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Abstract

We define a framework for analyzing the security of cryptographic protocols that makes
minimal assumptions about what a “realistic model of computation is”. In particular, whereas
classical models assume that the attacker is a (perhaps non-uniform) probabilistic polynomial-
time algorithm, and more recent definitional approaches also consider quantum polynomial-
time algorithms, we consider an approach that is more agnostic to what computational model
is physically realizable.

Our notion of cosmic security considers a reduction-based notion of security that models
attackers as PPT algorithms having access to some arbitrary unbounded stateful Nature. We
also consider a more relaxed notion of cosmic security w.r.t. time-evolving, k-window, Natures
that makes restrictions on Nature—roughly speaking, Nature’s behavior may depend on number
of messages it has received and the content of the last k(λ)-messages (but not on “older”
messages).

We present both impossibility results and general feasibility results for our notions, indi-
cating to what extent the Church-Turing hypotheses, and variants there-of, are needed for a
well-founded theory of Cryptography.
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1 Introduction

Modern Cryptography relies on the principle that cryptographic schemes are proven secure based
on mathematically precise assumptions; these can be general—such as the existence of one-way
functions—or specific—such as the hardness of factoring products of large primes. The security
proof is a reduction that “transforms” any attacker A of a scheme (e.g., a pseudorandom generator)
into an attacker A′ that breaks the underlying assumption (e.g., inverts an alleged one-way func-
tion). More formally, cryptographic security of a single primitive or assumption is often defined
as an interactive game (a.k.a. a security game) between a challenger C and an adversary A. C
sends a random challenge (e.g. a product of two large primes) to A, who tries to respond in such a
way—potentially over many rounds—to make the challenger accept (e.g. by sending the individual
factors). The game is determined by the challenger C and the primitive is said to be secure if no
“realistic” adversary can cause the challenger to accept with some specified probability. (In the
sequel we will abuse notation and often identify the security game simply by the challenger C.)
A reduction R from a game with challenger C (i.e., a security game C) to one with challenger C ′

provides a way to use a successful adversary A in the game C to construct a successful adversary A′

in the game C ′. This study has been extremely successful, and during the past four decades many
cryptographic tasks have been put under rigorous treatment and numerous constructions realiz-
ing these tasks have been proposed under a number of well-studied complexity-theoretic hardness
assumptions.

In this paper, we revisit what it means to transform the alleged attacker A for the scheme into
an attacker A′ for the underlying assumption. In particular, the standard cryptographic treatment
explicitly assumes that the attacker A is a (perhaps non-uniform) probabilistic polynomial-time
(PPT) Turing machine. Thus, when using the scheme in the “real-world”, the security proof is
only meaningful if this model of the attacker correctly captures the computational capabilities of a
real-life attacker—that is, the PPT model correctly captures all “real-life” computation that can be
feasibly carried out by an attacker in our physical world. The extended Church-Turing hypothesis
stipulates that this is the case:

The extended Church-Turing Hypothesis: A probabilistic Turing machine can
efficiently simulate any realistic model of computation.

But whether this hypothesis holds is strictly speaking a religious, as opposed to scientific, belief.1

Indeed, the advent of quantum computing directly challenges this hypothesis. Based on exciting
developments in quantum computation, it is becoming increasingly clear that viewing an adversary
simply as a polynomial-time Turing machine, or polynomial-size circuit, may not be so “realistic”.
Quantum computers have access to qubits that we believe cannot be described with classical bits or
run by a classical, polynomial-sized circuit. Furthermore, by the no-cloning theorem [WZ82, Die82],
quantum states cannot be copied or re-used, which is a common technique used by many classical
security proofs. In recent years, there has been a successful line of work that has focused on

1Without getting too deep into Philosophy, it seems reasonable to argue that the Extended Church-Turing Hypoth-
esis does not pass Popper’s falsifiability test [Pop05], as we do not have “shared ways of systematically determining”
whether a probabilistic Turing machine cannot perform some task (as testified by the fact that the P v.s. NP prob-
lem is still open). As such, the statement of the hypothesis is no different from the classic example of “All men are
mortal”, which according to Popper’s theory is not scientific as we do not have systematic procedures for deducing
whether a person is immortal. This is in contrast to assumptions such as “Factoring products of random 1000-bit
primes is hard for all physically realizable computation devices”, as we do have a systematic way of determining
whether some such device manages to complete the task—simply run it.
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proving the security of cryptographic protocols against quantum adversaries (see e.g. [Sho94, Gro96,
AC02, Wat09, BDF+11, Unr12, Zha12, ARU14, Unr16, Mah18, BS20] for examples of cryptographic
attacks, constructions, and techniques in a quantum world). A vast set of new cryptographic
techniques have been developed to address the idiosyncrasies of quantum computation and their
impact on the security of systems. But, to deduce “real-life” security from such security proofs, we
still need to rely on a quantum version of the extended Church-Turing hypothesis (stipulating that
quantum polynomial-time algorithms/circuits can simulate all realistic models of computation).

This begs the question: could there be even more powerful, or even just incomparable, realistic
adversaries beyond quantum polynomial-time adversaries? After all, a hundred years ago, modern
computers did not exist, and quantum physics was in its infancy. Consequently, predicting the
computational power of an adversary a hundred years into the future seems unreasonable. If the
quantum extended Church-Turing hypothesis is wrong, because of the advent of a new type of
computation, it would force yet another re-examination of cryptography.

In this work, instead of tailoring security reductions to specific classes of increasingly powerful
adversaries, we ask:

Can we have a well-founded theory of Cryptography without making assumptions on
the limits of “physically realizable models of computation”?

In particular, we want a theory of cryptography without making any types of extended Chuch-
Turing hypotheses, where the security of some scheme is only based on falsifiable assumptions of
the type that some computational task cannot be solved by a “physically realizable computation”.2

Towards this goal, we will consider attackers having access to any computational resources. At
first sight, doing to seems to inherently require information-theoretic security (and all the standard
limitations thereof). But our approach will instead be to consider a purely-reduction based frame-
work : Our framework will provide a way to reduce the security of a game with challenger C to
one with a challenger C ′ without assuming anything about the adversary other than the fact that it
continually wins in C. In other words, rather than proving the security of some primitive C w.r.t.
PPT attackers based on assumptions of the form “C ′ cannot be broken by PPT attackers”, we
will view the reduction from C to C ′ as the main goal: the existence of such a reduction will then
imply the statement “Security of C with respect to any physically realizable attacker holds as long
as security of C ′ holds with respect to any physically realizable attacker”, without having to impose
any restrictions on what the class of “physically realizable attackers” actually is. We note that this
reduction-based approach follows intuitions similar to those by Rogaway in his influential “formal-
izing human ignorance” paper [Rog06], where a purely reduction-based approach is also advocated
for (but for a different reason, and where the standard notion of a reduction is employed).

Let us emphasize that whereas our framework is not imposing any upper bounds on the class of
feasible computation, we will be assuming a lower bound: in accordance with the standard literature,
we will use PPT as a lower bound on what can be feasibly done by an attacker.3 (In other words,
polynomial-time computations will be considered realistically feasible, today and forever in the

2For concreteness, and to simplify notation, we will model attackers as Turing machines so technically we are still
relying on the (much more reasonable) non-extended Church-Turing hypothesis. But we highlight that nothing in
our treatment requires doing so and none of our results would change if we instead allowed any, even non-computable,
attackers. See Section 3 for more discussion.

3This model clearly oversimplifies as, say, n100 computation is not actually feasible. But we start off with a
standard asymptotic treatment to get a model that is easy to work with. In practice, a more concrete treatment is
desirable, but we leave this for future work.
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future.) Additionally, we will here focus our attention only on cryptographic primitives where the
honest players are standard PPT machines (as opposed to e.g. quantum).

1.1 Cosmic Security in a Nut-shell

Towards defining our reduction-based notion of security, we need to start off by specifying the
notion of an attacker we consider. A cosmic adversary (A,Nat) consists of a uniform PPT in-
teractive Turing machine (ITM) A, known as the attacker, and a stateful, potentially unbounded
ITM Nat, known as the Nature. We think of A as the part of the cosmic adversary that only uses
“standard” computational resources, whereas Nat is a shared resource in the world that may have
“cosmic/magical” computational resources. The stateful nature of Nat is what distinguishes our
model from more standard models of “black-box” security used in cryptography. We think of A as
some real-life attacker (using today’s readily available computing infrastructure) that can interact
with a physical Nature, or cosmos, Nat. Furthermore, A’s interactions with the cosmos may in
turn alter the cosmos. For instance, if the cosmos can capture quantum physical phenomena, then
by the no-cloning theorem [WZ82, Die82], any type of measurements of the cosmos may alter it in
ways that cannot be reversed (without losing information). Thus, statefulness is key for capturing
this.

Roughly speaking, we say that there is a cosmic reduction from a security games C to a game C ′

if for every PPT A, there exists a “transformed” PPT attacker A′ such that for every Nature Nat, if
the cosmic adversary (A,Nat) wins in the security game C, then the cosmic adversary (A′,Nat) wins
in the security game C ′. In other words, the new transformed attacker A′ needs to make use of the
same Nature Nat as A. (As the reader may notice, this notion captures an “existential” as opposed
to a “constructive” notion of a reduction—that is, we are only required to show that a transformed
attacker A′ exists, as opposed to constructively providing it using an efficient transformation from
A; we will also discuss constructive notions of reductions below.) We emphasize that A′ may only
communicate with Nat; it may not rewind, restart, or see any of the implementation details of
Nat. In essence, we require A′ to win in C ′ by making use of Nature/the cosmos, much like the
original attacker A did, and taking into account that its interaction with the cosmos may alter it.
The reasons we model A and A′ as PPT, is that we consider PPT as a lower bound on what is
currently feasible, and assume that this lower bound is valid not only today but also in the future
(i.e., we will be able to only do more computation in the future). Thus we can write security proofs
today that hold regardless of how powerful the universe ends up being (i.e. even if the extended
Church-Turing hypothesis turns out to be true). All non-PPT computation can be thought of as
being inside Nat.

Comparison with Relativized Reductions and UC security. Before proceeding to further
formalizing this notion, let us briefly point out some technical similarities and differences with the
notion of a relativized reduction (see e.g., [IR95]); roughly speaking, a relativized reduction, and
the related notion of a black-box reduction, is a reduction that works even if the attacker has access
to some arbitrary (perhaps non-efficienctly computable) function (a.k.a. the “oracle”). The main
difference between the notions of a cosmic reductions and those of relativized reductions is that
cosmic reductions can be viewed as reductions that relativize also with respect to an interactive,
stateful oracle, whereas relativized reductions are only required to work in the presence of a non-
interactive, stateless, oracle. As we explained above, considering stateful, interactive, Natures is a
crucial aspect of our definition; as we shall see shortly, even formalizing how to deal with stateful
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oracles/Natures will be non-trivial.
We highlight that the idea to consider cryptographic protocols in the presence of an external

stateful entity is also not entirely new: the notion of Universally Composable (UC) security [Can01]
does exactly this but in a different context—more specifically, in the context of simulation as
opposed to in the context of reductions; see Section 1.7 for more discussion on the relationship
between cosmic security and UC.

1.2 Formalizing Cosmic Reductions

To formalize the notion of a cosmic reduction we first need to define what it means for (A,Nat)
to win in some security game C. The standard notion of winning simply requires the attacker to
succeed in convincing C once with some probability p. For us, since we consider stateful Natures,
this will be too weak. A stateful Nature Nat may decide to be helpful in winning with C just once,
and then never again, and such a Nature may not be very helpful in breaking some underlying
assumption (at least not repeatedly). In the standard models of reductions, this is not a problem
since the attacker can simply be restarted, but this is not allowed in our setting. Consequently,
to get a meaningful notion of security, we will restrict our attention to (ruling out) attackers that
repeatedly, or “robustly”, win in the security game, no matter what other communications are taking
place with the cosmos. In more detail, we consider any history of interaction ρ that Nat may have
seen, where an interaction prefix ρ consists of the messages Nature has received and the random
coins it may have tossed. We then require (A,Nat) to succeed in winning for C even if (A,Nat)
is fed any such prefix ρ. We denote such an interaction, where entities are provided the security
parameter 1λ, as 〈C ↔ A↔ Nat(ρ)〉(1λ).

In other words, we are considering an attacker A that is interacting with some physical stateful
Nature Nat with unknown computational capabilities, but also consider the possibility that there
are others in the world (captured by the prefix ρ) that have interacted with Nature in ways that
are unknown to the attacker. Still, the attacker needs to succeed in breaking C no matter what
those other prior communications are (i.e. given any transcript of interactions that previously took
place). In fact, this transcript may be of any length, that is, more than just polynomial in λ (noting
that Nat may have more than polynomially many interactions in the past).4

Definition 1.1 (Robustly Winning Security Game; Informal). Let C be a challenger in a security
game. We say that a cosmic adversary (A,Nat) has robust advantage a(·) in C if, for every prefix
view ρ, security parameter λ ∈ N, it holds that C outputs 1 with probability at least a(λ) in the
interaction 〈C ↔ A↔ Nat(ρ)〉(1λ).

Given this notion of robust winning, we can now capture the above-mentioned notion of a cosmic
reduction.

Definition 1.2 (Cosmic Reduction; Informal). Let C and C ′ be security games. We say that there
is a ε-cosmic reduction from C to C ′ if for every PPT A, there exists some PPT A′, such that
for every Nat, if the cosmic adversary (A,Nat) has robust advantage a(·) in C, then (A′,Nat) has
robust advantage ε′(·) in C ′ where ε′(λ) = ε(λ, a(λ)).

The function ε here quantifies the security degradation of the reduction. Let us briefly mention
that one may also consider an a priori weaker looking notion of a “win-once” cosmic reduction,

4Nevertheless, we note that all our results also hold if restricting the length of ρ to be polynomial.
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that only requires the transformed attacker (A′,Nat) to have non-robust advantage ε′(·) in C ′; that
is, (A′,Nat) is only required to win once in C ′ as opposed to robustly/repeatedly (while the original
attacker (A,Nat) still needs to have robust advantage). As it turns out, this weaker notion is
equivalent to the one provided in Definition 1.2; see Lemma 3.2 for more details. We also note that
one may consider alternative, seemingly weaker, variants of robustness (e.g., that the attacker only
wins an inverse polynomial fraction of the time) but again such a notion turns out to be equivalent
(up to a difference in parameters); see Section 3.3 for more details.

Black-box reductions and Dummy adversaries. As mentioned above, the notion of a cosmic
reduction is “existential” as opposed to a “constructive”: We do not actually require an efficient
transformation taking attackers A to attackers A′; rather, we just need to show that that for every
attacker A, the attacker A′ exists. One could also consider an a-priori stronger notion of a cosmic
black-box reduction where the transformed attacker A′ is defined as A′ = RA, where R is fixed
PPT (that works for any attacker A). As it turns out, this notion is (again) equivalent to the
(existential) notion of a cosmic reduction provided in Definition 1.2. The reason for this is that to
prove the existence of a cosmic reduction, and actually also a cosmic black-box reduction, it suffices
to show that the reduction applies just to a so-called “dummy” adversary Adummy that essentially
just forwards messages between C and Nat; this, intuitively, follows from the fact that we can
always push all the work of a prospective attacker A into Nat (more formally, considering a new
Nature Nat′ that combines Nat and A). We note that a similar phenomena happens for the notion
of UC security [Can01], and we are borrowing the term of a “dummy” adversary from there.

Lemma 1.1 (Dummy Lemma; Informal). Let C and C ′ be security games. Assume that there exists
some ε and some PPT Rdummy such that for every Nat, if the cosmic adversary Adummy has robust
advantage a(·) in C, then (Rdummy,Nat) has robust advantage ε′(·) in C ′ where ε′(λ) = ε(λ, a(λ)).
Then, there exists an ε-cosmic black-box reduction from C to C ′.

We highlight that whereas the actual proof of Lemma 1.1 indeed follows the above intuition,
the formalization is quite subtle and quite different from the proof of the dummy lemma in the UC
framework—the key obstacle is dealing with the fact that the attacker needs to win robustly.

Note that as a consequence of Lemma 1.1, we have that to prove the existence of a cosmic
reduction, we may without loss of generality assume that A = Adummy (i.e., in essence that Nat is
directly breaking C), and thus proving the existence of a cosmic reduction amounts to showing the
existence of a PPT “filter” A′ = Rdummy between C ′ and Nat.

Composition. We additionally note that the notion of a cosmic reduction composes. Namely,
if hardness of C1 can be based on the hardness of C2, and hardness of C2 can be based on the
hardness of C3, then hardness of C1 can be based on hardness of C3.

Theorem 1.2 (Composition Theorem; Informal). Let C1, C2, C3 be security games. Suppose there
exists an ε1-cosmic reduction from C2 to C1, and an ε2-cosmic reduction from C3 to C2. Then,
there exists an ε?-cosmic reduction from C3 to C1 where ε?(λ, a) = ε1(λ, ε2(λ, a)).

The proof of the composition theorem essentially follows directly from the definition of a cosmic
reduction.

1.3 On the Feasibility of Cosmic Reductions

We turn to studying the feasibility of cosmic reductions.
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Cosmic security from single-shot, straightline, black-box reductions. We observe that
any straight-line black-box reduction between C and C ′ that only invokes the attacker once is
also a cosmic reduction. This should not be a surprise since the stateful nature of the attacker in
our model never becomes an issue if the reduction only invokes the attacker once. Nevertheless,
our model formally demonstrates why such simple types of reductions are advantageous from a
(qualitative) security point of view.

Theorem 1.3 (Cosmic Reductions from Single-shot Straightline Black-box Reductions; Informal).
Let C and C ′ be security games. Suppose there exists an ε-straightline black-box reduction from C
to C ′ that interacts with the adversary once. Then there exists an ε-cosmic reduction from C to C ′.

Fortunately, many well-known reductions in cryptography fall into this class of reductions: PRG
length extension, the GGM construction of PRFs from PRGs [GGM86], IND-CPA secure encryption
from PRFs, Naor’s bit commitments from PRGs [Nao91], and Lamport’s one-time signatures from
OWFs [Lam79]. We note that for Lamport’s construction, this is straightforward to see. For the
rest of the proofs, we rely on a uniform security analysis for a hybrid argument, which for example
is provided in [Gol07] for PRG length extension. For the convenience of the reader, we provide brief
sketches for the constructions and proofs for all of these primitives in Appendix B.

Combining these classical results with Theorem 1.3, we thus directly get the following corollaries
(formally stated in Appendix B):

Corollary 1.4 (PRG length extension; Informal). Let m be a polynomial and G be an λ + 1-bit
stretch PRG. There exists a m(λ)-bit stretch PRG Gm and an ε-cosmic reduction from the PRG
security of Gm to the PRG secutiy of G for ε(λ, a) = 1/2 + δ/m(λ), where δ = a− 1/2.

Corollary 1.5 (PRF from PRGs; Informal). Let G be any PRG. There exists a PRF F and an ε-
cosmic reduction from the PRF secutiy of F to the PRG security of G for ε(λ, a) = 1/2+δ/poly(λ),
where δ = a− 1/2.

Corollary 1.6 (IND-CPA secure private-key encryption from PRGs; Informal). Let G be any PRG.
There exists a private-key encryption scheme and an ε-cosmic reduction from the IND-CPA security
of the encryption scheme to the PRG security of G for ε(λ, a) = 1/2 + δ/2 − µ(λ) for a negligible
function µ, where δ = a− 1/2.

Corollary 1.7 (Commitment schemes from PRGs; Informal). Let G be any PRG. There exists a
statistically binding commitment scheme and an ε-cosmic reduction from the hiding of the commit-
ment scheme to the PRG security of G for ε(λ, a) = 1/2 + δ/2, where δ = a− 1/2.

Corollary 1.8 (One-time Signatures from OWFs; Informal). Let f be any OWF. There exists a
signature scheme and an ε-cosmic reduction from the one-time security of the signature scheme to
the OWF security of f for ε(λ, a) = a/(2λ).

Cosmic security from new single-shot straightline reductions. Often times, security re-
ductions used in the literature do invoke the attacker multiple times, and it may not be clear how
such reductions can be translated to work in the setting of cosmic security. We first show that some-
times famous reductions in the literature that require invoking the attacker multiple times can be
made single-shot straightline. In particular, we show that the GMW protocol [GMW91] for graph
3-coloring is witness indistinguishable (WI) [FS90] based on a cosmic reduction to a commitment
scheme (and hence PRGs) with a new proof; the standard proof requires rewinding the attacker
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and would thus not be applicable in our setting. (This proof may be interesting in its own right; as
far as we know, the only proof of WI security of GMW with a straight-line reduction is the work
of Hofheinz [Hof11] that shows WI security of GMW when the underlying commitment satisfies
a notion of selective-opening security. As far as we know, it was an open problem to present a
straight-line reduction based just on standard security; this is what we do.)

Theorem 1.9 (Witness Indistinguishability from PRGs; Informal). Let G be any PRG. For every
language in NP, there exists an interactive proof system (P, V ) and an ε-cosmic reduction from the
WI of (P, V ) to the PRG security of G for ε(λ, a) = 1/2 + δ/poly(λ), where δ = a− 1/2.

Beyond single-shot straightline reductions. While Theorem 1.9 provides some initial hope
that more reductions in the literature can be made single-shot straightline, there are other classic
reductions that we do not know how to make single-shot. In fact, going one step further, we
next show that some classic results in the literature cannot be established with respect to cosmic
reductions.

One of our main results shows that Yao’s classic result on hardness amplification of any weak
one-way functions via direct product [Yao82] cannot be proven with a cosmic reduction. In fact, we
show that hardness of any arbitrary “black-box” one-way function cannot be amplified essentially
at all using a n-fold direct product. Given a function f , let f (n) denote the n-fold direct product
of f :

Theorem 1.10 (Impossibility of Hardness Amplification; Informal). Consider some polynomial n,
and some function ε. Suppose there is an ε-cosmic black reduction from the OWF security of f (n)

to the OWF security of f that uses only black-box access of f , and that works for any function f .
Then, there exists a negligible function µ such that ε(λ, a) ≤ a+ µ(λ).

Note that there is a trivial reduction that embeds the challenge f(x) a single time into a random
location of the output of f (n) that has advantage ε(λ, a) = a. The above theorem says that no
cosmic reduction can do noticeably better than this trivial reduction, even if considering attackers
that succeed with some fixed constant probability, say 1

2 .5

To give some intuition behind the proof of Theorem 1.10, let us recall on a very high-level how
Yao’s original proof works: given as input y, the reduction embeds y into a random “position”
i—letting yi = y, generates random pre-images xj for j 6= i, and lets yj = f(x), ~y = y1y2 . . .
and then runs A(~y). If A fails, then we repeat the process (a polynomial number of times), again
embedding y into a new random position i. Note that this reduction is thus repeatedly running
A on correlated inputs—the inputs all contain the same string y (but except for that y, they are
independent). A cosmic attacker could notice these correlations and may stop working in case it
sees correlations of this form (i.e., a substring y that is repeated from a previous query). Note that
such an attacker still robustly wins in the security game: the probability that a fresh input from

5We emphasize that Theorem 1.10 is ruling out also so-called “parameter-aware” black-box reductions [BBF13],
where the reduction may depend on the success probability a of the attacker; note that Yao’s original reduction is
parameter dependent—more specifically, the number of repetitions is required to be superlinear in the adversary’s
success probability, and as shown in [LTW05] a dependency on the attackers success probability is inherent for black-
box reductions. Theorem 1.10 rules out also such parameter-aware cosmic reductions and indeed rules out cosmic
reductions that increase the success probability of the adversary even if assuming that the original attackers success
probability is, say, 1

2
.
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the challenger coincides with any previously seen strings is negligible.6 Now, an arbitrary reduction
may not necessarily work in the same way as Yao’s reduction. However, at a high level, we show
that if the reduction works for any function f (and only uses the function as a black-box), then
the reduction has to ask A on inputs that are correlated, and thus we can still use a similar type
of attacker.

We additionally show that the universal aspect of Theorem 1.10 (i.e., that it works for any
function f) is inherent. If the function f is rerandomizable (see Section 4.4 for a formal definition),
then we can show a cosmic reduction for hardness amplification of f—in essence, we show that
Yao’s reduction directly works. At first sight, this may seem surprising: As mentioned above, Yao’s
reduction does invoke the attacker multiple time, and does so on correlated inputs (and as discussed
above, this correlation lead to problems). Rerandomizability helps overcome this issue and enables
the reduction to always feed Nat messages that are independent and have the same distribution.

For our next result, we show that the Goldreich-Levin theorem [GL89] for constructing a OWF
with a hardcore predicate from any OWF cannot be turned into a cosmic reduction, again as long
as the underlying OWF is only accessed in a black-box way. For an underlying function g, the
Goldreich-Levin theorem shows that the inner product function is hardcore for the “randomized”
function ĝ(x, r) = (g(x), r). Namely, 〈x, r〉 cannot be predicted given (g(x), r) where |x| = |r|. We
extend our impossibility to any predicate h for any length of randomness r (even no randomness).

Theorem 1.11 (Impossibility of the Goldreich-Levin Theorem; Informal). Consider some function
ε and some efficiently computable predicate h . Suppose there is an ε-cosmic black-box reduction
from the security of the hardcore predicate h w.r.t. ĝ(x, r) = (g(x), r) to the OWF security of g that
uses only black-box access to g and that works for function g. Then, there is a negligible function µ
such that ε(λ, a) ≤ µ(λ) for all a ≤ 0.99.

The proof relies on similar intuitions to the hardness amplifications result.7 The above theorem
gives an indication of why it may be hard to come up with a cosmic reduction from PRGs to OWFs
as known constructions of PRGs from OWFs rely on the Goldreich-Levin theorem. We leave open
the question of whether there exists some alternative way to cosmically reduce PRGs to OWFs.

Concluding, while cosmic security can be achieved in some settings, we also have some pretty
severe impossibility results. To overcome these impossibility results, we additionally consider more
relaxed—yet, in our eyes, natural—variants of cosmic security.

1.4 Restricted Classes of Natures

While it is natural to assume that an attacker can affect Nature/the Cosmos, it also seems reasonable
(at least in some contexts) to make additional assumption on the class of Natures. In particular,
we will consider Natures that act independently of the content of interactions they had “far back”
in the past. Roughly speaking, we allow Nature to change over time, and we will allow Nature to
be stateful within a single, or a bounded number of, sessions but assume that the actual content of

6There is a small subtlety here. Robustness is defined with respect to all previous transcripts, even exponentially
long ones, so naively implementing this approach will not work since eventually we can include all possible strings
y in the transcripts. Rather, the way we formalize this argument is to consider a Nat that only has “polynomial
memory” and checks for repeated strings y in the most recent part of the transcript it is fed.

7Again, we highlight that Theorem 1.11 rules out also “parameter-aware” reductions that depend on the success
probability of the attacker—in fact, it rules out also reductions that only work if the underlying attacker’s success
probability is 0.99. (As noted in [BBF13], Goldreich-Levin’s standard reduction is parameter-aware, and this is
inherent as shown in [LTW05].)
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messages received too farin the past (that is, many messages ago) does not significantly affect the
behavior of Nature.

In more detail, choose any polynomial function k(·), and consider those natures whose responses
depend only on (a) the number of queries it has received in the past, (b) the last k(λ) messages that
it received, and (c) the randomness that it used to respond to those k(λ) messages. We call a nature
that satisfies these conditions a time-evolving k-window nature. We formalize this by requiring that
the output of Nature given any two prefixes ρ and ρ′ of the same length that also share the last
k(λ) messages and coins, it must be that Nat(ρ) behaves identically (or ε-close to) Nat(ρ′). (The
same-length requirement is what allows Nature to evolve over time).

Definition 1.3 (Time-Evolving k-Window Natures). Let k(·) be a polynomial function. A Nature
machine Nat is said to be a k-window Nature if there exists a negligible function µ s.t. for all
machines C, λ ∈ N, and interaction prefixes ρ, ρ′, ρ′′, where ‖ρ‖ = ‖ρ′‖ and ‖ρ′′‖ = k(λ), it holds
that

∆
(
〈C ↔ Nat(ρ ◦ ρ′′)〉(1λ), 〈C ↔ Nat(ρ′ ◦ ρ′′)〉(1λ)

)
≤ µ(λ).

where 〈C ↔ S〉(1λ) denotes the output of C in an interaction with a machine S, ∆ denotes
statistical distance, ‖ρ‖ denotes the number of messages contained within ρ, and ρ ◦ ρ′′ denotes
prefix concatenation.

Observe that by sending to Nature a sequence of k(λ) “dummy messages” ⊥, we can (roughly
speaking) reset the state of a time-evolving k-window Nature, by making it so that its behavior
only depends on those dummy messages (and corresponding coins) and the number of messages it
received in the past—regardless of the state that Nature started in before receiving those dummy
messages. In other words, we can think of a cosmic adversary (A,Nat) where Nat is time-evolving
k-window (when called repeatedly, each time utilizing the above resetting procedure) as a sequence
of attackers A1, A2, . . . such that (1) each individual attacker Ai succeeds in the security game, but
(2) the way it succeeds may be different, and (3) the security reduction cannot restart the attacker
but may “move on” to the next attacker in the sequence.

As our main result for time-evolving k-window Natures, we show that any non-adaptive, straight-
line black-box classical reduction can be lifted into the cosmic security setting, when restricting to
time-evolving k-window Natures. In more detail, we refer to a straight-line black-box reduction
R as non-adaptive if R interacts with the challenger C and attacker A according to the following
pattern:

• R starts by interacting with C for any number of rounds of its choice; at some point it decides
that it wants to start communicating with the attacker A.

• At this point, R selects m different PPT machines M1,M2, . . . ,Mm.

• For each i ∈ [m], we let Mi communicate (straight-line) with a fresh instance of A, and let ai
denote the output of Mi at the end of the interaction.

• Finally, R gets back the answers a1, . . . , am and gets to continue interacting with C.

We show:

Theorem 1.12 (Cosmic Reductions from Non-adaptive Reductions; Informal). Let C,C ′ be chal-
lengers. If there exists a non-adaptive straight-line black-box reduction from C to C ′, then for any
polynomial k(·), there exists a cosmic reduction from C to C ′ w.r.t. time-evolving k-window Natures.
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At a very high level, the idea behind the proof of Theorem 1.12 is the following. Recall that
(roughly speaking) a cosmic adversary, with a time-evolving k-window Nature, can be treated
as a sequence of attackers A1, A2, . . . that is fixed ahead of time and utilized in order. Such a
sequence of attackers can essentially be turned into a “standard” fully restartable attacker by, at
each invocation, choosing a random attacker Ai out of the sequence of attackers. Of course, in a
real cosmic execution we are forced to utilize A1, A2, . . . in sequence and in order. Fortunately, for
any non-adaptive reduction, we can emulate (with inverse polynomial statistical gap) this standard
randomized restartable attacker by permuting the order of the queries of the reduction, and inserting
these queries into a sufficiently long bogus interaction. Note that we here inherently rely on the
fact the a time-evolving k-window Nature can be reset so that the last k messages no longer affects
its state, so that its behavior depends on only the length of the prefix of messages it receives.

