Signature [1], using a decentralized secret-sharing scheme, where the dealer
is replaced by a set of users.

Moreover, we also generalize the concept of offline participant defined in [2] with the
introduction of an “extensible” key generation, developing a protocol that needs only t
participants online during the key generation phase but later can be extended to involve
new parties. Indeed, any set of at least t users is able to generate new shards of the private
key, allowing the addition of new participants (which have the same characteristics of the
initial users) without altering neither the threshold nor the public key.

1.1. Organization. We start with some preliminaries in Section 2, showing how results
from coding theory could be useful in building a Secret Sharing Scheme, defining some
notation, and introducing some cryptographic primitives used later on. Then, in Section 3,

1

2 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

we formally define our extensible decentralized secret sharing we use for the key generation
algorithm.

In Section 4 we describe the (t, n)-threshold Schnorr Signature. Finally, in Section 5 we
prove the security of our protocol.

2. Preliminaries

2.1. Notation. We use the symbol || to indicate the concatenation of bit-strings.
In the following when we say that an algorithm is efficient we mean that it runs in

(expected) polynomial time in the size of the input, possibly using a random source.
We use a blackboard-bold font to indicate algebraic structures (i.e. sets, groups, rings,

fields and elliptic curves). When speaking about a generic group G, we use multiplicative
notation unless stated otherwise.

When describing communication steps we will use two indexes, the first denotes the
sender, while the second the receiver (i.e. the symbol xi,j denotes that the value x was
generated by party i and sent to party j).

With an abuse of notation we sometimes say that a list is a subset of a set. In this
context we simply mean that every element of that list is an element of the set.

2.2. From MDS Codes to Secret Sharing. Let Fq be the finite field with q elements
and let α be an agreed-upon primitive element of Fq. Let {p(i)}i=1,...,τ ⊆ Fq[x] be a set of
τ polynomials of degree t− 1, so p(i) =

∑t−1
k=0 p

(i)
k xk, where p

(i)
k ∈ Fq is the k-th coefficient

of the polynomial p(i).
Let p =

∑τ
i=1 p

(i), with coefficients pk =
∑τ

i=1 p
(i)
k for k = 0, . . . , t − 1, and define

βj = p(αj). Note that, if we define βi,j = p(i)(αj) for i ∈ {1, . . . , τ} and j ∈ {1, . . . , q − 1},
then we have that βj =

∑τ
i=1 βi,j .

Definition 1. Let J = [j1, . . . , jn] be a list of 1 ≤ n ≤ q − 1 distinct integers in
{0, . . . , q − 1}. We define GJ as the (t× n) matrix

GJ =
[
αj·k]

k∈{0,...,t−1}, j∈J

If n = 1 then J = [j] and we sometimes simply use Gj instead of G[j].

Lemma 1. For any t ≤ n ≤ q − 1 and for any J = [j1, . . . , jn], the matrix GJ is the
generator matrix of a punctured [n, t]q Reed-Solomon code. In particular:

• GJ has maximum rank for any J = [j1, . . . , jn];
• if n = t then GJ is invertible;
• if n = q − 1 then GJ is a standard generator matrix (given as a Vandermonde

matrix) of a [q − 1, t]q Reed-Solomon code.

Lemma 1 summarizes the properties of the matrix defined in Definition 1 and the link
with Reed-Solomon codes [8]. An interested reader can refer to [9] for a comprehensive
introduction to Coding Theory with a focus on Reed-Solomon codes and algebraic codes.
We remark that the link with Reed-Solomon codes derives from the matrix in Definition 1.

An alternative and more general approach would be to use any t× n matrix with coef-
ficients in Fq. In this case Lemma 1 would become a summary of the required properties
that the matrix should satisfy in order to achieve similar results. In particular, we remark
that it is possible to substitute our definition with the one of Extended Generalized Reed-
Solomon codes, a choice that would allow a broader set of acceptable parameters (e.g. in
Definition 1 n can be at most q + 1 instead of q − 1). We focus however on Vandermonde
matrices to explicit the parallelism with the classical version of Shamir’s Secret Sharing
Scheme.

Now we show that, since p has degree at most t − 1, given any list J ⊆ {1, . . . , q − 1}
of cardinality at least t, with the list of evaluations [βj]j∈J it is possible to interpolate the

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES3

polynomial p. That is, the coefficients pk can be reconstructed and therefore the evaluation
p(γ) in any element γ ∈ Fq can be computed.

Proposition 1. Let J = [j1, . . . , jt] be a list of t distinct integers in {1, . . . , n}, and let
GJ be the square matrix constructed as in Definition 1. Then:

(p0, . . . , pt−1) = (βj1 , . . . , βjt) ·G−1
J .

