XMSS-SM3 and MT-XMSS-SM3: Instantiating Extended
Merkle Signature Schemes with SM3

Siwei Sun!, Tianyu Liu!, Zhi Guan?, Yifei He?, Jiwu Jing',
Lei Hu', Zhenfeng Zhang?, Hailun Yan!

! School of Cryptology, University of Chinese Academy of Sciences, China
siweisun.isaac@gmail.com
2 Peking University, China
heyifei@pku.edu.cn, guan@pku.edu.cn
3 Trusted Computing and Information Assurance Laboratory,
Institute of Software, China

Abstract. We instantiate the hash-based post-quantum stateful signa-
ture schemes XMSS and its multi-tree version described in RFC 8391 and
NIST SP 800-208 with SM3, and report on the results of the preliminary
performance test.

Keywords: Hash Functions, Digital Signatures, XMSS, MT-XMSS, SM3

1 Introduction

It is well known that the security of many widely deployed digital signature
schemes (e.g., RSA, DSA, and ECDSA) will be compromised if large-scale
quantum computers are ever built [Sho99]. Hash-based signature scheme is one
important type of quantum-resistant cryptographic algorithms. Generally speak-
ing, there are two approaches for constructing signature schemes based on hash
functions. The first one signs messages by exposing the pre-images of certain
one-way functions [Lam79,Mer89, BDH11], the second one signs messages by prov-
ing the possession of the pre-images with zero-knowledge techniques [CDG17].
In this work, we restrict our attention to the former approach. Also, we only
consider hash-based stateful signature schemes, since these type of hash-based
signature schemes are actively standardized [MCF19, HBG118,NIS20b] and are
more appealing with regards to performance and resource consumption. For
the construction of stateless hash-based signature schemes, we refer the reader
to [BHH'15, BHK"19] for more information.

The study of hash-based signature schemes has a long history. The first such
scheme can be traced back to 1976 [DH76], where Diffie and Hellman proposed a
one-time signature scheme for signing a single bit. After more than 40 years of
development, the construction and implementation of hash-based signatures are
well studied and have benefited from renewed attention in the last decade due to
the concern of quantum attacks.

Hash-based stateful signatures have the following advantages. Firstly, hash-
based signatures are arguably the most conservative designs with respect to

security. They enjoy provable security which relies so solely on the (second)
pre-image resistance of the underlying hash functions. secondly, They are hash-
function-agnostic, meaning that any compatible hash function can be used to
instantiate the schemes. Therefore, when one hash function is insecure, we
can simply replace it with a secure one. Thirdly, it features small private and
public keys, and fast signature generation and verification, making it suitable
for compact verifier implementations. Finally, hash-based signatures have a rich
set of tunable parameters, and thus it is easy to tailor the designs for specific
application scenarios [WJW119, HRB17,vdLPR*18,ZCY22]. The disadvantage
of stateful hash based signatures including large signature sizes, and the issue of
state management.

Outline. In section 2, we give some preliminaries and notations used later. In
section 3, we show how hash functions and pseudo-random functions are used in
XMSS and MT-XMSS. In section 4, we describe the address scheme for randomizing
the hash function calls. Section 5 describes the one-time signature scheme WOTS+
which is employed as a building block for the many-time signature schemes XMSS
and MT-XMSS introduced in Section 6 and Section 7, respectively. In Section 8§,
we instantiate these hash-based signature schemes with SM3 and report on the
results of the performance test on some preliminary implementations without
extensive optimization.

Remark 1. This article and [SLGT22] share a lot of similarities, and [SLG*22]
provides more details, where we instantiate the hash-based stateful signature
schemes LMS and HSS described in RFC 8554 and NIST SP 800-208 with SM3.

2 Notations and Preliminaries

Let F; = {0,1} be the binary field and B = F§ be the set of all 8-bit bi-
nary strings. Concrete values of byte strings are specified in binary or hex-
adecimal notations. For example, we use 0x1F12 to denote the 2-byte string
(0001 1111 0001 0010)5. Sometimes, we need to convert a unsigned integer 4
into a string of n bytes, which is done by applying the conversion function
toBytes(i,n). For example, toBytes(11,1) = 0x0B, toBytes(6214,2) = 0xF2BC,
and toBytes(305441741,4) = 0x1234ABCD.