We remark that many (but not all) of the classical reductions in the cryptographic literature are
of the non-adaptive type. In particular, these include reductions such as those in Yao’s hardness
amplification [Yao82] and the Goldreich-Levin Theorem [GL89] (which we proved could not be
shown using a “plain” cosmic reduction). Perhaps surprisingly, our results therefore imply that we
can achieve hardness amplification or hard-core bits for attackers that change their behavior across
queries (albeit in this limited way).

k-Window Natures. We finally turn our attention to the more restrictive class of simply k-
window Natures (i.e., not time-evolving), that are identically defined except that we quantify over
any two prefixes ρ and ρ′ (with the same last k(λ) messages and coins), and not just those of equal
length. We observe that straight-line black-box reductions, even those that are adaptive, that only
sequentially invoke the attacker in multiple sessions, directly imply cosmic security w.r.t. k-window
Natures; this essentially follows directly from the definition (by using a standard hybrid argument),
and by the observation that sending such a Nature k dummy messages resets it to a default state
(from which is acts indistinguishably):

Theorem 1.13 (Cosmic Reductions from Adaptive Reductions; Informal). Let C,C ′ be challengers.
If there exists a (possibly adaptive) sequential straight-line black-box reduction from C to C ′, then
for any polynomial k(·), there exists a cosmic reduction from C to C ′ w.r.t. k-window Natures.

1.5 Cosmic Security implies Standard Security

As a sanity check, we finally observe that the existence of a cosmic reduction from C to C ′, even
one that only is w.r.t. k-window Natures (where k(·) is large enough to bound the number of rounds
of interaction with C), implies the existence of a reduction for classic models of attackers such as
PPT, non-uniform PPT, quantum polynomial time (QPT), and QPT with non-uniform quantum
advice (which we refer to as non-uniform QPT). This follows by noticing that all these models of
computations can be captured by a k-window Nature Nat, when used to win a k-round security
game C. For the case of PPT, non-uniform PPT, and (uniform) QPT, this is trivial. For non-
uniform QPT, it is a bit more problematic since a non-uniform QPT algorithm may make some
measurement that ruins the non-uniform advice in a way that makes the algorithm non-restartable.
But this issue can be resolved by, for every bound b(·) on the number of restarts, considering a
Nat that contains b(λ) copies of the non-uniform quantum advice. The resulting attacker (A′,Nat)
that breaks C ′ will then still be non-uniform QPT (albeit with longer non-uniform advice than the
original attacker breaking C).
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Theorem 1.14 (Standard Security from Cosmic Security; Informal). Let C and C ′ be security
games, and let k(·) be a polynomial function that upper bounds the number of rounds in any inter-
action with C. Assume there exists a ε-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures,
for an arbitrary choice of µ. Then there exists a ε-reduction from C to C ′ w.r.t. PPT, non-uniform
PPT, QPT, and non-uniform QPT attackers.

At the most general level, the above theorem holds for any complexity class of attackers that is
closed under an a priori polynomially-bounded number of repetitions with itself.

A Note on Post-quantum Security. Note that Theorem 1.14 shows that if you can base the
security of some security game C on the security of C ′ using a cosmic reduction (even with respect
to just k-window Natures), then it implies resilience of C with respect to quantum attackers if
assuming that C ′ is secure with respect to quantum attackers.

Let us highlight, however, that this result only holds true to security games C that themselves
are classical. For instance if C is the security game of a PRF and C ′ is that of a PRG, then we only
get quantum security of the PRF with respect to attackers that can get evaluations of the PRF on
classical inputs. (As such, the combination of Corollary 1.5 and Theorem 1.14 does not subsume the
results of Zhandry [Zha12] showing post-quantum PRF security of the GGM construction [GGM86]
since Zhandry notably allows the attacker to make quantum queries to the PRF.). In other words,
our framework currently only consider primitives where the honest players are classical. (Of course,
we could extend our model to also deal with quantum security games but we believe it is a more
pressing issue to get a “future-proof” notion of security w.r.t., cryptographic primitive and protocols
that are run by honest players on classical computers).

1.6 Overview of Techniques

We proceed to give a high level overview for our main technical contributions. Full proofs and
theorem statements are included in Appendixes 4 and 5. In Section 1.6.1, we overview the main
idea behind “the dummy lemma,” which says that it suffices to consider cosmic reductions only for
the dummy attacker Adummy, which essentially forwards messages from C to the Nature Nat. In Sec-
tion 1.6.2, we explain why single-shot, straightline, black-box reductions imply cosmic reductions,
and use this to show a witness indistinguishable proof based on a cosmic reduction to PRG secu-
rity. We overview in Section 1.6.3 the proof of Theorems 1.10 and 1.11, which show impossibility
of fully black-box cosmic reductions for hardness amplification and hard-core bits. Then, in Sec-
tion 1.6.4, we discuss why non-adaptive, straight-line black-box reductions imply cosmic reductions
w.r.t. time-evolving k-window Natures.

1.6.1 The Dummy Lemma

Consider a “dummy attacker” Adummy that forwards all messages from C to the Nature Nat, and
forwards replies from Nat back to C. The “dummy lemma” says (informally) that if there exists a
cosmic reduction Rdummy between two security games that works for cosmic adversaries of the form
(Adummy,Nat), then there exists a cosmic reduction that works for any cosmic adversary (A,Nat).
Moreover, it is constructive, and the resulting reduction uses A in a black-box way. Here, we briefly
provide some intuition for why the“dummy lemma” holds.

The key observation is that since Rdummy works for any Nature talking with the dummy attacker
Adummy, it must in particular also work for the Nature Nat′ that internally simulates an attacker
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A talking to Nat, for any cosmic adversary (A,Nat). If (A,Nat) wins some security game C, then
(Adummy,Nat

′) should also win an interaction with C, as Nat′ is essentially simulating the cosmic
adversary (A,Nat) inside. Thus, the reduced attacker (Rdummy,Nat

′) should also win the game
C ′. Finally, consider the reduction RA that internally runs Rdummy and forwarding all its attacker
messages to its oracle A. Since Rdummy is only talking to Nat′ in a straightline fashion, intuitively,
the cosmic adversary (RA,Nat) should behave exactly like (Rdummy,Nat

′) and thus also win C ′.
Formalizing this intuition, however, is a bit tricky since we need to make sure that (Adummy,Nat

′)
is also robustly winning in C, which requires a more complicated construction of Nat′; we refer the
reader to Section 3.2 for the full details.

1.6.2 Straightline Black-Box Reductions and Witness Indistinguishability

We overview why single-shot, straightline, black-box reductions imply cosmic reductions, and use
this to show a witness indistinguishable proof based on a cosmic reduction to PRG security.

Single-shot Straightline Reductions imply Cosmic Reductions. We first argue that “single-
shot” straightline black-box reductions imply cosmic reductions. Suppose there is a classical
straightline, black-box reduction R that succeeds in some security game C ′ with probability ε
when making single-shot usage of an adversary A with advantage a in the game C. That is, R
interacts with A a single time without any rewinding or restarting. As we shall observe, any such
reduction must also “relativize” with respect to any stateful oracle Nat. In more detail, consider
some cosmic adversary (B,Nat) that has robust advantage a in a game C, and let B′ be an adver-
sary that simulates a communication between R and B: Any time R wants to query its adversary
A, we direct that communication to B, and any time B wants to query Nature Nat, we direct
that communication to Nat. Since for every prefix ρ, we have that (B,Nat(ρ)) wins in C, we also
have that for every prefix ρ, R(B,Nat(ρ)) wins in C and thus (B′,Nat(ρ)) (which perfectly emulates
R(B,Nat(ρ))) does so as well, so (B′,Nat) also has robust advantage in C ′. Note that this construction
crucially relies on the fact that R only invokes its attacker once and without rewinding it (so that
communication with Nat can be forwarded).

Let us emphasize, however, that cosmic reductions are not equivalent with single-shot straight-
line reductions: as we already discussed, we can obtain cosmic reductions that do reuse the at-
tacker multiple time—we demonstrate this for the case of hardness amplification for rerandomizable
functions—and for this task it is easy to see that a straightline single-shot black-box reductions
cannot be used; see Section 4.4 for more details.

Cosmic Reductions from Some Classic Reductions. The above observation shows that
if we can construct proofs of security using single-shot, straightline, black-box reductions, then
we immediately can infer the existence of a cosmic reduction. We observe that indeed some of the
classical proofs of security (for e.g. PRG length extension, PRFs from PRGs, encryption from PRFs,
commitments from PRGs, one-time signatures from OWFs) fall into this category; see Appendix B
for full details.

Cosmic Reductions from New Reductions: Witness Indistinguishable Proofs. Many
classic cryptographic reductions, however, do require rewinding/restarting the adversary. Most
notable are reductions/simulations for notions of privacy in interactive proofs like zero-knowledge
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[GMR89]. As we shall see, we demonstrate that sometimes these can be “de-rewinded”. In par-
ticular, we will focus our attention on a weakening of zero-knowledge, known as witness indistin-
guishability [FS90], and will show how to provide a new single-shot straighline reduction (and as
a consequence, a cosmic security reduction) to PRGs. (We hope that this proof will serve as an
example of how classic proofs may be “de-rewinded”.)

Recall that an interactive proof system [GMR89], (P, V ), for an NP language L specifies an
interaction between the prover P with access to a witness w and the verifier V , on common input a
security parameter 1λ and a statement x. It should satisfy completeness, meaning on inputs x ∈ L
and w a valid witness for x, P (w) causes V to accept. The other required property is soundness,
meaning on input x 6∈ L, no cheating prover P ? can cause V to accept (with noticeable probability).
Sometimes we want additional privacy and security properties for the witness w used. One basic
property is witness indistinguishability (WI) [FS90] which requires that no (potentially cheating)
verifier V ? can tell if P is using one witness w0 or another witness w1. Note that this might seem like
a weak property (e.g., it provides no guarantees for languages with unique witnesses), but it has been
shown to be extremely useful for broader cryptographic applications (see e.g. [FS90, DN07, BG08]).

We show that the GMW protocol for graph 3-colorability [GMW91] is WI using a single-shot
straightline reduction to PRG security. We note that previous classical proofs showing WI of the
GMW protocol first showed that GMW is actually zero-knowledge and then use this to conclude
that it also satisfies WI. But this approach requires rewinding the adversary; we shall dispense of
this rewinding.

We proceed to recalling the GMW protocol. Let G = (U,E) be the input graph where U = [n].
Recall that the prover P in this protocol has access to a valid 3-coloring w : [n] → [3] such that
for all (i, j) ∈ E, w(i) 6= w(j). To prove that the graph G is indeed 3-colorable, P samples a
random permutation π : [3] → [3] and commits to the colors ck = π(w(k)) for all k ∈ [n]. V
asks to open a random edge (i, j) ∈ E, and P responds with the openings revealing ci and cj . V
accepts the interaction if ci 6= cj and the openings are valid. Completeness of the protocol can
be checked straightforwardly. The protocol has statistical soundness (1 − 1/|E|) (meaning the
verifier will catch a cheating prover with probability roughly 1/|E|) by the statistical binding of the
commitment, since at least one edge must be colored incorrectly if G is not 3-colorable. We proceed
to argue WI by showing that no cheating verifier V ? can distinguish interactions with P (w0) or
P (w1) for any two distinct witnesses w0 and w1.

To formalize this claim, we model WI as a security game as follows. We allow the adversary A
to select a graph G and two valid witnesses w0 and w1. The challenger C samples a bit b← {0, 1}
and proceeds to interact as P (wb) while A acts as the (potentially cheating) verifier V . After the
interaction, A outputs a bit b? and C outputs 1 (so A wins) iff b = b?.

Now suppose that there is an adversary A that distinguishes P (w0) and P (w1) with probability
1/2 + δ (namely, it outputs 1 on P (w1) with probability 2δ more than on P (w0)). We construct a
straightline, black-box reduction R that uses A to distinguish two commitments to different values.
R first receives a graph G and witnesses w0 and w1 from the adversary A. Next, R chooses a
random edge (i′, j′) ∈ E and random distinct colors for these vertices ci′ 6= cj′ ∈ [3]. R computes
permutations π0 and π1 such that π0(w0(·)) and π1(w1(·)) are consistent with the colors ci′ and
cj′ . R then sends two sets of messages to a commitment challenger: the first consists of the colors
for π0(w0(k)) for all k ∈ U \ {i′, j′}, and the second consists of the colors for π1(w1(k)) for all
k ∈ U \ {i′, j′}. R generates commitments for ci′ and cj and then uses the commitments received
from the commitment challenger for the other vertices, so R does not know whether it is using w0

or w1. A then asks to open a specific edge (i, j) ∈ E, and if (i, j) happens to be (i′, j′), R opens the
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colors ci′ , cj′ . Otherwise, R aborts. If R didn’t abort, the interaction is now over and A outputs a
guess b? for whether the witness was w0 or w1. R simply forwards this guess to the commitment
challenger.

Note that by definition, R only queries A in a single session and only via black-box access. So,
we only need to argue that R succeeds with better than 1/2 probability assuming that A succeeds
with 1/2 + δ probability for some inverse polynomial δ. At a high level, this follows since A’s view
is identical to a random execution with either P (w0) or P (w1), assuming that R does not abort.
The key point in arguing this is that any b ∈ {0, 1}, for any fixed edge (i′, j′) and fixed witness wb,
there is a 1-1 mapping between colors ci′ , cj′ and permutations πb over colors, so picking random
colors for ci′ , cj′ and computing the corresponding permutation w.r.t. wb, is equivalent to picking
a random permutation.

Next, since R chose (i′, j′) randomly and independent of A, the probability that R aborts because
(i′, j′) 6= (i, j) is at most (1−1/|E|). So with probability 1/|E|, A’s guess at distinguishing w0 from
w1 corresponds exactly to whether or not the commitment challenger chose the commitments for
π0(w0(·)) or π1(w1(·)). It follows that R succeeds at distinguishing these two cases with probability
1/2 + δ/|E|. Further, we can do an additional hybrid over each of the elements in the set to
distinguish two individual committed values with probability 1/2 + δ/(|E| · (|U | − 2)).

For full details of the above high level argument, we refer the reader to Section 4.2. The main
point is that since this new proof is a single-shot, straightline, black-box reduction, it immediately
implies a cosmic reduction from WI to PRG security.

1.6.3 Impossibility of Hardness Amplification and Goldreich-Levin

Impossibility of Cosmic Hardness Amplification. We start by giving an overview for why
there is no cosmic reduction for the proof of hardness amplification. Let f be a one-way function,
and define the n-fold direct product function f (n) such that f (n)(x1, . . . , xn) = (f(x1), . . . , f(xn)).
We show that this construction does not increase the security for generic functions f . Specifically,
we consider generic security games Cf and C(n),f for the OWF security of an arbitrary function f
and its n-fold product f (n). Suppose there exists a reduction R such that for any f and any cosmic
adversary (A,Nat) with advantage a(λ) at inverting f (n), then the cosmic adversary (R(A,f),Nat)
inverts f with advantage ε(λ, a). In this overview, we show that if R(A,f) only makes black-box use
of the function f via oracle access to f , then it must satisfy ε(λ, a) ≤ a+ µ(λ) for a = 1/e and µ a
negligible function.

Our high level approach is as follows. We will construct a cosmic attacker (A,Nat) that has
robust advantage roughly 1/e, yet the answers by this attacker can be efficiently simulated in PPT.
In more detail, consider some reduction (R(A,f),Nat) that work for any function f . Such a reduction
must also work for a random function f : {0, 1}λ → {0, 1}3λ, and for random functions, we have
the advantage that the reduction won’t (except with negligible probability) be able to query the
attacker on any point in the range of the function unless it has already queries f on the pre-image.
So, it would seem that if we use such a random function, then we can easily emulate a perfect
inverter (by simply looking at all the queries made by R to f). There is one main obstacle here: R
actually gets some value y in the range of f as input (and its goal is to invert this point), and R
could of course embed this y into its queries to (A,Nat). We overcome this issue by considering a
particular “random-aborting” attacker (A,Nat) that (1) only inverts a 1−1/n fraction of all values
y′, and (2) never agrees to invert the same value y′ twice. We can show that such an attacker
succeeds in robustly inverting f (n) with probability roughly 1/e. Intuitively, such an attacker
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“knows” how to invert f with probability 1− 1/n, but as we shall see, since (A,Nat) is stateful and
never agrees to invert the same value twice we can show that (A,Nat) can only be used to invert
f with probability roughly 1/e. More precisely, we show how to correctly simulate this attacker
with probability 1− 1/e by a PPT simulator S that simply aborting whenever we see a query that
contains a component yi for which we do not know a pre-image (through one of the f queries made
by R). Thus, if (R(A,f),Nat) inverts a random function f with probability ε(λ, a(λ)), it follows that
(R(A,f), Sf ) will invert f with probability ε(λ, 1/e)−1/e−negl(λ). Since R, A, and S are efficient,
this probability must be bounded by a negligible function, so ε(λ, 1/e) ≤ 1/e+ negl(λ).

Let us proceed to defining the cosmic adversary (A,Nat). The cosmic adversary (A,Nat) inter-
acts in the OWF security game of f (n), so A receives queries of the form (y1, . . . , yn). A will simply
forward these queries to Nat, who responds with either ⊥ or the correct inverse (r1, . . . , rn), based
on the following procedure:

1. For each yi in the query, if Nat has previously seen a query for yi in ρ or if yi is not in the
image of f , it sets ri to be ⊥.

2. Next, it flips a coin and with probability roughly 1/n just sets ri to be ⊥

3. If ri has not been set to ⊥, Nat sets ri to be any preimage in f−1(yi).

4. Finally, if any ri was set to ⊥, Nat responds to the entire query with ⊥. Otherwise, it responds
with the inverse (r1, . . . , rn).

We argue that (A,Nat) will invert a random challenge (f(x1), . . . , f(xn)) with constant prob-
ability, for all possible prefixes ρ. In particular, a random challenge (y1, . . . , yn) will always have
that each yi is in the image of f . Additionally, no matter what the history is, a random challenge
will not collide with any past query with high probability (formally we need to restrict to only
looking at the most recent λlog λ queries in case ρ has super-polynomial length). So the only reason
Nat outputs ⊥ is if any of its coin flips tell it to set ri to be ⊥, but this happens with probability
at most 1 − (1 − 1/n)n ≈ 1 − 1/e. Thus, the cosmic adversary (A,Nat) succeeds with probability
roughly 1/e.

We now argue that Nat can be efficiently simulated. The main reason is that because Nat only
needs to reply to queries the first time it sees them, we only need to simulate a single response for
the challenge y = f(x) that the reduction receives. This is much easier than simulating multiple
responses that may include y in various ways. Specifically, the simulator S simulates any queries
that R makes to either Nat or f , without the use of Nat. Whenever S simulates a query to f , it
records the responses before forwarding the reply back to R. To simulate a query (y1, . . . , yn) to
Nat, S proceeds exactly as Nat except that it doesn’t actually know how to invert f . Namely, it
can still reject yi values it has seen before, and flip a coin to ignore certain inputs. It tries to invert
any yi value it sees by looking at the queries R has made to f , and uses such a value if one exists.

It remains to argue that S diverges from the behavior of Nat with small probability. S diverges
whenever R makes a query (y1, . . . , yn) where R has not queried some yi before, or if yi has multiple
pre-images. But because f is a random function from λ to 3λ bits, the probability R can guess an
element in the image of f without querying it is negligible (other than its input y = f(x), and the
probability that f is not injective is negligible). Thus, we only need to deal with when it queries
y = f(x) for the first time. But Nat outputs ⊥ in that case with probability ≈ 1 − 1/e, so S and
Nat only diverge with probability roughly 1/e!

Finally, it follows that if R, given access to Nat, inverts a random (y1, . . . , yn) with probability
1/e+ 1/p(λ) for some polynomial p, then R given access to the simulator S will invert a random f
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with probability at least 1/p(λ), which is impossible. So (R(A,f),Nat) must invert f with probability
at most ε(λ, a) ≤ a+ µ(λ) for a = 1/e and some negligible function µ.

For the above proof, we note that we crucially rely on the fact that (A,Nat) is a cosmic adversary
because it only ever inverts individual yi values that it has never seen before. Let us also point out
that by setting the abort probability more carefully, we can make the proof go through also when
are required to construct an attacker that succeeds with much higher probability a (and not just
1/e). We refer the reader to Section 4.3 for the full details.

Impossibility of a Cosmic Goldreich-Levin Theorem. We briefly discuss the impossibility
of a cosmic reduction for the Goldreich-Levin theorem. The high level idea and proof structure is
similar to the impossibility of hardness amplification.

Recall that the Goldreich-Levin theorem shows that, for any one-way function g, the function
f(x, r) = (g(x), r) is a one-way function with hardcore predicate h(x, r) = 〈x, r〉 for |x| = |r|. Let
us first outline why the security of the hardcore predicate h cannot be based on the OWF security
of g via a cosmic reduction, when the reduction only has oracle access to the function g.

Similar to the above impossibility for hardness amplification, we construct a cosmic adversary
(A,Nat) with advantage a where Nat can be efficiently simulated by a machine S for a random
function g : {0, 1}λ → {0, 1}3λ. Nat only responds to queries of the form (g(x), r) with the value of
h(x, r) (with probability roughly a) once per g(x) value. Then, we construct S that simulates Nat
(almost) perfectly except on the first query to the challenge y = g(x) from the OWF challenger.
However, since the output of Nat is a single bit, S can just guess what Nat would have output!
It follows that S will simulate Nat with roughly 1/2 probability, so if (R(A,f),Nat) inverts g with
probability ε(λ, a), then (R(A,f), Sf ) will do so with probability roughly ε(λ, a)/2. Since R, A, and
S are efficient, this implies that ε(λ, a) must be negligible.

Note that we did not use anything about |r| or the structure of h in the above overview. In
fact, we rule out any hardcore predicate h for constructions f(x, r) = (g(x), r) for any |r| (even no
randomness). See Section 4.5 for full details.

1.6.4 Cosmic Reductions for Time-Evolving k-Window Natures, from Classical Non-
adaptive Reductions

Let k(·) be any polynomial function. We here argue that if there exists a non-adaptive, straightline
black-box reduction R from some game C to C ′, then there exists a cosmic reduction from C to C ′

w.r.t. time-evolving k-window Natures. In the overview, we focus on the simplified case where C
and C ′ are 1-round games, but we consider a more general definition of a non-adaptive reductions
in Section 5.2.

Recall that a straightline black-box reduction is one where the reduction R only makes black-
box use of a classical, stateless adversary A. We say that such a reduction is non-adaptive if (for
1-round games) the reduction R after receiving a challenge message in C ′, generates m queries
q1, . . . , qm for A in the game C, sends them all at once, receives the responses, and then responds
to the challenger C ′. Suppose there exists such a reduction R that has advantage ε in C ′ after
making m non-adaptive queries to a classical adversary A with advantage a in C. Then for any
cosmic adversary (B,Nat) with robust advantage a, where Nat is additionally a time-evolving k-
window Nature, we want to construct a cosmic adversary (B′,Nat) also with advantage close to ε.
In particular, for any δ, we will construct B′ such that (B′,Nat) has robust advantage ε− δ. (This
B′, however, will have larger running time than RB , where the running time depends on δ.)
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As Nat is a time-evolving k-window Nature, we can essentially think of (B,Nat) as specifying
ahead of time a sequence of independent, arbitrary algorithms S1, S2, . . . s.t. it uses Si to respond
to the ith query qi. We achieve this as follows: in order for B′ to be able to emulate such a sequence
of attackers S1, S2, . . . using only interactive access to Nat, for each query qi B

′ will first send k
dummy messages to Nat (in essence resetting its state to be independent of the past, depending only
on i). Subsequently, to generate a response for qi, B

′ will invoke a fresh copy of B, communicate
with Nat on behalf of B, send qi to B, and reply with B’s reply. However, this isn’t enough,
because each Si ∈ S1, S2, . . . may respond differently as i increases (albeit each Si still wins by
robust winning). In other words, the cosmic adversary changes over time. To apply the classical
non-adaptive reduction R, we must somehow use (B,Nat) to emulate a classical adversary that
responds to queries repeatedly according to the same distribution, because R might call its oracle
multiple times.

Thus, we construct the cosmic reduction B′ as follows. B′ receives some challenge from C ′

and emulates R on this challenge to generate queries q1, . . . , qm. B′ then generates m2/δ − m
extra random “dummy” queries, call them qm+1, . . . , qm2/δ. It then samples a random permutation
π : [m2/δ]→ [m2/δ] that it uses to permute the order of all the queries. For each i ∈ [m2/δ], denote
q′i = qπ(i). B′ then uses S1, . . . , Sm2/δ to respond to those queries, using each Si to generate a
response r′i for q′i, in order. It then recovers the responses to the original queries by computing
ri = r′π(i) for each i ∈ [m]. R′ can feed these to R in order to generate a response for the challenger

C ′. Importantly, B′ is able to emulate S1, . . . , Sm2/δ using a single interaction with the stateful
Nat, as long as Nat is a time-evolving (k, µ)-window Nature.

At a high level, the reason the cosmic reduction B′ works is that each response ri is generated
using a random Sj for j ∈ [m2/δ]. Thus, R’s output should be statistically close to the output of
RA where A is a “classical” adversary A that samples a random j ← [m2/δ] and responds with
Sj . However, this isn’t the case if there are any collisions on the set of m queries that R queries to
this classical adversary A—in other words, if some j ← [m2/δ] is chosen twice—but this bad event
can be shown to happen only with probability at most δ. It follows that the output of (B′,Nat) is
at most δ-far from the output of RA, so if R wins with probability ε, then (B′,Nat) will win with
probability at least ε− δ.

We defer to Section 5.3 for the full details.

1.7 Conclusions, Related and Future Work

Interpreting our Results. Our results demonstrate both limitations and feasibility of cosmic
security—that is, the feasibility of a foundation for cryptographic security without making extended
Church-Turing type assumptions about the class of physically-realistic computations. This paper is
only a first step—we have not done an extensive survey of all the reductions in the literature, and
we have not investigated all primitives out there; notably, we have focused only on the most basic
primitives/reductions. We leave an exploration of more advanced primitives, such as zero-knowledge
proofs and secure computation for future work.

Taken together, our result provide a new qualitative understanding of how different types of
restrictions on black-box reductions result in security w.r.t. stronger classes of attacker. In partic-
ular, when restricting our attention to straight-line black-box reductions: (1) reductions that only
invoke the attacker once, yield the strongest form of “plain” cosmic security, (2) reductions that are
non-adaptive yield cosmic security w.r.t. time-evolving k-window Natures, and (3) adaptive ones
yield cosmic security w.r.t. k-window Natures, for any choice of polynomial k(·).
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So given our three different notions of security (which we have shown all imply standard notions
of security), which one should we aim to achieve? Obviously the strongest form of plain cosmic
security is the most desirable as it allows us to argue security while making only minimal “religious”
assumptions about the class of physically-feasible computation. Our results demonstrate that indeed
this notion is achievable for many constructions of interest (e.g., for primitives proven secure using
straight-line black-box reduction that call the attacker once, or for some cases even multiple times
when the queries are independent). Our impossibility results, however, also demonstrate important
limitations, showing that in some situations, stronger types of “religious” assumptions about the
class of feasible computation are required. The class of time-evolving k-window Natures seems like
a reasonable midpoint between expressivity of the theory and the assumptions made on the class
of physically-feasible computation.

More Justification for Time-Evolving k-Window Natures. Let us briefly comment on
the recent and independent of work of Bitansky, Brakerski, and Kalai [BBK22], who study the
quantum security of non-interactive reductions. Similar to us, they propose a framework to deal
with stateful attackers, and show that non-adaptive reductions (with a polynomial solution space,
including decisional assumptions) imply post-quantum security with a uniform reduction. In more
detail, [BBK22] leverages the main result of Chiesa et al. [CMSZ21] that shows how to effectively
“rewind” quantum attackers for a restricted class of protocols so that they effectively become time-
evolving but otherwise stateless (or rather, bounded memory)— [BBK22] refer to such attackers
as persistent solvers. Next, [BBK22] rely on a proof that is very similar to the proof of our
Theorem 1.12 to show that non-adaptive black-box straight-line reductions can be applied to such
attackers.

Note that our Theorem 1.14 shows that cosmic reduction w.r.t. not only time-evolving k-window,
but also simply k-window Natures (which by Theorem 1.13 are implied by also adaptive straight-
line black-box reductions) imply quantum security but it requires using a non-uniform reduction.
By relying on the results of [CMSZ21], [BBK22] effectively show that cosmic security w.r.t. time-
evolving k-window Natures has the advantage that the reduction for quantum security—for specific
security games—becomes fully uniform. Consequently, we take the works of [CMSZ21, BBK22]
as further evidence that restricting attention to cosmic reductions w.r.t. time-evolving k-window
Natures is meaningful.

Comparison to Universal Composition (UC). Let us highlight that some of the intuition
behind our definition take inspiration from the framework for Universal Composability (UC) by
Canetti [Can01]. In particular, a simulator in the UC framework needs to interact with the attacker
in a black-box straight line fashion in the presence of any environment, without the power of
rewinding or restarting the environment. Clearly, there are many similarities between the notion
of an environment and our notion of Nature. As such, one may be tempted to hope that UC
protocols automatically are cosmically secure. This intuition is misleading (as demonstrated e.g.,
by our Theorem 1.10). The reason for this is that whereas the simulator in the UC framework
is required to be straight-line (and the attacker/environment is allowed to be fully stateful), the
security proof/reduction used to argue that the simulation is “correct” (i.e., indistinguishable from
the real execution in the eyes of the environment) may very well use rewinding (and in fact often
does). In more detail, standard proofs in the UC framework still assume that the environment is a
non-uniform PPT machine to reduce security to some assumption (e.g., one-wayness of a function).

It is also worthwhile to compare cosmic security to UC security with an unbounded environment
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(in analogy with how we consider Natures that are unbounded). While such a notion of UC security
indeed also would be “future-proof” in the sense that it does not make any assumptions about
computational limits on the class of physically realizable computations, the problem with such a
notion is that it only enables information-theoretically secure protocols, whereas our goal here is
to develop a computational theory of cryptography that is “future-proof”. One could consider
defining primitives (e.g., one-way functions, PRGs, signatures) as UC functionalities, and consider
whether one functionality can be implemented in a UC way using some other functionality with
respect to a computationally-unbounded environment; as far as we are aware, such a method has
not previously been advocated for and is in line with what we are doing here. However, we highlight
that doing this is non trivial for several reasons: (1) it is non trivial to define standard cryptographic
primitives as UC functionalities (e.g., how does not define an idealized one-way functions); (2) such
a treatment would require presenting a straight-line reduction that is required to work even if the
environment (i.e., Nature in our langauge) only helps the attacker to succeed once; as we have
argued above, such a notion is overly strong (and it is trivial to present impossibility results for it).
In contrast, by focusing directly on a reduction-based framework, we can (1) define primitives in
the standard game-based way, (2) only require the reduction to work for attackers that win robustly
(i.e., repeatedly) to rule out trivial cases when Nature helps the attacker to win just a single time.

Let us finally mention that a natural way to define protocol security in a both universally-
composable and cosmic way would be to consider the standard UC definition of security, but
requiring that the security reductions used to prove indistinguishability of the simulation are cosmic.
We leave an exploration of such protocols for future work.

Comparison to Abstract Cryptography. We end by noting that the frameworks for abstract
cryptography [MR11], and constructive cryptography [Mau11], among other things also have as a
goal of building up a theory of cryptography that is independent of the model of computation used
to model an adversary. While these frameworks were used to analyze how to obtain higher-level
functionality (e.g., secure channel) from advanced primitives (e.g., secure encryption and MACs)
and also used to analyze some building blocks (for instance see [Mau02, MP04, MPR07]), as far as
we can tell, they have not been used to understand the underlying most basic building blocks that
we study here (e.g., hardness amplification of one-way functions, whether one-way functions have
hard-core bits, etc). At a very high-level, the idea is to view security reductions among primitives as
simulations of one system in terms of another; these simulations, just as in the UC framework, need
to be straight-line, black-box, and only invoke the attacker once. As far as we can tell, consequently,
the same two differences as presented w.r.t. UC with an unbounded environment also apply here.
Most notably, since we restrict attention to attackers that win repeatedly/robustly, we can obtain
feasibility results using reductions that invoke the attacker multiple times (and this is also what
makes it significantly more challenging to present impossibility results).

