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Abstract. In this paper, we show how to use the Matrix Code Equiv-
alence (MCE) problem as a new basis to construct signature schemes.
This extends previous work on using isomorphism problems for signature
schemes, a trend that has recently emerged in post-quantum cryptogra-
phy. Our new formulation leverages a more general problem and allows
for smaller data sizes, achieving competitive performance and great flex-
ibility. Using MCE, we construct a zero-knowledge protocol which we
turn into a signature scheme named Matrix Equivalence Digital Signa-
ture (MEDS). We provide an initial choice of parameters for MEDS, tai-
lored to NIST’s Category 1 security level, yielding public keys as small
as 2.7 kB and signatures ranging from 18.8 kB to just around 10 kB,
along with a reference implementation in C.
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1 Introduction

Post-Quantum Cryptography (PQC) comprises all the primitives that are be-
lieved to be resistant against attackers equipped with a considerable quantum
computing power. Several such schemes have been around for a long time [43, 39],
some being in fact almost as old as RSA [35]; however, the area itself was not
formalized as a whole until the early 2000s, for instance with the first edition of
the PQCrypto conference [38]. The area has seen a dramatic increase in impor-
tance and volume of research over the past few years, partially thanks to NIST’s
interest and the launch of the PQC Standardization process in 2017 [37]. After 4
years and 3 rounds of evaluation, the process has crystallized certain mathemat-
ical tools as standard building blocks (e.g. lattices, linear codes, multivariate
equations, isogenies etc.). Some algorithms [34, 46, 41, 31] have now been se-
lected for standardization, with an additional one or two to be selected among



a restricted set of alternates [4, 3, 1] after another round of evaluation. While
having a range of candidates ready for standardization may seem satisfactory,
research is still active in designing PQC primitives. In particular, NIST has ex-
pressed the desire for a greater diversity among the hardness assumptions behind
signature schemes, and announced a partial re-opening of the standardization
process for precisely the purpose of collecting non-lattice-based protocols.

Cryptographic group actions are a popular and powerful instrument for con-
structing secure and efficient cryptographic protocols. The most well-known is,
without a doubt, the action of finite groups on the integers modulo a prime, or
the set of points on an elliptic curve, which give rise to the Discrete Logarithm
Problem (DLP), i.e. the backbone of public-key cryptography. Recently, propos-
als for post-quantum cryptographic group actions started to emerge, based on
the tools identified above: for instance, isogenies [18], linear codes [14], trilinear
forms [47] and even lattices [30]. All of these group actions provide very promis-
ing solutions for cryptographic schemes, for example signatures [22, 8, 47], ring
signatures [12, 9] and many others; at the same time, they are very different in
nature, with unique positive and negative aspects.

Our Contribution. In this work, we formalize a new cryptographic group action
based on the notion of Matrix Code Equivalence. This is similar in nature to
the code equivalence notion at the basis of LESS, and in fact belongs to a larger
class of isomorphism problems that include, for example, the lattice isomorphism
problem, and the well-known isomorphism of polynomials [39]. The hardness of
the MCE problem was studied in [21, 44], from which it is possible to conclude
that this is a suitable problem for post-quantum cryptography. Indeed, we show
that it is possible to use MCE to build a zero-knowledge protocol, and hence
a signature scheme, which we name Matrix Equivalence Digital Signature, or
simply MEDS. We provide an initial parameter choice, together with several
computational optimizations, resulting in a scheme with great flexibility and
very competitive data sizes. To give an idea about our performance potential,
we include a reference implementation for the full scheme. Furthermore, we show
that this group action allows for the construction of (linkable) ring signatures,
with performance results that improve on the existing state of the art [9].

2 Preliminaries

Let Fq be the finite field of q elements. GLn(q) and AGLn(q) denote respectively
the general linear group and the general affine group of degree n over Fq. We use
bold letters to denote vectors a, c,x, . . . , and matrices A,B, . . . . The entries of
a vector a are denoted by ai, and we write a = (a1, . . . , an) for a (row) vector
of dimension n over some field. Similarly, the entries of a matrix A are denoted

by aij . Random sampling from a set S is denoted by a
$←−− S. For two matrices

A and B, we denote the Kronecker product by A ⊗B. Finally, we denote the
set of all m× n matrices over Fq byMm,n(Fq).
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2.1 Cryptographic Group Actions

Definition 1. Let X be a set and (G, ·) be a group. A group action is a mapping

⋆ : G×X → X
(g, x) 7→ g ⋆ x

such that, for all x ∈ X and g1, g2 ∈ G, it holds that g2 ⋆ (g1 ⋆ x) = (g2 · g1) ⋆ x.

A group action can have a number of mathematically desirable properties.
For example, we say that a group action is:

– Commutative: for any g1, g2 ∈ G, we have g2 ⋆ (g1 ⋆ x) = g1 ⋆ (g2 ⋆ x).
– Transitive: given x1, x2 ∈ X, there is some g ∈ G such that g ⋆ x1 = x2.
– Free: if g ⋆ x = x, then g is the identity.

In particular, a cryptographic group action is a group action with some additional
properties that are useful for cryptographic applications. To begin with, there
are some desirable properties of computational nature. Namely, the following
procedures should be efficient:

– Evaluation: given x and g, compute g ⋆ x.
– Sampling : sample uniformly at random from G.
– Membership testing : verify that x ∈ X.

Finally, cryptographic group actions should come with security guarantees;
for instance, the vectorization problem should be hard:

Problem 1 (Group Action Vectorization).
Given: The pair x1, x2 ∈ X.
Goal: Find, if any, g ∈ G such that g ⋆ x1 = x2.

Early constructions using this paradigm are based on the action of finite
groups of prime order, for which the vectorization problem is the discrete loga-
rithm problem. Lately, multiple isogeny-based constructions have appeared: see,
for instance, the work of Couveignes in [20] and later by Rostovtsev and Stol-
bunov [45]. A general framework based on group actions was explored in more
detail by [2], allowing for the design of several primitives. The holy grail are those
cryptographic group actions that possess both the mathematical and crypto-
graphic properties listed above. Currently, CSIDH [18] is the only post-quantum
commutative cryptographic group action, although there is an ongoing debate
about the efficiency and quantum hardness of its vectorization problem [15]. In
Section 3, we introduce the group action that is relevant to our work.

2.2 Protocols

We give here an explicit characterization of the protocols we will build. The
corresponding security definitions are presented only in an informal manner;
formal definitions will be included in the full version of this work.
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Definition 2. A Sigma protocol is a three-pass interactive protocol between
two parties: a prover P = (P1,P2) and a verifier V = (V1,V2). The protocol is
composed of the following procedures:

I. Keygen: on input some public data (including system parameters), output
a public key pk (the instance) and the corresponding secret key sk (the
witness). Give sk to the prover; pk is distributed publicly and is available
to all parties. For simplicity, we assume that the public data is available as
input in all the remaining procedures.

II. Commit: on input the public key pk, P1 outputs a public commitment cmt
and sends it to the verifier.

III. Challenge: on input the public key pk and the commitment cmt, V1 samples
uniformly at random a challenge ch from the challenge space C and sends it
to the prover.

IV. Response: on input the secret key sk, the public key pk, the commitment cmt
and the challenge ch, P2 outputs a response rsp and sends it to the verifier.

V. Verify: on input a public key pk, the commitment cmt, the challenge ch, and
the response rsp, V2 outputs either 1 (accept) if the transcript (cmt, ch, rsp)
is valid, or 0 (reject) otherwise.

A Sigma protocol is usually required to satisfy the following properties. First,
if the statement is true, an honest prover is always able to convince an honest ver-
ifier. This property is called Completeness. Secondly, a dishonest prover cannot
convince an honest verifier other than with a small probability. This is captured
by the Soundness property, which also bounds such probability, usually known as
soundness error or, informally, cheating probability. Finally, the protocol has to
be Zero-Knowledge, i.e. anyone observing the transcript (including the verifier)
learns nothing other than the fact that the statement is true.

Definition 3. A Digital Signature scheme is a protocol between 2 parties: a
signer S and a verifier V. The protocol is composed of the following procedures:

I. Keygen: on input the public data (including system parameters), output a
secret signing key sk for S and the corresponding public verification key pk.

II. Sign: on input a secret key sk and a message msg, output a signature σ.

III. Verify: on input a public key pk, a message msg and a signature σ, V outputs
either 1 (accept) if the signature is valid, or 0 (reject) otherwise.

Correctness means that an honest signer is always able to get verified. The
usual desired security notion for signature schemes is Unforgeability, which guar-
antees that it is computationally infeasible to forge a valid signature without
knowing the secret signing key.

Definition 4. A Ring Signature scheme is a protocol between r + 1 parties:
potential signers S1, . . . ,Sr (the ring) and a verifier V. The protocol is composed
of the following procedures:
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I. Keygen: on input the public data (including system parameters), output a
secret key skj for each signer Sj , and the corresponding public key pkj .

II. Sign: on input a set of public keys {pk1, . . . , pkr}, a secret key skj∗ and a
message msg, output a signature σ.

III. Verify: on input a set of public keys {pk1, . . . , pkr}, a message msg and a
signature σ, V outputs either 1 (accept) if the signature is valid, or 0 (reject)
otherwise.

A crucial feature of a ring signature scheme is that anyone in the ring can
produce a valid signature (on behalf on the entire ring), and the verifier can check
validity, but cannot learn the identity of the signer. This is achieved by requiring
that the scheme satisfies the Anonymity property. This captures the idea of
protecting the identity of the signer, i.e. it should be impossible for a verifier
to tell which secret key was used to sign. Then, Unforgeability corresponds to
the familiar security notion for signature schemes presented above, extended to
include all ring participants. In other words, it should be infeasible to forge a
valid signature without knowing at least one of the secret keys in the ring. In
addition, Correctness is also required, as before.

Linkable ring signature schemes possess additional security features. These pro-
tocols are composed of the same three procedures described in Definition 4, plus
a fourth one, given below:

IV. Link: on input two signatures σ and σ′, output either 1 if the signatures were
produced with the same secret key, or 0 otherwise.

A linkable ring signature scheme is required to satisfy the following security
properties. Linkability asks that it is computationally infeasible for an adversary
to produce more than r unlinked valid signatures, even if some or all of the
r public keys are malformed. Linkable Anonymity guarantees that, even if an
adversary is able to obtain multiple signatures from the same signer, they are still
unable to determine which secret key was used. Non-Frameability protects the
user’s identity by requiring that it is computationally infeasible for an adversary
to produce a valid signature linked to one produced by an honest party.

Remark 1. Note that the linkability property is usually formulated in an al-
ternative way, that is, if more than r valid signatures are produced, then the
Link algorithm will output 1 on at least two of them. It is then easy to see, as
also pointed out in [12, Remark 2.4], that unforgeability is obtained directly by
satisfying linkability and non-frameability.