Let S be a byte string. Then, byte(S,i) denotes the i-th byte of S, and
byte(S, 1,) denotes the range of bytes from the i-th to the j-th byte, inclusive.
For example, if S = 0xABCDFFO1, then byte(S,0) = 0xAB, byte(S,3) = 0x01,
and byte(S,1,3) = 0xCDEFO01. In addition, for w € {2,4}, we use coef (S, i, w) to
denote the unsigned integer represented by the i-th w-bit string of S. For example,
S = O0xABCDFFO1, then coef(S,0,4) = 0xA = 10, coef(S5,6,4) = 0x0 = 0, and
coef(S,3,2) = 3. Also, we always have coef(S5,14,8) = byte(S,1).

3 Keyed Hash Functions and Pseudo-Random Functions

The hash functions we employed in XMSS and MT-XMSS are keyed functions im-
plemented from un-keyed ones. Since standard hash functions like SHA2-256 and
SM3 do not provide a keyed mode themselves. we use the following approach
illustrated with SM3 to implement the keyed hash function:

F(KEY, M) = SM3(toBytes(0, 32)||KEY|| M)

H(KEY, M) = SM3(toBytes(1, 32)||KEY|| M)
H,se(KEY, M) = SM3(toBytes(2,32)|KEY| M)
PRF(KEY, M) = SM3(toBytes(3,32)|KEY|| M)

PRF yoygen(KEY, M) = SM3(toBytes(4,32)|[KEY|| M)

The keyed function F' is used in the WOTS+ one-time signature scheme to
compute the hash chains. H is used to compute the nodes of the so-called L-trees
and XMSS-trees. In XMSS and MT-XMSS, before signature generation and verification,
the relevant message M € F3 is hashed with Hpsz to produce an n-byte hash
value. PRF is used to generate the needed secret strings, the keys (not necessarily
secret) to the hash functions, the bit masks required to build the relevant virtual
data structures, and other pseudo-random material (e.g., the random string r
required by Hyeg) needed.

When the pseudo-random generator PRF is used to generate the keys and
masks required to compute the hash chains in WOTS+ and build the XMSS-trees
and L-trees, the input to the PRF is a public seed and an address. To generate
the secret elements needed in the WOTS+ instances, PRFyeygen Will be employed.
To be more specific, the secret n-byte strings of a WOTS+ instance is computed
as PRFxeygen (SPRF, SEED||ADRS) where ADRS is an OTS address described in the
following section. Note that in this article we adopt the key generation strategy
from [NIS20b] rather than from [HBG™18], since the key generation method
provided in [HBG™18] is less robust against multi-target attack [NIS20a].

4 Hash Function Address Scheme

The keyed functions F', H and PRF may receive a special 32-byte string ADRS
called an address as part of their input data. ADRS encodes the position (with
respect to a complex virtual data structure) and purpose of the hash application
and is employed to randomize each hash function call, which is called the hash
function address scheme. There are three different types of addresses for different
use cases, including the OTS hash address, L-tree address, and hash tree address.
The structures of different types of addresses are depicted in Figure 1.

We first describe the common fields shared by all types of addresses. The
layerAddress describes which layer the concerned XMSS tree resides at, starting
from zero for the XMSS trees at the bottom layer. Therefore, for XMSS or MT-XMSS
with a single layer, layerAddress = 0. The treeAddress encodes the position
of the concerned XMSS tree within the layerAddress-th layer, starting with zero

layerAddress (32-bit) layerAddress (32-bit) layerAddress (32-bit)
treeAddress (64-bit) treeAddress (64-bit) treeAddress (64-bit)
type = 0 (32-bit) type = 1 (32-bit) type = 2 (32-bit)
0TSAddress (32-bit) ltreeAddress (32-bit) padding = 0 (32-bit)
chainAddress (32-bit) treeHeight (32-bit) treeHeight (32-bit)
hashAddress (32-bit) treeIndex (32-bit) treelndex (32-bit)
KeyAndMask (32-bit) KeyAndMask (32-bit) KeyAndMask (32-bit)

