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Abstract

In recent years, there has been significant work in studying data structures that provide
privacy for the operations that are executed. These primitives aim to guarantee that observable
access patterns to physical memory do not reveal substantial information about the queries and
updates executed on the data structure. Multiple recent works, including Larsen and Nielsen
[Crypto’18], Persiano and Yeo [Eurocrypt’19], Hubáček et al. [TCC’19] and Komargodski and
Lin [Crypto’21], have shown that logarithmic overhead is required to support even basic RAM
(array) operations for various privacy notions including obliviousness and differential privacy as
well as different choices of sizes for RAM blocks b and memory cells ω.

We continue along this line of work and present the first logarithmic lower bounds for differ-
entially private RAMs (DPRAMs) that apply regardless of the sizes of blocks b and cells ω. This
is the first logarithmic lower bounds for DPRAMs when blocks are significantly smaller than
cells, that is b ≪ ω. Furthermore, we present new logarithmic lower bounds for differentially
private variants of classical data structure problems including sets, predecessor (successor) and
disjoint sets (union-find) for which sub-logarithmic plaintext constructions are known. All our
lower bounds extend to the multiple non-colluding servers setting.

We also address an unfortunate issue with this rich line of work where the lower bound
techniques are difficult to use and require customization for each new result. To make the
techniques more accessible, we generalize our proofs into a framework that reduces proving
logarithmic lower bounds to showing that a specific problem satisfies two simple, minimal con-
ditions. We show our framework is easy-to-use as all the lower bounds in our paper utilize the
framework and hope our framework will spur more usage of these lower bound techniques.

1 Introduction

In this work, we will study privacy-preserving data structures in the setting where a client outsources
the storage of data to one or more potentially untrusted servers (such as a cloud provider). Even
though the client delegates the storage to the server, the client may need to perform operations on
the outsourced data in an efficient manner. In terms of privacy, the client wishes to maintain the
confidentiality of the outsourced data. A straightforward first attempt is for the client to encrypt
all data locally before transferring to the server. While guaranteeing that the server cannot see
the data in plaintext, this technique does not address the leakage of access patterns that the server
observes when the client performs operations on the outsourced data. For example, the server
may observe the exact memory locations that are retrieved or modified. Therefore, it is integral
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to protect the patterns of data access to also maintain privacy for the actions performed over the
outsourced data.

Oblivious RAMs. Oblivious RAMs (ORAMs), introduced by Goldreich and Ostrovsky [GO96],
are one cryptographic primitive that may be leveraged to hide access patterns. At a high level,
ORAMs can be viewed as a data structure that enables maintenance of a dynamic array where the
client either query or update any entry. The obliviousness privacy guarantee of ORAMs ensures
that any adversary given two candidate equal-length operational sequences and observes the access
pattern incurred by the execution of one of the sequences still cannot determine the identity of
the executed operational sequence. In recent years, ORAMs have been studied extensively to
try and determine the optimal overhead (see [GO96, GMOT12, KLO12, SvS+13, LO13, CLP14,
RFK+15, ZWR+16, BCP16, CLT16, DvF+16, PPRY18, GKW18] and references therein). For b-bit
entries on machines with memory cell (word) size of ω bits, the best known constructions obtain
logarithmic overhead O((1 + b/ω) · log n) [AKL+20]. This ends up being optimal as it matches
the lower bounds of Ω((b/ω) · log n) by Larsen and Nielsen [LN18] and Ω(log n/(1 + log(ω/b))) by
Komargodski and Lin [KL21] up to logarithmic factors in b and ω for all choices of b and ω. Due to
their strong privacy guarantees, ORAMs have seen usage in many applications such as multi-party
computation [WHC+14, BCP15, Ds17] and secure cloud storage systems [SS13, BNP+15].

Differentially Private RAMs. In various practical applications, the guarantees provided by
obliviousness end up being unnecessarily strong. For example, we can consider the problem of
privacy-preserving data analysis where the goal is to reveal statistics about a data set, but still
maintain the privacy of each individual. An algorithm is considered differentially private if the
probability distribution of the output of the algorithm for two data sets that differ in only one record
will not differ significantly. Therefore, if the adversary observes the disclosure of the algorithm,
it may not learn information about whether an individual was a member of the input data set.
Consider the problem of privacy-preserving data analysis over a data set outsourced to an untrusted
server. For any accesses to the data set, we could use an ORAM to completely hide any subset
of records accessed from the data set. However, this may be stronger privacy than needed as the
differentially private disclosure only provides privacy for individuals.

Instead, we turn to differentially private RAMs (DPRAMs) whose privacy guarantees align
closer to the ones used in privacy-preserving data analysis. DPRAMs aim to provide privacy for
individual operations, but may reveal information about a sequence consisting of many operations.
In more detail, if an adversary receives two candidate equal-length operational sequences that differ
in one operation and the access pattern incurred by the execution of one of the two sequences, the
adversary should not be able to guess the identity of the executed sequence with too high probability.
Due to the weaker guarantees, there is hope to obtain sub-logarithmic overhead smaller than
ORAMs. For example, sub-logarithmic constructions have been shown for differentially private
Turing machines, stacks and queues [KS21] whereas logarithmic overhead is required for their
oblivious counterparts [JLN19, KS21]. Unfortunately, the Ω(b/ω · log n) lower bound for DPRAMs
by Persiano and Yeo [PY19] showed that this is impossible when b = Ω(ω). However, no such lower
bound is known when blocks are significantly smaller than cells, b ≪ ω, leading to the following
question that was also posed as an open problem in [KL21]:

What is the optimal overhead for differentially private RAMs
for the setting when blocks are much smaller than cells, b≪ ω?

We resolve this by proving a logarithmic lower bound for all choices of b and ω.
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Framework for Cell Probe Lower Bounds. Starting from the seminal work of Larsen and
Nielsen [LN18] that introduced the usage of cell probe techniques for oblivious RAMs, there has
been a significant amount for proving cell probe lower bounds for various data structure prob-
lems and privacy guarantees. Previous works have considered lower bounds for different privacy
notions beyond obliviousness and differential privacy including obliviousness without adversarial
knowledge of operational boundaries [HKKS19], obliviousness in the multiple non-colluding server
setting [LSY20] and searchable encryption leakage functions [PPY20]. Lower bounds have also
been proven for other oblivious data structure problems beyond RAMs including stacks, queues,
deques, heaps and search trees [JLN19] as well as near-neighbor search [LMWY20].

Unfortunately, the lower bounds end up being very technical and customized to each specific
setting. To date, if one wished to prove lower bounds for a specific data structure with certain
privacy guarantees, one would have to understand all the various techniques and modify them
accordingly to obtain the desired lower bound. Ideally, we would like to encapsulate the re-usable
portions of the proofs into a blackbox framework that enables future users to prove lower bounds
by only modifying parts that need to be customized for the specific data structure problem and/or
privacy notion. This leads us to the following natural question:

Is it possible to generalize the techniques into a framework
that enables easier lower bound proofs for future works?

To address this, we present a framework that reduces proving logarithmic lower bounds for privacy-
preserving data structures to showing that the data structure problem and privacy notion satisfy
two simple (and seemingly minimal) conditions. Furthermore, we show that our framework is widely
applicable by proving logarithmic lower bounds for a whole set of new data structure problems for
which sub-logarithmic upper bounds are known with no privacy guarantees.

1.1 Our Contributions

We summarize our results below. All our lower bounds are proven in the cell probe model where
overhead refers to the required number of probes into server memory cells. If one restricts the server
to be passive (i.e., may not perform any computation), then our results become communication
lower bounds.

Differentially Private RAMs (DPRAMs). For our first result, we present new lower bounds
for DPRAMs in the setting where blocks are significantly smaller than the word size, b ≪ ω. In
particular, we show that DPRAMs must still have logarithmic overhead regardless of the parameter
settings for b and ω. In our work, we will prove the following theorem. Throughout this section, we
ignore O(log log log n) factors to avoid being overburdensome. See Theorem 5 for a more precise
statement.

Theorem 1 (Informal). Any (ϵ, δ)-DP RAM for n b-bit entries with constant ϵ > 0, sufficiently
small, constant δ > 0 and client storage of c bits has overhead:

Ω

(
log(nb/c)

1 + log(ω/b)

)
.

To interpret the lower bound, we note that our lower bound is the same as the one proved
in [PY19] for DPRAMs in the case b = Θ(ω). However, for the case when b≪ ω, our lower bound
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ends up peaking a lot higher. For example, consider the case where b = Θ(1) and ω = Θ(log n).
Then, our lower bound ends being Ω̃(log n) while the lower bound in [PY19] becomes trivial at Ω(1).
In other words, our result ends up proving logarithmic lower bounds for all reasonable choices of
block and cell sizes b = logO(1)(n) and ω = logO(1)(n). In such regimes, our lower bound is tight
up to O(log log n) factors with the best known ORAM constructions [AKL+20].

Additionally, we show that we can extend our lower bound to the multiple server setting im-
proving previous multi-server ORAM lower bounds by Larsen et al. [LSY20]. These are the first
logarithmic lower bounds for DPRAMs in the multi-server setting (regardless of the choice of b and
ω).

General Framework. To make these techniques more accessible, we develop a framework that
abstracts out the necessary properties of a cryptographic data structure for which logarithmic lower
bounds may be obtained. We modularize the proof such that the lower bound techniques leverage
properties of either the data structure problem or privacy in exactly two points. Then, we identify
the two properties needed to prove logarithmic lower bounds:

1. Large Information Retrieval: For any data structure problem P , one must find a random
sequence of n updates U = (u1, . . . ,un) such that for any consecutive sequence of ℓ updates
ua, . . . ,ua+ℓ−1, there exists a set Q of O(ℓ) queries whose answers have high entropy with
respect to updates ua, . . . ,ua+ℓ−1. If we let A(U, Q) be the answers of all queries q ∈ Q
immediately executed afterU, then we must have that the average contribution to the entropy
for each of the O(ℓ) queries is at least Ω(v) bits:

H(A(U, Q) | u1, . . . ,ua−1,ua+ℓ, . . . ,un)/ℓ = Ω(v).

2. Event Probability Transfer: Consider the setting with k ≥ 1 server(s) where at most one
server is compromised by the adversary. Let Ei(U, q) be any event that is observable by
a PPT adversary that compromises the i-th server when executing the update sequence U
from above and a query q. Furthermore, suppose that the probability of the event satisfies
Pr[Ei(U, q)] ≥ ζ/k for some constant ζ > 0. Then, the same event must occur with similar
probability for any other query q′:

Pr[Ei(U, q′)] = Ω(Pr[Ei(U, q)]).

The first property requires that the data structure problem is “complex” enough to enable
retrieving updates with queries. For example, this rules out contrived data structures whose queries
may not return any information about updates. The second property acts as a proxy for leveraging
the privacy guarantees. For any data structure problem and associated privacy guarantees that
can satisfy the above two properties, we immediately get the following theorem (see Theorem 3 for
a formal statement).

Theorem 2 (Informal). Let P be a data structure problem satisfying the above two properties with
query outputs of b bits. Any data structure DS solving P using at most client storage of c bits must
have overhead:

Ω

(
b

v
· log(nb/c)

1 + log(ω/b)

)
.
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As a result, we believe that we have made the lower bound techniques more accessible as one can
reduce the problem of proving logarithmic lower bounds to simply showing that the data structure
problem satisfies the two properties above. Furthermore, we identify that a key metric is the ratio
between the size of the query output b and the amount of information gained per query v.

