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Abstract. A computational PIR scheme allows a client to privately
query a database hosted on a single server without downloading the en-
tire database. We introduce the notion of verifiable PIR (vPIR) where
the server can convince the client that the database satisfies certain prop-
erties without additional rounds and while keeping the communication
sub-linear. For example, the server can prove that the number of rows in
the database that satisfy a predicate P is exactly n.

We define security by modeling vPIR as an ideal functionality and fol-
lowing the real-ideal paradigm. Starting from a standard PIR scheme, we
construct a vPIR scheme for any database property that can be verified
by a machine that reads the database once and maintains a bounded
size state between rows. We also construct vPIR with public verification
based on LWE or on DLIN. The main technical hurdle is to demonstrate
a simulator that extracts a long input from an adversary that sends a
single short message.

Our vPIR constructions are based on the notion of batch argument for
NP. As contribution of independent interest, we show that batch argu-
ments are equivalent to quasi-arguments—a relaxation of SNARKSs which
is known to imply succinct argument for various sub-classes of NP.

1 Introduction

A single-server computational private information retrieval (PIR) scheme [13]
allows clients to query a database privately, without revealing to the server any
information about their query. Such a PIR scheme is non-trivial if the server’s
message is shorter than the database. In the standard notion of PIR, the server is
free to use any database to answer the clients query. In this work, we introduce a
variant of PIR that we call verifiable PIR (vPIR). In vPIR, the server can prove
to the client that the database it is using to answer the query satisfies some
property, for example: the database entries are sorted, or the database does not
contain some value X more than n times. As before, in a non-trivial scheme the
server’s answer including the proof should be shorter than the database.

In this work we focus on one round vPIR schemes: the client sends a query
and the server responds with a single message that includes both the PIR answer
and a proof that the database satisfies the required property. Indeed, one-round
is the standard when constructing PIR schemes, and it is required for many
applications.?

3 We expand on the advantages of one-round schemes and discuss solutions with more
rounds at the end of this introduction.



2 Shany Ben-David, Yael Tauman Kalai, and Omer Paneth

vPIR via secure computation. In plain PIR the only standard security require-
ment is that the client’s message hides its query. However, in the setting of vPIR,
defining security against malicious servers that may not use a valid database re-
quires more care. One natural approach is to define vPIR as a special case of
secure two-party computation for the vPIR functionality. The vPIR functional-
ity takes a query 4 from the client and a database D from the server, and returns
DJi] to the client if D satisfies the required property, or L otherwise.

The problem with this approach is that non-trivial one-round vPIR schemes
require secure computation with very strong properties. Specifically, we need
a one-round secure computation protocol (also known as non-interactive secure
computation [8]) with security against a malicious server where the server’s com-
munication is sub-linear in its input. Currently, such protocols are only known
in the CRS model based on succinct non-interactive arguments of knowledge
(SNARKs) for NP.# In all known constructions of SNARKs for NP, soundness
is either heuristic, or based on so-called non-falsifiable knowledge assumptions.
SNARK constructions with an explicit knowledge extractor are not known and
are subject to strong barriers [3]. We note that even if we relax security and
allow for super-polynomial, or even unbounded simulation, we do not know of
any solutions that do not use SNARKSs. In light of this barrier, in this work
we propose alternative formulations of vPIR and realize them under standard
assumptions.

1.1 Owur Contribution

Our first contribution is proposing two definitions of vPIR that relax the se-
curity definition based on secure computation: A game-based definition for
local database properties that only depends on a small number of entries,
and a simulation-based definition for global properties that depends the entire
database. We explore possible applications and discuss the limitations of each
definition. Then, we show how to construct vPIR schemes that satisfy our def-
initions for a rich class of properties based on various standard assumptions.’
Finally, we show that the notion of vPIR is closely connected to the notions of
quasi-arguments and batch arguments for NP [4, 10] that were recently proposed
in relation to delegating computation [6, 11]. Based on these connections we de-
rive new results and simplify existing results in the area of delegation. In what
follows, we elaborate on our contributions.

4 Since for vPIR we do not require any security against a corrupted client, the client
can send the CRS as part of its message.

® We mention that succinct non-interactive arguments (SNARGs) for certain sub-
classes of NP, including the class of properties supported by our constructions, are
known under standard assumptions [1,6,11,16]. Such SNARGs, however, do not
give succinct non-interactive secure computation for the vPIR functionality for any
non-trivial property since they lack an efficient knowledge extractor. We elaborate
on this below where we state our result in more detail.
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Definitions of vPIR. Before presenting our security definitions, we elaborate
on the syntax of a vPIR scheme. In a standard PIR scheme the client generates,
together with its query, a secret key dk used to decode the answer. In a vPIR
scheme the client also generates a verification key vk. The server answers the
query using a database that satisfies a property P and its answer includes a
proof of this fact. The client verifies the server’s answer using vk, and if the
answer is accepted, the client decodes it using dk.

In the setting where multiple queries are answered with the same database
we may need to verify, not only that each query was answered using some
database that satisfies P, but also that all queries where answered using the
same database. To this end, we first verify each answer with its own verification
key, and then verify the consistency of all the answers together. We require that
verifying the consistency of the answers can be done without any verification key.
This feature is particularly useful in settings where the queries are generated by
multiple clients since it does not require clients to share their verification key.

We consider two flavors of vPIR schemes: publicly verifiable vPIR where vk
can be made public, and designated verifier vPIR where vk must be kept secret.
In the designated verifier setting, a cheating server that learns vk may be able
to break soundness. However, we require that the client’s query remains hidden
even if vk becomes public. This, in particular, guarantees that by revealing its
decision to accept or reject, the client may compromise its verification key and
lose soundness, but it does not compromise the secrecy of its query.

We emphasize that even if verification requires only a public key, decoding the
server’s answer always requires the secret key dk. Nonetheless, public verification
has several advantages: First, it allows any user (an not just the client) to audit
the server. Furthermore, it allows to reuse the same vPIR query many times
without compromising soundness, even if the verification results are made public.
Finally, in what follows, we use public verifiability for composition and to derive
new results on publicly verifiable delegation.

Next we describe two definitions of vPIR security, for local and for global
properties. Each of these security requirements is made in combination with the
standard PIR privacy requirement that the client’s query completely hides the
database location queried.

vPIR for local properties. Our first security notion for vPIR deals with local
database properties that depend only on a small number of entries. In more
detail, we model an f-local property as an efficient program P that takes as
input ¢ locations gq1,...,q, and the corresponding database entries ai,...,ay
and produces a binary output. A server holding a database D can prove that
it satisfies the f-local property P if the property is satisfied by any £ locations.
That is, for every gqi,...,qe, the property P accepts ¢1,...,q¢ and aq,...,ap
where a; = Dlq;].

Intuitively, our security requirement states that if we query the server on any
£ locations and the server’s answers pass verification then the decoded entries
must satisfy the ¢-local property P. In more detail, we consider the following
game between a challenger and an adversary playing the role of the server.
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The challenger generates ¢ queries for locations ¢, ..., qs, sends them to the
server and obtains ¢ answers. The challenger then checks that each answer passes
the verification with its own verification key, and that all ¢ answers together
are consistent (this check does not require the verification keys). Finally, the
challenger decodes each answer using its own decoding key and obtains the
entries aq,...,ap. The adversary wins the game if all the answers are found to
be valid and consistent, but the property P rejects qi,...,q¢ and aq,...,as.
The requirement is that for any ¢ locations, the adversary wins with negligible
probability.

Use cases. We discuss some examples of using the above definition. Starting
with the simple case of 1-local properties, consider a server that offers its clients
private access to a database of articles. The server claims that all the articles
in its database have been fact-checked and digitally signed by a trusted third
party. To prove this claim, we can use a VPIR for the 1-local property checking
that a given entry contains a valid digital signature. By the vPIR security the
client is guaranteed that if the answer passes verification, the decoded entry will
contain a valid signature.

Note that instead of verifying the answer, the client can simply decode it
and check if it contains a valid signature. However, in this case, simply revealing
the fact that the server is cheating may compromise the secrecy of the clients
query. To see that, consider a database that contains a single unsigned article.
If the client detects cheating then its query location is completely revealed. In
contrast, using vPIR, if the server’s database contains even one unsigned article,
then, since the client’s query is hiding, and since this hiding holds even given
the verification key, the server’s answer will be rejected with all but negligible
probability, regardless of the client’s query location. In particular, the verification
result does not compromise the client’s privacy.