(a) OTS address (b) L-tree address (c) Hash tree address

Fig. 1: The address scheme for XMSS and MT-XMSS

for the leftmost XMSS tree. addrType indicates the type of the ADRS structure,
addrType = 0 for an OTS hash address, addrType = 1 for an L-tree address,
and addrType = 2 for a hash tree address. keyAndMask distinguishes different
purpose of the hash function application: keyAndMask = 0 for generating a key
for the keyed functions, keyAndMask = 1 and keyAndMask = 2 for generating the
most significant n-byte mask and the least significant n-byte mask, respectively.
When only one n-byte mask is needed, we set keyAndMask = 1.

4.1 OTS Hash Address

The structure of an OTS hash address is illustrated in Figure 1. The first two
fields layerAddress and treeAddress determine the position of the XMSS tree.
0TSAddress describes the position of the leaf node associated with the WOTS+
instance within the XMSS tree. chainAddress and hashAddress determine the
position where the hash function is applied within the sequence of hash chains
corresponding to the WOTS+ instance.

If the XMSS tree the WOTS+ instance resides at is of height i, then 0TSAddress
encodes the position of the leaf corresponding to the WOTS+ instance. Therefore,
0TSAddress starts from zero for the leftmost node and encodes an integer i €
{0,---,2" —1}.

Assume that the used WOTS+ scheme has [hash chains and each chain has
depth W — 1. Then chainAddress describes in which chain the hash application
happens, and thus chainAddress encodes an integer in {0,---,l — 1}. The
position within the chain is determined by hashAddress which encodes an
integer in {0,--- , W — 2}.

4.2 L-Tree Address

The structure of an L-tree address is illustrated in Figure 1. The first two
fields layerAddress and treeAddress determine the position of the XMSS tree.
ltreeAddress identifies the position of the leaf computed with the L-tree, and

thus 1treeAddress encodes an integer in {0,--- ,2" — 1}. treeHeight describes
the height of the two nodes the hash function call applied to. treeIndex encodes
the index of the parent node which is one level higher than the two nodes the
hash function call applied to.

4.3 Hash Tree Address

The structure of a hash tree address is illustrated in Figure 1. The first two
fields layerAddress and treeAddress determine the position of the XMSS tree.
padding is always set to 0 and act as a placeholder. treeHeight describes the
height of the two nodes the hash function call applied to. treeIndex encodes the
index of the parent node which is one level higher than the two nodes the hash
function call applied to.

5 The WOTS+ One-Time Signature Scheme

WOTS+ is a one-time signature scheme, meaning that each private key must be
used at most one time to sign any given message. If a private key is used to sign
two different messages, the security of the scheme is compromised. Afterwards, an
WOTS+ private and public key pair is referred to as a WOTS+ instance. Therefore,
to generate a WOTS+ instance is to generate a WOTS+ key pair. WOTS+ uses two
parameters, including n the number of bytes of the output of the hash function,
and the Winternitz parameter W € {4,16}. Note that w € {2,4} is used to
denote log, (W) in this article.

5.1 WOTS+ Key Generation

The private key and public key is generated by computing [hash chains, where
l=1lg+1,

_ 8n
lo = 155,07

| logy (lo(W—1))
b= |

and each node represents an n-byte value. Moreover, each hash chain contains
W nodes. The ending node of a chain is computed from the starting node of the
chain by iteratively applying F'() W — 1 times.