Proof. For any j ∈ {1, . . . , q} we have that βj = p(αj) =
∑t−1

k=0 pk·(αj)k = (p0, . . . , pt−1)Gj ,
thus:

(2.1) (p0, . . . , pt−1) ·GJ = (βj1 , . . . , βjt).

By Lemma 1, since J has cardinality t, then GJ is invertible, so we can multiply both sides
of Equation (2.1) by G−1

J and conclude our proof. □

Proposition 2. Let h be any integer in {1, . . . , n}, let J = [j1, . . . , jt] be a list of t distinct
integers in {1, . . . , n}, and let eℓ be the ℓ-th element of the standard basis of (Fq)

t. Then:

βh =
t∑

ℓ=1

f(βjℓ , h, J, ℓ),

where for any ℓ ∈ {1, . . . , t} we define the function f as:

(2.2) f(x, h, J, ℓ) = x · eℓG−1
J Gh.

Proof. Observe that eℓ · G−1
J is the ℓ-th row of G−1

J . By linearity, from Proposition 1 we
have:

(p0, . . . , pt−1) =
t∑

ℓ=1

βjℓeℓ ·G
−1
J .

So:
t∑

ℓ=1

f(βjℓ , h, J, ℓ) =
t∑

ℓ=1

βjℓeℓG
−1
J Gh = (p0, . . . , pt−1)Gh = βh,

as shown in the proof of Proposition 1. □

An interesting consequence of Proposition 2 is that t distinct shares are sufficient to com-
pute any other share. However, observe that it is possible to obtain βjℓ from f(βjℓ , h, J, ℓ),
since both GJ and Gh can be easily computed even without knowing anything about the
polynomials. This means that Proposition 2 should not be used directly to distribute new
shares of a secret, in order to preserve the privacy of the old shares.

A simple workaround is to split these secret values. Let bh,J,ℓ,k be chosen at random in
Fq for k ∈ {1, . . . , t} \ {ℓ}, and set bh,J,ℓ,ℓ = f(βjℓ , h, J, ℓ)−

∑t
k=1,k ̸=ℓ bh,J,ℓ,k. If we define

bh,J,k =
∑t

ℓ=1 bh,J,ℓ,k, then we have that:

(2.3)
t∑

k=1

bh,J,k =
t∑

k=1

(
t∑

ℓ=1

bh,J,ℓ,k

)
=

t∑
ℓ=1

(
t∑

k=1

bh,J,ℓ,k

)
=

t∑
ℓ=1

f(βjℓ , h, J, ℓ) = βh

Note that the random values are completely canceled out only when summing all the bh,J,k,
this means that the values βjℓ remain hidden, so this is a safe way to generate new shares.

2.3. Commitments. A commitment scheme [3] is composed by two algorithms:
• Com(m, r): which given the message m to commit and some random value r

(sometimes we will omit this randomness in our notation) outputs the commitment
KGC and the decommitment KGD.

• Ver(KGC, KGD): which given a commitment and its decommitment outputs the com-
mitted message m if the verification succeeds, ⊥ otherwise.

A commitment scheme must have the following two properties:

4 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

• Binding: given KGC, it is infeasible to find values m′ ̸= m and KGD, KGD′ such
that Ver(KGC, KGD) = m and Ver(KGC, KGD′) = m′. We say that the commitment is
perfectly binding if the hiding property holds even if the adversary has unbounded
computational power.

• Hiding: Let [KGC1, KGD1] = Com(m1, r1) and [KGC2, KGD2] = Com(m2, r2) with
m1 ̸= m2, then it is infeasible for an attacker having only KGC1, KGC2, m1 and m2

to distinguish which KGCi corresponds to which mi. We say that the commitment
is perfectly hiding if the hiding property holds even if the adversary has unbounded
computational power.

Notice that perfect hiding and perfect binding are mutually exclusive properties, in fact
in a perfectly binding commitment KGC can be decommitted in at most one way, so a
computationally unbounded adversary can violate the hiding property via a brute-force
search.

For our Extensible Decentralized Verifiable Secret Sharing Scheme, described in Sec-
tion 3, we need a homomorphic commitment, that is a commitment HCom for which the
following properties hold for all m0,m1, z0, z1, γ ∈ Fq:

HCom(m0; z0) ·HCom(m1; z1) = HCom(m0 +m1; z0 + z1),

HCom(m0; z0)
γ = HCom(γ ·m0; γ · z0).