Another important use-case of vPIR for local properties is in the setting of
multiple clients. Consider, for example a cheating server that claims to use the
same database of articles when interacting with all of its clients, but, in reality,
clients asking for the same article may get different content (or no content) based
on their identifying information. As in the previous example, clients accusing the
server of cheating may be exposing their secret query location. Moreover, in this
example, even detecting that the server answers are inconsistent requires the
clients to reveal their secret query location to each other. Using vPIR two or
more clients can guarantee the consistency of their answers, that is, they can
verify that if they made the same query they also received the same answer,
while keeping their query completely private, even from each other.

Going beyond consistency checking, clients can use vPIR to verify more com-
plicated relations between their answers. For example, if the query locations
correspond to the nodes of a graph and the database contains a valid coloring
of the graph, then clients can check that their answers verify the coloring con-
straints (again, while keeping their query location completely hidden, even from
each other) by verifying the following 2-local property: given locations ¢, g2 and
colors ay, as the property rejects if and only if (g1, ¢2) is an edge but a; = as.
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vPIR for global properties. Next we consider setting where the server would
like to prove to its clients something that be expressed as a local property of
the client’s queries and server’s answers. For example, consider again our server
that is holding a database of fact-checked and digitally signed articles. Now,
suppose that the articles in the server’s database update frequently and, as a
result, at any given moment a small fraction of the articles, say 10%, have yet
to be checked and signed by the third party. Since the database always contains
some unsigned articles, the server can no longer prove that the database satisfies
the 1-local property. Instead, the server would like to prove that the database
satisfies a global property: at least 90% of the entries contain a valid signature.

With this motivation in mind, we propose another security notion for vPIR,
dealing with global properties that may depend on the entire database. We
model a global property P as an efficient program that takes as input the entire
database D and produces a binary output. When defining security for global
properties, we observe that simply requiring that an accepting answer is con-
sistent with some database that satisfies P is insufficient. For example, if the
property P asserts that 90% of the entries contain a valid signature, then any
answer, whether it is signed or not, is always consistent with some database
that satisfies P. Intuitively, the issue with this naive definition is that it does
not guarantee that server uses a database that is independent of the query lo-
cation. To resolve this issue, we propose a simulation based security definition
for vPIR with global properties. Our definition is a relaxation of secure com-
putation for the vPIR functionality (where the adversary corrupts the server).
Looking ahead, this relaxation will be crucial for our analysis. Nonetheless, we
argue that our definition still provides meaningful security in the setting of vPIR
and demonstrate its applications.

The definition follows the real-ideal paradigm. In the real experiment, we
send the adversary, playing the role of the server, a query for location ¢ and
obtain an answer. The output is either the decoded entry or L if the answer fails
to verify. In the ideal experiment, the simulator submits an entire database to
the trusted party that computes the output: either the value at location ¢q or L if
the database does not satisfy the property P. We require that for any adversarial
server there exists an efficient simulator such that for every location ¢, the output
of the two experiments are indistinguishable. We will also consider a variant of
this definition where the simulator is allowed to run in super-polynomial time.

vPIR vs. secure computation. The above definition is similar to the definition of
secure computation for the vPIR functionality with one important relaxation:
In the definition of secure computation, the output of the real and ideal experi-
ments contain both the output of the honest client and the output of the adver-
sary /simulator. In our definition, however, only the client’s output is included
in the output of the experiments. Recall that in addition to the above security
requirement, we also require explicitly that client’s query is hiding. Therefore,
we can always simulate the view of the adversary by generating a query for an
arbitrary location. However, while we can simulate the output of the client and
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the server individually, we may not be able to simulate the joint distribution of
the outputs as required for secure computation.

Intuitively, since we simulate the client’s output, our definition guarantees
that a malicious server skew the client’s output distribution. However, since we
do not simulate the adversary’s view together with the client’s output, it may
be possible for the adversary to learn something that be simulated in the ideal
experiment (as long as the query location remains hidden). For example, going
back to our server proving that 90% of the entries in its database are signed,
if the client queries a random location, then the ideal experiment’s output is
either 1, or it contains a signed entry with probability at least 0.9 (this holds
even if the simulator is computationally unbounded). Therefore, the same is
guaranteed also in the real experiment. However, we cannot guarantee that a
malicious server cannot learn, for example, whether the client’s answer is signed
or not.

Constructions of vPIR. We next provide an overview of our vPIR construc-
tions both for local and for global properties under standard assumptions.

vPIR for local properties. Our first result is a designated verifier vPIR for all
{-local properties for any constant ¢ under the minimal assumption that PIR
schemes exist.

Theorem 1 (Informal). Assuming poly-logarithmic PIR scheme exists, for
any constant ¢ there exists a designated verifier poly-logarithmic vPIR scheme
for all £-local properties decidable in polynomial-time. For security parameter k
and a database with m rows, each of length w, the communication complexity
and verification time are w - poly(x,logm).

For ¢ > 1 the vPIR scheme requires public parameters that contain the descrip-
tion of a collision-resistant hash.

Theorem 1 is stated based on poly-logarithmic PIR where the communication
complexity is poly(k,logm) for a databases of m bits. More generally, assuming
PIR with communication complexity C'(m, ) we get vPIR with communication
complexity C - w - poly(k, logm).

In the publicly verifiable setting, we construct vPIR for the same properties
under LWE or under bilinear paring.

Theorem 2 (Informal). Under the LWE assumption, for any constant {
there exists a publicly verifiable vPIR scheme for all £-local properties decid-
able in polynomial-time with communication complexity and verification time
w - poly(k,logm).

Theorem 3 (Informal). Under the DLIN assumption in a prime-order pair-
ing group, for any constants £, € there exists a publicly verifiable vPIR scheme for
all £-local properties decidable in polynomial-time T with communication com-
plexity and verification time (w + T¢) - 2V OUogrlogm)
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The main tool we use in our construction of vPIR for local properties is a
batch argument for NP [4]. We give a generic construction based on any batch
argument that satisfies certain properties [6] (see the technical overview for more
details). Theorems 2 and 3 are based the batch arguments from [6] and [16]
respectively. Theorem 1 is based by the batch argument constructed in [4] that
we modify to meet our requirements.

Beyond constant locality. The vPIR schemes in the theorems above can only
handle properties with constant locality ¢. To justify this limitation observe that
when / is super-constant, a vPIR scheme with an efficient client and server for all
£-local properties is unlikely. This is the case since deciding if a given database
D satisfies an ¢-local property P (for every £ locations) may require time expo-
nential in £. In contrast, if we had a vPIR scheme for P with an efficient client
and server we could also decide if D satisfies P efficiently, by running the honest
vPIR server on ¢ queries (for arbitrary locations) and checking if the answers
pass verification. If D satisfies P the answers should be accepted. However, if
there exist £ locations that do not satisfy P then no efficient algorithm queried
on these locations should be able to produce answers that pass verification with
non-negligible probability. Therefore, since the queries are hiding (even given
the verification key) verification must also fail when the queries are for arbitrary
locations.

vPIR for global properties. Before stating our results on vPIR with global prop-
erties, we start by mentioning some barriers. We observe that vPIR for all ef-
ficiently testable global properties implies SNARKs and, therefore, we do not
expect to realize such vPIR under standard assumptions. In more detail, a des-
ignated verifier vPIR scheme implies designated verifier SNARKSs, while publicly
verifiable vPIR implies full-fledged SNARKs. Moreover, vPIR with inefficient
simulation implies succinct non-interactive arguments (SNARGs) for NP. None
of these notions are known based on any falsifiable assumption, and such con-
structions are subject to barriers [7,3]. We can transform a vPIR scheme into
a SNARK as follows: the CRS contains a query for an arbitrary location. To
prove some NP statement, the prover views the witness as a database of bits
and proves that it satisfies the global property testing the witness validity. The
verifier accepts if the vPIR answer passes verification. If the vPIR scheme is
non-trivial then the proof is succinct. To argue knowledge soundness, consider
an adversary that convinces the verifier with non-negligible probability. It fol-
lows that in the ideal experiment the simulator must submit a database that
contains a valid witness to the trusted party and, therefore, it can be used as an
extractor.