The secret key contains the [starting nodes zg 0, 21,0, -, Zi—1,0, and the
public key contains the { ending nodes xo w—1, £1,w—1, - - -, Zi—1,w—1. The start-
ing nodes can be selected randomly from the uniform distribution or generated
pseudo-randomly from a n-byte secret seed. The ending nodes are computed
from the starting nodes such that

Tij41 = F(KEY, z; ; & BM),

where KEY = PRF(SEED, ADRS) with ADRS.chainAddress set to toBytes(i, 32),
ADRS.hashAddress set to toBytes(j, 32) and ADRS.keyAndMask set to 0, and BM =
PRF(SEED, ADRS) with ADRS.chainAddress set to toBytes(i,32), ADRS.hashAddress
set to toBytes(j,32) and ADRS.keyAndMask set to 1.

5.2 WOTS+ Signature Generation and Verification

A WOTS+ signature is a sequence (zo, - - - , 2;—1) of [n-byte strings. Given a message
M € B™, the signature is generated as follows. Note that here we only allow WOTS+
to sign n-byte messages. First, we convert M to an array (M][0],--- , M[lyg — 1])
of Iy w = logy(W)-bit values, M[i] is regarded as an integer in {0,--- , W — 1}.
Next, we compute the checksum of (M][0],--- , M[ly — 1]) using Algorithm 1 (see
Table 1 for the rotation offsets), and let v = Cksm,, (M). Then, the signature is

(:EO,M[O]; o X—1,M[lo—1]s Ll,coef (a,0,w)s " " 7xl—1,coef(a,lz—1,’w))a (1)

which can be computed from the private key (20,0, 21,0, - ;%i—1,0) by applying
F iteratively.

Algorithm 1: Cksm,, ,,(-): Compute the checksum of an n-byte string

Input: An n-byte string S
Output: A 16-bit unsigned integer

1 sum <+ 0
2 for0<i< % do
3 L sum < sum + (W — 1) — coef (S5, 7, log, (W))

4 Return sum < vn,w

Table 1: The left shift offset v, .

n w Yn,w
32 2 6
32 4 4

With a valid signature given in Equation (1), one can compute the correct
public key. So the signature is valid if and only if the computed hypothetical
public key matches the correct public key.

6 The XMSS Signature Scheme

Basically, the XMSS signature scheme provides a method for organizing a set of 2"
WOTS+ instances in a perfect binary tree with height h such that each leaf node is
associated with a WOTS+ instance, and the root node is employed to authenticate
the WOTS+ instances. We call this structure an XMSS tree, which corresponds to
an XMSS instance. The XMSS instance can sign at most 2" different messages in

its life cycle, and each time a new signature is generated, one WOTS+ instance
is consumed. Moreover, these WOTS+ instances are consumed in order from the
leftmost leaf to the rightmost leaf. Figure 2 depicts an XMSS tree with height 3.

Fig.2: An XMSS tree with height 3

6.1 The Leaf Nodes of an XMSS Tree

Each leaf node of an XMSS tree is associated with a WOTS+ instance. To be more
specific, a leaf node is the root node of a so-called L-tree computed from the
public key of a WOTS+ instance.

Let (yo,--- ,y—1) € B™ be the public key of a WOTS+ instance. An L-tree is a
binary tree whose leaves are yq, - - -, ¥;_1. The root of the L-tree can be computed
with Algorithm 2, where the subroutine Parent() is given in Algorithm 3. Since
it is possible that [is not a power of 2, the L-tree may be unbalanced.

6.2 XMSS Private Key and Public key Generation

The private key of XMSS with height h contains the 2" private keys of the 2"
WOTS+ instances, which can be generated on the fly from a single n-byte secret
seed to save memories according to the method described in Section 3. The public
key of the XMSS instance is the root of a perfect binary tree (XMSS tree) with
height h, whose leaves are the roots of the 2" L-trees constructed from the 2"
WOTS+ public keys.

