
A Practical Full Key Recovery Attack on TFHE
and FHEW by Inducing Decryption Errors

Bhuvnesh Chaturvedi
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India

bhuvneshchaturvedi2512@gmail.com

Anirban Chakraborty
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India

ch.anirban00727@gmail.com

Ayantika Chatterjee
Advanced Technology Development Centre
Indian Institute of Technology, Kharagpur

Kharagpur, India
cayantika@gmail.com

Debdeep Mukhopadhyay
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur
Kharagpur, India

debdeep.mukhopadhyay@gmail.com

Abstract—Fully Homomorphic Encryption (FHE) promises to
secure our data on the untrusted cloud, while allowing arbitrary
computations. Present research shows that while there are pos-
sibilities of side channel exploitations on the client side targeting
the encryption or key-generation processes, the encrypted data on
the cloud is secure against practical attacks. The current paper
shows that it is possible for adversaries to inject perturbations in
the ciphertexts stored in the cloud to result in decryption errors.
Most importantly, we highlight that when the client reports of
such aberrations to the cloud service provider the complete
secret key can be extracted in few attempts. Technically, this
implies a break of the IND-CVA (Indistinguishability against
Ciphertext Verification Attacks) security of the FHE schemes.
The underlying core methodology of the attack is to exploit
the dependence of the error in the ciphertexts to the timing
of homomorphic computations. These correlations can lead to
timing templates which when used in conjunction with the error-
induced decryption errors as reported by the client can lead to
an accurate estimation of the ciphertext errors. As the security
of the underlying Learning with Errors (LWE) collapse with the
leakage of the errors, the adversary is capable of ascertaining the
secret keys. We demonstrate this attack on two well-known FHE
libraries, namely FHEW and TFHE, where we need 7, 23 and
28 queries to the client for each error recovery respectively. We
mounted full key recovery attack on TFHE (without and with
bootstrapping) and FHEW with key sizes 630 and 500 bits with
1260, 703 and 1003 correct errors and 31948, 21273 and 9073
client queries respectively.

Index Terms—FHE, LWE, timing attack, template attack,
ciphertext verification attack, key recovery

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) schemes allow com-
putations on encrypted data while ensuring the final result
remains encrypted as well. In other words, it allows trans-
formation of a collection of ciphertext messages for some
plaintexts π1, π2, . . . πn into a ciphertext for some function
or circuit evaluation on plaintexts f(π1, π2, . . . πn), without
the knowledge of the underlying secret key. Such schemes are

particularly useful in constructing privacy-preserving protocols
in cloud computing scenario, where a user (client) can store
its confidential data in encrypted form to a remote server and
allow the server to process on the encrypted data without
revealing the original form. The client is anyone who wants
to access the services of the cloud and has a secret key with
which it can encrypt its data. It then sends this encrypted
data to the untrusted server to perform some computations
on it. The server, in general, evaluates a known function
on this encrypted data with the help on a publicly available
bootstrapping key (BK) or evaluation key (EK), which is an
encrypted form of the secret key of the client. The server
then sends back the result of the evaluation, still in encrypted
form, to the user in possession of the secret key, who in turn
decrypts it to obtain the underlying plaintext result. Thus, once
the data leaves the client machine, it remains in encrypted
form during transmission as well as during computation. The
server remains oblivious to the inputs as well as the output(s);
however it does know the function that is being evaluated and
the design of the circuit that implements this function.

The basic foundational assumption of FHE is that the server,
where the computations are taking place, is untrusted, and shall
not be allowed to obtain any information regarding client’s
data. Moreover, apart from providing computational services,
these servers can store data, albeit in encrypted form, acting
as a data storage service and also for future computational
requirements of the client. The assumptions stem from the
fact that the sensitive data stored in the cloud is encrypted
with a key that the cloud does not have access to. Therefore,
considering the underlying crypto-primitive being mathemati-
cally secure, the cloud could undertake unscrupulous activities
that include tampering with the data in order to gain private
information. Therefore, in modern-day cloud service settings,
the server itself is considered as untrusted and malicious. It
must be mentioned in this context that the objective of the
attacker is to retrieve information regarding the client’s data

1



while keeping the attack undetected, such as not to lose client’s
trust which would incite it to stop using the services. There-
fore, the security evaluation of FHE schemes must take into
account the practical aspects and provide a system-wide attack
model, instead at the primitive level. Although well-known
FHE schemes being mathematically and implementationally
robust, the capability of the server to introduce perturbations
in the client data (either while storage or during computation)
provides a unique security challenge that becomes the crux of
this paper. As observed by authors in [8], to make an informed
choice on the security guarantees of homomorphic schemes,
one needs to consider a broader view of the overall system,
instead of focusing on the primitive only.

Quite interestingly, if the encrypted data gets corrupted in
the server or the final computational result appears erroneous
to the client (while decryption), the client, in general, can
inform the server about the faulty data and request for re-
computation. This happens in a pay-per-computation model,
where the client pays the cloud for each correct computation.
If it receives a wrong result, the client will ask the cloud
for a free re-computation. Although such a situation is pretty
common in modern cloud services domain, where intentional
or unintentional alteration of encrypted data is touted as a
rather benign data integrity issue, we , for the first time in lit-
erature, analyse the security implications of such “feedback”
procedures. In this paper, we show that the seemingly simple
integrity issue can be used to learn crucial information from
the client, when the untrusted server is acting as an active
adversary. We show that a malicious server can purposefully
perturb client’s data, during homomorphic computations and
use the feedback from the client regarding the correctness of
the output, to leak the entire secret key, thereby breaking the
FHE scheme.

The security of FHE schemes relies on mathematically hard
problems such as Learning With Errors (LWE) [2], or its ring
variant Ring-LWE [3]. The intractability of these schemes
depends upon the idea of noise, a small value that is added
to ciphertexts during encryption operation which grows when
homomorphic operations are performed on these ciphertexts.
Once this noise grows beyond a certain threshold limit, decryp-
tion will no longer work correctly and will give wrong result.
Thus once the noise reaches or is about to reach the threshold,
a refreshing operation is required to bring back the noise
to an acceptable level. Gentry in 2009 [23] introduced the
idea of bootstrapping, which performs a decryption operation
on the ciphertext using an encryption of the secret key. The
problem with bootstrapping is that it is a very costly operation,
and the efficiency of an FHE scheme depends on how fast
the bootstrapping can be performed. FHEW [37] was the
first scheme to implement a bootstrapped gate that works
under 1 second, which was further brought down to under 0.1
seconds in TFHE [4]. Both these schemes operate under binary
plaintext space and performs bootstrapping immediately after
evaluating a gate.

A. Motivation
The early attempts that tried to break the security of FHE

schemes mostly targeted the underlying mathematical hard
problem. Majority of the works either reported the asymptotic
complexity of solving these problems [13]–[15] or reported
the security level of the schemes built using these problems
[16]. One of the advantages of using LWE or its variants as
the foundational hard problem is that they are computationally
secure and robust both in the classical and quantum world.
Therefore, the FHE schemes that are implemented using these
mathematical primitives are considered to be post-quantum
secure as well. Although, these FHE schemes and their un-
derlying mathematical primitives are found to be theoretically
secure in both the worlds, the security evaluation of practical
implementations of these schemes opens up a new facade. As
established through decades of research [39]–[43], a mathe-
matically secure cryptographic scheme could be jeopardised in
practice due to implementational hindsight. The passive infor-
mation leakage due to execution of a cryptographic scheme on
a real-world device could lead to extraction of the underlying
secret. Such passive attacks, collectively known as side chan-
nel attacks have been successfully used in compromising many
real-world cryptographic schemes, inspiring crypto designers
to incorporate various side-channel protection mechanisms
while building any new primitive. However, the side channel
implications in popular FHE libraries like FHEW [37] and
TFHE [4] has not been widely explored in literature. Recently,
a side-channel attack [6] has been shown on the client side
running the encryption operation of a popular HE library
[18] to recover the plaintext message, that is being encrypted,
using a single power trace. One must note that the above-
mentioned attack targets the error sampling phase at the client
side to observe side channel information. Given the client-
server settings for FHE applications, performing side channel
attacks at the client side is a relatively stronger attack model.
Moreover, the essence of FHE lies in the fact that the cloud
server is untrusted and thus, can attempt to snoop sensitive
information from client’s operations. It must be mentioned in
this context that attacking the FHE applications at the server
side is not trivial as neither the secret key gets involved in
the computations nor error values (noise) are generated on
the server. More specifically, while the secret key is directly
involved in the computations at the client end, the ciphertext at
the server side does not directly reveal the secret key. However,
the error values incorporated in the ciphertext does grow in
magnitude due to computations (homomorphic operations) at
the server side, thereby necessitating the use of bootstrapping
mechanism to contain the error.