New Data Structure Lower Bounds. We show that our framework is widely applicable by
proving logarithmic lower bounds for many data structure problems where lower bounds are not
known with respect to any privacy guarantees. In our applications, we target data structure prob-
lems where o(log n) upper bounds are known when no privacy guarantees are required. By plugging
these data structure problems into our framework, we obtain Ω̃(log n) lower bounds showing that
the differentially private versions of these data structures inherently require more overhead com-
pared to the non-private versions. In particular, we prove logarithmic lower bounds for the following
data structure problems:

• Set Membership: In this problem, the data structure maintains a subset S ⊆ [n]. A query for
i ∈ [n] returns a bit indicating whether i ∈ S. This is a natural problem where the output is
a single bit and the cell size ω is much larger. Without privacy, one can solve this problem
using a bit vector of length n and answer queries in constant time. Using our framework, we
show that DP versions would, instead, require Ω(log(n/c)/ logω) overhead.

• Predecessor and Successor: Predecessor (successor) aim to maintain a subset S ⊆ U of size
at most n. A query for some i ∈ U returns the largest (smallest) item in S that is no larger
(smaller) than the query input i. Without privacy requirements, one can solve predecessor
in O(log log n) overhead using van Emde Boas trees [vEB75] when |U | = nO(1). When DP
guarantees are required, we show that the overhead must be Ω(log(n/c)/ log(ω/ log n)).

• Disjoint Sets (Union-Find): Finally, we consider the disjoint sets data structure that main-
tains a set of sets over n elements. The union operation takes two elements and joins their
corresponding sets. The find operation takes an element and returns a set representation of
the input element. For any two elements in the same set, the find operation will return the
same set representation. The classical algorithm achieves overhead O(α(n)) where α(n) is
the inverse Ackermann function that is essentially constant in all practical settings. We show
that the DP version requires overhead Ω(log(n/c)/ log(ω/ log n)).

One result of our new framework is that we can prove lower bounds for natural data structures
that do not enable writing of random blocks of data. Most prior works [LN18, JLN19, PY19,
HKKS19, LMWY20, LSY20, KL21] considered “key-value” data structures where the values could
be b-bit random blocks to derive enough entropy for lower bounds. The above data structure
problems do not enable storing random b-bit blocks, but our framework is still able to prove
logarithmic lower bounds. Finally, our framework may handle other privacy guarantees besides
differential privacy and obliviousness. For example, our framework may prove lower bounds for
leakage functions common in searchable encryption extending [PPY20].

Separation Result for Oblivious Stacks (and Queues). Finally, we consider the generality
of our framework. For example, one may question whether there exist data structures that do not
satisfy our framework’s two required properties, but could still have a logarithmic lower bound. We
provide evidence that our framework is quite general and tight by studying stacks and queues, two
data structures that do not satisfy the first condition of large information retrieval. For oblivious
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stacks and queues, Jacob, Larsen and Nielsen [JLN19] proved an Ω(b/ω · log(nb/c)) lower bound.
For differentially private stacks and queues, Komargodski and Shi [KS21] showed an upper bound
of O((1 + b/ω) · log log n). The correct overhead is unknown for oblivious stacks and queues when
b≪ ω.

We present constructions of oblivious stacks and queues with O(b/ω · log(nb/c)) amortized
overhead. So, one may obtain sub-logarithmic overhead when b≪ ω. If b = O(1) and ω = Θ(log n),
then our construction uses O(1) amortized overhead. Furthermore, our result can obtain even sub-
constant amortized times. When b = O(1) and ω = Θ(log2 n), our construction requires O(1/ log n)
overhead meaning that, on average, only one operation amongst log n operations require interacting
with the server. To our knowledge, this is the first separation between an online oblivious data
structure and ORAMs when b≪ ω.

Re-framing this result with respect to our framework, it becomes clear that oblivious stacks
and queues should not satisfy the properties of our framework. Therefore, we believe that if one
can prove logarithmic lower bounds for a differentially private version of a data structure problem
P for all choices of b and ω, then one should be able to do so using our framework by showing that
P satisfies the two necessary properties.

1.2 Related Works

Balls-and-Bins Lower Bounds. The first logarithmic lower bounds were proven by Goldreich
and Ostrovsky [GO96] of the form Ω((b/ω)·(log n/ log c)) where the client has storage of c bits. Boyle
and Naor [BN16] pointed out that these lower bounds only existed in the balls-and-bins model with a
non-encoding assumption on the underlying blocks. Lower bounds of the form Ω(b/ω ·(log n/ log c))
for DPRAMs were proven in [PPY19]. Cash, Drucker and Hoover [CDH20] proved lower bounds
showing that one-round ORAMs must have Ω(

√
n) overhead or client storage in the balls-and-bins

model.

Cell Probe Lower Bounds. The cell probe model is a computational model where only probes
into memory are charged cost. Everything else such as computation or randomness generation
can be done for free. Therefore, proving cell probe lower bounds is the holy grail as these lower
bounds will apply to any realistic computational model. Although, proving cell probe lower bounds
ends up being difficult for this reason as the highest static lower bounds are Ω̃(log n) [PTW10]
and the highest dynamic lower bounds are Ω̃(log2 n) [Lar12]. For privacy-preserving data struc-
tures, the first cell probe lower bounds were proven by Larsen and Nielsen [LN18] for ORAMs.
Further works have proven lower bounds for other oblivious data structures [JLN19] and near-
neighbor search [LMWY20]. Other works have also considered various privacy notions including
differentially private RAMs [PY19], ORAMs where adversaries do not know the boundaries of
operations [HKKS19], ORAMs with multiple servers [LSY20] and searchable encryption [PPY20].

Lower Bound Barriers. Boyle and Naor [BN16] showed that proving unconditional lower bounds
for offline ORAMs (that is, all operations are provided at one time) would imply currently unknown
circuit lower bounds. Extending this result, Weiss and Wichs [WW18] showed that lower bounds
for read-only online ORAMs would result in new lower bounds for either locally decodable codes
or circuits.

Constructions. As mentioned early, there has been a long line of work attempting to con-
struct ORAMs efficiently such as [GO96, GMOT12, KLO12, SvS+13, RFK+15, DvF+16, PPRY18,
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AKL+20] as well as in various settings including statistical security [CLP14], multi-party compu-
tation [WHC+14, ZWR+16, Ds17], multiple non-colluding servers [LO13, GKW18] and parallel
access [BCP16, CLT16] to list some examples. Beyond ORAMs, other works have considered con-
struction oblivious variants of other data structures [WNL+14, Shi20, JLS21]. Previous works also
presented constructions for differentially private RAMs [WCM18, PPY19], search trees [CCMS19],
Turing machines, stacks and queues [KS21].

2 Technical Overview

Reviewing the Information Transfer Tree. We start with the information transfer tree tech-
nique of Pătraşcu and Demaine [PD06] used first by Larsen and Nielsen [LN18] to prove ORAM
cell probe lower bounds. Komargodski and Lin [KL21] extended the technique to enable proving
logarithmic lower bounds for ORAMs even when blocks are smaller than cells (b < ω). At a high
level, the information transfer tree technique arranges n operations into a tree with arity χ ≥ 2
where each of the n operations are uniquely assigned to a leaf node based on the execution order.
Each cell read is uniquely assigned to an internal node as the lowest common ancestor of the leaf
nodes associated to the operation performing the cell read and the last operation to overwrite the
read cell. For internal node v, the totality of information that is read by queries in the right subtree
rooted at v from updates in the left subtree of v exists in the contents of cells in the set of probes
assigned to v. For any subtree rooted at v with ℓ leaf nodes, the number of assigned probes is max-
imized at Ω(ℓ) when right subtree reads blocks overwritten in the left subtree. As the adversary
may also compute the information transfer tree, it must be that each internal node is assigned its
maximum. Otherwise, the adversary can determine that the worst case sequence was not executed.
Summing the worst case across all internal nodes obtains the lower bound.

Unfortunately, the information transfer technique seems to inherently require a strong privacy
condition, like obliviousness, for sequences differing in Ω̃(n) operations as the worst-case sequences
for each internal node differ drastically. This is incompatible with differential privacy as the privacy
guarantees degrade exponentially in the number of different operations. We note that Patel et
al. [PPY20] investigated weaker leakage guarantees for encrypted search using information transfer,
but still leveraged privacy for sequences differing in Ω̃(n) operations.

Previous Chronogram Approach. To prove lower bounds for differentially private RAMs,
Persiano and Yeo [PY19] adapted the chronogram (introduced by Fredman and Saks [FS89]). The
chronogram considers hard sequences of Θ(n) updates followed by a single query. The n updates
are divided into K = Õ(log n) epochs that decay exponentially by a factor of r ≥ 2. Epochs are
numbered in reverse order, so that the i-th epoch has ri updates. The main idea is as follows.
For any epoch i, the information stored about updates occuring in the i-th epoch must appear in
updates following the i-th epoch. Since we chose epochs to decay exponentially, the total size of
epochs {1, . . . , i− 1} is strictly smaller than the i-th epoch. As a result, future update operations
cannot encode all the information written in the i-th epoch as long as r is chosen sufficiently large.
Consider the final query to randomly retrieve information from written in the i-th epoch. If the
data structure answers queries correctly, then, intuitively, the query must directly probe cells last
overwritten in the i-th epoch with high probability. Finally, differential privacy guarantees require
that the query probes a similar number of cells last overwritten from all K epochs to hide the
identity of the epoch from which information is retrieved. We highlight privacy is only needed for
sequences differing in the final query.

7



The crux of the above technique is an efficient communication protocol built using a too-good-
to-be-true data structure. In this communication game, Alice and Bob both receives updates in
all but the i-th epoch. Alice also receives the answers to queries in the i-th epoch that it wishes
to encode to Bob. To do this, Alice and Bob will jointly execute the data structure with Alice
helping Bob to fill in the i-th epoch. For all updates before epoch i, Alice and Bob can individually
execute the updates. Alice will execute the i-th epoch of updates and keep track of all cell writes.
For updates in following epochs, Alice will record any reads to cells (both locations and contents)
last overwritten in epoch i. Finally, Alice will also execute all queries relevant to the i-th epoch
and record all reads to cell last overwritten in epoch i. The set of all cell locations and contents
that are read during operations following epoch i are encoded to Bob. So, Bob executes the data
structure identically to Alice and retrieves query outputs to the i-th epoch.

There are two key observations to complete the proof. First, the encoding of cells and locations
of all updates following epoch i is too small to encode everything about epoch i. Therefore, the
information needed to retrieve a query must be encoded in cells last overwritten in the i-th epoch.
Since queries output b bits, one can use an averaging argument to show that Ω(b/ω) cells must be
probed by random queries to retrieve b bits of information from the i-th epoch.

A New Chronogram Approach for Small Blocks. Unfortunately, the above approach suffers
from an b/ω factor that seems inherent in the specific communication protocol. When b < ω, there
is nothing ruling out the data structure from storing the answers for Θ(ω/b) queries in a single cell.

Our paper introduces a more efficient communication protocol than the one in [PY19] to handle
these settings. If our goal is to prove logarithmic lower bounds, then we must show that random
queries must probe Ω(1) cell last overwritten in epoch i regardless of the choices of b and ω. This
is impossible if we rely on trying to encode the contents of cells probed by a query since cell sizes
ω are larger than the output of the query b. Instead, we make the observation that the outputs of
queries are actually smaller than contents of cells. In other words, it is more efficient for Alice to
simply encode the answers to queries instead of encoding the contents of even a single cell probed
by a query. However, Alice cannot simply encode the answers of all queries to Bob as this would not
enable deriving any meaningful lower bound on query time. So, we also need another method to
further compress Alice’s encoding. The second idea is for Alice to identify queries that do not need
to be encoded at all. For example, consider a query that does not probe any cell last overwritten
by the i-th epoch. These queries may be executed correctly by Bob for free without any additional
information from Alice. However, the frequency of these free queries is unclear. If no free queries
exist, we would obtain a trivial encoding of simply sending all the query’s outputs. In fact, a
contrived data structure could simply force every query retrieving updates from the i-th epoch to
simply probe a cell last overwritten in the i-th epoch to guarantee that there are no free queries
at all. By increasing the update overhead by a single probe, each update in the i-th epoch can
write to one additional cell that will be read by the corresponding subsequent query ensuring no
free queries.