The XMSS tree is constructed as follows. Let ag; and ag;41 be the 2i-th and
(2i + 1)-th nodes at level k, then their parent node b; is the i-th node at level
k 4+ 1. We have

b, = Parent(agi, a2;+1, SEED, ADRS)7

Algorithm 2: LTreeRoot(): Compute the the root node of an L-Tree

Input: A WOTS+ public key y = (yo,--- ,%1), a seed SEED, and an address ADRS
Output: An n-byte value representing the root of the L-tree whose leaves are
the public key elements

U'+1
ADRS.treeHeight < 0

N =

3 while !’ > 1 do

4 for 0 <i< |l'/2] do

5 ADRS.treelndex < 1

6 L yi < Parent(y2:, y2i+1, SEED, ADRS)

if ' mod 2 =1 then
8 L Y2 = Yr-1

9 U+ [U')2]
10 | ADRS.treeHeight < ADRS.treeHeight +1

11 Return yo

Algorithm 3: Parent(): Compute the parent node

Input: An n-byte value a (left node), an n-byte value b (right node), a seed
SEED, and an address ADRS
Output: An n-byte value representing the parent node of a and b

1 ADRS.keyAndMask < 0
2 KEY < PRF(SEED, ADRS)

3 ADRS.keyAndMask < 1
4 BMy + PRF(SEED, ADRS)

5 ADRS.keyAndMask < 2
6 BM; < PRF(SEED, ADRS)

7 Return H(KEY, (a ® BMo) || (b BM1))

where the fields of ADRS fulfills the following condition

ADRS.layerAddress = 0
ADRS.treeAddress = 0
ADRS.type = 2

ADRS.treeHeight =k
ADRS.treeIndex = toBytes(i, 32)

In summary, the secret key is idx||Sprr||Root||SEED, where idx is used to
index the next WOTS+ instance to be used to sign a message, and the public key
is Root ||SEED.

6.3 XMSS Signature Generation and Verification

Given a message M € [and an XMSS secret key whose idx field is j. We first

compress M into an n-byte string M’ such that
r= PRF(SPRFv tOByteS(j7 32)) (2)
M’ = Hyge(r||Root||toBytes(j,n), M)

Then, we use the j-th WOTS+ instance to sign M’. The XMSS signature contains
the index j of the used WOTS+ instance, the byte string r (note that r is generated
from a secret seed so it must be provided to the verifier), the WOTS+ signature,
and the authentication path of the j-th node of the XMSS tree, which consists of
the h — 1 sibling nodes appearing in the path from the j-th node to the root of
the XMSS tree. Before releasing the signature, the idx field of the XMSS secret key
must be increment by 1. A XMSS instance signing a message M is illustrated in
Figure 3, where the gray nodes forming the authenticated path of the signature.

Given a message and its claimed signature, one can compute the hypothetical
public key of the used WOTS+ instance, and then the hypothetical j-th leaf of
the XMSS tree. With the help of the claimed authentication path, one can derive
a hypothetical root of the XMSS tree. The signature is valid if and only if the
hypothetical root matches the public key of the XMSS instance.

Fig. 3: An XMSS tree with height 3 signing a message M with idx = 1

7 MT-XMSS: The Multi-Tree Version of XMSS

Like XMSS, The MT-XMSS scheme is another method for organizing a large set
of WOTS+ instances. In MT-XMSS, WOTS+ instances are associated with the leaves
of many XMSS trees placed at different layers. The XMSS trees are “connected”

in the sense that the roots of the XMSS trees are signed by the WOTS+ instances
associated with the leaves of the XMSS trees in the upper layer. The leaves of the
lowest layer XMSS trees are used to sign the messages. We call this structure an
MT-XMSS tree or MT-XMSS instance. Note that an MT-XMSS instances with a single
layer is essentially an XMSS instance. A 3-layer XMSS tree signing a message M is
illustrated in Figure 4, where only the involved XMSS trees are displayed.

In MT-XMSS, we have d layers of XMSS instances, including layer 0 (the bottom
layer), -- -, and layer d — 1 (the top layer). The XMSS instances in the same layer
have the same height. If the total height of the MT-XMSS tree is h, then the height
of the XMSS trees is h/d.