B. Contribution
In this paper, we make the following contributions.
• We show that a malicious server can introduce intended

and calculated perturbations in the homomorphically
computed ciphertext and perform ”reaction” attacks on
the client by using the feedback from the client as a side
channel source.
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• We provide a novel attack scheme using the error thresh-
old for decryption and a reduced error range to induce
faults in the ciphertext

• We, for the first time, demonstrate that the error values in
the input ciphertext has a relationship with the execution
time of homomorphic gate operation in popular FHE
libraries like TFHE and FHEW. We utilize this error-
timing relationship to perform template attacks in order
to ascertain a range of error that bounds the original
unknown error in the computed ciphertext.

• Unlike prior attack, we target the server side where the
secret key is not directly involved in any computation and
show that side-channels can still leak potential informa-
tion when considered in a cloud computing scenario.

• Finally, we recover exact error corresponding to each
ciphertext by using a binary-search based approach to
induce curated perturbations in the original ciphertext and
utilizing feedback from the client as side-channel source.
Once the errors are recovered, the secret key is extracted
by forming a system of equations withn the ciphertexts
and solving them using Gaussian Elimination method.

II. BACKGROUND

In this section, we provide a brief background on the Learn-
ing With Error problem, which is the underlying mathematical
foundation for the FHE schemes we discuss in this paper. We
follow it up with working principles of two well-known FHE
libraries that are based upon the LWE primitive.

A. Learning With Error problem

The idea of Learning With Error was introduced by Regev
in 2005 [2]. Since its inception, LWE has been used as a
foundation of multiple cryptographic constructions due to the
assumption that it is as hard as worst case lattice problems.
LWE is based on addition of random noises to each equation
in a system of equations, thus turning it into a system of
approximate equations, as follows

a11s1 + a12s2 + · · ·+ a1ksk ≈ b1 (mod q)

a21s1 + a22s2 + · · ·+ a2ksk ≈ b2 (mod q)

...
am1s1 + am2s2 + · · ·+ amksk ≈ bm (mod q)

For brevity, let k ≥ 1 be an integer and s be a secret
sampled uniformly from some set S ∈ Zk. An LWE sample is
denoted by a tuple (a, b) ∈ Zq

k×Zq, where a ∈ Zq
k is chosen

uniformly and b = a · s+ e ∈ Zq. Here e is a noise value, also
called error, sampled uniformly from a Gaussian distribution
with mean 0 and standard deviation σ ∈ R+. LWE problem
has the following two variants -
• Search problem: having access to polynomially many

LWE samples, retrieve s ∈ S.
• Decision problem: distinguish between LWE samples and

uniformly random samples drawn from Zq
k × Zq.

Both the versions are considered to be hard to solve, even
for a quantum computer. The attacks on LWE based schemes

try to solve any one of the above problem or to estimate the
security level of the schemes based on the parameter set used
to implement them. However, once these error (noise) values
are recovered, they can be removed from the corresponding
ciphertext to obtain a system of exact equation which can then
be trivially solved.

B. The Message Space

1) Torus Domain For TFHE: Torus [4] is defined as a set
of real numbers modulo 1, or real values lying between 0 and
1. It is denoted as T = R/Z = R mod 1. This set T along
with two operators, namely addition ‘+’ and external product
‘·’, forms a Z-module. It means that addition is defined over
two torus elements which results in a torus element, while
external product is defined as a product between an integer
and a torus element which results in a torus element. Product
between two torus elements is not defined.

In the CPU implementation of TFHE library [5], the Torus
elements are defined as 32-bit unsigned integers and all
the Torus-based operations are performed modulo 232. The
plaintext messages 1 and 0 are represented as µ and −µ in
the library, which are the 32-bit unsigned representations of
the Torus equivalent of these messages.

2) Integer Domain for FHEW: The plaintext and cipher-
texts as well as the underlying operations in the FHEW library
[36] are defined over Integers modulo 512. The plaintext space
is divided into two halves with each half either representing a
0 or 1. On the other hand, the ciphertext space is divided into
four quadrants representing one of the four possible ciphertext
values between 0 to 3. Thus, unlike TFHE where plaintext and
ciphertext space is same, they are different in case of FHEW.

C. Fully Homomorphic Encryption Libraries

In this work, we focus on two well-known LWE based
FHE libraries, namely FHEW [36] and TFHE [5]. The overall
working principle of FHE schemes can be broadly broken
into three stages - the encryption stage that takes place in
client side and involves the encryption key, homomorphic gate
evaluation stage on the server and finally bootstrapping to
reduce the overall noise both of which does not directly involve
the secret key, also at the server. Once the computations is done
at the server, the final encrypted result is sent to the client for
decryption and involves the decryption key.

1) The Encryption Stage: The encryption process starts
with sampling a noise value e ∈ Zq from a Gaussian distribu-
tion and adding it to the message m to obtain an intermediate
value of b = m+ e. It then samples a random vector a ∈ Zq

k

and performs a dot product with the secret vector s ∈ Bk

where B ∈ {0, 1} for TFHE and B ∈ {0,±1} for FHEW. The
result of this dot product is then added to the intermediate
value of b to obtain its final value as b = a · s+m+ e. The
final ciphertext comes out to be (a, b). The above process is
same in case of both FHEW and TFHE, the only difference
being the length of secret key k and the standard deviation σ
of the Gaussian distribution.
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While FHEW and TFHE schemes operate in the secret key
setting as shown above, the schemes can be converted to a
public key setting. The owner of the secret key generates its
public keys by first generating a random matrix A ∈ Zq

m×k

and a random vector e ∈ Zq
m consisting of noise values ran-

domly sampled from a Gaussian distribution. It then computes
a vector b = A × s + e ∈ Zq

m, where “×” represents the
product between a matrix and a vector. This matrix-vector pair
(A,b) acts as its public key. To encrypt a message x ∈ Zq,
it randomly selects a row (a, b) from the public key and then
adds x to b to obtain b′. The pair (a, b′) ∈ Zq

k × Zq acts as
the ciphertext corresponding to the plaintext message x.

We would like to mention that our attack works irrespective
of whether the user is working under the secret key setting or
public key setting as our attack targets the decryption stage
which involves the secret key in both these settings.

2) Homomorphic gate evaluation and bootstrapping:
While the idea of homomorphic gate implementation and
bootstrapping is identical for both FHEW and TFHE libraries,
there are implementational differences, which we elaborate in
this subsection.
FHEW: For server side computation, the server receives two
ciphertexts c1 = (a1, b1) and c2 = (a2, b2) on which it
performs the gate evaluation operation. It does so by defining
a gate constant as a pair (2q, bgc), where the first part is a
vector having each coefficient set to 2q and q = 512 denotes
the modulus under which all the computations are carried out.
The result c = (a, b) of the gate computation is evaluated by
computing a = 2q− (a1 +a2) and b = bgc − (b1 + b2) where
bgc is defined differently for each of the 4 homomorphic gates.
The process is same for evaluating any of the 4 gates, apart
from NOT-gate, that are implemented in FHEW library. The
bootstrapping operation takes place in the ciphertext domain,
i.e., the modulus under which the ciphertext is defined, and
the noise is reduced without a change in this domain. Once
the noise is reduced, a key-switching procedure is carried out
to switch back to the original key as refreshing operation
changes the underlying secret key. Finally a modulus switching
operation is carried out to switch the modulus from the
ciphertext domain to plaintext domain.
TFHE: The server receives input ciphertexts in the same
format described in case of FHEW, which are c1 = (a1, b1)
and c2 = (a2, b2). The gate constants are defined as a pair
(0, bgc) where the first part is a vector having each coefficient
set to 0 and all the computations are carried out under modulo
232. The result c = (a, b) of the gate computation is evaluated
by computing a = 0 ± (a1 ± a2) and b = bgc ± (b1 ± b2)
where the ordering of + or − depends on the homomorphic
gate being evaluated. Similar to FHEW, the second part of
the gate constant bgc is defined differently for each of the
10 homomorphic gates (apart from NOT-gate) supported in
TFHE library. The bootstrapping operation takes place in the
ciphertext domain, similar to FHEW. However it reduces the
noise in the ciphertext and switches back the modulus to
plaintext domain from the ciphertext domain. Thus TFHE does
not require a separate modulus switching operation. The only

similarity between the implementation of the two schemes is
that they both require a key-switching procedure to switch
back to the original secret key.

