Shuffle-based Private Set Union: Faster and More Secure*

Yanxue Jia¹, Shi-Feng Sun^{1(⊠)}, Hong-Sheng Zhou², Jiajun Du¹, and Dawu Gu^{1(⊠)}

¹ Shanghai Jiao Tong University, China {jiayanxue,shifeng.sun,cqdujiajun,dwgu}@sjtu.edu.cn ² Virginia Commonwealth University, USA hszhou@vcu.edu

Abstract. Private Set Union (PSU) allows two players, the sender and the receiver, to compute the *union* of their input datasets without revealing any more information than the result. While it has found numerous applications in practice, not much research has been carried out so far, especially for large datasets.

In this work, we take shuffling technique as a key to design PSU protocols for the first time. By shuffling receiver's set, we put forward the first protocol, denoted as $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, that eliminates the expensive operations in previous works, such as additive homomorphic encryption and repeated operations on the receiver's set. It outperforms the state-of-the-art design by Kolesnikov et al. (ASIACRYPT 2019) in both efficiency and security; the unnecessary leakage in Kolesnikov et al.'s design, can be avoided in our design.

We further extend our investigation to the application scenarios in which both players may hold unbalanced input datasets. We propose our second protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$, by shuffling the sender's dataset. This design can be viewed as a dual version of our first protocol, and it is suitable in the cases where the sender's input size is much smaller than the receiver's.

Finally, we implement our protocols $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ in C++ on big datasets, and perform a comprehensive evaluation in terms of both scalability and parallelizability. The results demonstrate that our design can obtain a 4-5× improvement over the state-of-the-art by Kolesnikov et al. with a single thread in WAN/LAN settings.

1 Introduction

Private set operations allow mutually distrustful parties to perform set operations (like intersection and union) on their datasets, while revealing no more information about their own private input than what can be deduced from the results. Over the past decade, much progress has been made on Private Set Intersection (PSI), which has become considerably efficient and been deployed widely in practice [27,16,30,29,25,26,6,32]. In contrast, little attention has been drawn on Private Set Union (PSU).

Like the well-researched PSI, PSU also has numerous applications [17,11,3,4]. For example, it can be used for cyber risk assessment and management. Specifically, "Individual blacklists today suffer from several drawbacks that limit their accuracy in malicious source identification. ... Aggregating blacklists from different maintainers and across various attack types can improve the accuracy of malicious source identification over any individual blacklist," as pointed out by Ramanathan et al. [35]. Therefore, it is significant for organizations (namely, maintainers of IP blacklists) to compute the joint list of individual IP blacklists, which will help minimize vulnerabilities in their infrastructure.

^{*} This is a full version of the paper published at USENIX Security 2022.

In addition, each individual IP blacklist is generated based on a detection strategy developed by the maintainer, which cannot be leaked; note that certain attacks could be launched by the adversaries via evading the detection strategy.

A straightforward way to obtain the joint list is to let the organizations simply exchange their blacklists. However, this will reveal the intersection of their blacklists. Then a curious organization may deduce the detection strategy of the other organization according to the IP addresses in the intersection³. Whereas, he cannot do this via the IP addresses not in his own blacklist⁴. Therefore, to mitigate the privacy concerns, what we essentially need is to generate the joint blacklist with the intersection hidden, which is exactly the functionality of PSU.

According to [35,1], most blacklists in real scenarios contain 1,000 - 500,000 IP addresses, and the update frequency is expected to be 5 - 15 minutes. With our new PSU protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ (cf. the high level ideas in Section 1.1), a joint blacklist can be obtained from individual blacklists of size 2^{20} in 67.756s (cf. our experiments in Section 4) with a single thread in the WAN setting, which is efficient enough for this use case.

In addition, as mentioned in [15,17], PSU can be employed to compute the union of cancer patients of different hospitals while hiding the identities of the patients who had cancer treatment at multiple hospitals, which involves patient privacy. Also, it can be used for privacy-preserving aggregation of network traffic statistics [4], merger of two Internet providers without revealing the information of their existing networks [3], and private database supporting full join [17]. Therefore, it is highly desirable to develop efficient, scalable, and secure PSU protocols.

Many interesting variants of PSU (e.g., multi-party, set-size hidden, and shared-output PSU) have been proposed for real-world applications. In this paper, we focus on PSU in the two-party setting, where a sender and a receiver hold sets X and Y respectively, and aim to compute their union $X \cup Y$ without revealing any more information than the result (especially what are the items in $X \cap Y$). Particularly, the goal is to enable the receiver to learn no more information than $X \cup Y$ and the sender to learn nothing (see Section 2.1 for the formal definition).

PSU for balanced datasets. The state-of-the-art work is by Kolesnikov et al. [17]; there, they proposed the first scalable two-party PSU protocol based on symmetric-key techniques. Before that, except for the circuit-based PSU [2], all designs [15,9,7] rely on public-key operations like additive homomorphic encryption (AHE), which make the constructed protocols unscalable in practice, especially for large datasets. To develop efficient PSU protocols, Kolesnikov et al. introduced the notion of Reverse Private Membership Test (RPMT) functionality as a basic building block.

A unified view for PSU design with single sender's item. Interestingly, when focusing on a special case of two-party PSU where the sender's data-size is 1, we observe that, the designs [9,7,17] can be presented in the same framework⁵. Please see Figure 1: the sender has only one item x and the receiver holds a set $Y = \{y_1, \dots, y_n\}$, and we denote this special case of PSU by (1, n)-PSU. We note that, protocols in this design framework, consist of two phases: (1) the two parties execute a RPMT functionality,

³ The curious organization knows his own detection strategy that is used to identify the IP addresses in the intersection. Thus, it is reasonable for him to deduce that a similar detection strategy is used by the other organization.

⁴ Different organizations usually monitor different areas of the Internet, as mentioned in [35]. Therefore, the curious organization knows nothing about the traffic through these IP addresses. Even if the curious organization can monitor the traffic, it is difficult to deduce the detection strategy as e.g., some sensitive strategies are based on features that can be only extracted from encrypted data.

⁵ More precisely, [9,7,17] all realize a relaxed RPMT functionality where if $x \notin Y$, the information about x can be leaked to the receiver.

through which the receiver obtains a bit b, where b = 0 means $x \notin Y$, otherwise $x \in Y$. The receiver knows no more information about x beyond whether x belongs to Y, and the sender learns nothing about Y. (2) if b = 0 (which means $x \notin Y$), the receiver obtains x (and thus $\{x\} \cup Y$) while the sender learns nothing.

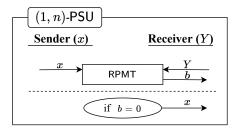


Fig. 1. Design framework for (1, n)-PSU protocols.

Under this framework, in [9,7] the RPMT functionality has been realized by employing homomorphic encryption, and in this case the receiver is able to obtain x by a straightforward decryption. As pointed out in [17], however, the public-key operations have become the workhorse of these works. Therefore, Kolesnikov et al. [17] proposed a new way of realizing RPMT in the first phase, based *only on symmetric-key operations*, and then they implemented the second phase of the design by using Oblivious Transfer (OT) .