Taking a closer look, the above approach by a contrived data structure only succeeds because
the epoch structure is fixed ahead of time. Instead, we consider a randomized epoch structure that
cannot be leveraged by the data structure. To do this, we pick a random number of updates from
{n/2, . . . , n} followed by a single query. The structure of K = Õ(log n) epochs is built over the final
n/2 updates. Consider any data structure that probes at most K/100 cells during queries. As the
epochs are randomly placed, we can show that the probability that the data structure can guarantee
a query to retrieve information from the i-th epoch will probe a cell last overwritten in the i-th
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epoch is approximately 1/100. In other words, we just showed that around (99/100)-fraction of
queries that retrieve information from the i-th epoch end up being free queries in Alice’s encoding.
As a result, we obtain a very efficient communication protocol that allows us to prove that queries
must probe Ω(1) cells from all K epochs.

We note that Persiano and Yeo [PY19] also used randomized epoch structures, but did so to
remove log log n factors from the lower bound. Their work would still obtain an Ω(log n/ log log n)
lower bound without random epochs. In our work, we leverage random query locations in a vastly
different way to prove the existence of many free queries. Without this, we cannot prove anything
more than a trivial Ω(1) lower bound.

3 Lower Bound Model

We prove our lower bounds in a variant of the cell probe model that were introduced by Larsen
and Nielsen [LN18]. At a high level, the cell probe model only charges data structures for probes
into memory cells. All other operations are free of charge (such as computation and randomness
generation). To enable lower bounds for cryptographic data structures, we use the cell probe model
that adapts the setting to multiple parties representing the client and k ≥ 1 server(s). We assume
that the client has at most c bits of storage. Each server’s storage consists of memory cells (words)
of ω bits. In this variant of the cell probe model, the only operation that is charged cost is to
probe a cell in any of the server’s memory. In our model, all accesses into client memory are free of
charge. Additionally, we assume there exists an arbitrarily long, but finite, random string R that
is available to both parties without any cost to access. One can view R as a random oracle, so our
lower bounds apply even if one assumes random oracles exists.

In our work, we will consider dynamic data structure problems. By dynamic, we refer to the
fact that the data structure enables operations that allow its users to update the information stored
by the data structure. Furthermore, dynamic data structures are allowed to update its memory
representation during each operation. We present a formal definition of dynamic data structures
below:

Definition 1 (Dynamic Data Structure Problem). A dynamic data structure consists of the tuple
(Uu, Uq) where Uu is the universe of update operations and Uq is the universe of query operations.
The error probability is at most α if for every sequence of updates u1, . . . , un ∈ (Uu)

n and every
query q ∈ Uq, the probability that the query q(u1, . . . , un) produces the wrong answer is at most α.

Next, we consider the view of the adversarial server(s) in this model. In particular, each
of the k ≥ 1 servers will receive a transcript consisting of everything that each server observes
while processing operations that are executed by the client. For any sequence of operations O ∈
(Uu ∪ Uq)

|O|, we denote by Vi(O) the view of the i-th server when processing the operational
sequence O. The transcript Vi(O) will consist of the contents of all memory cells stored on the i-th
server as well as sequences of probes to cells that occur for each of the operations in the sequence
O. We note that Vi(O) also contains information denoting the boundaries of when each operation
starts and ends1. If the adversary compromises the i-th server, the adversary will receive Vi(O).
We use TDS(O) to denote the entire transcript seen by the adversary for all compromised servers.
Note that our definition assumes that the adversarial server(s) are honest-but-curious. As we are

1We note that Hubáček et al. [HKKS19] proved a logarithmic lower bound for ORAMs even when the adversary
does not learn operational boundaries. We leave it as future work to adapt their techniques to work with our proof.
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proving lower bounds, assuming that the adversary is weaker makes our result stronger as our lower
bounds immediately also apply to more stronger adversaries such as those that are malicious.

Using the above definition, one can now formulate privacy notions for data structures. For
example, obliviousness guarantees that any efficient adversary A should not be able to distinguish
between Vi(O1) and Vi(O2) for any two equal-length sequences O1 and O2. In our work, we will
consider two weaker notions: differential privacy and privacy with respect to leakage functions. As
our framework does not make assumptions on any specific privacy notion, we delay formal defintions
of these notions until Section 5.

4 Framework for Lower Bounds

In this section, we present a formal framework for proving lower bounds. In particular, we will only
assume certain properties of the data structure problem (that we will describe later) and then we
show that for any problems that satisfy these properties, one can immediately utilize our framework
to prove lower bounds. Later, we will show that one can utilize our framework for many settings
with different privacy guarantees and/or data structure functionalities.

Consider a data structure problem P = (Uu, Uq). For any sequence of U of update operations
and for any query operation q ∈ Uq, we denote by A(U, q) the correct answer to q when it is executed
following the update operations in U. We abuse notation and, for a sequence Q = (q1, . . . , qℓ) of
queries, we denote by A(U,Q) the sequence of the correct answers for queries qi ∈ Q obtained by
executing each query directly after the update sequence U . We re-iterate that this set consists of
all the correct answers and not the answers returned by a potentially randomized data structure
with non-zero error probabilities. We will abuse notation and use A(U, Q) for distribution U over
update sequences to denote the distribution over the sequences of correct answers with respect to
a update sequence distributed according U. When U and Q are clear from context, we will drop
the arguments and simply use A.

We are now ready to formally define the required properties.

Definition 2 (Large Information Retrieval). We say that a data structure problem P has the Large
Information Retrieval property with parameter v if there exists a distribution U = (u1, . . . ,un) over
sequences of n update operations such that for any subsequence (ua, . . . ,ua+l−1) of ℓ ≥

√
n update

operations, there exists a sequence Q of length ℓ ≤ |Q| ≤ c · ℓ, for some constant c ≥ 1, such that

H(A(U, Q) | u1, . . . ,ua−1,ua+l, . . . ,un) ≥ ℓ · v.

Definition 3 (Event Probability Transfer). Consider a data structure DS for the problem P . For
any update sequence U and query q, let E(U, q) be some event that can be checked whether to have
occurred by a PPT adversary such that Pr[E(U, q)] ≥ ζ for some constant ζ > 0. We say that P
has the Event Probability Transfer if for every DS and for any two queries q and q′, it must be that

Pr[E(U, q′)] = Ω(Pr[E(U, q)])

where the probability is over the internal randomness of DS.

Next, we present the main theorem of our framework.
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Theorem 3. Consider a data structure problem P that allows update and query operations such
that query outputs are b bits and b = nO(1).2 Let DS be any data structure for P with expected update
and query overhead tu and tq respectively, client storage c and error probability α ≤ v/(b log2 n) in
the cell probe model with ω ≥ 1 cell size. If P enjoys the Large Information Retrieval property and
Event Probability Transfer property then

tu + tq = Ω

(
v

b
· log(nv/c)

1 + log((ω + log log n)/b)

)
.

We dedicate the remainder of this section to proving this theorem. Later, we will show how to
apply our framework to prove lower bounds in various settings.

Discussion about b and v. In the above theorem, b is the number of bits to describe the output of
each query. On the other hand, v is the amount of information that is retrieved about the random
updates with each query. In general, we know that v ≤ b as we cannot learn more information
that the query output’s size. Prior works have made the assumption that b = v such as for array
maintenance. By generalizing this, we illuminate the importance of this ratio for lower bounds in
cryptographic data structures. In later sections when we prove lower bounds for specific problems,
we will convert natural problems to artificial variants with the goal of maximizing the ratio v/b to
prove higher lower bounds.

We point out that this b/v factor is distinctly different from the b/ω factor that appears in
prior lower bounds. The b/v factor characterizes the average information retrieved per bit in the
query output. In contrast, the b/ω factor characterizes the number (or fraction) of cells needed to
represent the answer of a single query. For the case when cell size is larger than the query output
ω > b, our lower bound is better than the previous one of Ω(b/ω log(nb/c)) [PY19] as it only loses
1/(1 + log((ω + log log n)/b) factor.

Comparison with [KL21]. We note that our lower bound is slightly lower than the one proved
by Komargodski and Lin [KL21]. They proved a lower bound of the form Ω(log(nb/c)/ log(ω/b))
but, to our knowledge, may be only applied to strong oblivious guarantees. On the other hand, we
prove a lower bound of the form Ω(log(nb/c)/ log((ω+ log log n)/b)), but it is applicable to a wider
range of possibly weaker privacy guarantees and data structure functionalities. We note the gap is
very small and only exists in very restricted settings. When ω = Ω(log log n), both lower bounds are
asymptotically identical. Furthermore, if b = Ω(ω), we can use the original Ω(b/ω · log(nb/c)) lower
bounds such as [LN18]. Therefore, a gap between the lower bounds exists only when ω = o(log log n)
and b = o(ω). It is not hard to see that the gap is at most O(log log log n).

Discussion about Error Probability. We note that one can obtain a slightly stronger theorem
for constant error probability α if one is willing to make additional assumptions about the data
structure DS. In particular, if one assumes that v = Θ(b), then one can prove lower bounds that
hold also for data structures that err with constant probability. For convenience and the ability to
handle general data structures, we consider weaker error probabilities of O(1/ log2 n). This is still
much larger than the negligible error required for cryptographic primitives.

2For most natural problems, the output size is b = O(logn). For generality, we picked the largest upper bound as
possible for b without affecting our lower bound.
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4.1 An Efficient Communication Protocol

In this section, we show that a data structure for any problem P with error probability at most
α emits a public coin one-way communication protocol for the problem where Alice wishes to
efficiently encode the correct answers for all queries in a query set to Bob. In particular, this
protocol efficiently encodes the output of queries even if the query output of b bits is significantly
smaller than the cell size ω. We describe the problem below:

Communication Problem. Let U = (u1, . . . , um) be a sequence of update operations. In the
communication problem, Alice and Bob will receive the same sub-sequence of update operations
U ′ = (u1, . . . , ua−1, ua+ℓ, . . . , um) where the consecutive ℓ operations ua, . . . , ua+ℓ−1 are omitted
along with a set of queries Q and a random string R. Additionally, Alice will receive sequence
A(U,Q); that is, the set of correct answers for all q ∈ Q where each query is executed immediately
after U . The goal of Alice will be to encode A(U,Q) to Bob. In particular, Alice’s encoding will
have to account for the fact that Bob is missing ℓ update operations while ensuring Bob receives
the correct answers.

Random Variables. Next, we denote some additional random variables that will be used to
bound the total communication of our protocol. In particular, these variables will measure the
number of probes by future updates and queries into the group of updates that are missing in
Bob’s input.

• X≥a+ℓ
u denotes the number of probes perform by the update operations (ua+ℓ, . . . , um) into a

cell last overwritten by an update in the missing group (ua, . . . , ua+ℓ−1).

• XQ denotes the number of probes performed by all queries q ∈ Q into a cell last overwritten
by an update in the missing group (ua, . . . , ua+ℓ−1).

• T≥a+ℓ
u denotes the total number of probes performed by all update operations starting from

and including ua+ℓ.