We highlight that also in the constructive cryptography, computational simulation has been
defined to consider tasks requiring computational assumption, but this is defined by restricting
attention to polynomial-time distinguishers, so such computational definitions still rely on a ex-
tended Church-Turing assumption. It would be interesting to extend these works by considering a
computational notion of indistinguishability based on cosmic security.
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2 Preliminaries

We let N = {1, 2, 3, . . .} denote the set of natural numbers, and for any n ∈ N, we use [n] = {1, . . . , n}
to denote the set from 1 to n. We denote by x ← X the process of sampling a value x from a
distribution X. For a set X , we use x ← X to denote the process of sampling a value x from the
uniform distribution over X . We use Un to denote the uniform distribution over {0, 1}n.

Throughout, we use λ ∈ N to denote the security parameter. When we say that an event holds
for sufficiently large λ ∈ N we mean that there exists an integer N ∈ N such that the event holds
for all λ ≥ N . In particular, for any function f : N→ N, the set O(f) consists of all functions g such
that there exists a constants c such that g(λ) ≤ c · f(λ) for sufficiently large λ ∈ N. We say that a
function f(λ) is polynomially-bounded if it is in the set λO(1) = poly(λ). We say that a function
µ : N → R is negligible if it is asymptotically smaller than any inverse-polynomial function, so for
every constant c > 0, µ(λ) ≤ λ−c for sufficiently large λ ∈ N. In this case, we say µ ∈ negl(λ).

We use PPT to denote the acronym probabilistic, polynomial time. A uniform algorithm A is a
constant-size Turing machine. We say that a function f is efficiently computable if there exists a
uniform, polynomial-time algorithm A such that A(x) = f(x) for all x ∈ {0, 1}λ. A non-uniform
algorithm A = {Aλ}λ∈N is a sequence of algorithms for all λ ∈ N, and we assume for simplicity that
Aλ always receives 1λ as its first input. A non-uniform PPT algorithm is one where the description
size of Aλ is bounded by a polynomial as a function of λ.

For two ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we say that X is
computationally indistinguishable from Y, denoted X ≈ Y, if for all non-uniform PPT distinguish-
ers D = {Dλ}λ∈N there exists a negligible function µ such that for all λ ∈ N, |Pr[Dλ(Xλ) = 1] −
Pr[Dλ(Yλ) = 1]| ≤ µ(λ). We define the statistical distance between distributions X and Y , de-
noted as ∆(X,Y ), to be the minimum over all unbounded distinguishers D for of the value
|Pr[D(X) = 1] − Pr[D(Y ) = 1]|. Then, for any function µ, we say that two ensembles X and
Y are µ-statistically close if for all λ ∈ N, ∆(Xλ, Yλ) ≤ µ(λ). If µ is a negligible function, we say
that X and Y are statistically indistinguishable, and if µ = 0, we say that X and Y are identically
distributed.

An interactive Turing machine (ITM) is an algorithm M that receives and sends messages to
other ITMs. For two ITMs, A and B, we denote 〈A(x), B(y)〉(z) to denote B’s output in the
interaction between A and B on private inputs x and y, respectively, and on common input z.

3 Defining Cosmic Adversaries and Reductions

In this section, we formally present our framework for reasoning about cryptography in the face of
arbitrarily powerful attackers, which we call cosmic adversaries.

3.1 The Definition and Some Consequences

Towards this, let us first recall the standard notion of a security game, wherein an ITM Challenger
C interacts with an ITM Adversary A: On common input 1λ, C interacts with A until C outputs
a bit b ∈ {0, 1}. If b = 1, we say that the adversary wins, and we say that A has advantage a if C
outputs 1 with probability at least a(λ) for all λ ∈ N. The security game is fully specified by the
challenger C, and in the sequel we will use security game and challenger interchangeably.

Whereas classically, the adversary is typically a PPT, or a non-uniform PPT, in our context, we
will consider security games with respect to cosmic adversaries: roughly speaking, a PPT attacker
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C A Nat(ρ)

Figure 1: Execution in a nutshell. The PPT challenger C plays an interactive security game with a
PPT attacker A. To help with generating responses, A may send queries to a potentially unbounded
Nature machine Nat. Note that Nat may have had previous interactions, which we specify using ρ,
which comprises prior messages that Nat may have received, as well as any private coins that Nat
may have flipped previously. When we omit ρ, we mean that Nat starts from the blank slate (i.e.
no prior messages or coins).

A that has access to some potentially unbounded Nature Nat.

Cosmic adversaries. In more detail, a cosmic adversary (A,Nat) consists of a PPT ITM A,
known as the attacker, and a stateful, possibly unbounded non-uniform ITM Nat, known as Na-
ture. We think of A as the part of the cosmic adversary that only uses “standard” computational
resources, whereas Nat is a shared resource in the world that may have “magical” computational
resources. Note that since Nat is a non-uniform ITM, it may take a non-uniform advice of arbitrary
length. We assume that Nat halts on every input message.

Remark 3.1. All of our definitions—and proofs—work for more powerful Natures as well, even
those that output an arbitrary probability distribution in response to any interaction prefix (as
opposed to one being samplable by a TM). We define Nat as an ITM for convenience: It becomes
easier to specify communication, randomness, views, etc. Furthermore, considering uncomputable
Natures gives incomparable results: the feasibility results are stronger, but the impossibility results
become weaker.

Interaction model and winning security games (once). We consider executions of a security
game C interacting with a cosmic adversary (A,Nat). We use 〈C ↔ A ↔ Nat〉(1λ) to denote an
execution between C, A, and Nat, given the security parameter 1λ as common input. In particular,
the challenger C sends queries to and receives responses from the attacker A, who in turn sends
queries to and receives responses from the Nature machine Nat. The execution ends when C halts
outputting a bit b ∈ {0, 1} representing the outcome of the security game. An ITM in this model
is PPT if there is a polynomial upper bound—as a function of λ—on the number of steps it takes
during the lifetime of any execution before halting. Formally, 〈C ↔ A ↔ Nat〉(1λ) is a random
variable over the joint views of C,A,Nat, where the randomness is over the coins of each party.
Given an execution exec ∈ Supp(〈C ↔ A ↔ Nat〉(1λ)), we let outC [exec] and viewC [exec] denote
C’s output and view, respectively, in the execution exec.

Definition 3.1 (Winning Security Games). Let a ∈ [0, 1] and λ ∈ N be a security parameter. We
say that a cosmic adversary (A,Nat) has advantage a on λ for a security game C if

Pr
[
outC [〈C ↔ A↔ Nat〉(1λ)] = 1

]
≥ a.

Let a : N → [0, 1]. The cosmic adversary (A,Nat) has advantage a(·) for a security game C if for
all security parameters λ ∈ N, (A,Nat) has advantage a(λ) for C on λ.
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Robust winning. We will also be interested in executions involving Nat where Nat has already
had some prior interaction; intuitively, we will want to capture a notion of what it means for (A,Nat)
to “robustly” win in a security game—roughly speaking, that must (A,Nat) “wins” regardless of
any prior interaction that Nat has had with the rest of the world.

We capture this by specifying an interaction prefix ρ = (r, q1, q2, . . .) for Nat at the beginning
of an execution. We can think of ρ as specifying a finite sequence of queries q1, q2, . . . that Nat
previously received, as well as the randomness r that Nat used to respond to those queries; thus ρ
fully determines the past behavior and the current state of Nat. For any ρ ∈ {0, 1}∗ and security
parameter λ ∈ N, consider the interaction where Nat is initialized on input 1λ, with (read-once)
random tape prepopulated by r (followed by 0s), and where Nat is reactivated whenever it becomes
idle, s.t. when Nat is activated for the ith time, its message tape is prepopulated with qi (followed
by 0s). Recall that an ITM enters an idle state whenever it is ready to receive the next message in
the interaction. When there are no more queries in ρ to process, the random tape of Nat is then
reset to uniform randomness. We then let Nat(1λ, ρ) denote Nat in the state reached following the
interaction specified by ρ and 1λ. Let ‖ρ‖ denote the number of queries sent to Nat in ρ. Finally,
the notation 〈C ↔ A ↔ Nat(ρ)〉(1λ) refers to an execution on input 1λ where Nat starts in the
state determined by ρ. If the prefix ρ is omitted, then Nat starts without any prior interaction.

We also define what it means to concatenate two prefixes ρ ◦ ρ′, where ρ = (r, q1, q2, . . .) and
ρ′ = (r′, q′1, q

′
2, . . .). Define r∗ to be the contents of the random tape read by Nat in the interaction

Nat(1λ, ρ), including any 0s if r is too short, or trimming extraneous bits of r that Nat(1λ, ρ)
doesn’t read if r is too long. Define ρ◦ρ′ = (r∗ ◦r′, q1, q2, . . . , q′1, q′2, . . .), where r∗ ◦r′ denotes string
concatenation.

We are now ready to define what it means for a cosmic adversary (A,Nat) to robustly win in a
security game.

Definition 3.2 (Robust Winning). Let a ∈ [0, 1] and λ ∈ N be a security parameter. We say that
a cosmic adversary (A,Nat) has robust advantage a on λ for a security game C if for all ρ ∈ {0, 1}∗,
(A,Nat(ρ)) has advantage a(λ) on λ for C. Let a : N → [0, 1]. The cosmic adversary (A,Nat) has
robust advantage a(·) for a security game C if for all λ ∈ N, (A,Nat) has robust advantage a(λ) for
C on λ.8

Cosmic reductions. We finally turn to defining the notion of a cosmic reduction. Roughly
speaking, a cosmic reduction from security games C to C ′ guarantees that for every cosmic adversary
(A,Nat) that robustly wins C, there must exist an attacker A′ (depending on A only) such that
(A′,Nat) robustly wins in C ′ using the same Nature.

Definition 3.3 (Cosmic Reductions). Let ε : N × [0, 1] → [0, 1], C and C ′ be security games. We
say that there is an ε-cosmic reduction from C to C ′ if for all PPT A there exists a PPT A′ such
that for every cosmic adversary (A,Nat) with robust advantage a(·) for C, (A′,Nat) has robust
advantage ε(·, a(·)) for C ′.

Composability of Cosmic Reductions. We observe that the definition of a cosmic reduction
easily composes:

8In the definition of robust winning above, we require that the cosmic adversary win a security game for every
prefix ρ that Nat may have previously seen, even those containing exponentially many messages. A natural alternative
is to consider a notion of robust winning that considers only those prefixes with poly(λ) many messages; indeed our
impossibilities and feasibilities can both be made to work in that setting, but at the expense of definitional complexity.
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Lemma 3.1 (Composition of Cosmic Reductions). Let C1, C2, C3 be security games. Suppose there
exists an ε1-cosmic reduction from C2 to C1, and an ε2-cosmic reduction from C3 to C2. Then,
there exists an ε?-cosmic reduction from C3 to C1 where ε?(λ, a) = ε1(λ, ε2(λ, a)) for all λ ∈ N and
a ∈ [0, 1].

Proof. Let (A3,Nat) be any cosmic adversary, and denote a(·) its robust advantage in C3. Since
there is a ε2-cosmic reduction from C3 to C2, then there exists PPT A2 s.t. (A2,Nat) has robust
advantage ε2(λ, a(λ)) in C2 given security parameter λ for all λ ∈ N. Since there is a ε1-cosmic
reduction from C2 to C1, then there must exist PPT A1 s.t. (A1,Nat) has robust advantage
ε1(λ, ε2(λ, a(λ))) in C1 given security parameter λ for all λ ∈ N.

We conclude that there thus exists a ε?-cosmic reduction from C3 to C1 where ε?(λ, a) =
ε1(λ, ε2(λ, a)) for all λ ∈ N and a ∈ [0, 1].

Winning Once v.s. Winning Robustly. Note that the notion of a cosmic reduction requires
taking some cosmic attacker (A,Nat) that robustly wins in C and transforming it into a cosmic
attacker (A′,Nat) that robustly wins in C ′. This is useful in order to get a trivial proof for the above
composition theorem. However, it also seems natural to consider an a-priori weaker definition that
only requires the transformed attacker (A′,Nat) to win once in C ′ (as opposed to winning robustly):

Definition 3.4 (Win-once Cosmic Reductions). Let ε : N × [0, 1] → [0, 1], C and C ′ be security
games. We say that there is a win-once ε-cosmic reduction from C to C ′ if for all PPT A there
exists a PPT A′ such that for every cosmic adversary (A,Nat) with robust advantage a(·) for C,
(A′,Nat) has advantage ε(·, a(·)) for C ′.

The next lemma shows that this definition actually is equivalent to the original one.

Lemma 3.2. Let ε : N × [0, 1] → [0, 1], C and C ′ be security games. If there exists a win-once
ε-cosmic reduction from C to C ′, then there exists a ε-cosmic reduction from C to C ′.

To give some intuition on the proof, observe that the starting cosmic adversary (A,Nat) wins
robustly for C, and thus for any prefix ρ, letting Natρ denote Nat that hardcodes ρ ahead of time,
(A,Natρ) also wins robustly for C. Now, applying the win-once cosmic reduction, which outputs
some A′, then for all ρ, (A′,Natρ) wins (once) for C ′, and thus (A′,Nat) wins robustly for C ′. The
formalization follows:

Proof. Assume there exists a win-once ε-cosmic reduction from C to C ′. Thus, for any A there
exists A′ s.t. for any (A,Nat) with some robust advantage a(·) for C, then (A′,Nat) has advantage
ε(·, a(·)) for C ′. We claim that (A′,Nat) also has robust advantage ε(·, a(·)) for C ′:

For any interaction prefix ρ ∈ {0, 1}∗, denote Natρ the Nature machine that on input 1λ, simply
runs Nat on input 1λ, but starting in the state where Nat already saw the prefix ρ. We stress that
Natρ hardcodes ρ (as a non-uniform advice string). Then, for any prefix ρ, (A,Natρ) itself also has
robust advantage a(·) for C; namely, for all ρ′ ∈ {0, 1}∗, for all λ ∈ N

Pr
[
outC [〈C ↔ A↔ Natρ(ρ

′)〉(1λ)] = 1
]

= Pr
[
outC [〈C ↔ A↔ Nat(ρ ◦ ρ′)〉(1λ)] = 1

]
≥ a(λ)

where ρ◦ρ′ denotes the concatenation of ρ with ρ′. The inequality follows from the robust advantage
of (A,Nat) for C, as ρ ◦ ρ′ itself is a valid prefix. Consequently, by the correctness of the win-once
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ε-cosmic reduction, for any prefix ρ, (A′,Natρ) has advantage ε(·, a(·)) for C ′. Thus, for any prefix
ρ, and any security parameter λ:

Pr
[
outC′ [〈C ′ ↔ A′ ↔ Nat(ρ))〉(1λ)] = 1

]
= Pr

[
outC′ [〈C ′ ↔ A′ ↔ Natρ〉(1λ)] = 1

]
≥ ε(λ, a(λ))

concluding the proof.

3.2 The Dummy Lemma

In this section we shall show that without loss of generality, it will suffice to present a cosmic
reduction that applies only for a single adversary—the so-called “dummy adversary” Adummy that
simply forwards messages between C and Nat. The intuition for why it will suffice for the reduction
to work w.r.t. just the dummy adversary is that any other adversary A can be “pushed” into a new
Nature Nat′ (that combines Nat and A), and we can have the dummy adversary forward messages
to it. In fact, we will show an even stronger result: if there exist a cosmic reduction just for the
dummy adversary, there in fact also exists a black-box cosmic reduction—that is, the existence of
a universal PPT oracle algorithm R (a.k.a. the black-box reduction) such that for every adversary
A, the transformed adversary A′ = RA.

Definition 3.5 (Cosmic Black-box Reductions). Let ε : N × [0, 1] → [0, 1], C and C ′ be security
games. We say that there is an ε-cosmic black-box reduction from C to C ′ if there exists a PPT
oracle machine R such that for every cosmic adversary (A,Nat) with robust advantage a(·) for C,
(RA,Nat) has robust advantage ε(·, a(·)) for C ′.

A direct corollary of this result will thus be that (non-black box) and black box cosmic reductions
(i.e., Definitions 3.3 and 3.5) are equivalent.

To formalize the above discussion, we will require a slightly more complicated dummy adversary
that additionally requires Adummy to send a special startsession message to Nat′ before starting to
forward C’s messages to Nat′. Roughly speaking, the startsession message enables Nat′ to distinguish
messages that should be sent to different invocations of A (i.e. if they originated from different
instances of the security game). Additionally, Adummy also tags each of its messages q with a
special text (‘att’, q), in order to inform Nat′ (which again, combines A and Nat) that q should be
forwarded to an inner copy of A, as opposed to Nat. This is useful because Nat′ also has the option
of forwarding incoming messages to Nat, in order to fully simulate the world where A and Nat are
separate, and thus Nat′ needs a way of distinguishing whether a query is intended for A or for Nat.

Definition 3.6 (The Dummy Attacker Adummy). The dummy attacker Adummy is an ITM that
interacts with a challenger C and Nature Nat, as follows: on initialization, Adummy sends startsession
to Nat. Subsequently, whenever Adummy receives some message q from the challenger, Adummy

forwards (‘att’, q) to Nat, and whenever it receives back a response r, Adummy forwards it back to C.

We now define cosmic reductions with respect to the dummy attacker. It turns out that a
cosmic reduction w.r.t. the dummy attacker implies a standard cosmic reduction (which works
for all attackers). Moreover, the new cosmic reduction makes black-box use of the attacker. We
note that a similar result hols also in the setting of UC security [Can01] where it without loss of
generality suffices to consider security with respect to a particular dummy attacker; we emphasize,
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however, that the details of the proofs are very different (although the high-level intuition is the
same).

Definition 3.7. Let ε : N× [0, 1]→ [0, 1], C and C ′ be security games, and R be a PPT ITM. We
say that R is an ε-cosmic reduction from C to C ′ with respect to the dummy attacker if for every
cosmic Nature Nat s.t. (Adummy,Nat) has robust advantage a(·) in C, then (R,Nat) has robust
advantage ε(·, a(·)) in C ′.

Theorem 3.3 (Dummy Lemma). Let ε : N × [0, 1] → [0, 1], C and C ′ be security games. If there
exists an ε-cosmic reduction from C to C ′ with respect to the dummy attacker, then there exists a
ε-cosmic black-box reduction from C to C ′.

Proof. Let ε : N × [0, 1] → [0, 1], C and C ′ be security games. Assume there exists an ε-cosmic
reduction from C to C ′ with respect to the dummy attacker. That is, there exists a PPT Rdummy

s.t. for all Nat, if a(·) denotes (Adummy,Nat)’s robust advantage in C, then (Rdummy,Nat) has robust
advantage ε(·, a(·)) in C ′. Using this Rdummy, we would like to construct a PPT R such that for any
attacker A, if a(·) denotes (A,Nat)’s robust advantage in C, then (RA,Nat) has robust advantage
ε(·, a(·)) in C ′.

We proceed to defining the black-box reduction R; see Figure 3 for a visual guide. Recall that
given an attacker A, RA will be interacting with Nat and a challenger C ′:

• RA(1λ) simulates Rdummy(1
λ) and invokes its oracle A on input 1λ. Whenever A wants to

send a message to Nature, RA forwards the message to Nat, and delivers the corresponding
reply to A. Whenever the simulation of Rdummy sends a startsession message (intended for
Nature), RA restarts A on 1λ. (Recall that A is a standard PPT so the algorithm can be
restarted.)

• Whenever the simulation of Rdummy sends to Nature a query of the form (‘att’, q), RA forwards
q to its oracle A, and forwards the corresponding reply back to Rdummy.

• Whenever the simulation of Rdummy sends to Nature a query of the form (‘nat’, q), RA forwards
q directly to its own Nature Nat, and forwards the corresponding reply back to Rdummy.

• Else if Rdummy sends a message m that matches neither format, RA forwards m directly to
Nature, and sends Nature’s reply back to Rdummy.

• On receiving a query q from the challenger C ′, RA sends q to Rdummy, and replies with Rdummy’s
reply.

We now show the correctness of RA, which requires some work. The proof will follow quite
directly from two claims that we state below. The first claim show that we can push A into Nat,
creating a new Nature Nat′, such that (Adummy,Nat

′) behaves just like (A,Nat). The second claim
shows that (Rdummy,Nat

′) behaves just like (RA,Nat). We start by stating the two claims, next
formalize why the proof of Theorem 3.3 follows as a consequence of the claims, and then turn to
proving the claims.

The Two Central Claims. We state the following two key claims.

Claim 3.4. Consider some cosmic adversary (A,Nat) with robust advantage a(·) for C. Then there
exists a Nature Nat′ s.t. (Adummy,Nat

′) has robust advantage a(·) for C.
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Figure 2: Given a cosmic adversary (A,Nat), the composed Nature Nat′ (top) internally simulates
copies of A each talking with the same Nat in order to respond to queries, creating one copy of
A for each instance of security game that Nat′ is playing (switching to a new instance of A every
time it receives a startsession message). Note that depending on whether a query q is tagged with
‘att’ or ‘nat’, Nat′ forwards it either to the active copy of A or to Nat. Any interaction in the
(Adummy,Nat

′(ρ′)) world (top) can be simulated perfectly by an interaction in the (A,Nat(ρ)) world
for some ρ (bottom). The interaction prefix ρ (for Nat) is constructed using ρ′ (for Nat′), stripping
messages of their ‘att’/‘nat’ tags, and using the coins specified by ρ′ intended for (copies of) A to
reconstruct the messages that A sends to Nat.

Claim 3.5. Consider some cosmic adversary (A,Nat), and let Nat′ denote the combined Nature
guaranteed to exists by Claim 3.4. Suppose (Rdummy,Nat

′) has robust advantage ε(·, a(·)) for C ′.
Then (RA,Nat) also has robust advantage ε(·, a(·)) for C ′.

Concluding the Proof of Theorem 3.3. Consider some cosmic adversary (A,Nat) with robust
advantage a(·) in C. By applying Claim 3.4, we have that there exists some Nature Nat′ such
that (Adummy,Nat

′) has robust advantage a(·) for C. By the correctness of the reduction Rdummy, it
directly follows that (Rdummy,Nat

′) has robust advantage ε(·, a(·)) for C ′. By applying Claim 3.5, it
follows that (RA,Nat) has robust advantage ε(·, a(·)) in C ′, which concludes the proof of Theorem
3.3.
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Proofs of the Claims. In this section, we proceed to proving the two claims used in the proof
of Theorem 3.3.

Proof of Claim 3.4. Construct Nat′ as follows (see Figure 2 for a visual guide):

• Nat′(1λ) runs Nat(1λ) and A(1λ). On receiving a query of the form (‘nat’, q), Nat′ forwards q
directly to Nat, and replies with Nat’s reply.

• On receiving a startsession message, Nat′ starts a new fresh simulated copy of A(1λ), replacing
any existing copy of A. Denote the newest copy the ‘active copy’ of A. Throughout, Nat′

forwards communication between A and Nat whenever A wants to talk with Nat.

• On receiving a query of the form (‘att’, q), Nat′ forwards q to the active copy of A, and replies
with A’s reply.

• On receiving a query m that is not of the above forms, Nat′ directly forwards m to Nat, and
replies with Nat’s reply.

We first argue that (Adummy,Nat
′) has robust advantage a(·), as illustrated in Figure 2. Assume

for the sake of contradiction that it does not; then there exists an interaction prefix ρ′ ∈ {0, 1}∗
and some λ s.t.

Pr
[
outC [〈C ↔ Adummy ↔ Nat′(ρ′)〉(1λ)] = 1

]
< a(λ).

We would like to use this prefix ρ′ to contradict the robust advantage of (A,Nat) for the same λ.
For each ρ′, define a corresponding prefix for Nat, denoted ρ, constructed as follows:

• Each ρ′ specifies an interaction history for Nat, which we denote ρ. This follows because
Nat′ is internally emulating Nat, so an interaction history for Nat′ must also contain a prefix
for the emulated Nat. Concretely ρ can be computed from ρ′ by stripping messages of their
‘att’/‘nat’ tags, using startsession messages to determine how many copies of A to instantiate,
and using the randomness specified in ρ′ (intended for simulated copies of A) to reconstruct
the messages that A sends to Nat.

Note that

Pr
[
outC [〈C ↔ A↔ Nat(ρ)〉(1λ)] = 1

]
= Pr

[
outC [〈C ↔ Adummy ↔ Nat′(ρ′)〉(1λ)] = 1

]
< a(λ)

as the simulation is perfect; we are just renaming entities (see Figure 2). We thus contradict
(A,Nat)’s a(·)-robust advantage for C. Thus (Adummy,Nat

′) has robust advantage a(·) for C.

We move on to proving Claim 3.5

Proof of Claim 3.5. We show that (RA,Nat) has the same robust advantage for C ′ as does (Rdummy,Nat
′),

by showing that every execution involving (RA,Nat) can be emulated by an execution with (Rdummy,Nat
′).

Recall that robust winning requires that for all λ, for every interaction prefix ρ ∈ {0, 1}∗, (RA,Nat(ρ))
has advantage ε(λ, a(λ)) for C ′ on λ. To this end, we show that fixing any λ, for any ρ, there exists
ρ′ for Nat′ s.t.

outC [〈C ′ ↔ RA ↔ Nat(ρ)〉(1λ)] ≡ outC [〈C ′ ↔ Rdummy ↔ Nat′(ρ′)〉(1λ)].

Given ρ ∈ {0, 1}∗, construct ρ′ ∈ {0, 1}∗ as follows:
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Figure 3: The reduction RA internally runs a simulation of Rdummy and uses its oracle to simulate
copies of A in order to generate the correct queries for Nat. Each time Rdummy generates a new
startsession message, RA sends future (‘att’, q) messages to a new copy of A. Here, we show that
any interaction with (RA,Nat(ρ)) (top) can be simulated by an interaction with (Rdummy,Nat

′(ρ′))
for some ρ′ (bottom). ρ′ is essentially the same as ρ, except each incoming message q is additionally
tagged with (‘nat’, q).

• ρ′ is the same as ρ, except each message q in ρ sent to Nature is tagged with (‘nat’, q).

As we shall argue, by construction, this emulation is perfect (see Figure 3 for an illustration). In
more detail, the behavior boils down to five cases:

1. Rdummy outputs a message startsession. If Rdummy is simulated by RA, RA restarts its oracle
A. If Rdummy is interacting with Nat′, Nat′ will restart its simulation of A.

2. Rdummy outputs a message (‘att’, q). If Rdummy is simulated by RA, RA routes q to its oracle
A. If Rdummy is interacting with Nat′, Nat′ routes q to its simulated A.

3. Rdummy outputs a message (‘nat’, q). If Rdummy is simulated by RA, RA routes q to Nat. If
Rdummy is interacting with Nat′, Nat′ routes q directly to its simulated Nat.

4. Rdummy outputs any other message m. If Rdummy is simulated by RA, RA routes m to Nat. If
Rdummy is interacting with Nat′, Nat′ routes m directly to its simulated Nat.
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Hence,

Pr[outC′ [〈C ′ ↔ RA ↔ Nat(ρ)〉(1λ)] = 1]

= Pr
[
outC′ [〈C ′ ↔ Rdummy ↔ Nat′(ρ′)〉(1λ)] = 1

]
≥ ε(λ, a(λ))

as required, where the last inequality follows from the ε(·, a(·))-robust advantage of (Rdummy,Nat
′)

for C ′.

Since the existence of a cosmic reduction trivially implies the existence of a cosmic reduction for
the dummmy adversary, we directly get that cosmic reductions are equivalent to cosmic black-box
reductions (i.e., Definitions 3.3 and 3.5 are equivalent):

Corollary 3.6. Let ε : N× [0, 1] → [0, 1], C and C ′ be security games. If there exists an ε-cosmic
reduction from C to C ′, then there exists a ε-cosmic black-box reduction from C to C ′.

3.3 An Equivalent Notion of Cosmic Reduction

We can easily imagine seemingly weaker notions of robust winning that may still admit useful
notions of cosmic reduction. To further convince ourselves that our notion of robust winning is
the correct one to study, it is useful to explore whether alternative robust winning definitions are
captured by the current notion.

In this section, we consider one such definition. At a high level, consider a cosmic adversary that
(on input 1λ and on any prefix ρ) plays a security game C multiple times but is only guaranteed
to win 1 out of every p(λ) security games that it plays. We show that any cosmic reduction,
given access to such a weak winning cosmic adversary, can in fact emulate a robust winning cosmic
adversary that wins every security game that it plays with probability 1/p(λ). Thus, showing a
cosmic reduction suffices for this setting as well.

Definition 3.8 (Repeated Security Game). For any security game C, and polynomial p(·), denote

C
p(·)
repeated the repeated security game that on input 1λ runs p(λ) number of copies of C in sequence,

starting each subsequent instance of C when the previous copy has halted, and outputting 1 if and
only if at least one of its instances of C outputs 1.

Definition 3.9 (Sometimes Robust Advantage). Let a : N → [0, 1], and let p(·) : N → N be a
polynomial function. We say that a cosmic adversary (A,Nat) has p(·)-sometimes robust advantage

a(·) for a security game C if (A,Nat) has robust advantage a(·) for C
p(·)
repeated.

Lemma 3.7 (Equivalence of the two notions). Let p(·) be a polynomial, and let C be some security
game. There exists a PPT oracle machine R s.t. for any cosmic adversary (A,Nat), if (A,Nat) has
p(·)-sometimes robust advantage a(·) for C, then (RA,Nat) has robust advantage a(·)/p(·) for C.

Proof. The construction of R is as follows. On input 1λ, in an interaction with the challenger C and
Nature Nat, RA first samples i ← [p(λ)] uniformly at random. Next, RA internally runs a single
instance of A(1λ) (allowing it to communicate with Nat), and runs in sequence i− 1 fresh copies of
C(1λ) in an interaction with A. After the (i − 1)th simulation of C (in sequence) has halted, RA

finally starts interacting with its own security game, that is the external C: forwarding C’s queries
to A, and replying with A’s replies, until the external C halts.

29



Now we claim that (RA,Nat) has robust advantage a(·)/p(·) for C. Choose any λ ∈ N. Denote

C1, . . . , Cp(λ) to be the instances of C run by C
p(·)
repeated in any execution on 1λ, and consider the

experiment where we sample i← [p(λ)] at random, and also independently sample x← 〈Cp(·)repeated ↔
A↔ Nat(ρ)〉(1λ). Then Pr[outCi

[x] = 1] over the coins of the experiment is at least a(λ)/p(λ), since
by (A,Nat)’s robust advantage x is a winning execution with probability a(λ), and thus one of the

instances C1, . . . , Cp(λ) will output 1 by the construction of C
p(·)
repeated, and this winning instance

will be chosen independently with probability 1/p(λ). Finally, note that Pr[outCi [x] = 1] in the
above experiment coincides exactly with Pr

[
outC [C ↔ RA ↔ Nat(ρ)] = 1

]
by the construction of

R, concluding the proof.

4 Feasibility of Cosmic Reductions

We next show both positive and negative results for cosmic reductions. First, in Section 4.1, we
show that classical straightline black-box reductions that interact with an adversary in a single
session imply cosmic reductions. This yields many corollaries based on classical reduction, which
we provide in Appendix B. In Section 4.2, we provide a new proof for the witness indistinguishability
of the GMW protocol [GMW91] from a computationally hiding commitment. We show that this
implies a WI proof with a cosmic reduction to PRG security.