PSU design: From single to multiple sender's items. Now let's consider how to extend the special case (1, n)-PSU into a more general (m, n)-PSU, where m can be a very large integer. Two different approaches, as shown in Figure 2, have been proposed in [9,7] and in [17], respectively.

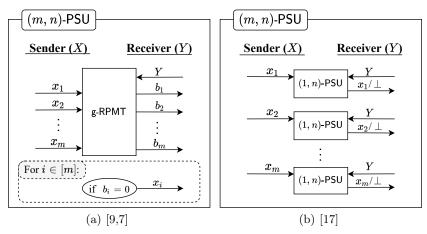


Fig. 2. Two design frameworks for (m, n)-PSU protocols.

More concretely, in [9,7], a generalized version of RPMT, denoted as g-RPMT, has been used, to support a large input set $X = \{x_1, x_2, \dots, x_m\}$ from the sender. Please refer to Figure 2(a). The receiver needs only to encrypt Y once, and the ciphertext for x_i can be used to test if $x_i \in Y$ for all $i \in [m]$. However, we note that the schemes in [9,7] suffer from heavy public-key operations.

In contrast, in [17] based on symmetric-key operations, for each $x_i \in X$ from the sender, a (1, n)-PSU sub-protocol will be executed; to implement (m, n)-PSU, thus, in total, m number of (1, n)-PSU sub-protocols will be executed. Please refer to Figure 2(b).

Here for each (1, n)-PSU sub-protocol, the receiver needs to perform a polynomial interpolation with degree n for Y, which requires time $O(n \log^2 n)$. Thus when X's size m = n, this approach will result in a quadratic computation complexity $O(n^2 \log^2 n)$.

Bucketing techniques: The gain and the loss. To further improve the performance, Kolesnikov et al. introduced the bucketing technique in PSU protocol design for the first time. Please see Figure 3: First, the sets X and Y are inserted into two simple hash tables with b bins, respectively, which means that the set X (resp., Y) is divided into b disjoint subsets X_1, \dots, X_b (resp., Y_1, \dots, Y_b). Then, each bin is padded with dummy items up to the maximum bin size ρ . The two parties perform a (ρ, ρ) -PSU sub-protocol on the items of each bin separately. In this way, the complexity of each sub-protocol on each bin is $O(\rho^2 \log^2 \rho)$, so the total cost can be reduced to $O(b\rho^2 \log^2 \rho) = O(n \log n \log^2 \log n)$.

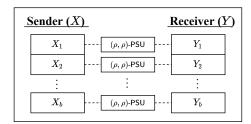


Fig. 3. Bucketing technique in [17].

However, as mentioned by Kolesnikov et al. [17], the bucketing technique will incur certain information leakage about the items in the intersection, during the execution; intuitively, the receiver could learn if there are items in $X \cap Y$ in certain subsets Y_i , where $Y_i \subset Y$. Note that in the ideal PSU, from the view of receiver, any item in the entire set Y could be an item in $X \cap Y$. But here, the receiver can know that some subsets have items in $X \cap Y$ and others do not. To address this issue, Kolesnikov et al. proposed to add special items to each bin, with the goal of reducing the leakage. Unfortunately, we find that their way of adding only special items, is *insufficient* to resolve the problem (More details are given in Section 5).

Kolesnikov et al.'s bucketing technique [17] is significant since it improves the performance of the PSU design a lot; however, we must note that, the downside of this bucketing technique is that, the designed protocols will suffer from certain level of information leakage. This leakage may not be necessary! Recall that, in prior works [9,7] under the design framework in Figure 2(a), all items in the receiver's set Y are processed at the same time; although the involved public-key operations make the design much less scalable (than that in [17]) for large datasets, the resulting protocol does not suffer from the information leakage issue (as that in [17]).

Main question. Based on above discussions, we ask the following natural question:

Is it possible to design a PSU protocol to achieve the "best of the two worlds," i.e., (1) fast and scalable, and at the same time, (2) without any unnecessary information leakage?

We will give an affirmative answer to this question. In particular, we propose a practical, scalable two-party PSU protocol named $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ under the design framework in Figure 2(a) by *shuffling* the receiver's set. Our protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ relies only on lightweight symmetric-key primitives (along with some OTs; we note the OTs are also needed in the state-of-the-art result [17]). More details will be shown in Section 1.1 and Section 3.

PSU for unbalanced datasets. To the best of our knowledge, previous works on PSU mainly focus on designing efficient protocols for balanced datasets. We now investigate

how to design practical PSU protocols in the *unbalanced* application scenarios, in which the receiver's input size is significantly larger than the sender's, or vice versa. In fact, existing protocols (including our $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ above) are already very fast when the size of receiver's input is significantly smaller than the sender's, as the relatively heavy operations mainly depend on the size of receiver's set. However, in the case that the size of receiver's input is much larger than the sender's, the performance of these protocols is reduced significantly. Hence, the second question we ask is:

Is it possible to design a fast and scalable PSU protocol when the sender's input size is much smaller than the receiver's?

We answer this question affirmatively by presenting a new protocol named $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$; this new protocol can be viewed as the dual version of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, exactly by shuffling the sender's set. More details about protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ are given in Section 1.1 and Section 3.

1.1 Technical Overview

Protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$: shuffling receiver's set. We now present how to construct practical two-party PSU protocols following the design framework in Figure 2(a). A big challenge is that, we need to efficiently realize the functionality g-RPMT, which allows the receiver to perform membership tests while not revealing the receiver's set Y to the sender. In previous works [9,7], functionality g-RPMT has been realized but not efficiently due to the heavy public-key operations.

The high-level idea of our design is shown in Figure 4 and the details are as follows. Initially, each item $y \in Y$ is split into two shares s and $y \oplus s$ by an additive secret sharing, where s is distributed uniformly at random and perfectly hides y. The set $Y = \{y_1, \cdots, y_n\}$ can be shared into two sets $\{s_1, \cdots, s_n\}$ and $\{y_1 \oplus s_1, \cdots, y_n \oplus s_n\}$; the receiver will keep the former herself, and send the latter to the sender. Now we can see that for each item $x_i \in X$, if it belongs to Y (i.e., $\exists j \text{ s.t. } x_i = y_j$), then $x_i \oplus y_j \oplus s_j = s_j$. Thus the sender can compute and send $\{x_i \oplus y_1 \oplus s_1, \cdots, x_i \oplus y_n \oplus s_n\}$ to the receiver, and the receiver can check if the sender's item x_i belongs to Y by computing the intersection of this set and $\{s_1 \cdots, s_n\}$. If empty, it means $x_i \notin Y$. Otherwise, the receiver learns that $x_i \in Y$.

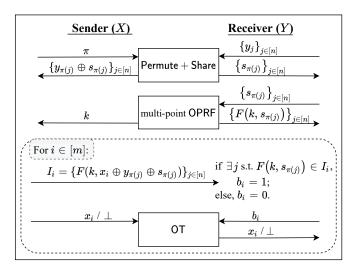


Fig. 4. Core design idea of protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ for (m, n)-PSU.