3) The Decryption Stage: Once the client receives the
ciphertext c = (a, b), a result of some homomorphic com-
putation, it begins the decryption process by computing ⟨a ·s⟩
and then subtracting this result from b. As a result of this
computation, the client receives a noisy version x ± e of
the underlying plaintext message x, which it extracts by
performing a rounding operation on the same. However the
rounding operation extracts the correct message only when
the associated noise is below a pre-determined threshold,
otherwise it decrypts incorrectly.

III. EXISTING ATTACKS ON FHE SCHEMES

The security guarantee of the FHE schemes, discussed in
the papers [4] and [37], is based on the underlying hardness
of LWE problem. Unsurprisingly, the earlier attempts to break
the semantic security of these schemes were majorly focused
on attacking the underlying LWE problem. For example the
authors in [13] showed an attack on LWE problem when the
coefficients of secret key s ∈ Zk

q (a vector of dimension k) are
taken from Integers modulo some q. However, it does not take
into consideration the case when s ∈ {0, 1}k or s ∈ {0,±1}k,
i.e., the secret key is a Binary or Ternary vector of dimension
k, which is the case for the FHE libraries FHEW and TFHE.
Interestingly, authors in [14] showed an attack on Binary LWE
problem where the secret key is a Binary vector. This attack
belongs to the class of Primal Attacks, which directly tries
to solve the search version of the LWE problem. Similarly,
[15] shows a Dual Attack on small-secret LWE, i.e., LWE
problem where secret key is Binary or Ternary vector, to
solve the decision version of the LWE problem and then use
the Search-to-Decision reduction to recover the secret key.
Recently, authors in [16] proposed a Dual attack on TFHE but
the attack does not practically break the security of the scheme.
Rather, the authors only reported a drop in the security level
of the scheme from the one reported in the original TFHE
scheme [17]. It must be noted that all the above mentioned
attacks are generic and does not work well practically for the
lattice dimensions used in the recent FHE schemes.

Apart from theoretical attacks on LWE primitives, side
channel attacks have also been proposed in recent times that
targets the implementational aspects of FHE schemes. The first
side-channel attack on HE has been demonstrated recently in
[6], targeting the client side that is running the encryption
operation of SEAL scheme [18]. The attack targets the condi-
tional statements executed in the Gaussian Sampler routine
to obtain the coefficients for the error polynomial. In the
context of homomorphic encryption, attacking a client system
poses realistic challenges and one must assume a stronger
attacker model where the attacker has access to the client’s
machine. Whereas, the server, itself being untrusted, presents
a more realistic scenario where it can try to decipher the data
stored and computed at the server. However, to the best of
our knowledge no reported attack successfully exploited the
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server side computations due to non-involvement of the secret
key directly in the computations done in the cloud.

IV. ATTACKER ASSUMPTIONS AND THREAT MODEL

In this section, we present the basic security assumptions,
valid for FHE and related cryptographic primitives. We further
discuss on the attacker threat model which is relevant to the
cloud computing scenario, under which FHE based applica-
tions are meant to operate in reality.

To begin with, the security of cryptographic schemes is
evaluated under two security models, namely IND-CPA and
IND-CCA. FHE schemes are expected to be IND-CPA secure,
ensuring that an adversary can gain no information about the
underlying plaintext from the ciphertext [8]. On the other
hand, it has also been established that no FHE schemes can
be either IND-CCA [9], [11], [50] or IND-CCA2 secure,
which implies that an adversary can break such schemes if
it has access to a decryption oracle [8]. Our attack operates
under the notion of IND-CVA (Indistinguishability against
Ciphertext Verification Attack) security [10], which is based
on the idea of “reaction” attack from [24]. Under this premise,
it is assumed that an adversary has access to an oracle that
accepts a ciphertext as input and returns as output whether
the decryption was successful. This oracle, which we refer
to as Ciphertext Verification Oracle or CVO, is essentially
the client itself in a “pay per running times model”, where
client pays for each correct computation [9], [11]. In such
a model, the client could ask for a free re-computation in
case the result returned by cloud is incorrect. The client
before using the FHE cloud services would typically have a
verification phase, wherein it will check the correctness of
the homomorphic ciphertexts. In case of decryption failures
the client would need to report the same to the cloud, to
avoid payments for erroneous service of the cloud. The client
may be paying for a service on encrypted information on
the cloud, which could be pertaining to data-analytics, etc. In
case of inferior performance, the client company can analyze
the exchanges and report on the possible erroneous instances
to the service providing entity, which is the cloud. In such
cases, the existence of the decryption verification oracle is not
necessarily restricted to the beginning period of the availed
service but for the entire duration of the usage.

Consider the cloud setting where the server or cloud 1 offers
homomorphic computations as a service through well-known
FHE libraries like FHEW and TFHE. It must be noted that
these FHE schemes operate on binary message space, i.e,
the plaintext is either 0 or 1. Therefore, in order to obtain
homomorphic computations on encrypted data, the actual data
stream is represented in binary form and each bit is encrypted
at the client end and sent to the server for homomorphic
operations on individual ciphertext. It must be mentioned here
that FHE allows homomorphic encryption in both public and
private key settings. Therefore, in this work, we assume that
the client can choose either of the variants. In public key
setting, the messages are encrypted using public key while

1We use the terms cloud and server interchangeably in this paper.

Fig. 1. Receiving client feedback works by (1) receiving two input ciphertexts
from client, (2) computing a homomorphic gate, (3) introduce carefully crafted
perturbation, and (4) sending this modified ciphertext to the client. The client
sends a feedback if decryption fails, otherwise keeps the message.

the encrypted computational result from the server is decrypted
back using the secret key. Whereas in private key setting, both
encryption and decryption is performed using the secret key.
Irrespective of the key variant, we target the decryption key,
which is the secret key in both the cases.

FHE libraries implement different Boolean circuits to per-
form homomorphic gate operations at the server. While FHEW
supports AND, NAND, OR and NOR gates, TFHE provides
all the basic gates. In this work, we assume the client wants
to compute homomorphic NAND operations on its encrypted
data on the cloud server. One must note that any Boolean
circuit and function could be homomorphically implemented at
the server given the availability of basic gates in the libraries.
We choose NAND gate as it is a universal gate and any
logical circuit can be implemented using proper chaining of
NAND gates. We further assume that the server is untrusted
and malicious and intends to extract sensitive information from
client’s data. Being in control of the FHE libraries, the server
could perform any homomorphic operation on the client’s data,
in addition to the operation requested by the client. Finally, we
highlight that the client provides feedback to the server when
an expected computational result comes out to be incorrect
at the client end after decryption. In other words, the server
is able to observe the reaction from the client only when the
decryption results in a failure. The overall process of receiving
client’s feedback is shown in Fig. 1.

V. CLIENT AS THE DECRYPTION VERIFICATION ORACLE

In the context of cloud computing, the server stores private
information of its clients in encrypted form, thereby ensuring
security and privacy of client’s data. However, the server being
untrusted, acts as a potential adversary and carefully introduces
perturbations on the stored data of the client and then checks
if these modifications trigger any error later in the process.
The objective of the attacker is to ascertain the exact value of
the random noise (error) in the resulting ciphertext obtained
after the homomorphic gate computation. Since this ciphertext
will still be encrypted under the original secret key, obtaining
the errors in these ciphertexts will also lead to extraction
of the secret key. As already discussed (cf. Section II), the
mathematical robustness of LWE schemes is based on the
intractability of both the secret key and the random error, and
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leakage of the noise can trivially leak the secret key. Also, for
a key size of k bits, atleast k ciphertext messages with their
corresponding error values is required to retrieve the key.