Next, in Section 4.3, we show that hardness amplification via Yao’s direct product construc-
tion [Yao82] cannot be proven under a cosmic security reduction that makes only black-box use of
the underlying one-way function. We show in Section 4.4 that the black-box restriction is necessary
since hardness amplification does hold for a notion of re-randomizable one-way functions, which
we define. In Section 4.5, we show that security of the Goldreich-Levin theorem [GL89] cannot be
based on a cosmic reduction that makes black-box use of the underlying one-way function.

4.1 Straightline Black-Box Reductions

We recall the classical notion of a straightline black-box reduction, where the challenger only inter-
acts in a single session with the adversary. We refer to such a reduction as a single-shot, straightline,
black-box reduction.

Definition 4.1 (Single-shot Straightline Black-box Reductions). Let C, C ′ be security games,
a : N → [0, 1], ε : N × [0, 1] → [0, 1]. We say that there is an ε-single-shot straightline black-
box reduction from C to C ′ if there exists a uniform PPT oracle machine R such that for every
adversary A with advantage a(λ) for C on λ, RA(1λ) has advantage ε(λ, a(λ)) for C ′ on λ after
interacting in a single session with A without rewinding A.

We emphasize here that we require that the oracle machine is uniform and cannot hardcode
any information that depends on the adversary A. Additionally, we do not restrict ourselves to
adversaries A that are efficient. The reduction only makes use of A in a black-box way, independent
of its implementation.

We next show that if there is a single-shot straightline black-box reduction R, then that actually
does imply a corresponding cosmic reduction. In Appendix B, we show how this implies cosmic
reductions from a variety of classical constructions and proofs. In particular, we remark that PRG
length extension, the GGM PRF construction from PRGs [GGM86], symmetric key encryption from
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PRFs, Naor’s bit commitments from PRGs [Nao91], and Lamport’s one-time signatures [Lam79]
all fall into this framework.

Theorem 4.1 (Cosmic Reductions from Straightline Black-box Reductions). Let C,C ′ be security
games and ε : N×[0, 1]→ [0, 1]. Suppose there exists an ε-single-shot straightline black-box reduction
from C to C ′. Then there exists an ε-cosmic reduction from C to C ′.

Proof. Let C,C ′ be security games and ε : N× [0, 1]→ [0, 1]. Suppose there exists an ε-single-shot
straightline black-box reduction R from C to C ′. We will show that there exists an ε-cosmic win-
once reduction from C to C ′, which by Lemma 3.2 implies the existence of an ε-cosmic reduction
from C to C ′. Consider some cosmic adversary (B,Nat) that has robust advantage a(·) in the game
C; we show that for every λ, (R̃B ,Nat) has advantage ε(λ, a(λ)) in C ′ on λ, where R̃ denotes an
oracle algorithm that acts just like R but externally forwards (to its own Nature) all Nature queries
made by its oracle. Let (B ↔ Nat) denote the combined execution of B and Nat. Note that by
construction, for every λ ∈ N, it holds that

viewC′ [〈C ′ ↔ R̃B ↔ Nat〉(1λ)] ≡ viewC′ [〈C ′ ↔ R(B↔Nat)〉(1λ)],

where viewC′ [〈C ′ ↔ B′〉(1λ)] is defined as the view of C ′ in an execution of C ′ ↔ B′, and thus we
have that

Pr
î
outC′ [〈C ′ ↔ R̃B ↔ Nat〉(1λ)] = 1

ó
= Pr

î
outC′ [〈C ′ ↔ R(B↔Nat)〉(1λ)] = 1

ó
≥ ε(λ, a(λ)),

as required.

4.2 Witness Indistinguishability from PRG Security

The main result of this section is the existence of a proof for any NP language that has a cosmic
reduction from WI security to (λ + 1)-bit stretch PRG security (Theorem 4.3 below). This result
follows from a new proof for witness indistinguishability (WI) of the GMW protocol [GMW91]
for graph 3-coloring. Our proof is a single-shot straightline black-box reduction from WI to the
computational hiding of the underlying commitment, so by Theorem 4.1, it implies a cosmic re-
duction as well. For security definitions of PRGs and commitments in our framework, we refer to
Appendices B.1 and B.4, respectively.

First, we define witness indistinguishability. Before doing so, recall that an interactive protocol
for an NP language L consists of a pair of ITMs (P, V ) known as the prover and verifier, respectively.
We use RL to denote a specific witness relation that defines L, meaning that x ∈ L iff there exists
a witness w such that (x,w) ∈ RL. In an interactive protocol for L with respect to a witness
relation RL, P and V interact on common input an instance x ∈ L and security parameter 1λ, and
P additionally receives a private input w such that (x,w) ∈ RL. We are now ready to define the
WI security game for an interactive protocol (P, V ).

Definition 4.2 (Witness Indistinguishability). Let (P, V ) be an interactive protocol for an NP
language L with witness relation RL. The witness indistinguishability security game is defined as
follows. The challenger C interacts with a cheating verifier V ? on common input 1λ. First, V ?

sends an instance x and a pair of witness w0, w1. The challenger C aborts if either (x,w0) or
(x,w1) are not in RL. Otherwise, C samples a bit b ← {0, 1} and emulates P in the interaction
〈P (wb), V

?〉(1λ, x). Following the interaction, V ? sends a bit b? to C, and C outputs 1 iff b = b?.
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We proceed by recalling the GMW protocol for graph 3-coloring. For simplicity, we assume
the existence of a non-interactive, perfectly binding commitment scheme Commit for messages in
{1, 2, 3} that takes as randomness r ∈ {0, 1}λ (which also serves as the opening). However, the proof
follows identically for a 2-message scheme, which we formally define and construct in Appendix B.4
by a cosmic reduction to PRG security (based on standard techniques).

The prover P and verifier V receive as common input a security parameter 1λ and a graph
G = (U,E) where U = [n] is the set of vertices and E is the set of edges. P receives as private
input a witness w : U → [3] that specifies a valid three coloring, so for all (i, j) ∈ E, w(i) 6= w(j).

1. P samples a random permutation π : [3]→ [3]. For all i ∈ [n], P computes ci = π(w(i)) ∈ [3]
as the randomly permuted color of vertex i, samples ri ← {0, 1}λ, and computes comi =
Commit(ci; ri). P sends comi to V for all i ∈ [n].

2. V samples a random edge (i, j) ∈ E and sends it to P .

3. If P receives an invalid edge, P sets (i, j) to be the first edge in E by default. P sends the
openings ri and rj to V , revealing the underlying permuted colors ci and cj .

4. V accepts if and only if comi = Commit(ci; ri), comj = Commit(cj ; rj), and ci 6= cj .

We next show that there exists a single-shot, straightline blackbox reduction from the WI of
GMW to the computational hiding of Commit.

Lemma 4.2. There exists an ε-single-shot straightline black box reduction from the witness indis-
tinguishability of the GMW protocol to the computational hiding of Commit, for ε(λ, a) = 1/2+δ/λ3

where δ = a− 1/2.

Proof. Consider some attacker A that on input 1λ outputs a graph G = (U,E) where |U | = λ, valid
witnesses w0, w1 for G, and has advantage 1/2 + δ(λ) at distinguishing an interaction with P (w0)
from one with P (w1). (We may assume without loss of generality that A always outputs a valid
graph of the right size and valid witnesses, as in case A does not, we can always just pick some
dummy graph and valid witnesses.) We construct a PPT reduction R that breaks the hiding of
|U |−2 values of Commit given only blackbox access to a single session of A. The theorem statement
then follows by an additional hybrid over the |U | − 2 ≤ λ committed values, which we omit for
simplicity. The reduction R is defined as follows.

RA(1λ):

1. R receives the graph G = (U,E) (such that |U | = n) and the valid witnesses w0, w1 from A.

2. R next samples a random edge (i′, j′) ← E and two distinct colors ci′ , cj′ . Let π0 be a
permutation such ci′ = π0(w0(i′)) and cj′ = π0(w0(j′)), and define π1 similarly for w1.

3. R sends the commitment challenger two sets of commitment strings: the first set consists of
π0(w0(k)) for all k ∈ U \ {i′, j′}, and the second set consists of π1(w1(k)) for all such k.

4. The challenger samples a random bit b ← {0, 1} and sends R the commitments comk ←
Commit(πb(wb(k))) for all k ∈ U \ {i′, j′}.

5. R samples ri′ , rj′ ← {0, 1}λ, computes comi′ = Commit(ci′ ; ri′), comj′ = Commit(cj′ ; rj′), and
sends to the adversary A the strings comk for all k ∈ U .
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6. R receives an edge (i, j) as a response from A. If (i, j) 6= (i′, j′), R sends the commitment
challenger a random bit b? ← {0, 1}. Otherwise, R sends the openings ri′ , rj′ to A, revealing
the underling colors ci′ , cj′ . R receives a bit b? from A and sends b? to the challenger.

7. The commitment challenger outputs 1 if and only if b? = b.

The following observation will be the central reason this reduction works:

Key observation: For any fixed edge (i′, j′) and fixed witness wb, there is a 1-1 map-
ping between colors ci′ , cj′ and permutations πb over colors.

This simply follows from the fact that in a valid witness wb, we have that colors on an edge (i′, j′)
must be different, so it suffices determine what those 2 colors get mapped to in order to determine
the full permutation (over 3 colors). Note that as a consequence of this observation, it follows that
the distribution of coloring obtained by (1) picking a random permutation and applying it to a
witness (which is what the honest prover does), is identical to the one obtained by picking two
random distinct colors for the edge, computing the unique permutation that corresponds to that
coloring with respect to the witness, and then applying this permutation to the witness (which is
what happens in the above experiment).

We proceed to analyzing this reduction in more detail. Let us first observe that, as required,
R invokes A in a black-box way over a single session and does not rewind or restart A at any
point. It remains to analyze the advantage of RA. Fix some particular security parameter λ, and
let δ = δ(λ). We note that the success probability of RA is given by

Pr[b? = b] = Pr[b? = 1 | b = 1] Pr[b = 1] + Pr[b? = 1 | b = 0] Pr[b = 0]

=
1

2
Pr[b? = 1 | b = 1] +

1

2
Pr[b? = 1 | b = 0]

=
1

2
Pr[b? = 1 | b = 1] +

1

2
(1− Pr[b? = 0 | b = 0])

=
1

2
+

1

2
(Pr[b? = 1 | b = 1]− Pr[b? = 1 | b = 0])

so it suffices to analyze (Pr[b? = 1 | b = 1]− Pr[b? = 1 | b = 0]).
For a given adversary A and security parameter λ, we define two probabilities for notational

convenience. First, for each i, j, we define

pi,j(b, i
′, j′, ci′ , cj′)

to be the probability that A outputs the edge (i, j) in response to the first query given R samples
i′, j′ and colors ci′ , cj′ and C samples the bit b. Second, for each i, j, we define

qi,j(b, i
′, j′, ci′ , cj′)

to be the probability that A outputs b? = 1 in response to the second query given that A output
(i, j) for its first query, R provides valid openings for vertices i and j, and R and C sampled the
given input values as before.

Next, note that by the same argument as we used to expand out the success probability of
RA, it follows that the success probability of A, which by definition is 1/2 + δ, can be written as
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1/2 + 1/2(W1−W0), where Wi is the probability that A outputs 1 after interacting with P (wi). In
other words, we have that

W1 −W0 = 2δ

Next note by the above “key observation”, for every fixed (i′, j′) ∈ E, we can expand out W1−W0

as follows:

2δ = W1 −W0

=
∑

ci′ 6=cj′∈[3]

(1/6) ·
Å ∑

(i,j)∈E

pi,j(1, i
′, j′, ci′ , cj′) · qi,j(1, i′, j′, ci′ , cj′)

−pi,j(0, i′, j′, ci′ , cj′) · qi,j(0, i′, j′, ci′ , cj′)
ã
.

Pulling out the inner sum and dividing the entire equation by |E|, it follows that

2δ/|E| =
∑

(i,j)∈E
ci′ 6=cj′∈[3]

(1/(6|E|)) ·
Å
pi,j(1, i

′, j′, ci′ , cj′) · qi,j(1, i′, j′, ci′ , cj′)

− pi,j(0, i′, j′, ci′ , cj′) · qi,j(0, i′, j′, ci′ , cj′)
ã
.

Instead of specifying the colors for the edge (i′, j′), we can equivalently go over all options of distinct
colors for the edge (i, j), which implies that

2δ/|E| =
∑

(i,j)∈E
ci 6=cj∈[3]

(1/(6|E|)) ·
Å
pi,j(1, i, j, ci, cj) · qi,j(1, i, j, ci, cj)

− pi,j(0, i, j, ci, cj) · qi,j(0, i, j, ci, cj)
ã
.

We proceed to analyze (Pr[b? = 1 | b = 1]−Pr[b? = 1 | b = 0]). We start by analyzing Pr[b? = 1 | b = 1].
b? = 1 implies that either A output 1 whenever (i, j) = (i′, j′), or R output a random bit whenever
(i, j) 6= (i′, j′). Thus, the following holds.

Pr[b? = 1 | b = 1] =
∑

(i,j)∈E
ci 6=cj∈[3]

(1/(6|E|)) · pi,j(1, i, j, ci, cj) · qi,j(1, i, j, ci, cj)

+
∑

(i,j),(i′,j′)∈E
(i,j)6=(i′,j′)
ci′ 6=cj′∈[3]

(1/(6|E|)) · pi,j(1, i′, j′, ci′ , cj′) · (1/2).
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A similar equation holds for Pr[b? = 1 | b = 0]. Thus, writing out the difference, we get

Pr[b? = 1 | b = 1]− Pr[b? = 1 | b = 0]

=
∑

(i,j)∈E
ci 6=cj∈[3]

(1/(6|E|)) ·
Å
pi,j(1, i, j, ci, cj) · qi,j(1, i, j, ci, cj)− pi,j(0, i, j, ci, cj) · qi,j(0, i, j, ci, cj)

ã
+

∑
(i,j),(i′,j′)∈E
(i,j)6=(i′,j′)
ci′ 6=cj′∈[3]

(1/(6|E|)) ·
Å
pi,j(1, i

′, j′, ci′ , cj′) · (1/2)− pi,j(0, i′, j′, ci′ , cj′) · (1/2)

ã
.

The first term is equal to 2δ/|E| by our analysis above. The second term is equal to 0, seen by the
following sequence of equalities.∑
(i,j),(i′,j′)∈E
(i,j)6=(i′,j′)
ci′ 6=cj′∈[3]

(1/(6|E|)) ·
Å
pi,j(1, i

′, j′, ci′ , cj′) · (1/2)− pi,j(0, i′, j′, ci′ , cj′) · (1/2)

ã
= (1/(2|E|)) ·

ÜÅ
1−

∑
(i,j)∈E
ci 6=cj∈[3]

(1/6) · pi,j(1, i, j, ci, cj)
ã
−
Å

1−
∑

(i,j)∈E
ci 6=cj∈[3]

(1/6) · pi,j(0, i, j, ci, cj)
ãê

= 0.

The last line follows since for each b ∈ {0, 1} and distinct colors c 6= c′ ∈ [3], it holds that∑
(i,j)∈E

pi,j(b, i, j, c, c
′) = 1.

Plugging these values in, it follows that

Pr[b? = 1 | b = 1]− Pr[b? = 1 | b = 0] = 2δ/|E|.

This implies that R has advantage 1/2 + δ/|E| at breaking the hiding of a set of |U | − 2 committed
values, as required.

Based on the lemma above, we have the following theorem as an immediate corollary based on
standard results and the framework for cosmic reductions we have built up so far.

Theorem 4.3. Let g be a (λ+1)-bit stretch PRG. For any NP language L with witness relation RL,
there exists a constant round interactive protocol (P, V ) that satisfies completeness, has negligible
statistical soundness, and satisfies the following witness indistinguishability guarantee. There exists
an ε-cosmic reduction from the WI security game of (P, V ) to the PRG security game of g for
ε(λ, a) = 1/2 + δ/(12λ7) where δ = a− 1/2.

Proof sketch. The prover and verifier first apply a standard NP reduction from the NP language L
to graph 3-coloring.

35



The protocol then consists of repeating the GMW protocol above in parallel |E| · λ times.
Completeness holds by completeness of the GMW protocol. Soundness holds unconditionally from
the statistical binding of the commitment scheme and the standard proof of the GMW protocol.
Since a single instance of the protocol has statistical soundness (1 − 1/|E| − negl(λ)), the |E| · λ
repeated protocol has statistical soundness negl(λ).

The proof of witness indistinguishability of the repeated protocol follows by the proof of Lemma 4.2,
which incurs a loss of λ3, by doing another hybrid over the |E| · λ ≤ λ3 repetitions. This gives an
advantage of 1/2 + δ/λ6 in breaking the hiding of a 2-bit commitment scheme (in order to encode
the colors {1, 2, 3}). We lose an extra factor of 2 in the security by another hybrid to the 1-bit
commitment scheme defined in Appendix B.4. The existence of a cosmic reduction to commitment
hiding follows from Theorem 4.1. Finally, the cosmic reduction from commitment hiding to 3λ-bit
stretch PRG security follows from Corollary B.4, which incurs an extra factor of 2 loss, and the
composability Lemma 3.1. Finally, from the composability lemma and Corollary B.1, we reduce to
a (λ+ 1)-bit stretch PRG while incurring another 3λ loss in security. Thus, overall our advantage
in the reduction to the PRG security game is 1/2 + δ/(12λ7) for δ = a− 1/2.

4.3 Impossibility of Hardness Amplification

We next show that hardness amplification of a one-way function via a direct product cannot be
proven with a cosmic reduction, at least if the transformed attacker only has oracle access to f .
In order to formalize the notion of a cosmic black-box reduction that we rule out, we first define a
security game that has oracle access to a specific function. Specifically, we consider security games
C that are defined with respect to some arbitrary function f : {0, 1}∗ → {0, 1}∗ from a class F ,
and require that the attacker only has oracle access to the function f . To define a security game
C that works for any function f , we also give the challenger C oracle access to f . More formally,
define a cosmic black-box reduction with oracle access to a class of functions as follows:

Definition 4.3 (Cosmic Black-box Reductions with Oracle Access). Let F be a set of functions
f : {0, 1}∗ → {0, 1}∗ . Let ε : N × [0, 1] → [0, 1], and C and C ′ be PPT oracle machines. We say
that there is an ε-cosmic black-box reduction with oracle access to the primitive F from C to C ′ if
there exists a PPT oracle machine R s.t. for every f ∈ F , every cosmic adversary (A,Nat), and
every λ ∈ N, letting a denote (A,Nat)’s robust advantage for Cf on λ, then (RA,f ,Nat) has robust
advantage ε(λ, a) for C ′f on λ.

We recall the direct product construction first introduced by Yao [Yao82]. Let f : {0, 1}∗ →
{0, 1}∗. For any n : N→ N, we define the n-fold direct product of f , denoted by f (n) : ({0, 1}λ)n(λ) →
({0, 1}∗)n(λ), to be the function defined as follows:

f (n)(x1, . . . , xn(λ)) = (f(x1), . . . , f(xn(λ))).

For any polynomial n, and oracle f , we let C(n),f denote the one-way function security game for
the direct product construction, that on input 1λ samples x ← {0, 1}λ·n(λ), uses its oracle access
to f to compute y = f (n)(x), sends y to the attacker, and on seeing a reply z, outputs 1 i.f.f.
f (n)(z) = y (which C(n),f uses its oracle access to f to check). Note that C(1),f denotes the normal
one-way function security game. Note that C(n) and C(1) are both oracle machines, and use f in a
black-box way as desired.

Our impossibility result shows that this direct product construction cannot be used to amplify
hardness essentially at all, even if we only require the reduction to work w.r.t. attackers that succeed

36



with fixed constant probability, say a = 1/2: No matter the advantage a of the attacker on the direct
product construction f (n), the reduction will only succeed in inverting the underlying function f
with roughly the same probability a.

Theorem 4.4 (Impossibility of Black-box Hardness Amplification). Let F be the set of all functions
f : {0, 1}∗ → {0, 1}∗. For any polynomial n, suppose there exists an ε-cosmic (black-box) reduction
from C(n) to C(1) with oracle access to the primitive F . Then, there exists a negligible function µ
such that ∀λ ∈ N, a ∈ [0, 1], ε(λ, a) ≤ a+ µ(λ).

Before proceeding to the proof of Theorem 4.4, let us state two (standard) claims about random
functions that will be useful for us. For each λ ∈ N, denote F3λ

λ the set of all functions f : {0, 1}∗ →
{0, 1}∗ s.t. |f(x)| = 3|x| and for all x /∈ {0, 1}λ, f(x) = x ◦ x ◦ x where ◦ denotes concatenation. In
plainer English, F3λ

λ is the set of all length-tripling functions that on inputs of length not equal to
λ behave essentially like an identity function (but still length-tripling).

Claim 4.5. Let f ← F3λ
λ , then f is injective with probability at least 1− 2−λ.

Proof. Every input x /∈ {0, 1}λ already has a unique image f(x) = x ◦ x ◦ x, so consider only those
x ∈ {0, 1}λ. For every input x ∈ {0, 1}λ, its output is a random value y ← {0, 1}3λ over a randomly
chosen f . Thus, for any x ∈ {0, 1}λ, the probability that there exists an x′ such that f(x) = f(x′)
is at most 2λ · 2−3λ = 2−2λ. By a union bound, it follows that for all x ∈ {0, 1}λ, the probability
there exists an x′ such that f(x) = f(x′) is at most 2λ · 2−2λ ≤ 2−λ, which implies the claim.

Claim 4.6 (essentially in [IR95]). Let ` : N→ N and λ ∈ N. For any oracle attacker B that makes
at most `(λ) queries to its oracle, it holds that:

Pr

 f ← F3λ
λ

x← {0, 1}λ
x′ ← Bf (1λ, f(x))

: f(x) = f(x′)

 ≤ 3 · `(λ)

2λ
.

Proof. Let ` : N → N be any function, fix λ ∈ N, and let B be any oracle attacker that makes
at most `(λ) queries to its oracle. Suppose that B, before outputting some x′, always queries its
function oracle f on x′, without loss of generality. We focus on the probability that Bf (1λ, f(x))
queries its function oracle f on x, where the probability is taken over x← {0, 1}λ, B’s randomness,
and f ← F3λ

λ , conditioned on f being injective.
For each i ∈ N, denote UnQueriedi−1 the event that B did not query x in its first i−1 queries, and

denote Queriedi the event thatB queries x as the ith query. For each i, Pr[Queriedi ∩ UnQueriedi−1] ≤
Pr[Queriedi | UnQueriedi−1]. In Subclaim 4.7 below, we show that for any choice of i < 2λ/2,

Pr[Queriedi | UnQueriedi−1] ≤ 2/2λ.

B makes at most ` = `(λ) queries, so i ≤ `. Suppose that ` < 2λ/2. Then, by a union bound, the
overall probability that B queries x at any point is at most ` · 2/2λ. Notice that for ` ≥ 2λ/2, then
` · 2/2λ ≥ 1 anyways, so the bound extends to all choices of `(·).

Finally, by Claim 4.5 f ← F3λ
λ is injective with probability at least 1 − 2−λ; so putting it all

together, B outputs x with probability ≤ ` · 2/2λ + Pr[¬ injective] ≤ ` · 2/2λ + 2−λ ≤ 3`/2λ.

Subclaim 4.7. Let i < 2λ/2. Then Pr[Queriedi | UnQueriedi−1] ≤ 2/2λ.
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Proof of Subclaim 4.7. Denote Bi the oracle attacker that runs B until B makes its ith oracle
query (or halts), at which point Bi outputs B’s ith query (or B’s output). Fix any arbitrary input
y ∈ {0, 1}3λ, and consider any execution Bi(y) – in other words we fix the oracle query/response
pairs (x1, y1), . . . , (xi−1, yi−1), and finally any corresponding output x′. Moreover, assume that for
all j, k ∈ [i − 1], if xj 6= xk then yj 6= yk, that is, the fixed oracle responses do not preclude an
injective oracle.

Suppose that Bi never queries its oracle f on any x ∈ {0, 1}λ s.t. f(x) = y (in other words,
y 6= yj for any j ∈ [i − 1]). Then we argue that over the choice of f ← F3λ

λ , conditioned on
(1) f(xj) = yj for j ∈ [i − 1] and (2) y being in the image of f and (3) f being injective, it
holds that f(x′) = y with probability at most (i − 1)/2λ. This corresponds exactly to the event
Pr[Queriedi | UnQueriedi−1] in the statement of the claim. The inequality holds because at most
i − 1 rows of the truth table of f (on inputs of length λ) are fully fixed; thus, the preimage of
y is distributed uniformly over the set {0, 1}λ \ {x1, . . . , xi−1} and equal to x′ /∈ {x1, . . . , xi−1}
with probability ≤ 1/(2λ − (i− 1)) when i − 1 < 2λ. Note that since f is injective, y has at
exactly one preimage. Further taking i < 2λ/2 as specified in the statement of the subclaim, then
1/(2λ − (i− 1)) ≤ 1/(2λ − i) ≤ 2/2λ, as desired.

Given these claims, we are now ready to proceed to the proof of Theorem 4.4.

Proof of Theorem 4.4. Let n be any polynomial specified in the statement of the Theorem. Suppose
that there is an ε-cosmic black-box reduction from C(n) to C(1) with oracle access to the primitive
F comprising all functions f : {0, 1}∗ → {0, 1}∗. Namely, there is a PPT oracle machine R, such
that for all a ∈ [0, 1], all functions f : {0, 1}∗ → {0, 1}∗, all cosmic adversaries (A,Nat), and all
λ ∈ N, if (A,Nat) has robust advantage a for C(n),f on λ, then (RA,f ,Nat) has robust advantage
ε(λ, a) for C(1),f on λ.

We will show that there exists a negligible function µ such that ε(λ, a) ≤ a+µ(λ) for all security
parameters λ ∈ N and all a ∈ [0, 1]. The actual negligible function will be specified later on, but
for now, it will suffice to require that µ(λ) ≥ n · λlog λ/2λ.

Consider some fixed advantage a ∈ [0, 1] and some security parameter λ. Whenever a security
parameter λ has been fixed, we abuse notation and let n denote n(λ). First note that if a ≥
1 − n · λlog λ/2λ, then a + µ(λ) ≥ 1, so we trivially have that the reduction success’s probability,
ε(λ, a), is upper bounded by a+µ(λ). Thus, in the sequel we may assume without loss of generality
that a < 1−n·λlog λ/2λ. Fixing an a ∈ [0, 1] this means we only need to consider security parameters
λ large enough to satisfy the inequality.

For every function f , and advantage a, we now construct a cosmic adversary (A,Nata,f ). The
rest of the proof proceeds as follows. Consider any a ∈ [0, 1] and λ ∈ N satisfying the condition
that a < 1− n · λlog λ/2λ. Then:

• We first show that for every injective function f , it holds that (A,Nata,f ) has robust advantage
a for C(n),f on security parameter λ.

• By the correctness of the reduction R, it follows that for every injective f , (RA,f ,Nata,f ) must
have robust advantage ε(λ, a) for C(1),f on λ.

• Since random length-tripling functions are injective with overwhelming probability (see Claim 4.5
above), it follows that there exists some fixed negligible function µ1(·) such that (RA,f ,Nata,f )
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also has robust advantage ε(λ, a) − µ1(λ) for C(1),f on λ whenever f is selected at random
from the set of length-tripling functions.

• We finally show that when f is selected at random, we can “simulate” the cosmic attacker
(RA,f ,Nata,f ) while ensuring that the simulation only fails with probability a+ µ2(λ), where
µ2(·) is a negligible function. This concludes that we can invert f for a randomly selected
function f with probability ε(λ, a)− a− µ1(λ)− µ2(λ). Moreover, the “simulator” makes at
most a polynomial number of oracle queries, where the bound depends only on the starting
cosmic reduction R.

• But since inverting a random oracle can only be done with negligible probability by any
oracle attacker that makes a limited number of oracle queries (see Claim 4.6 above), it follows
that there exists some fixed negligible function µ(·) such that ε(λ, a) ≤ a + µ(λ), as desired.
Moreover, this negligible function µ(·) depends only on the number of oracle queries, and not
on a.

Defining the cosmic adversary (A,Nata,f ). Let A be the dummy attacker that forwards mes-
sages between the security game and Nata,f . Nata,f given input 1λ starts by initializing a list Seen
to be empty, representing the set of queries it has previously seen and “saved” in memory. Let
ã = a+n ·λlog λ/2λ (i.e., think of ã as roughly a with some negligible amount added to it), and set
c = max (0, n · (1− ã1/n)). Subsequently, on input a message of the form (y1, . . . , yn) ∈ ({0, 1}3λ)n,
Nata,f does the following.

1. For each i ∈ [n], Nata,f computes a response ri as follows:

(a) If yi 6= f(x′) for some x′ ∈ {0, 1}λ, Nata,f sets the temporary response ri to be ⊥.

(b) If yi ∈ Seen, Nata,f sets ri to be ⊥.

(c) Else, Nata,f sets ri to be ⊥ with probability c/n (independently for each i, where c is
defined above based on a, λ, and n).9

(d) If ri has not been set to ⊥, Nata,f sets ri to be any value in f−1(yi) of length λ.

(e) Nata,f appends yi to Seen. If |Seen| > λlog λ, Nata,f removes the first (i.e. oldest) element
from Seen. In other words, Nata,f is ‘forgetful’ and remembers only the λlog λ most recent
queries that it received.

2. If there exists an i ∈ [n] such that ri = ⊥, Nata,f responds overall with ⊥.

3. Otherwise, Nata,f responds with (r1, . . . , rn).

We highlight that we will analyze Nata,f exclusively in the regime where a < 1 − n · λlog λ/2λ
(without loss of generality by the above argument) in order for the probability c/n to be positive.

Showing that (A,Nata,f ) has robust advantage a.. Choose any a ∈ [0, 1]. In Claim 4.8
below, we show that for all λ satisfying a < 1 − n · λlog λ/2λ, for any choice of injective function
f : {0, 1}∗ → {0, 1}∗, (A,Nata,f ) has robust advantage a for C(n),f on λ.

9Formally, Nat cannot sample a bit with probability c/n if c/n is not sampleable, but we can just sample a 2−b

approximation p̃ of c/n instead, for a sufficiently large b. See Remark 4.1 for full details.

39



Claim 4.8. For any injective function f : {0, 1}∗ → {0, 1}∗, for all λ ∈ N satisfying a < 1 − n ·
λlog λ/2λ, the cosmic adversary (A,Nata,f ) has robust advantage a for C(n),f on λ.

Proof. Fix an injective function f : {0, 1}∗ → {0, 1}∗, any a ∈ [0, 1], and let (A,Nata,f ) be the
cosmic adversary constructed as described previously. Consider λ s.t. a < 1− n · λlog λ/2λ.

Let ρ ∈ {0, 1}∗ be any interaction prefix. Suppose that on input 1λ the security game C(n),f

sends a random challenge (y1, . . . , yn) ← (f(Uλ))n, which A forwards to Nata,f (ρ). We note that
Nata,f either responds with (r1, . . . , rn) such that f(ri) = yi for all i ∈ [n], which causes C(n),g to
accept, or Nata,f responds with ⊥. Thus, it suffices to upper bound the probability that Nata,f
outputs ⊥; we denote this event by [⊥ ← Nata,f ] for simplicity.