Now, the receiver can learn if $x_i \in Y$ without revealing Y to the sender. However, if $x_i \in Y$, the receiver can additionally figure out which item of Y is exactly equal to

 x_i according to $s_j \in \{x_i \oplus y_1 \oplus s_1, \cdots, x_i \oplus y_n \oplus s_n\} \cap \{s_1, \cdots, s_n\}$ as she knows the mapping of the shares $\{s_1, \cdots, s_n\}$ to the items in Y. Note that such information is not allowed to be obtained by the receiver in the RPMT. Thus, next we need to find a way to defend against such information leakage.

Recall that, the receiver is able to obtain additional information is due to the fact that the receiver knows which share corresponds to which item in Y. Our **key design idea** now is to break the mapping by shuffling the receiver's set (and shares) with a permutation not known to the receiver. Together with the additive secret sharing explained before, what we essentially need is a Permute + Share functionality: taking as input a set $Y = \{y_1, \cdots, y_n\}$ from the receiver and a permutation π (over $\{1, 2, \cdots, n\}$) from the sender, the functionality outputs the shares $\{s_{\pi(1)}, \cdots, s_{\pi(n)}\}$ and $\{y_{\pi(1)} \oplus s_{\pi(1)}, \cdots, y_{\pi(1)} \oplus s_{\pi(n)}\}$ to the receiver and the sender, respectively. After executing this functionality, the sender computes $\{x_i \oplus y_{\pi(1)} \oplus s_{\pi(1)}, \cdots, x_i \oplus y_{\pi(n)} \oplus s_{\pi(n)}\}$ and sends it to the receiver. Then the receiver can check if the sender's item belongs to Y as before. Following this way, the receiver will learn that there is an item $s_{\pi(j)} \in \{s_{\pi(1)}, \cdots, s_{\pi(n)}\}$ equal to $x_i \oplus y_{\pi(j)} \oplus s_{\pi(j)}$ if $x_i \in Y$, but she is unable to find out $y_{\pi(j)}$ according to $s_{\pi(j)}$, as she does not know π .

At this point, it seems that x_i can be completely hidden from the receiver at the first glance. Unfortunately, $x_i \oplus y_{\pi(j)} \oplus s_{\pi(j)}$ may still leak partial information about x_i to the receiver. This is because $y_{\pi(j)} \oplus s_{\pi(j)}$ is not distributed uniformly and independently from the perspective of the receiver who knows $s_{\pi(j)}$ and $y_{\pi(j)}$. To overcome this obstacle, we further employ multi-point Oblivious Pseudorandom Function (OPRF)⁶ $F(k,\cdot)$ to conceal $\{x \oplus y_{\pi(1)} \oplus s_{\pi(1)}, \cdots, x \oplus y_{\pi(n)} \oplus s_{\pi(n)}\}$. More concretely, the receiver takes $\{s_{\pi(1)}, \cdots, s_{\pi(n)}\}$ as the input to multi-point OPRF, then the sender receives the PRF key k and the receiver obtains $\{F(k, s_{\pi(1)}), \cdots, F(k, s_{\pi(n)})\}$. In this case, the sender with the key k can compute $I_i = \{F(k, x_i \oplus y_{\pi(1)} \oplus s_{\pi(1)}), \cdots, F(k, x_i \oplus y_{\pi(n)} \oplus s_{\pi(n)})\}$ for each x_i and sends it to the receiver. Then the receiver proceeds to perform the membership test as before, but learns nothing about x_i as she does not know the PRF key k. For the second phase, the receiver can receive $x_i \notin Y$ through OT as in [17].

Optimization. Following our core idea, it can be seen that the protocol executes Permute+Share and multi-point OPRF only once for all $x_i \in X$, but needs to send m sets (i.e., I_1, \dots, I_m) to receiver. In addition, the sender and receiver need to execute OT subprotocol m times. Fortunately, we find that the functionality Permute + Share (resp. multi-point OPRF) can be securely realized by the protocols in [5,20] (resp. [6]) with computation and communication cost $O(n \log n)$ (resp. O(n)). However, the sender needs to compute and send I_i containing n PRF values for each $x_i \in X$, thus it results in a quadratic computation and communication complexity O(mn).

The main reason for this quadratic complexity is that the sender does not know which item in Y may be equal to his item x_i , so he has to XOR x_i with all shares $\{y_{\pi(1)} \oplus s_{\pi(1)}, \cdots, y_{\pi(n)} \oplus s_{\pi(n)}\}$. To improve the efficiency, our key idea is to reduce the number of items in Y that could be equal to x_i by leveraging Cuckoo hashing [24] (defined in Section 2.2). Briefly, we insert Y into a Cuckoo hash table with γ hash functions, $\epsilon \cdot n$ bins and stash size 0^7 , and then execute Π_{PSU}^R over the hash table. To make it clear, we take a concrete example to explain the optimization via Cuckoo hashing, as illustrated in Figure 5. In particular, we assume that the sender's item to be checked is x_i , and that the receiver's set $Y = \{y_1, \cdots, y_6\}$, can be inserted to the Cuckoo hash table with

⁶ Multi-point OPRF is evaluated on different inputs with the same key, while single-point OPRF is evaluated with a different key for each input.

⁷ According to the empirical analysis in [32], the stash size can be reduced to 0 by increasing the number of hash functions while achieving a hashing failure probability of 2^{-40} .

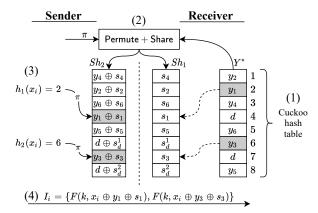


Fig. 5. Π_{PSU}^{R} : Optimization via Cuckoo hashing.

8 bins and 2 hash functions $h_1(\cdot)$ and $h_2(\cdot)^8$. Then the optimized protocol works as follows: (1) The receiver inserts Y into the Cuckoo hash table and adds a dummy item d to each empty bin, then obtains the filled table denoted by Y^* . (2) The receiver and the sender execute Permute + Share with a randomly chosen permutation π and Y^* as inputs, and obtain the shuffled secret share sets Sh_1 and Sh_2 , respectively. Here, s_d^1 and s_d^2 in Sh_1 are the shares of dummy item and $s_d^1 \neq s_d^2$. The dotted arrows mean that after permutation π , the 4-th (resp. 7-th) item in Sh_1 is the share of the 2-th (resp. 6-th) item in Y^* , but the receiver does not know the corresponding relations. In addition, the other share is the 4-th (resp. 7-th) item in Sh_2 . (3) With $h_1(\cdot)$ and $h_2(\cdot)$, the sender computes $h_1(x_i)$ and $h_2(x_i)$, say $h_1(x_i) = 2$ and $h_1(x_i) = 6$; we note that according to the principle of filling the Cuckoo hash table, the potential item of Y that is equal to x_i must be inserted to the position $h_1(x_i)$ or $h_2(x_i)$ of Y^* . Then he uses π to locate the corresponding shares (namely, 4-th and 7-th items) in Sh_2 and generates I_i with them. (4) The sender sends I_i to the receiver and the receiver proceeds as before.