Lemma 1. If there exists a data structure DS for problem P that has error probability 0 < α < 1,
then there is a public coin one-way communication protocol solving the above problem using expected
communication at most

E
[
X≥a+ℓ

u

](
ω + log

tu(m− a− ℓ+ 1)

E[X≥a+ℓ
u ]

)
+ E [XQ] ·

(
b+ log

1

E[XQ]

)
+ α · |Q| ·

(
b+ log

1

α

)
.

Proof. We start by presenting our communication protocol below followed an analysis of correctness
and the encoding length.

Alice’s Encoding. We describe the procedure used by Alice to encode the correct answers A(U,Q).
Recall that Alice and Bob share the update sequence U ′ as well as public randomness R. The
encoding consists of five phases.

1. Alice reconstructs the missing ℓ update operations ua, . . . , ua+ℓ−1 by trying all possible update
operations until finding the sequence that matches the answers in the set A(U,Q).

2. Alice runs the data structure, using shared random string R, and executes all the update
operations (u1, . . . , ua−1). That is, Alice executes all updates until the ones missing from
Bob’s input.
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3. Alice executes the missing update operations (ua, . . . , ua+ℓ−1) that are not part of Bob’s
input. At the end of this phase, Alice appends the c bits found in client memory after the
last update operation ua+ℓ−1.

4. Alice executes all updates in the remaining update operations known to both parties (ua+ℓ,
. . . , um) using the shared random string R.
In this phase, Alice keeps a list of all the special probes of this phase. A probe is special if
it is a probe to a cell last overwritten by an update in the missing group. For this purpose,
the probes of this phase are indexed with the integers 0, 1, 2 and so forth. At the end of this
phase, Alice appends an encoding of the set of indices of the special probes along with the
ordered sequence of all the cell contents read by these probes.

5. Alice executes each query q from the query set Q. All queries are executed starting from the
state of the data structure at the end of update um (that is, after the last update operation).
In this phase, Alice keeps two lists: a list of the non-free queries that include a probe to a
cell last overwritten in epoch i and a list of the wrong queries for which the data structure
returns the wrong answer. At the end of this phase, Alice appends an encoding of the subset
of queries that are either non-free or wrong along with the ordered sequence of the correct
answers of the non-free and wrong queries.

Bob’s Decoding. We describe Bob’s decoding algorithm to recover the correct answers in A(U,Q).
Recall that Bob receives the subsequence of update operations U ′ = (u1, . . . , ua−1, ua+ℓ−1, . . . , am)
and the random string R.

1. Bob executes the updates u1, . . . , ua−1 using the shared random string R.

2. Bob skips the missing updates ua, . . . , ua+ℓ−1 and reads the content of the client memory at
the end of update ua+ℓ−1 found in the encoding. Bob keeps the server memory in the state
at the end of update operation ua−1.

3. Bob executes the remaining updates ua+ℓ, . . . , am using the shared random string R. Before
performing a probe as requested by the data structure, Bob checks if the probe is in the list of
the special probes as found in the encoding. If the probe is special, Bob uses the cell contents
found in the encoding. Otherwise, Bob performs the probe using the current snapshot of the
server memory.

4. Bob takes a snapshot of the server and client memory at the end of update um and uses it as
a starting state for all the queries q ∈ Q. For each query q, Bob first checks whether the query
is non-free or wrong. If so, the answer of the query is read from the encoding. Otherwise, the
answer of the query is obtained by executing the data structure’s query algorithm.

Correctness. As Alice and Bob share the same random string R and updates outside of the
missing group ua, . . . , ua+ℓ−1, their executions of the data structure are identical up to update
operation ua−1. For all updates ua+ℓ and afterwards, every probe to a cell last overwritten by
an update in the missing group ua, . . . , ua+ℓ−1 (thus, the cell contents are unknown to Bob) are
encoded by Alice. Therefore, all cells overwritten in update operation ua+ℓ and after are correct
and identical to Alice’s execution. Finally, for the |Q| queries, we note that Bob can get the correct
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answer whenever the query is correct and does not probe any cell last overwritten by the missing
group. As Alice encodes the answer for all queries not satisfying the above two conditions, Bob
will always retrieve the correct answers for every query q ∈ Q.

Expected length of the encoding. We now bound the expected length of the encoding produced
by Alice in each phase.

1. Alice does not produce any encoding in phase 1 and phase 2.

2. In phase 3, Alice encodes client memory for a total of c bits.

3. Phase 4 contributes the encoding of the subset of special probes along with contents of the
cells probed by a special probe. In other words, a subset of X≥a+ℓ

u probes of the set of total
probes performed during the updates ua+ℓ, . . . , um after the missing group along with ω bits
for each of the X≥a+ℓ

u probes. Therefore, phase 3 contributes at most:

E

[
log

(
T≥a+ℓ

u

X≥a+ℓ
u

)
+ ω ·X≥a+ℓ

u

]

≤ E
[
X≥a+ℓ

u log
T≥a+ℓ

u

X≥a+ℓ
u

]
+ ω · E

[
X≥a+ℓ

u

] (
by log

(
n

k

)
≤ k log(n/k)

)
≤ E

[
X≥a+ℓ

u

]
log

E[T≥a+ℓ
u ]

E[X≥a+ℓ
u ]

+ ω · E
[
X≥a+ℓ

u

]
(by concavity)

≤ E
[
X≥a+ℓ

u

](
ω + log

tu(m− a− ℓ+ 1)

E[X≥a+ℓ
u ]

)
.
(
by E[T≥a+ℓ

u ] ≤ tu(m− a− ℓ)
)

4. Phase 5 contributes the encoding of the set of non-free and wrong queries. If the data structure
has probability of error 0 ≤ α < 1, then the expected number of wrong queries is α·|Q| queries
and b bits are added to the encoding for each wrong query. Similarly, for the non-free queries,
the encoding of a subset of size P i

Q of a set of size ℓi followed by b ·P i
Q bits. Therefore, phase

4 contributes at most the following expected number of bits to the encoding.

E
[
log

(
|Q|

α · |Q|

)]
+ αb|Q|+ E

[
log

(
|Q|
XQ

)]
+ b · E [XQ]

≤ α|Q|(b+ log 1/α) + E
[
XQ · log

|Q|
XQ

]
+ b · E [XQ]

≤ α|Q|(b+ log 1/α) + E [XQ] ·
(
b+ log

|Q|
E[XQ]

)
.

This completes the proof of our public coin one-way communication protocol.

4.2 The Hard Distribution

We now describe the distribution of updates and queries that we will use to prove our lower bound.
We then show how to organize the updates into epochs so to utilize the protocol of the previous
section. At a high level, by looking at the components of the communication cost of Lemma 1, we
notice that the first component is due to the reconstruction of the necessary information for future
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updates occurring after the missing updates. The second component takes into account the amount
of information for queries that were embedded during the missing update operations. Note that
the first component depends only on the update time while the second component depends only
on the query time. We organize our updates into epochs so that the two components are balanced
and we can obtain a lower bound on the sum of query and update times.

Our hard distribution will make use of the random update sequence U = (u1, . . . ,un) that we
will assume exists for the data structure problem P . We define our hard distribution denoted by
U as follows:

1. Pick m uniformly at random from {n/2 + 1, n/2 + 1, . . . , n}.

2. Output sequence of operations U = (u1, . . . ,um).

In other words, we are picking a random prefix of length between n/2 and n from the random update
sequence U. For any query q, we denote by Q(q) the distribution over the sequences Q(q) = (U, q)
obtained by selecting U according to U . Additionally, we will consider Q(Q) with respect to a set
of queries Q. In this case, Q(Q) consists of a random update sequence drawn from U as well as a
uniformly random query drawn from Q. Our final hard distribution will be Q(q) for some query q.

Definition of epochs. Let U = (u1, . . . , um) be a sequence of operations in the support of U .
Define r to be the multiplicative decay between each future epoch. We will choose a correct value of
r later, but we will ensure that r ≥ 2. We partition the operations of U into epochs of exponentially
increasing sizes ℓ1 := r, ℓ2 := r2, . . . with epochs starting from um and growing backward to u1. That
is, epoch 1 consists of operations um, um−1, . . . , um−r+1, epoch 2 of operations um−r, . . . , um−r−r2+1

and so on. We define si :=
∑i

j=1 ℓj to be the number of the operations in epochs 1, . . . , i. Another
way to view si is that it is the total number of operations that occur after epoch i + 1. We will
denote Ui to be the set of all updates in epoch i. We will also denote U−i to be the set of all updates
except for those that are updated in the i-th epoch. The index of the starting update operation of
the i-th epoch will be denoted by pi.

We say that an epoch is large if ℓi ≥ max{8c/v,
√
n} and we denote by K the number of large

epochs. Note that the number of large epochs is K = Θ(logr(m/ℓi)) = Θ(logr(nv/c)).
The organization of updates into epochs formalizes the intuition provided in the previous section.

For any large epoch i with ℓi updates, we note that the number of update operations following it
is at most 2ℓi/r. In other words, the future updates are a little bit smaller than the total number
of updates within the i-th epoch. So, we can balance the two components of the communication
cost in the one-way protocol from the prior section to prove our lower bound.

Important notions of information. Finally, we will introduce two more variables that will aim
to capture the notion of information that will be utilized throughout our work. In particular, these
will look very similar to the communication cost of the one-way protocol from the prior section.
However, they will be used specifically with respect to our epoch organization. We denote X

≥pi−1
u

to be the number of probes performed by updates occurring after the i-th epoch (that is, in epochs
i− 1, . . . , 0) that access a cell last overwritten in the i-th epoch. We denote Xi

Q to be the number
of probes performed by all queries q ∈ Q to cells last overwritten in the i-th epoch. We denote
Xi

q to the number of probes performed by a single query q ∈ Q to cells last overwritten in the i-th
epoch.
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We denote by Z(i, Q) the quantity defined as follows:

Z(i, Q) = min
{
|Q| · v,E

[
X

≥pi−1
u

]
(ω + log log n) + b · E

[
Xi

Q

]}
.

This captures the total amount of information needed to answer all queries q ∈ Q. Note, this
matches the communication cost of our one-way communication protocol in Lemma 1 by plugging
in the i-th epoch as the missing group of updates. We use the minimum as we know the information
transferred is at most |Q| ·v bits as v bits are learned on average from each |Q| queries. For a single
query q ∈ Q, we can similarly define Z(i, q):

Z(i, q) = min

{
v,

E[X≥pi−1
u ] (ω + log log n)

|Q|
+ b · E

[
Xi

q

]}
.

We use minimum as the average information in a single query is v bits. We will utilize Z(i) and
Z(i, q) later as the events that can be viewed by an adversary.

4.3 Bounding Query and Update Times

Finally, we will finish the proof of Theorem 3 in this section. In particular, we will leverage the epoch
organization as well as our one-way communication protocol to prove lower bounds on the query
and update times. To do this, we start by showing that the cost of the one-way communication
protocol can be directly related to the entropy of the correct answers of the query set.

Lemma 2. Consider a data structure DS with error probability α ≤ v/(b log2 n) for a data structure
problem P that satisfies the Large Information Retrieval property. Then for every large epoch i such
that E[Xpi−1

u ] = O(tuℓi/(rK)), there exists a sequence Qi of at least ℓi queries such that

Z(i, Qi) = Ω(ℓi · v).

Proof. We remind the reader that a large epoch i consists of ℓi ≥
√
n update operations. Therefore,

if we consider a sequence U of n updates and the sub-sequence of the ℓi updates of the i-th epoch
then, by the Large Information Retrieval property, there exists a sequence Qi of queries such that

H(A(U, Qi) | U−i) ≥ ℓiv,

whereU−i is the sequence of updates obtained fromU by removing the updates of epoch i. Since Qi

has at least ℓi queries, it suffices to focus on the second argument of the minimum of the definition
of Z(i).