The Pedersen commitment [6], based on the difficulty of the discrete logarithm, is a
perfectly hiding homomorphic commitment scheme which works as follows:

Setup: let G be a group of prime order q where the DLOG problem is hard (for
the binding property to hold), and g, h be random generators of G, then the
message space of the commitment scheme is Zq, the randomizer space is Zq and
the commitment space is G;

Commitment: to commit to m ∈ Zq using the randomizer z ∈ Zq, the committer
computes C = HCom(m, z) = gm · hz;

Verification: the decommitment is the pair (m, z), and Ver(C,m, z) simply outputs
m if C = gm · hz, ⊥ otherwise.

3. Extensible Decentralized Verifiable Secret Sharing Protocol

In this section we will give a brief description of our decentralized variant of the Verifiable
Secret Sharing Scheme by Pedersen [6], which includes the feature of adding new users.

Let P1, . . . , Pn be n parties participating in the secret sharing scheme, and let t ≤ n be
the chosen threshold.

We assume that q is big enough that, given n polynomials of degree d sampled uniformly
at random, the probability of their sum to be of degree d′ < d is negligible. Finally, we use
a homomorphic commitment HCom as defined in Section 2.3.

3.1. Secret Generation. The distributed secret generation algorithm is carried out by
the first τ ≤ n parties {P1, . . . , Pτ}, and proceeds as follows:

(1) Each Pi for i ∈ {1, . . . , τ} generates a secret polynomial p(i) ∈ Fq[x] of degree t−1,
by sampling the coefficients p

(i)
k uniformly at random in Fq.

(2) The constant term p0 of the summation polynomial p (see Section 2.2) is implicitly
defined as the secret to be shared. Note that no single party Pi for any i knows
this secret.

(3) Each Pi samples another random polynomial z(i) ∈ Fq[x] of degree t− 1, and uses
its coefficients to compute and publish the commitments to the coefficients of their
secret polynomial p(i): C0,i,k = HCom

(
p
(i)
k ; z

(i)
k

)
.

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES5

(4) After having received every single commitment C0,j,k, for j ∈ {1, . . . , τ} and
k ∈ {0, . . . , t− 1}, each Pi sends to each Pj the polynomial evaluations βi,j = p(i)(αj)

and γi,j = z(i)(αj).
(5) Each Pi for i ∈ {1, . . . , τ} sends (βi,j , γi,j) also to every party Pj for j ∈ {τ +

1, . . . , n}.
(6) Exploiting the homomorphic properties of the commitment, each Pi for i ∈ {1, . . . , n}

checks the values received against the published commitments:

(3.1) HCom(βj,i; γj,i)
?
=

t−1∏
k=0

(C0,j,k)
(αi)k ,

for j ∈ {1, . . . , τ}.
(7) If all of these checks pass, each Pi sets its share of the newly generated secret as

βi =
∑τ

j=1 βj,i, and saves the checking value γi =
∑τ

j=1 γj,i.

3.2. Secret Reconstruction. If J ⊆ {1, . . . , q} is a list of t distinct indexes, then with
the vector of shares (βj)j∈J it is possible to reconstruct the secret p0 as follows:

p0 = (βj)j∈J ·G−1
J · eT1 ,

which is a direct consequence ofProposition 1. Let ℓ ∈ {1, . . . , t} be the position of j inside
the list J , note that the Shamir βj can be converted into an additive share ωj :

ωj = βjeℓ ·G−1
J · eT1(3.2)

p0 =
∑
j∈J

ωj

3.3. Addition of New Parties. Let J = {j1, . . . , jt} ⊆ {1, . . . , n} be a set of cardinality
t. The parties {Pi}i∈J can collaborate to add the new party Pn+1 (i.e. generate its share
βn+1) with the following algorithm:

(1) Each Pjℓ for ℓ ∈ {1, . . . , t} chooses uniformly at random bn+1,J,ℓ,k, zn+1,J,ℓ,k ∈ Fq

for k ∈ {1, . . . , t} \ {ℓ}, and sets bn+1,J,ℓ,ℓ = f(βjℓ , n+ 1, J, ℓ)−
∑t

k=1,k ̸=ℓ bn+1,J,ℓ,k,
zn+1,J,ℓ,ℓ = f(γjℓ , n+ 1, J, ℓ)−

∑t
k=1,k ̸=ℓ zn+1,J,ℓ,k, where f(x, n+1, J, ℓ) is defined

as in Equation (2.2).
(2) Each Pjℓ publishes the commitments Cn+1,J,ℓ,k = HCom(bn+1,J,ℓ,k; zn+1,J,ℓ,k) for

k ∈ {1, . . . , t}.
(3) After having received every single commitment Cn+1,J,ℓ,k, for ℓ, k ∈ {1, . . . , t}, each