Finally, we recall the definition of commitment scheme, which is a tool neces-
sary for our particular construction of ring signatures. This is a non-interactive
function Com : {0, 1}λ×{0, 1}∗ → {0, 1}2λ mapping a message string of arbitrary
length to a commitment string of 2λ bits. The first λ bits of input, chosen uni-
formly at random, guarantee that the input message is hidden in a very strong
sense, as captured in the next definition.
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Definition 5. Given an adversary A, we define the two following quantities:

AdvBind(A) = Pr
[
Com(r,x) = Com(r′,x′) | (r,x, r′,x′)← A(1λ)

]
;

AdvHide(A,x,x′) =
∣∣∣ Pr
r← {0, 1}λ

[
A(Com(r,x)) = 1

]
− Pr

r← {0, 1}λ

[
A(Com(r,x′)) = 1

]∣∣∣.
We say that Com is computationally binding if, for all polynomial-time adver-

saries A, the quantity AdvBind(A) is negligible in λ. We say that Com is compu-
tationally hiding if, for all polynomial-time adversaries A and every pair (x,x′),
the quantity AdvHide(A) is negligible in λ.

3 The Matrix Code Equivalence Problem

A [m×n, k] matrix code is a subspace C ofMm,n(Fq). These objects are usually
measured with the rank metric, where the distance between two matrices A,B ∈
Mm,n(Fq) is defined as d(A,B) = Rank(A − B). We denote the basis of the
subspace by ⟨C1, . . . ,Ck⟩, where the Ci’s are linearly independent elements of
Mm,n(Fq). Due to symmetry, without loss of generality, in the rest of the text
we will assume m ⩽ n.

For a matrix A ∈Mm,n(Fq), let vec be a mapping that sends a matrix A to
the vector vec(A) ∈ Fmn

q obtained by ‘flattening’ A, i.e.:

vec : A =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

 7→ vec(A) = (a1,1, . . . , a1,n, . . . , am,1, . . . , am,n).

The inverse operation is denoted by mat, i.e. mat(vec(A)) = A. Using the map
vec, an [m × n, k] matrix code can be thought of as an Fq-subspace of Fmn

q ,

and thus we can represent it with a generator matrix G ∈ Fk×mn
q , in a manner

similar to the common representation for linear codes. Indeed, if C is an [m×n, k]
matrix code over Fq, we denote by vec(C) the vectorization of C i.e.:

vec(C) := {vec(A) : A ∈ C}.

In this case, vec(C) is a k-dimensional Fq-subspace of Fmn
q .

Definition 6. Let C and D be two [m×n, k] matrix codes over Fq. We say that
C and D are equivalent if there exist two matrices A ∈ GLm(q) and B ∈ GLn(q)
such that D = ACB, i.e. for all C ∈ C, ACB ∈ D.

The equivalence between two matrix codes can be expressed using the Kro-
necker product of A⊤ and B, which we denote by A⊤ ⊗B.

Lemma 1. Let C and D be two [m × n, k] matrix codes over Fq. Suppose that
C and D are equivalent with D = ACB, with A ∈ GLm(q) and B ∈ GLn(q). If
G and G′ are generator matrices for C and D respectively, then there exists a
T ∈ GLk(q) such that G′ = TG(A⊤ ⊗B).
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For efficiency, it is standard to write the generator matrices in systematic
form (i.e. reduced-row echelon form); we denote this operation by SF. Following
Lemma 1, this gives us that D = ACB if and only if SF(G′) = SF(G(A⊤⊗B)).
To simplify notation, we introduce the following operator:

πA,B(G) := G(A⊤ ⊗B).

We are now ready to describe some hard problems connected to the objects
we just introduced. The Matrix Code Equivalence (MCE) problem is formally
defined as follows:

Problem 2 (Matrix Code Equivalence).
MCE(k, n,m, C,D):
Given: Two k-dimensional matrix codes C,D ⊂Mm,n(q).
Goal: Determine if there exist A ∈ GLm(q),B ∈ GLn(q) such that D = ACB.

The map (A,B) : C 7→ ACB is an isometry between C and D, in the sense
that it preserves the rank i.e. RankC = Rank(ACB). Note that, although we
defined MCE as a decisional problem, our signature construction relies on the
computational version of it. The following related problem is at the basis of the
ring signature construction.

Problem 3 (Inverse Matrix Code Equivalence).
IMCE(k, n,m, C,D1,D2):
Given: Three k-dimensional matrix codes C,D1,D2 ⊂Mm,n(q).
Goal: Determine if there exist A ∈ GLm(q),B ∈ GLn(q) such that
D1 = ACB and D2 = A−1CB−1.

Problem 3 is closely connected toMCE, in a manner similar to the well-known
connection between discrete logarithm and related problems, i.e.:

DLOG ≥ DDH ≥ InverseDDH.

Reductions in the opposite direction are not known, as explained for example
in [6]. Although this does not provide any further indication about the complex-
ity of such problems, no explicit weaknesses are known either, and the problems
are generally considered hard. A more generic overview about hardness of group
action-based problems (of which the discrete logarithm is only a particular in-
stantiation) is given in [26], with similar conclusions. For our specific case, we
present a discussion about the concrete hardness of IMCE in Section 6.

Finally, we present a multiple-instance version of MCE, which is at the base
of one of the optimizations, using multiple public keys, which we will describe in
Section 5. It is easy to see that this new problem reduces to MCE, as done for
instance in [8] for the Hamming case.

Problem 4 (Multiple Matrix Code Equivalence).
MMCE(k, n,m, r, C,D1, . . . ,Dr):
Given: (r + 1) k-dimensional matrix codes C,D1, . . . ,Dr ⊂Mm,n(Fq).
Goal: Find – if any – A ∈ GLm(q),B ∈ GLn(q) such that Di = ACB for some
i ∈ {1, . . . , r}.
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The MCE problem has been shown to be at least as hard as the Code Equiv-
alence problem in the Hamming metric [21]. Furthermore, under moderate as-
sumptions,MCE is equivalent to the homogeneous version of the Quadratic Maps
Linear Equivalence problem (QMLE) [44], which is considered the hardest among
polynomial equivalence problems. An extensive security evaluation will be given
in Section 6, encompassing an overview of the best attack techniques and con-
crete security estimates. From this, we infer a choice of parameters in Section 7.2.

To conclude, we now lay out the details of the MCE-based group action, given
by the action of isometries on k-dimensional matrix codes. That is, the set X is
formed by the k-dimensional matrix codes of size m×n over some base field Fq,
and the group G = GLm(q)×GLn(q) acts on this set via isometries as follows:

⋆ : G×X → X
((A,B), C) 7→ ACB

We write Gm,n(q) to denote this group of isometries andMk,m,n(q) for the set
of k-dimensional matrix codes; to simplify notation, we drop the indices k,m, n
and q when clear from context. Then, for this MCE-based group action the Vec-
torization Problem is precisely Problem 2. This action is not commutative and
in general neither transitive nor free. We can restrict the set M to a single
well-chosen orbit to make the group action both transitive and free. In fact,
picking any orbit generated from some starting code C ensures transitivity, and
the group action is free if the chosen code C has trivial automorphism group
AutG(C) := {φ ∈ G : φ(C) = C}. The lack of commutativity is both positive and
negative: although it limits the cryptographical design possibilities, e.g. key ex-
change becomes non-trivial, it prevents quantum attacks to which commutative
cryptographic group actions are vulnerable, such as Kuperberg’s algorithm for
the dihedral hidden subgroup problem [32].

With regards to efficiency, it is immediate to notice that our group action is
very promising, given that the entirety of the operations in the proposed proto-
cols is simple linear algebra; this is in contrast with code-based literature (where
complex decoding algorithms are usually required) and other group actions (e.g.
isogeny-based) which are burdened by computationally heavy operations. Fur-
ther details about performance are given in Section 7.

4 Protocols from Matrix Code Equivalence

The efficient non-commutative cryptographic group action provided by MCE,
described in the previous section, yields a promising building block for post-
quantum cryptographic schemes. In this section, we obtain a digital signature
scheme by first designing a Sigma protocol and then applying the Fiat-Shamir
transformation [27]. With a similar procedure, we are able to obtain (linkable)
ring signatures as well.
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Public Data
q,m, n, k, λ ∈ N.
hash : {0, 1}∗ → {0, 1}2λ.

II. Commit(pk)

1. Ã, B̃
$←−− GLm(q)×GLn(q).

2. Compute G̃ = SF(πÃ,B̃(G0)).

3. Compute h = hash(G̃).
4. Set cmt = h.
5. Send cmt to verifier.

IV. Response(sk, pk, cmt, ch)

1. If ch = 0 set (µ, ν) = (Ã, B̃).
2. If ch = 1 set (µ, ν) = (ÃA−1,B−1B̃).
3. Set rsp = (µ, ν).
4. Send rsp to verifier.

I. Keygen()

1. G0
$←−− Fk×mn

q in standard form

2. (A,B)
$←−− GLm(q)×GLn(q).

3. Compute G1 = SF(πA,B(G0)).
4. Set sk = (A,B) and pk = (G0,G1).

III. Challenge()

1. c
$←−− {0, 1}.

2. Set ch = c.
3. Send ch to prover.

V. Verify(pk, cmt, ch, rsp)

1. If ch = 0 compute
h′ = hash(SF(πµ,ν(G0))).

2. If ch = 1 compute
h′ = hash(SF(πµ,ν(G1))).

3. Accept if h′ = cmt or reject otherwise.

Fig. 1. MCE Sigma Protocol

4.1 Sigma Protocols and Signatures

The first building block in our work is the Sigma protocol in Figure 1, in which
a Prover proves the knowledge of an isometry (A,B) between two equivalent
matrix codes. The security result is given in Theorem 1.

Theorem 1. The Sigma protocol described above is complete, 2-special sound
and honest-verifier zero-knowledge assuming the hardness of the MCE problem.

Proof. We prove the three properties separately.

Completeness. An honest prover will always have his response accepted by the
verifier. In fact, for the case c = 0, we have

h′ = hash(SF(πµ,ν(G0))) = hash(SF(πÃ,B̃(G0)) = hash(G̃) = h.

For the case c = 1, instead, observe that

πÃA−1,B−1B̃(G1) = πÃ,B̃

(
πA−1,B−1(G1)

)
.

Since G1 = SF(πA,B(G0)), then G1 = T (πA,B(G0)) for some T ∈ GLk(q).
Hence, we have that

πÃA−1,B−1B̃(G1) = πÃ,B̃

(
πA−1,B−1 (T (πA,B(G0)))

)
= T

(
πÃ,B̃(G0)

)
.

Now, computing the systematic form and applying hash, we again have h′ = h.
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2-Special Soundness. To get the extractor which produces the witness, we prove
that having obtained two valid transcripts with the same commitment and a dif-
ferent challenge, we can extract a solution for the underlying MCE problem. This
demonstrates that this Sigma protocol is a Proof of Knowledge with soundness
error 1/2.