Next, we utilize query set Qi in the context of the one-way communication protocol of Lemma 1,
where Alice and Bob receive the updates U−i. By Shannon’s source coding theorem, the expected
length of Alice’s encoding of A(U, Q) must be at least the entropy of A(U, Q) conditioned on the
shared information U−i and R. Moreover, observe that R is chosen independently from U and Q
and thus the expected length of the encoding must be at least

H(A(U, Q), | U−i,R) = H(A(U, Q) | U−i) ≥ ℓiv.

In other words, the expected communication cost must be Ω(ℓi · v).
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Recall that we use pi to denote the position of the first operation of the i-th epoch and si−1 is
the number of update operations in epochs 1, 2, . . . , i− 1. Furthermore, we use Xi

Qi
to denote the

number of probes by queries q ∈ Qi into cells last overwritten by updates Ui in the i-th epoch.
Therefore, by Lemma 1,

c+ E
[
X

≥pi−1
u

](
ω + log

tusi−1

E[X≥pi−1
u ]

)
+ E

[
Xi

Qi

](
b+ log

|Qi|
E[Xi

Qi
]

)
+ α · |Qi| ·

(
b+ log

1

α

)
≥ ℓiv.

Note, that α ≤ v/(b log2 n), so we get that the last addend is at most |Qi|v/ log2 n · (1+ log(bn/v)).
As b = nO(1) and |Qi| = O(ℓi), we get that this is at most ℓiv · O(1/ log n) ≤ ℓiv/8 for sufficiently
large n. For a large epoch, we also have c ≤ ℓiv/8. Therefore,

E
[
X

≥pi−1
u

](
ω + log

tusi−1

E[X≥pi−1
u ]

)
+ E

[
Xi

Qi

](
b+ log

|Qi|
E[Xi

Q]

)
≥ 3

4
· ℓiv.

Consider two cases. If E
[
Xi

Q

]
≤ |Qi|/16, then log |Qi|

E[Xi
Qi

]
≤ 4. Therefore,

E
[
X

≥pi−1
u

](
ω + log

tusi−1

E[X≥pi−1
u ]

)
+ b · E

[
Xi

Qi

]
≥ 1

2
· ℓiv

as |Qi| ≥ ℓi. Finally, we use the fact that E[Xpi−1
u ] = O(tuℓi/(rK)) and plug it into the above to

obtain the following inequality:

E
[
X

≥pi−1
u

]
(ω + log log n) + b · E

[
Xi

Qi

]
= Ω(ℓiv)

where we used the fact that si−1/ℓi ≤ 2/r and K = O(log n) by our epoch construction. This

completes the proof for the case of E
[
Xi

Qi

]
≤ |Qi|/16. For the other case when E

[
Xi

Qi

]
≥ |Qi|/16,

we can see that the result is trivially obtained by plugging the value into Z(i) since |Qi| ≥ ℓi.

The lemma above tells us that, for every large epoch, there exists one set of queries with a large
value of Z. The set of “expensive” queries depends on the epoch and different epochs might have
different bad queries. Conversely, a query q might be “expensive” for one epoch but not for the
others. Next, we show that the Adversarially Observable Event implies that there exists one query
that is “expensive” for all epochs.

Using the Adversarially Observable Event. As we shall see later, this property is guaranteed
by the security notions (differential privacy, obliviousness) that we will consider for the specific
data structure problems for which we will derive lower bounds. We note that quantity Z(i, q) only
depends on the data structure probes and thus it can be efficiently computed by an adversary even
without knowing the executed query q. Therefore, by the Adversarially Observable Event property,
its value should not “vary too much” with q.

To formalize this, we define the event Ei
q to be a binary random variable that checks whether

Z(i, q) is above a certain threshold. In particular, we denote

Ei
q = 1 ⇐⇒ X

≥pi−1
u

|Q|
(ω + log log n) + b ·Xi

q ≥ βv
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for some constant β > 0 that we will choose later. Note, the above formula is the second argument
of Z(i, q). We will also use Ei

Q as a binary random variable with respect to the second argument
of Z(i, Q) as follows:

Ei
Q = 1 ⇐⇒ X

≥pi−1
u (ω + log log n) + b ·Xi

Q ≥ |Q|βv

We show that there exists a single query q such that Pr[Ei
q = 1] ≥ p for some constant probability

p > 0 for all large epochs i. We prove this next:

Lemma 3. Consider a data structure DS for a data structure problem P satisfying the Large
Information Retrieval and the Event Probability Transfer properties. Then, there exists a query
q and a constant 0 < p ≤ 1 such that for all large epochs i where E[Xpi−1

u ] = O(tuℓi/(rK)),
Pr[Ei

q = 1] ≥ p.

Proof. By Lemma 2, we know that for each large epoch i, it must be that the following holds for
some constant 0 < γ < 1:

Z(i, Q) = min
{
ℓi · v,E

[
X

≥pi−1
u

]
(ω + log log n) + b · E

[
Xi

Q

]}
≥ γ · |Q| · v

as |Q| = O(ℓi). We set the value β from the definition of the events Ei
Q and Ei

q equal to β := γ/2.

For each large epoch i where E[Xpi−1
u ] = O(tuℓi/(rK)), we will show there exists some query qi ∈ Q

such that Pr[Ei
qi = 1] > p′ for some constant positive probability p′. Suppose this is false and

Pr[∃q ∈ Q,Ei
q = 1] = o(1). Then, we get that with probability at least 1 − o(1), the following is

true: ∑
q∈Q
Z(i, q) =

∑
q∈Q

X
≥pi−1
u

|Q|
(ω + log log n) + b ·Xi

q ≤ γ/2 · |Q| · v

where we can always use the second argument of Z(i, q) by our assumption that Ei
q ̸= 1. Let

piq = Pr[∃q ∈ Q,Ei
q = 1]. Next, we bound the expectation of Z(i, Q):

E[Z(i, Q)] ≤ (1− piq)
∑
q∈Q

(
X

≥pi−1
u

|Q|
(ω + log log n) + b ·Xi

q

)
+ piq · (|Q| · v)

≤ γ/2 · |Q| · v + o(|Q|v) < γ · |Q| · v.

To understand this inequality, we consider the two cases. We can always bound the value of Z(i, Q)
by |Q| · v as we do when ∃q ∈ Q such that Ei

q = 1. For the other case, note that Z(i, q) < v so we
can replace it with the second argument of Z(i, q) and apply linearity of expectation. Note that
the last derived inequality contradicts with the first inequality from Lemma 2. Therefore, for some
probabilty p′ > 0, for each large epoch i such that E[Xpi−1

u ] = O(tuℓi/(rK)), there exists qi ∈ Q
and Pr[Ei

qi = 1] > p′.
Since the value of Ei

q can be efficiently computed, the Event Probability Transfer property gives
that there exists a query q such that Pr[Ei

q = 1] = p for some constant p > 0 and for all large
epochs i.

The above lemma shows that there must exist one “expensive” query q for which Z(i, q) is large
for all large epochs i for which the expected value of X

pi−1
u is not too large. We next show that

these extra conditions holds for all large epochs. In particular, we show that the average number
of probes to cells last overwritten in each of the ℓi update operations is at most O(tu/r).
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Lemma 4.
∑

i E[X
≥pi−1
u ]/ℓi = O(tu/r) over all large epochs i.

Proof. We start by identifying which probes contribute to X
≥pi−1
u for all large epochs i. Let us

consider a probe occurring as part of the β-th update operation and denote by γ the index of the
operation that last overwrote the same cell. We index operations according to the time they were
performed so that updates occurring in epoch 1 have the largest index. In other words, update
operations are numbered from left to right and we remind the reader that epochs are numbered
from right to left. Therefore we have β > γ and we let x denote the epoch satisfying the inequality
sx−1 ≤ β − γ < sx. Note that this x is unique as each si grows by a multiplicative factor O(r) as i
grows. We break down the analysis into two different cases.

Case I: i < x. The probe does not contribute to X
≥pi−1
u for i < x regardless of the location of

the query operation. First, suppose that the query operation occurs immediately after the β-th
operation; that is, the β-th update operation is part of epoch 1. Since β − γ ≥ sx−1, the γ-th
operation takes place after epoch x − 1 has finished and, since i < x, this implies that epoch i
begins after the γ-th update has been performed. If instead the query operation does not occur
immediately following the β-th operation then i-th epoch will begin even later and thus it is still
after the γ-th update operation has been performed.

Case II: i ≥ x. Observe that epoch i− 1 cannot start before β − si−1 +1, for otherwise operation
β will have to take place before operation 1 which is clearly a contradiction. Moreover epoch i− 1
must start not later than i for otherwise β and γ will be both in epoch i. We thus have at most
si−1 good positions and therefore the probability that a probe performed as part of the β-th update

contributes to X
≥pi−1
u is at most 2si−1/n.

Now a probe associated with x contributes toX
≥pi−1
u , for randomly chosen i, the term 2sx/n only

for i ≥ x. By summing over all i ≥ x, we can bound the contribution of one probe by
∑

i≥x
2si−1

n
1
K ≤∑

i≥x
4ℓi
rnK ≤

4ℓi
rn . As we have at most n · tu probes, we conclude that

∑
i E[X

≥pi−1
u ]/ℓi ≤ 4tu/r.

Finally, we are ready to prove our main theorem.

Proof of Theorem 3. We start from Lemma 2. For every large epoch i such that E[X≥pi−1
u ] =

O(tuℓi/(rK)), we have Pr[Z(i, q) = Ω(v)] ≥ p for some constant p > 0 for every query q. In other
words, we know that by linearity of expectation:

E[X≥pi−1
u ]

|Q|
(ω + log log n) + b · E

[
Xi

q

]
= Ω(v).

First, we do the easier task of bounding E[Xi
q]. Note that the expected query time is

∑
i E[Xi

q] ≤
tq where we only iterate over all large epochs i. Consider the experiment of picking a random epoch
i. Then, know that E[Xi

q] ≤ tq/K where K is the number of large epochs. By Markov’s inequality,

we know that Pri[E[Xi
q] ≤ 100tq/K] ≥ 99/100.

By Lemma 4, we know that
∑

i E[X
≥pi−1
u ]/ℓi ≤ γtu/r for some constant γ > 0 over all large

epochs i. Again, we can show that for a random index i, that Pri[E[X
≥pi−1
u ] ≤ 100γℓitu/(rK)] ≥

99/100 as there are K large epochs. Then,

Pr
i

[
E[X≥pi−1

u ] ≤ 100γℓitu
rK

∧ E[Xi
q] ≤

100tq
K

]
≥ 98/100.
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We pick any such i satisfying the above two inequalities for the rest of the proof. By plugging the
above bounds into the inequality and using |Q| = Θ(ℓi),

tu
rK

(
ω + log

si−1

ℓi
rK

)
+

tq
K

b = Ω(v).

By using the fact that si−1/ℓi ≤ 2/r and K = O(log n) as r ≥ 2, we obtain

tu
rK

(ω + log log n) +
tq
K

b = Ω(v).

Finally by substituting r = 2 + (ω + log log n)/b and K = Θ(logr(nv/c)),

tu + tq = Ω
(v
b
·K
)
= Ω

(
v

b
· log(nv/c)

1 + log((ω + log log n)/b)

)
that completes our proof.

4.4 Extension to Multiple Non-Colluding Servers

In this section, we show that our framework may also be extended to the multiple non-colluding
server setting. We assume there are k servers and the PPT adversary has compromised exactly one
server. Our lower bound immediately applies to settings where the adversary compromises multiple
(or even all) servers. First, we define the equivalent of the Event Probability Transfer property for
k servers.