Based on the above optimization, we can reduce the number of items in I_i to a constant γ that is the number of hash functions. Hence, the computation and communication cost incurred by $\{I_1, \cdots, I_m\}$ can be reduced to $O(\gamma m)$. In Table 1, we summarize the computation and communication costs of main steps in our $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$. And we will give a more detailed complexity analysis by taking account of the error rate and security parameters in Section 3.3.

Table 1. The computation and communication costs of Π_{PSII}^{R} .

	Permute + Share	multi-point OPRF	${I_i}_{i \in [m]}$	ОТ
Costs	$O(n \log n)$	O(n)	O(m)	O(m)

m is the sender's set size; n is the receiver's set size.

Protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$: **shuffling sender's set.** From Table 1 we can see that when $m \gg n$ the overall cost of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ is dominated by $\{I_i\}_{i \in [m]}$ and OT that are linear in m. However, when $m \ll n$ the cost is dominated by $\mathsf{Permute} + \mathsf{Share}$ that is superlinear in n. Therefore, when considering unbalanced datasets, $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ is more suitable for the case that the sender's set size is much larger than the receiver's (i.e., $m \gg n$). To develop efficient solutions for the other case where $m \ll n$, we propose a second protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$. by $\mathit{shuffling the sender's set}$. As a whole, it can be regarded as the dual version of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$. The high-level idea is shown in Figure 6.

Note that the parameters used here are to simplify the explanation, please refer to Section 4.1 for the concrete parameter choices.

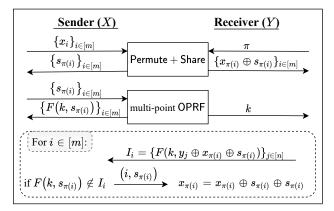


Fig. 6. Core idea of Π_{PSU}^{S} for (m, n)-PSU.

The basic idea of $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ is to share the sender's set X into two share sets obtained by the sender and the receiver, respectively. Then, the sender sends the shares of the items in $X \setminus Y$ to the receiver such that the receiver can recover the items in $X \setminus Y$. While being shared, the sender's set X needs to be shuffled by a permutation not known by the sender such that the sender cannot know the correspondence between shares and the items in X. More concretely, through Permute + Share with set X and permutation π as inputs, the sender obtains the set of shuffled shares $\{s_{\pi(1)}, \cdots, s_{\pi(m)}\}$ and the receiver obtains the remaining ones $\{x_{\pi(1)} \oplus s_{\pi(1)}, \cdots, x_{\pi(m)} \oplus s_{\pi(m)}\}$. Note that for an item $x_{\pi(i)} \in X$, if $x_{\pi(i)} \in Y$, say $x_{\pi(i)} = y_j$, then $y_j \oplus x_{\pi(i)} \oplus s_{\pi(i)} = s_{\pi(i)}$, otherwise $y_j \oplus x_{\pi(i)} \oplus s_{\pi(i)} \neq s_{\pi(i)}$ for any $y_j \in Y$. Moreover, it is obvious that the receiver can recover $x_{\pi(i)}$ by computing $s_{\pi(i)} \oplus (x_{\pi(i)} \oplus s_{\pi(i)})$ provided that she can also obtain the corresponding share $s_{\pi(i)}$. Thus, for each share $x_{\pi(i)} \oplus s_{\pi(i)}$ the receiver can generate $I_i = \{y_1 \oplus x_{\pi(i)} \oplus s_{\pi(i)}, \cdots, y_n \oplus x_{\pi(i)} \oplus s_{\pi(i)}\}$ and send it to the sender, so that the sender is able to determine whether to send $s_{\pi(i)}$ by checking if $s_{\pi(i)} \in I_i$; if $s_{\pi(i)} \notin I_i$ meaning $x_{\pi(i)} \notin Y$, the sender sends $s_{\pi(i)}$ to the receiver, otherwise does nothing. As in $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, however, $x_{\pi(i)} \oplus s_{\pi(i)}$ is not enough to completely hide Y as the sender knows both $x_{\pi(i)}$ and $s_{\pi(i)}$. To avoid this leakage, we adopt the same approach as $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$. That is, we compute $I_i = \{F(k, y_1 \oplus x_{\pi(i)} \oplus s_{\pi(i)}), \cdots, F(k, y_n \oplus x_{\pi(i)} \oplus s_{\pi(i)})\}$ through an mp $\mathsf{OPRF}\ F$ with the key not known to the sender.

We remark that the sender does not know the correspondence between shares and his original items, so he cannot learn which item is in $X \cap Y$. Nevertheless, the sender can know $|X \cap Y|$, which is not revealed to the sender in $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$.

Optimization. Similar to $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ without optimization, $\{I_1, \cdots, I_m\}$ here also results in a high computation and communication complexity O(mn). To further reduce the cost, we adopt the similar idea as $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ to reduce the size of I_i . Besides the Cuckoo hashing, here we additionally need a simple hash table to record Y, which is crucial for locating the candidate items of Y equal to the item of X. For ease of exposition, we take a concrete example to explain the main idea, also illustrated in Figure 7. Particularly, we assume that s_4 is the share to be checked by using I_1 . Then the optimized protocol works as follows: (1) The sender and receiver inserts their sets X and Y into a Cuckoo hash table and a simple hash table respectively, using hash functions $h_1(\cdot)$ and $h_2(\cdot)$. We denote the Cuckoo hash table containing X as X^* . (2) After Permute + Share on X^* , the sender and receiver can obtain share sets Sh_1 and Sh_2 , respectively. (3) The counterpart of s_4 is the first item in Sh_2 , say $x_4 \oplus s_4$. Since the receiver knows the permutation π , she can learn that $x_4 \oplus s_4$ is the share of 3-th item (namely, x_4) in X^* . According to the principle of filling the Cuckoo hash table and simple hash table, the receiver knows that only the items $(y_9$ and $y_{16})$ mapped to the 3-th position of the simple hash table may

equal the 3-th item in X^* . Then she computes $F(k, y_9 \oplus x_4 \oplus s_4)$ and $F(k, y_{16} \oplus x_4 \oplus s_4)$ and adds them into I_1 . To hide the number of the receiver's items inserted into the bin, the receiver further pads I_1 up to the maximum size of bin with random elements r chosen from the range of $F(k, \cdot)$. (4) Once receiving I_1 , the sender determines whether to send s_4 as before.

Unfortunately, we can see from above that if $x_4 \notin Y$ and the sender sends s_4 immediately to the receiver, then the receiver can recover x_4 and learn its position in the Cuckoo hash table. Since an item's position in the Cuckoo hash table is also impacted by the other items, the position will leak information about the entire set X. In addition, if $x_4 \in Y$ and the sender does not send s_4 to the receiver, then the receiver knows that an item belonging to $X \cap Y$ is in $\{y_9, y_{16}\}$, which is not allowed in PSU. To overcome the above problems, our basic idea is to let the sender record the shares that should be sent first and then send them together in a random order. We implement this by using Permute + Share again. For more details, please refer to Section 3.2.