In the (d—1)-th layer (the top layer), there is only 1 XMSS tree. For 0 < i < d—1,
there are 2(4=1-1F XMSS trees in the i-th layer. Then, there are 2(d-1)G XMSS
trees in the 0-th layer. Therefore, the 2(d=1)G XMSS trees in the bottom layer have
2" leaves in total. Since the WOTS+ instances associated with these leaves are used
to sign messages, the MT-XMSS instance can sign at most 2" times, and we call 2"
is the capacity of the MT-XMSS instance. For the convenience of description, these
2" leaves are indexed from 0 (the leftmost leaf) to 2" — 1 (the rightmost leaf).

7.1 MT-XMSS Key Generation

The private key of MT-XMSS contains an n-byte secret seed Sprr, a [h/8]-byte
index initialized to 0 to identify the next unused WOTS+ instance on the bottom
layer, a n-byte public seed SEED, and the root of the topmost XMSS tree. The
public key of MT-XMSS contains the public seed SEED and the root of the topmost
XMSS tree. Note that with the private key, all WOTS+ instances over the MT-XMSS
tree can be generated pseudo-randomly, and thus all XMSS trees on all layers can
be constructed. However, to save memories, we typically generates the involved
XMSS trees on the fly during the signature generation process.

7.2 MT-XMSS Signature Generation and Verification

Let the global index of the bottom layer WOTS+ instances be idx. idx can be
uniquely expressed as a tuple (ag—1,a4-2, -+ ,01,ap) with 0 < a; < 2" such
that

idx = Ozd_12(d_1)h + ad_22(d_2)h + -+ 0512h + «p, (3)

where i = h/d. Then, the signing process only involves the single XMSS tree in
layer d — 1, the XMSS tree in layer d — 2 whose root will be signed by the ay_1-th
leaf of the involved XMSS tree in layer d — 1, the XMSS tree in layer d — 3 whose
root will be signed by the ag_o-th leaf of the involved XMSS tree in layer d — 2,
-+, and the XMSS tree in layer 0 whose root will be signed by the a;-th leaf of
the involved XMSS tree in layer 1. Finally, the message will be signed by the ag-th
leaf of the involved XMSS tree in layer 0.

The XMSS signature contains the WOTS+ signature of the message and all the
signatures of the roots of the XMSS tress involved. To verify a claimed signature,
we can compute the hypothetical root of the top layer XMSS tree from the message

10

Fig.4: A 3-layer MT-XMSS instance with total height 9

and the signature. The signature is valid if and only if it matches the public key
of the MT-XMSS instance.

8 Preliminary Implementations and Performance Test

We instantiate the hash-based signature schemes described in previous sections
with SM3, and we name them as XMSS-SM3 and MT-XMSS-SM3. We implement
XMSS-SM3 and MT-XMSS-SM3 based on the code provided at https://github.com/
XMSS/xmss-reference by substituting the underlying hash function with an
implementation of SM3. The performance of the implementation is provided in
Table 2, which are obtained on a server machine with 32 cores running Linux
ubuntu 18.04 on 2.9GHz AMD EPYC-Rome Processor.

11

https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference

In Table 2, the “Height” column records the heights of the XMSS trees in
the XMSS-SM3 instances. For MT-XMSS-SM3 instances, the “Height” column records
the height of the full MT-XMSS trees and the number of layers. For example, h/d
means there are d layers, and the height of the XMSS trees in each layer is h/d.

9 Conclusion

In this work, we instantiate the hash-based signature schemes XMSS and MT-XMSS
described in RFC 8391 with SM3 and conduct some preliminary performance test.
In the future, we will provide implementations of XMSS-SM3 and MT-XMSS-SM3
on various platforms and deploy them in real application scenarios to test the
applicability of hash-based signature schemes.

Acknowledgment. We thank Yamin Liu for informing us the issue of the key
generation strategy from [HBG™ 18] concerning multi-target attacks.

References

BDHI11. Johannes Buchmann, Erik Dahmen, and Andreas Hiilsing. XMSS - A
practical forward secure signature scheme based on minimal security as-
sumptions. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 -
December 2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer
Science, pages 117-129. Springer, 2011.