In cloud setting, the effect of introducing faults in the
data cannot be directly observed by the server. Therefore, the
malicious server needs reaction or feedback from the client
to understand the effect of the purposeful faults. As explained
in Section IV, the client being in a pay-per-use model, could
insist the server for recomputation of homomorphic operations
on specific ciphertexts if a decryption error is observed. How-
ever, the adversary would have to send perturbed ciphertexts,
only corresponding to those which are queried by the client. In
other words, the attacker should be able to extract information
by inducing errors in ciphertexts which are a resultant of
an intended homomorphic query. Rather, it has to introduce
measured perturbations in the client’s valid ciphertext in order
for the client to decrypt it and send feedback to the server
on decryption error. As an example, suppose a client intends
to perform homomorphic encryptions like AES (Advanced
Encryption Standard) on the cloud. The client before paying
for the service and using it for a business would like to check
the validities of the result by performing a Known-Answer-
Test (KAT) [51]. In another instance, the client may be paying
for a machine learning as a service (MLaaS) on encrypted
data. In case of inferior results, the client may subsequently
place a log to the server to indicate the pathological cases. We
essentially discuss how such a log can be utilized by the server
in turn to determine the secret key. However, the challenge in
this case is that the server does not have information regarding
the plaintext for a corresponding ciphertext. Moreover, the
random error values introduced into the ciphertext during
encryption is sampled from a Guassian distribution where the
sign of the error could be either positive or negative. Thus,
in order to obtain the exact error value, the server first needs
to determine the value of the corresponding plaintext message
and the sign of the error value.

In the following subsection, we explain the idea of the
attack wlog. when the client intends to perform homomorphic
NAND computations on the cloud. Our choice of the NAND
gate is motivated by the fact that the NAND is a universal
gate. However, before describing the description of the attack,
we would like to clarify why the decryption verification
oracle is not a decryption oracle by taking the example of
a homomorphic NAND computation.

Why Decryption Verification Oracle is not a Decryption
Oracle?: Consider a homomorphic NAND gate computing on
ciphertexts corresponding to messages x1 and x2, resulting in
the ciphertext for the plaintext data r = NAND(x1, x2). Let
the ciphertexts be denoted as Cx1 , Cx2 , and Cr respectively.
In our attacks, we are considering situations wherein the
adversarial cloud server perturbs the ciphertexts Cr and sends
it to the client. The information the adversary exploits is the
reaction of the client on a decryption error. It may be observed
that the existence of a decryption error leaks the difference
of the plaintexts corresponding to the ciphertexts Cr and its
noisy version, i.e. r⊕ r′. On the contrary, a decryption oracle

Fig. 2. (A) Truth table of NAND gate, and (B) Truth table for initial client
feedback, where r denotes result of gate computation, e represents whether
sign of error in this result is positive (0) or negative (1), and R represents
whether feedback is received (1) or not (0).

would leak the information of r, which is not leaked with the
information in case of the decryption verification oracle. This
shows that the attack we discuss is not an IND-CCA attack,
but rather threatens the IND-CVA security of FHE schemes.

A. Recovering the plaintext and error sign

As discussed, the client encrypts a stream of ciphertexts and
sends them to the server for homomorphic NAND computa-
tions. We note that the FHE schemes discussed in this paper
perform bit-wise encryption of the plaintext messages and then
homomorphic operations on those single-bit ciphertexts. More
precisely, each ciphertext received at the server is either an
encryption of ‘0’ or an encryption of ‘1’. Therefore, given
a ciphertext, the original plaintext value would be in binary.
Moreover, as per the truth table of NAND gate (as shown in
Fig. 2(A)), 75% of times the result of the computation would
turn out to be 1. In short, given two ciphertexts Cx1 and Cx2 ,
corresponding to two unknown and uniformly chosen plaintext
bits x1 and x2, the output of the NAND operation between
Cx1

and Cx2
has a 0.75 probability of being 1. The server

can use this bias in the output to recover both the plaintext
message and the error sign by craftily introducing additional
error into the final computational result and sending it back to
the client for its reaction.

B. Introducing perturbations in computed result

With the stream of ciphertext messages at the helm of
the server, it can now launch “reaction” attacks on randomly
chosen ciphertext samples of the client and observe its feed-
back. Without loss of generality, we assume that out of m
ciphertexts sent by the client to the cloud, the server randomly
samples n ciphertexts, where m ≫ n, to introduce purposeful
perturbations. This is a reasonable assumption in the cloud
computing setting as the ciphertexts are essentially encryption
of single bit information and in order to obtain a meaningful
computation from the server, the client would need to send a
large number of ciphertexts. It is worth mentioning here that
the value n depends on the size of the key used and is of the
order Ω(k) where k is the size of the secret key in bits.

Targeting the decryption error threshold: The decryption
process in FHE schemes take place at the client end, after
the homomorphically computed result on ciphertexts reaches
the client. Due to the accumulation of the errors after ho-
momorphic gate operation at the server, the total error in the
computed result increases which is then brought down below
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a pre-defined threshold eth using bootstrapping operation.
Without bootstrapping, the overall error in the final computed
ciphertext would result in decryption failure at the client end.
We leverage this fact to forcefully induce failed decryption by
introducing errors purposefully. The objective of the server is
to breach the threshold eth during decryption. Now suppose,
for every ciphertext, the server knows whether the underlying
error value lies within a certain range 2. More precisely, given
a ciphertext Cr containing unknown error value er, the server
precisely knows a range of absolute values of error bounded
by a minimum value, emin, and a maximum value, emax.
However, the server does not have the knowledge about the
sign of er, and therefore, the value of emin and emax.

Modifying the final computed result: Consider the error
number scale denoted in Fig. 3. The actual error er and the
error threshold can be either positive (eth) or negative (e′th).
As a consequence, the error range denoted by emin and emax

can have either positive or negative (e′min and e′max ) values.
Therefore, any positive error value +er would essentially lie
between the range +emin and +emax, where all the three
quantities are less than the error threshold +eth. The converse
is true for negative error values. Therefore, the following
relations hold for both positive and negative error values.
−e′th < −e′max < −er < −e′min and +emin < +er <
+emax < +eth For correct decryption at the client’s end, the
actual error er must be less than +eth or greater than −eth.
We further note that the error er also lies between either of
the known ranges −e′max and −e′min or +emin and +emax.
Let us denote the quantity eth − emin as ediff . Now, we
add the term ediff with the computed result of homomorphic
gate operation. As depicted in Fig. 3, if the original error
(after homomorphic gate operation) is negative, the final error
after perturbation lies within the permissible range (less than
threshold), albeit in the opposite sign domain. In contrast,
when the error is positive, the final error after addition of
perturbation lies beyond the permissible range (more than the
threshold) in the positive domain. Therefore, it is easy to note
that the decryption failure would only occur when the original
error is positive.

Elimination of probable choices: While the malicious
server could perturb the ciphertext outputs to instigate reaction
from the client, there exist two major challenges that the
server needs to deal with. 1⃝ the knowledge of the plaintext
value for the corresponding ciphertext and 2⃝ the sign of the
actual error. Now, given two ciphertext Cx1 and Cx2 from
the client, let the NAND output be denoted as Cr. As per
the truth table, Cr could be either encryption of 0, denoted
by C0

r , or encryption of 1, denoted by C1
r . Now, following

the strategy of introducing perturbations (discussed in the
preceding paragraph), the server adds the error term ediff
into the computed ciphertext Cr. Now, depending on the input
plaintext (r) of the perturbed ciphertext , one of the following

2In the following sections, we will show that this error range can be
precisely determined using timing side channel. Note that this does not impose
any assumption on the threat model as in the FHE setting the server can do
arbitrary computations with any library even with timing leaks.

four conditions will take place.

1) r = 0, sign = +ve: The perturbed ciphertext is
C0

r + ediff with the actual error being positive (+er)
and underlying plaintext is 0. As the original error was
positive, the decryption of C0

r will result in 1. However,
since the original plaintext was 0 and the decrypted
one at the client’s end is 1, the client will inform the
server regarding the incorrect computation. Therefore,
this particular combination ensures a feedback from the
client.