Pjℓ checks the coherence of these commitments with the ones published during the
generation phase:

(3.3)
t∏

k=1

Cn+1,J,ℓ,k
?
=

t−1∏
k=0

 τ∏
j=1

C0,j,k

(αℓ)k


eℓG
−1
J Gn+1

,

for ℓ ∈ {1, . . . , t} (GJ and Gn+1 are defined as in Definition 1), and:

(3.4)
t∏

k=1

t∏
ℓ=1

Cn+1,J,ℓ,k
?
=

t−1∏
k=0

 τ∏
j=1

C0,j,k

(αn+1)k

.

If everything checks out, Pjℓ sends to each Pjk the values bn+1,J,ℓ,k and zn+1,J,ℓ,k,
for ℓ, k ∈ {1, . . . , t}.

6 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

(4) Each Pjℓ checks the consistency of the data received and the committed values:

HCom(bn+1,J,k,ℓ; zn+1,J,k,ℓ)
?
= Cn+1,J,k,ℓ,

for k ∈ {1, . . . , t}, then sets bn+1,J,ℓ =
∑t

k=1 bn+1,J,k,ℓ, zn+1,J,ℓ =
∑t

k=1 zn+1,J,k,ℓ,
and sends them to Pn+1.

(5) Pn+1 retrieves its share as: βn+1 =
∑t

ℓ=1 bn+1,J,ℓ, and the checking value as:
γn+1 =

∑t
ℓ=1 zn+1,J,ℓ. Then it checks their consistency with the commitments by

verifying:

(3.5) HCom(bn+1,J,ℓ; zn+1,J,ℓ)
?
=

t∏
k=1

Cn+1,J,k,ℓ,

for ℓ ∈ {1, . . . , t}, and Equations (3.3) and (3.4).
Note that at the end of the procedure, Pn+1 has its own secret values just like the other
parties, so it can participate in the secret reconstruction or the addition of further parties.

3.4. Security of the Secret Sharing. For the detailed security of the initial Secret
Generation protocol see [6].

To prove the security of the Addition of New Parties we need to show that an adversary
controlling at most t− 1 participants is not able to learn anything about the secret of the
other parties. Initially we suppose that the adversary does not control Pn+1, but only t−1
out of the t parties which perform the protocol to add Pn+1. WLOG we can suppose that
these parties are P1, . . . , Pt and that the adversary controls P2, . . . , Pt.

We can notice that in step 1 there is a (t, t) additive secret sharing of f(β1, n+ 1, J, 1),
with dealer P1, verified with a homomorphic commitment. This is secure and does not
leak any information about β1 or βn+1.

The following steps do not require any additional computation or communication in-
volving the secret bn+1,J,1,1, so the security is trivial.

Now we need to deal with the case of the adversary controlling Pn+1 and t − 2 among
P1, . . . , Pt. WLOG we can suppose that the adversary controls P3, . . . , Pt.

The same considerations as before hold for step 1. However, now the adversary is also
able to learn bn+1,J,1 and bn+1,J,2 after step 5. Since in the computation of bn+1,J,1 and
bn+1,J,2 there are two unknown and uniformly distributed addends, the adversary is not
able to learn anything more.

4. Threshold Schnorr Signature

In this section we describe a possible use case of our Secret Sharing Scheme: a (t, n)-
threshold variant of Schnorr’s digital signature algorithm with offline participants. For
our construction we need a group G of prime order q with generator g where the DLOG
problem is assumed to be hard. Note that this means that the field Fq is isomorphic to the
ring Zq, so we will write Zq from now on. Moreover the hardness of DLOG implies that the
size of q is exponential in the security parameter, thus any practical application necessary
has a number of users n ≪ q. Finally, we require that at least t users are online for the
setup, in the following we suppose there are exactly t online parties in the key generation
phase, namely P1, . . . , Pt.

The protocol is dividend into four algorithms:
(1) Setup Phase (4.1): in this phase all the players interact to set some common

parameters. Note that in a practical implementation this phase can be performed
ahead of time without any real communication, because these parameters are usu-
ally fixed (e.g. for Bitcoin applications which have to use secp256k1 and SHA-256).

(2) Key-Generation (4.2): this phase is performed by parties P1, . . . , Pt to create the
public key for the signature scheme and the private shares for themselves.

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES7

(3) Signature Algorithm (4.3): this phase is performed whenever any group of t
parties wants to produce a signature.