In light of this barrier, we focus on constructing vPIR for a restricted, yet
useful class of global properties. Specifically, we consider the class of properties
decidable by a Turing machine that reads the database once and maintains a
state of bounded length between rows. In more detail, each property in the class
can be tested by a machine P that maintains a state of length S (shorter than
the database). For every row in the database, the machine P updates its state



8 Shany Ben-David, Yael Tauman Kalai, and Omer Paneth

by applying an arbitrary efficient function to the current state and database
row. (We emphasize the length of the database row or the space of the update
function may not be bound by S.) For example, for any efficiently computable
predicate @, we can verify that the number of database rows that satisfy @ is
exactly n using a state of size S = log(n). As another example, verifying that
the database is sorted can be done with a state of size S = w + 1, where w is
the length of each row.

We are ready to state our results on vPIR for global properties, starting with
the designated verifier setting.

Theorem 4 (Informal). Let A(k) be a function of the security parameter.
Assuming A-secure poly-logarithmic PIR scheme exists, there exists a designated
verifier vPIR scheme for any global property decidable by a polynomial-time read-
once Turing machine P with description and state of length at most log A. The
communication complexity and verification time are as in Theorem 1. For every
constant ¢ € N there exists a simulator running in time A°) such that every
poly(A)-size distinguisher has advantage at most A=°).

In the publicly verifiable setting, we construct vPIR for the same class of
global properties and with the same simulation time under the A-hardness of
LWE or DLIN. The communication complexity and verification time are as in
Theorem 2 and Theorem 3 respectively.

Note that in Theorem 4 we allow the description size of the machine P to
grow with the security parameter as long as |P| < log A. If we restrict attention
to the non-adaptive setting where the machine P is fixed before the query then
we can prove a stronger result where the description size of P is not bounded.
We emphasize that even in the non-adaptive setting, the adversary may still
choose its database adaptively.

On the simulation time. For a bound A = poly(x), our result gives a vPIR
scheme with polynomial time simulation (with inverse polynomial accuracy). For
a super-polynomial A, the result captures a larger set of properties, however, with
simulation that runs in super-polynomial time (and based on super-polynomial
hardness assumptions). However, as argued above, vPIR with super-polynomial,
or even unbounded, simulation still provides meaningful security. (Intuitively, it
still guarantees that adversary’s database is independent of the query location.)
Theorem 4 leaves open the possibility of constructing a vPIR scheme where
the running time of the simulation does not grow exponentially with the length
of the machine’s state and description. We discuss some barriers towards such
improvements.

As argued above, vPIR for arbitrary global properties implies a SNARKSs
for NP. We show that this implication can be extended also to vPIR that only
supports properties decidable by a read-once Turing machine as long as the
simulation time is sub-exponential in the length of the machine’s state (and
assuming sufficiently strong collision-resistant hashing). As before, we construct
a SNARK by letting the prover encode its NP witness in the database. However
now, to allow for verification by a read-once machine with a succinct state, we
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first encode the witness so that each row contains the next bit required by the
NP verification procedure. If the same witness bit is used multiple times it will
appear in multiple rows. To verify that all occurrences of the same witness bit
are consistent we compute a hash tree over the entire witness, adding the root
to the machine’s state and adding to each row the authentication path for the
next witness bit. To argue knowledge soundness, consider an adversary that
convinces the verifier with non-negligible probability. It follows that in the ideal
experiment the simulator must submit a database that contains either a valid
witness or a hash collision. If the simulation time is sub-exponential in the length
of the machine’s state (or, the length of the hash root) and assuming the hash
is sufficiently strong, then the simulator cannot find collisions and, therefore, it
can be used as an extractor.

We can further extend this argument to vPIR where the simulation time is
sub-exponential in the length of the machine’s description. The idea is to hard-
code the root into the machine’s description instead of adding it to the machine’s
state. Note that this requires vPIR with adaptive security. Indeed, in the non-
adaptive setting we do get vPIR where the simulation time does not grow with
the machine’s description under standard assumptions.

On vPIR from SNARKs for sub-classes of NP. As mentioned above, a vPIR
scheme can be constructed based on SNARKSs for NP by compiling a semi-honest
protocol based on any standard PIR scheme. Therefore, a natural approach to
proving Theorem 4 is to construct a vPIR based on SNARKSs for a sub-class of
NP. Specifically, observe that vPIR for any global property decidable by a read-
once machine with state of length .S can be constructed by combining a standard
PIR scheme where the honest server is implemented by a read-once machine with
state of length poly(x) (such PIR schemes are known under various standard as-
sumptions) with a SNARK for NP languages decidable by a read-once machine
with state of length S’ = S + poly(k). Currently, however, SNARKs for lan-
guages decidable by a read-once machine with super-logarithmic state are not
known under any falsifiable assumption. The work of [1] constructed designated
verifier SNARGS for the same class under 25 -hardness assumption,® In particu-
lar however, we do not know how to compile a standard PIR scheme into a vPIR
scheme without relying on the SNARK’s efficient knowledge extractor. While
the SNARGsS of [1] do not directly imply vPIR, the simulation strategy we use
to prove Theorem 4 is based on techniques from the analysis of [1].

While the above construction instantiated with the SNARGs of [1] may not
satisfy our notion of vPIR for global properties, we can, nonetheless, use it to
get a vPIR for 1-local properties where simulation is not required. This is based
on the fact that verifying that a databases satisfies a 1-local property can be
done by a read-once machine with state of length 1. The advantage of the vPIR

5 The work of [1] constructed a SNARG for a slightly more restricted class: languages
decidable by read-one non-deterministic Turing machines with bounded space. How-
ever, based on standard techniques, their result can be extended to the case where
only the length of the state between rows is bounded.
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scheme given in Theorem 1 is that it can be based on polynomial PIR rather
than sub-exponential.

vPIR and delegation. As our final contribution we demonstrate connections
between the notion of vPIR and other notions recently introduced in the con-
text of delegating computation. Based on these connections we reinterpret and
simplify recent results and prove new results in this area.

Our first connection is between vPIR and the notion of batch arguments
for NP [4]. Batch arguments allows us to verify many NP statements with the
same complexity as verifying a single statement. They have several applications
including SNARGs for P [4-6, 11, 16]. Specifically, we observe that a vPIR for 1-
local properties is equivalent to a stronger variant of batch arguments introduced
by [6] known as batch arguments for the index language satisfying the somewhere
argument of knowledge property. This equivalence holds in both the designated
verifier and the publicly verifiable settings.

We also show a connection between vPIR and quasi-arguments for NP [14,
10]. Quasi-arguments are succinct non interactive arguments for NP satisfying
a weak soundness property known as local non-signaling knowledge extraction.
They are known to imply SNARGs for P, batch NP, and several other sub-
classes of NP [9,4,1,5]. We show that vPIR for 3-local properties is equivalent
to quasi-arguments satisfying a natural property that we call PIR-friendliness
(satisfied by all known constructions). This equivalence as well holds in both the
designated verifier and the publicly verifiable settings.

As part of the proof of Theorem 1 we give a transformation from vPIR
for 1-local properties to vPIR for f-local properties for any constant /. As a
corollary we get a new equivalence between the notions of batch arguments for
the index language and PIR friendly quasi-arguments. Based on the recent batch
arguments from [6, 16] we get new constructions of quasi-arguments under LWE
or DLIN. We also get the first quasi-argument with a sublinear CRS. Moreover,
since quasi-arguments are known to imply SNARGs for P, we get an alternative
construction of SNARGs for P based on batch arguments [6] that is simple and
modular. We can also rederive the applications in [11] as direct applications of
quasi-arguments and without relying on non-signaling MIPs or sub-exponential
security.

We also use the above connections to give a new bootstrapping theorem
for quasi-argument. The work of [10] constructs quasi-arguments with a long
CRS. Then they used a variant of the bootstrapping technique [13,15,2] to
construct SNARGs for P with a sub-linear CRS. However, there were not able
to use their technique to bootstrap their quasi-arguments directly. We give a new
bootstrapping theorem for vPIR for 1-local properties, similar to bootstrapping
theorems proved in previous work [10, 16]. Using the connection between vPIR
and quasi argument we also get a bootstrapping theorem for quasi-arguments.
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1.2 On the Round Complexity of vPIR

In this work we construct vPIR schemes which consist of one round, which is the
standard when constructing PIR schemes. Compared to solutions with multiple
rounds, one round schemes have several advantages that make them appealing
in applications. First, they allow to reuse the same query to produce multi-
ple answers. Another advantage of one-round schemes is that the server can fix
its database right before producing its answer. This may be useful, for exam-
ple, in settings where the client and server are communicating asynchronously
(e.g., they are not online simultaneously) and there might be a significant delay
between the query and answer. This also allows the server to fix its database
as a function of any incoming communication from the client that might be
transmitted with the query. Finally, we mention that some techniques such PIR
composition [13] require one-round schemes.