Let (h, 0, rsp0) and (h, 1, rsp1) be two valid transcripts, where rsp0 = (µ0, ν0)
and rsp1 = (µ1, ν1). Since both pass verification, we have that

hash(SF(πµ0,ν0
(G0))) = h = hash(SF(πµ1,ν1

(G1))).

Then, since we assume that hash is collision resistant, it must be that

SF(πµ0,ν0
(G0)) = SF(πµ1,ν1

(G1)).

From this, it is easy to see that SF(πµ∗,ν∗(G0)) = G1, for an isometry (µ∗, ν∗) =
= (µ−11 µ0, ν0ν

−1
1 ), i.e. (µ∗, ν∗) is a solution to the MCE problem.

Honest-Verifier Zero-Knowledge. To show this, we provide a simulator S which,
without the knowledge of the witness, is able to produce a transcript which is
indistinguishable from one obtained after an interaction with an honest verifier.
When the challenge is c = 0, the prover’s response is (Ã, B̃), and does not
involve the witness. Hence, it is obvious that S can obtain a flawless simulation
by simply performing the same steps as an honest prover would. Thus,

Pr
[
V2(pk, cmt, 0, rsp) = 1 | (cmt, 0, rsp)← S(pk)

]
= 1.

When c = 1, the simulator generates two random matrices (A∗,B∗), then
sets the commitment to cmt = hash(SF (πA∗,B∗(G1))) and the response to rsp =

(A∗,B∗). When (Ã, B̃) is uniformly generated, then the matrices (ÃA−1,B−1B̃)
are uniformly generated too, and hence follow the same distribution as (A∗,B∗).
Furthermore, the triple (cmt, 1, rsp) is valid and therefore

Pr
[
V2(pk, cmt, 1, rsp) = 1 | (cmt, 1, rsp)← S(pk)

]
= 1.

This concludes the proof. ⊓⊔

Applying the Fiat-Shamir transformation, we obtain the signature scheme de-
picted in Figure 2.

Public key and signature size. We begin by calculating the communication
costs for the Sigma protocol of Figure 1. Note that, for the case c = 0, the
response (µ, ν) consists entirely of randomly-generated objects, and is efficiently
represented by a single seed (that can be used to generate both matrices). This
yields the following cost per round, in bits:{

3λ+ 1 if c = 0

2λ+ 1 + (m2 + n2)⌈log2(q)⌉ if c = 1
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Public Data
q,m, n, k, t = λ ∈ N.
hash : {0, 1}∗ → {0, 1}t.

II. Sign(sk)

1. For all i = 0, . . . , t− 1:

i. Ãi, B̃i
$←−− GLm(q)×GLn(q).

ii. Compute G̃i = SF(πÃi,B̃i
(G0)).

2. Compute
h = hash(G̃0, . . . , G̃t−1,msg).

3. Parse h = [h0| . . . |ht−1], hi ∈ {0, 1}.
4. For all i = 0, . . . , t− 1:

i. Set (µi, νi) = (ÃiA
−1
hi

,B−1
hi

B̃i).
5. Set σ = (h, µ0, . . . , µt−1, ν0, . . . , νt−1).
6. Send σ to verifier.

I. Keygen()

1. G0
$←−− Fk×mn

q in standard form
2. Set A0 = Im, B0 = In.

3. A1,B1
$←−− GLm(q)×GLn(q).

4. Compute G1 = SF(πA1,B1(G0)).
5. Set sk = (A1,B1) and pk = (G0,G1).

III. Verify(pk,msg, σ)

1. Parse h = [h0| . . . |ht−1], hi ∈ {0, 1}.
2. For all i = 0, . . . , t− 1:

i. Set Ĝi = SF(πµi,νi(Ghi)).
3. Compute

h′ = hash(Ĝ0, . . . , Ĝt−1,msg).
4. Accept if h′ = h or reject otherwise.

Fig. 2. The basic signature scheme

remembering that seeds are λ bits and hash digests 2λ to avoid collision attacks.
For the signature scheme we calculate the sizes as follows. First, since the

matrix G0 is random, it can also be represented via a short seed, and therefore
can be included in the public key at negligible cost (see Algorithm I. of Figure 2).
Keeping in mind that the number of rounds t is equal to the value of the desired
security level λ, the protocol above yields the following sizes (in bits):

– Public key size: λ+ k(mn− k)⌈log2(q)⌉

– Average signature size: t

(
1 +

λ+ (m2 + n2)⌈log2(q)⌉
2

)
.

4.2 Ring Signatures

The protocol of Figure 1 can be easily adapted to serve as a building block
for a ring signature, by providing the ring of users with individual public keys,
corresponding to equivalent matrix codes. Any user can then answer the veri-
fier’s challenge via the selected private key. The construction crucially utilizes
a dedicated primitive known as Index-Hiding Merkle Tree (IHMT). This prim-
itive was first introduced in [12] as a variation on the traditional construction
of Merkle trees. With this variant, in fact, the position of a leaf is not revealed,
which is necessary to ensure anonymity. This can be accomplished by specifying
a different method to construct the tree, based on an alternative ordering (e.g.
lexicographic). For further details, we refer the reader to [12]. A visual represen-
tation is given in Figure 3, where we remind the reader that Algorithm I. Keygen
is executed once for each prover, Algorithm II. Commit is the same regardless of
the chosen prover, and Algorithm IV. Response is instead unique for the specific
prover identified by j∗ ∈ {1, . . . , r}.

It is easy to see that the construction in Figure 3 satisfies the Completeness,
2-Special Soundness and Honest-Verifier Zero-Knowledge properties, similarly to
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Public Data
q,m, n, k, λ, r ∈ N.
Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ.

II. Commit(pk)

1. Ã, B̃
$←−− GLm(q)×GLn(q).

2. For all j = 1, . . . , r:

i. Sample rj
$←− {0, 1}λ.

ii. Compute G̃j = SF(πÃ,B̃(Gj)).

iii. Compute hj = Com(rj , G̃j).
3. Build IHMT from (h1, . . . , hr) and get

root.
4. Set cmt = root.
5. Send cmt to verifier.

IV. Response(skj∗ , pk, cmt, ch)

1. If ch = 0:
i. Set (µ, ν) = (ÃAj∗ ,Bj∗B̃).
ii. Get path corresponding to leaf j∗

in IHMT for (h1, . . . , hr).
iii. Set bits = rj∗ .
iv. Set rsp = (µ, ν, path, bits).

2. If ch = 1:
i. Set (µ, ν) = (Ã, B̃).
ii. Set bits = (r1, . . . , rr).
iii. Set rsp = (µ, ν, bits).

3. Send rsp to verifier.

I. Keygen(j)

1. G0
$←−− Fk×mn

q in standard form.

2. (Aj ,Bj)
$←−− GLm(q)×GLn(q).

3. Compute Gj = SF(πAj ,Bj (G0)).
4. Set skj = (Aj ,Bj) and pkj = Gj .
5. Set pk = (G0, pk1, . . . , pkr)

III. Challenge()

1. c
$←−− {0, 1}.

2. Set ch = c.
3. Send ch to prover.

V. Verify(pk, cmt, ch, rsp)

1. If ch = 0:
i. Compute Ĝ = SF(πµ,ν(G0)).
ii. Compute h′ = Com(bits, Ĝ).
iii. Get root′ from IHMT using h′ and

path.
2. If ch = 1:

i. For all j = 1, . . . , r:
a. Compute Ĝj = SF(πµ,ν(Gj)).
b. Compute h′

j = Com(rj , Ĝj).
ii. Build IHMT from (h′

1, . . . , h
′
r) and

get root′.
3. Accept if root′ = cmt, reject otherwise.

Fig. 3. MCE Ring Sigma Protocol

the protocol of Figure 1. The proof is analogue to the proof of Theorem 1, with
only minor differences (such as the reversal in the roles of the challenges), that
have no noticeable impact; this is therefore omitted in the interest of space. The
protocol can then be turned into a ring signature scheme using Fiat-Shamir as
usual, i.e. in the same manner as what was done for the protocol of Figure 1.
Furthermore, we can make the ring signature scheme linkable, by means of a
few modifications which we explain next. To avoid needless repetition, we avoid
presenting the ring signature scheme in its extended form (as in Figure 2) and
we move on instead to discussing the linkable variant; we will then present the
linkable ring signature scheme, in its entirety, to conclude this section.

To begin, recall the group action ⋆ : G×X → X, formalized in Section 3, with
X =M the set of k-dimensional matrix codes, G = G the group of isometries
for such codes, and the action given by ⋆ : ((A,B), C) 7→ ACB. We now require
another group action ∗ : G× Y → Y , satisfying the following properties.

Definition 7. Let ⋆ : G ×X → X and ∗ : G × Y → Y be two group actions.
We define the following properties for the pair (⋆, ∗):
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– Linkability : Given (x, y) ∈ X × Y , it is hard to output g, g′ ∈ G with
g ⋆ x = g′ ⋆ x and g ∗ y ̸= g′ ∗ y.

– Linkable Anonymity : Given (x, y) ∈ X × Y , the pair (g ⋆ x, g ∗ y) is indistin-
guishable from (x′, y′), where g and (x′, y′) are sampled uniformly at random
from G and X × Y , respectively.

– Non-Frameability : Given (x, y) ∈ X × Y , x′ = g ⋆ x and y′ = g ∗ y, for
g sampled uniformly at random from G, it is hard to output g′ ∈ G with
g′ ∗ y = y′.

Note how these three properties recall the Linkability, Linkable Anonymity
and Non-Frameability properties introduced in Section 2.2. Indeed, showing that
the pair of group actions satisfies the above properties is the key to constructing
a secure linkable ring signature scheme. Also, as noted before, one could define
unforgeability in a manner similar to the last property (by asking to output g′ ∈
G with g′ ⋆x = x′) but this is not necessary, since this is a direct consequence of
linkability and non-frameability. Informally, then, one can treat elements y ∈ Y
as “tags”, that can be checked to establish the link. To this end, it is convenient
to introduce an efficiently computable function Link : Y × Y → {0, 1}, defined
by Link(y, y′) = 1 ⇔ y = y′. For our purposes, we require Y = X = M and
define ∗ as ⋆−1. Thus, ∗ : ((A,B), C) 7→ A−1CB−1. We will then show that the
required properties hold for any given code C, with the IMCE problem as a basis
for its security.

Theorem 2. The pair of group actions (⋆, ∗) described above is linkable, linkably
anonymous and non-frameable assuming the hardness of the IMCE problem.

Proof. We prove the three properties separately.