2) r= 0, sign = −ve: The perturbed ciphertext is C0
r +

ediff with the actual error being negative (-er) and
underlying plaintext is 0. In this case, the decryption will
result in 0, since the overall error after perturbation will
still remain within the error threshold +eth. Therefore,
the client will not provide any feedback in this case as
the decrypted output matches with the expected result
for the client.

3) r= 1, sign = +ve: The perturbed ciphertext is C1
r +

ediff with the actual error being positive (+er) and
underlying plaintext is 1. We note that in this case the de-
crypted result would be 0 since the perturbed ciphertext
was encryption of 1 with a +ve error, thereby essentially
flipping the result. Therefore the client decrypts the
result as 0 but the expected outcome was 1, thereby
sending feedback to the server for incorrect result.

4) r= 1, sign = −ve: The perturbed ciphertext is C1
r +

ediff with the actual error being negative (-er) and
underlying plaintext is 1. The original error being −ve,
the final result after decryption does not exceed the
threshold +eth. But once again, it would not generate
feedback from the client since the decrypted result
matches with the expected result.

Considering r as the expected plaintext, sgn as the sign of
the error and R denoting whether a feedback is received from
the client, we record the different combinations of these events
from the above mentioned four cases. Fig. 2(B) shows the
record of all possible combinations where sgn is considered
as 0 on the error being +ve and 1 on −ve. Likewise, R is set
as 1 on receiving a feedback from client, 0 otherwise. Since
the server relies on the feedback from the client as a signal for
determining the effect of the error, we strictly focus on cases 1
and 3, or more precisely, 1st and 3rd rows in the table shown
in Fig. 2(B). We observe that the server receives a feedback
only when the sign of the error is +ve and does not receive
a feedback when the error is −ve. Thus presence or absence
of feedback from the client leaks the sign of the error with
probability 1.

Next, to recover the underlying plaintext message, we
introduce another perturbation in the original ciphertext Cr.
While the perturbation is almost of similar nature for these
two cases, their effect on the underlying plaintext message is
different for the two libraries. In case of TFHE, we simply
subtract 2µ, where µ = 229, from the ciphertext which causes
the underlying plaintext message to flip from 1 to 0 while
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Fig. 3. Different bounds of errors plotted on a number line.

keeping 0 to remain same. This follows from the decryption
function which is approxPhase(Cr), which represents the
sign bit of the underlying plaintext. Originally, b = s·a+µ+e
corresponds to encryption of 1, which implies, b−s·a = µ+e.
When perturbed to b∗ = b− 2µ, we have b∗ = −µ+ e. Here,
assuming a small e, we have a flip in the sign bit, thereby
transforming µ to −µ. On the other hand, for an encryption
of 0, we have b = s · a−µ+ e, implying, b− s · a = −µ+ e.
Next it is perturbed to b∗ = b − 2µ = −3µ + e. Thus, the
sign bit remains −ve in both the cases, which corresponds to
a decryption of 0. The client will send feedback in the first
case as it was expecting 1 whereas it received 0. On the other
hand the client will simply accept the message in the second
case as it was expecting a 0 and it received a 0. Thus this
observation reveals the underlying plaintext message to be 1.

In case of FHEW, we obtain a new ciphertext C ′r =
AND(Cr, NOT (Cr)) which will always be an encryption
of 0 irrespective of whether Cr was an encryption of 1 or
0. Similar to TFHE, the client will send feedback in the first
case as it was expecting 1 whereas it received 0. On the other
hand the client will simply accept the message in the second
case as it was expecting a 0 and it received a 0. Thus this
observation reveals the underlying plaintext message to be 1.
We would like to highlight here the fact that FHEW library
[36] does not allow homomorphic gate evaluations on related
pair of ciphertexts, i.e., when both the inputs are same or one
is the complement of the other. However the validation of
whether the inputs are related or not is performed over the
server side, which does make sense as the homomorphic gate
evaluation is itself performed on the server. Since the server
itself is an adversary, it can simply disable this validation.

Therefore, the plaintext message r will always be 1 for both
TFHE and FHEW and the error +ve for all the perturbed
samples. For both TFHE and FHEW, the occurrence of r = 1
for all perturbed samples help us to capitalise on the output
bias of NAND gate. With this combination of knowledge about
the sign of the error and the underlying plaintext message, the
adversary launches its final phase of attack to recover the secret
key.

VI. RECOVERING THE RANGE OF ERROR IN CIPHERTEXT
THROUGH TIMING CHANNEL

In the previous section, we discussed how a malicious server
can act as an adversary and incite the innocent client to send
feedback by carefully perturbing homomorphically computed
ciphertext results. However, we assumed that the server knows
the range, [−e′min,−e′max] or [emin, emax], where the actual
error er, for each ciphertext, belongs to. Although it is intuitive
that er would always belong in the range [−e′th, eth] (after
bootstrapping), a further reduction in the probable range makes
the exact error recovery process efficient and real-time. In this
section, we demonstrate how the exact error range, i.e, the
values −e′min,−e′max or emin, emax can be retrieved using
timing channels during the homomorphic gate operations.

Exploiting the timing channel: For both TFHE and FHEW
libraries, a homomorphic gate takes two LWE ciphertexts, say
Cx1

= a1 · s + x1 + e1 and Cx2
= a2 · s + x2 + e2 as

inputs and produces another LWE ciphertext as output, say
Cxr

= ar · s+xr+er, which is an encryption of the resultant
message xr under the same secret key s. Thus the secret key
remains the same across the inputs and output. On the other
hand, while the secret key in the input ciphertexts remains
the same during multiple homomorphic gate computations, the
input error values change across these computations as they are
sampled uniquely during each encryption. For example, n such
computations will result in n different ar, xr and er values but
will have the same s. Out of these, ar is known as it is part of
the ciphertext and xr is being controlled by the adversary. Thus
the only unknowns are s which is same for each ciphertext
and the collection of er which varies across each ciphertext.
Since these errors are results of addition or subtraction of input
errors during a homomorphic gate computation, we observed
during our experiments (more details in Section. VIII), that the
execution time of the homomorphic gate computation varies
with the value of the errors in the input ciphertext. In other
words, changing the error in the input ciphertexts causes a
change in the overall execution time of the homomorphic gate
as well as the error in the output ciphertext. Since the timing
value depends on the input errors, transitively it also depends
on the output error. However, one cannot utilize these timing
values to profile the error in the input ciphertexts as, for each
timing value t, two possible error values e1 and e2 in the input
ciphertexts Cx1 and Cx2 can be mapped to. On the other hand,
the same timing value t also corresponds to the error er of
the final ciphertext Cxr

. This relationship between the known
timing value t and the unknown error er can be used to create
the timing templates, which can be further used to infer the
range of the error value in the final ciphertext.

Overview of the attack: We now provide a detailed
overview of our proposed attack to recover the error in a
ciphertext message which will be further used to recover the
secret key in the later sections. More precisely, we perform the
well-known template attack [7], which works in two phases -
offline and online. In the offline phase, the adversary builds
templates using a randomly chosen secret key. It must be
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noted that since we aim to template the errors using timing
channel, the choice of secret key does not have any influence in
this case, thereby making the attack more practical. Once the
templates are prepared using sufficient number of ciphertext
and their corresponding homomorphic operations, then starts
the online phase where the ciphertexts are encrypted with an
unknown key. The objective of the attacker is to ascertain
the template that could possibly match with the unknown
error after the homomorphic computation. We would like to
highlight that the biggest advantage an adversary can have in
this case is that it only needs to build templates using a single
key of its own choice and the same templates can be used
to mount attacks on ciphertexts generated using any random
key. The outcome of the template attack is a range of error
values corresponding to each ciphertext, essentially signifying
the upper and lower bounds of the actual error er, which will
later be used to query the client to uniquely determine the
original error value. Next, we explain each of these steps in
further details.