We mention that a vPIR scheme with multiple rounds can be constructed
based on any succinct interactive argument of knowledge [12]. A scheme with 3
messages can be constructed based on known results on delegating RAM com-
putations under various standard assumptions [9, 4, 10, 6, 16]. In this scheme the
server’s first message is a short commitment to its database. Therefore, when
receiving the clients query the server can no longer change its database.

1.3 Open Questions

Our results on vPIR for global properties leaves open several important ques-
tions. One natural question is to identify other interesting class of global proper-
ties can be proven based on standard assumptions. Another important direction
is to construct vPIR that satisfies the full secure computation definition where we
simulate the view of both the client and the server together. A related question is
to identify other non-trivial functionalities (beyond vPIR) that can be securely
realized based on standard assumptions in a single round and with communi-
cation complexity that is sub-linear in the input length of the malicious party
(perhaps settling for our relaxed notion of simulation).

Our last question deals with simulation security for multiple queries. While
our simulation definition for vPIR naturally extends to multiple queries, the
proof techniques behind Theorem 4 do not seem to go beyond a single query. In
fact we do not know if simulating the answers to multiple queries is possible even
for the plain PIR functionality where there are no restrictions on the database
used.

2 Technical Overview

In this section we overview our vPIR constructions for local and for global prop-
erties.
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2.1 vPIR for Local Properties

We describe our construction of vPIR for ¢-local properties for any constant ¢ in
both the designated verifier and the publicly verifiable settings. Our construction
proceeds in two steps: first we construct a vPIR scheme for one local properties
and then we transform it into a vPIR scheme for properties with constant locality.

Batch arguments. The main tool we use are batch arguments for the index lan-
guage [6]. We start from either designated verifier or publicly verifiable batch
arguments and get vPIR of the same type. Batch arguments are one message ar-
guments relative to a public key (in the designated verifier setting, the public key
is generated together with a secret verification key). In batch arguments for NP
the prover and verifier share m NP statements x4, ..., x,, and the prover should
convince the verifier that all statements are true. The communication complexity
and verification time may grow polynomially with the security parameter and
with k, the length of a single witness, but they should be independent of the
number of statements m. In batch argument for the index language, the state-
ments z1,...,T,, are replaced by a single polynomial-time machine M. The
prover should convince the verifier that for every i € [m] there exists a witness
w; € {0,1}* such that M (i, w;) accepts.

In the adaptive setting, the prover may choose the statement M as a func-
tion of the public key. Batch arguments with full-fledged adaptive soundness are
known to imply SNARKSs for NP [4]. Therefore, we focus on a weaker notion of
adaptive soundness known as somewhere argument of knowledge [6]. The sound-
ness requirement is that for every index ¢ € [m], we can generate a “programmed”
public key for i together with a secret extraction key such that the programmed
public key is indistinguishable from an honestly generated key (in particular it
hides 7). Moreover, given any accepting proof we can use the extraction key to
recover a witness w; such that M (i, w;) accepts with overwhelming probability.

vPIR for 1-local properties. Our vPIR scheme for a 1-local property P is as
follows. The client’s query for location ¢ € [m] contains a public key for the
batch argument programmed with the index ¢q. The vPIR verification key is the
verification key of the batch argument and the vPIR decryption key is the secret
extraction key. Given a database D that satisfies P (that is, P (i, D[i]) accepts for
every i € [m]), the server computes a batch argument proof for the machine P
using the witness D[1],..., D[m] and sends it as the vPIR answer. To verify the
proof, the client simply verifies the batch argument. To decrypt the answer the
client uses the extraction key to recover the witness D]g|. The resulting vPIR is
non-trivial because the communication complexity of the batch argument does
not grow with the database size m. The vPIR query hides the location ¢ since the
programmed public key is indistinguishable from an honestly generated key. The
security of the vPIR follows directly from the somewhere argument of knowledge
property of the batch argument.

In the publicly verifiable setting we can instantiate the construction under
LWE or DLIN based on the batch arguments from [6,16]. In the designated
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verifier setting our starting point is the batch arguments for NP based on PIR
from [4]. Their work did not construct batch argument for the index language
and security was only proved in the non-adaptive setting. We modify their con-
struction to work for the index language. In a nutshell, to get batch argument
for the index language we need to show that the batch NP statement given by
a machine M can be described as a 3CNF formula that has a short algebraic
representation independent of the number of statements m.

Better complexity via composition. We show that the communication complexity
and verification time of the a vPIR scheme for 1-local properties can be made
sublinear (or even independent) in the running time of the property P by com-
posing it with any SNARG for P. The idea is to add to each database row a
SNARG proving that the row satisfies the property P and to prove that the
database satisfies the 1-local property P’ that each row contains an accepting
SNARG. A similar construction was suggested in [6] in the context of batch
arguments.

We also show how to transform any publicly verifiable vPIR scheme for 1-
local properties with a long query (linear in the database size m|) into a vPIR
scheme with sub-linear query length by composing it with itself. The idea follows
the standard bootstrapping technique for plain PIR [13]. We divide the database
into blocks. We use the vPIR to retrieve one entry from each block and then
use the vPIR again to retrieve the PIR answer from one of the blocks. In each
invocation of the inner vPIR we prove that each entry in the block satisfies the
1-local property P. In the outer vPIR we prove that the inner vPIR answer of
each block satisfies the 1-local property P’ that verifies the inner vPIR answer.
A similar construction was suggested by [10] in the context of quasi-arguments
and by [16] in the context of batch arguments.”

vPIR for properties with constant locality. Given a vPIR scheme for 1-local
properties we construct a vPIR scheme for ¢-local properties for any constant /.
For simplicity, in this overview we set £ = 2. Our construction requires public
parameters that contain a collision-resistant hash key. The server computes a
hash tree over the database with root rt. Then, it constructs the database D’
with m? rows such that row (4,7) contains the pair (r;,r;) together with the
authentication paths from r; and from 7; to rt. To query location ¢ of D, the
client uses the vPIR scheme for 1-local properties to generate a query ¢ for the
location (¢,1) in D’. For the security proof to go through, we need to add to ¢
another dummy query ¢* for the row (1, 1). The server generates the vPIR answer
a,a* for q,¢* using the database D’ proving that it satisfies the following 1-local
property P’. The property P’ has the root rt hard-coded in it and given a location
(i,7) and a database row containing a pair (r;, ;) and two authentication paths,

" The construction in [16] composes the batch argument with itself a constant number
of times reducing the public key size to m* for any constant ¢ > 0. We show how to
get communication complexity and query generation time that are sub-polynomial
in m (under super-polynomial hardness assumptions) by composing the vPIR with
itself a super-constant number of times as in [10].
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P’ checks that the authentication paths are valid with respect to the root rt,
and that the 2-local property P accepts the locations (i,7) and rows (r;, 7).
The server’s answer to the query (g,¢*) contains the root rt and the two vPIR
answers (a,a*). To verify the answer (rt,a,a*), the client verifies both answers
a, a* of the underlying vPIR scheme. To decode the answer, the client decodes the
underlying vPIR answer a and retrieves the row r;. To verify that two answers
(rt1,a1,a¥) and (rte, az, al) are consistent with the same database we check that
rt; = rto.

Analysis. Since the queries of the underlying vPIR are hiding, so are the queries
of the resulting vPIR. To argue security, consider two sets of queries (g1, ¢7) and
(g2, ¢5) where the queries ¢1, g2 are for locations (i, 1), (i2, 1) respectively, and
the dummy queries g7, g5 are both for location (1, 1). The adversary, playing the
role of the server produces two answers (rti,a1,a}) and (rta, az,a3). We need
to show that if the adversary’s answers are consistent with each other and each
answer passes verification, then the decrypted rows r;,,r;, satisfy P. To argue
this, we first move to a hybrid experiment where the dummy query ¢f is for
location (i1, 42) instead of (1,1). Since the query ¢; is generated independently
of the queries ¢1, g2, it must remain hiding even given the decryption keys for
¢1 and g2. Moreover, ¢f is hiding even given the verification keys for all queries.
Therefore, it follows that the decrypted rows r;,, 7, satisfy P with roughly the
same probability in the original security game and in the hybrid experiment. Let
(r7,,73,) be the rows decrypted from the answer aj in the hybrid experiment. If
the two answers are consistent with each other then rt; = rty. Since each answer
passes verification, it follows from the security of the underlying vPIR that the
decoded answers a1, as and af all satisfy the 1-local property P’. Therefore, it
must be that (r} ,r*) = (r;,,r,) or we found a hash collision. Moreover, Since

Q17 i
the decoded answer a} satisfies P, the pair (r} ,r? ) satisfies P as required.