Linkability. Consider a code C defined by G, together with two isometries g =
(A,B) and g′ = (A′,B′). Suppose that SF(πA,B(G)) = SF(πA′,B′(G)) or,
equivalently, that SF(G(A⊤ ⊗ B)) = SF(G((A′)⊤ ⊗ B′)). Then, it must be
that A⊤ ⊗ B = (A′)⊤ ⊗ B′, unless there is an automorphism of C hidden in
the product. As noted in [44], it is plausible to assume that a random code C
admits only the trivial automorphism, for all parameter choices we are inter-
ested in. If so, such trivial automorphism are pairs of scalar multiples of the
identity for scalars α ∈ Fq. Hence, either we have (A⊤ ⊗ B)−1 = ((A′)⊤ ⊗
B′)−1; or, (A⊤ ⊗ B)−1 = α−1((A′)⊤ ⊗ B′)−1. In both cases, we have that
SF(πA−1,B−1(G)) = SF(π(A′)−1,(B′)−1(G)) i.e. g ∗ y = g′ ∗ y.

Linkable Anonymity. This follows directly from the hardness of the IMCE prob-
lem. As discussed in Section 3, the problem is believed to be only marginally
easier than MCE. In Section 6, we analyse dedicated attack techniques for IMCE.

Non-Frameability. For this property, an adversary A is given again a code C
defined by G and codes x′ and y′ defined by SF(πA,B(G)) and SF(πA−1,B−1(G))
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respectively, where g = (A,B) is chosen uniformly at random in GLm(q) ×
GLn(q). The adversary A is asked to find (A′,B′) such that

SF(π(A′)−1,(B′)−1(G)) = y′ = SF(πA−1,B−1(G)).

We can use such an adversary to build a distinguisher D for the IMCE prob-
lem, as follows. Suppose (C,D1,D2) is the given instance of the problem, and
let ϵ be the success probability of A. To begin, D calls A on (C,D1,D2), and
A will reply with g′ = (A′,B′) that satisfies the equation above. From what
we have seen in the proof of the Linkability property above, this implies that
((A′)⊤ ⊗B′)−1 = (A⊤ ⊗B)−1, modulo trivial automorphisms. Either way, we
have that SF(πA,B(G)) = SF(πA′,B′(G)). Thus, it is enough for D to compute
SF(πA′,B′(G)) and SF(π(A′)−1,(B′)−1(G))), and check whether they define D1

and D2, respectively. D then answers 1 if this is the case, or 0 otherwise. Since
the probability that a randomly-drawn pair (D1,D2) satisfies this condition is
negligible, the probability of success of D is essentially the same as ϵ.

Together, these three properties complete the proof. ⊓⊔

Having clarified the nature of the tools at hand, we are now ready to introduce
the linkable version of the ring signature scheme. We first explain compactly how
to modify the protocol of Figure 3, then give a full description in Figure 4.

– As part of the public data, choose a collision-resistant hash function hash.

– The commit procedure (Algorithm II.) now additionally uses a matrix T =
SF(πA−1

j∗ ,B−1
j∗
(G0)); this is the “tag” for prover j∗, which will be trasmitted

alongside the commitment to the verifier. The prover then computes T̃ =
SF(π

Ã
−1

,B̃
−1(T)). After obtaining the root of the IHMT, the prover obtains

h̄ = hash(T̃, root) and the commitment is set to h̄ instead of root.

– Algorithm IV. is identical, except that, in the case c = 0, the response has
to include also the matrices µ̄, ν̄ = Aj∗Ã, B̃Bj∗ .

– Finally, Algorithm V. is modified to involve a check on the tag, as well. The
case c = 1 is trivial, with the verifier essentially repeating the commitment
procedure (Algorithm II.) as in the original protocol, only this time checking
equality with h̄ rather than root. For the case c = 0, instead, the verifier
additionally computes T̂ = SF(πµ̄−1,ν̄−1(G0)), then uses this value to obtain

hash(T̂, root′) and verify equality with h̄.

It is relatively easy to see that the new protocols satisfy all the necessary se-
curity properties. For instance, the ring Sigma protocol, with the above modifica-
tions, still satisfies the Completeness, 2-Special Soundness and Honest-Verifier
Zero-Knowledge properties. The linkable ring signature scheme of Figure 4 is
then just an application of the Fiat-Shamir transform. Once again, such proofs
are omitted due to space limitations; the interested reader can consult for ex-
ample [12], where proofs are given in all generality (see e.g. Theorems 4.3, 4.4
and 4.7). We will present computational costs for the (linkable) ring signature
scheme in the next section, after discussing optimizations.
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Public Data
q,m, n, k, t = λ, r ∈ N. Com : {0, 1}λ×{0, 1}∗ → {0, 1}2λ. hash, hash : {0, 1}∗ → {0, 1}t.

II. Sign(skj∗ , pk)

1. Compute the tag
T = SF(π

A−1
j∗ ,B−1

j∗
(G0)).

2. For all i = 0, . . . , t− 1:

i. Ãi, B̃i
$←−− GLm(q)×GLn(q).

ii. Set T̃i = SF(π
Ã

−1
i ,B̃

−1
i

(T)).

iii. For all j = 1, . . . , r:

a. Sample ri,j
$←− {0, 1}λ.

b. Set G̃i,j = πÃi,B̃i
(Gj).

c. Set hi,j = Com(ri,j ,SF(G̃i,j)).
iv. Build IHMT from (hi,1, . . . , hi,r)

and get rooti.
v. Compute h̄i = hash(T̃i, rooti).

3. Conpute
h = hash(h̄0, . . . , h̄t−1,T,msg).

4. Parse h = [h0| . . . |ht−1], hi ∈ {0, 1}.
5. For all i = 0, . . . , t− 1:

i. If hi = 0:
a. Set (µi, νi) = (ÃiAj∗ ,Bj∗B̃i).
b. Set (µ̄i, ν̄i) = (Aj∗Ãi, B̃iBj∗).
c. Get pathi corresponding to leaf

j∗ in IHMT for (hi,1, . . . , hi,r).
d. Set bitsi = ri,j∗ .
e. Set rspi =
{µi, νi, µ̄i, ν̄i, pathi, bitsi}.

ii. If hi = 1:
a. Set (µi, νi) = (Ãi, B̃i).
b. Set bitsi = (ri,1, . . . , ri,r).
c. Set rspi = {µi, νi, bitsi}.

6. Set σ = (h, rsp0, . . . , rspt−1,T).
7. Send σ to verifier.

I. Keygen(j)

1. G0
$←−− Fk×mn

q in standard form.

2. (Aj ,Bj)
$←−− GLm(q)×GLn(q).

3. Compute Gj = SF(πAj ,Bj (G0)).
4. Set skj = (Aj ,Bj) and pkj = Gj .
5. Set pk = (G0, pk1, . . . , pkr)

III. Verify(pk,msg, σ)

1. Parse h = [h0| . . . |ht−1], hi ∈ {0, 1}.
2. For all i = 0, . . . , t− 1:

i. If hi = 0:
a. Compute Ĝi = SF(πµi,νi(G0)).
b. Compute h′

i = Com(bitsi, Ĝi).
c. Get rooti from IHMT using h′

i

and pathi.
d. Compute

T̂i = SF(π
µ̄−1
i ,ν̄−1

i
(G0)).

ii. If hi = 1:
a. For all j = 1, . . . , r:

† Compute
Ĝi,j = SF(πµi,νi(Gj)).
‡ Compute

h′
i,j = Com(ri,j , Ĝi,j).

b. Build IHMT from
(h′

i,1, . . . , h
′
i,r) and get root′i.

c. Compute
T̂i = SF(π

µ−1
i ,ν−1

i
(T)).

iii. Compute h̄′
i = hash(T̂i, root

′
i).

3. Compute
h′ = hash(h̄′

0, . . . , h̄
′
t−1,T,msg).

4. Accept if h′ = h or reject otherwise.

Fig. 4. MCE linkable ring signature scheme

5 Matrix Equivalence Digital Signature — MEDS

By applying the following optimizations from literature to the basic Fiat-Shamir-
based signature scheme described in Section 4, we obtain our Matrix Equivalence
Digital Signature (MEDS).

Multiple keys. The first optimization is a popular one in literature [22, 13, 8],
and it consists of utilizing multiple public keys, i.e. multiple equivalent codes
G0, . . . ,Gs−1, each defined as Gi = SF(πAi,Bi(G0)) for uniformly chosen secret
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keys6 (Ai,Bi). This allows to reduce the soundness error from 1/2 to 1/2ℓ, where
ℓ = ⌈log2 s⌉. The optimization works by grouping the challenge bits into strings
of ℓ bits, which can then be interpreted as binary representations of the indices
{0, . . . , s − 1}, thus dictating which public key will be used in the protocol.
Security is preserved since the proof of unforgeability can be easily modified to
rely on a multi-instance version of the underlying problem: in our case, MMCE
(Problem 4). Note that, although in literature s is chosen to be a power of 2,
this does not have to be the case. In this work, we will instead select the value
of s based on the best outcome in terms of performance and signature size.

Remark 2. This optimization comes at the cost of an s-fold increase in public-key
size. As shown for instance in [22], it would be possible to reduce this impact by
using Merkle trees to a hash of the tree commitment of all the public keys. This,
however, would add some significant overhead to the signature size, because it
would be necessary to include the paths for all openings. Considering the sizes
of the objects involved, such an optimization is not advantageous in our case.

Fixed-weight challenges. Another common optimization is the use of fixed-
weight challenges. The idea is to generate the challenge string h with a fixed
number of 1s and 0s, i.e. Hamming weight, rather than uniformly at random.
This is because, when hi = 0, the response (µi, νi) consists entirely of randomly-
generated objects, and so one can just transmit the seed used for generating
them. This creates a noticeable imbalance between the two types of responses,
and hence it makes sense to minimize the number of 1 values. To this end, one
can utilize a so-called weight-restricted hash function, that outputs values in
Zt
2,w, by which we denote the set of vectors with elements in {0, 1} of length

t and weight w. In this way, although the length of the challenge strings in-
creases, the overall communication cost scales down proportionally to the value
of w. In terms of security, this optimization only entails a small modification
in the statement of the Forking Lemma, and it is enough to choose parame-
ters such that log2

(
t
w

)
≥ λ. Note that this optimization can easily be combined

with the previous one, by mandating hash digests in Zt
s,w and choosing param-

eters such that log2
((

t
w

)
(s− 1)w

)
≥ λ. In practice, this can be achieved with

a hash function hash : {0, 1}∗ → {0, 1}λ, by expanding the output to a t-tuple
(h0, . . . , ht−1), 0 ≤ hi < s of weight w.

Seed tree. Finally, the signature size can be optimized again using a seed tree.
This primitive allows to generate the many seeds used throughout the protocol in
a recursive way, starting from a master seed mseed and building a binary tree, via
repeated PRNG applications, having t seeds as leaves. When the required t−w
values need to be retrieved, it is then enough to reveal the appropriate sequence
of nodes. This reduces the space required for the seeds from λ(t−w) to λNseeds,
where Nseeds can be upper bounded by 2⌈log2(w)⌉+w(⌈log2(t)⌉− ⌈log2(w)⌉− 1),
as shown in [29]. We refer the reader to Section 2.7 of [12] for more details.