A. Template Building Phase

The adversary starts by sampling a random secret key st
by locally running the key generation process of the library.
Once generated, the adversary chooses two messages x0

and x1 and obtains polynomially many encryptions of the
same under the chosen secret key st. It is easy to note that
each of these encryptions will result in different ciphertexts,
albeit containing different error values. In other words, for a
given plaintext message xj , multiple distinctive ciphertexts,
Ci = ai · s + xj + ei with different values of ai and ei, can
be produced. The adversary can create any arbitrary number
of such ciphertexts using the two messages. Once it generate
sufficient number of ciphertexts, it starts the next part of the
template building phase which is different for FHEW and
TFHE schemes, owing to the way both these libraries are
implemented.
For TFHE: The adversary runs a modified homomorphic gate
to obtain the result of the gate computation of c = (a, b)
and the time t required to perform this computation. The
modified gate is obtained by making a copy of the original
gate into a new function, disabling the refreshing operation,
and injecting timing hooks around the point where ciphertext
addition or subtraction is taking place. We note that the
adversary (server) has complete control of the library and can
choose to make modifications in the source code. Moreover,
it can maintain two copies of the library where one version
works as intended while the other one is manipulated for
template attack. The server can decide whether to choose the
original or modified or both versions for any ciphertext. We
performed our attack on both these versions of the library, i.e.,
one where the gate is modified to remove the refreshing step
and the timing is observed around the point where ciphertext
addition or subtraction is taking place, and other where the
gate is not modified and the timing is observed for the entire
homomorphic gate computation which includes the refreshing
step.

For FHEW: The adversary does not modify the library and
simply injects timing hooks at the beginning and end of
the complete homomorphic gate evaluation which includes
bootstrapping as well. It obtains the result of the entire gate
computation c = (a, b) encrypting a message x and the time
t required to perform this computation. Thus the adversary
treats the entire gate computation operation as a black-box
and does not tamper the underlying operations in any way.
On the other hand, disabling the bootstrapping operation will
cause the result to remain in the ciphertext space, which will
result in incorrect decryption. Running the modulus switching
operation alone is not sufficient to prevent this as the presence
of high amount of error interferes with this operation. Thus
it is not a choice but a necessity for an adversary to work
in the black-box setting as opposite to TFHE where the
ciphertext obtained from a gate computation running without
bootstrapping will still decrypt correctly.

We emphasise that we discard the bootstrapping phase in
case of TFHE library (modified version) while keeping the
FHEW unchanged. The removal of bootstrapping phase makes
the template building phase faster and helps in reduction
of system noise 3, thereby making the process of template
creation and matching efficient. However, the same attack can
be performed even with the bootstrapping method included in
the computation process.

Coming back to our attack, as the adversary knows the
template generation secret key st, it can simply extract the
error er in the ciphertext by evaluating er = b − a · st − xr.
Simultaneously, it executes homomorphic NAND operation
(either in modified or original library for TFHE and original
for FHEW) using the input ciphertexts Cx0 and Cx1 and
records the execution time t. We denote the tuple (t, er) as
a timing trace value. Due to the dependence of execution time
of homomorphic gate computation on the input errors, a varied
range of timing values, say from tstart to tend, is obtained for
n ciphertexts, tstart and tend being the smallest and largest
timing values in the entire trace profile. We empirically select
a timing interval, say δ, and segregate the entire timing range
into tend−tstart

δ number of buckets. For simplicity, let’s denote
a particular bucket as:
Btmax
tmin

(t): tmin and tmax represents the minimum and
maximum timing values for this particular bucket.
t: a timing value such that tmin ≤ t ≤ tmax.
Next, for each timing value t ∈ Btmax

tmin
(t), we put the corre-

sponding error value ei into the bucket Btmax
tmin

(t). Therefore,
at the end of the segregation process, all buckets must contain
a number of error values that correspond to the timing t where
tmin < t < tmax for a particular bucket.

It is worth mentioning that the size of the bucket δ can
be chosen on the basis of the timing values obtained during
template generation and is independent of the range of error
in the final ciphertext. In other words, the adversary is free to
choose any value for δ based on the tstart and tend, obtained

3Not to be confused with the noise in the context of LWE. “System noise”
refers to the disturbances in the timing measurement due to other processes
(including kernel) running on the target device.
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during template generation. The objective of the attacker to
choose an optimal value for δ in order to obtain maximum
accuracy during the template matching phase. If a higher value
of δ is chosen, the chances of a ciphertext with an unknown
secret key lying in the correct bucket, based on its timing
value, will be higher. But that will cause some buckets to
have more number of errors and some to have less, i.e., the
distribution of errors will not be uniform across the buckets.
Conversely, if δ is reduced, the uniformity of errors in various
buckets will increase but the accuracy will decrease. We also
highlight that the bucket size δ might not be the same for every
gate as the operations corresponding to each gate is different.
In this work, we majorly focus on the NAND gate and thus
create templates for that particular gate only.

B. Template Matching Phase

In this phase the adversary obtains a fresh ciphertext pair
from the client, encrypted under an unknown key, sk, that it
is trying to recover. The adversary then runs the same gate
operation for which the template was built (NAND in our
case), on this new ciphertext pair. It receives as output a new
ciphertext that encrypts the result of this computation with an
increased error value in case of the modified TFHE, or which
is further reduced due to bootstrapping in case of FHEW or
the unmodified TFHE library. It also receives as output the
corresponding timing value t′. Since the adversary does not
know the secret key, it cannot recover the error e′ of this
new ciphertext 4. Finally, this timing value t′ is compared
with the timing range, [tstart, tend], of each of the buckets
Btmax
tmin

in the template to find the bucket whose timing range
bounds this value t′. In other words, we are trying to find
a bucket Btmax

tmin
(t′) such that tmin < t′ < tmax. Once such

a bucket is identified, we infer that the error e′ is bounded
by the minimum and maximum error values emin and emax

corresponding to this bucket, which we eventually utilize to
launch the final attack.

Fig. 4 shows the overall process of template building and
matching. The template building process (in the blue shaded
area) starts with the adversary generating a random secret key
and getting encryption c1 and c2 of two messages m1 and
m2 of its choice. It runs the homomorphic gate on these
two ciphertexts and observes the execution time t of this
operation. It also extracts the error e from the final ciphertext
generated as a result of this gate computation. The error e is
then placed into the corresponding bucket Btmax

tmin
(t) satisfying

tmin < t < tmax. The template matching phase (in the
yellow shaded area) starts with the adversary running the
homomorphic gate on two ciphertexts c′1 and c′2 received
from the client and observing its execution time t′. It then
finds its corresponding timing bucket Btmax

tmin
(t′) and extracts

the minimum and maximum error values from that bucket.
These values serves as the bound on the error in the resultant
ciphertext of the above gate computation.

4It is this error that we are trying to recover first which will then be used
to recover the secret key.

Fig. 4. Template building and matching process

Algorithm 1 Error Recovery using Binary Search
1: eth := positive error threshold
2: emin := minimum bound of error
3: emax := maximum bound of error
4: c := ciphertext with the original error er
5: start ← emin

6: end ← emax

7: etemp ← 0
8: function GETERRORPOSITIVE(c, start, end)
9: if start == end− 1 then return etemp

10: else
11: mid ← ⌊ start+end

2 ⌋
12: ediff ← eth −mid
13: c ← c + ediff = a · s + xr + er + ediff

14: feedback ← CV O(c)
15: c ← c− ediff = a · s + xr + er + ediff − ediff

= a · s + xr + er
16: if feedback = “correct decryption” then
17: etemp ← mid
18: GETERRORPOSITIVE(c, start, mid)
19: else
20: GETERRORPOSITIVE(c, mid, end)
21: end if
22: end if
23: end function