117 g

2.2 vPIR for Global Properties

Next, we describe our construction of vPIR for any global property decidable by
a read-once machine with a bounded length state.

Main challenge. Before describing our construction, we discuss the main techni-
cal challenge in proving simulation security for vPIR. Given an adversary playing
the role of the server we need to design a simulator that generates a full database
and submits it to the trusted party such that the output of the real and ideal ex-
periments are indistinguishable. If we assume, for simplicity, that the adversary
returns an accepting answer with probability 1, then the database submitted by
the simulator must always satisfy the global property P. Additionally, for every
location 4, the distribution of the i-th row in the submitted database must be
indistinguishable from the distribution of the adversary’s decoded answer given
a random query for location 1.

In the context of secure computation, the simulator typically extracts the
adversary’s input (in our case, the database) by using the adversary as a black
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box. In the case of a vPIR, this approach is problematic: the simulator can
execute the adversary with some query, and obtain an answer. However, since
the answer is shorter than the database, the simulator cannot possibly extract the
entire database from a single answer. It may try to rewind the adversary, execute
it with multiple queries and obtain multiple answers. The simulator can extract
a small piece of the database from each answer and then try to put these pieces
together to create a full database. The problem is that the adversary may use a
database that is chosen adaptively, as a function of the query. In particular, the
adversary may produce each answer based on a completely different database.
In this case, the database reconstructed by the simulator may be different than
any database the adversary would ever use and, in particular, it may not satisfy
the required property. While we do not know how to extract the “real” database
used by the adversary, we show how to carefully put together the extracted
pieces and reconstruct some database that makes the output of the real and
ideal experiments indistinguishable.

To demonstrate this idea, we start with a warm up: We show that any PIR
scheme is also a VPIR scheme for the trivial property that accepts any database.
In the real experiment, the client queries the adversary on some location j and
decodes the answer r;. In the ideal experiment, our simulator first queries the
adversary on every location ¢ € [m] and decrypts the answer 7;. The simulator
puts all the answers together in a single database that contains 7; in location %
and submits it to the trusted party. Since the property is always satisfied, the
trusted party always outputs ;. The simulation is valid since the outputs r; and
7; are identically distributed.

We highlight that even in this simple warm up, we are already relying on fact
that, following our definition of vPIR security, the output of the real experiment
includes only the client’s output and not the view of the adversary. In the real
experiment, the adversary’s view contains a random query g; for location j and
the database it uses (in particular, the row r;) may depend on g;. The simulator,
however, does not know j and therefore it is not clear how it could simulate a
query ¢ such that (g;,7;) is indistinguishable from (g,7;).

Simulation for non-trivial properties. The argument above clearly fails for non-
trivial properties. Indeed, not every PIR scheme is also a vPIR scheme for non-
trivial properties and, therefore, we propose a different construction. The main
tool we use to construct vPIR for global properties is a vPIR scheme for 2-local
properties. We start from either designated verifier or publicly verifiable vPIR
scheme and construct a vPIR of the same type.

Fix a property that can be decided by a polynomial-time read-once Turing
machine P with state of length S. We assume that our underlying vPIR for
2-local properties is A-secure where |P|,S < log A. To query the database at
location 4, the client uses the underlying vPIR scheme for 2-local properties to
generate two queries: a query ¢ for location 7 and another dummy query ¢* for
location 1. Given a database D = (rq,...,7) the server emulates the execution
of the global property P on D and obtains all the intermediate states of P as
it reads D. Let ¢y be the initial state of P and let ¢; be the state after reading
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the first j rows. Then, the server constructs a new database D’ with m rows
where the j-th row contains c¢;_; and r;. The server generates the vPIR answer
a,a* for q,¢* using the database D’ proving that it satisfies the following 2-local
property P’. Roughly speaking, the property P’ checks that each two rows in D’
are consistent with a valid execution of P. In more details, given two locations
J,7" and two rows (¢, r), (¢/,r’) the property P’ checks that:

— If j =1 then c is the initial state ¢y of P.

— If j = m then P with state c accepts after reading the row r .

— If j = j' +1 then P with state ¢’ transitions to state c after reading the row

.

The server’s answer to the query (g, ¢*) contains the two vPIR answers (a, a*). To
verify the answer, the client verifies that the answers a, a* of the underlying vPIR
scheme are consistent with each other and that each answer passes verification.
To decode the answer, the client decodes the underlying vPIR answer a and
retrieves the row r;.

Analysis. Since the queries of the underlying vPIR are hiding, so are the queries
of the resulting vPIR. To argue security we demonstrate a simulator. Our simu-
lation strategy is inspired by the analysis of the SNARGs of [1] for NP languages
decidable by a read-once machine with state of bounded length. Translating their
techniques to our setting, we can show that if the server’s answers are accepting
then with overwhelming probability there exists a database that satisfies the
global property P. The additional challenge facing our simulation is to produce
a database that, in addition, has the correct distribution.

We start with a high-level description of our simulation strategy. For simplic-
ity, in this overview we assume that the property P is fixed non-adaptively and
that the adversary’s answers always pass verification. For every location i < m,
we define a distribution D; as follows: we generate a pair of queries (g, q¢*) of
the underlying vPIR scheme for locations ¢ and i 4+ 1 respectively. We send
the query (g¢,q*) to the prover and get back the answer (a,a*). If the answer
passes verification we decode both a and a* and obtain the decoded answers
(¢i—1,7i), (¢i,Ti+1). The sample consists of (¢;—1,7;,¢;). For i = m we define D;
similarly, except that we set ¢,,+1 = L.

By the security of the underlying vPIR we have that with overwhelming
probability, the decoded answers satisfy the 2-local property P’ and, therefore,
P with state ¢;_; transitions to state c¢; after reading the row r;. Thus, we can
think of a sample (¢;—1,7;, ¢;) from D; as one step of P. Given a step from D; and
a step from D; 1 we say that these steps connect if the value of ¢; in both steps
is the same. Given one step from each D;, if each two consecutive steps connect
then we can reconstruct a full accepting execution of P on some database. Note
that if we sample a step from each D; independently, these samples may not
necessarily connect to a full execution of P. Nonetheless, we show how to sample
one step from each D; in a correlated way such that the steps connect to each
other with high probability, without changing the marginal distribution of each
individual step.
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In more detail, using the fact that the vPIR queries hide the locations, we
show that the marginal distributions of ¢; in D; and in D, are close. Therefore,
we can couple together the distributions Dy, ..., D,, and get a joint distribution
D over all m steps such that the marginals of D are exactly the distributions
Dy, ..., Dy, and where steps i and i+ 1 connect with high probability for every i.
It follows that a sample from D contains, with high probability, a full accepting
execution of P on some database (r1,...,7,,). Since the marginal distribution of
the i-th step is exactly D; it follows that r; is indistinguishable from output of
the client in the real experiment with location ¢. While it may be hard to sample
from D, we show how to sample from a distribution D that is close to it in time
poly(A). Our simulator samples from D, extracts the database (r1,...,7m) and
submits it to the trusted party.

We proceed to describe the security proof in more detail. For every i € [m], let
(C!_, R;, C;) denote a random sample from D;. By the security of the underlying
vPIR, we have that except with probability A=<(1):

— () is the initial state of P.
— P with state C},_; accepts after reading the row R, .
— P with state C/_; transitions to state C; after reading the row R;.

We argue that C; and C} are A-indistinguishable. In fact, since the length of
the state is at most log A, C; and C! are also A=“()_close in statistical distance.
We argue this in a sequence of hybrid experiments where in each hybrid we
change the way the queries ¢, ¢* are generated and the way we decode the state
¢; from the answers a,a™:

— In the first hybrid, (¢,q*) are for locations (¢,7 + 1) respectively, and we
decode ¢; from a*. We have that ¢; is distributed exactly like C;.

— In the second hybrid, (g, ¢*) are for locations (i + 1,7 + 1) respectively, and
we decode ¢; from a*. Since the underlying vPIR is A-hiding, we have that
¢; is A-indistinguishable from the previous hybrid.

— In the third hybrid, (¢,¢*) are for locations (i + 1,7 + 1) respectively, and
we decode ¢; from a. By the security of the underlying vPIR, since we check
that a and a* are consistent we have that ¢; is A-indistinguishable from the
previous hybrid.