Definition 4 (k-Event Probability Transfer.). For any update sequence U and query q, let Ei(U, q)
be some event that can be checked whether to have occurred by a PPT adversary that compromised
the i-th server. Suppose that Pr[Ei(U, q)] ≥ ζ/k for some constant ζ > 0. Then, we say that a data
structure enjoys the k-Event Probability Transfer property if for any query q′, it holds that

Pr[Ei(U, q
′)] = Ω(Pr[Ei(U, q)])

where the probability is over the internal randomness of the data structure.

We present our theorem below and defer the proof to Appendix A that adapts some ideas
from [LSY20] for our proof technique.

Theorem 4. Consider a data structure problem P that allows update and query operations such
that query outputs are b bits and b = nO(1). Consider a data structure DS that implements problem
P over k servers with expected update and query overhead tu and tq respectively, client storage c
and error probability α ≤ v/(b log2 n) in the cell probe model with ω ≥ 1 cell size. If P enjoys the
Large Information Retrieval property and the Event Probability Transfer property then

tu + tq = Ω

(
v

b
· log(nv/c)

1 + log((ω + log log n)/b)

)
.

The above lower bound holds even for k = nO(1) servers. In particular, the above can be used to
show lower bound that even if a PPT adversary compromises only one of k = nO(1) servers under
certain privacy properties. See Section 5.1 for some further discussion.
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5 Lower Bounds

In this section, we show that our framework may be used to derive a whole new set of logarithmic
lower bounds for differentially private (and, thus, oblivious) versions of data structure problems.

We start by applying our framework to prove our main result of logarithmic lower bounds for
DP RAMs in the setting of b ≪ ω. To show that our framework may handle various privacy
guarantees, we show that we can extend the searchable encryption lower bounds in [PPY20] for the
setting of b ≪ ω. We also consider a suite of classical data structures where o(log n) overhead is
known without any privacy guarantees. Through our framework, we show that these data structures
require logarithmic overhead as soon as privacy requirements are enforced.

5.1 Differentially Private RAMs

As the first application of our framework, we will prove logarithmic lower bounds for differentially
private (DP) RAMs. As a reminder, a prior lower bound of Ω(b/ω · log(nb/c)) was proved in [PY19].
However, this does not preclude sub-logarithmic overhead when b ≪ ω. For example, if b = O(1)
and ω = Θ(log n), the above lower bound becomes trivial at Ω(1). In this section, we show that
this lower bound remains logarithmic even in the case when b≪ ω.

We start by defining (ϵ, δ, 1, k)-DP for k-server data structures for which the view of an adversary
that corrupts 1 of the k servers is (ϵ, δ)-DP, following the definition in [PY19] where neighboring
sequences of operations are those that differ in exactly one operation. As a note, this definition
uses computational differential privacy with respect to efficient adversaries.

Definition 5. A data structure DS is (ϵ, δ, 1, k)-DP (differentially private) if for any pair of oper-
ational sequences O1 and O2 that differ in at most one operation and any PPT adversary A that
compromises one of the k servers,

Pr[A(TDS(O1)) = 1] ≤ eϵ Pr[A(TDS(O2) = 1] + δ

where TDS(O) is the transcript seen by the adversary across all compromised servers when the
operational sequence O is executed by DS.

We prove a generic lemma about (ϵ, δ, 1, k)-DP data structures. In particular, we show that any
(ϵ, δ, 1, k)-DP data structure satisfies the second conditions of our frameworks. We choose to be
generic and prove the result for arbitrary problems and k ≥ 1 server(s) (plugging in k = 1 would
obtain a single-server version).

Lemma 5. Suppose a data structure is (ϵ, δ, 1, k)-DP for any constant ϵ ≥ 0 and δ < β/k, for a
sufficiently small constant β > 0. Let E(U, q) be some event that can be checked whether to have
occurred by a PPT adversary for update sequence U and query q such that Pr[E(U, q)] ≥ ζ/k for
some constant ζ > 0. Then, for any update sequence U and any queries q and q′, Pr[E(U, q′)] =
Ω(Pr[E(U, q)]) where the probability is over the internal randomness of the data structure.

Proof. Consider the operational sequences O1 = (U, q) and O2 = (U, q′). By definition, O1 and
O2 are neighboring inputs. Therefore, for any adversarially observable event E, we know that
Pr[E(O1)] ≤ eϵ Pr[E(O2)] + δ. By re-arranging, we get that Pr[E(O2)] = Ω(Pr[E(O1)] − δ). As
we assumed that Pr[E(O1)] ≥ ζ/k for some constant ζ > 0, there exists some constant β > 0
depending only on ζ such that if δ < β/k, then the lemma is true.
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As our last step, we prove a lower bound for (ϵ, δ, 1, k)-DP RAMs. As the above lemma already
shows that this privacy guarantees satisfies the second condition, it remains to show that the first
condition of Theorem 4 can be satisfied.

Theorem 5. Any (ϵ, δ, 1, k)-DP data structure DS that solves the dynamic array maintenance
problem for n b-bit entries with constant ϵ > 0 and δ < β/k, for a sufficiently small constant β > 0,
expected update and query time tu and tq, client storage c and error probability α ≤ 1/ log2 n in the
cell probe model with ω ≥ 1 cell size must satisfy the following:

tu + tq = Ω

(
log(nb/c)

1 + log((ω + log log n)/b)

)
.

Proof. We will use the framework of Theorem 3 to prove our lower bound. For our random update
sequence U = (u1, . . . ,un), each ui is generated by picking a uniformly random Bi from {0, 1}b and
overwriting the i-th entry with Bi. For any sequence of updates ua, . . . ,ua+ℓ−1, we can construct
the query set {a, . . . , a+ ℓ− 1}. As the queries successfully read back the entries Ba, . . . ,Ba+ℓ−1,
we get that H(A(U, Q) | u1, . . . ,ua−1,ua+ℓ, . . . ,un) ≥ ℓ · b. The second condition of Theorem 4 is
satisfied by Lemma 5. By applying Theorem 4 with b = v, we obtain the desired lower bound.

Discussion about k and δ. We note that for the setting of k ≥ 2 servers and one compromised
server, we can only prove non-trivial lower bounds when δ < 1/k. To see this, note that there is a
trivial algorithm that picks one of the random k servers and performs a plaintext data structure.
An adversary will only see anything with probability at most 1/k. Therefore, this is a (0, 1/k)-DP
data structure. Our lower bound shows that anything with stronger security parameters results
in the identical lower bound as the single-server model. As an extreme example, if k = nO(1) and
δ = negl(n), our lower bound still holds.

5.2 Set Membership

Next, we move onto proving lower bounds for other data structures. In general, previous lower
bounds have focused on “key-value” types of data structures. For example, RAMs are essentially
arrays with keys from [n] and b-bit values. Prior lower bounds relied upon the fact that the b-bit
value is truly random.

We show that our lower bound framework can also used to prove lower bounds for data structures
without associated values. For the first such problem, we will consider the simple dynamic set data
structure that maintains a subset S ⊆ [n] that enables the following two operations:

1. add(i): Adds item i ∈ U into subset S.

2. query(i): Returns 1 if i ∈ S and 0 otherwise.

Note that the set problem is a natural problem where the query output size is only a single bit that
will most likely be much smaller than the word size ω.

In the non-oblivious setting, it is clear that the dynamic set problem over the universe [n] can
be solved with O(1) time for both operations using a bit vector of length n. Using our framework,
we will show dynamic set problem with differential privacy requires logarithmic overhead.

Theorem 6. Any (ϵ, δ, 1, k)-DP data structure DS that solves the dynamic set problem over [n]
with constant ϵ > 0 and δ < β/k for a sufficiently small constant β > 0, expected update and query
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time tu and tq, client storage c and error probability α ≤ 1/ log2 n in the cell probe model with ω ≥ 1
cell size must satisfy:

tu + tq = Ω

(
log(n/c)

1 + log(ω + log log n)

)
.

Proof. To prove this, we will use the framework outlined in Theorem 4. First, we define a random
sequence of n/2 updates as follows U = (u1, . . . ,un/2). Each ui will add either 2i−2 or 2i−1 with
probability 1/2 each. Consider any consecutive sequence of ua, . . . ,ua+ℓ−1 of update operations.
We define the query set Q as querying for membership of entries {2a− 2, 2a, . . . , 2(a+ ℓ− 1)− 2}.
Let A(U, Q) be the correct answers for queries q ∈ Q with respect to U. Note that

H(A(U, Q) | u1, . . . ,ua−1,ua+ℓ, . . . ,un/2) = ℓ.

To see this, note that each query exactly determines the choice of each update operation. Therefore,
we show this satisfies the first condition of Theorem 4. The second condition is satisfied immediately
by Lemma 5.

As a result, we can now apply Theorem 4 with values b = 1 and v = 1 as query outputs are 1
and the above entropy argument completing our proof.

5.3 Predecessor and Successor

We consider another classic data structure for which sub-logarithmic overhead constructions are
known without any privacy requirements. In this section, we will prove lower bounds for the
predecessor and successor problem. The predecessor data structure stores subset S ⊆ U of size at
most n with the following:

• add(i): Adds item i ∈ U into subset S.

• query(i): Returns the value max{s ∈ S : s ≤ i}. That is, the largest value that is not strictly
larger than the value of i.

In the non-oblivious setting, there exists dynamic predecessor and successor data structures with
overhead O(log log |U |) using van Emde Boas trees [vEB75]. For standard settings of |U | = nO(1),
this becomes O(log log n). With differentially privacy, the overhead must be logarithmic.

Theorem 7. Any (ϵ, δ, 1, k)-DP data structure DS that solves the dynamic predecessor (successor)
problem over universe U storing at most n items with constant ϵ > 0 and δ < β/k for a sufficiently
small constant β > 0, expected update and query time tu and tq, client storage c and error probability
α ≤ 1/ log2 n in the cell probe model with ω ≥ 1 cell size must satisfy the following:

tu + tq = Ω

(
log(n log(|U |/n)/c)

1 + log((ω + log log n)/ log(|U |/n))

)
.

Proof. To prove our lower bound, we consider an artificial version of predecessor (successor) with
smaller query output sizes. In particular, we consider a variant that returns the output modulo
|U |/n. In this new problem, the query output size is log(|U |/n) as opposed to log(|U |). Clearly, a
lower bound for this artificial problem implies a lower bound for the original problem.

We construct a random sequence of n updates U = (u1, . . . ,un) as follows. For each ui, we
add the number (i − 1)|U |/n + Ri where Ri is a uniformly random integer from the set [|U |/n].
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Consider any consecutive sequence of updates ua, . . . ,ua+ℓ−1. Define the query set Q as querying
for the predecessor of {a|U |/n − 1, (a + 1)|U |/n − 1, . . . , (a + ℓ − 1)|U |/n − 1}. For successor, we
can instead use the query set Q of {(a− 1)|U |/n, . . . , (a+ ℓ− 2)|U |/n}. Then,

H(A(U, Q) | u1, . . . ,ua−1,ua+ℓ, . . . ,un) ≥ ℓ · log(|U |/n).

It is not hard to see that given the setA(U, Q), one can decode the random integersRa, . . . ,Ra+ℓ−1.
The second condition is satisfied by Lemma 5. To complete the proof, we apply Theorem 4 with
b = v = log(|U |/n).

5.4 Disjoint Sets (Union-Find)

Another classic data structure that has very efficient (sub-logarithmic) overhead is the disjoint sets
(union-find) data structure. At a high level, the disjoint sets data structure must maintain n items
that may be arranged into disjoint sets. Initially, the n items are assumed to be in n individual
different sets. Afterwards, the following operations may be performed:

• union(a, b): Given a, b ∈ [n], merge the two sets containing a and b.

• find(a): Given an item a ∈ [n], return the identity of the set containing a.