VII. RECOVERING THE ORIGINAL ERROR VALUE

Once the error bound has been recovered using template
attack, the adversary proceeds to use active perturbations in
the computed ciphertext result and iteratively sends faulty
ciphertext to the client, while awaiting its reaction. In Sec-
tion V, we explained how the adversary can uniquely ascer-
tain the plaintext message of the homomorphically computed
ciphertext and its corresponding error’s sign (+ve or −ve)
by carefully introducing additional error and making just
two queries to the client for a particular ciphertext. The
additional error introduced into the ciphertext result can be
computed as etemp = er + (eth − emin) where er, eth, emin

are the original error in the computed ciphertext, positive
error threshold for decryption and minimum error bound as
obtained from the template attack phase, respectively. With
the knowledge of error sign and a possible range, the server
now recursively perturbs the original computed ciphertext by
changing the amount of additional error and sending it back
to the client for checking its reaction. The overall process for
exact error recovery is shown in Algorithm 1. We propose a
recursive binary-search based approach to introduce different
perturbations in the original ciphertext. The central idea is
that given two bounds emin and emax, we first determine
whether the error lies closer to the emin or emax. This can
be found out using the same idea that we used to determine
the sign of the error. The variables start and end are first
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initialized with emin and emax respectively. The first condition
we check is if start becomes equal to end − 1, that means
that there is only one error value left in the range, which is the
original error er. Otherwise, we compute a term mid as the
mid-point of the range [start, end]. Following the notion of
binary search, our objective is to recursively divide the range
into half and ascertain whether the er lies in the first or second
half. We then calculate the additional error term to be added
as ediff = eth − mid. This additional error term ediff is
then added to the original ciphertext c. The idea is that if the
error lies in the right of mid on the error number line (refer
Fig. 3), then the addition of this error term ediff would make
the overall error (e + ediff ) to cross the positive threshold
eth. In such case, the client experiences a decryption failure
and reverts with a feedback to the server. On receiving the
feedback, the server can understand that the actual error er
lies between mid and end. However, if the error er lies to
the left of mid, then addition of the term ediff would still
not cross the error threshold eth. Quite obviously, the client
would successfully decrypt the ciphertext and thus will not
send any feedback. Here again, on non receival of feedback,
the server would understand that the error er does lie between
start and mid. Therefore, similar to the working process of
binary search, the server can eliminate half of the error space
on every iteration and gradually progress towards the actual
error. Therefore, the output of the algorithm is the actual error
er of the ciphertext.

Recovering The Secret Key: Once the error is recovered for
each ciphertext, the server can trivially retrieve the secret key
using Gaussian Elimination. The number of ciphertext with
known error value required to create the system of equation
depends on the size of the key. For example, if the key size
is k bits, one will need atleast k ciphertext with correct error
values for solving the equations and retreive the key. We note
that the number of ciphertext required to launch the attack is
in the order of the size of the key, more precisely, Ω(k).

VIII. EXPERIMENTAL RESULTS

In this section, we provide the experimental results of the
attack, starting with the template attack. To build the template,
we chose x0 = 1 and x1 = 0, without any loss of generality.
We first generated a random secret key st and obtained 10, 000
different ciphertexts of the above message pair under the
same key. In order to verify the consistency of the template
building phase across all types of gates, we independently
executed the modified version of all the ten homomorphic
gates (without bootstrapping) defined in the TFHE library,
which resulted in 10, 000 timing traces (t, e). For FHEW,
as already mentioned earlier, we do not modify the gates
and acquire timing measurements for the entire process (gate
operation and bootstrapping collectively). We collect traces for
all the four gates supported in FHEW. All the gates were run
independently such that the data is not stored in the cache
and hamper the templating process due to caching. We further
chose the bucket size as 500 and segregated the error values
into these buckets based on their timing values.

In order to validate the accuracy of the templates, we further
generated 1, 000 ciphertexts of the above message pair using
another randomly generated secret key sk, different from st.
Once again, we independently execute the modified version of
all the ten homomorphic gates defined in the TFHE library,
which resulted in 1, 000 timing traces (t′, e′). Likewise, we
executed all four gates in the unmodified FHEW library.
Once the traces are acquired, we checked whether the error
value e′ for each ciphertext lies in the correct bucket for its
corresponding timing value t′ or some other bucket. In short,
we compare the error value with those present in individual
buckets and find the error value which is closest to e′. Next,
we also determine the bucket where this error value e′ actually
maps to, irrespective of its associated timing t′. This can be
done by comparing e′ with emin and emax for all buckets. If
the error e′ falls in the same bucket in both the cases, i.e, when
compared w.r.t it’s associated timing t′ and also according
to the range emin and emax, we consider that the template
matching is successful, else it’s an incorrect match.

Fig. 5 and 6 show the count of occurrence in the same
bucket and in different buckets for all the ten and four homo-
morphic gates of TFHE and FHEW schemes respectively. The
bucket size is 500 for TFHE and 23750000 for FHEW. In both
cases, the key used to generate these ciphertexts is different
and independent from the one used to generate ciphertexts for
template data. In the figures, the blue bar represents the num-
ber of ciphertexts out of 1, 000 whose error lies in the correct
bucket (correct matching), defined by the timing value of the
corresponding gate operation. The orange bar represents the
number of ciphertexts out of 1, 000 whose error lies in some
other bucket (incorrect matching). It is worth mentioning that
the keys used for template generation and template matching
are different. However, the template attack, in our case, does
not depend on the secret key, which is evident by the high
range of correct matches with the template. We also highlight
that there is a considerable difference between bucket sizes
for the two libraries, as in case of TFHE, we disabled the
bootstrapping step when performing the experiment, whereas
the timing for FHEW included both the gate operation and
bootstrapping.

To further validate that the templates work for any random
key, we repeated the experiment for five different randomly
generated keys and the results for ciphertexts lying in the
correct bucket is shown in Fig. 7. The results are shown for
AND gate for a bucket size of 500 in case of TFHE and
23750000 in case of FHEW. We observe that the count of
ciphertexts matching in a correct bucket is similar in all five
cases for TFHE, as shown by an almost straight line; while
there is a slight variation in case of FHEW as shown by a
zig-zag pattern. The reason for such results is that in case of
TFHE we have injected the timing hooks deep into the library
and thus are obtaining accurate timing values, while in case
of FHEW we are obtaining the timing value of the entire gate
operation including bootstrapping. These results show that a
template created with a single key will work for any randomly
generated keys as well, both in case of FHEW and TFHE.
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Fig. 5. Plot of gates with count of occurrence of error in same bucket
vs different bucket. The size of buckets is 500. Key used to generate these
ciphertexts is different from the one used to generate ciphertexts for template
data.

Fig. 6. Plot of gates with count of occurrence of error in same bucket vs
different bucket. The size of buckets is 23750000. Key used to generate
these ciphertexts is different from the one used to generate ciphertexts for
template data.

Fig. 7. 5 sets of ciphertexts with error in correct bucket. Each set is generated
using different keys. The size of buckets is 500 and 23750000 resp.

Fig. 8. Plot of count of ciphertexts with correctly and incorrectly recovered
errors using HomAND gate. 1500 ciphertext pairs were generated to obtain
this graph. Key used to generate these ciphertexts is different from the one
used to generate ciphertexts for template data.

It also shows that generating one set of templates is enough
for our attack to work, while template attacks usually require
multiple templates with different keys.

Further to validate whether we can extract the error from
the ciphertext, we generated 1, 500 ciphertext pairs using 4
different secret keys that are distinct from st. We execute

AND gate operation on these pairs and matched the results
with their corresponding templates. Once the bounds were
obtained, we performed the second part of our attack by adding
perturbations and then sending queries to the client, in order to
recover the error for each of these ciphertexts. Fig. 8 shows the
plot of the count of ciphertexts with correctly and incorrectly
recovered errors using homomorphic AND gate. The blue bar
shows the count of ciphertexts for which we were able to
successfully recover the correct error, while the red bar shows
the count of ciphertexts where we could not recover the error.