— In the forth hybrid, (¢, q*) are for locations (i + 1,7 + 2) respectively, and
we decode ¢; from a. Since the underlying vPIR is A-hiding, we have that ¢;
is A-indistinguishable from the previous hybrid and it is distributed exactly
like C!.

The simulator works as follows: For every i the simulator first obtains L in-
dependent samples from D; for some sufficiently large L. Let D; be the empirical
distribution that picks one of these L samples at random and let (C!_,, R;, C;)
denote a random sample from D;. Let ¢ = A~°M) be the required simula-
tion accuracy and let ¢ = ¢/m?. Since the length of the states is bounded

/

by log A, by setting L = poly(4,1/€) we can guarantee that (C;_;,C;) and
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(C!_,,C;) are €~close, except with probability at most negl(A) (over the L sam-
ples from D;). Since we have that C; and CJ are A=W _close, it follows that
C; and C! must be O(¢')-close. Therefore, there exists a joint distribution D
over Dy x --- x D,, whose marginals are just D1,...,D,, such that for every i,
a sample (C/_,, R;, C’i)ie[m] from D satisfies C; = C/ with probability at least
1 — O(¢'). By the union bound, we have that the database (R, ..., Ry,) satisfies
P with probability at least 1 — O(m - ¢’). Moreover, since each distribution D;
is just uniform over a list of length L = poly(A4), we can also samples from D
in time poly(A). Finally, the simulator samples (C’Zﬁl, Ri, C’i)ie[m] from D and
submits the database (R, ..., Ry) to the trusted party.

It remains to show that for any location j, the output of the real and ideal
experiments are indistinguishable. In the real experiment, the queries (g, ¢*) are
for locations (j,1) respectively. The client obtains the answers (a,a*), decodes
(¢j—1,7;) from a and outputs r;. Since the underlying vPIR is A-hiding, r; is
A-indistinguishable from R;.

In the ideal experiment the simulator submits to the trusted party the
database (Ry, ..., R,,) where Rj is distributed like Dj. Since each sample from Dj
is itself distributed like D; we have that f%j and R; are identically distributed.
The output of the ideal experiment is either Rj or | in case the database
(]:21, ...,Rm) does not satisfy P. Since this happens with probability at most
O(m - €') < €/2 it follows that any poly(A)-size distinguish has advantage at
most € in distinguishing the output of the real and ideal experiment.

3 Preliminaries
Parts of this section are taken verbatim from [10] and [6].

Vectors. For a set U, vector v = (v1,...,0,) € U™ and index ¢t € [n] let v;
denote the element v;. For a vector of indexes t € [n]¢ denote v[t] be the vector

(th, ...,Vtg).

The universal language. Let Ly be the language of all triplets (I',z,y,T) such
that I" is a description of a Turing machine that on input x outputs y in 7" steps.
We write (I, T) € Ly as a shorthand for (I2,1,T) € Ly, i.e., I" accepts x in
T steps.

3.1 Private Information Retrival

In this section we define private information retrieval (PIR) schemes.

A private information retrieval scheme consists of the algorithms:

(PIR.Q,PIR.A, PIR.D) |

with the following syntax:



Verifiable Private Information Retrieval 19

Query: The randomized query algorithm PIR.Q takes as input the security pa-
rameter x, the number of database rows m, the row size w, and an index
t € [m]. It outputs a decryption key dk and a query q.

Answer: The deterministic answer algorithm PIR.A takes as input a database
D € {0,1}™** and a query q. It outputs an answer a.

Decryption: The deterministic decryption algorithm PIR.D takes as input the
decryption key dk and an answer a. It outputs a row r € {0, 1}*.

Definition 1. A A-secure poly-logarithmic private information retrieval scheme
satisfies the following requirements:

Completeness. For every k € N, m,w < 2, database D € {0,1}"*"*, and
query t € [m]:

(dk, q) < PIR.Q(x, m,w,t)

Pr | PIRD(dk, @) = DIt] | "5k p o)

=1.

Efficiency. In the completeness experiment above:
— The query algorithm runs in time poly(k).
— The answer algorithm runs in time poly(k, m,w).
— The decryption algorithm runs in time w - poly(k,log(m)).
A-Privacy. For every poly(A)-size adversary Adv and functions m,w < A there
exist a negligible function p such that for every k € N and tg,t1 € [m):

b+ {0,1}
/ (dk07CIO) = PIR'Q(Kam7w7t0) 1
Probi=b1 (i q1) = PIRQ(s.m.w, 1) | =3 THAE) -

b" < Adv(pp, g»)

3.2 Batch Arguments

In this section we define non-interactive batch arguments for the index language.
The definition is adapted from [6] (see discussion following Definition 2). In a
batch argument for the index language, the statement is given by a Turing
machine M and the number of instances m. The prover convinces the verifier
that for every i € [m] there exists a witness w; such that M (i, w;) accepts. We
fix the parameter m as well as the running time, description size, and witness
length of M in setup time.

A non-interactive batch argument for the index language consist of algorithms:

(BA.S,BA.T,BA.P,BA.V,BAE) ,

with the following syntax:

Setup: The randomized setup algorithm BA.S takes as input the security pa-
rameter x, the running time 7" and size N of a Turing machine, the number
of instances m, and the witness length [. It outputs a prover key pk, and a
verifier key vk.
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Trapdoor Setup: The randomized trapdoor setup algorithm BA.T takes as
input the security parameter x, the running time 7" and size N of a Turing
machine, the number of instances m, the witness length [ and an index
1 € [m]. It outputs prover key pk, verifier key vk, and a decryption key dk.

Prover: The deterministic prover algorithm BA.P takes as input the prover key
pk, a Turing machine M and witnesses wy,...,w, € {0,1}\. It outputs a
proof I1.

Verifier: The deterministic verifier algorithm BA.V takes as input the verifier
key vk, a Turing machine M, and a proof II. It outputs an acceptance bit.

Extractor: The deterministic extraction algorithm BA.E takes as input the
decryption key dk and a proof IT. It outputs a witness w € {0, 1}

Definition 2. A A-secure non-interactive batch argument for the index language
satisfies the following requirements:

Completeness. For every functions m,l, T, N < 2% there exists a negligible
function u such that for every k € N, witnesses wi,...,w, € {0,1},
index t € [m], and Turing machine M € {0,1}" such that Vi € [m]:
(M, (i,w;),T) € Ly:

BA.E(dk, IT) = w; | (pk,vk,dk) < BA.T(x, T, N,m,1,t)

TIBANV(vk, M, IT) = 1 | IT < BAP(pk, M, (wy,...,wp)) | -

P
Efficiency. In the completeness experiment above:
— The prover algorithm runs in time poly(k, T, N,m,1).
— The extraction algorithm runs in polynomial time in its input length.
— The verifier and decryption keys are of size poly(k,1).
We define the following efficiency measures of the scheme:
— Let Ts(k, T, N,m,l) be the running time of the setup and trapdoor setup
algorithms.
— Let Ty(k, T, N,m,l) be the running time of the verification algorithm.
— Let Lok(k, T, N, m,l) be the size of the prover key.
— Let Lip(k,T,N,m,l) be the size of the proof.
A-Key Indistinguishability. For every poly(A(k))-size adversary Adv and
functions T, N,m,l < A there exists a negligible function u such that for
every k € N and index i € [m]:

Pr [Adv(pk,vk) = 1 | (pk,vk) < BA.S(x, T, N,m, )] < w(A(k))
— Pr [Adv(pk, vk) = 1| (pk, vk, dk)  BA.T(x, 7, N, m.,4)] | = P40 -

A-Somewhere Argument of Knowledge. For every poly(A(k))-size adver-
sary Adv and functions T, N,m,l < A there exists a negligible function pu
such that for every k € N and index i € [m):

(pk, vk, dk) < BA.T(x, T, N, m, 1,7

(M, IT) « Adv(pk) < u(A(K)) -
w + BA.E(dk, IT)

Pr BAV(vk, M, IT) =1
(Mv (va)aT) ¢ ‘CU
If the somewhere argument of knowledge holds even when Adv is given the
verifier key vk then we say that the batch argument is publicly verifiable.



Verifiable Private Information Retrieval 21

We discuss some differences between Definition 2 and the definition in [6]:

— Our completeness requirement is stronger than the one in [6]. In addition to
the verifier accepting, we also require that the extraction algorithm outputs
the same witness used to generate the proof.

— The work of [6] only defines publicly verifiable batch arguments while we
also consider a designated verifier version. We emphasize that in both the
publicly verifiable and the designated verifier setting, key indistinguishability
is required to hold even given the verification key.