Nata,f outputs ⊥ if for some i either (1) yi is not in the image of f , or (2) yi ∈ Seen, or (3) if
Nata,f randomly sets ri to be ⊥ (which happens independently for each i with probability c/n). The
first case does not happen for honestly generated challenges, so we separately bound the probability
for the second and third cases.

We start with analyzing the probability that yi ∈ Seen for some i. Let SomeSeen denote the
event that there is some i such that yi ∈ Seen. In other words, yi is one of the λlog λ most recent
values that Nata,f previously saw in its initial view ρ or that Nata,f already processed as part of
the current query. Note that each yi is a random value in the image of f , which is of size 2λ since
f is injective, and moreover chosen by the challenger independently of the contents of Seen. So the
probability that yi ∈ Seen for any fixed i is at most λlog λ/2λ. By a union bound, this implies that
the probability there exists a yi ∈ Seen is at most n · λlog λ/2λ.

Now, let us analyze the third case. Let Pass be the event that, for every i ∈ [n], Nata,f sets ri
to be a value in f−1(yi) of length λ. In other words, Nata,f did not abort for any i (and set ri to
be ⊥). It follows that

Pr[Pass | ¬SomeSeen] =
(

1− c

n

)n
=

Ç
1− n · (1− ã1/n)

n

ån
= ã.

Putting the above together, the probability that Nata,f outputs ⊥ is bounded by

Pr[⊥ ← Nata,f ] = Pr[SomeSeen] + Pr[¬SomeSeen] · Pr[¬Pass | ¬SomeSeen]

≤ n · λlog λ

2λ
+ (1− ã)

= 1−
Ç
a+

n · λlog λ

2λ

å
+
n · λlog λ

2λ

= 1− a.

Showing that (RA,f ,Nata,f ) succeeds for random f .. We now use the security of the reduction
R (together with the fact that random expanding functions are injective with high probability as
observed in Claim 4.5) to conclude that (RA,f ,Nata,f ) must have advantage ε(λ, a)−2−λ for C(1),f

over the choice of a random f ← F3λ
λ :
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Claim 4.9. For all a, λ s.t. a < 1− n · λlog λ/2λ,

Pr
î
f ← F3λ

λ : (RA,f ,Nata,f ) wins for C(1),f on λ
ó
≥ ε(λ, a)− 2−λ.

Proof. Consider any a, λ s.t. a < 1−n·λlog λ/2λ. Recall that by Claim 4.8, for any injective function
f , the cosmic adversary (A,Nata,f ) has robust advantage a for C(n),f on λ. By the security of the
the cosmic reduction, R, we have that (RA,f ,Nata,f ) must have robust advantage ε(λ, a) for C(1),f

on λ. Thus,

Pr
î
f ← F3λ

λ : (RA,f ,Nata,f ) wins for C(1),f on λ
ó

≥ Pr
[
f ← F3λ

λ : f is injective
]
· Pr
î
(RA,f ,Nata,f ) wins for C(1),f on λ | f is injective

ó
≥ Pr

[
f ← F3λ

λ : f is injective
]
· ε(λ, a)

≥ (1− 2−λ) · ε(λ, a) (by Claim 4.5)

≥ ε(λ, a)− 2−λ.

Simulating (RA,f ,Nata,f ) for random f . We construct a non-uniform oracle machine S that,
using oracle access to any f , simulates the behavior of the cosmic adversary (RA,f ,Nata,f ) in the
view of the security game C(1),f , but without requiring access to Nata,f . Sf is defined as follows:

On input 1λ, Sf runs a copy of RA on 1λ, and forwards messages between the security game
and R. Sf must simulate 1) R’s oracle queries to f , and 2) R’s queries to Nata,f . To simulate R’s
oracle queries to f , Sf :

1. Initializes a set fQueries to be empty, which represents all of the (input, output) pairs corre-
sponding to queries to f that R makes.

2. On a query x, Sf computes y = f(x) using its own oracle access to f , and adds (x, y) to the
set fQueries, and returns y.

To simulate queries to Nata,f , S first initializes a list Seen to be empty, representing the set of queries
it has previously seen. S takes the value c/n as advice (where c is the same used by Nata,f ), specified
up to arbitrary precision. Now, to simulate the response to a query (y1, . . . , yn) ∈ ({0, 1}∗)n:

1. For each i ∈ [n], S computes a value of ri as follows:

(a) If yi ∈ Seen, or if |yi| 6= 3λ, S sets ri to be ⊥.

(b) S sets ri to be ⊥ with probability c/n (where c is the same as used by Nata,f above).

(c) If ri has not been set to ⊥ and there exists an x′ such that (x′, yi) is in fQueries, S sets
ri to be x′.

(d) Otherwise, S sets ri to be ⊥.

(e) S appends yi to Seen. If |Seen| > λlog λ, S removes the first (i.e. oldest) element from
Seen.

2. If there exists an i ∈ [n] such that ri = ⊥, S responds with ⊥.

3. Otherwise, S responds with (r1, . . . , rn).
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Claim 4.10. Let `(·) be the polynomial that upper bounds the runtime of R. There exists a negligible
function µ3(·) (depending on `) s.t. for all a, λ s.t. a < 1− n · λlog λ/2λ,

Pr
î
f ← F3λ

λ : Sf wins for C(1),f on λ
ó
≥ ε(λ, a)− a− µ3(λ).

Proof. Consider a, λ s.t. a < 1 − n · λlog λ/2λ. We first bound the probability that an execution
〈C(1),f ↔ Sf 〉(1λ) diverges from 〈C(1),f ↔ RA,f ↔ Nata,f 〉(1λ) on random f ← F3λ

λ . Denote
fQueries to be the set of queries that R makes to its function oracle f in either experiment. Recall
that R also generates queries of the form (y1, . . . , yn) for A. Let y be the challenge that R receives
from C(1),f . In each experiment, define Bad to be the event that (at least) one of the following
occurs:

1. Non-Injectivity: f is not injective,

2. A Lucky Range Guess: R at some point queries a yi 6= y s.t. yi /∈ Seen, yi /∈ fQueries, and
yi = f(x′) for some x′ ∈ {0, 1}λ.

3. Failure to Abort on y: Whenever R queries some (y1, . . . , yn) s.t. y = yi for some i ∈ [n]
and yj /∈ Seen for all j ∈ [n], then rj is not set to ⊥ for any choice of j ∈ [n] during the step
where either Nata,f or S sets rj ← ⊥ with probability c/n (independently for each j ∈ [n]).

Intuitively, the above three conditions determine exactly when the two experiments can diverge and
thus we claim that

Pr
î
f ← F3λ

λ : (RA,f ,Nata,f ) wins for C(1),f on λ | ¬Bad
ó

= Pr
î
f ← F3λ

λ : Sf wins for C(1),f on λ | ¬Bad
ó

To formalize this, consider any query (y1, . . . , yn) made by R and fix some list Seen (which will be
updated the same way by Nata,f and S), and assume that Bad does not happen.

1. If for some i ∈ [n], either (1) |yi| 6= 3λ or (2) yi is not in the image of f or (3) yi ∈ Seen, then
both Nata,f and S return ⊥.

2. Thus, we concern ourselves only with queries where for all i ∈ [n], yi = f(xi) for some
xi ∈ {0, 1}λ and yi /∈ Seen. There are two cases: either yi ∈ fQueries for all i, or yi /∈ fQueries
for some i.

(a) If yi ∈ fQueries for all i, since, Bad does not happen and in particular the “non-injectivity
condition”, we have that f must be injective. Thus whenever S or Nat inverts yi, they
must return the same preimage (since the preimage is unique); moreover, whenever Nat
successfully inverts, S is also able to do so by looking up the image in fQueries.

(b) Else, there is some i s.t. yi /∈ fQueries. S will return ⊥ with probability 1 as it does not
know the preimage of yi, whereas Nata,f may in fact invert yi. There are two cases to
consider here too: either yi 6= y, or yi = y. If yi 6= y, then the experiments must proceed
exactly the same given the fact that the “A Lucky Guess” condition was not triggered
(since Bad does not happen) Otherwise, if yi = y, then since “Failure to Abort on y”
condition was not triggered (since Bad does not happen), we again have that Nata,f does
not not invert yi so also here the experiments proceed exactly the same.
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Finally, we claim that Pr[Bad] is identical in both experiments since, as argued above, conditioned
on Bad not happening, the experiment proceed in exactly the same way.

Let `(·) be the polynomial that bounds the runtime of R in the statement of the claim, and let
` = `(λ). In Claim 4.11, we show that there is a negligible function µr(·) depending only on `(·)
(and n(·)) such that Pr[Bad] ≤ a+ µ4(λ), and thus

Pr
î
f ← F3λ

λ : Sf wins for C(1),f on λ
ó

= Pr
î
f ← F3λ

λ : (RA,f ,Nata,f ) wins for C(1),f on λ
ó
− Pr[Bad]

≥ ε(λ, a)− 2−λ − Pr[Bad] (by Claim 4.9)

≥ ε(λ, a)− a− 2−λ − µ4(λ).

Taking µ3(λ) = µ4(λ) + 2−λ concludes the proof of the claim, as this function is negligible in λ.

Claim 4.11. There exists a negligible function µ4(·) depending only on `(·) and n(·) s.t. Pr[Bad] ≤
a+ µr(λ).

Proof. We first analyze the probability of each individual event comprising Bad:

1. Non-injectivity: By Claim 4.5, f ← F3λ
λ is not injective with probability upper bounded

by 2−λ/2.

2. A Lucky Range Guess: Consider the probability (over f ← F3λ
λ and the coins of the

execution) that R queries (y1, . . . , yn) s.t. for some i ∈ [n], yi 6= y but yi /∈ fQueries and
yi = f(x) for some x ∈ {0, 1}λ. That is, R finds an image of f on some input of length
λ without having previously invoked its f -oracle on some preimage. We claim that the
probability this occurs is at most ` · n · 2−λ.

Fix any value yi that R queries s.t. yi /∈ fQueries and yi 6= y. For any fixed x ∈ {0, 1}λ, over
the randomness of f ← F3λ

λ , f(x) is uniform in {0, 1}3λ, and moreover independent of f(x′)
for any x′ 6= x, and thus independent of the view of R. Thus, the probability yi is in the
image of f (which is size at most 2λ) is at most 2λ · 2−3λ. Taking a union bound over the
polynomial ` number of queries R might make, and n values for yi (i ∈ [n]) per query, then
the probability that any one of any query of the form (y1, . . . , yn) is in the image of f is at
most (` · n · 2λ) · 2−3λ ≤ ` · n · 2−λ.

3. Failure to Abort on y: Next, we deal with the case where R possibly sends a query yi = y
as part of (y1, . . . , yn). In this case, S will output ⊥ with probability 1. On the other hand,
Nata,f will invert y assuming none of the other queries are set to ⊥ and if y /∈ Seen. Recall
from Claim 4.8 that we defined Pass to be the event that Nata,f does not set ri to be ⊥
with probability c/n for any i for a particular query. The same event can be defined for S
in identical fashion. In the event Pass, Nata,f will invert y whereas S will not, causing a
divergence. We thus need to bound the probability of this event, but notice that we already
did so in the proof of Claim 4.8; namely we have that Pr[Pass | ¬SomeSeen] = ã.

Finally, we need to bound the number of queries that contain y such that y /∈ Seen when
processed. Recall that as soon as a query containing y is received by either Nata,f or S,
y is immediately added to the set Seen, and removed ≥

⌊
λlog λ

⌋
queries later. Thus, in the

sequence of ` queries that R might make, at most 1+
⌊
`/λlog λ

⌋
queries contain y but y /∈ Seen;
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thus the overall probability of the “Failure to Abort on y” event is ≤ (1 +
⌊
`/λlog λ

⌋
) · ã by

union bound.

We conclude the proof by applying a union bound,

Pr[Bad] ≤ 2−λ + ` · n · 2−λ + (1 +
⌊
`/λlog λ

⌋
) · ã

≤ 2−λ + ` · n · 2−λ + ã+
⌊
`/λlog λ

⌋
= a+ 2−λ + n · (λlog λ + `) · 2−λ +

⌊
`/λlog λ

⌋
since recall that ã = a+ n · 2−λ · λlog λ < 1. Taking µ4(λ) = 2−λ + n · (λlog λ + `) · 2−λ +

⌊
`/λlog λ

⌋
concludes the proof, as this quantity is negligible in λ.

Concluding the final bound.. Let `(·) be a polynomial that bounds the runtime of R. By
Claim 4.10, there exists a negligible function µ3(·) depending only on `(·) s.t. choosing any a, λ
satisfying a < 1−n · λlog λ/2λ, then for f ← F3λ

λ , Sf inverts f with probability ε(λ, a)− a−µ3(λ).
By Claim 4.6, observing that Sf only queries f when RA,f queries f , and thus the number of
queries made by Sf is bounded by the polynomial `(λ),

ε(λ, a)− a− µ3(λ) ≤ 3 · `(λ) · 2−λ

and thus

ε(λ, a) ≤ a+ µ3(λ) + 3 · `(λ) · 2−λ

Finally, choosing µ(λ) = µ3(λ) + 3 · `(λ) · 2−λ concludes the proof of the Theorem.

Remark 4.1. As previously noted in Footnote 9, formally we must account for values of c/n that
are not sampleable. Instead we sample a “rounded” approximation of c/n, denote p̃, and proceed
using p̃ in lieu of c/n. Here, take b = 2n and thus p̃ will be a 2−b approximation of c/n, namely
c
n − 2−b ≤ p̃ ≤ c

n + 2−b. To implement this, Nat will simply receive the first b bits of the binary
expansion of c/n as advice (recalling that in our model Nature can be non-uniform). We then
sample a bit with probability p̃ by using b random coins (e.g. see [HP15]). Like Nat, S also does
this sampling by receiving the first b bits of the binary expansion of c/n as advice (and is thus
non-uniform), and then efficiently samples the bit in exactly the same way as Nat.

To counteract the advantage loss due to rounding, we choose c = n(1 − ã1/n − 2−b) instead.
Then, in the proof of Claim 4.8, Pr[Pass | ¬SomeSeen] = (1− p̃)n ≥ (1− c

n−2−b)n = (ã1/n)n = ã, as

required to give Nata,f robust advantage a on C(n),f for all λ. For this choice of c, we consider only
those choices of a and λ s.t. ã1/n+2−b < 1, or in other words a < (1−2−b)n−nλlog λ/2λ = 1−µ′(λ)
for some negligible function µ′. For a ≥ 1 − µ′(λ), again the theorem statement holds trivially.
Later, for the analysis of the simulator in Claim 4.11, we can lower bound Pr[Pass | ¬SomeSeen] =
(1 − p̃)n ≤ (1 − c

n + 2−b)n = (ã1/n + 2 · 2−b)n = ã + µ′′(λ) for some negligible µ′′ as required for
bounding the probability of a “failure to abort on y”.

4.4 Hardness Amplification for Re-randomizable One-Way Functions

Theorem 4.4 relies on the fact that the reduction works for every function f . We now show that
if we only require hardness amplification for so-called re-randomizable functions, then the direct
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product construction works—in fact, even if setting the number of repetitions to 1. This result is
interesting in the sense that the reduction we present is not single-shot straight line; rather, we do
invoke the adversary many time, but can still argue that the reduction is cosmic. We additionally
show that a single-shot straightline black-box reduction cannot be used. Thus, taken together,
these results show that single-shot striaghline reductions are a strict subset of cosmic reductions.

We proceed to defining the notion of a re-randomizable function.

Defining Re-randomizable Functions. A re-randomizable function is closely related to the
notion of re-randomizable encryption that has been considered [PR07, Gro04, CKN03]. We require
that the output of a function can be re-randomized in a way that statistically hides the original input
of the function. However, given a pre-image for the randomized output as well as the randomness
used for re-randomization, you can recover the original input.

Definition 4.4 (Re-randomizable One-Way Function). Let α : N → [0, 1]. A function f is a re-
randomizable α-one-way function if it is an α-one-way function and there exist PPT algorithms
rand, recover such that:

1. For all λ ∈ N, x ∈ {0, 1}λ, it holds that{
r ← {0, 1}λ : rand(f(x), r)

}
≡
{
x′ ← {0, 1}λ : f(x′)

}
.

2. For all λ ∈ N, x, r ∈ {0, 1}λ, if z ∈ f−1(rand(f(x), r)) and x′ = recover(z, r), then f(x′) =
f(x).

While the above definition is strong, we note that the discrete-log based one-way function is
re-randomizable in the common reference string model. Namely, if G is a group of prime order p
and g a random generator G, then the function fg,G(x) = gx is a re-randomizable function from

Zp to Zp. We can define rand(gx, r) as (gx) · (gr) = gx+r, which is distributed identically to gx
′

for a random x′ ← Zp. The we can define recover(z, r) = z − r, which clearly satisfies the required
correctness condition for recover.

Hardness Amplification for Re-Randomizable Functions.. We next show that if a function
f is re-randomizable, then there is a trivial reduction that amplifies the success probability of any
cosmic adversary (A,Nat) for inverting f . In other words, any re-randomizable α-one-way function
f where α ≤ 1 − 1/poly(λ) is a strong one-way function. Note that we do not even need to use a
direct product construction to prove this (i.e. a 1-fold direct product suffices).

Theorem 4.12. Let f be a re-randomizable one-way function with security game C. For any
polynomial m, there exists an ε-cosmic reduction from C to C where ε(λ, a) = 1− (1− a)m(λ).

Proof. Let (Adummy,Nat) be a cosmic adversary with robust advantage a(λ) for any λ ∈ N. For
any choice of polynomial m(·), we will show a cosmic adversary (Rdummy,Nat) with advantage
1− (1− a(λ))m(λ) for C on any λ. By the Win Once Lemma 3.2 and the Dummy Lemma 3.3, we
immediately get a full cosmic reduction.

Construct Rdummy as follows. On security parameter 1λ and input y = f(x) from the challenger
C, Rdummy does the following:

1. First, Rdummy computes m(λ) rerandomizations of y. Formally, for i ∈ [m(λ)], Rdummy samples
a random ri ← {0, 1}λ and sets yi = rand(f(x), ri).
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2. For each i ∈ [m(λ)], Rdummy first sends a startsession message to Nat, and then sends (‘att’, yi)
to Nat, receiving in response some zi. (This choice of behavior is based on the construction
of Adummy, which prepends its interaction with startsession and tags every message with ‘att’.)

3. Finally, for each i ∈ [m(λ)], Rdummy computes xi = recover(zi, ri) and checks if f(xi) = y. If
so, Rdummy sends xi back to the challenger.

Fix any λ ∈ N. Next, for each i ∈ [m(λ)], denote Inverti the event that zi ∈ f−1(yi). We want
to show that

Pr[Inverti | ¬Invert1 ∩ . . . ∩ ¬Inverti−1] ≥ a(λ) (1)

Fix any transcript ρ for Nat of the form

(startsession, (y1, z1)), . . . , (startsession, (yi−1, zi−1))

such that ¬Invert1 ∩ . . .∩¬Inverti−1. Recall that by the robust advantage of (Adummy,Nat), for any
such prefix ρ, if Nat(ρ) receives in sequence a new startsession message followed by a (‘att’, f(Uλ))
message, then Nat(ρ) must invert f(Uλ) with probability ≥ a(λ) (over the randomness of Uλ and
Nat). Observing that yi ≡ f(Uλ) by the correctness of rand(·), then Inverti must occur with
probability ≥ a(λ) on any such ρ, showing Equation 1.

Finally, Equation 1 immediately implies that

Pr
[
Invert1 ∪ . . . ∪ Invertm(λ)

]
= 1− Pr

[
¬Invert1 ∩ . . . ∩ ¬Invertm(λ)

]
≥ 1− (1− a(λ))m(λ)

By the correctness of recover, if zi ∈ f−1(yi) for any i, letting xi = recover(zi, ri), then f(xi) = f(x)
as required (where x is the original challenge sent to Rdummy), concluding the proof.

Impossibility of Single-Shot Hardness Amplification. We proceed to showing that single-
shot straightline black-box reductions cannot be used to prove a hardness amplification theorem
through direct products even for re-randomizable functions, thus showing a separation between
cosmic and single-shot straightline reductions.

Lemma 4.13. For any polynomial n, for any function f : {0, 1}∗ → {0, 1}∗, suppose that there
exists an ε-single-shot straightline black-box reduction from C(n),f to C(1),f . Then there exist a
PPT algorithm A′ such that for every every sampleable probability a, ε∗(λ) = {ε(λ, a)− a}, it holds
that A′ has advantage ε∗(·) for C(1),f .

Proof. Fix n and ε and f : {0, 1}∗ → {0, 1}∗. Suppose (by the definition of single-shot straightline
black-box reduction) that there is a PPT oracle machine R s.t. for every A with some advantage a
for C(n),f on some λ, Rf,A has advantage ε(λ, a) for C(1),f on λ, and moreover R never restarts or
rewinds A.

Now, fix any sampleable probability a ∈ [0, 1]. Consider the machine B that on input 1λ flips a
biased coin that is heads with probability exactly a; if heads, B inverts the challenge from C(n),f ;
if tails, B fails and returns ⊥. Thus B has advantage a for C(n),f on any λ ∈ N. Consider the PPT
attacker machine B∗ that always replies ⊥ to every query that it receives. For any execution that
runs B at most once, and in a straightline way, with probability 1− a over the randomness of the
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execution, B∗ (when swapped for B) exactly simulates B. Thus for all λ ∈ N:

Pr
î
outC(1),f [〈C(1),f ↔ RB

∗
〉(1λ)] = 1

ó
≥ Pr

î
outC(1),f [〈C(1),f ↔ RB〉(1λ)] = 1

ó
− a

≥ ε(λ, a)− a

and moreover, RB
∗

is PPT.

4.5 Impossibility of Hardcore Predicates

Recall that a predicate h : {0, 1}λ → {0, 1} is hardcore for a function g if, for a random input x,
h(x) cannot be be predicted better than essentially a random guess given only g(x). Formally, we
capture this by a security game that samples x from the domain of g, sends g(x), receives a bit b,
and outputs 1 iff b = h(x).

Recall that the Goldirech-Levin Theorem [GL89] shows that any one-way function f , can be
slightly modified into a “randomness-extended” one-way function g(x, r) = (f(x), r) such that the
inner-product function h(x, r) = 〈x, r〉 is a hard-core predicate for g; in this construction, we have
|x| = |r|. In other words, (the randomneness-extended version) of any one-way function f has
a hard-core predicate (namely, the inner-product function). We now show that this construction
cannot be proven secure using a cosmic reduction that only access the underlying function f as
a black-box. In fact, we show an even stronger result, showing that no predicte h (no just the
inner-product function) can be shown to be a hard-core predicate for g using a cosmic reduction
that only uses f as a black-box. (Additionally, our result makes no assumption on the length of r
in the construction of g from f .)

In more detail, let ` be a polynomial and denote by Cfh,` the security game that on input 1λ first

samples (x, r)← {0, 1}λ×{0, 1}`(λ), then uses its oracle access to f to compute g(x, r) = (f(x), r),
sending it to the attacker, and on receiving a reply b outputs 1 iff b = h(x, r). Denote Cf the one-

way function security game for f . Note that both Cfh,` and Cf are PPT oracle machines, using only
oracle access to f , as desired. As we did previously in Section 4.3, and with the same motivation,
for each λ ∈ N denote F3λ

λ the set of all functions f : {0, 1}∗ → {0, 1}∗ s.t. |f(x)| = 3|x| and for all
x /∈ {0, 1}λ, f(x) = x ◦ x ◦ x where ◦ denotes concatenation.

Theorem 4.14 (Impossibility of a Goldreich-Levin Theorem). Let F be the set of all functions
f : {0, 1}∗ → {0, 1}∗. Let `(·) be any polynomial. Let h : {0, 1}λ × {0, 1}`(λ) → {0, 1} be any
function (taking any input length λ ∈ N). Suppose there exists an ε-cosmic (black-box) reduction
from Ch,` to C with oracle access to the primitive F . Then, there exists a negligible function µ such
that ∀λ ∈ N, a < 1− λlog λ/2λ, ε(λ, a) ≤ µ(λ).

The proof of Theorem 4.14 follows a similar high-level structure as the proof for Theorem 4.4.

Proof. Let `(·) and h(·) be functions as specified in the Theorem statement. Suppose there exists
an ε-cosmic black-box reduction from Ch,` to C with oracle access to f—namely, that there is a
PPT oracle machine R s.t. for all functions f : {0, 1}∗ → {0, 1}∗, all cosmic adversaries (A,Nat),

and all λ ∈ N, if (A,Nat) has some robust advantage a for Cfh,` on λ, then (RA,f ,Nat) has robust

advantage ε(·, a) for Cf on λ.
The proof proceeds according to the following high-level outline, in nearly identical fashion as

for the proof of Theorem 4.4. First, for any function f : {0, 1}∗ → {0, 1}∗ we construct a cosmic
adversary (A,Natf ). Now, consider any choice of λ ∈ N, a ∈ [0, 1] s.t. a < 1− λlog λ/2λ. Then:
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• We first show that for every injective function f , the cosmic adversary (A,Natf ) has robust

advantage 1 − λlog λ/2λ for Cfh,` on λ. Thus, (A,Natf ) immediately has robust advantage a

for Cfh,` on λ.

• By the correctness of the cosmic reduction R, it follows that for every injective function f ,
(RA,f ,Natf ) has advantage ε(λ, a) on Cf on λ.

• Since random length-tripling functions are injective with overwhelming probability (again, see
Claim 4.5 in the previous section), it follows that there exists some fixed negligible function
µ1(·) such that (RA,f ,Natf ) also has robust advantage ε(λ, a)− µ1(λ) for Cf on λ whenever
f is selected at random from the set of length-tripling functions.

• We finally show that when f is selected at random, we can “simulate” the cosmic attacker
(RA,f ,Natf ) in polynomial time, while ensuring that the simulation aborts only µ2(λ) of the
time, where µ2(·) is a negligible function, and otherwise fails with probability 1/2 independent
of the success probability of the simulated reduction. This concludes that we can invert f in
polynomial time for a randomly selected function f with probability 1

2 · ε(λ, a)− µ2(λ).

• But since inverting a random oracle can only be done with negligible probability (see Claim
4.6 in the previous section), it follows that there exists some negligible function µ such that
ε(λ, a) ≤ µ(λ), as desired.

Constructing the cosmic adversary (A,Natf ).. Let f : {0, 1}∗ → {0, 1}∗. A is the dummy
adversary, and simply forwards messages between the security game and Natf . Natf on input 1λ

initializes a list Seen to be empty, representing the set of queries it has previously seen. Recall
that the challenger Cfh,` will send the adversary queries of the form (f(x), r) for x ← {0, 1}λ, r ←
{0, 1}`(λ), and that the adversary should respond with a guess for the hardcore bit h(x, r). In
our construction, on receiving any query (y, r) ∈ {0, 1}3λ × {0, 1}`(λ), Natf responds by doing the
following:

1. If y /∈ Seen and y is in the image of f , Natf finds some pre-image x s.t. f(x) = y and sets
b = h(x, r).

2. Else, set b to be a random bit.

3. Finally, Natf responds with b and appends y to Seen. If |Seen| ≥ λlog λ, Natf removes the
first (i.e. oldest) element from Seen.

Showing that (A,Natf ) has robust advantage 1− λlog λ/2λ+1 for Cfh,`..

Claim 4.15. For all injective functions f , for all λ ∈ N, the cosmic adversary (A,Natf ) has robust

advantage 1− λlog λ/2λ+1 for Cfh,` on λ.

Proof. Consider any injective function f , and any λ ∈ N. Let ρ ∈ {0, 1}∗ be any interaction prefix.

Suppose that Cfh,` sends a random challenge (y, r)← (f(Uλ), U`(λ)), which A forwards to Natf (ρ).
Note that y is always in the image of f . Now, there are two cases, corresponding to whether
y ∈ Seen. If y ∈ Seen, Natf will output the wrong bit with probability 1/2 over its random tape. If
y /∈ Seen, then Natf will always output the correct bit.
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We now analyze the probability than y ∈ Seen. Since f is injective, its image on inputs of length
λ must be size 2λ, and moreover y ← f(Uλ) must be uniformly distributed over these 2λ possible
values, and also independent of y′ ∈ Seen (since it was generated by the challenger). Thus, the
probability that y ∈ Seen (over the coins of the challenger) is at most |Seen|/2λ ≤ λlog λ/2λ.

Thus, the overall probability that Natf (ρ) outputs the wrong bit is

= Pr[y ∈ Seen] · 1/2 + Pr[y /∈ Seen] · 0
≤ λlog λ/2λ+1

Thus the probability that Natf (ρ) outputs the correct bit is at least 1− λlog λ/2λ+1.

Showing that (RA,f ,Natf ) inverts random f .. We next show that the reduction (RA,f ,Natf )
must invert a random f ← F3λ

λ with probability at least ε(λ, a)−2−λ for all a, λ s.t. a < 1−λlog λ/2λ.

Claim 4.16. For all a, λ s.t. a < 1− λlog λ/2λ,

Pr
[
f ← F3λ

λ : (RA,f ,Natf ) wins for Cf on λ
]
≥ ε(λ, a)− 2−λ

Proof. Consider any a, λ s.t. a < 1 − λlog λ/2λ. Recall that by Claim 4.15), for any injective

function f , the cosmic adversary (A,Natf ) has robust advantage 1− λlog λ/2λ for Cfh,` on λ, which

immediately implies that it has robust advantage a for Cfh,` on λ, as 1 − λlog λ/2λ > a. By the

security of the the cosmic reduction, R, we have that (RA,f ,Natf ) must have advantage ε(λ, a) for
Cf on λ, again for injective choices of f . Thus,

Pr
[
f ← F3λ

λ : (RA,f ,Natf ) wins for Cf on λ
]

≥ Pr
[
f ← F3λ

λ : f is injective
]
· Pr

[
(RA,f ,Natf ) wins for Cf on λ | f is injective

]
≥ Pr

[
f ← F3λ

λ : f is injective
]
· ε(λ, a)

≥ (1− 2−λ) · ε(λ, a) (by Claim 4.5 from the previous section)

≥ ε(λ, a)− 2−λ.

Simulating (RA,f ,Natf ) for random f with failure probability ≤ 1/2.. We construct a
PPT oracle machine S that, using oracle access to f , attempts to simulates the behavior of the
cosmic adversary (RA,f ,Natf ) in an interaction with the security game Cf , without having access
to Natf . Subsequently, in Claim 4.17, we show that for random functions, Sf actually succeeds in
performing this simulation with probability roughly 1/2 and thus only has about a factor 2 loss in
advantage for inverting f . Define S to be the following oracle machine:

On input 1λ and oracle f , Sf runs a copy of RA(1λ), and additionally simulates (1) R’s oracle
access to f as well as (2) responses for R’s queries to Nature. To simulate R’s oracle access to f :

1. Sf initializes a set fQueries to be empty, which represents all of the (input, output) pairs
corresponding to queries to f that R makes.

2. On a query x, Sf computes y = f(x) using its own oracle access to f , and adds (x, y) to the
set fQueries, and returns y.
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To simulate responses to queries for Natf , S first initializes a list Seen to be empty, representing the
set of queries it has previously seen. Now, to simulate the response to a query (y, r) ∈ {0, 1}3λ ×
{0, 1}`(λ):

1. If y /∈ Seen and there exists x s.t. (x, y) ∈ fQueries, S sets b = h(x, r).

2. Else, set b to be a random bit.

3. Finally, S responds with b and appends y to Seen. If |Seen| ≥ λlog λ, S removes the first (i.e.
oldest) element from Seen.

Note that S is PPT.