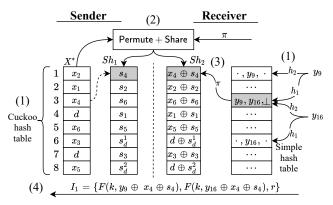


Fig. 7. $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$: Optimization via Cuckoo hashing.

In general, when n items are inserted into a simple hash table with m bins using γ hash functions, the maximum bin size is $O(\gamma n/m)^9$ when $n > m \log m$ according to [33]. Therefore, the computation and communication costs of $\{I_1, \dots, I_m\}$ can be reduced to $m \cdot O(\gamma n/m) = O(\gamma n)$.

1.2 Our Contributions

We explore new techniques of designing two-party PSU protocols for both balanced and unbalanced datasets, and propose two efficient and secure PSU protocols $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ supporting big datasets in Section 3. More specifically, our main contributions are summarized as below.

New protocols. We for the first time, give a scalable and secure construction, named $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, for realizing two-party PSU. Note that the state-of-the-art design by Kolesnikov et al. [17] faces the issue of partial information leakage of items in intersection. While this protocol is efficient for balanced datasets, we further extend our study to the unbalanced case in the sense that the receiver's input size is significantly larger than the sender's, or vice versa. Then we propose a second efficient and secure protocol, dubbed $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$. This protocol is suitable in the applications where the sender's input size is much smaller than the receiver's; this can be viewed as a dual version of our first protocol which is more suitable for the opposing case.

⁹ To be precise, the maximum bin size should be $\Theta(\gamma n/m)$.

New design techniques. To avoid the leakage incurred by the leverage of bucketing technique on the receiver's set, our key point is to process the receiver's set at the same time. Then we design $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ under the framework in Figure 2(a) by shuffling the receiver's set. Regarding designing PSU protocols for unbalanced datasets, our observation is to perform heavy operations on the smaller dataset. Thus we design $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ by shuffling the sender's set for the case that the sender's set size is much smaller than the receiver's. With the key technique shuffling, our design avoids expensive computations like public-key operations and repeated operations on sender/receiver's set. Furthermore, we reduce the communication and computation overhead by employing the Cuckoo hashing, which is for the first time used in PSU.

Implementation & evaluation. We implement our protocols in C++ and perform a comprehensive evaluation in Section 4. The results demonstrate that Π_{PSU}^R is 4-5× faster than the state-of-the-art PSU protocol [17] with a single thread in WAN/LAN settings. Moreover, we show that our protocols support parallelization; Π_{PSU}^R and Π_{PSU}^S can achieve a speedup of $2.89\times$ and $3.49\times$ respectively at 8 threads in LAN setting. Beyond, the results indicate that our protocols are also efficient and scalable for unbalanced datasets.

New leakage analysis. In Section 5 we show the bucketing technique adopted in the state-of-the-art design [17] will leak the information of intersection. Specifically, we demonstrate that after knowing all the sender's items in a bin belong to the intersection, the receiver can learn that her corresponding bin has items in $X \cap Y$ with an extremely large probability.

1.3 Related Work

As a special case of secure two-party computation, privacy-preserving set operation also includes generic and custom constructions. The generic PSI protocol (also called circuit-based PSI) was firstly proposed by Huang et al. [12], and the first generic PSU protocol was proposed in [2]. In general, the generic protocols are less efficient than the custom ones but more flexible to support different functionalities. In this work, we are mainly interested in the custom constructions.

Over the past decades, a large amount of work has been done on specific PSI (e.g., [19,27,16,30,29,25,26,6,32]). The recent works are mainly based on oblivious transfer extension [27,31,37,23] and various OPRF constructions [16,25,26,6,38]. The state-of-the-art protocols have become considerably efficient for practical applications.

Although PSI and PSU are similar and they share some building blocks (e.g., OPRF [16,25,17]), PSU cannot be obtained by directly employing existing PSI techniques, and little process has been made towards practical PSU so far.

The first PSU protocol was proposed by Kissner and Song in [15], and realized by using threshold additively homomorphic encryption (AHE) and polynomial representation. Later, Frikken [9] proposed a new PSU protocol with intersection hidden by leveraging similar techniques. Roughly, their protocol works as follows: the receiver holding the secret key of AHE sends to the sender the encrypted polynomial representation $\operatorname{Enc}(f)$ of her own set Y, then the sender with set X calculates the tuples $(\operatorname{Enc}(xf(x)), \operatorname{Enc}(f(x)))$ for each $x \in X$, and sends them to the receiver. If $x \in Y$, the receiver can only recover (0,0) from the tuple without learning any information about x. Otherwise, the receiver can recover (xf(x), f(x)) and then obtain x. Following the similar idea in [9], Davidson and Cid [7] presented a new protocol by replacing polynomial representation with inverted Bloom Filter¹⁰.

¹⁰ If there is an item mapped to an entry of Bloom Filter, the entry will be filled with a bit 0, otherwise, with a bit 1.

All the above protocols encrypt the (polynomial or Bloom Filter) representation of the receiver's set using AHE and perform a large number of operations in an encrypted manner. As pointed out by Kolesnikov et al. in [17], the public-key operations have become the workhorse of these works. Then they proposed the first scalable PSU protocol using only symmetric-key techniques. In their work, a polynomial is also used to represent the receiver's set, but the receiver is required to re-generate her polynomial representation for testing each item of the sender. By this way, the design in [17] avoids the usage of the expensive additive homomorphic encryption, but still suffers from the repeated high-degree polynomial interpolation. To further reduce this cost, Kolesnikov et al. proposed an efficient optimization by using the bucketing technique.

Next, we summarize the asymptotic complexities of the above PSU protocols [15,9,7,17] and ours in Table 2. In terms of asymptotic complexity, the scheme in [7] is the most efficient. However, according to the experimental comparison shown in [17], the protocol in [7] is $7607\times$ slower than [17] due to heavy public-key operations. Note that our protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ is 4-5× faster than [17]. On the other hand, the PSU protocols in [17] and our work are only based on symmetric-key operations, but the complexities are super-linear. Therefore, designing a PSU protocol with linear complexity by using symmetric-key operations is still left open.

Protocol	Comm. (bits)	Comp. (#Ops)				
1 10.0001	Comm. (bits)	pub-key	symm-key			
[15]	$O(n^2)$	$O(n^2)$	-			
[9]	O(n)	$O(n\log\log(n))$	-			
[7]	O(n)	O(n)	-			
[17]	$O(n\log(n))$	-	$O(n\log(n))$			
$\Pi_{PSU}^{\mathrm{R/S}}$	$O(n\log(n))$	-	$O(n\log(n))$			

Table 2. Comparisons of asymptotic communication (bits) and computation (#operations) costs of two-party PSU protocols in the semi-honest setting. pub/symm-key: public/symmetric-key operations. Here, n is the size of the parties' input sets. For [17] and ours, we ignore the pub-key cost of κ base OTs where κ is computational security parameter.