6 Again, for convenience, we choose A0 = Im, B0 = In.
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Public Data
q,m, n, k, λ, t, s, w ∈ N.
hash : {0, 1}∗ → {0, 1}λ.

II. Sign(sk)

1. For all i = 0, . . . , t− 1:

i. Ãi, B̃i
$←−− GLm(q)×GLn(q).

ii. Compute G̃i = SF(πÃi,B̃i
(G0)).

2. Compute
h = hash(G̃0, . . . , G̃t−1,msg).

3. Expand h to (h0, . . . , ht−1), 0 ≤ hi<s.
4. For all i = 0, . . . , t− 1:

i. Set (µi, νi) = (ÃiA
−1
hi

,B−1
hi

B̃i).
5. Set σ = (µ0, . . . , µt−1, ν0, . . . , νt−1, h).
6. Send σ to verifier.

I. Keygen()

1. G0
$←−− Fk×mn

q in standard form.
2. Set A0 = Im, B0 = In.
3. For all j = 1, . . . , s− 1:

i. Aj ,Bj
$←−− GLm(q)×GLn(q).

ii. Compute Gj = SF(πAj ,Bj (G0)).

4. Set sk = (A−1
1 ,B−1

1 , . . . ,A−1
s−1,B

−1
s−1).

5. Set pk = (G0,G1, . . . ,Gs−1).

III. Verify(pk,msg, σ)

1. Expand h to (h0, . . . , ht−1), 0 ≤ hi<s.
2. For all i = 0, . . . , t− 1:

i. Set Ĝi = SF(πµi,νi(Ghi)).
3. Compute

h′ = hash(Ĝ0, . . . , Ĝt−1,msg).
4. Accept if h′ = h or reject otherwise.

Fig. 5. The MEDS Protocol

To give a complete picture, we present the MEDS protocol in Figure 5, in its final
form, including all applicable variants. The various parameters control different
optimization: for instance s refers to the number of public keys used, whereas
w refers to the fixed weight of the challenge hash string. Parameter choices will
be thoroughly discussed in Section 7.2. Note that some of these optimizations
can be applied in an identical way to the (linkable) ring signature scheme; how-
ever, we leave an explicit description of such a scheme, as well as a full-fledged
implementation of it, to a dedicated future work.

Public key and signature size. With these various optimizations, we obtain
the following public key and signature size for MEDS:

– MEDS public key size: λ+ (s− 1)k(mn− k)⌈log2(q)⌉
– MEDS signature size:

λ
h

+w(m2 + n2)⌈log2(q)⌉
{µi,νi}hi=1

+ λNseeds

{µi,νi}hi=0

The optimizations described above can also be applied to the ring signature
scheme, which gives us the following sizes:

– Ring signature public key size: λ+ rk(mn− k)⌈log2(q)⌉
– Ring signature size:

w⌈log2 t⌉
h

+w((m2 + n2)⌈log2(q)⌉+ 2λ⌈log r⌉+ λ)

{rspi}hi=0

+ λNseeds

{rspi}hi=1

For the linkable variant, the cost of the middle term, i.e. {rspi}hi=0, is increased
to w(2(m2+n2)⌈log2(q)⌉+2λ⌈log r⌉+λ), and the signature additionally includes
k(mn− k)⌈log2(q)⌉ bits for the tag T.
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6 Concrete Security Analysis

Recent works [21, 44] investigate the hardness of MCE by connecting it to other
equivalence problems, namely, the Code Equivalence problem in the Hamming
metric and the Quadratic Maps Linear Equivalence problem (QMLE). The con-
nection to these problems, as well as the complexity analysis from [21, 44] will
serve as a basis for determining the practical hardness of MCE and IMCE, which
allows us to choose parameters for MEDS at a desired security level. For better
understanding, we include the definition of the related QMLE problem.

Problem 5. QMLE(k,N,F ,P):
Given: Two k-tuples of multivariate polynomials of degree 2

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN ]k.

Goal: Find – if any – matrices S ∈ GLN (q),T ∈ GLk(q) such that

P(x) = (F(xS))T.

We denote by hQMLE, inhQMLE, BMLE and inhBMLE the related problems when
the polynomials are homogeneous of degree 2, inhomogeneous, homogeneous
bilinear and inhomogeneous bilinear, respectively. Further, we denote by MCRE
the variant of MCE when the matrix A is the identity matrix.

In the rest of the section, we will mostly use the Big O notation O to express
the complexity of algorithms. Where we are not interested in the polynomial
factor we will use O∗. We note that despite the notation, the estimates are quite
tight and provide a good basis for choosing parameters.

6.1 Attacks on MCE

Recall that the goal of an adversary against MCE is to recover the matrices A
and B, given a description of the matrix codes C and D. The most näıve attack
would be to try every A ∈ GLm(q) and B ∈ GLn(q) until we find the correct

isometry, amounting to a complexity of O(qn2+m2

). The näıve attack can be
improved by noting that MCRE is easy [21], and so, by guessing either A or B,

we get an MCRE instance. This approach gives a complexity of O∗(qmin{m2,n2}).

Algebraic attacks. Recently, in [44], it was shown that MCE is equivalent to
BMLE. One of the natural attack avenues is thus to model the problem as an
algebraic system of polynomial equations over a finite field. This approach was
taken in [25], where the general Isomorphism of Polynomials (IP) problem was
investigated. Here, we present a detailed modelling and complexity analysis of
BMLE not known in the previous literature on IP.

First, fix arbitrary bases (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) of the codes
C and D respectively. In terms of the bases, the MCE problem can be rephrased
as finding A ∈ GLm(q),B ∈ GLn(q) and T = (tij) ∈ GLk(q) such that:∑

1⩽s⩽k

trsD
(s) = AC(r)B, ∀r, 1 ⩽ r ⩽ k (1)
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The system (1) consists of knm equations in them2+n2+k2 unknown coefficients
of the matrices A,B and T. The quadratic terms of the equations are always
of the form αaijbi′j′ for some coefficients aij and bi′j′ of A and B respectively
which means the system (1) is bilinear. Note that the coefficients of T appear
only linearly. As previously, we can guess the m2 variables from A, which will
lead us to a linear system that can be easily solved. However, we can do better
by exploiting the structure of the equations.

For ease of readability of the rest of the paragraph denote by Mi and M i

the i-th row and i-th column of a matrix M. As a crucial observation, note
that, in (1), for i ̸= j, the unknown coefficients from two rows Ai and Aj don’t
appear in the same equation. Symmetrically, the same holds for B i and B j , but
we will make use of it for the matrix A. Thus, we can consider only part of the
system, and control the number of variables from A. The goal is to reduce the
number of variables that we need to guess before obtaining an overdetermined
linear system, and we want to do this in an optimal way. Consider the first α
rows from A. Extracting the equations that correspond to these rows in (1) leads
us to the system:∑

1⩽s⩽k

trsD
(s)
i = Ai C

(r)B, ∀r, i, 1 ⩽ r ⩽ k, 1 ⩽ i ⩽ α. (2)

Guessing the αm coefficients from Ai leads to a linear system of αkn equations

in n2 + k2 variables. Choosing α = ⌈n
2+k2

kn ⌉, the complexity of the approach

becomes O(qm⌈n
2+k2

kn ⌉(n2 + k2)3). For the usual choice of m = n, and if we
assume k ≈ 2.5n − 3.5n, as is applicable for MEDS, this reduces to at least
α = 3 and a complexity of O(q3nn6).

Note that, one can directly solve the bilinear system (2) using for example
XL [19] and the analysis for bilinear systems from [40] (similar results can be
obtained from [23]). We have verified, however, that due to the large number of
variables compared to the available equations, the complexity greatly surpasses
the one of the simple linearization attack presented above.

In order to improve upon this baseline algebraic attack, we will model the
problem differently and completely avoid the trs variables. This modelling is in
the spirit of the minors modellings of MinRank as in [24, 7].

As previously, letG andG′ be the k×mn generator matrices of the equivalent
codes C and D respectively. Then from Lemma 1, G̃ = G(A⊤⊗B) is a generator
matrix of D for some invertible matrices A and B. We will take the coefficients
of A and B to be our unknowns. A crucial observation for this attack is that
each row G̃i of G̃ is in the span of the rows of G′, since G′ and G̃ define the
same code. This means that adding G̃i to G′ does not change the code, i.e.,

(i)G′ =

(
G′

G̃i

)
is not of full rank. From here, all maximal minors |

(
(i)G′j1

(i)G′j2 . . .
(i) G′jk+1

)
|

of (i)G′, for every {j1, j2, . . . , jk+1} ⊂ {1, 2, . . . ,mn}, are zero.
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Now, as in a minors modeling of MinRank, we can form equations in the
unknown coefficients of A and B by equating all maximal minors to zero, which
amounts to a total of

(
mn
k+1

)
equations. Since the unknown coefficients ofA andB

appear only in the last row of the minors, and only bilinearly, the whole system
is also bilinear. Thus we have reduced the problem to solving the bilinear system{
|
(
(i)G′j1

(i)G′j2 . . .
(i) G′jk+1

)
| = 0,

for all i ∈ {1, 2, . . . , k}
and all {j1, j2, . . . , jk+1} ⊂ {1, 2, . . . ,mn}

(3)
in the m2 + n2 unknown coefficients of A and B.

At first sight, (3) seems to have more than enough equations to fully linearize
the system. However, the majority of these equations are linearly dependent. In
fact, there are only (mn − k)k linearly independent equations. To see this, fix

some i and consider a minor |
(
(i)G′j1

(i)G′j2 . . .
(i) G′jk+1

)
| of (i)G′. Since all

rows except the first don’t contain any variables, the equation

|
(
(i)G′j1

(i)G′j2 . . .
(i) G′jk+1

)
| = 0

basically defines the linear dependence between the columns (i)G′j1 , . . .
(i) G′jk+1

.
But the rank of the matrix is k, so all columns can be expressed through some
set of k independent columns. Thus, in total, for a fixed i we have mn − k
independent equations and in total (mn− k)k equations for all i.

Alternatively, we can obtain the same amount of equations from G̃ and the
generator matrix G′⊥ of the dual code of D. Since G̃ should also be a generator
matrix of D, we construct the system:

G′⊥ · G̃⊤ = 0,

which is again a system of (mn− k)k bilinear equations in n2 +m2 variables.

The complexity of solving the obtained system using either of the modellings
strongly depends on the dimension of the code – it is the smallest for k = mn/2,
and grows as k reduces (dually, as k grows towards mn). In Section 7 we give the
concrete complexity estimate for solving the system for the chosen parameters
using bilinear XL and the analysis from [40].