Claim 4.17. Let q(·) be a polynomial that upper bounds the runtime of R. There exists a negligible
function µ2(·) depending on q(·) s.t. for all a, λ where a < 1− λlog λ/2λ,

Pr
[
f ← F3λ

λ : Sf wins for Cf on λ
]
≥ 1

2
· ε(λ, a)− µ2(λ).

Proof. Fix any a, λ s.t. a < 1− λlog λ/2λ as stipulated by the statement of the claim. Consider the
two experiments {

f ← F3λ
λ : 〈Cf ↔ Sf 〉(1λ)

}{
f ← F3λ

λ : 〈Cf ↔ RA,f ↔ Natf 〉(1λ)
}

For any event X, denote PrS [X] and PrNat[X] to be the probability that X occurs in the corre-
sponding experiment. At a high level, the two experiments may diverge in two different ways: first,
an irrecoverable event Bad may occur in either experiment s.t. we are unable to bound its future
behavior in any way. Second, R might ask a query (y, r) s.t. y is the challenge from Cf , in which
case S will return the correct hardcore bit with independent probability 1/2, whereas Natf will
always return the correct answer; thus, conditioned on Bad not occurring, with probability 1/2 the
simulation is perfect.

We proceed to defining the event Bad. Denote fQueries to be the set of queries that R makes
to its function oracle f in either experiment. Let y be the challenge output by the challenger Cf .
Assume without loss of generality that R sends a query of the form (y, r) to Nature at some point
during every execution. Define Bad to be the event that at least one of the following occurs, in the
context of either experiment:

• Non-injectivity. f is not injective.

• Lucky Range Guess. R at some point queries (y′, r) s.t. y′ 6= y, y′ /∈ fQueries, and
y′ = f(x′) for some x′ ∈ {0, 1}λ.

• Successful Repeated Queries. R manages to sends more than one query of the form (y, ·),
(where, recall, y denotes the challenge received from Cf ), such that y /∈ Seen (and thus Natf
would have provided an answer to the query).

We start by showing that this event happens with negligible probability.

Subclaim 4.18. There is a negligible function µ3(·) (that depends only on R) s.t. for all λ,

Pr
Nat

[Bad] ≤ µ3(λ);

Pr
S

[Bad] ≤ µ3(λ).
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Proof. Let q(·) be the polynomial that bounds the runtime of R, which is PPT; choose any λ ∈ N
and denote q = q(λ). We first analyze the probability of each individual event comprising Bad:

1. By Claim 4.5 (from the previous section), f ← F3λ
λ is not injective with Pr ≤ 2−λ/2.

2. By the exact same argument as in Claim 4.11 from the previous section, taking n = 1, the
probability of a “Lucky Range Guess” is ≤ q · 2−λ.

3. Now, we analyze how often R sends more than one query of the form (y, ·) such that y /∈ Seen.
There are at most 1 +

⌊
q/λlog λ

⌋
such queries: as soon as a query containing y is received

by either Natf or S, y is immediately added to the list Seen, and removed ≥ λlog λ queries
later. Thus,

⌊
q/λlog λ

⌋
(which is 0 whenever λ is sufficiently big) bounds the probability of a

repeated successful query.

We conclude the proof by taking a union bound over all three events,

Pr[Bad] ≤ 2−λ + q · 2−λ +
⌊
q/λlog λ

⌋
.

We next analyze the probability that the simulation succeeds conditioned on Bad not occurring.
Towards this, let GoodGuess to be the event that

• Sf correctly responds to (y, r). When R sends for the first time a query of the form (y, r)
for some r ∈ {0, 1}`(λ) s.t there is no x where (x, y) ∈ fQueries, R receives in response the
correct b = h(y, r).

Note that this event happens with probability 1/2. It will be roughly 1/2 even if we condition on
Bad not occurring: Thus we directly have the following claim:

Subclaim 4.19. Let µ3 be the negligible function guaranteed to exists by Subclaim 4.18. Then, the
following holds:

Pr
S

[GoodGuess | ¬Bad] ≥ 1

2
− µ3(λ)

Proof. As argued above, we have that PrS [GoodGuess] = 1
2 . Since by Subclaim 4.18, Pr[Bad] ≤

µ3(λ), it directly follows that

Pr
S

[GoodGuess | ¬Bad] ≥ Pr
S

[GoodGuess]− Pr[Bad] ≥ 1

2
− µ3(λ)

We now have the following claim which argues that if GoodGuess happens, then the simulation
is done perfectly.

Subclaim 4.20. The following holds:

Pr
S

[Cf outputs “win” | ¬Bad ∩ GoodGuess] = Pr
Nat

[Cf outputs “win” | ¬Bad].

Proof. Consider either the experiment for S or the experiment for Nat. If we are analyzing the
experiment for S, assume that the event GoodGuess occurs. Fix some list Seen (which will be
updated the same way by Natf and S), and assume that the event Bad has not and will never
occur. Now, suppose that R makes a query (y′, r) ∈ {0, 1}λ × {0, 1}`(λ) – we now analyze the
resulting behavior, and argue that it is the same for both experiments:
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1. If for some i ∈ [n], either (1) y′ is not in the image of f or (2) y′ ∈ Seen, then both Natf and
S return a random bit.

2. Thus, we concern ourselves only with queries where y′ is in the image of f and y′ /∈ Seen.
There are two cases: either y′ ∈ fQueries or y′ /∈ fQueries.

(a) If y′ ∈ fQueries, since Bad doesn’t happen, we know that f is injective by virtue of the
“non-injectivity condition”. Thus, whenever S or Natf responds to (y′, r), they must
return the same hardcore predicate h(f−1(y′), r) (as the preimage f−1(y′) is unique).
Moreover, whenever Natf successfully computes the correct hardcore bit, S also does so
by looking up the preimage of y′ in fQueries.

(b) If y′ /∈ fQueries, S will always return a random bit, whereas Nata,f may in fact return
the correct hardcore bit. There are two cases here to consider: either y′ 6= y, or y′ = y.
Since we know assumed that Bad doesn’t happen, that immediately rules out y′ 6= y (as
otherwise it triggers the Bad “lucky range guess” condition).

Otherwise, if y′ = y:

• By virtue of the “Successful Repeated Queries” condition in Bad, and since Bad
does not happen by assumption, we know that y cannot have been sent by R in a
previous query.

• Thus, y must have been sent by R for the first time. Natf will always return the
correct bit. Because we assumed that the event GoodGuess occurs, S must also
return the correct bit.

Putting it all together:

Pr
S

[Cf outputs “win”]

≥ Pr
S

[Cf outputs “win” | ¬Bad]− Pr
S

[Bad]

≥ Pr
S

[Cf outputs “win” | ¬Bad]− µ3(λ) (by Subclaim 4.18)

≥ Pr
S

[GoodGuess | ¬Bad] · Pr
S

[Cf outputs “win” | ¬Bad,GoodGuess]− µ3(λ)

=

Å
1

2
− µ3(λ)

ã
· Pr
S

[Cf outputs “win” | ¬Bad,GoodGuess]− µ3(λ) (by Subclaim 4.19)

≥
Å

1

2
− µ3(λ)

ã
· Pr
Nat

[Cf outputs “win” | ¬Bad]− µ3(λ) (by Subclaim 4.20)

≥ 1

2
Pr
Nat

[Cf outputs “win”]− Pr
Nat

[Bad]− 2µ3(λ)

≥ 1

2
Pr
Nat

[Cf outputs “win”]− 3µ3(λ) (by Subclaim 4.18)

≥ 1

2
ε(λ, a)− 2−λ − 3µ3(λ) (by Claim 4.16)

=
1

2
· ε(λ, a)− µ2(λ)

where µ2(λ) = 3µ3(λ) + 2−λ−1, which is a negligible function.
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Concluding the final bound.. By Claim 4.17, there exists a negligible function µ2(·) s.t.
choosing any a, λ satisfying a < 1 − λlog λ/2λ, then for f ← F3λ

λ , Sf inverts f with probabil-
ity 1

2 · ε(λ, a) − µ2(λ). By Claim 4.6 from the previous section, random functions f cannot be
inverted with non-negligible probability:

1

2
· ε(λ, a)− µ2(λ) ≤ 3 · ` · 2−λ

and thus

ε(λ, a) ≤ 2 · (µ2(λ) + 3 · ` · 2−λ).

Let µ′(λ) = 2 · (µ2(λ) + 3 · ` · 2−λ), which is a negligible function. As argued at the beginning of
the proof, taking µ(λ) = µ′(λ) for all choices of λ where λlog λ/2λ ≤ 0.01, and µ(λ) = 1 otherwise,
then for all a ∈ [0, 0.99] and λ ∈ N,

ε(λ, a) ≤ µ(λ)

which finally shows the Theorem.

5 Subclasses of Cosmic Adversaries

The definitions of cosmic adversaries and reductions we have seen so far are very strong. For the
basic definition, we make no assumptions on the behavior of the cosmic adversary (A,Nat), other
than the fact that (A,Nat) will win security games with some advantage over honestly generated
challenges, for any interaction prefix for Nat.

We now consider restrictions on cosmic adversaries, limiting the power of the cosmic adversary,
and show that once we do so, we can overcome the impossibility results presented in Sections 4.3 and
4.5. In particular, we consider “forgetful” Natures that can evolve over time, but only “remember”
the contents of the last k messages that it has seen. Looking ahead, we note that for the main
definition that we consider—cosmic reductions w.r.t. time-evolving k-window Natures—we will not
show that the classic reductions for proving hardness amplification [Yao82] or the security of the
Goldreich-Levin hard-core bit [GL89] work, but rather demonstrate new reductions (unfortunately,
with higher running time). In fact, we will demonstrate that for a large class of so-called non-
adaptive straight-line black-box reduction (into which, e.g., the reductions of [Yao82] and [GL89]
fall into), we can transform such reductions to apply to the relaxed notion of cosmic security.

The notion of a cosmic reductions w.r.t. time-evolving k-window Natures will be defined exactly
like a cosmic reduction, except that we will restrict our attention only to the subclass of time-evolving
k-window Natures for each k. Towards defining this notion, as a warm-up, we will first consider an
even more (and perhaps overly) restrictive class of k-window adversaries.

5.1 Warm Up: k-Window Natures

In this section, as a warm-up, we consider k-window Natures. Roughly speaking, a k-window Nature
Nat remembers only the last k queries that it has received. In essence, such a Nat keeps enough
state to play up to a k-round security game. Later we shall see that such a Nature can otherwise be
treated as a stateless algorithm that can be “restarted” by sending it, for instance, k prespecified
“dummy” messages in advance; indeed, this property is what makes the definition attractive.
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Recall that for an interaction prefix ρ ∈ {0, 1}∗, we use ‖ρ‖ to denote the number of queries
contained within ρ:

Definition 5.1 (k-Window Natures). Let µ : N → [0, 1] and let k : N → N be a polynomial
function. We say that Nat is a (k, µ)-window Nature if for all λ ∈ N, for all ρ, ρ′, ρ′′ ∈ {0, 1}∗ where
‖ρ′′‖ = k(λ), and for all interactive machines O,

∆
Ç
outO[〈O ↔ Nat(ρ ◦ ρ′′)〉(1λ)],

outO[〈O ↔ Nat(ρ′ ◦ ρ′′)〉(1λ)]

å
≤ µ(λ).

Finally, we say that Nat is simply a k-window Nature if there exists a negligible function µ s.t. Nat
is a (k, µ)-window Nature.

To better understand this definition, note that for any two query prefixes, as long as they share
the same last k(λ) queries (and randomness used to respond to those queries), then a k-window
Nature must behave the same way on those two prefixes, even if they are different lengths. This
captures the idea that Nature clearly can keep state within a single session of a security game (i.e.,
in an up-to-k(λ)-round interaction with A) up to a certain point (i.e., if A sends at most k(λ)
queries), but becomes stateless across multiple sessions with security games.

Resetting Nature. A corollary of our k-window Nature definition is that by sending Nature
k(λ) “dummy messages”, say ⊥ messages, it is possible to “reset” the state of Nature to what is
essentially a state independent of prior interactions. This follows because a k-window Nature must
forget interactions seen more than k(λ)-queries ago when run on some security parameter 1λ.

Lemma 5.1 (Resetting Nature By Sending k Dummy Messages). Let µ : N→ [0, 1], let k : N→ N
be a polynomial function, and let (A,Nat) be a cosmic adversary s.t. Nat is a (k, µ)-window Nature.
Define Areset to be the attacker that on input 1λ, first sends Nature k(λ) number of dummy messages
⊥, and then subsequently runs A(1λ) to interact with both the challenger and Nature. Then, for
any challenger C, for all λ ∈ N, for all prefixes ρ, ρ′ ∈ {0, 1}∗,

∆
Ç
outC [〈C ↔ Areset ↔ Nat(ρ)〉(1λ)],

outC [〈C ↔ Areset ↔ Nat(ρ′)〉(1λ)]

å
≤ µ(λ).

Proof. For any random tape r ∈ {0, 1}∗, and for any prefix ρ′′ ∈ {0, 1}∗ denote Nat(ρ′′; r) the
machine with its read-once random tape fixed to r after processing ρ′′ (that is, the next read
location is the first bit of r). Now, let ρ, ρ′ be two prefixes that do not necessarily need to be the
same length, as specified in the lemma statement. Choose any λ ∈ N, and any r ∈ {0, 1}∗. Denote
ρr = (r,⊥,⊥, . . . ,⊥) s.t. ‖ρr‖ = k(λ). Then,

Pr[outC [〈C ↔ Areset ↔ Nat(ρ; r)〉(1λ)] = 1] (2)

= Pr
[
outC [〈C ↔ A↔ Nat(ρ ◦ ρr)〉(1λ)] = 1

]
(3)

≥ Pr
[
outC [〈C ↔ A↔ Nat(ρ′ ◦ ρr)〉(1λ)] = 1

]
− µ(λ) (4)

= Pr
[
outC [〈C ↔ Areset ↔ Nat(ρ′; r)〉(1λ)] = 1

]
− µ(λ) (5)

where the inequality follows directly from the (k, µ)-window property of Nat.
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Now, let b be an upper bound on the number of bits of additional randomness that Nat will
use in either the interaction 〈C ↔ Areset ↔ Nat(ρ)〉(1λ) or 〈C ↔ Areset ↔ Nat(ρ′)〉(1λ), that is
not previously encoded by ρ or ρ′. This bound exists because we model Nat as an ITM that halts
on its input. Thus, each possible tape r ∈ {0, 1}b is equally likely to be used by Nat to finish the
interaction. Now we can write:

Pr[outC [〈C ↔ Areset ↔ Nat(ρ)〉(1λ)] = 1]− Pr
[
outC [〈C ↔ Areset ↔ Nat(ρ′)〉(1λ)] = 1

]
=

∑
r∈{0,1}b

2−b · Pr
[
outC [〈C ↔ Areset ↔ Nat(ρ; r)〉(1λ)] = 1

]
−

∑
r∈{0,1}b

2−b · Pr
[
outC [〈C ↔ Areset ↔ Nat(ρ′; r)〉(1λ)] = 1

]
=

∑
r∈{0,1}b

2−b · (Pr
[
outC [〈C ↔ Areset ↔ Nat(ρ; r)〉(1λ)] = 1

]
− Pr

[
outC [〈C ↔ Areset ↔ Nat(ρ′; r)〉(1λ)] = 1

]
)

≤
∑

r∈{0,1}b
2−b · µ(λ)

= µ(λ).

Cosmic Reductions for k-Window Natures. We now turn to defining cosmic reductions with
respect to k-window Natures, simply by restricting attention to such Natures.

Definition 5.2 (Cosmic Reductions for k-Window Natures). Let k ∈ N, ε : N × [0, 1] → [0, 1],
µ : N → [0, 1], and let C, C ′ be security games. We say that there is a ε-cosmic reduction from
C to C ′ w.r.t. (k, µ)-window Natures if for all PPT A, there exists PPT A′ s.t. for every (k, µ)-
window Nature Nat, letting a(·) denote (A,Nat)’s robust advantage for C, then (A′,Nat) has robust
advantage ε(·, a(·)) for C ′.

On Dummy Adversaries. Observe that the Dummy Lemma (see Theorem 3.3) no longer holds
directly when we restrict to k-window Natures. The reason is that, fixing some polynomial k :
N → N, although a k-window Nature Nat may forget messages that are too old, an accompanying
attacker A(1λ) could in fact keep state for more than k(λ) rounds. Thus, a combined Nature that
combines both A and Nat internally must emulate the statefulness of A, and may no longer be a
k-window Nature. Thus we cannot immediately apply a cosmic reduction for k-window Natures
(and the dummy attacker) to this combined Nature.

Cosmic Reductions for k-Window Natures from Classical Reductions. Since we are
imposing quite strong restrictions on the class of cosmic attacker (but note that these restrictions
are still a lot less restrictive than those classically used in the cryptographic literature) it should
not be a surprise that classic reductions, at least of the straight-line black-box type, directly yield
cosmic reductions with respect to this class of attacker. To formalize this, we need to restrict our
attention to straight-line black-box reductions that only sequentially invoke the attacker:

We start by defining such sequential, straightline, black-box reductions.

55



Definition 5.3 (Sequential Straightline Black-box Reductions). Let C, C ′ be security games,
a : N → [0, 1], ε : N × [0, 1] → [0, 1]. We say that there is an ε-sequential straightline black-box
reduction from C to C ′ if there exists a uniform PPT oracle machine R such that for every adversary
A with advantage a(λ) for C on λ, RA(1λ) has advantage ε(λ, a(λ)) for C ′ on λ after with A.
Furthermore, R may never rewind its oracle, but may restart it oracle an arbitrary number of time
(but if it does so, it can not go back to a previous execution).

We next observe that such a reduction directly yields the existence of a cosmic reduction w.r.t.
k-window Natures. At a high level, the argument is as follows. Given a sequential straight-line
black box reduction R, construct a cosmic reduction that is essentially the same, except each time
R invokes its oracle, the cosmic reduction interacts with Nat instead, using an internal copy of the
cosmic attacker Areset (mimicking R ↔ Areset ↔ Nat). Each time R restarts its oracle, the cosmic
reduction restarts its copy of Areset instead, thus sending Nat k(λ) “dummy queries” to force Nat
to forget prior state (on a security parameter λ). Because Nat is a k-window Nature, we can show
that each interaction with a copy of Areset can be simulated by some fixed algorithm S (without
rewinding Nat). Thus, the cosmic reduction behaves like RS , by a hybrid argument, where we
substitute S for each session with Areset ↔ Nat, one at a time.

Lemma 5.2. Let ε : N×[0, 1]→ [0, 1], q : N→ N, and C,C ′ be security games. Suppose there exists
a ε-sequential straight-line black-box reduction from C to C ′, that on input 1λ restarts its oracle at
most q(λ) times. Then for every function µ : N → [0, 1], for every polynomial k : N → N, there is
a ε∗-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures, where ε∗(λ, a) = ε(λ, a)− q · µ.

We include the detailed proof (as well as other basic observations about k-window Natures, such
as composition) in Appendix A, as they use standard techniques, or are similar to previous proofs.

5.2 Time-Evolving k-Window Natures

We now consider a more relaxed class of Natures that we refer to as time-evolving k-window Natures.
Such Natures remember only the last k(λ) messages that it received (when run on some security
parameter 1λ), but may also “age” and depend on the number of queries that they have received
(but not the contents of queries that are more than k(λ) messages old). This is in contrast to simply
k-window Natures (Section 5.1) that do not remember how many queries that they have received,
that is, ‘keep track of time’.

Definition 5.4 (Time-Evolving k-Window Natures). Let k be a polynomial function k : N → N,
and let µ : N→ [0, 1]. We say that Nat is a time-evolving (k, µ)-window Nature if for all λ ∈ N, for
all ρ, ρ′, ρ′′ ∈ {0, 1}∗ where ‖ρ‖ = ‖ρ′‖ and ‖ρ′′‖ = k(λ), and for all interactive machines O,

∆
Ç
outO[〈O ↔ Nat(ρ ◦ ρ′′)〉(1λ)],

outO[〈O ↔ Nat(ρ′ ◦ ρ′′)〉(1λ)]

å
≤ µ(λ).

We say that Nat is simply a time-evolving k-window Nature if there exists a negligible function µ
s.t. Nat is a time-evolving (k, µ)-window Nature.

The definition above is exactly the same as the definition for k-window Natures, Definition 5.1,
except that we quantify over only those prefixes ρ and ρ′ of the same length. Thus, in contrast to
the k-window setting, in the time-evolving setting Nat can change its behavior as it receives a larger
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number of queries—but not based on the contents of those queries, except for the last k queries.
This models the fact that a cosmic adversary may have different behavior over time (where we
formalize time as the number of queries that Nat has received) as it plays multiple security games,
but where its evolution is independent of the actual outcomes of prior security games.

Again, for any polynomial function k(·), we define cosmic reductions w.r.t. time-evolving k-
window Natures in the same way as cosmic reductions, except that we restrict our attention to
time-evolving k-window Natures.

Definition 5.5 (Cosmic Reductions for Time-Evolving k-Window Natures). Let k be a polynomial
function k : N → N, µ : N → [0, 1], ε : N × [0, 1] → [0, 1], and let C, C ′ be security games. We say
that there is a ε-cosmic reduction from C to C ′ with respect to time-evolving (k, µ)-window Natures
if for all PPT A, there exists PPT A′ such that for every time-evolving (k, µ)-window Nature Nat,
letting a(·) denote (A,Nat)’s robust advantage for C, then (A′,Nat) has robust advantage ε(·, a(·))
for C ′.

Win-Once Cosmic Reductions. When restricting to time-evolving k-window Natures, “win
once” cosmic reductions continue to imply cosmic reductions.

Definition 5.6 (Win-once Cosmic Reductions for Time-Evolving k-Window Natures). Let k be
a polynomial function k : N → N, µ : N → [0, 1], ε : N × [0, 1] → [0, 1], C and C ′ be security
games. We say that there is a win-once ε-cosmic reduction from C to C ′ w.r.t. time-evolving
(k, µ)-window Natures if for all PPT A, there exists a PPT A′ such that for every time-evolving
(k, µ)-window Nature Nat, letting a(·) denote (A,Nat)’s robust advantage for C, then (A′,Nat) has
simply advantage ε(·, a(·)) for C ′.

Lemma 5.3 (Win-once Cosmic Reductions imply Cosmic Reductions for Time-Evolving k-Window
Natures). Let k be a polynomial function k : N→ N, µ : N→ [0, 1], ε : N× [0, 1]→ [0, 1], and C and
C ′ be security games. If there exists a win-once ε-cosmic reduction from C to C ′ w.r.t. time-evolving
(k, µ)-window Natures, then there exists a ε-cosmic reduction from C to C ′ w.r.t. time-evolving
(k, µ)-window Natures.

The proof is nearly identical to that for the generic setting, with the addition that we must argue
that the Nature that hardcodes receiving a prefix ahead of time is itself a time-evolving k-window
Nature:

Proof. Assume that there exists a win-once ε-cosmic reduction from C to C ′ w.r.t. time-evolving
(k, µ)-window Natures. Thus, for any A there exists A′ s.t. for any time-evolving (k, µ)-window
Nature Nat, letting a(·) be (A,Nat)’s robust advantage for C, then (A′,Nat) has advantage ε(·, a(·))
for C ′. We claim that (A′,Nat) also has robust advantage ε(·, a(·)) for C ′: For any interaction prefix
ρ ∈ {0, 1}∗, denote Natρ the Nature machine that on input 1λ, simply runs Nat on input 1λ, but
starting in the state where Nat already saw the prefix ρ. We stress that Natρ hardcodes ρ (as a
non-uniform advice string). Then, for any prefix ρ, (A,Natρ) itself also has robust advantage a(·)
for C; namely, for all ρ′ ∈ {0, 1}∗,

Pr
[
outC [〈C ↔ A↔ Natρ(ρ

′)〉(1λ)] = 1
]

= Pr
[
outC [〈C ↔ A↔ Nat(ρ ◦ ρ′)〉(1λ)] = 1

]
≥ a(λ).

The inequality follows from the robust advantage of (A,Nat) for C, as ρ ◦ ρ′ itself is a valid prefix.
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Importantly, for any prefix ρ, Natρ is a time-evolving (k, µ)-window Nature, which follows from
the fact that Nat is a time-evolving (k, µ)-window Nature. To see why, observe that the latter
immediately implies that for all ρ ∈ N, for all λ ∈ N, for all ρ′, ρ′′, ρ∗ ∈ {0, 1}∗ where ‖ρ′‖ = ‖ρ′′‖
and ‖ρ∗‖ = k(λ), ∀O,

∆
Ç
outO[〈O ↔ Nat(ρ ◦ ρ′ ◦ ρ∗)〉(1λ)],

outO[〈O ↔ Nat(ρ ◦ ρ′′ ◦ ρ∗)〉(1λ)]

å
≤ µ(λ), (6)

because ‖ρ ◦ ρ′‖ = ‖ρ ◦ ρ′′‖ and both are valid prefixes for Nat. Equation 6 coincides exactly the
definition of the time-evolving (k, µ)-window property for Natρ.

Thus we can apply the win-once ε-cosmic reduction w.r.t. time-evolving (k, µ)-window Natures
to (A,Natρ). Consequently, for any prefix ρ, (A′,Natρ) has advantage ε(·, a(·)) for C ′. Thus, for
any prefix ρ, and any security parameter λ:

Pr
[
outC′ [〈C ′ ↔ A′ ↔ Nat(ρ))〉(1λ)] = 1

]
= Pr

[
outC′ [〈C ′ ↔ A′ ↔ Natρ〉(1λ)] = 1

]
≥ ε(λ, a(λ))

concluding the proof.

Resetting Nature. As is the case in the k-window setting (that is, not time-evolving; see
Lemma 5.1), we note that by sending Nature k(λ) “dummy messages”, it is possible to “reset”
the state of Nature to what is essentially a state independent of prior interactions (but now Nature
can still evolve based on time, or the number of queries that it has received). This follows because
a (time-evolving) k-window Nature must forget interactions seen more than k(λ)-queries ago.

Lemma 5.4. Let k be a polynomial function k : N → N, let µ : N → [0, 1], and let (A,Nat) be a
cosmic adversary s.t. Nat is a time-evolving (k, µ)-window Nature. Define Areset to be the attacker
that on input 1λ, first sends Nature k(λ) number of dummy messages ⊥, and then subsequently runs
A(1λ) to interact with both the challenger and Nature. Then, for any challenger C, for all λ ∈ N,
for all prefixes ρ, ρ′ ∈ {0, 1}∗ s.t. ‖ρ‖ = ‖ρ′‖,

∆
Ç
outC [〈C ↔ Areset ↔ Nat(ρ)〉(1λ)],

outC [〈C ↔ Areset ↔ Nat(ρ′)〉(1λ)]

å
≤ µ(λ).

Proof. The proof follows identically from that of Lemma 5.1, the only difference being that the two
prefixes ρ and ρ′ must now be the same length. Equation 4 (in the proof of Lemma 5.1) then follows
from the ‘less constraining’ time-evolving (k, µ)-window property of Nat, instead of requiring the
stronger (k, µ)-window property. This is because we no longer need to deal with arbitrary length
prefixes ρ, ρ′; the two prefixes are now of the same length. The remainder of the proof of Lemma 5.1
can be applied to the current setting verbatim.

Composability. Composability for cosmic reductions w.r.t. time-evolving (k, µ)-window Natures
follows directly from Definition 5.5.

Lemma 5.5 (Composition of Cosmic Reductions for Time-Evolving k-Window Natures). Let
C1, C2, C3 be security games, let µ : N → [0, 1], and let k be a polynomial function k : N → N.
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Suppose there exists an ε1-cosmic reduction from C2 to C1 w.r.t. time-evolving (k, µ)-window Na-
tures, and an ε2-cosmic reduction from C3 to C2 w.r.t. time-evolving (k, µ)-window Natures. Then,
there exists an ε?-cosmic reduction from C3 to C1 w.r.t. time-evolving (k, µ)-window Natures, where
ε?(λ, a) = ε1(λ, ε2(λ, a)) for all λ ∈ N and a ∈ [0, 1].

Proof. Let Nat be any time-evolving (k, µ)-window Nature. Let A3 be any PPT attacker, and
denote a(·) the robust advantage of (A3,Nat) for C3. Since there is a ε2-reduction from C3 to C2

w.r.t. time-evolving (k, µ)-window Natures, then there exists PPT A2 s.t. (A2,Nat) has robust
advantage ε2(·, a(·)) for C2. Since there is a ε1-reduction from C2 to C1 w.r.t. time-evolving (k, µ)-
window Natures, then there must exist PPT A1 s.t. (A1,Nat) has robust advantage ε1(·, ε2(·, a(·)))
for C1.

On Dummy Adversaries. The Dummy Lemma (see Theorem 3.3) does not appear to hold for
time-evolving k-window Natures, for the same reason it does not hold for k-window Natures. See
Section 5.1 for details.

5.3 Cosmic Reductions from Classical Non-adaptive Reductions

This section presents the main result for time-evolving k-window Natures. We show that classical
non-adaptive straightline black-box reductions imply cosmic reductions w.r.t. time-evolving k-
window Natures, for any choice of polynomial k(·). The consequence is a natural interpretation of
the power of a non-adaptive straightline black-box reductions.

First, we formalize the notion of a non-adaptive reduction. At a high level, a non-adaptive
reduction is one where the reduction decides ahead of time how to interact with the adversary,
even when playing multiple security games, prior to receiving any responses from the adversary.
For 1-round security games, this means that the reduction decides which queries q1, . . . , qm it will
send ahead of time and can send all of the queries in parallel to the adversary. We extend this
notion to capture general r-round security games by stipulating that the reduction initially specifies
(ahead-of-time) machines M1, . . . ,Mm that individually interact with the adversary.

Definition 5.7 (Non-Adaptive Reductions). Let C, C ′ be security games, a : N→ [0, 1], m : N→ N,
k : N → N, ε : N × [0, 1] → [0, 1]. We say that a pair of uniform PPT ITMs (R1, R2) is an (m, ε)-
non-adaptive straightline black-box reduction from C to C ′ if for every classical adversary A with
advantage a(·) in C, the following oracle machine RA that makes use of (R1, R2) has advantage
ε(·, a(·)) in C ′:

RA(1λ) first simulates R1(1λ) in an interaction with the challenger until R1 outputs descriptions
of oracle machines M1, . . . ,Mm(λ), each of which never restarts or rewinds their oracle. We require

that R1(1λ) always outputs oracle machines of this format regardless of which challenger it is
interacting with. For i ∈ [m(λ)], RA subsequently runs yi ← MA

i (1λ) (using RA’s own oracle to
emulate Mi’s oracle access, and restarting A for each i). Finally, RA invokes R2(1λ, y1, . . . , ym(λ)),
continuing the interaction with the challenger, running R2 until it halts.

In the following theorem, we show that non-adaptive, straightline black box reductions for
classical security games imply cosmic reductions for time-evolving k-window Natures.

Theorem 5.6. Let ε : N×[0, 1]→ [0, 1], m(·) be a polynomial function, and C,C ′ be security games.
Suppose there exists a (m, ε)-non-adaptive straightline black-box reduction from C to C ′. Then for
any polynomial p(·) and k(·), and any µ : N → [0, 1], there exists a ε?-cosmic reduction from C to

59



C ′ w.r.t. time-evolving (k, µ)-window Natures, where ε?(λ, a) = ε(λ, a) − 1/p(λ) −m(λ) · µ(λ) for
all choices of λ ∈ N, a ∈ [0, 1].

Proof of Theorem 5.6. Let k(·), m(·) and p(·) be any polynomial functions (as specified in the
statement of the Theorem).