BHH'15. Daniel J. Bernstein, Daira Hopwood, Andreas Hiilsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based sig-
natures. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bul-
garia, April 26-80, 2015, Proceedings, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 368-397. Springer, 2015.

BHK'19. Daniel J. Bernstein, Andreas Hiilsing, Stefan Kélbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The sphincs+ signature framework. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November 11-15,
2019, pages 2129-2146. ACM, 2019.

CDG%17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1825-1842. ACM, 2017.

DHT76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

12

096 ¢sev00 069.¢ crvieno 89 L961¢°0 g1/09
03 LVEE00 TLVST 0804€0°0 89 66€€TC°0 8/0%
026 67610°0 €46 ¥1€620°0 89 L8101¢°0 v/02 91
020G €8110°0 G967 8¢I6T0°0 89 28€0€L°9 ¢/0%
010G 1¢900°0 ¢08¢ 6CV.LT0°0 89 80L8SGL'6 0T
S 914 S 914 S
Aypede) awt Hmm WﬂHw A wﬁNﬂmWWm meﬂmﬁwmﬂm @Nﬂw\mwvmﬁw:m awT _H.vaumwx WBPH M

EWNS-SSWX-LIW pue ¢WNS-SSWX JO 3So3} @OQ@EHOW.H@Q %H@Qﬁggwhm NI AN

13

HBGt18.

HRB17.
Lam79.
MCF19.

Mer89.

NIS20a.

NIS20b.

Sho99.

SLGT122.

vdLPR*18.

WJW*19.

7ZCY22.

Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld,
and Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC
8391, 2018.

Andreas Hiilsing, Lea Rausch, and Johannes Buchmann. Optimal parame-
ters for xmss " mt. TACR Cryptol. ePrint Arch., page 966, 2017.

Leslie Lamport. Constructing digital signatures from a one way function.
Technical Report CSL-98, October 1979.

David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-
Based Signatures. RFC 8554, 2019.

Ralph C. Merkle. A certified digital signature. In Gilles Brassard, ed-
itor, Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages
218-238. Springer, 1989.

NIST. Public Comments on Draft SP 800-208, 2020. https:
//csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/
documents/sp800-208-draft-comments-received.pdf.

NIST. Recommendation for stateful hash-based signature schemes. NIST
SP 800-208, 2020.

Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Rev., 41(2):303-332,
1999.

Siwei Sun, Tianyu Liu, Zhi Guan, Yifei He, Jiwu Jing, Lei Hu, Zhenfeng
Zhang, and Hailun Yan. LMS-SM3 and HSS-SM3: Instantiating Hash-
based Post-Quantum Signature Schemes with SM3. Cryptology ePrint
Archive, Paper 2022/1491, 2022. https://eprint.iacr.org/2022/1491.
Ebo van der Laan, Erik Poll, Joost Rijneveld, Joeri de Ruiter, Peter
Schwabe, and Jan Verschuren. Is java card ready for hash-based signatures?
In Atsuo Inomata and Kan Yasuda, editors, Advances in Information and
Computer Security - 13th International Workshop on Security, IWSEC
2018, Sendai, Japan, September 3-5, 2018, Proceedings, volume 11049 of
Lecture Notes in Computer Science, pages 127—-142. Springer, 2018.

Wen Wang, Bernhard Jungk, Julian Walde, Shuwen Deng, Naina Gupta,
Jakub Szefer, and Ruben Niederhagen. XMSS and embedded systems.
In Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in
Cryptography - SAC 2019 - 26th International Conference, Waterloo, ON,
Canada, August 12-16, 2019, Revised Selected Papers, volume 11959 of
Lecture Notes in Computer Science, pages 523—-550. Springer, 2019.
Kaiyi Zhang, Hongrui Cui, and Yu Yu. Sphincs-a: A compact stateless
hash-based signature scheme. TACR Cryptol. ePrint Arch., page 59, 2022.

14

https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://eprint.iacr.org/2022/1491

	XMSS-SM3 and MT-XMSS-SM3: Instantiating Extended Merkle Signature Schemes with SM3