The attack does not seem to benefit a lot from being run on a quantum
computer. Since the costly part comes from solving a huge linear system for which
there are no useful quantum algorithms available, the only way is to ‘Groverize’
an enumeration part of the algorithm. One could enumerate over one set of
the variables, either of A or B, typically the smaller one, and solve a biliner
system of less variables. Grover’s algorithm could then speed up quadratically
this enumeration. However, since in the classical case the best approach is to not
use enumeration, this approach only makes sense for quite small values of the
field size i.e. only when q < 4. In this parameter regime, however, combinatorial
attacks perform significantly better, so this approach becomes irrelevant.
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Algorithm 1 Collision-search algorithm

1: function BuildList(F ,P)
2: L← ∅
3: repeat

4: x
$←−− Fm+n

q

5: if P(x) then L← L ∪ {x}
6: until |L| = ℓ
7: return L

8: function CollisionFind(F ,P)
9: L1 ← BuildList(F ,P)
10: L2 ← BuildList(P,P)
11: for all (x,y) ∈ {L1 × L2} do
12: ϕ←inhQMLE(x,y)
13: if ϕ ̸= ⊥ then
14: return solution ϕ

15: return ⊥

Birthday-based collision-search algorithm. It was shown in [44] that MCE
is equivalent to hQMLE, so it is possible to apply the graph-theoretic algorithm
from [17] to MCE instances.

To do so, consider an hQMLE instance hQMLE(k,N,F ,P). The algorithm
can be generalized as a collision-search algorithm comprised of two steps, as
given in Algorithm 1. Step 1 is to build two lists of distinguished elements sat-
isfying a particular, predefined distinguishing property P of the given systems
of polynomials F and P. This first step is depicted by the two calls to the
BuildList function in Algorithm 1. The size of the lists is set such that we
have a 63% chance of finding a collision, which amounts to roughly a square
root of the number of distinguished elements. We denote by d the density of the
distinguishing property, i.e. the proportion of elements satisfying P. Step 2 is
to check for a collision between the two lists. Given a pair (x,y), we build an
inhomogeneous QMLE instance and run an isomorphism-search solver on it. A
crucial observation is that a collision allows us to derive linear constraints, and
thus transform the hQMLE problem to the inhQMLE problem. This second step
corresponds to the main loop in the CollisionFind function in Algorithm 1.

This whole approach works under two assumptions: first, that there exist such
distinguishing elements, and secondly, that the solver for inhomogeneous QMLE
instances is efficient. Heuristic evidence suggests that solving random instances
of the inhQMLE problem using an algebraic approach takes O(N9) [25], however,
the derived inhQMLE instances from the collision-search attack are not random
enough. These specific instances have a solver with a complexity of O(qκ) [16],
where κ is a parameter related to P and thus to d. As κ is typically small,
this approach is still efficient in practice. Following the analysis from [44], the
concrete complexity of the attack when k ⩽ 2(n+m) is as follows:

max(
√
qm+n/d · CP, dq

m+n · CiQ), (4)

with success probability of≈ 63%, where CP denotes the cost of checking whether
an element satisfies the distinguishing property, and CiQ denotes the cost of
a single query to inhQMLE. To see this, note that the concrete complexity of
Algorithm 1 is defined as the complexity of the dominating step. The first step
consists of building the lists of distinguished elements. We need a list of size
|L| =

√
qm+nd, and finding a single element takes 1/d ·CP, hence

√
qm+n/d ·CP.

The second step, requires a query to the inhQMLE solver for each pair of elements
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in {L1×L2}, at a running time of dqm+n ·CiQ. Finally, the memory complexity
is simply the size of the lists.

Asymptotically, the complexity is O∗(q 2
3 (n + m)) by balancing the steps

[44]. For reference, the density is calculated as d−1 =
∏κ−1

i=0
(qk−qi)(qm+n−qi)

qκ−qi =

O(qκ2+κ(k−m−n)), for a certain choice of an integer value of κ that minimizes
Equation (4). It is also pointed out in [44] that when k ≥ 2(m + n), we can
no longer assume that we have distinguished elements, so we need to consider
all elements in the collision search. Thus, we have d = 1 and the complexity
of the algorithm is simply O(qm+n). In that case, we can consider choosing
arbitrarily one element x and checking for a collision with all other elements
y ∈ Fm+n

q . This approach yields the same complexity as the previous one, but
is superior because it is deterministic and has negligible memory requirements.
Note that this approach was also proposed in [17], but as an inferior (in terms
of time complexity) deterministic variant, rather than as a solution for the lack
of a distinguishing property. As this attack can be applied to any parameter
set, it presents an upper-bound on the complexity of a classical collision-search
algorithm.

For a quantum version of Algorithm 1, both BuildList and CollisionFind
can be seen as unstructured searches of a certain size, hence Grover’s algorithm
applies to both: we can build the list L using only

√
ℓ · d−1 searches, and we

can find a collision using only
√
|L1 × L2| queries to the solver. This requires

both P and inhQMLE to be performed in superposition. The balance between
both sides remains the same. In total, the complexity of the quantum version
becomes O∗(q 1

3 (n+m)).

Collision-search algorithm using non-trivial roots. When viewing anMCE
instance as an hQMLE instance, it is possible to use certain bilinear properties to
improve Algorithm 1. When n = m, such instances have approximately q2n−k−1

non-trivial roots, which can be used to improve a subroutine of Algorithm 1, and
to make it deterministic instead of probabilistic [44]. In practice, such non-trivial
roots exist i) almost always when k < 2n, ii) with probability 1/q for k = 2n,
iii) with probability 1/qk+1−2n for k > 2n. The complexity of this approach
is O∗(qn), if such non-trivial roots exist. This complexity is proven under the
assumption that the complexity of the inhomogenous QMLE solver is no greater
than O(qn), which holds trivially when k ≥ n [44], and heuristically when k < n.
Finding the non-trivial roots can also be done using a bilinear XL algorithm [40].
We do not consider this approach in our analysis, as it is only interesting for
a subset of parameters where the systems are (over)determined, i.e. when k is
close to m+ n.

For a quantum version of this attack, Grover’s algorithm can be used to find
the non-trivial zeros. The complexity of then is lower bounded by O∗(q n

2 ).

Leon’s algorithm in the rank metric. Leon [33] proposed an algorithm
against the code equivalence problem in the Hamming metric that relies on the
basic property that isometries preserve the weight of the codewords and that the
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weight distribution of two equivalent codes is the same. Thus, finding the set of
codewords of smallest weight in both codes reveals enough information to find a
permutation that maps one set to the other, which with high probability is the
unknown isometry between the codes. This algorithm is quite unbalanced and
heavy on the ’codewords finding’ side, since it requires finding all codewords of
minimal weight. Beullens [11] proposed to relax the procedure and instead per-
form a collision based algorithm, much in the spirit of Algorithm 1: Build two
lists of elements of the codes of particular weight (the distinguishing property
from [11] actually also includes the multiset of entries of a codeword) and find a
collision between them. As in Leon’s algorithm and Algorithm 1, the ’collision
finding’ part employs an efficient subroutine for reconstructing the isometry.

One can immediately see that this approach easily translates to matrix codes
and can be used to solve MCE. Here, finding codewords of a given rank r is
equivalent to an instance of MinRank for k matrices of size m × n over Fq. To
ease our analysis and provide a lower bound of the complexity of this approach,
we will assume that a MinRank algorithm, given a MinRank instance for rank r
outputs for free a list of L codewords of rank r (provided there exist as many).
Following the analysis of [7], we take the complexity of this part to be

O(qk−k0k0(r + 1)

((
n

r

)(
k0 + b− 1

b

))2

) (5)

where b is the smallest integer for which linearization in the support minors
modelling from [7] is possible, and k0 is a hybridization parameter for which the
complexity is minimized.

For the collision part, notice that given two codewords C1 from C and D1

from D, it is not possible to determine the isometry (A,B), as there are many
isometries possible between single codewords. Thus, there is no efficient way of
checking that these codewords collide nor finding the correct isometry. On the
other hand, a pair of codewords is typically enough. For the pairs (C1,C2) and
(D1,D2) we can form the system of 2mn linear equations{

A−1D1 = C1B
A−1D2 = C2B

(6)

in the m2+n2 unknown coefficients of A and B. When m = n, which is a typical
choice in practice, the system is overdetermined, and can be solved in O(n6). It
is then easy to check whether the obtained isometry maps C to D. We will thus
assume, as a lower bound, that we find collisions between pairs of codewords.

Now, let C(r) denote the number of codewords of rank r in a k-dimensional
m× n matrix code. Then, using a birthday argument, two lists of size

√
2C(r)

of rank r codewords of C and D are enough to find two collisions. To detect the
two collisions, we need to generate and solve systems as in Equation (6) for all

possible pairs of elements from the respective lists, so
(√2C(r)

2

)2
systems in total.

Since C(r) ≈ qr(n+m−r)−nm+k, the total complexity amounts to

O(q2(r(n+m−r)−nm+k)(m2 + n2)ω).
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Note that a deterministic variant of this approach has the same asymptotic com-
plexity. Choosing two rank r codewords of C and checking them for a 2-collision
against all pairs of rank r codewords of D requires solving

(
C(r)
2

)
systems.

Finally, we choose r so that both parts – the MinRank and the collision part
are as close to a balance as possible. Section 7 discuses further the complexity
of this approach for the chosen parameters of our scheme.

When considering the quantum version of the algorithm, we can apply the
same reasoning as in the case of the collision based Algorithm 1, and obtain
quadratic speedup in the collision part. Because of the hybridization, the Min-
Rank part also benefits from using Grover, especially for larger fields.

6.2 Attacks on IMCE

The security of the linkable version of the ring signature scheme relies on the
hardness of the IMCE problem. Thus, given three codes C, D1 and D2, we need to
determine whether they form a triangle of the following form, where the full lines
represent the exact mappings the problem asks for, whereas the dashed ones are
mappings that if found also break the problem. (The diagram uses loose notation
in favor of readability.)

D1

C

D2

πA,B

πA−1,B−1

πA2,B2

πA,B

Extended algebraic attack. Algebraically, IMCE can be treated in exactly the
same manner as the minors modeling of MCE in the previous section. The types
of equations are the same, and with the same structure. The only difference is
that the algebraic system that we construct has twice as many equations, i.e
2(mn− k)k, coming from the isometry between C and D1 and between D1 and
D2 but the amount of variables is the same – n2 +m2, since the isometry is the
same. This means that the cost of the attack is reduced for the same choice of
parameters, so adding the linkability property requires larger parameters in the
regime where the algebraic attack performs the best.

Extended collision-search algorithm. Our extended collision-search attack
consists of finding an isometry between any of the three codes. Specifically,
finding a collision between C and D1 allows us to derive πA,B , one between
C and D2 yields πA−1,B−1 , and one between D1 and D2 yields πA2,B2 . We first
reduce the problem to an equivalent QMLE-based problem: solve any of the three
QMLE instances (k,m+ n,F ,P1), (k,m+ n,F ,P2) or (k,m+ n,P2,P1), with

P1(x) = (F(xS))T1, P2(x) = (F(xS−1))T2, P1(x) = (P2(xS
2))T2

−1T1
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and S =

[
A 0
0 B⊤

]
. Then, we apply a modified version of Algorithm 1, where we

now build three lists instead of two, and on Line 11, we pick pairs (x,y) from
{L1 × L2} ∪ {L1 × L3} ∪ {L2 × L3}, instead of just {L1 × L2}.