Finally, we provide a concrete comparison for the state-of-the-art results on PSU and on PSI for the large datasets of size 2^{20} in LAN setting. We can see that the performance of PSI is far better than that of PSU. Our $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ outperforms Kolesnikov et al. [17] by a factor of 5.4, but is still $20\times$ lower than the PSI protocol in [16]. More research on PSU design should be encouraged to further improve the performance.

	PS	SU	PSI		
	[17]	Π_{PSU}^{R}	[16]	[38]	
Time (s)	263.476	48.703	2.441	5.396	
Comm.(MB)	2470.11	1338.79	128.5	53.55	

Table 3. Comparisons of total runtime (in seconds) and communication (in MB) between the state-of-the-art works on PSU and PSI for set size 2²⁰ in LAN setting.

2 Preliminaries

Notation. We denote by κ and λ the computational and statistical security parameters, respectively. We use [m] to denote the set $\{1, 2, \dots, m\}$, and $X = \{x_1, \dots, x_n\}$ to denote a set with size |X| = n. Given a permutation π on n items, we use $\pi(X)$ to denote the set $\{x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(n)}\}$.

2.1 Security Model

Our PSU protocol involves two parties, and we follow the static semi-honest security definition in [18] for secure two-party computation in this work.

Static Semi-Honest Security. There are two parties denoted by P_0 and P_1 . Let $f_i(X,Y)$ be the output for P_i in the ideal functionality \mathcal{F} and $f(X,Y) = (f_0(X,Y), f_1(X,Y))$ be the joint output. Let the view of P_i during an execution of Π on inputs (X,Y) be $\mathsf{view}_i^\Pi(X,Y)$ that consists of the input X or Y, the contents of P_i 's internal random tape and the messages received during the execution. Similarly, $\mathsf{output}_i^\Pi(X,Y)$ is the output of P_i during an execution of Π on inputs (X,Y) and can be computed from the Π 's view. And the joint output of both parties is $\mathsf{output}^\Pi(X,Y) = (\mathsf{output}^\Pi_0(X,Y), \mathsf{output}^\Pi_1(X,Y))$.

Definition 1. A protocol Π securely computes \mathcal{F} against static semi-honest adversaries if there exist probabilistic polynomial-time (PPT) algorithms Sim_0 and Sim_1 such that

$$\begin{split} & (\mathsf{Sim}_0(X, f_0(X,Y)), f(X,Y)) \stackrel{c}{\equiv} (\mathsf{view}_0^\Pi(X,Y), \mathsf{output}^\Pi(X,Y)), \\ & (\mathsf{Sim}_1(Y, f_1(X,Y)), f(X,Y)) \stackrel{c}{\equiv} (\mathsf{view}_1^\Pi(X,Y), \mathsf{output}^\Pi(X,Y)). \end{split}$$

PSU Functionality. The ideal functionality for PSU, denoted as $\mathcal{F}_{PSU}^{n_1,n_2}$, is shown in Figure 8 (except for the text marked in blue). This functionality allows two players, the sender and the receiver, who hold private datasets with size n_1 and n_2 , respectively, to compute the union of the both input datasets. Note that our formulation of PSU functionality is identical to that in [17], and we allow only the receiver, not the sender, to obtain the union of the two input sets.

We remark that, in this formulation, based on the obtained output, the receiver can easily calculate the size of the intersection of the two input sets. However, the receiver is not allowed to learn any additional information about the data items in the intersection. On the other hand, the sender is not allowed to learn any information about the union or the intersection of the two private input sets.

- Functionality $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$ / $\mathcal{F}_{\mathsf{PSU}^*}^{n_1,n_2}$

Parameters:

- Set size for sender S is n_1 , set size for receiver R is n_2 ;
- Maximum length of all elements is ℓ .

Functionality:

- 1. Wait for input $X = \{x_1, \dots, x_{n_1}\}$ from S, abort if $|X| \neq n_1$ or $\exists x_i \in X$ such that $|x_i| > \ell$;
- 2. Wait for input $Y = \{y_1, \dots, y_{n_2}\}$ from \mathcal{R} , abort if $|Y| \neq n_2$ or $\exists y_i \in Y$ such that $|y_i| > \ell$;
- 3. Give output $|X \cap Y|$ to S, and give output $X \cup Y$ to R, then R can compute $|X \cap Y| = n_1 + n_2 |X \cup Y|$.

Fig. 8. Ideal Functionalities for PSU (The difference is marked in blue).

With the goal of investigating PSU design comprehensive, we further consider a natural relaxation of the ideal PSU functionality, by allowing the sender to learn the size of the intersection; as mentioned above, the receiver by default, is allowed to obtain the intersection size. We denote the relaxed ideal functionality as $\mathcal{F}_{\mathsf{PSU}^*}^{n_1,n_2}$; we also show it in Figure 8 while the difference from $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$ is marked in blue.

2.2 Building Blocks

We briefly recollect the main cryptographic tools, including Permute + Share, multi-point Oblivious PRF, 1-out-of-2 Oblivious Transfer, simple hashing and Cuckoo hashing.

Permute + **Share.** The Permute + Share functionality \mathcal{F}_{PS} shown in Figure 9 is defined by Chase et al. in [5]. There are two parties P_0 and P_1 in this functionality, where P_0 possesses a set $X = \{x_1, \dots, x_n\}$ of size n and P_1 picks a permutation π on n elements. The goal of \mathcal{F}_{PS} is to let P_0 learn the shares $\{s_{\pi(1)}, s_{\pi(2)}, \dots, s_{\pi(n)}\}$ and P_1 learn nothing but the other shares $\{x_{\pi(1)} \oplus s_{\pi(1)}, x_{\pi(2)} \oplus s_{\pi(2)}, \dots, x_{\pi(n)} \oplus s_{\pi(n)}\}$. As mentioned in [5], some earlier works [12,20] can also be used for securely realizing \mathcal{F}_{PS} . These solutions all have computation/communication complexity $O(n \log n)$.

Functionality \mathcal{F}_{PS}

Parameters:

- Two parties: P_0 and P_1 ;
- Set size n for P_0 ;
- Length of element ℓ .

Functionality:

- 1. Wait for input $X = \{x_1, \dots, x_n\}$ from P_0 , abort if $|X| \neq n$, or $\exists x_i \in X$ such that $|x_i| > \ell$:
- 2. Wait for input a permutation π from P_1 , abort if π is not a permutation on n items;
- 3. Give output shuffled shares $\{s_{\pi(1)}, s_{\pi(2)}, \cdots, s_{\pi(n)}\}$ to P_0 , and another shuffled shares $\{x_{\pi(1)} \oplus s_{\pi(1)}, x_{\pi(2)} \oplus s_{\pi(2)}, \cdots, x_{\pi(n)} \oplus s_{\pi(n)}\}$ to P_1 .

Fig. 9. Permute + Share functionality.