The construction. Let A be any PPT attacker. Let r(·) be the function s.t. in any execution,
A(1λ) makes at most r(λ) queries to Nat. Since A is PPT, r(·) is a polynomial. We construct a new
cosmic reduction A′ from C to C ′, where A′ depends on A (and in particular, on r(·)). The goal is
to later show that this cosmic reduction A′ works for all time-evolving (k, µ)-window Natures.

By assumption, there exists a (m, ε)-non-adaptive classical straightline black-box reduction from
C to C ′—denote (R1, R2). Let Areset be the attacker that on input 1λ first sends k(λ) dummy ⊥
queries to Nature, and then runs A(1λ) (as defined in Lemma 5.4). A′ then behaves as follows, on
input 1λ and in an interaction with C ′ and any Nature Nat. Let m∗(λ) = m(λ)2 · p(λ), and let
m = m(λ),m∗ = m∗(λ), p = p(λ), r = r(λ), k = k(λ) for ease of notation.

• A′ simulates R1(1λ), forwarding communication between C ′ and R1, until R1 halts and out-
puts oracle machines M1, . . . ,Mm.

• A′ then runs each machine M1, . . . ,Mm in an interaction with Nat according to the following
procedure. Let Mm+1, . . . ,Mm∗ be copies of M1. A′ first samples a random permutation
π : [m∗]→ [m∗], and defines M∗i = Mπ−1(i) for each i ∈ [m∗]. (That is, M∗i is the ith machine
in the list of randomly permuted machines.)

Now, for each i ∈ [m∗] in incrementing order, starting with i = 1, A′ runs M∗i (1λ) in an
interaction with a fresh copy of Areset(1

λ) until M∗i halts and outputs a string y∗i . Importantly,
A′ communicates with Nat on behalf of Areset, sending Areset’s queries to Nat, and forwarding
Nat’s reply back to Areset. More formally, for each i, starting with i = 1:

– A′ starts the ith iteration (also known as the ith session) by instantiating an new instance
of M∗i (1λ) and a new fresh instance of Areset(1

λ). A′ routes Areset’s queries to Nat and
forwards back the corresponding replies. We stress that for each iteration i, A′ starts
a new copy of Areset; thus in every single iteration, A′ will send Nature k(λ) dummy ⊥
messages on behalf of a new copy of Areset corresponding to that iteration only.

– Each time M∗i makes an oracle query, A′ forwards the query to Areset, and sends the
corresponding reply from Areset back to M∗i . A′ continues the simulated interaction until
M∗i halts.

– Before finishing iteration i, A′ ensures that it has sent exactly i · (r+k) messages to Nat,
starting from the beginning of the execution up to this point. If at this point A′ has sent
fewer than i · (r + k) messages (that is, if the simulation of Areset generated fewer than
r + k messages) A′ now sends “dummy” ⊥ messages to Nat until A′ has sent exactly
i · (r + k) messages to Nat. Note that these ⊥ messages do not affect the output yi of
M∗i , as it has already been determined. Only when A′ has sent i · (r + k) messages in
total to Nat does A′ end session i and proceed to session i+ 1 (to run M∗i+1).

Remark 5.1. By adding padding messages, we ensure that for every choice of permuta-
tion π, the number of messages that Nat has seen before interacting with M∗i for each i
for the first time (via the session-specific copy of Areset) remains unchanged. That is, for
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each i, Nat should have received exactly (i− 1) · (r + k) + k messages before interacting
with M∗i for the first time, independently of the choice of π. Finally, we note that Areset

sends exactly k dummy messages to Nat at the beginning of each session/iteration. This
is intentional and important; we shall see later that the choice of k allows us to essentially
flush the memory of a (time-evolving) k-window Nature at the beginning of each session,
so that its subsequent behavior is independent of prior sessions.

• Let yi := y∗π(i) for each i ∈ [m] (noting that Mi = M∗π(i)); unused outputs y∗j for j /∈ π([m]) are

discarded. Each yi corresponds to the output of machine Mi. A
′ now runs R2(1λ, y1, . . . , ym)

in an interaction with C ′ (or an observer O) until C ′ (or O) halts.

Note that the number of queries A′ makes to Nat scales linearly with the choice of m∗(λ) =
m(λ)2 · p(λ). Because k(·) is also a polynomial function, then A′ makes at most a polynomial
number of queries, qualifying as a cosmic attacker (which is PPT in our model).

Overview of the correctness argument. Let A be any PPT attacker, and denote A′ to be
the attacker constructed above. Suppose Nat is an arbitrary time-evolving (k, µ)-window Nature.
Letting a(·) denote (A,Nat)’s robust advantage for C, we want to show that (A′,Nat) has advantage
ε∗(·, a(·)) for C ′, where ε∗(λ, a(λ)) = ε(λ, a(λ))− 1/p(λ)−m(λ) ·µ(λ) for all λ ∈ N. Then applying
Lemma 5.3 gives us a “full” ε∗-cosmic reduction from C to C ′ w.r.t. time-evolving (k, µ)-window
Natures.

Torwards showing the above, we first use (A,Nat) and Nat’s time-evolving (k, µ)-window prop-
erty to construct a classical adversary Aclassic that mimics (A,Nat)’s behavior in a special useful
way described below. Next, we show that Aclassic has advantage a(·) for C. By the assumption that
there is an ε-non-adaptive black-box reduction R = (R1, R2) from C to C ′, it follows that RAclassic

has advantage ε(·, a(·)) for C ′. We next show, through a hybrid argument, that for all λ ∈ N

∆(outC′ [〈C ′ ↔ RAclassic〉(1λ)], outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)]) ≤ 1/p(λ) +m(λ) · µ(λ)

and thus (A′,Nat) has advantage ε∗(λ, a(λ)) = ε(λ, a(λ))−1/p(λ)−m(λ) ·µ(λ) for C ′ on all λ ∈ N,
concluding the proof.

The classical adversary Aclassic. We use (A,Nat) to construct a classical adversary Aclassic with
advantage a(·) for C.

First, some notation for convenience of the remainder of the proof. Let m∗ = m∗(λ) and
r = r(λ) and k = k(λ) for ease of notation when λ is clear. For any x ∈ N, denote ρ⊥x to be
the prefix of x number of dummy messages and 0 randomness, namely (0,⊥,⊥, . . .) of length x.
Define the following subroutine S(1λ, i) that takes as input an index i; in an interaction with the
challenger, S(1λ, i) does the following:

1. S internally runs Nat(1λ, ρ⊥(i−1)·(k+r)) and Areset(1
λ). Recall that Areset essentially runs A(1λ),

but first sends k dummy messages to Nature; see Lemma 5.4.

Whenever Areset sends a query to Nature, S directs it to its copy of Nat (which has been
prepared as above), and routes the reply back to Areset. On receiving a query from the
challenger, S sends it to Areset, and replies with Areset’s reply.
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We are ready to define Aclassic. Aclassic(1
λ) first samples a random i ← [m∗], and then runs

S(1λ, i) to respond to queries for the remainder of the interaction. By definition, then, for any O

outO[〈O ↔ Aclassic〉(1λ)] ≡ outO[i← [m∗] : 〈O ↔ S(i)〉(1λ)] (7)

≡ outO[i← [m∗] : 〈O ↔ Areset ↔ Nat(ρ⊥(i−1)·(k+r))〉(1
λ)]. (8)

To motivate the above construction, roughly speaking, imagine an interaction with Nat split into
m∗ sessions, one for each security game, and each of length (k + r) number of queries. Notably, in
this imaginary interaction, each of the m∗ sessions contains k “dummy” queries at the beginning of
the session that “resets” the behavior of Nat because Nat is a (time-evolving) k-window Nature. In
our construction, Aclassic essentially samples one of these m∗ sessions uniformly at random to play
its own security game, in a way that mimics Nat’s behavior even if the “prior” sessions in reality
comprise queries that are not comprised of ⊥, as we will later show.

Claim 5.7. Aclassic has (classical) advantage a(·) for C.

Proof. Fix any λ ∈ N. Then, denoting Q the set of all prefixes comprising k = k(λ) dummy queries
(and any randomness),

Pr
[
outC [〈C ↔ Aclassic〉(1λ)] = 1

]
≥ min
i∈[m∗]

Pr
î
outC [〈C ↔ Areset ↔ Nat(ρ⊥(i−1)·(r+k))〉(1

λ)] = 1
ó

≥ min
i∈[m∗],ρ∈Q

Pr
î
outC [〈C ↔ A↔ Nat(ρ⊥(i−1)·(r+k) ◦ ρ)〉(1λ)] = 1

ó
≥ a(λ)

where the last inequality follows from the robust advantage of (A,Nat) for C.

Showing the reduction simulates RAclassic . We continue to show that for all λ ∈ N, outC′ [〈C ′ ↔
RAclassic〉(1λ)] and outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)] are (1/p(λ) +m(λ) · µ(λ))-close.

Claim 5.8. For all λ ∈ N, we have:

∆(outC′ [〈C ′ ↔ RAclassic〉(1λ)], outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)]) ≤ 1

p(λ)
+m(λ) · µ(λ)

Proof. Again, when context is clear, denote m = m(λ),m∗ = m(λ), and r = r(λ). Recall that R is
the oracle machine that on input 1λ first runs R1 to generate oracle machines M1, . . . ,Mm, and then
uses its oracle to compute outputs y1, . . . , ym for M1, . . . ,Mm (simulating their respective oracles
using R’s own oracle), and then finally runs R2 on y1, . . . , ym. We consider an additional hybrid
experiment outC′ [〈C ′ ↔ R′〉(1λ)], where R′ (on input 1λ) as before first runs R1 in an interaction
with the challenger to generate machines M1, . . . ,Mm. However, to generate y1, . . . , ym, R′ now
samples a random permutation π : [m∗] → [m∗], and then for each i ∈ [m], R′ uses S(1λ, π(i)) to
respond to oracle queries from Mi. Finally, as before, R′ invokes R2 on y1, . . . , ym to conclude the
interaction.

We next show that for all λ ∈ N,

∆(outC′ [〈C ′ ↔ RAclassic〉(1λ)], outC′ [〈C ′ ↔ R′〉(1λ)]) ≤ 1

p(λ)
.
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Intuitively, to emulate the oracle for a machine Mi, both RAclassic and R′ run an instance of S(1λ, i∗),
where in the first experiment, i∗ is chosen randomly from [m∗], and in the second, i∗ is chosen
randomly from [m∗] conditioned on no i∗ being chosen twice for multiple machines Mi 6= Mi′ , i, i

′ ∈
[m]. If we take m∗ to be big enough, the probability of collision in the first experiment can be made
small. We proceed to the formal statement and its proof:

Subclaim 5.9. ∆(outC′ [〈C ′ ↔ RAclassic〉(1λ)], outC′ [〈C ′ ↔ R′〉(1λ)]) ≤ 1
p(λ) .

Proof. Denote p = p(λ),m = m(λ),m∗ = m(λ), and r = r(λ). Recall that each yi in the first
experiment is generated using S(1λ, i∗) for a random i∗ ← [m∗]. Let COL be the event that two
views yi, yi′ s.t. i 6= i′, i, i′ ∈ [m] are generated using the same i∗. As the index i∗ is chosen
randomly, it follows that any individual pair will collide with probability at most 1/m∗. By a union
bound, it follows that

Pr[COL] ≤
Ç
m

2

å
· 1

m∗
=

Ç
m

2

å
· 1

m2p
≤ 1

p
.

Conditioning on the event that COL does not occur, then the two experiments are identical.

Next, we show that,

Subclaim 5.10. For all λ ∈ N,

∆(outC′ [〈C ′ ↔ R′〉(1λ)], outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)]) ≤ m(λ) · µ(λ).

Proof. Fix λ, and ρ. Denote k = k(λ),m = m(λ),m∗ = m(λ), and r = r(λ). We show the
claim by a hybrid argument. Recall that A′ starts with a sequence of machines M1, . . . ,Mm∗ (of
which only the first m < m∗ are “relevant”), and for each machine i ∈ [m∗] runs an interaction
Mi ↔ Areset ↔ Nat, using A′’s own access to Nat (which it cannot restart), and where each Mi

and Areset is simulated by A′, and moreover each Mi interacts with a fresh instance of Areset (thus
for each Mi, A

′ sends k new dummy messages to Nat on behalf of Areset). Moreover recall that
A′ samples a random permutation π : [m∗] → [m∗] that determines the order in which it runs
the interactions, namely letting M∗π(i) = Mi, the interactions are run in order (M∗1 ↔ Areset ↔
Nat), . . . , (M∗m∗ ↔ Areset ↔ Nat).

We call an interaction (indexed by j) ‘relevant’ if j = π(i) for some i ∈ [m]. In other words,
the outcome of a ‘relevant’ interaction in an execution is not discarded, is mapped to one of the
original machines in M1, . . . ,Mm, and is ultimately fed as input into R2.

Now, for each i ∈ [m], consider the attacker A′i that runs A′ until A′ finishes running a ‘relevant’
interaction for the ith time. Subsequently, A′i stops talking to Nat, and instead runs S(1λ, π(j)) to
reply to future machines M∗j in lieu of using Nat. Observe that

outC′ [〈C ′ ↔ R′〉(1λ)] ≡ outC′ [〈C ′ ↔ A′0 ↔ Nat〉(1λ)]

and
outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)] ≡ outC′ [〈C ′ ↔ A′m ↔ Nat〉(1λ)].

We now show that for all i ∈ [m]

∆
Ç
outC′ [〈C ′ ↔ A′i ↔ Nat〉(1λ)],

outC′ [〈C ′ ↔ A′i+1 ↔ Nat〉(1λ)]

å
≤ µ(λ), (9)
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and then the statement of the claim follows directly by hybrid argument.
Let x be any execution in Supp(〈C ′ ↔ A′ ↔ Nat〉(1λ)), but truncated at the point A′ finishes

running a “relevant” interaction for the ith time (that is, x could also be a prefix of an execution
using A′i instead of A′). Suppose that in this truncated execution A′ has finished running j total
sessions (i of which are relevant). We are interested in the j+ 1th session. Consider M∗j+1 specified
by x (i.e. the machine that is “next up” at the point of truncation—note that x fixes j and the
machines and order in which they are run M∗1 , . . . ,M

∗
m, because A′ chooses them ahead of time).

Let ρx be all of the messages and coins received by Nat in x, during the first j sessions.
Suppose for the sake of contradiction that there is a distinguisher D that distinguishes the two

experiments in Equation 9 with probability µ. Then we show in Subclaim 5.11 that for some choice
of x (depending on λ)

∆
(
outM∗

j+1
[〈M∗j+1 ↔ Areset ↔ Nat(ρx)〉(1λ)],

outM∗
j+1

[〈M∗j+1 ↔ S(j + 1)〉(1λ)]

)
> µ(λ). (10)

It remains to show that Equation 10 contradicts the time-evolving (k, µ)-window property of
Nat (Definition 5.4). By the construction of S,

outM∗
j+1

[〈M∗j+1 ↔ S(j + 1)〉(1λ)] ≡ outC [〈M∗j+1 ↔ Areset ↔ Nat(ρ⊥j·(k+r))〉(1
λ)]

which implies

∆
(
outM∗

j+1
[〈M∗j+1 ↔ Areset ↔ Nat(ρx)〉(1λ)],

outM∗
j+1

[〈M∗j+1 ↔ Areset ↔ Nat(ρ⊥j·(k+r))〉(1
λ)]

)
> µ(λ).

Now observe that ‖ρx‖ =
∥∥∥ρ⊥j·(k+r)∥∥∥ = j · (k + r), and thus we contradict Lemma 5.4, concluding

the proof.

Subclaim 5.11. Fix any λ ∈ N, and suppose that there is a distinguisher D that distinguishes the
two experiments in Equation 9 with probability µ. Then there exists some truncated execution x s.t.

∆
(
outM∗

j+1
[〈M∗j+1 ↔ Areset ↔ Nat(ρx)〉(1λ)],

outM∗
j+1

[〈M∗j+1 ↔ S(j + 1)〉(1λ)]

)
> µ(λ). (11)

Proof. For any truncated execution x, define a distinguisher machine Dx as follows:

• Dx gets as input either y ← outM∗
j+1

[〈M∗j+1 ↔ Areset ↔ Nat(ρx)〉(1λ)] or y ← outM∗
j+1

[〈M∗j+1 ↔
S(j + 1)〉(1λ)].

• Dx now samples an execution z ← 〈C ′ ↔ A′i ↔ Nat〉(1λ) conditioned on x being a prefix of z,
and y being equal to the output of M∗j+1 in z. (This can be done by running a continuation
of x, which is possible since A′i no longer interacts with Nat after finishing the jth session, so
we can condition on y as the output of the j + 1th session without worrying about updating
the state of Nat for future sessions.)

• Finally, Dx outputs D(outC′ [z]).

It remains to show that for some choice of x, Dx has advantage µ in distinguishing its input.
To help, we define an experiment Exp that on input b ∈ {0, 1}:
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• First, samples a random x (by running a random execution of 〈C ′ ↔ A′ ↔ Nat〉(1λ) until A′

has finished i relevant interactions),

• samples either (if b = 0) y ← outM∗
j+1

[〈M∗j+1 ↔ Areset ↔ Nat(ρx)〉(1λ)], or (if b = 1) y ←
outM∗

j+1
[〈M∗j+1 ↔ S(j + 1)〉(1λ)],

• and finally outputs Dx(y).

Observe that Exp in fact invokes D on exactly the distribution outC′ [〈C ′ ↔ A′i ↔ Nat〉(1λ)] if
b = 1, and outC′ [〈C ′ ↔ A′i+1 ↔ Nat〉(1λ)] if b = 0. Thus, by the assumption that D is a good
distinguisher, Pr[Exp(1) = 1]−Pr[Exp(0) = 1] > µ. Denote X the random variable for the value of
x sampled by Exp. We thus have:∑

x

Pr[X = x] · Pr[Exp(1) = 1 | X = x]−
∑
x

Pr[X = x] · Pr[Exp(0) = 1 | X = x] > µ(λ)

which simplifies to∑
x

Pr[X = x] · (Pr[Exp(1) = 1 | X = x]− Pr[Exp(0) = 1 | X = x]) > µ(λ)

Thus there must exist a choice of x s.t.

Pr[Exp(1) = 1 | X = x]− Pr[Exp(0) = 1 | X = x] > µ(λ)

immediately implying Equation 10 for that choice of x, concluding the proof.

Finally, combining Claim 5.9 and Claim 5.10, by triangle inequality, ∀λ ∈ N,

∆(outC′ [〈C ′ ↔ RAclassic〉(1λ)], outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)]) ≤ 1

p(λ)
+m(λ) · µ(λ)

as required.

Concluding the success probability analysis. By the correctness of R, and Claim 5.7, we
have that RAclassic has advantage ε(·, a(·)) for C ′. Combining this with Claim 5.8, we thus have for
all λ ∈ N

Pr
[
outC′ [〈C ′ ↔ A′ ↔ Nat〉(1λ)] = 1

]
≥ Pr

[
outC′ [〈C ′ ↔ RAclassic〉(1λ)] = 1

]
−
Å

1

p(λ)
+m(λ) · µ(λ)

ã
≥ ε(λ,Pr

[
outC [〈C ↔ Aclassic〉(1λ)] = 1

]
)−
Å

1

p(λ)
+m(λ) · µ(λ)

ã
≥ ε(λ, a(λ))−

Å
1

p(λ)
+m(λ) · µ(λ)

ã
as desired.

65



6 Cosmic Security implies Standard Security

We show that if there is a cosmic reduction with respect k-window Natures, where k is large enough
to accommodate the security game in question, then there is a classical reduction with respect to
most standard classes of attackers. Importantly, any “plain” cosmic reduction implies a cosmic
reduction w.r.t. (k, µ)-window Natures for any choice of k and µ, so this is the strongest notion.

Theorem 6.1. Let µ : N → [0, 1] be an arbitrary function. Let C and C ′ be security games, and
let k(·) be a polynomial function that upper bounds the number of rounds in any interaction with C.
Assume there exists a ε-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures. Then there
exists a ε-reduction w.r.t. PPT, non-uniform PPT, QPT, and non-uniform QPT attackers.

We first prove this theorem for the case of PPT attackers. We then discuss how this directly
generalizes to non-uniform PPT and QPT attackers. Then, we prove it for the case of non-uniform
QPT attackers to highlight the different techniques required in this case.

Lemma 6.2. Let µ : N → [0, 1] be an arbitrary function. Let C and C ′ be security games, and
let k(·) be a polynomial function that upper bounds the number of rounds in any interaction with
C. Suppose that there exists a ε-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures. Then
there exists a ε-reduction w.r.t. PPT attackers.

Proof. Let B be a PPT attacker such that for all λ ∈ N, B wins security game C with probability
a(λ). Let k(·) be the function that upper bounds the number of queries that C might send. Consider
the dummy attacker Adummy and let NatB be the Nature that, on input 1λ and on receiving a new
startsession message, starts a ticker i = 0, and internally runs an instance of B to reply to queries,
incrementing i each time after it responds to a query. If at any point i = k(λ), NatB stops running its
instance of B, and responds with ⊥ to all future queries until the next time it receives a startsession
message, at which point it repeats the above procedure all over again, resetting i = 0.

We note that: (1) NatB is a (k, µ)-window Nature (for any choice of µ), and (2) for any prefix
ρ ∈ {0, 1}∗, (Adummy,NatB(ρ)) wins the security game C with the same probability a(λ) as B. The
latter follows because the prefix ρ has no effect on NatB since Adummy immediately sends NatB a
startsession at the beginning of the interaction. Thus, by applying the cosmic reduction for (k, µ)-
window Natures that exists by assumption, there exists a PPT attacker A′ such that (A′,NatB)
wins the security game C ′ with probability ε(λ, a(λ)) on security parameter λ.

Given (A′,NatB), we construct a PPT attacker B′ as follows. B′ receives messages for C ′ and
emulates the PPT machine A′ and NatB to respond to those messages. To simulate NatB , note
that B′ will invoke the code of B (for up to k(λ) rounds each time). As A′ and NatB are PPT
ITMs, their composition is also a PPT ITM, so B′ is a PPT machine. Furthermore, B′ perfectly
emulates (A′,NatB), so B′ succeeds with probability ε(λ, a(λ)), as required.

The above proof outline immediately generalizes to non-uniform PPT attackers. The only
difference is that we need the Nature NatB to hardcode the non-uniform advice of B. The simulation
of B′ will also be non-uniform PPT since B′ will also need to hardcode the advice of B.

For the case of uniform QPT attackers, we note that such attackers have a uniform, classical
description, so the code of B can be copied and restarted without issue. To actually perform the
computation, NatB needs to simulate any quantum operations that the QPT machine B specifies,
but it can do this to arbitrary precision in an exponential amount of time (see e.g. [BV97, NC16]
for details). Then, B′ can run these computations in QPT while simulating A′ and the potentially
many copies of B, as required.
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To deal with non-uniform QPT attackers, we require just a little bit of extra work: Essentially,
we require B′ to hard-code many copies of the non-uniform quantum advice of the original attacker
B; this is needed in order to simulate restarts of B:

Lemma 6.3. Let µ : N→ [0, 1] be an arbitrary function. Let C and C ′ be security games, and let
k(·) be a polynomial function that upper bounds the number of rounds in any interaction with C.
Assume there exists a ε-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures. Then there
exists a ε-reduction w.r.t. non-uniform QPT attackers.

Proof. Now, let B be a non-uniform QPT attacker, meaning B is a quantum polynomial time
machine with polynomially bounded quantum advice, such that for all λ ∈ N, B wins security
game C on input 1λ with probability a(λ). Let k(·) be the function that upper bounds the number
of queries that C might send. Consider the dummy attacker Adummy and let NatB be the Nature
that simply runs a fresh copy of the code of B with the appropriate advice when it receives a new
startsession message from Adummy, for at most k(λ) rounds of interaction (and after k(λ) rounds of
interaction, before it receives a subsequent startsession message, it just responds to every query with
⊥). As NatB is allowed to run in unbounded time with arbitrarily long non-uniform advice, it can
simulate many copies of B by encoding the polynomially many quantum bits of B’s non-uniform
advice using exponentially many classical bits of non-uniform advice (see [NC16] for further details).

We note that NatB is a (k, µ)-window Nature, for any choice of µ. Furthermore, since B wins
security game C with probability a(λ), so does (Adummy,NatB); moreover, (Adummy,NatB) does so
robustly, as any prefix of interaction that NatB may have seen is ignored as soon as Adummy sends its
first message startsession. Thus, by assumption, there exists a PPT machine A′ such that (A′,NatB)
wins the security game C ′ with probability ε(λ, a(λ)) on security parameter λ.

Given (A′,NatB), we define the non-uniform QPT attacker B′ as follows. For each λ ∈ N,
B′ hardcodes an upper bound b(λ) on the number of times that A′ sends a startsession message
to NatB in an execution on input 1λ. B′ then hardcodes b(λ) copies of B, including b(λ) copies
of its non-uniform quantum advice. B′ accepts messages from the game C ′, and responds to the
messages by simulating an interaction between A′ and its copies of B, invoking a fresh copy of B
for each session of C that A′ starts (when A′ sends a startsession message), running each copy of B
to respond to at most k(λ) messages (and then replying ⊥ afterwards).

To finish the proof of the lemma, it remains to show that B′ has the correct success probability
and is a non-uniform QPT machine. Since B′ perfectly simulates (A′,NatB) by construction (given
that b(λ) is chosen large enough), it follows that B′ wins for C ′ with the same probability ε(λ, a(λ))
as (A′,NatB), as required. Next, it holds that B′ is a non-uniform QPT machine since non-uniform
QPT computation is closed under polynomial repetition with itself and under communication with
a PPT machine.
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A More on k-Window Natures

We here provide some basic observations about cosmic reductions w.r.t. k-window Natures.

A.1 Composition and More

We observe that the composition lemma still holds trivially w.r.t. k-window Natures.

Lemma A.1 (Composition of Cosmic Reductions for k-Window Natures). Let C1, C2, C3 be se-
curity games, let k(·) be a polynomial function, and let µ : N → [0, 1]. Suppose there exists an
ε1-cosmic reduction from C2 to C1 w.r.t. (k, µ)-window Natures, and an ε2-cosmic reduction from
C3 to C2 w.r.t. (k, µ)-window Natures. Then, there exists an ε?-cosmic reduction from C3 to C1

w.r.t. (k, µ)-window Natures, where ε?(λ, a) = ε1(λ, ε2(λ, a)) for all λ ∈ N and a ∈ [0, 1].

Proof. Let (A3,Nat) be any (k, µ)-window Nature, and denote a(·) its robust advantage in C3.
Since there is a ε2-reduction from C3 to C2 w.r.t. (k, µ)-window Natures, then there exists PPT
A2 s.t. (A2,Nat) has robust advantage ε2(·, a(·)) for C2. Since there is a ε1-reduction from C2 to
C1 w.r.t. (k, µ)-window Nature, then there must exist PPT A1 s.t. (A1,Nat) has robust advantage
ε1(·, ε2(·, a(·))) for C1.

Win-once cosmic reductions also continue to imply regular cosmic reductions w.r.t. k-window
Natures:

Lemma A.2 (Win-once Cosmic Reductions imply Cosmic Reductions for k-Window Natures). Let
k(·) be a polynomial function, and let µ : N → [0, 1], ε : N × [0, 1] → [0, 1], and let C and C ′ be
security games. If there exists a win-once ε-cosmic reduction from C to C ′ w.r.t. (k, µ)-window
Natures, then there exists a ε-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures.

Proof. The proof is identical to that for the time-evolving setting (see Lemma 5.3), except deleting
the words ‘time-evolving’ throughout, and removing the ‖ρ′‖ = ‖ρ′′‖ constraint in Equation 6.
Equation 6 then directly follows from the (k, µ)-window property of Nat (which is stronger than
what we assume in Lemma 5.3, as necessary to compensate for the removal of the ‖ρ′‖ = ‖ρ′′‖
constraint), thus showing that for any prefix ρ, Natρ is a (k, µ)-window Nature, as required.

A.2 Cosmic Reductions from Sequential Straightline Reductions

We next show that any sequential straightline black-box reductions yields a cosmic reduction w.r.t.
k-window Natures.

Lemma A.3. Let ε : N × [0, 1] → [0, 1], q : N → N, and C,C ′ be security games. Suppose there
exists a ε-sequential straight-line black-box reduction from C to C ′, that on input 1λ restarts its
oracle at most q(λ) times. Then for every function µ : N → [0, 1], for every polynomial function
k : N → N, there is a ε∗-cosmic reduction from C to C ′ w.r.t. (k, µ)-window Natures, where
ε∗(λ, a) = ε(λ, a)− q · µ.

Proof. Choose any polynomial function k : N → N and any function µ : N → [0, 1]. We want to
show that given an ε-straightline black-box reduction from C to C ′, we can construct a new cosmic
reduction R′ that works for any (k, µ)-window Nature, using oracle access to the attacker.
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The Construction. By assumption there exists a ε-straightline black-box reduction R from C
to C ′ (where R has oracle access to some adversary algorithm). Let R′A be the cosmic reduction
(communicating with some Nature Nat) that on input 1λ, with oracle access to some PPT attacker
A, essentially uses its oracle to A and interactive access to Nat to simulate an interaction between
R ↔ Areset ↔ Nat (where Areset is based on A). It does this by running internally a copy of R(1λ)
and a copy of Areset(1

λ), communicating with Nat on behalf of Areset, and sending R’s oracle queries
to Areset (forwarding the corresponding replies). Each time R restarts its oracle, R′A starts a new
copy of Areset(1

λ) replacing the previous instance, communicates with Nat on behalf of the new
instance of Areset (thus immediately sending k(λ) dummy messages to Nat), and sends R’s future
oracle queries to the new copy of Areset. Since k(·) is a polynomial function and A is polynomial
time, then R′A is polynomial time as required of a cosmic attacker.

Correctness Argument. Let (A,Nat) be any cosmic adversary such that Nat is a (k, µ)-window
Nature. Denote a(·) the robust advantage of (A,Nat) for C. We now argue that (R′A,Nat) has
advantage ε∗(·, a(·)) for C ′. Applying the ‘win once lemma’ Lemma A.2, then (R′A,Nat) has robust
advantage ε∗(·, a(·)) for C ′, proving the lemma.

For the purposes of the proof, define the following classical (possibly inefficient) subroutine S
that interacts with a challenger (playing the role of an adversary). S on input 1λ runs internally
instances of Nat(1λ) and Areset(1

λ); whenever Areset sends a query to Nature, S directs it to its copy
of Nat, and routes the reply back to Areset. On receiving a query from the challenger, S sends it to
Areset, and replies with Areset’s reply. Recall that Areset essentially runs A(1λ), but first sends k(λ)
dummy messages to Nature; see the definition in Lemma 5.1. Immediately we know that S has
advantage a(·) in C: for all λ ∈ N,

Pr
[
outC [〈C ↔ S〉(1λ)] = 1

]
= Pr

[
outC [〈C ↔ Areset ↔ Nat〉(1λ)] = 1

]
≥ a(λ)

where the equality follows by construction, and the inequality follows from the (robust) advantage
of (Areset,Nat) for C.