To derive the complexity of the attack, denote by N = dqm+n the total
number of distinguished elements. Then it can be deduced, using a birthday
based analysis that the probability of not having a collision when the lists contain

ℓ elements each is P =
∏ℓ

i=1(1−
i
N )(1− 2i

N ) ≈ e−
3ℓ2

2N . To have a 63% chance of

collision, we need to build lists of size ℓ = c2
√
N , with c2 =

√
2
3 . For comparison,

performing a similar analysis for the collision-search algorithm for the general
MCE problem (where we have only two lists), this constant is c1 =

√
2.

Remark 3. For Leon’s algorithm for IMCE, the arguments are similar to the
extended collision search algorithm. Thus it seems that apart from possibly a
constant speed-up, the algorithm does not benefit from the IMCE context.

7 Implementation and Performance of MEDS

In this section we give an assessment of the performance of MEDS. We begin with
important considerations about the implementation of the signature scheme.
Then we provide concrete parameter choices for MEDS and a first preliminary
evaluation of its performance based on a C reference implementation.

7.1 Implementation

Besides performance, the security of a cryptographic implementation is of crucial
importance. By “implementation security” here we mean the resilience of an
implementation against threats such as timing attacks, physical side-channel
attacks, and fault injection attacks. While the requirement for side-channel and
fault attacks heavily depends on whether in practice physical access is possible
for an attacker, it is widely considered best practice to provide protection against
timing attacks as baseline for all cryptographic implementations. In order to do
this, the implementation must be constant time, i.e., timing variations based on
secret data must be prevented. This typically means that branching and memory
access based on secret data must be avoided. There are generic constructions to
achieve timing security for basically any given cryptographic scheme. However, if
the design of a cryptographic primitive does not take constant-time requirements
into consideration, such generic constructions can be computationally expensive.
Therefore, defining a cryptographic scheme such that it supports an efficient
protection against timing attacks can make it easier to implement the scheme
securely which in turn can make a scheme more secure and efficient in practice.

In the case of MEDS, we need to consider the implementation security of
key generation and signing. Verification only operates on public data and hence
does not require further protection. The basic operations of MEDS during key
generation and signing are:
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– field arithmetic,
– matrix multiplication,
– generating random invertible matrices, and
– computing a canonical form of a matrix.

All these operations must be implemented securely.

Field arithmetic. We are using a relatively small prime field in MEDS. Each
field element can be stored in a single byte. Hence, for finite field addition and
multiplication, we can simply perform integer arithmetic followed by a reduction
modulo the prime. On most architectures, constant-time operations for adding
and multiplying two bytes are available. The reduction modulo the prime can
be implemented using standard approaches in literature (e.g., by Granlund and
Montgomery [28], Barrett [10], or Montgomery [36]). Inversion of field elements
can efficiently be implemented in constant time using Fermat’s little theorem
and optimal addition chains.

In the C reference implementation, we simply use the modulo operation for
reduction and Fermat’s little theorem for inversion to get a first impression on
the performance of the scheme. For using MEDS in practice, the timing side-
channel security in particular of the modulo operation needs to be verified.

Matrix multiplication. The basic schoolbook algorithm for multiplying matri-
ces is not data depended and hence constant time. More sophisticated approaches
like the method by Arlazarov, Dinic, Kronrod, and Faradžev [5] may depend on
potentially secret data, but most likely do not significantly improve the perfor-
mance for the finite field and the matrix sizes used in MEDS. Asymptotically
more efficient matrix multiplication algorithms likely are not more efficient for
the given matrix dimensions neither. Hence, for the C reference implementation,
we are simply using schoolbook multiplication. For optimized implementations,
a constant time algorithm must be used.

Random invertible matrix generation. On several occasions throughout the
MEDS operations, we need to generate random invertible matrices: For key gen-
eration (cf. step 3i. in Figure 5), we need to generate the secret matricesAj ,Bj ∈
GLm(q) × GLn(q) and their inverses, for signing (cf. step 1i. in Figure 5), we
need to generate potentially secret matrices Ãi, B̃i ∈ GLm(q)×GLn(q), and for
verification, we need to re-generate some matrices Ãi, B̃i ∈ GLm(q) × GLn(q)
from a seed for cases where hi = 0.

There are several approaches for generating random invertible matrices:

1. Trial-and-error approach: Generate a random matrix M and attempt to
compute its inverse. If M does not have an inverse, try again with a new
random matrix. This approach requires constant-time Gaussian elimination
if M needs to be kept secret and it might require several attempts before a
random invertible matrix has been found.

2. Constructive approach: Construct a matrix M that is known to be inveritble.
One approach for this is described in [42]: Generate a random lower-left
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triangular matrix L with the diagonal all 1 and an upper-right triangular
matrix U with the diagonal all ̸= 0 as well as a corresponding permutation
matrix P akin to the result of an LUP decomposition. Then compute the
random invertible matrix M as M = P−1LU.
Since generation of and multiplication with P are expensive to implement in
constant time, one can follow the approach of [47], leave out P, and compute
M as M = LU directly. This, however, covers only a subset of ((q − 1)/q)

n

matrices of all invertibe matrices in Fn×n
q . The inverse M−1 of the matrix

can then be computed as M−1 = U−1L−1.

The fastest approach in our experiments was the constructive approach fol-
lowing [47]. However, if also the inverse of the matrix is required (as for key
generation), the trial-and-error approach turned out to be more efficient. Hence,
we are using the trial-and-error approach during key generation and the construc-
tive approach for signing (and for verification as the same matrices as during
signing need to be computed from the seeds).

Canonical matrix form. MEDS requires to compute a canonical form of ma-
trices before hashing. However, during signing, this must be computed in con-
stant time. Computing the reduced row-echelon form of a matrix in constant
time is expensive. Canonical matrix forms that can be computed in constant
time more efficiently include the systematic form and the semi-systematic form
of a matrix, used, e.g., in Classic McEliece [3]. Both the systematic and the
semi-systematic form are special cases of the reduced row-echelon form.

For the systematic form, all pivoting elements are required to reside on the
left diagonal of the matrix, i.e., a matrix G ∈ Fk×mn

q in systematic form has the

shape (Ik|G′) with G′ ∈ Fk×(mn−k)
q and Ik denoting the k × k identity matrix.

The requirements for the semi-systematic form are more relaxed: Following [3,
Sect. 2.2.1], we say that a matrix G is in (µ, ν)-semi-systematic form if G has r
rows (i.e., no zero rows), the pivot element in row i ≤ r − µ also is in column i
and the pivot element in row i > r − µ is in a column c ≤ i− µ+ ν.

However, not all matrices admit a systematic or semi-systematic form. In this
case, we need to restart the computation with new random data. The probability
that a matrix G ∈ Fk×mn

q , k ≤ mn is full rank is
∏k

i=1(q
mn−qi−1)/qkmn. There-

fore, the probability that G has a systematic form is
∏k

i=1(q
k − qi−1)/qk

2

and

the probability that it has a semi-systematic form is
∏k−µ

i=1 (q
k − qi−1)/q(k−µ)k ·∏µ

i=1(q
ν − qi−1)/qµν . The probability and the cost of constant-time implemen-

tation for the semi-systematic form depend on µ and ν.
This gives us the following three options for avoiding to compute a reduced

row-echelon form in constant time for G̃i during signing:

1. Basis change: After computing G̃′i = πÃi,B̃i
(G0), perform a basis change

G̃′′i = MiG̃
′
i with a secret random invertible matrix Mi ∈ Fk×k

q . Then

compute a canonical form G̃i = SF(G̃′′i ) on a public G̃′′i without the need for
a constant time implementation. This removes the requirement of a constant
time computation of the canonical form but introduces extra cost for the
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generation of and multiplication with a random invertible matrixMi. Instead
of an invertible matrix Mi, just a random matrix can be used. With low
probability (see above), a random matrix does not have full rank and the
computation of the canonical form fails. In that case, the process needs to
be restarted with a different Ã and B̃.

2. Semi-systematic form: Compute the semi-systematic form. This requires
a less expensive constant-time implementation than for the reduced-row-
echelon form. However, computing the canonical form might fail if no semi-
systematic form exists, in which case the computation needs to be restarted.

3. Systematic form: Compute the systematic form. This can be implemented
even more easily and cheaper in constant time than computing the semi-
systematic form. However, systemization failure is more frequent and it is
more likely that computations need to be restarted.

We expect the implementation cost for variant 1 to be the higher than the
other two. For the specific parameter sets we propose in Section 7.2, the proba-
bility that G̃i does not have a systematic form is about 0.0015%. Therefore, even
though the failure probability when computing the semi-systematic form can be
reduced compare to the systematic form with well-chosen µ and ν, the overall
overhead (including cost for constant-time implementation) of computing the
semi-systematic form (variant 2) is likely higher than the overall overhead for of
computing the systematic form (variant 3). Hence, we decided to use the sys-
tematic form in the reference implementation. However, a thorough investigation
of the performance of the different variants on common computing platforms is
required in order to identify the variant that performs best overall.

7.2 Parameter Choice and Evaluation

Table 1 provides an overview of 128-bit security parameters for MEDS, highlight-
ing different performance and key/signature size trade-offs. Table 2 shows the
resulting performance of these parameter sets from our C reference implemen-
tation on an AMD Ryzen 7 PRO 5850U CPU. The C reference implementation
follows the implementation discussion above but does not apply any platform-
specific optimizations. We expect that optimized implementations can signifi-
cantly increase the performance.

With implementation efficiency in mind, we select q = 65521 as the largest
16-bit prime so that one Fq element fits into two bytes. We choose n = m = 12
and k = 10, which results in 149 bits of classical security, well above the 128-bit
target. Quantumly, the security strength of these parameters is 85 bits. In both
cases, Leon’s algorithm performs the best, although in the classical case, the
algebraic approach is also almost as good with a cost of ≈ 2151 operations. Note
that the chosen ratio between n and k seems to be the goldilocks zone for our
scheme. For k larger, the algebraic attack becomes significantly better, and the
same is true for Leon’s attack when k is smaller.

8 https://bench.cr.yp.to/supercop.html
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Parameter Set q n k s t w ST PK SIG AT QAT FS

MEDS-2696-st 65 521 12 10 2 256 30 ✓ 2696 18 768 149.05 85.55 −129.74
MEDS-10736-st 65 521 12 10 5 448 16 ✓ 10 736 10 512 149.05 85.55 −128.28
MEDS-13416-st 65 521 12 10 6 160 20 ✓ 13 416 12 688 149.05 85.55 −130.01
MEDS-13416 65 521 12 10 6 160 20 – 13 416 13 776 149.05 85.55 −130.01
MEDS-40216-st 65 521 12 10 16 128 16 ✓ 40 216 10 000 149.05 85.55 −128.85
MEDS-683416-st 65 521 12 10 256 64 11 ✓ 683 416 6784 149.05 85.55 −127.37
Table 1. Parameters for MEDS, for λ = 128 bits of classical security. ‘ST’ for seed tree.
‘PK’ for ‘public key size’ and ‘SIG’ for ‘signature size in bytes. ‘AT’ for ‘attack cost’
in terms of bit security and ‘FS’ for ‘Fiat-Shamir’ probability logarithmic to base 2.