Multi-Point Oblivious PRF. Oblivious PRF (OPRF) is a protocol involving two parties P_0 and P_1 , where P_1 obtains the key of the PRF $F(\cdot,\cdot)$ and P_0 takes as input x and obtains F(k,x). OPRF has been widely used in PSI protocols, and extensive efforts have been made to develop efficient single-point OPRF protocols [8,10,28,16]. Most recently, Pinkas et al. [25] proposed for the first time to use multi-point OPRF to realize more efficient PSI protocols. Particularly, in a multi-point OPRF, P_0 takes as input $\{x_1, \cdots, x_n\}_{n\geq 1}$ and obtains $\{F(k,x_1), \cdots, F(k,x_n)\}_{n\geq 1}$ while P_1 obtains the PRF key p_1 . Later, Chase et al. [6] designed a more efficient multi-point OPRF with computation complexity P_0 0 while the computation cost of [25] is P_0 1 is P_0 2. Moreover, the scheme in [6] only involves efficient OT extension and AES operations, rather than the high-degree polynomial interpolation/evaluation over a large field as in [25]. The functionality P_0 2 is shown in Figure 10.

1-out-of-2 Oblivious Transfer. 1-out-of-2 oblivious transfer (OT) is a two-party protocol, where party P_0 takes as input two strings $\{x_0, x_1\}$, and the other party P_1 chooses a random bit b and obtains nothing other than x_b while P_0 learns nothing about b. The first OT protocol was proposed by Rabin in [34]. And due to the lower bound in [13], all the OT protocols require expensive public-key operations. To improve the performance, Ishai et al. [14] introduced the concept of OT extension that enables us to carry out many OTs based on a small number of basic OTs. The functionality \mathcal{F}_{OT} is shown in Figure 11.

Simple Hashing. In the simple hashing scheme, there are γ hash functions $h_1, \dots, h_{\gamma} : \{0,1\}^* \to [b]$ used to map n items into b bins B_1, \dots, B_b . An item x will be added into

```
Functionality \mathcal{F}_{mpOPRF}

Parameters:

- Two parties: P_0 and P_1;

- A PRF F(\cdot, \cdot).

Functionality:

1. Wait for input X = \{x_1, \dots, x_n\} from P_0;

2. Randomly select a key k for F(\cdot, \cdot);

3. Give output \{F(k, x_1), F(k, x_2), \dots, F(k, x_n)\} to P_0, and the key k to P_1.
```

Fig. 10. Multi-Point OPRF functionality.

```
Functionality \mathcal{F}_{\mathsf{OT}}

Parameters:

- Two parties: P_0 and P_1.

Functionality:

1. Wait for input \{x_0, x_1\} from P_0;
2. Wait for input b \in \{0, 1\} from P_1;
3. Give output x_b to P_1.
```

Fig. 11. 1-out-of-2 Oblivious Transfer functionality.

 $B_{h_1(x)}, B_{h_2(x)}, \cdots, B_{h_{\gamma}(x)}$, regardless of whether these bins are empty. According to the following inequality [21], the maximum bin size ρ can be set to ensure that no bin will contain more than ρ items except with probability $2^{-\lambda}$ when hashing n items into b bins.

$$\Pr[\exists \text{ bin with } \geq \rho \text{ items}] \leq b \left[\sum_{i=\rho}^{n} \binom{n}{i} \cdot \left(\frac{1}{b}\right)^{i} \cdot \left(1 - \frac{1}{b}\right)^{n-i} \right]$$

Cuckoo Hashing. Cuckoo hashing was introduced by Pagh and Rodler in [24]. In this hashing scheme, there are γ hash functions h_1, \dots, h_γ used to map n items into $b = \epsilon n$ bins and a stash, and we denote the i-th bin as B_i . Unlike the simple hashing, the Cuckoo hashing can guarantee that there is only one item in each bin, and the approach to avoid collisions is as follows: For an item x, it can be inserted into any empty bin of $B_{h_1(x)}, B_{h_2(x)}, \dots, B_{h_{\gamma}(x)}$. If there are no empty bins in the k bins, randomly select a bin $B_{h_r(x)}$ in these γ bins, and evict the prior item y in $B_{h_r(x)}$ where $h_r(x) = h_r(y)$ to a new bin $B_{h_i}(y)$ where $i \neq r$. The above procedure is repeated until no more evictions are necessary, or until the number of evictions has reached a threshold. In the latter case, the last item will be put in the stash. According to the empirical analysis in [32], we can adjust the values of γ and ϵ to reduce the stash size to 0 while achieving a hashing failure probability of 2^{-40} .

3 Private Set Union via Shuffling

In this section, we propose two scalable PSU protocols $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ by leveraging shuffling and Cuckoo hashing techniques. The first protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ realizes $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$, which is obtained by shuffling the receiver's set. In contrast, the second $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ realizes $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$, which is obtained by shuffling the sender's set. To ease the understanding of our main

idea, we also present the simplified versions of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ (without using the Cuckoo hashing) denoted by $\hat{\Pi}_{\mathsf{PSU}}^{\mathsf{R}}$ and $\hat{\Pi}_{\mathsf{PSU}}^{\mathsf{S}}$, respectively, in Appendix A.

3.1 Protocol Π_{PSU}^{R} : Shuffling Receiver's Set

The first protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ is designed under the framework in Figure 2(a). Our basic idea is to realize the functionality $g\text{-}\mathsf{RPMT}$ by shuffling the secret shares of the receiver's set. In the following, we first give a brief description of this protocol and then present the details in Figure 12.

We assume that the sender's set is $X = \{x_1, \dots, x_{n_1}\}$ and the receiver's set is $Y = \{y_1, \dots, y_{n_2}\}$. Then the protocol proceeds as follows. Firstly, the receiver chooses the parameters of Cuckoo hash table without a stash, including the number of bins $b = \epsilon \cdot n_2$ and γ hash functions h_1, \dots, h_{γ} . Then she inserts Y into this table and pads each empty bin with a dummy item d. Please refer to Section 2.2 for the details of Cuckoo hashing. After successfully inserting Y into the Cuckoo hash table, the receiver sends the parameters to the sender. Hereafter, we denote by Y_C the Cuckoo hash table filled with Y and $Y_C[i]$ the item in the i-th bin of the table.

Secondly, the two parties invoke \mathcal{F}_{PS} with inputs Y_C and π randomly chosen by the receiver. After this, the sender and receiver obtain the shares $\{a'_1, a'_2, \cdots, a'_b\}$ and $\{a_1, a_2, \cdots, a_b\}$ respectively, where $a'_i \oplus a_i = Y_C[\pi(i)]$. Further through \mathcal{F}_{mpOPRF} with $\{a_i\}_{i \in [b]}$ as the input, the sender receives PRF key k and the receiver obtains $\{F(k, a_i)\}_{i \in [b]}$ where $F(k, a_i) \in \{0, 1\}^{\ell_2}$.