Consequently, by the correctness of R, since S is a classical adversary, for all λ ∈ N,

Pr
[
outC′ [〈C ′ ↔ RS〉(1λ)] = 1

]
≥ ε(λ, a(λ)). (12)

It remains to argue that for all λ ∈ N,

∆(outC′ [〈C ′ ↔ R′A ↔ Nat(ρ)〉(1λ)], outC′ [〈C ′ ↔ RS〉(1λ)]) ≤ q(λ) · µ(λ). (13)

We show Equation 13 by hybrid argument. Let q(·) be a polynomial s.t. R(1λ) restarts its oracle
at most q(λ) times in any execution (recall that R is PPT) for all λ ∈ N. Now, for each i ∈ [q],
consider the reduction R′Ai that runs R′A until R tries to restart its oracle for the ith time. At
that point, R′Ai stops talking to Nat, and internally uses S to answer future oracles queries from R
(restarting S when R restarts its oracle). We show in Claim A.4 that for all λ ∈ N, i ∈ [q(λ)]

∆
Ç
outC′ [〈C ′ ↔ R′Ai ↔ Nat〉(1λ)],

outC′ [〈C ′ ↔ R′Ai+1 ↔ Nat〉(1λ)]

å
≤ µ(λ)

implying Equation 13 by hybrid argument, as the number of hybrids is a polynomial q(·).
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Equations 12 and 13 together imply that for all λ ∈ N,

Pr
[
outC′ [〈C ′ ↔ R′A ↔ Nat〉(1λ)] = 1

]
≥ Pr

[
outC′ [〈C ′ ↔ RS〉(1λ)] = 1

]
− q(λ) · µ(λ)

≥ ε(λ, a(λ)− µ(λ))− q(λ) · µ(λ)

concluding the proof.

Claim A.4. For all i ∈ [q(λ)], for all λ,

∆
(
outC′ [〈C ′ ↔ R′Ai ↔ Nat〉(1λ)], outC′ [〈C ′ ↔ R′Ai+1 ↔ Nat〉(1λ)]

)
≤ µ(λ).

Proof. Recall that R′Ai directly runs R′A (which runs many copies of A) for i sessions of interaction
with Nat, at which point R′Ai uses S in place of Areset (and Nat) in subsequent sessions. Thus,
R′A0 = RS (that is, it ignores Nat) and R′Aq(λ) = R′A. So the only difference between R′Ai and

R′Ai+1 is that in R′Ai , the (i+ 1)th interaction uses S, whereas in R′Ai+1, it now uses Areset (and thus
communicates with the stateful Nat).

As an overview for our proof, we essentially use Lemma 5.1 to argue that for any fixing of the
first i sessions, it is indistinguishable whether the i + 1 session uses Areset ↔ Nat or S; that is,
because each session is sending Nat k(λ) number of dummy messages which should ‘reset’ Nature.
The claim follows by a probabilistic argument.

More formally, fix any λ ∈ N, i ∈ [q(λ)], and let x be any execution in Supp(〈C ′ ↔ R′Ai ↔
Nat〉(1λ)), but truncated at the point R (which is simulated by R′Ai ) restarts its oracle for the ith
time. In other words, x fixes the outcome of the first i sessions of interaction. Let ρx be the messages
and coins received by Nat in x, and let statex denote the joint state of C ′ and the simulated R at
the end of x. Let Mx be the machine that runs C ′ and R initialized in the state statex, simulating
C ′’s communication with R, answering R’s oracle queries by communicating with some attacker
machine on behalf of R, and finally halting and outputting the joint view when R next tries to
restart its oracle. In other words, Mx and ρx formalize how we “continue” the execution after
having fixed the i sessions of interaction specified in x.

Suppose for the sake of contradiction that there is a distinguisher D that distinguishes the two
experiments in the statement of the claim with probability µ = µ(λ) for some λ. Then we show
that for some choice of x

∆
Ç
outMx [〈Mx ↔ Areset ↔ Nat(ρx)〉(1λ)],

outMx [〈Mx ↔ S〉(1λ)]

å
> µ (14)

which immediately implies

∆
Ç
outMx [〈Mx ↔ Areset ↔ Nat(ρx)〉(1λ)],

outMx [〈Mx ↔ Areset ↔ Nat〉(1λ)]

å
> µ

which contradicts Lemma 5.1 (as no prefix is also a valid prefix), thus contradicting the (k, µ)-
window property of Nat.

For any truncated execution x, define a distinguisher machine Dx as follows:

• Dx gets as input either y ← outMx [〈Mx ↔ Areset ↔ Nat(ρx)〉(1λ)] or y ← outMx [〈Mx ↔
S〉(1λ)].
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• Dx now samples an execution z ← 〈C ′ ↔ R′Ai ↔ Nat〉(1λ) conditioned on x being a prefix
of z, and y being equal to the joint view of C ′ and R at the exact point when R restarts its
oracle for the i + 1th time. (Sampling z in this way can be done by initializing C ′ and R
to have the view specified by y, and then running a continuation of 〈C ′ ↔ R′Ai ↔ Nat〉(1λ)
starting at the i + 1th session, which is easy using S since R′Ai no longer interacts with Nat
after the ith session.)

• Finally, Dx outputs D(outO[z]).

It remains to show that for some choice of x, Dx has advantage µ in distinguishing its input.
To help, we define an experiment Exp that on input b ∈ {0, 1}:

• First, samples a random x (by running a random execution until R restarts its oracle for the
ith time),

• samples either (if b = 0) y ← outMx [〈Mx ↔ Areset ↔ Nat(ρx)〉(1λ)], or (if b = 1) y ←
outMx [〈Mx ↔ S〉(1λ)],

• and finally outputs Dx(y).

Observe that Exp in fact invokes D on exactly the distribution outC′ [〈C ′ ↔ R′Ai ↔ Nat〉(1λ)] if
b = 1, and outC′ [〈C ′ ↔ R′Ai+1 ↔ Nat〉(1λ)] if b = 0. Thus, Pr[Exp(1) = 1]− Pr[Exp(0) = 1] > µ(λ).
Denote X the random variable for the value of x sampled by Exp:∑

x

Pr[X = x] · Pr[Exp(1) = 1 | X = x]−
∑
x

Pr[X = x] · Pr[Exp(0) = 1 | X = x] > µ(λ)∑
x

Pr[X = x] · (Pr[Exp(1) = 1 | X = x]− Pr[Exp(0) = 1 | X = x]) > µ(λ)

Thus there must exist a choice of x s.t.

Pr[Exp(1) = 1 | X = x]− Pr[Exp(0) = 1 | X = x] > µ(λ)

immediately implying Equation 14 for that choice of x, concluding the proof.

B Cosmic Reductions from Classical Results

In this section, we give various examples of standard cryptographic primitives that have single-shot,
straightline, black-box reductions to other primitives. We emphasize that all of the reductions we
consider are uniform PPT reductions. By Theorem 4.1, this provides a foundation for a theory of
cosmic reductions for many cryptographic primitives. For each primitive, we will define the syntax
and security games. Then, we will provide a brief proof sketch for the classical reduction to show
how it implies a cosmic reduction.

B.1 Pseudorandom Generators

A pseudorandom generator (PRG) G is a length-expanding function whose output is computa-
tionally indistinguishable from random on a uniform input, with syntax and security defined as
follows.
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Definition B.1 (PRG Syntax). Let m : N→ N. A m-bit stretch pseudo-random generator (PRG)
is a PPT computable function G : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗, |G(x)| = m(|x|) >
|x|.

Definition B.2 (PRG Security Game). Let m : N → N. The challenger C for the m-bit stretch
PRG security game for G interacts with an adversary A on common input 1λ as follows. C samples
a bit b← {0, 1}. If b = 0, C sends A a string y ← G(Uλ). If b = 1, C sends A a string y ← Um(λ).
C receives a bit b? from A and outputs 1 iff b = b?.

With respect to classical non-uniform PPT adversaries, it is well known that there exist pseudo-
random generators from any one-way function [HILL99]. It is currently open whether or not there
is a cosmic reduction from PRGs to one-way functions.

However, the classical proof (see e.g. [Gol07]) that a (λ+1)-bit stretch PRG implies an m(λ)-bit
stretch PRG for any m is a single-shot straightline black-box reduction. In fact, it follows by a
simple hybrid argument, which falls into this setting.

For any polynomial m, we recall the construction of an m(λ)-bit stretch PRG Gm from a (λ+1)-
bit stretch PRG G′. G(x) first sets y0 = x, computes G′(y0), and splits the output into two parts.
The first |x| bits, denoted y1, are treated as a new seed, and the last bit, denoted b1, is used for
the output. It then repeats this process with y1 as a new seed, and so on. The full construction is
as follows:

Gm(x):

1. Set y0 = x.

2. For each i = 1, . . . ,m(|x|), set yi, bi = G′(yi−1).

3. Output b1, . . . , bm(|x|).

Corollary B.1. For any polynomial m, there exists an ε-cosmic reduction from the PRG security
of Gm to the PRG security of G′ for ε(λ, a) = 1/2 + δ/m(λ), where δ = a− 1/2.

Proof sketch. Let C and C ′ be the challengers in the PRG security game forGm andG′, respectively.
The single-shot, straightline black-box reduction R for the game C ′ that makes use of an adversary
A for the game C is defined as follows. The Corollary then follows immediately by Theorem 4.1.

The challenger C ′ for the game G′ samples a random bit b ← {0, 1} and sends R a uniform
string from s← G′(Uλ) if b = 0 or s← Uλ+1 if b = 1. Parse s ∈ {0, 1}λ as y′||b′ where y′ ∈ {0, 1}λ
and b′ ∈ {0, 1}. R samples an index i← [m(λ)]. For j = 1, . . . , i− 1, R computes bj ← {0, 1}. For
j = i, R computes uses yi = y′ and bi = b′. For j = i+ 1, . . . ,m(λ), R computes yj , bj using G′ as
Gm given yj−1. R sends b1, . . . , bm(λ) to A and receives a bit b?, which it forwards to C.

It remains to analyze the advantage of R given that A has advantage a = 1/2 + δ for some
δ ∈ [−1/2, 1/2]. The analysis follows by a hybrid argument. For each λ ∈ N and i ∈ {0, . . . ,m(λ)},
let Hi(1

λ) be the distribution where b1, . . . , bi are uniform, then a seed yi ∈ {0, 1}λ is sampled and
bi+1, . . . , bm(λ) are computed using G′ as in Gm. Let pi(λ) be the probability that an adversary

A outputs 1 on input s ← Hi(1
λ). Note that H0(1λ) corresponds to the output of Gm(x) and

Hm(λ)(1
λ) is a uniformly random string. Thus pm(λ) − p0 = 2δ by assumption.

For each i ∈ [m(λ)], which is chosen uniformly at random, R samples from Hi(1
λ) if the

challenger chose b = 1 and Hi−1(1λ) if the challenger chose b = 0. Thus, the reduction R succeeds
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with probability pi(λ)/2 + (1− pi−1(λ))/2 conditioned on i being chosen. Summing over all i, this
implies that R’s overall success probability is∑

i∈[m(λ)]

1

m(λ)
(pi(λ)/2 + (1− pi−1(λ))/2) =

1

2
+

1

2m(λ)
(pm(λ)(λ)− p0(λ)) =

1

2
+

δ

m(λ)
,

as required.

B.2 Pseudorandom Functions

A pseudorandom function (PRF) F is an efficient, keyed function that is indistinguishable from a
random function over the choice of a random key. To formalize this notion of indistinguishability,
we consider a games consisting of some fixed number r(λ) rounds and require that security holds
against all r(λ) round games.

Definition B.3 (PRF Syntax). A pseudorandom function (PRF) is a function F : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ such that for all K ∈ {0, 1}λ, F (K, ·) : {0, 1}λ → {0, 1}λ and is PPT computable.

Definition B.4 (r-Round PRF Security Game). Let r : N→ N. The challenger C for the r-round
PRF security game for F interacts with an adversary A on common input 1λ as follows. C samples
a bit b← {0, 1}. If b = 0, C samples K ← {0, 1}λ and sets the function f(·) = F (K, ·). If b = 1, C
sets the function f to be a random function from λ bits to λ bits. C receives at most r(λ) rounds
of queries of the form xi ∈ {0, 1}λ from A for i ∈ [r(λ)]. To each query, C responds with f(xi).
After all queries, A sends C a bit b? and C outputs 1 iff b = b?.

PRFs are implied by 2λ-bit stretch PRGs via the GGM construction [GGM86] with respect to
non-uniform PPT adversaries. We show that this same construction and proof implies a cosmic
reduction from PRF security to PRG security. The proof follows by a nested hybrid argument,
with security loss that depends on the number of rounds.

We next recall the GGM construction of a PRF F based on a 2λ-bit PRG G. Let K ∈ {0, 1}λ
be a key for the PRF evaluation and x = (x1, . . . , xλ) ∈ {0, 1}λ be the input to be evaluated. F is
defined as follows:

F (K,x):

1. Let v0 = K.

2. For j = 1, . . . , λ, set vj to be the first λ bits of G(vj−1) if xj = 0 and the last λ bits of G(vj−1)
if xj = 1.

3. Output vλ.

Corollary B.2. For any polynomial r, there exists an ε-cosmic reduction from the r-round PRF
security of F to the PRG security of G for ε(λ, a) = 1/2 + δ/(λ · r(λ)), where δ = a− 1/2.

Proof sketch. The proof follows by a hybrid argument, which implies a single-shot straightline black-
box reduction and hence a cosmic reduction by Theorem 4.1. For each λ ∈ N, we consider hybrid
ITMs Hj,`(1

λ) for j ∈ {0, . . . , λ − 1} and ` ∈ {0, . . . , r(λ)}. Hybrid Hj,`(1
λ) uses random λ-bit
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values for v1, . . . , vj in the evaluation of F and sets vλ to be random for the first ` unique queries.
It follows that H0,0(1λ) corresponds to using F as defined, and Hλ−1,r(λ)(1

λ) corresponds to a
random function.

The reduction R receives a challenge query y which is either sampled from G(Uλ) or U2λ. R
samples j ← {0, . . . , λ − 1} and ` ← {0, . . . , r(λ) − 1}. For the first ` queries, it computes F
using random values for v1, . . . , vj+1 and computes pseudorandom values for the rest as defined
by F For query ` + 1, it uses the challenge y in place of vj+1. For the remaining queries, it uses
pseudorandom values defined by F for all vj+1, . . . , vλ. After at most r(λ) queries, A sends a bit
b?, which R forwards to the PRG challenger.

Let δ = a − 1/2. Let pj,`(λ) be the probability A outputs 1 when interacting with hybrid
Hj,`(1

λ). It follows that pλ−1,r(λ)(λ)− p0,0(λ) = 2δ. Conditioned on a choosing j ∈ {0, . . . , λ− 1}
and ` ∈ {0, . . . , r(λ)−1}, R outputs 1 with probability pj,`+1(λ)/2 + (1−pj,`(λ))/2. However, note
that pj,r(λ)(λ) = pj+1,0(λ) since Hj,r(λ)(1

λ) is equivalent to Hj+1,0(1λ). It follows that R’s overall
success probability is ∑

j∈{0,...,λ−1}
`∈{0,...,r(λ)−1}

1

λ · r(λ)
(pj,`+1(λ)/2 + (1− pj,`(λ))/2)

=
∑

j∈{0,...,λ−1}

1

λ · r(λ)

Å
r(λ)

2
+

1

2
(pj,r(λ)(λ)− pj,0(λ))

ã
=

1

2
+

1

2 · λ · r(λ)
·
(
pλ−1,r(λ)(λ)− p0,0(λ)

)
=

1

2
+

δ

λ · r(λ)
,

as required.

B.3 IND-CPA Secure Encryption

An encryption scheme consists of three algorithms: a key generation algorithm KeyGen, an en-
cryption algorithm Enc, and a decryption algorithm Dec. For a validly generated secret key, the
encryption of any message m should correctly decrypt back to m, while also remaining “hidden”
from any observer that does not have access to the secret key. There are a variety of ways to for-
malize this intuitive notion of security. In this paper, we focus on the notion of indistinguishability
under chosen plaintext attack (IND-CPA), which is a multiple round game where the attacker only
needs to distinguish encryptions of two messages of its choice after seeing any number of adaptively
chosen encryptions.

Definition B.5 (Encryption Syntax and Correctness). An encryption scheme is a triple of algo-
rithms (KeyGen,Enc,Dec) with the following syntax:

1. sk← KeyGen(1λ): A PPT algorithm that takes as input a security parameter 1λ and outputs
a secret key sk ∈ {0, 1}∗. We assume without loss of generality that sk always starts with 1λ.

2. ct ← Enc(sk,m): A PPT algorithm that takes as input a secret key sk and a message m ∈
{0, 1}λ and outputs a ciphertext ct ∈ {0, 1}∗.
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3. m′ = Dec(sk, ct): A polynomial-time algorithm that takes as input a secret ket sk and a
ciphertext ct and outputs a message m.

We say that an encryption scheme is correct if for all λ ∈ N, sk ∈ Supp
(
KeyGen(1λ)

)
, m ∈ {0, 1}λ,

ct ∈ Supp(Enc(sk,m)), it holds that m = Dec(sk, ct).

Definition B.6 (r-Round IND-CPA Secure Encryption). Let r : N→ N. The challenger C for the
r-round IND-CPA secure encryption game for (KeyGen,Enc,Dec) interacts with an adversary A on
common input 1λ as follows.

• Initialization: C samples a secret key sk← KeyGen(1λ).

• Pre-challenge phase: A sends at most r(λ) rounds of pre-challenge queries of the form
mi ∈ {0, 1}λ for i ∈ [r(λ)]. C responds to each query with cti ← Enc(sk,mi).

• Challenge phase: A sends two challenge queries m?
0 and m?

1. C samples b ← {0, 1} and
responds with ct? ← Enc(sk,m?

b).

• Post-challenge phase: A sends at most r(λ) rounds of post-challenge queries of the form
m′i ∈ {0, 1}λ for i ∈ [r(λ)]. C responds to each query with ct′i ← Enc(sk,m′i).

• Output: A sends a bit b? and C outputs 1 iff b = b?.

From any PRF F , there is a classical construction of an IND-CPA secure encryption scheme (see
e.g. [Gol09]). The security proof is single-shot, straightline black-box, so it also implies a cosmic
reduction. The construction (KeyGen,Enc,Dec) is defined as follows.

• KeyGen(1λ): Sample K ← {0, 1}λ and output sk = (1λ,K).

• Enc(sk,m): Let sk = (1λ,K). Sample ρ← {0, 1}λ and output ct = (ρ, F (K, ρ)⊕m).

• Dec(sk, ct): Let sk = (1λ,K) and ct = (ρ, y). Output m = F (K, ρ)⊕ y.

Corollary B.3. For any polynomial r, there exists a negligible function µ and an ε-cosmic reduction
from the r-round security of (KeyGen,Enc,Dec) to the 2r+ 1-round PRF security of F for ε(λ, a) =
1/2 + δ/2− µ(λ), where δ = a− 1/2.

Proof sketch. We construct a single-shot straightline black-box reduction R by a hybrid argument,
which implies a cosmic reduction by Theorem 4.1.

Let CF be the 2r + 1-round PRF security game challenger, and let C be the r-round IND-
CPA encryption challenger. We consider the following four hybrid challengers for the IND-CPA
encryption game.

• H0(1λ): Simulates C perfectly except always choose b = 0.

• H1(1λ): Simulates C and always chooses b = 0. Additionally, samples a random function
f : {0, 1}λ → {0, 1}λ and uses f(·) instead of F (K, ·).

• H2(1λ): Simulates C and always chooses b = 1. Also samples a random function f : {0, 1}λ →
{0, 1}λ and uses f(·) instead of F (K, ·).

• H3(1λ): Simulates C perfectly except always choose b = 1.
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Let A be an adversary with advantage 1/2 + δ in C. We define pi(λ) to be the probability that A
outputs b′ = 1 in hybrid Hi(1

λ) for all i ∈ {0, 1, 2, 3}. Note that, by assumption of A, it holds that
p3(λ)− p0(λ) = 2δ.

The reduction R acts as an adversary in the game CF while interacting with A as a challenger
in an r-round IND-CPA encryption game. R simulates the real challenger C, except that any time
it needs to compute F (K,x) on an input x ∈ {0, 1}λ, it queries the PRF challenger CF on input x
to get the corresponding value. Note that this requires R to make at most 2r + 1 queries. If the
challenger CF samples the challenge bit b = 1, the output will be from a random function, and
otherwise if b = 0, it will be from a pseudorandom function. Let b′ ← {0, 1} be the bit chosen by
R during the challenger phase. In the output phase, R receives a bit b? from A. If b′ = 1, R sends
1− b? to CF as its output. If b′ = 0, it will send b? to CF .

We break down the success of R conditioned on the value of b, b′ in the following cases:

• b = 0 and b′ = 0 corresponds to H0(1λ), so R wins with probability (1− p0(λ))

• b = 1 and b′ = 0 corresponds to H1(1λ), so R wins with probability p1(λ)

• b = 1 and b′ = 1 corresponds to H2(1λ), so R wins with probability (1− p2(λ))

• b = 0 and b′ = 1 corresponds to H3(1λ), so R wins with probability p3(λ).

So overall, the reduction R wins with probability

(1/4) · (1− p0(λ)) + (1/4) · p1(λ) + (1/4) · (1− p2(λ)) + (1/4) · p3(λ)

= 1/2 + (1/4) · (p3(λ)− p0(λ) + p2(λ)− p1(λ))

= 1/2 + δ/2 + (p2(λ)− p1(λ))/4.

It remains to show that (p2(λ)−p1(λ))/4 is negligible. Unless the reduction R samples the same
value of ρ ∈ {0, 1}λ over the 2r + 1 many encryption queries, the ITMs H2(1λ) and H1(1λ) are
identically distributed since that implies output of the random function is uniform for each query.
Thus, f(ρ) perfectly masks the message m and reveals statistically no information. It follows that
for any, even ubounded, adversary A, p2(λ) − p1(λ) ≤ (2r + 1)2/2λ. Therefore, (p2(λ) − p1(λ))/4
is negligible, and the corollary follows.

B.4 Commitments

A commitment scheme consists of two parties, a sender and a receiver. Commitments allow a sender
to “commit” itself to a bit at some point in time that will be revealed to the receiver at a later
point. The receiver should not be able to guess the committed bit before the sender reveals, this is
known has hiding, and the sender should not be able to reveal two different values, this is known
as binding. Commitments come in two flavors: binding commitments, where the binding property
is statistical and the hiding property is computational, and hiding commitments, where the hiding
property is statistical and the binding property is computational. We will only consider binding
commitments for the sake of this paper, which we formalize below.

We restrict our attention to 2-message, binding, bit commitment schemes for simplicity. We can
extend this to commitments for longer messages, or a set of messages, by parallel repetition of a
single scheme. The syntax and security games extend to this more general case by simply increasing
the length of the messages.
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Definition B.7 (Commitment Syntax). A 2-message bit commitment scheme consists of a pair of
PPT algorithm (Gen,Commit) with the following syntax:

• σ ← Gen(1λ): A PPT algorithm that takes as input a security parameter 1λ and outputs a
string σ ∈ {0, 1}∗.

• com = Commit(1λ,m, σ; r): A PPT algorithm that uses randomness r ∈ {0, 1}λ, takes as
input a security parameter 1λ, message m ∈ {0, 1}, and first message σ ∈ {0, 1}∗ from the
receiver, and outputs a commitment value com ∈ {0, 1}∗. The randomness r is known as the
opening for the commitment.

In the above definition, if the first message output by Gen is always the empty string, we say
that the scheme is a 1-message commitment scheme. We next formalize the binding and hiding
security games for a commitment scheme.

Definition B.8 (Binding Security Game). The challenger C for the binding security game of
(Gen,Commit) interacts with an adversary A on common input 1λ as follows. C samples σ ←
Gen(1λ) and sends σ to A. A responds with a commitment value com, messages m0 and m1,
openings r0 and r1. C outputs 1 iff com = Commit(1λ,m0, σ; r0) and com = Commit(1λ,m1, σ; r1).

Definition B.9 (Hiding Security Game). The challenger C for the hiding security game for
(Gen,Commit) interacts with an adversary A on common input 1λ as follows. A outputs two
messages m0 and m1. C samples b← {0, 1}, σ ← Gen(1λ), and com← Commit(1λ,mb, σ). C sends
com and σ to A. A responds with a bit b?, and C outputs 1 iff b = b?.

Naor [Nao91] gives a construction of a bit commitment scheme from any 3λ-bit stretch PRG
G. The security proof of this construction is a single-shot, straightline black-box reduction, so it
immediately gives a cosmic reduction. The construction (Gen,Commit) is defined as follows.

• Gen(1λ): Output σ ← {0, 1}3λ.

• Commit(1λ,m, σ; r): If m = 0, output G(r). If m = 1, output σ ⊕G(r).

This commitment scheme can be run in parallel to get a commitment scheme for longer messages.
This gives a security loss that depends on the length of the message.

We note that binding for this construction is unconditional, so we focus instead on the compu-
tational hiding property.

Corollary B.4. Let G be a 3λ-bit stretch PRG. There exists an ε-cosmic reduction from the hiding
of (Gen,Commit) to the PRG security of G for ε(λ, a) = 1/2 + δ/2, where δ = a− 1/2.

Proof sketch. We provide a single-shot, straightline, black-box reduction R using a hybrid argument,
which implies a cosmic reduction by Theorem 4.1.

Let C be the challenger for the hiding security game and C ′ be the challenger for the PRG
security game. We consider the four hybrid challengers for the hiding security game.

• H0(1λ): Simulates C perfectly except always choose b = 0.

• H1(1λ): Simulates C and always chooses b = 0. Instead of using G(r) in the construction, it
uses y ← U3λ instead.
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• H2(1λ): Simulates C but chooses b = 1. Instead of using G(r) in the construction, it uses
y ← U3λ.

• H3(1λ): Simulates C perfectly except always choose b = 1.

The reduction R interacts with a challenger C ′ for the PRG security game using an attacker A that
has advantage 1/2 + δ in the hiding security game. We let pi(λ) be the probability that A outputs
1 when interacting in hybrid Hi(1

λ). The reduction R is defined as follows.
C ′ samples a bit b ← {0, 1} and sends R a challenge y which is G(Uλ) if b = 0 or U3λ if b = 1.

R also receives two messages m0 and m1 from the hiding adversary A. R flips a bit b′ ← {0, 1},
samples σ ← Gen(1λ), and sends A the values σ and com ← Commit(1λ,mb′ , σ). R receives a
response b? from A. If b′ = 1, R sends 1− b? to C ′. If b′ = 0, R sends b? to C ′.

If b = 0, b′ = 0, the reduction R corresponds to H0(1λ), so R wins with probability (1− p0(λ)).
If b = 1, b′ = 0, R corresponds to H1(1λ), so R wins with probability p1(λ). If b = 1, b′ = 1, R
corresponds to H2(1λ), so R wins with probability (1− p2(1λ)). If b = 0, b′ = 1, R corresponds to
H3(1λ), so R wins with probability p3(λ). Putting these observations together, we conclude that
R wins with overall probability

(1/4) · (1− p0(λ)) + (1/4) · p1(λ) + (1/4) · (1− p2(λ)) + (1/4) · p3(λ)

= 1/2 + (1/4) · (p3(λ)− p0(λ) + p2(λ)− p1(λ))

= 1/2 + δ/2 + (p2(λ)− p1(λ))/4.

It remains to show that p2(λ) − p1(λ) = 0. This is because H1(1λ) and H2(1λ) are identically
distributed. Regardless of if b′ = 0 or b′ = 1, R outputs a uniformly random string in {0, 1}3λ.
Thus, R’s advantage is simply 1/2 + δ/2, as required.

B.5 One-Time Signatures

Signature schemes consist of a signer and a verifier. Such a scheme allows a signer send a message
such that the verifier can authenticate that the signer indeed generated the message. we focus
on signature schemes for fixed length messages, where we only require security for a single signed
message. These are known as one-time signatures. We start by defining the syntax for a signature
scheme in general.

Definition B.10 (Signature Syntax and Correctness). A signature scheme consists of a triple of
PPT algorithms (Gen,Sign,Ver) with the following syntax:

• (sk, vk)← Gen(1λ): A PPT algorithm that takes as input a security parameter 1λ and outputs
a signing key sk ∈ {0, 1}∗ and a verification key vk ∈ {0, 1}∗.

• σ ← Sign(sk,m): A PPT algorithm that takes as input a signing key sk ∈ {0, 1}∗ and a
message m ∈ {0, 1}λ and outputs a signature σ ∈ {0, 1}∗.

• b = Ver(vk,m, σ): A deterministic polynomial time algorithm that takes as input a verification
key vk ∈ {0, 1}∗, a message m ∈ {0, 1}λ, and a signature σ ∈ {0, 1}∗ and outputs a bit b
indicating whether to accept or reject the signature.

A signature scheme is correct if for all λ ∈ N, m ∈ {0, 1}λ, (sk, vk) ∈ Supp
(
Gen(1λ)

)
, and σ ∈

Supp(Sign(sk,m)), it holds that Ver(vk,m, σ) = 1.
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Definition B.11 (One-Time Signature Security). The challenger C for the one-time signature
security game for (Gen,Sign,Ver) interacts with an adversary A on common input 1λ as follows.
C samples (sk, vk) ← Gen(1λ) and sends vk to A. A sends a single message m ∈ {0, 1}λ to C,
and C responds with σ ← Sign(sk,m). A then sends m?, σ? to C, who accepts iff m? 6= m and
Ver(vk,m?, σ?) = 1.

We recall Lamport’s one-time signature construction based on any one-way function f [Lam79].
As its security is based on a single-shot, straightline black-box reduction, it implies a cosmic reduc-
tion.

• (sk, vk) ← Gen(1λ): For i ∈ [λ] and j ∈ {0, 1}, sample xi,j ← {0, 1}λ and let yi,j = f(xi,j).
Output sk, vk where sk = {xi,j}i∈[λ],j∈{0,1} and vk = {yi,j}i∈[λ],j∈{0,1}.

• σ ← σ(sk,m): Let σi = xi,mi
and output σ = (σ1, . . . , σλ).

• b = Ver(vk,m, σ): Output 1 iff f(σi) = yi,mi for all i ∈ [λ].

We outline the proof of one-time security of this construction below to show how it implies a
cosmic reduction to one-way function security.

Corollary B.5. There exists an ε-cosmic reduction from the one-time security of (Gen,Sign,Ver)
to the one-way function security of f for ε(λ, a) = a/(2λ).

Proof sketch. We provide a single-shot, straightline, black-box reduction R, which in turn implies
a cosmic reduction by Theorem 4.1.

Let C be the challenger in the one-time security game and C ′ be the challenger for the one-way
function security game. Fix λ ∈ N. The reduction R interacts with an instance of C ′ making use
of an adversary A that wins C with probability a. R is defined as follows.

R receives a challenge y ← f(Uλ) from C ′. It then samples a random i ← [λ] and j ← {0, 1}.
For all (i′, j′) 6= (i, j) ∈ [λ] × {0, 1}, R samples xi′,j′ ← {0, 1}λ and computes yi′,j′ = f(xi′,j′). R
sets yi,j = y from the challenger. R sends the verification key {yi′,j′}i′∈[λ],j′∈{0,1} to A and receives

a message m ∈ {0, 1}λ to sign. If mi = j, R aborts. Otherwise, R sets σi′ = xi′,mi′ for all i′ ∈ [λ]
and sends σ = (σ1, . . . , σλ) to A. A outputs a message m?, σ?. If m?

i = j, let x = σ?i . If f(x) = y,
R sends x to the challenger C ′.

If A wins, it must be the case that m 6= m? and f(σ?i ) = y. As i and j are chosen uniformly
and independently from [λ] and {0, 1}, respectively, the probability that m and m? differ in the ith
bit, mi 6= j, and A wins is at least a/(2λ), over a random i and j. Otherwise, A must win with
probability less than a in total. Therefore, R has success probability a/(2λ), as required.
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