For correctness, it is required that if two items a, b ∈ [n] are in the same set, then find(a) should
be equal to find(b). Also, if a and b are not in the same set, then find(a) should be different from
find(b). We will assume that set representations are integers from the set [nO(1)] as done by classic
constructions. Thus, the query output size is O(log n) bits.

There are classic constructions [TVL84] that require only O(α(n)) overhead where α(n) is the
inverse Ackermann function. In all reasonable settings, α(n) is practically constant. If we enforce
differentially privacy, we leverage our framework to prove a logarithmic lower bound.

Theorem 8. Any (ϵ, δ, 1, k)-DP data structure DS that solves the dynamic disjoint set problem
over at most n items with constant ϵ > 0 and δ < β/k for a sufficiently small constant β > 0,
expected update and query time tu and tq, client storage c and error probability α = O(1/ log2 n) in
the cell probe model with ω ≥ 1 cell size must satisfy the following:

tu + tq = Ω

(
log(n/c)

1 + log(ω/ log n)

)
.

Proof. We construct the random update sequence U = (u1, . . . ,un/2−
√
n) in the following way.

We split the set of n items into two halves denoted by (i, j) where i ∈ {0, 1} and j ∈ [n/2]. To
generate update ui, pick a number Ri uniformly at random from [

√
n] and merge the items (0, i)

and (1, i+Ri). For any sequence of updates ua, . . . ,ua+ℓ−1, we can pick the queries to search for
the set representation of items {(0, a), . . . , (0, a + ℓ − 1), (1, a), . . . , (1, a + ℓ +

√
n − 1)}. Note the

total number of queries is 2ℓ+
√
n = O(ℓ) for any ℓ ≥

√
n. Then, we can see that the entropy is

H(A(U, Q) | u1, . . . ,ua−1,ua+ℓ, . . . ,un) ≥ ℓ log(
√
n) = Ω(ℓ log n).

One can see this by simply checking that the queries enable one to accurately retrieve the random
values embedded in the updates Ra, . . . ,Ra+ℓ−1. Consider update ui such that a ≤ i < a+ ℓ and
look at the output of the query to (0, i). Next, search from the queries (1, i), . . . , (1, i +

√
n − 1)
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and find the index j such that the query for (1, j) is the same as (0, i). We show that this index j
is unique as the query outputs of (1, x) and (1, y) for any x ̸= y will always be different as (1, x)
and (1, y) will never be merged and each item (0, z) is merged with at most one other item. As a
result, we know that Ri = j − i. The second condition is satisfied by Lemma 5. Finally, we can
apply Theorem 4 with b = O(log n) and v = O(log n) to obtain our desired lower bound.

5.5 Searchable Encryption (Encrypted Multi-Maps)

Finally, we show that our framework can also be used to prove logarithmic lower bounds for other
privacy notions beyond differential privacy and obliviousness. In this section, we consider lower
bounds for data structures that provide guarantees on upper bounds on leakage functions. We note
this is a standard approach to proving privacy for searchable encryption schemes [CGKO06].

Patel et al. [PPY20] proved lower bounds for encrypted multi-maps that guarantee leakage at
most the decoupled key-equality leakage pattern LDecKeyEq. This leakage reveals whether two queries
(or two updates) operations occur for the same key. However, this leakage does not reveal whether
a query and an update operation occur on the same key. In particular, they showed such data
structures must have overhead Ω(b/ω · log(nb/c)) for multi-maps that can store values of b bits.
Once again, there remains the possibility that sub-logarithmic overhead is possible when b ≪ ω.
Using our framework, we show that logarithmic overhead is still required. We refer to (L, ϵ, 1, k)-
secure as a data structure with leakage at most L, adversarial advantage at most ϵ for a PPT
adversary that compromises one of k servers.

We start by presenting a definition of security with respect to leakage. We use the same
definition used for the lower bound proofs in [PPY20], which are weaker than standard simulation
definitions but result in stronger lower bounds.

Definition 6. A data structure DS is (L, β, 1, k)-secure if for any pair of operational sequences O1

and O2 with the same leakage, L(O1) = L(O2), and any PPT adversary A that compromises one
of the k servers, the following holds:

|Pr[A(TDS(O1)) = 1]− Pr[A(TDS(O2)) = 1]| ≤ β

where TDS(O) is the transcript seen by the adversary across all compromised servers when the
operational sequence O is executed by DS.

Next, we present the definition of decoupled key-equality leakage. At a high level, this leakage
specifies reveals two matrices that reveal whether two query (or two update) operations occur for
the same key. However, this leakage does not reveal whether a query and an update operation occur
on the same key. This is a slight weakening of the key-equality leakage that appears in efficient
(sub-logarithmic) searchable encryption schemes. We take the definition from [PPY20].

Definition 7. The decoupled key-equality leakage LDecKeyEq for any operational sequence O is the
two |O| × |O| matrices MU and MQ defined as follows:

MU [i][j] =


⊥ if at least one of the i-th or j-th operation is a query

0 if the i-th and j-th update are for different keys

1 if the i-th and j-th update are for the same key

and MQ is defined identically swapping the role of updates and queries.
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Similar to differential privacy, we present a generic lemma showing that any data structure
that is secure with respect to LDecKeyEq will satisfy the second conditions of our frameworks in
Theorem 3 and Theorem 4.

Lemma 6. Suppose a data structure (LDecKeyEq, β/k, 1, k)-secure for some sufficiently small con-
stant β > 0 with k servers and the PPT adversary compromises one server. Let E(U, q) be some
event that can be checked whether to have occurred by a PPT adversary for some update sequence
U and query q such that Pr[E(U, q)] ≥ ζ/k for some constant ζ > 0. Then, for any update sequence
U and any pair of queries q and q′, it must be that

Pr[E(U, q′)] = Ω(Pr[E(U, q)])

where the probability is over the internal randomness of the data structure.

Proof. By definition of the leakage function LDecKeyEq and the fact that U only consists of up-
date sequences, we know that LDecKeyEq((U, q)) = LDecKeyEq((U, q

′)). As the data structure is
(LDecKeyEq, β)-secure and E is an event observable by a PPT adversary, we know that

|Pr[E(U, q′)]− Pr[E(U, q)]| ≤ β/k.

Suppose that we set β = ζ/2, which is a constant since ζ is a constant. Then, we immediately see
that Pr[E(U, q′)] ≥ ζ/(2k) ≥ Pr[E(U, q)]/2.

Using the above lemma, we can complete the lower bound proof for encrypted multi-maps. We
note the above lemma can also be used to prove lower bounds for any data structures in our paper
with respect to LDecKeyEq leakage.

Theorem 9. Any (LDecKeyEq, β/k, 1, k)-secure data structure DS that solves the dynamic multi-map
problem for n b-bit entries for a sufficiently small constant β > 0, expected update and query time
tu and tq, client storage c and error probability α ≤ 1/ log2 n in the cell probe model with ω ≥ 1 cell
size must satisfy:

tu + tq = Ω

(
log(nb/c)

1 + log((ω + log log n)/b)

)
.

Proof. Fix any set of n different keys k1, . . . , kn. The random update sequence U = (u1, . . . ,un)
is generated in the following way. For each ui, we generate a uniformly random b-bit block Bi

from {0, 1}b, and ui inserts key-value pair (ki,Bi). For any sequence of consecutive updates
ua, . . . ,ua+ℓ−1, we construct the query set {ka, . . . , ka+ℓ−1}. As the queries successfully read back
Ba, . . . ,Ba+ℓ−1, we get that

H(A(U, q) | u1, . . . ,ua−1,ua+ℓ, . . . ,un) ≥ ℓ · b.

We apply Theorem 4 as the above satisfies the first condition and Lemma 6 satisfies the second
condition. By setting b = v, we obtain the theorem.

LDecKeyEq Lower Bounds. Similar to differential privacy, we can prove a generic result for
LDecKeyEq leakage with respect to the Event Transfer Probability property. As a result, we can
prove lower bounds for LDecKeyEq-secure versions for sets, predecessor and union-find. We omit
further details as they follow as straightforward applications of our framework.

26



6 Constructions for Oblivious Stacks and Queues

We show that it is possible to construct an oblivious stack (queue) with sub-logarithmic overhead.
by showing one can speed up oblivious stacks (queues) by a multiplicative b/ω factor. This gives
a separation result showing that, when b≪ ω, oblivious stacks (queues) are inherently faster than
ORAMs. Our construction will match the Ω(b/ω · log(nb/c)) lower bound in [JLN19].

Construction. We now describe our oblivious stack construction. It can be modified in a straight-
forward manner to also obtain oblivious queues or deques. Our construction of an oblivious stack
of at most n elements of size b with a server with word size w will make black-box use of any
ORAM Π with blocks of length b′ = ω. The ORAM will store at most N = O(n ·(b/ω)) blocks each
containing L := ω/b stack elements. We can now consider two settings depending on the values of
b and ω. When b < ω, L > 1 signifies that each ORAM block stores multiple stack elements. For
b ≥ ω, L ≤ 1 signifies that a stack element is spread over one or more ORAM blocks. Assuming
one-way functions, there exist ORAMs with O(log(Nb′/c)) = O(log(nb/c)) query overhead and
O(c) client storage when the block size is equal to the word size [AKL+20].

At a high level, the client will store an integer counter C describing the total number of blocks
currently stored in the stack to keep track of the location of the stack top. For the case when b ≥ ω,
we can directly use the above ORAM as an oblivious stack and each stack operation will involve
b/ω ORAM operations. The value of C keeps a pointer to where these operation must occur.

Let us now focus on the case when b < ω and each ORAM block thus contains L = ω/b stack
blocks. The idea is to break up stack operations into groups of L operations. To locally handle
the L operations of a group, we make sure that, at the start of a group of operations, the client
local memory contains the L elements at the top of the stack. As it is easily seen, this is all the
information needed to perform a group of L operations and at the end of a group, the local client
memory holds at most 2L stack elements (this happens if all L operations are push operations).
The client thus performs the write of at most 2L stack elements back to the ORAM. Since each
ORAM block contains L = ω/b blocks, this can be accomplished by 3 ORAM write operations,
as 2L stack elements could spread over 3 ORAM blocks. Not to break obliviousness, the client
performs 3 writes even if the stack elements found in client memory at the end of a group happen
to belong to fewer ORAM blocks. Following this and to prepare for the next group, the client reads
the top L elements of the stack from the ORAM and this can be accomplished by reading 2 ORAM
blocks. We present the formal construction below.

Init(1λ, n) :

1. stΠ ← Π.Init(1λ, n).

2. Set S to be an empty stack of at most 2ω/b blocks each of size b bits.

3. Set cntG ← 0 to be the number of operations completed within a group.

4. Set cntΠ ← 0 to be the number of blocks occupied in Π.

5. Return st← (stΠ, cntG, cntΠ, S).

Refresh(st):

1. If |Q| ≤ ω/b:
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(a) If cntΠ > 0:

i. Set cntΠ ← cntΠ − 1.

ii. Execute B′ ← Π.Query(stΠ, cntΠ).

iii. Interpret B′ as ω/b b-bit blocks and push them to the bottom of the local stack S.

(b) Else when cntΠ = 0, execute Π.Query(stΠ, 0) and ignore result.

2. Else when |Q| > ω/b:

(a) Remove the ω/b block from the bottom of local stack S and arrange into a ORAM block
B′ of ω bits.

(b) If cntΠ ≥ nb/ω:

i. Return an error as more than n blocks are being stored in the stack.

(c) Execute Π.Update(stΠ, cntΠ, B
′).

(d) Set cntΠ ← cntΠ + 1.