(4) Participant Addition(4.4) performed by any group of at least t parties to create
new shares for a new player.

From now on “Pi does something” means that all the parties involved in that phase
perform the specified action.

4.1. Setup Phase. The aim of this phase is to make the starting parties P1, . . . , PK to
agree on all the parameters required in the protocol.

Player 1, . . . , t
Input:
Private Output:
Public Output: G, g, q,H, α

P1, . . . , Pt have to establish a group G of prime order q with generator g in which the
discrete logarithm problem is considered to be hard, a secure hash function H whose
outputs can be interpreted as elements of Zq, and a primitive element α of Zq. Lastly the
agree on a common instance of a commitment scheme Com.

4.2. Key generation. In this phase, the starting parties P1, . . . , Pτ produce a common
public key A and each obtains a share of the corresponding private key.

Player i
Input:
Private Output: βi
Public Output: A

(1) Secret key generation and communication:
(a) Pi randomly chooses ai ∈ Zq and sets Ai = gai ;
(b) Pi randomly chooses a polynomial p(i) of degree t− 1 such that p(i)(0) = ai.
(c) Pi computes [KGCi, KGDi] = Com(Ai);
(d) Pi publishes KGCi
(e) Pi publishes KGDi
(f) Pi gets Aj for 1 ≤ j ≤ t, i ̸= j.

(2) Shards verification and private key computation:
(a) Pi computes βi,j = p(i)(αj) and sends it to player Pj ;
(b) Pi checks the integrity and consistency of the shards βj,i, as per Section 3;
(c) Pi proves in ZK the knowledge of ai using Schnorr’s protocol.

(3) Pi compute its private key βi =
∑t

j=1 βi,j .
(4) The public key is A =

∏τ
i=1Ai. Implicitly we set

∑τ
i=1 = a.

4.3. Signature Algorithm. This algorithm is used when a set J of at least t players
agrees to sign a message M . WLOG we suppose that J = {j1, . . . , jt}.

The parameters involved are:

Player ji
Input: M,ωji ,A
Public Output: (s, e)

The protocol proceeds as follows.
(1) Generation of r:

(a) Pji randomly chooses ki ∈ Zq;
(b) Pji computes ri = gki ;

8 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

(c) Pji computes [KGCi, KGDi] = Com(ri) and sends KGCi;
(d) once every KGCj for j ∈ J has been received, Pji sends KGDi;
(e) Pji computes rℓ = Ver([KGCℓ, KGDℓ]) for each ℓ = 1, . . . , t;
(f) Pji computes r =

∏t
ℓ=1 rℓ.

(2) Generation of s:
(a) Pji converts its Shamir share βji to an additive share ωji such that

∑
j∈J ωj =

a, as in Equation (3.2);
(b) Pji computes e = H(r||M) and si = ki − ωjie;
(c) Pji computes [KGC′i, KGD

′
i] = Com(si) and sends KGC′i;

(d) once every KGC′j for j ∈ J has been received, Pji sends KGD′i;
(e) Pji computes sℓ = Ver([KGC′ℓ, KGD

′
ℓ]) for each ℓ = 1, . . . , t;

(f) Pji computes s =
∑t

ℓ=1 sℓ.
(3) Pji computes rv = gsAe and checks that H(rv||M) = e.

The output signature is (s, e). If a check fails, the protocol aborts.

4.4. Participant Addition. This protocol allows any set J of at least t users to add a
new user Pm to the protocol. After the protocol Pm will have the same powers (i.e. can
sign and add new users) of the other users.

The parameters involved are (for sake of simplicity J = {j1, . . . , jt}:

Player ji Player m
Input: βji ,A Input: skm, pkm
Private Output: Private Output: βm

The protocol works as follows:
(1) Pm publishes its public key pkm that Pj1 , . . . , Pjt will use to communicate with it;
(2) Additive Secret Sharing

(a) Pji transforms its Shamir share βji in an additive share ωi, as in eq. (3.2);
(b) Pji performs an additive secret sharing of ωi =

∑
l ωi,l;

(c) Pji sends ωi,l to Pjl ;
(d) Pji publishes gωi,l for each l. All the values are stored in a public matrix Ω.
(e) Pji verifies to have received correct shares as explained in Section 3.3

(3) Share distribution
(a) Pji computes ω̄i =

∑
l ωl,i;

(b) Pji encrypts ωl,i with pk and sends it to Pm;
(4) Key reconstruction and verification

(a) Pm computes its private key βm =
∑

i ω̄i

(b) Pm verifies to have received correct shares as explained in Section 3.3

Observation 1. The symmetric encryption algorithm used by Pm should be IND-CPA
secure, in order to maintain the security of the protocol. In the security proof we will
suppose that the algorithm is indeed secure and the key generation protocol generating
pkm, skm was ran correctly.