We construct batch arguments for the index language based on PIR. This
extends the result of [4] that obtain the weaker notion of batch arguments for
NP (and not for the index language).

Theorem 5 (Batch Argument from PIR ). If there exists a A-secure poly-
logarithmic PIR, then there exists a A-secure non-interactive batch argument for
the index language with the following efficiency:

Ts =1 poly(x, N)

Ty = (N +1) - poly(x)
Lok = (N +1) - poly (k)
Ly = (N +1) - poly(r)

The proof of this theorem appears in the full version of this work.

Theorem 6 (Publicly Verifiable Batch Argument from LWE [6]). If
the Learning with Errors problem is A-hard, then there exists a A-secure pub-
licly verifiable non-interactive batch argument for the index language with the
following efficiency:

Ts = poly(k, 1)

Ty = N - poly(k,1)
Lok = poly(k,1)
L = poly(x,l)

Theorem 7 (Publicly Verifiable Batch Argument from Paring [16]).

If A-hardness of the k-Lin assumption (for any k > 1) holds in a prime-order
pairing group, then for every e > 0 there exists a A-secure publicly verifiable non-
interactive batch argument for the index language with the following efficiency:

Ts = poly(k,m)

Tv = poly(k, T, N, 1)
Lo = m* - poly(k)
L =poly(k, T, N,I)
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We remark that the notion of batch arguments defined and constructed in
[16] is slightly different than the notion in Definition 2. We explain how to modify
the [16] construction to obtain our notion:

— In [16], the prover and verifier are given a circuit implementing the NP
verification procedure, while in our notion, the NP verification procedure is
given by a Turing machine. As discussed in [6, Section 6], the construction of
[16] can be modified to work with a Turing machine verification by composing
it with a RAM delegation scheme such as the one constructed in [16] under
the k-Lin assumption.

— The construction in [16] has a negligible completeness error. The extraction
algorithm may fail to extract the witness with negligible probability over the
choice of the public key. However, if we slightly modify the trapdoor setup
algorithm to only sample “good” public keys that do not lead to extraction
failure we get a construction with perfect completeness.

4 Verifiable PIR

In this section we define the notion of verifiable PIR. We consider two security
definition: simulation security and a game-based definition that we call local
security.

Let & be the security parameter. In what follows we consider a database with
m(k) rows, where each row is a bit string of length w(x). Let U = U, be a set
of constraint-checking Turing machines. Each U € U takes as input a constraint
description I' and a database D and outputs 1 if and only if D satisfies the
constraint I.

A verifiable PIR (vPIR) scheme for U is given by algorithms:

(VPIR.S,vPIR.Q, vPIR.A, vPIR.D,vPIR.V) ,

with the following syntax:

Setup: The randomized setup algorithm vPIR.S takes as input a security pa-
rameter k. It outputs public parameters pp. If pp are always empty we say
that the protocol has no setup.

Query: The randomized query algorithm vPIR.Q takes as input the security pa-
rameter s, the public parameters pp, a machine U € U, database dimensions
m and w, and an index ¢ € [m]. It outputs a decryption key dk, a verifier
key vk, and a query gq.

Answer: The deterministic answer algorithm vPIR.A takes as input the public
parameters pp, a database D € {0,1}™**  a constraint I', and a query q. It
outputs an answer a.

Decryption: The deterministic decryption algorithm vPIR.D takes as input the
decryption key dk and an answer a. It outputs a row r € {0,1}".

Verification: The deterministic verification algorithm vPIR.V takes as input a
constraint I', a verifier key vk and an answer a. It outputs a bit indicating
if it accepts or rejects.
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Multiple queries. We also define a version of the verification algorithm vPIR.V
for multiple answers. In this setting we allow multiple users to jointly verify the
answers to all their queries without sharing their verification keys. To this end,
each user invokes the verification algorithm with all the answers but only its own
verification key. The verification algorithm is also given the index of the answer
that matches the input verification key.

Verification (multiple queries): The deterministic verification algorithm
vPIR.V takes as input a constraint I, a verifier key vk, a vector a of d
answers and an index i € [d]. It outputs a bit indicating if it accepts or
rejects.

We also use the following shorthand for working with d > 1 queries:

— vPIRVQ(k, pp, U, m,w,t) stands for (dk,vk,q) such that Vi € [d]
(dk;, vk, q;) = vPIR.Q(k, pp, U, m, w, t;).

— vPIRVA(pp,I,D,q) stands for a such that Vi € |[d] : a, =
vPIR.A(pp, I, D, q;).

— vPIR.VD(dk, a) stands for r such that Vi € [d] : r; = vPIR.D(dk;, a;).

— VPIRVV(I', vk, a) stands for A,cy VPIRV(I',vk;, a, ).

Next we define the properties required by a vPIR scheme. In Definition 3
we give the completeness, efficiency and privacy properties. We consider two
different definitions for security against malicious server: a simulation based
definition with a single query (Definition 4) and a game based definition for
multiple queries (Definition 5).

Definition 3. LetU be a set of Turing machines. A vPIR scheme forU satisfies
the following requirements:

Completeness. For every m,w,d < 2" there exists a negligible function u such
that for every k € N, machine U € U, database D € {0,1}™**, vector of
queries t € [m]?, and constraint I' such that U(I', D) = 1:

pp < VPIR.S(k)
(dk, vk, q) + vPIRVQ(k, pp, U, m, w, t)
a < vPIR.VA(pp, I', D, q)

by | YPIRVD(dk, a) = DIt]
" [VPIR.WV(I, vk, a) = 1

=1.

Efficiency. In the completeness experiment above:
— The setup algorithm runs in time poly(k).
— The decryption algorithm runs in polynomial time in its input length.
— The answer algorithm runs time poly(k, m,w,T) where T is the running
time of U(I', D).
We define the following efficiency measures of the scheme:
— Let To(k,U,m,w) be the running time of the query algorithm.
— Let Ty(k, U, m,w) be the running time of the verification algorithm.
— Let Ly(k,U, m,w) be the size of the query.
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— Let Lak(k, U, m,w) be the size of the decryption key.
— Let Ly (k, U, m,w) be the size of the verifier key.
— Let Lo(k, U, m,w) be the size of the answer.
A-Privacy. For every poly(A)-size adversary Adv and functions m,w < A there

exists a negligible function p such that for every k € N, machine U € U, and
t1,tg € [m] N

i+ [2]

pp + VvPIR.S(k)

(dk, vk, q) = vPIRVQ(k, pp, U, m, w, (t1,12))
i' < Adv(pp, vk;, q;)

< SHu(A(R) -

4.1 Simulation Security

We give a simulation based security definition for vPIR. In this work we only
consider simulation security for a single query. However, the definition can be
extended to multiple queries.

Definition 4 (vPIR Security). Let U be a set of Turing machines, let
U ={Ux €U}, oy and let A(k),m(x), w(k) be functions. A vPIR scheme for U
satisfying Definition 3 is A-secure with respect to (U, m,w) if for every poly(A)-
size adversary Adv, and polynomial P there exists a poly(A)-size simulator Sim
such that for every poly(A)-size distinguisher D, k € N, and t € [m]:

1

[Pr{D(Realaa, (k) = 1] = Pr[D(Idealsin (. 1)) = 11| < priess -

where the experiments Realagy(,t) and Idealsim(k,t) are defined as follows:

Realpgy (K, t):
— Sample parameters pp < vPIR.S(k).
— Generate a query (dk,vk, ¢) < vPIR.Q(k, pp, Uy, m,w, t).
— Run the adversary and obtain (I',a) < Adv(pp, q).
— If VvPIRV(I,vk,a) = 0 output (I,L1). Otherwise output
(I',vPIR.D(dk, ).
Idealsim (k, t):
— Run the simulator and obtain (I, D) + Sim(k).
— If D=1 or Uy(I,D) =0 output (I, L). Otherwise output (I, Dt]).

If the above holds even when Adv is given the verifier key vk then we say that
the vPIR is publicly verifiable.