3. Set cntG ← 0.

Push(st, B) :

1. Push the b-bit block B to the top of the local stack S.

2. Set cntG ← cntG + 1.

3. If cntG = ω/b, execute Refresh(st).

Pop(st) :

1. Pop the b-bit block B from the top of the local stack S.

2. Set cntG ← cntG + 1.

3. If cntG = ω/b, execute Refresh(st).

4. Return B.

Theorem 10. Assuming one-way functions, the above construction is an oblivious stack for block
size b ≥ 1 and word size ω ≥ 1 with client storage c = O(ω+ log n) bits, server storage O(n · b) bits
and amortized overhead O(b/ω · log(nb/c)).

Proof. First, we analyze the efficiency of our construction. We note that we perform O(1) ORAM
operations every L = ω/b stack operations. Our underlying ORAM requires O(log(nb/c′)) overhead
if we dedicate c′ bits of client storage for the ORAM. Therefore, the amortized overhead of the
construction is O(1/L · log(nb/c′)) = O(b/ω · log(nb/c′)). The client memory of the stack stores a
constant number of integers using O(log n) bits to track of the size of the current size of the stack as
well as O(1) cells or O(ω) bits to handle operations within each group of L operations. Therefore,
the total client memory is c = O(log n+ ω + c′). If we set c′ = Θ(log n+ ω), we get that the client
storage is O(ω + log n) and the amortized overhead is O(b/ω · log(nb/c)) as c′ = Θ(c).
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Next, we consider the obliviousness of our stack. We note the schedule of ORAM operations are
pre-determined and independent of the operations performed by the stack. In particular, exactly
2 ORAM operations are performed before every group of L stack operations and exactly 3 ORAM
operation following every group of L stack operations. Using the obliviousness of the underlying
ORAM, our stack construction is also oblivious.

Stacks and Our Framework. One way to view this result is that our framework is tight in
the sense that data structures that do not satisfy our framework may be implemented more effi-
ciently. In particular, stacks, queues and dequeues are data structures that do not enjoy the Large
Information Retrieval property as they cannot arbitrarily retrieve information about updates that
occur in the middle of an update sequence and thus Theorem 3 does not apply. This ends up being
fundamentally inherent since, as we show in this section, oblivious stacks and queues have running
times smaller than the logarithmic lower bounds proved previously.

Sub-Logarithmic and Sub-Constant Overhead. Our construction in Theorem 10 shows that
sub-logarithmic overhead is obtainable from oblivious stacks (a similar idea may be adapted for
oblivious queues). For example, if we consider the setting where b = O(1) and ω = Θ(log n), then
our construction has O(1) overhead. Surprisingly, our construction can even obtain sub-constant
amortized overhead. For example, if b = O(1) and ω = Θ(log2 n), our construction uses amortized
overhead O(1/ log n). In other words, the client needs to interact with the server every O(1/ log n)
operations on average.

Separation from ORAMs. We note that the above construction allows us to separate RAMs
from stacks and queues. When b = Θ(ω), the lower bounds in [JLN19] show that logarithmic
overhead is tight for all of RAMs, stacks and queues when obliviousness is required. On the other
hand, for b ≪ ω, our construction shows that sub-logarithmic (and even sub-constant) amortized
overhead is possible for oblivious stacks and queues. In contrast, ORAMs still require logarithmic
overhead when b≪ ω as shown in [KL21].

7 Conclusions

In this work, we present logarithmic lower bounds for differentially private data structures for all
parameter settings of block sizes b and cell sizes ω. This improves upon the prior lower bounds
proved in [PY19] for the setting of b≪ ω and answers an open question posed in [KL21]. Our lower
bounds apply for differentially private RAMs, sets, predecessor and disjoint sets (union-find).

Additionally, we present a framework that can be re-used for different data structure problems
and privacy guarantees. To try and make our techniques more accessible, we identify two simple,
minimal conditions that are required to prove lower bounds in our framework. We reduce proving
logarithmic lower bounds to showing that a specific data structure problem and privacy guarantee
satisfy the two conditions of our framework. We hope our framework will make it easier to prove
lower bounds without unnecessarily customizing techniques.

References

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine
Shi. OptORAMa: Optimal oblivious RAM. In Anne Canteaut and Yuval Ishai, editors, EU-

29



ROCRYPT 2020, Part II, volume 12106 of LNCS, pages 403–432. Springer, Heidelberg, May
2020.

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party
computation for (parallel) RAM programs. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 742–762. Springer, Heidelberg,
August 2015.

[BCP16] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applications. In
Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages
175–204. Springer, Heidelberg, January 2016.

[BN16] Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Madhu Sudan, editor,
ITCS 2016, pages 357–368. ACM, January 2016.

[BNP+15] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan Huang.
Practicing oblivious access on cloud storage: the gap, the fallacy, and the new way forward. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages 837–849.
ACM Press, October 2015.

[CCMS19] T.-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Foundations of dif-
ferentially oblivious algorithms. In Timothy M. Chan, editor, 30th SODA, pages 2448–2467.
ACM-SIAM, January 2019.

[CDH20] David Cash, Andrew Drucker, and Alexander Hoover. A lower bound for one-round oblivious
RAM. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of
LNCS, pages 457–485. Springer, Heidelberg, November 2020.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In Ari Juels, Rebecca N. Wright,
and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 79–88. ACM Press,
October / November 2006.

[CLP14] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with Õ(log2 n)
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A Proof of Theorem 4

We start by defining some new random variables with respect to each of the k individual servers
where j ∈ [k] denotes the j-th server. These are summarized below:

• X
≥pi−1,j
u : This is the probes of X

≥pi−1
u that occur on the j-th server.
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• Xi,j
q : This is the probes of Xi

q that occur on the j-th server.

• Zj(i, q): This is defined identically to Z(i, q) except using the above random variables for the
j-th server. Formally,

Zj(i, q) = min

{
v,

E[Xpi−1
u ](ω + log log n)

|Q|
+ b · E[Xi

q]

}
.

Using the above, we can quickly see to that the following are true:

X
≥pi−1
u =

k∑
j=1

X
≥pi−1,j
u and Xi

q =

k∑
j=1

Xi,j
q .

As an aside, we note that these style of equalities do not hold for Zj(i, q) due to its non-linearity.

Lemma 7. Consider a data structure DS that satisfies the conditions of Theorem 3. There exists
a query q such that the following holds for all large epochs i where E[Xpi−1

u ] = O(tuℓi/(rK)):

k∑
j=1

Zj(i, q) = Ω(v).

Proof. To prove this, we will leverage the second condition of Theorem 4. First, we consider consider
a logarithmic number of events for each of the k servers and each query q ∈ Q. In particular, for
each j ∈ [k], β ∈ [log(v/48)] and q ∈ Q, we define the following event:

Ei,j,β
q = 1 ⇐⇒ X

≥pi−1,j
u

|Q|
(ω + log log n) + b ·Xi,j

q ∈ [2β, 2β+1).

Additionally, we define the following event for β = log(v/48):

Ei,j,β
q = 1 ⇐⇒ X

≥pi−1,j
u

|Q|
(ω + log log n) + b ·Xi,j

q ≥ 2β = v/48.

We will split the proof into two cases. For each large epoch i where E[Xpi−1
u ] = O(tuℓi/(rK)),

suppose there exists a query qi ∈ Q such that

k∑
j=1

Pr[Ei,j,log(v/48)
qi = 1] ≥ p

for some probability p > 0 that we will set later. Using the second condition of Theorem 4, we note
that for all j ∈ [k] and any query q ∈ Q,

Pr[Ei,j,log(v/48)
q = 1] ≥ ν · Pr[Ei,j,log(v/48)

qi = 1])

for some constant ν > 0 whenever Pr[E
i,j,log(v/48)
qi = 1] ≥ ζ/k. Therefore, the loss is at most ζ/k

whenever the probability is less than ζ/k and at most a ν fraction whenever the probability is
greater than ζ/k when moving to q for each event. We can obtain the following inequality

k∑
j=1

Pr[Ei,j,log(v/48)
q = 1] ≥

k∑
j=1

Pr[Ei,j,log(v/48)
qi = 1]− k · (ζ/k) ≥ ν/2− ζ > ν/4
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assuming ζ ≤ ν/4. Then, we can apply linearity of expectation to get that

E

 k∑
j=1

Zj(i, q)

 ≥ (ν/4) · v/48 = Ω(v)

that completes the proof for this case.
We now consider the other case. In this setting, for every large epoch i where E[Xpi−1

u ] =
O(tuℓi/(rK)), we get that for every query qi ∈ Q,

k∑
j=1

Pr[Ei,j,log(v/48)
qi ] < p

for some probability p > 0 that we will set later. By the first part of Lemma 3 before applying the
Event Probability Transfer property, we know that there exists some qi ∈ Q such that

E

[
X

≥pi−1
u (ω + log log n)

|Q|
+ b ·Xi

qi

]
= Ω(v).

By linearity of expectation, this immediately implies that

k∑
j=1

(
E[X≥pi−1,j

u ](ω + log log n)

|Q|
+ b · E[Xi,j

qi ]

)
= Ω(v) ≥ ηv

for some constant η > 0. Towards a contradiction, suppose that for every β ∈ [log(v/48)]:

k∑
j=1

Pr[Ei,j,β
qi = 1] < η.

Then, we get the following by setting p ≤ η/48:

k∑
j=1

(
E[X≥pi−1,j

u ](ω + log log n)

|Q|
+ b · E[Xi,j

qi ]

)

≤

 k∑
j=1

log(v/48)−1∑
β=0

2β+1 · Pr[Ei,j,β
qi = 1]

+

 k∑
j=1

Pr[Ei,j,log(v/48)
qi ] · v


≤

log(v/48)−1∑
β=0

η · 2β+1

+ η · (v/48)

≤ η · (v/24) + η · (v/48)
≤ η · (v/12).

This contradicts the previous inequality meaning that it must be that for every β ∈ [log(v/48)]:

k∑
j=1

Pr[Ei,j,β
qi = 1] ≥ η.
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For the last step, we use the second condition of Theorem 4 in a similar way as the previous case.
If we consider any query q ∈ Q and any β ∈ [log(v/48)], then

k∑
j=1

Pr[Ei,j,β
qi = 1] ≥ η − k · (ζ/k) ≥ νη − ζ ≥ νη/2

assuming that ζ < νη/2. Finally, we complete the proof by seeing that

k∑
j=1

(
E[X≥pi−1,j

u ](ω + log log n)

|Q|
+ b · E[Xi,j

qi ]

)
≥

k∑
j=1

log(v/48)−1∑
β=0

Pr[Ei,j,β
qi = 1] · 2β

≥
log(v/48)−1∑

β=0

(νη/2) · 2β

≥ (νη/2) · (v/96).

In other words, the sum of the second arguments of Zj(i, q) for all j ∈ [k] is at least Ω(v) as both
ν and η are positive constants. This immediately implies the statement of the lemma to complete
the proof.

Proof of Theorem 4. By Lemma 7, we get that for all large epochs i such that E[Xpi−1
u ] = O(tuℓi/(rK))

the following holds:

E[Z(i, q)] ≥ E

 k∑
j=1

Zj(i, q)

 = Ω(v).

The first argument of each Zj(i, q) is at least Ω(v). The above inequality implies the sum of the
second arguments must be at least Ω(v). Therefore, we get that, by linearity of expectation,

E[Xpi−1
u ]

|Q|
(ω + log log n) + b · E[Xi

q] =

k∑
j=1

(
E[Xpi−1,j

u ]

|Q|
(ω + log log n) + b · E[Xi,j

q ]

)
= Ω(v).

This is the exact inequality that was required to complete the proof of Theorem 3. Therefore, by
repeating the same steps, we can obtain the same lower bound to complete the proof.
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