We were successfully able to recover the error in most
of the cases, as evident from Fig. 8 where all the blue
bars being close to the black line that represents the count
of ciphertexts used to perform this experiment. For the few
ciphertexts for which we were not able to recover the error, the
reason was that the timing value for them actually corresponds
to the buckets that had either few error values or no error
values at all. For these ciphertexts, we can either recompute
this gate to get better timing values or ignore this particular
ciphertext altogether. We used four different, independent keys
to generate four different sets of ciphertexts to ensure that our
attack works with any unknown key. We observe that the plot
is similar for all the four keys, implying that this method works
with ciphertexts generated using any key. Finally, to recover
the error from a single ciphertext, we require two queries to
the client to recover the sign of the error and the underlying
plaintext message and then 20 to 21 queries (in case of TFHE
without bootstrapping), 25 to 26 queries in case of TFHE
with bootstrapping and 3 to 5 queries in case of FHEW to
recover the actual error value. The reason for requiring this
many queries is that the difference between the maximum and
minimum errors in most of the timing buckets is between 220

to 221 (in case of TFHE without bootstrapping). Since we are
using Binary Search to reduce the range of errors, the number
of queries required is log2 2

20 = 20 or log2 2
21 = 21. Thus

we can recover the error with only 22 or 23 queries in case of
TFHE without bootstrapping, 27 or 28 queries in case of TFHE
with bootstrapping and 5 to 7 queries in case of FHEW to the
CVO. Once we recover the original error from ciphertexts,
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we form a system of equations and then solved the same to
recover the entire key. We perform full key recovery for TFHE
with key size 630 bits on a Desktop computer running Intel
i7-7567U @ 3.5GHz, powered by Ubuntu 18.04. In case of
TFHE without bootstrapping, we perturbed 5000 ciphertexts
and out of those, 1260 ciphertext were suitably faulted to
recover their error values. In case of TFHE with bootstrapping,
we perturbed 2000 ciphertexts and out of those, 703 ciphertext
were suitably faulted to recover their error values. In case of
FHEW, we perturbed 3000 ciphertexts and out of those, 1003
ciphertext were suitably faulted to recover their error values.
Finally, we ran Gaussian Elimination from SageMath9.0 and
Python 3.8 to successfully recover the entire secret key. The
overall attack process, from template matching to key recovery
took around 6, 8 and 2 hours and required 31948, 21273 and
9073 CVO queries, in case of TFHE without bootstrapping,
TFHE with bootstrapping and FHEW respectively.

IX. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that timing attack in combi-
nation with CVO access can result in leakage of the secret
key to the malicious server. We have also shown that the
error from a single ciphertext can be leaked with a constant
number of queries to the CVO. In our experiment, we require
7, 23 and 28 such queries for the libraries FHEW and TFHE
(without and with bootstrapping), respectively. However, even
with a constant number of queries to the oracle, a few
critical questions can arise when one considers the practical
implication of the attacks and the role of client in aiding the
attack.

why would the client decrypt a re-modified ciphertext in
the first place? Also, why would it react to a wrong decryption
when it already has obtained a correct decryption with a pre-
vious modified version?: To answer this question, we would
like to state that the client has no way of knowing whether
it has received a modified version of the previous ciphertext
or a new ciphertext that is the result of a fresh computation.
In other words, the server may perform a replay attack by
re-sending a modified version of a previous ciphertext. One
might argue that the client can simply check the first part,
i.e., a of the ciphertext pair (a, b) and check whether it was
part of any previous ciphertext or not. This is not a practical
solution as the client will have to store the results of all the
previous computations and will have to check whether the new
ciphertext has been received before or not, which requires both
storage and processing. It also needs to be kept in mind that
this final ciphertext is a result of a chain of operations where
different input as well as intermediate ciphertexts contribute
to these operations. So there is still a chance that the first
part of final ciphertext evaluates out to be a. The server also
may not resend the modified ciphertext immediately, as it is
free to replace a single ciphertext from the output of some later
computation with this modified ciphertext. Again the user will
not be able to tell the difference between a fresh ciphertext
and a replayed one.

what if the user does not react immediately and decides
to ask for a recomputation at a later time?: To answer this
question, we would like to state that the user cannot ask us
to recompute the value of a single bit and the whole function
would need to be recomputed to obtain the result. If the user
do decide to ask for a re-computation at a later stage, it will
have to resend the input values to the server. The server has the
necessary storage capacity to store the previous inputs along
with information regarding the manipulated ciphertext from
the result. It will store them anyway so that it can decrypt
the same once it recovers the secret key. Once the server
receives the input all it needs to do is to look up in the table
to see whether it has received these inputs previously or not.
To prevent this attack, the user may choose to encrypt the
inputs again so that it receives a new set of ciphertexts. While
it is a possible counter-measure, it is certainly not cheap as
it requires multiple encryptions and transmission of the same
inputs.

what happens if the server delays its query and re-sends
the modified ciphertext as part of the result of some later
computation and gets no reaction for the client?: In this
case, the server will not be sure whether it is due to correct
decryption or that the decryption was incorrect but the output
that it gave was what the user was expecting in the first
place. To put this into an example, say the modified ciphertext
c is an encryption of 1, i.e., if decrypted correctly, it will
give output as 1 otherwise 0. The server modifies c, without
knowing whether it will decrypt correctly or not, and replaces a
ciphertext c′ from some later computation with c which it then
sends to the client along with the other unmodified ciphertexts.
The client decrypts the same and obtains 0 as a result, which
implies that the ciphertext did not decrypt correctly. But it so
happens that the user was expecting 0 when it decrypts this
ciphertext. Thus the user accepts the result even though there
was an incorrect decryption and does not send any reactions to
the server. One way to prevent this from happening is that the
server can identify a gate or a set of gates in the final level of
the circuit that has a high probability to output encryption of
a certain bit irrespective of the input values. For example, say
a gate outputs 1 with high probability irrespective of the input
ciphertexts (e.g., NAND, OR), then the server can always send
an encryption of 1 as the output of this gate.

Potential Countermeasures

The authors in [8] utilized the IND-CVA security model to
attack the input data and underlying homomorphic function in
a similar setting and proposed four possible countermeasures.
We will revisit their last two countermeasures to analyse the
relevance in context to our proposed attack. The first two have
been refuted by themselves, so we are not considering them.

Obfuscate function and distrust server on decryption
failure: First, the authors have proposed to obfuscate the
underlying function that is being evaluated so that the server
neither understands the function nor it can locate the position
of important data bits. While they have shown how this can
be achieved, function obfuscation will be irrelevant in the
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context of our attack as we are only targeting the output
of the function based on the circuit used to implement this
function. Since an obfuscated function will still be imple-
mented using these homomorphic Boolean gates, our attack
will still be relevant. Finally, they have proposed to distrust the
server immediately when a decryption failure occurs. However
they have themselves refuted this countermeasure as that the
decryption can still fail with a small probability even when
the ciphertext has not been tampered with. Also this is not
a good countermeasure in practice, as the client will have to
look for a trusted server that does not tamper with its data
thus nullifying the whole purpose of homomorphic encryption
in the first place.

Single-use database: The other solution proposed in [8]
is for a single-use database, where the client will have to
re-encrypt and resend the database to the cloud after each
query. This also prevents the user from frequently changing the
underlying secret key used to encrypt this database stored on
the server after each decryption failure. Moreover, this solution
is not practical in scenarios where the server is used both for
processing and storage of data for future use.

Random computation and single-bit ciphertext to encrypt
multi-bit plaintext: Random computations will also require
random data to be generated and sent to the cloud which is
certainly not cheap. This becomes more expensive when the
client pays to the cloud per computation, which the authors
themselves have acknowledged.

Countermeasure with reaction restriction: It is to highlight
that the number of ciphertexts required to make the attack
successful is in the order of key size k. Server can obtain
that amount of ciphertexts from the reactions or recomputation
requests from the client side. Hence, one possible countermea-
sure is to restrict the number of requests for recomputation,
which should be less than k. However, there are two limitations
of this solution. First, our proposed attack does not demand
consecutive reactions or recomputation requests. Server can
induce erroneous computations with series of correct computa-
tions and collect and store the ciphertexts from the client feed-
back over a period of time. So, it is difficult to define the time
range for which the restriction on the number of recomputation
requests can be imposed. Second, as explained in the plaintext
recovery step of the attack, the cloud can forcefully perturb the
ciphertext to encryption of 0 and observe the client’s reaction.
It may happen the client will simply accept the message as
it was expecting a 0 without any reaction. This no reaction
(or passive reaction) is also a leakage about the original
ciphertext generated from the homomorphic evaluation. Hence,
only restricting the number of recomputation requests may not
fully alleviate this attack possibility. However, modifying the
decryption step with threshold cryptosystem [28] concept can
be promising against this attack. In this case, the secret key
is divided into N shares and distributed among N users such
that any subset of t or more shares can be used to decrypt
a ciphertext encrypted under the original secret key, but any
subset of t−1 shares or less cannot be used to do so. Detailed
implementation of this countermeasure will be taken as a

future work.
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