4.2 Local Security

In the multi-query setting, we introduce the notion of ¢-local vPIR that satisfies
a game-based security definition. In local vPIR, instead of verifying a global
constraint on the database, we verify that each set of ¢ database rows satisfy
some local constraint. In more detail, we say that the a set of constraint-checking
Turing machines U is ¢-local if for every U € U there exists a machine denoted
by U, such that U(I", D) = 1 if and only if U(I’, (t, D[t])) = 1 for every t € [m]’.
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Definition 5 (¢-local vPIR security). Let U be an {-local set of Turing
machines. Let U = {U, € U}, oy and let A(xk),m(k),w(x) be functions. An (-
local vPIR scheme for U satisfying Definition 8 is A-secure for (U,m,w) if for
every poly(A)-size adversary Adv there exist a negligible function p such that for
every k € N and for every t € [m]’:

pp < vPIR.S(k)
vPIRVV(I,vk,a) =1 | (dk,vk,q) + vPIRVQ(k, pp, Us, m, w, t)
Ux (I, (t,1)) =0 (I';a) < Adv(pp, q)

r + vPIR.VD(dk, a)

Pr

< p(A(w)) -

If the above holds even when Adv is given the verifier keys vk then we say that
the vPIR is publicly verifiable.

In what follows we consider the set U = {Ur,N}p y<on Where

Ur (T, (t,D[t])) = 1 if and only if I' is a description of a Turing machine
of length N and (I, (t,D[t]),T) € Ly for every t € [m]‘. We say that an /-
local vPIR for U is A-secure if for every functions T, N,m,w < A the vPIR is
A-secure and A-private for (Ur n,m,w).

5 From Batch Arguments to 1-Local vPIR

In this section we give a construction of a publicly verifiable 1-local vPIR from
batch arguments.

Theorem 8. If there exists a A-secure non-interactive batch argument for the

index language with efficiency (TEA, TBA, LS@, LBA) then there exists a A-secure

1-local vPIR for U' with no setup and with the following efficiency:
TEA Kk, T, N, m,w)
Tv(k, Ur,n,m,w T\l,gA(/s T, N, m,w)
L, (Ii T,N,m,w)

Tq(k, Ur N, m,w) =
( ) =
( ) =
Lak(k, Ur n,m,w) = poly(n w)
( )
( ) =

&, Up,n,m,w

L (k,Ur,n, m,w) = poly(k,w)

Lo(k,Uprn,m,w BA(KJTNTTL’LU)
Moreover, if the non-interactive batch argument is publicly verifiable then the
1-local vPIR is publicly verifiable.

In the full version of this work we show how to transform a publicly verifiable
1-local vPIR into one with shorter query. Combined with Theorems 7 and 8 we
get the following theorem.
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Theorem 9. If A-hardness of the k-Lin assumption (for any k > 1) holds in a
prime-order pairing group, then for every e > 0 there exists a A-secure 1-local
publicly verifiable vPIR for U' with no setup and with the following efficiency:

Tq(k, Ur,n, m,w) = poly(T, N, w) - 9V/O(log rlogm)

Tv(k,Up n,m,w) = poly(N,w) - 2 O(log relog m)

( )
( ) =
La( ) = (poly(N, w) + T°) - 2v/OllogxTogm)
Law(%, Ur, v, m, w) = poly(N, w) - 2/ 0l ~1ogm)
( )
( )

K:?UT,Nv , W

Ly (k, UTN,m w —pOly(N w) QW
Lo(k,Up n,m,w) = poly(N,w) - 91/O(log rilog m)

The proof of Theorems 8 and Theorem 9 appears in the full version of this work.

6 From 1-Local vPIR to vPIR with Constant Locality

In this section we transform a 1-local vPIR into an ¢-local vPIR for any constant

L.

Theorem 10. If there exists a A-secure family of collision resistant hash func-
tions and a A-secure 1-local vPIR forU* with efficiency (T4, T, Ly, Ly, Ly L) s
then for every ¢ € N there exists a A-secure £-local vPIR for U* with the following
efficiency:

Tq(k, Ur,n,m,w) = 2- T4 (k, Upr N/, m', w') + poly(k)
=2 T\//<"$= UT’,N’v m,7 wl) +tw- pOly("i)
=2 L;(KJ, UT/,N/,m', U)/)

= Ly (K, U nr,m/ w')
=2 L (k,Ups nr,m',w") 4 poly(k)
=2 L (5, Ups o) + w0 - poly(s)

TV R, UT,N> m,w

Lk

ka R, UT,N7 m,w

(

(
Ly(k,Up,n,m,w

(k,Ur,n,m,w

(

(

A N

La R, UT,N» m,w

where:
T' =T+/{-w-poly(k) , N'=N+w-poly(k) , m =m’, w' ={-w-poly(k) .

Moreover, if the 1-local vPIR is publicly verifiable then the £-local vPIR is publicly
verifiable.

The proof of this theorem appears in the full version of this work.
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7 From Local vPIR to Simulation Secure vPIR

In this section we give a vPIR scheme for the set U of global constraints that
read the database once and maintain a bounded size state between rows. In
more detail, let U,, = {UT»NvS}T,N,S<2K' where Ur n,s(I, D = (74)iepm)) = 1 if
and only if I' is a description of a Turing machine of length N and for every
i € [m] there exists ¢; € {0,1}° such that (I, (c;_1,7;),¢;, T) € Ly where ¢y and
cm are some fixed starting and accepting configuration, respectively.

Theorem 11. If there exists a A-secure 2-local vPIR for U? with efficiency
(T4, T, Ly, Ly, Ly, Ly,), then for every N, S = O(logA) and m,w, T < A
there exists a vPIR scheme for U that is A-secure and A-private with respect
to (Ur,n,s,m,w) with the following efficiency:

TQ(I{, UT7N,S,m,w =2- Té(}{, UN’,T’, m,w')
Ty(k,Ur N5, m,w) = 2 - Ty(k, Uns 17, m,w')

/ !/
Lq(H»UT,N,Samvw =2- Lq("ia UN’,T’7m7w )

! !
La(x,Ur,N,5,m,w) = Ly (k, Un: 71, m,w")

/ /
ka(ﬁ:y UT,N,Svmvw =2 ka(K’a UN’,T’vmvw )

_ — O O O

/ /
La(H) UT,N,Sam7w =2- LQ(K/7 UN’7T’7ma w )

where:
N =N+0(1), T'=T+0(og(m)+S+w), w=5+w.

Moreover, if the 2-local vPIR is publicly verifiable then the vPIR is publicly ver-
ifiable.

The proof of this theorem appears in the full version of this work.
The following is corollary of Theorems 5,8,10 and 11.

Corollary 1. If there exists a A-secure PIR, then for every N,S = O(log A)
and m,w,T < A there exists a vPIR for U that is A-secure and A-private and
A-private with respect to (Ur, n,s,m,w) with the following efficiency:

Tq(k,Ur,N,s,m, w) = poly(k,w)
Tv(k, Ur n,g,m, w) = w - poly(k)
L,(k,Up,N,s,m,w) =w - poly(k)
Lak(k,Ur n,s,m,w) = w - poly(k)
L (k,Ur n,s,m,w) = w - poly(k)
Ly(k,Ur n,g,m,w) =w - poly(k)

The following is corollary of Theorems 6,8,10 and 11.
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Corollary 2. If Learning with Errors is A-hard, then for every N, S = O(log A)
and m,w, T < A there exists a publicly verifiable vPIR for U that is A-secure and
A-private with respect to (Ur,n,s,m,w) with the following efficiency:

Tq(k,Ur,n,s,m,w) = poly(k,w)
Tv(k,Ur n.s,m,w) = poly(k,w)
Ly(k,Ur,n,s,m, w) = poly(k,w)
Lo (k,Ur n g, m,w) = poly(k, w)
Lu(%,Ur N5, m,w) = poly(x, w)
L,(k,Ur n.s,m,w) = poly(k,w)

The following is corollary of Theorems 7,9,10 and 11.

Corollary 3. If A-hardness of the k-Lin assumption (for any k > 1) holds in a
prime-order pairing group, then for every € > 0, and for every N, S = O(log A)
and m,w, T < A there exists a publicly verifiable vPIR for U that is A-secure and
A-private with respect to (Ur n,s, m,w) with the following efficiency:

Tq(k, Ur,n,s, m,w) = poly (k, T, w) - 9V/0(log rlogm)

Tv(k,Ur Nn,g,m, w) = poly (k,w) - 9/O(log rlog m)
Ly(k,Ur,n.s,m,w) = (poly(k,w) + (T + w - poly(x))°) - ov/Olog rlog m)
Lo (k,Ur n.s,m,w) = poly (k,w) - 9/O(log rlog m)

Lok, Up,n,ssm, w) = poly (r, w) - 2V/OUosrlogm)

Lo(k,Ur N,s,m,w) = poly (k,w) - 9/O(log rlog m)
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