Parameter Set
Key Generation Signing Verification
(ms) (mcyc.) (ms) (mcyc.) (ms) (mcyc.)

MEDS-2696-st 0.25 0.48 59.78 113.64 59.40 112.91
MEDS-10736-st 0.94 1.79 106.65 202.74 106.46 202.38
MEDS-13416-st 1.15 2.18 37.66 71.60 37.75 71.76
MEDS-13416 1.15 2.18 37.57 71.42 37.69 71.65
MEDS-40216-st 3.44 6.54 30.67 58.30 30.17 57.35
MEDS-683416-st 57.92 110.11 15.37 29.23 15.09 28.69

Table 2. Performance of MEDS in time (ms) and mega cycles (mcyc.) at 1900MHz
on an AMD Ryzen 7 PRO 5850U CPU following the SUPERCOP setup8 computed as
median of 1024 randomly seeded runs.

In this setting, we can vary s, t, and w for different trade-offs of public key
and signature sizes as well as performance. To improve the efficiency of vectorized
implementations using SIMD instructions in the future, we select t as multiple
of 16. In general, we are using all optimizations discussed in Section 5. However,
we provide one parameter set without using the seed tree (without ‘-st’ in the
name of the parameter set).

Remark 4. Given the parameters as presented, we heuristically assume that the
automorphism group of the codes is trivial with overwhelming probability. It is
computationally infeasible to compute the precise automorphism group of codes
of this size, however computational data on smaller sized codes shows that the
probability of a random code having trivial automorphism group grows rapidly
as q, n, and m increase.

Parameter set MEDS-2696-st provides the smallest public key with slightly
over 2.5 kB and a signature of about 18 kB. MEDS-10736-st provides balanced
public key and signature sizes, with both around 10 kB, and the smallest sum of
signature and public key size; however, this comes with a larger computational
cost due to the larger t = 448. Both MEDS-13416-st and MEDS-13416 have
balanced public key and signature sizes as well, each about 13 kB, at a smaller
computational cost due to a smaller t. Removing the seed tree optimization
comes with an increase in signature size of about 1 kB. Finally, sets MEDS-
40216-st and MEDS-683416-st push the public key size to an extreme in the
pursue of reducing signature size and computational cost.
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Overall, Table 1 and Table 2 highlight the large degree of flexibility offered by
the MEDS scheme. All parameter sets are competitive with respect to existing
literature, such as the LESS-FM scheme.

Finally, we discuss performance for the ring signature scheme. With the
MEDS-2696-st parameter set, the size of a signature is in fact given by approxi-
mately (log2 r+19.26) kB; in the linkable case, this increases to (log2 r+39.22)
kB. These numbers are close to the lattice instantiation (Falafl) given in [12];
judging by the timings in Table 2, we also expect it to be much faster than the
isogeny instantiation (Calamari). On the other hand, the work of [9] obtains
smaller sizes, but does not propose a linkable variant. Note that both sizes and
timings can be improved by choosing dedicated parameters and designing an
ad-hoc implementation, which we leave as part of a future work.
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A Formal security definitions

Definition 8. For two setsX andW , letR be a relation onX×W . If (x,w) ∈ R,
we say that w is the witness for the instance x. We define a Sigma protocol for
the relation R as in Definition 2, with pk = x and sk = w. We then define the
following properties for such a Sigma protocol:

– Completeness: when (x,w) ∈ R, a honest prover is accepted with probability
1, i.e.

Pr

V2(x, cmt, ch, rsp) = 1

∣∣∣∣∣∣
cmt←− P1(x)

ch
$←− C

rsp←− P2(x,w, cmt, ch)

 = 1.

– 2-Special Soundness: there exists an extractor algorithm E such that, for
an instance x, any two valid transcripts, (cmt, ch1, rsp1) and (cmt, ch2, rsp2),
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the algorithm output E(x, cmt, ch1, rsp1, c2, rsp2) is a witness for R with high
probability. More formally, the probability

Pr [(x,w) ∈ R |w ← E(x, cmt, ch1, rsp1, ch2, rsp2) ] = 1.

– Honest-Verifier Zero-Knowledge: for any (x,w) ∈ R, there exists a simula-
tor S, with input only the public key x, which outputs a valid transcript
(cmt, ch, rsp) in polynomial time, such that

Pr [V2(x, cmt, ch, rsp) = 1 |(cmt, ch, rsp)← S(x) ] = 1.

Moreover, the output distribution of S on input (x, ch) is equal to the distri-
bution of those outputs generated via an honest execution, conditioned on
the verifier using ch as the challenge.

Definition 9. A digital signature is expected to satisfy the following properties:

1. Correctness: A honest prover is accepted with probability 1, i.e.

Pr [Verify(pk,msg, σ) = 1 |σ ← Sign(sk,msg) ] = 1.

2. Unforgeability : The signature scheme is said to be unforgeable if any adver-
sary A, with access to any number of signature Σ, is not able to sign a new
message except with a negligible probability. In other words, the probability

Pr [Verify(pk,msg, σ) = 1 |(msg, σ) /∈ Σ, σ ← AdvSign(pk,msg) ]

is small.

Definition 10. A ring signature scheme is expected to satisfy the following
properties:

1. Correctness: A ring signature is correct if for every ring of r signers, for every
index I ∈ {1, . . . , r} and for every message msg, we have

Pr

Verify(K,msg, σ)

∣∣∣∣∣∣
(skj , pkj)←− Keygen, ∀ j ∈ {1, . . . , r},

K := {pk1, . . . , pkr},
σ ← Sign(skj∗ ,msg,K)

 = 1.

2. Anonymity : A ring signature is anonymous if for every ring of r signers, any
adversary A has at most a negligible advantage when playing the following
game against a challenger:
(A) The challenger first runs the algorithm Keygen to obtain r secret/public

key pairs (ski, pki), i ∈ {1, . . . , r}. He samples a bit b
$←− {0, 1}.

(B) The challenger gives all the pkj , i = 1, . . . , r to A.
(C) A sends to the challenger a challenge (K,msg, j0, j1). The set of public

keys K must contain the public keys pkj0 and pkj1 . The challenger
computes the signature σ∗ ← Sign(skjb ,msg,K) and sends it to A.

(D) A outputs a bit b∗ and wins if b = b∗.
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3. Unforgeability : A ring signature is anonymous if for every ring of r sign-
ers, any adversary A has at most a negligible advantage when playing the
following game against a challenger:
(A) The challenger first runs the algorithm Keygen to obtain r secret/public

key pairs (ski, pki), i ∈ {1, . . . , r}. He calls K ′ = {pk1, . . . , pkr} the set
with the public keys. He finally initialises two empty sets S1 and S2.

(B) The challenger gives the set K ′ to A.
(C) A can create signing and corruption queries a polynomial number of

times:
– (AdvSign, j,msg,K): the challenger checks if pkj ∈ K ⊆ K ′ . If that

is true, he computes σ ← Sign(pkj ,msg,K). The challenger gives σ
to A and adds (j,msg,K) to S1.

– (AdvCorrupt, j): the challenger adds pkj to S2 and returns skj to A.
(D) A outputs (K∗,msg∗, σ∗). If K∗ ⊂ K ′\S2, (·,msg∗,K∗) /∈ S1 and

Verify(K∗,msg∗, σ∗) = 1, then the adversary wins.

Definition 11. A linkable ring signature scheme is expected to satisfy the fol-
lowing properties

1. Linkability : A linkable ring signature is called linkable if for every ring of r
signers, any adversary A has at most a negligible advantage when playing
the following game against a challenger:
(A) A runs the algorithm Keygen and outputs the set K ′ = {pk1, . . . , pkr}

and the set of tuples {(σ1,msg1,K1), . . . , (σr+1,msgr+1,Kr+1)}.
(B) A wins if the following three conditions hold:

– ∀j ∈ {1, . . . , r + 1}, Ki ⊆ K ′.
– ∀j ∈ {1, . . . , r + 1}, the algorithm Verify(Kj ,msgj , σi) outputs 1.
– ∀i, j ∈ {1, . . . , r + 1} such that i ̸= j, Link(σi, σj) = 0.

2. Linkable Anonymity : A linkable ring signature is linkable anonymous if for
every ring of r signers, any adversary A has at most a negligible advantage
when playing the following game against a challenger:
(A) The challenger first runs the algorithm Keygen to obtain r key pairs

(skj , pkj), j ∈ {1, . . . , r}. He calls K ′ = {pk1, ..., pkr} the set with the

public keys. He samples a bit b
$←− {0, 1}.

(B) The challenger gives K ′ to A.
(C) The adversary chooses and outputs two public keys (pki0 , pki1) ∈ K ′.

The corresponding secret keys are denoted by (ski0 , ski1).
(D) The challenger gives to A the set {(pki, ski) : 1 ≤ i ≤ r, i /∈ {i0, i1}}.
(E) A queries for signatures, giving as inputs to the challenger a public key

pk ∈ {pki0 , pki1}, a message msg and a ringK that contains {pki0 , pki1}:
– If pk = pki0 , the challenger outputs σ ← Sign(skib ,msg,K).
– If pk = pki1 , the challenger outputs σ ← Sign(sk1−b,msg,Fq).

(F) A outputs a bit b∗, and he wins the game if b = b∗.
3. Non-Frameability : A linkable ring signature is non-frameable if for every

ring of r signers, any adversary A has at most a negligible advantage when
playing the following game against a challenger:
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(A) The challenger first runs the algorithm Keygen to obtain r key pairs
(skj , pkj), j ∈ {1, . . . , r}. He calls K ′ = {pk1, ..., pkr} the set with the
public keys. He also intialises two empty sets S1 and S2.

(B) The challenger gives the set K ′ to the adversary A.
(C) A can create signing and corruption queries a polynomial number of

times:
– (AdvSign, j,msg,K): the challenger checks if pkj ∈ K ⊆ K ′ . If that

is true, he computes σ ← Sign(skj ,msg,K). The challenger gives σ
to A and adds (j,msg,K) to S1.

– (AdvCorrupt, j): the challenger adds pkj to S2 and returns skj to A.
(D) A outputs (K∗,msg∗, σ∗); he wins if the following conditions hold:

– Verify(K∗,msg∗, σ∗) = 1 and (·,msg∗,K∗) /∈ S1;
– Link(σ∗, σ) = 1 for some signature σ given by the challenger starting

from a query of the form (i,msg,K) ∈ S1 with pki ∈ K ′\S2.
the adversary wins.
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