5. Security Proof

In this section we discuss the security of the scheme in terms of the unforgeability
properties defined below.

Definition 2 (Unforgeability). A (k, n)-threshold signature scheme is unforgeable if no
malicious adversary who corrupts at most k − 1 players can produce the signature on a
new message m with non-negligible probability, given the view of the threshold sign on
input messages m1, . . . ,mt (adaptively chosen by the adversary), as well as the signatures
on those messages.

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES9

The unforgeability of our protocol is formally stated in the following theorem:

Theorem 1. Assuming that:
• the Schnorr signature scheme instantiated on the group G of prime order q with the

hash function H is unforgeable;
• Com,Ver is a non-malleable commitment scheme;
• the Decisional Diffie-Hellman Assumption holds;

our threshold protocol is unforgeable.

In Section 5.4 we will prove the theorem by showing that if there is an adversary A able
to forge a signature for the threshold scheme with non negligible probability ϵ > λ−c with
λ a polynomial and c > 0, then it is possible to build a forger F that forges a signature
for the centralized Schnorr scheme also with non negligible probability. The simulation
works by having an oracle that feeds inputs for the centralized scheme to F, our goal is to
respond by generating a signature exploiting A. First, it has to simulate the key generation
protocol in order to match the key received from the oracle, then it can proceed with the
signature part. The core of this setup is that if A is able to crack our protocol, F will take
advantage of that and will also create a forgery for the centralized version of the oracle.

Following the definition of unforgeability, A will control t−1 players while F controls the
remaining ones. It is important to notice that this t− 1 players that the adversary control
can either be present from the start, during the key generation, or be added later, with
the participant. In the following we will suppose that every malicious party is involved in
the key generation and that t = τ , i.e. only t parties are involved in it. The proof where
the malicious parties are distributed differently is analogous and could be easily deduce.

The adversary interacts by first participating in the key generation part to generate a
public key A, then starts requesting signatures on some messages mi. Here it can either
take part in the process or not. Eventually A outputs a message m ̸= mi ∀i and its valid
signature with probability at least ϵ, where this is taken over the random tapes of the
adversary and the honest player, respectively τA and τi. So we can write that

(5.1) Pτi,τA(A(τA)Pi(τi) = forgery) ≥ ϵ,

where A(τA)Pi(τi) is the output of A at the end of this process and Pτi,τA denotes that the
probability is taken over the random tape τi and the adversary tape τA.

We say that a random tape is good if

(5.2) Pτi(A(τA)Pi(τi) = forgery) ≥ ϵ

2
.

We recall the following useful lemma, stated and proved in [2].

Lemma 2. If τA is chosen uniformly at random, the probability that τA is good is at least
ϵ
2 .

5.1. Key generation simulation. Now we see into details how the key generation phase
is simulated. F receives from the challenger the public key Ac for the centralized Schnorr
protocol. The simulation proceeds as follows:

(1) F selects a random values β1,j = p(i)(j) for j = 2, ..., t and a1.
(2) F computes the commitment [KGC1, KGD1] = Com(A1);
(3) F sends KGC1, then, after receiving KGCj , it sends KGD1;
(4) F gets (Aj) = Ver(KGCj , KGDj) for all j;
(5) Now F knows all the parameters needed in the computation of A, so it rewinds A

to step 3, aiming to get A = Ac;
(6) F computes Â = Ac

A2A3
, computes the commitment [ˆKGC1, ˆKGD1] = Com(Â), and

sends it to A, so that it will receive Â as A1 which leads to A = Ac. Notice that
F does not know the discrete logarithm â of Â.

10 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

(7) F sends β1,j to Pj .
(8) F simulates a fake verification protocol with (see e.g. [6]) since it cannot compute

a polynomial p̂(1) such that p̂(1)(j) = β1,j and p̂(1)(j) = â.
(9) F participates in the ZK proofs rewinding A and selecting appropriate challenges

in order to extract the secret key of each party controlled by A.
Note that at the end of the protocol, F does not know its private key β1, but F will still

be able to complete correctly the signing part by querying the oracle.
The proof of the correctness of the simulation is stated in the following lemmas. The

proofs are trivial and use the same argument of the one presented in [2].

Lemma 3. If the Decisional Diffie-Hellman assumption holds, then the simulation termi-
nates in expected polynomial time and is indistinguishable from the real protocosl.

Proof. Since A is running on a good random tape we know that it will correctly decommit
with probability at least ϵ

2 . Therefore the rewinding is performed at most a polynomial
number of times, since the expected number of iterations is 2

ϵ = 2λc. The only difference
from the real protocol is that F does not know the discrete logarithm of Â and so it
performs a fake verification protocol. However, this is indistinguishable from a real one
since they both have the same distribution. □

Lemma 4. For a polynomial number of inputs the simulation terminates with output Ac

except with negligible probability.

Proof. First we prove that if the simulation terminates correctly, then it terminates with
Ac except with negligible probability. This is because of the non-malleability property
of the commitment scheme: if A correctly decommits twice it must do so to the same
string, no matter what P1 decommits (except with negligible probability). Because of the
construction of Â, the output is Ac

Now we prove that the simulation ends correctly for a polynomially large fractions of
inputs. Since A is running on a good random tape, it decommits correctly for at least
ϵ
2 > 1

2λc inputs. Since Ac is chosen at random we have that Â is uniformly distributed
. We can conclude that for a fraction ϵ

2 > 1
2λc of the inputs, the protocol will terminate

correctly. □

Observation 2. It is important that in step 3 the adversary sends KGCj and KGDj before
F, so that after the rewinding A cannot change its commitment.

If the order were inverted, A could also use the commitment of F to generate its value.
Assuming the non-malleability property, A does not deduce anything about the content

of the commitment, but it could still use it as a seed for a random generator.
If this were to happen, F can guess Â with probability 1

q with q the size of the group,
making the expected time exponential.

It is possible to swap the order in the commitment step using an equivocable commitment
scheme with a secret trapdoor. In this case we only need to rewind at the decommitment
step and change KCD1 in order to match Â.

5.2. Security of the addition of new users. Intuitively the security follows by the fact
that ωi,l are uniformly distributed and are shards of a full threshold additive secret sharing
of ωi. This ensures that ω̄i is also a full threshold additive secret sharing of

∑
i ωi.

The correctness of the algorithm is an immediate consequence of Proposition 2, as
noticed in Section 3.

Moreover we can notice that the adversary is forced to act semi-honestly thanks to the
verification steps explained in Section 3.4.

5.3. Signature generation simulation. After the the key generation and the addition
of new user, F has to deal with the signature requests issued by A. When A asks for a

EXTENSIBLE DECENTRALIZED SECRET SHARING AND APPLICATION TO SCHNORR SIGNATURES11

signature, F performs a simulation while having access to the signing oracle that uses the
previously created public key. In this section we will suppose that the adversary has the
maximum power possible, i.e. he controls t − 1 participant. The cases where he controls
less participants can be dealt in the same way. Without loss of generality we will suppose
that A controls P2, ..., Pt.

First we note that after the key generation/participant addition, the simulator knows
every secret of the adversary, since he is able to extract them during the ZKPs in the
protocol.

For this reason F can fully predict what A will output and, while it does not know any
secret key of P1, it knows everything of P2, ..., Pt.

The simulation proceeds as follows:
(1) A chooses a message m to sign;
(2) F queries its signing oracle for a signature for m corresponding to the public key

A and gets (sf , ef);
(3) Pi randomly chooses ki ∈ Z∗

q , then computes ri = gki and [KGCi, KGDi] = Com(ri);
(4) Pi sends KGCi, then, after receiving KGCj , sends KGDi and gets ri = Ver([KGCi, KGDi]);
(5) F rewinds A to step 4;
(6) F computes r̂1 =

rf∏t
j=2 rj

, then compute the commitment [ˆKGC1, ˆKGD1] = Com(r̂1)

and sends ˆKGC1 to A so it receives r̂1 as r1 which leads to r = rf ;
(7) Pi computes r =

∏t
i=1 ri, e = H(r||m), and si = ki − ωie (F picks s1 at random);

(8) Pi computes [KGC′i, KGD
′
i] = Com(si), then sends KGC′i;

(9) Pi sends KGD′i and gets si = Ver([KGC′i, KGD
′
i]);

(10) F computes r′j = gsj · g−eωj for each j = 2, ..., t, then if r2 = r′2 it rewinds A to
step 8, otherwise it sends s1 and aborts;

(11) F computes ŝ1 = sf −
∑t

j=2 sj , then computes the commitment [ˆKGC′1, ˆKGD′1] =

Com(ŝ1) and sends ˆKGC′1 to A so it receives ŝ1 as s1 which leads to s = sf ;
(12) Pi computes s =

∑t
j=1 sj and rv = gsAe, then checks that H(rv||m) = e. If a

check fails the protocol aborts, otherwise the signature is (s, e).

Lemma 5. If Com is a secure non-malleable commitment scheme, the protocol above is a
perfect simulation of the centralized one and terminates correctly with output (sf , ef).

Proof. The simulation is identical to the real protocol except that here F does not know its
secret shards. Nevertheless it is still able to retrieve the correct value from A by rewinding
it. As above, if the protocol terminates, by construction it will terminate with output
(sf , ef). If A is dishonest or refuses to decommit some values, the protocol aborts. Note
that the check of step 10 is introduced to preserve any abort that the adversary may cause
by sending an invalid s1. □

5.4. Proof of the unforgeability property. Now we are able to prove Theorem 1:

Proof. Let Q < λc be the maximum number of signature queries that the adversary makes.
As we previously proved, our simulator produces a view of the protocol that the adversary
cannot distinguish from the real one, therefore A will produce a forgery with the same
probability as in a real execution. Then the probability of success of our forger F is ϵ3

8
which is the product of the probability of the following independent events:

(1) choosing a good random tape for A, whose probability is at least ϵ
2 as per Lemma

2;
(2) getting a good public key, whose probability is at least ϵ

2 as shown in Lemma 3
and 4;

(3) A successfully produces a forgery, whose probability is again ϵ
2 (5.2).

12 M. BATTAGLIOLA, R. LONGO, AND A. MENEGHETTI

Under the assumption on the security of the Schnorr signature scheme, the probability of
success of F must be negligible, which implies that ϵ must be negligible too, contradicting
the hypothesis that A has a non-negligible probability of forging a signature for the scheme.

□

References

[1] M. Battagliola, A. Galli, R. Longo, and A. Meneghetti. “A Provably-Unforgeable
Threshold Schnorr Signature With an Offline Recovery Party”. In: Proceedings http://ceur-
ws. org ISSN 1613 (2022), p. 0073.

[2] M. Battagliola, R. Longo, A. Meneghetti, and M. Sala. “Threshold ECDSA with an
Offline Recovery Party”. In: Mediterranean Journal of Mathematics 19.1 (2022), pp. 1–
29.

[3] G. Brassard, D. Chaum, and C. Crépeau. “Minimum disclosure proofs of knowledge”.
In: Journal of computer and system sciences 37.2 (1988), pp. 156–189.

[4] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-
Interactive, Proactive, Threshold ECDSA with Identifiable Aborts”. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’20. Virtual Event, USA: Association for Computing Machinery, 2020, pp. 1769–
1787. isbn: 9781450370899. doi: 10.1145/3372297.3423367. url: https://doi.
org/10.1145/3372297.3423367.

[5] R. Gennaro and S. Goldfeder. “Fast Multiparty Threshold ECDSA with Fast Trust-
less Setup”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: Association for Computing Machin-
ery, 2018, pp. 1179–1194. isbn: 9781450356930. doi: 10.1145/3243734.3243859. url:
https://doi.org/10.1145/3243734.3243859.

[6] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing”. In: Advances in Cryptology — CRYPTO ’91. Ed. by J. Feigenbaum. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129–140.

[7] T. P. Pedersen. “Non-interactive and information-theoretic secure verifiable secret
sharing”. In: Annual international cryptology conference. Springer. 1991, pp. 129–140.

[8] I. S. Reed and G. Solomon. “Polynomial codes over certain finite fields”. In: Journal
of the society for industrial and applied mathematics 8.2 (1960), pp. 300–304.

[9] R. M. Roth. Introduction to coding theory. Vol. 47. 18-19. IET, 2006, p. 4.

(M. Battagliola) University of Trento, Department of Mathematics, michele.battagliola@unitn.it

(R. Longo) University of Trento, Department of Mathematics, riccardolongomath@gmail.com

(A. Meneghetti) University of Trento, Department of Mathematics, alessio.meneghetti@unitn.it

https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859

	1. Introduction
	1.1. Organization

	2. Preliminaries
	2.1. Notation
	2.2. From MDS Codes to Secret Sharing
	2.3. Commitments

	3. Extensible Decentralized Verifiable Secret Sharing Protocol
	3.1. Secret Generation
	3.2. Secret Reconstruction
	3.3. Addition of New Parties
	3.4. Security of the Secret Sharing

	4. Threshold Schnorr Signature
	4.1. Setup Phase
	4.2. Key generation
	4.3. Signature Algorithm
	4.4. Participant Addition

	5. Security Proof
	5.1. Key generation simulation
	5.2. Security of the addition of new users
	5.3. Signature generation simulation
	5.4. Proof of the unforgeability property

	References