Next, for each $x_i \in X$, the sender generates a set I_i so that the receiver can test if $x_i \in Y$ via I_i . If not, the receiver can obtain the item x_i . However, we observe that if the sender picks items from X in a special order, then when the receiver obtains a certain item x_i she can obtain extra information about X according to the order¹¹. To avoid this leakage, the sender permutes his set X to $\pi'(X) = \{x'_1, \dots, x'_{n_1}\}$ by a randomly chosen permutation π' , and then generates I_i for each item x'_i of $\pi'(X)$ in turn, the details of which are shown below.

Note that for each item $x_i' \in \pi'(X)$, if there is an item $y \in Y$ equal to x_i' , then y must be inserted into one of the positions of Y_C indexed by $\{h_j(x_i')\}_{j \in [\gamma]}$, according to the property of the Cuckoo hashing. Hence, to test if $x_i' \in Y$, we need only to check if $x_i' \in \{Y_C[h_1(x_i')], \cdots, Y_C[h_\gamma(x_i')]\}$. To do so, the sender first uses the permutation π of \mathcal{F}_{PS} to identify the shares of $Y_C[h_1(x_i')], \cdots, Y_C[h_\gamma(x_i')]$ from $\{a_1', a_2', \cdots, a_b'\}$, say $\{a_{q_1}', a_{q_2}', \cdots, a_{q_\gamma}'\}$, where $q_j = \pi^{-1}(h_j(x_i'))$ for $j \in [\gamma]$. Then he computes I_i as $I_i = \{F(k, x_i' \oplus a_{q_1}'), \cdots, F(k, x_i' \oplus a_{q_\gamma}')\}$. However, we notice that if there are distinct hash functions, say h_{j_s} and h_{j_t} s.t. $h_{j_s}(x_i') = h_{j_t}(x_i')$, then we have $I_i[j_s] = I_i[j_t]$, from which the receiver may learn partial information about x_i' . To overcome this shortcoming, I_i is generated in a slightly different way: $I_i[j_s]$ is computed and recorded in I_i as before, but $I_i[j_t]$ is replaced with a random value $r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell_2}$. In Particular, for each x_i' , the sender initializes a set $I_i = \emptyset$ and a set $Q_i = \emptyset$, where Q_i is used to record the indices of the shares (in $\{a_1', \cdots, a_b'\}$) that are XORed with x_i' . Then for each $j \in [\gamma]$, the sender computes $q_j = \pi^{-1}(h_j(x_i'))$. If it does not appear before (i.e., $q_j \notin Q_i$), the sender adds it into Q_i and records $F(k, x_i' \oplus a_{q_j}')$ into I_i . Otherwise, the sender randomly chooses $r \in \{0,1\}^{\ell_2}$ and records it into I_i . At the end, the sender sends I_i to the receiver. Recall that if $x_i' \in Y$, then there is an item in I_i that belongs to $\{F(k, a_i)\}_{i \in [b]}$.

Finally, upon receiving I_i , the receiver checks if the intersection of I_i and $\{F(k, a_j)\}_{j \in [b]}$ is non-empty. If not, the receiver sets $b_i = 0$ and obtains x_i through $\mathcal{F}_{\mathsf{OT}}$ and adds it to

For example, assuming that X consists of the ages of a group people, if the sender picks the items of X in an ascending order and the receiver obtains an item x = 16 through the third OT, then the receiver can learn that two people in X are under the age of 16.

```
Protocol \Pi_{\mathsf{PSU}}^{\mathsf{R}} using Cuckoo hashing
Parameters:
```

- Hash functions $h_1, \dots, h_{\gamma} : \{0, 1\}^{\ell_1} \to [b];$
- A Cuckoo hash table based on h_1, \dots, h_{γ} with $b = \epsilon \cdot n_2$ bins, stash size s = 0;
- Ideal functionalities $\mathcal{F}_{PS},\,\mathcal{F}_{OT}$ and \mathcal{F}_{mpOPRF} (the underlying PRF is $F(k,\cdot): \{0,1\}^{\ell_1} \to \{0,1\}^{\ell_2});$

Inputs:

```
- Sender S: set X = \{x_1, \dots, x_{n_1}\}, x_i \in \{0, 1\}^{\ell_1};
- Receiver \mathcal{R}: set Y = \{y_1, \dots, y_{n_2}\}, y_i \in \{0, 1\}^{\ell_1};
```

Protocol:

- 1. \mathcal{R} inserts set Y into the Cuckoo hash table based on h_1, \dots, h_{γ} as shown in Section 2.2, and adds a dummy item d in each empty bin, then denotes the filled Cuckoo hash table as Y_C and the item in *i*-th bin as $Y_C[i]$;
- 2. $\mathcal S$ and $\mathcal R$ invoke the ideal functionality $\mathcal F_{PS}$:
 - \mathcal{R} acts as P_0 with input set Y_C , and \mathcal{S} acts as P_1 with a permutation π ;
 - \mathcal{R} obtains the shuffled shares $\{a_1, a_2, \cdots, a_b\}$, and \mathcal{S} obtains the other shuffled shares $\{a'_1, a'_2, \cdots, a'_b\}$ where $Y_C[\pi(i)] = a'_i \oplus a_i$;
- 3. $\mathcal S$ and $\mathcal R$ invoke the ideal functionality $\mathcal F_{mpOPRF}$:
 - \mathcal{R} acts as P_0 with her shuffled shares $\{a_i\}_{i\in[b]}$, and obtains the outputs ${F(k,a_i)}_{i\in[b]};$
 - S obtains the key k;
- 4. \mathcal{R} initializes set $Z = \emptyset$, \mathcal{S} randomly selects a permutation π' , and obtains $\pi'(X) = \{x_1', x_2', \cdots, x_{n_1}'\};$
- 5. For $i \in [n_1]$:
 - S initializes sets $Q_i = \emptyset$ and $I_i = \emptyset$;
 - For $j \in [\gamma]$:
 - S computes $q_j = \pi^{-1}(h_j(x_i));$
 - if $q_j \notin Q_i$,

$$g \notin Q_i,$$
 $Q_i = Q_i \cup \{q_j\}, \ I_i = I_i \cup \{F(k, x_i' \oplus a_{q_j}')\}, \text{ else,}$
 $r \stackrel{\$}{\leftarrow} \{0, 1\}^{\ell_2} \text{ and } I_i = I_i \cup \{r\};$

- \mathcal{S} sends I_i to \mathcal{R} ;
- \mathcal{R} checks if $\{F(k, a_i)\}_{i \in [b]} \cap I_i \neq \emptyset$. If so, \mathcal{R} sets $b_i = 1$, otherwise, sets $b_i = 0$;
- S and R invoke the ideal functionality F_{OT} :
 - S acts as P_0 with input $\{x_i', \bot\}$;
 - \mathcal{R} acts as P_1 with input b;
 - if $b_i = 0$, \mathcal{R} obtains x'_i , otherwise, obtains \perp ;
- Once receiving x_i' , \mathcal{R} sets $Z = Z \cup \{x_i'\}$;
- 6. \mathcal{R} outputs $Y \cup Z$;

Fig. 12. Protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ using Cuckoo Hashing.

an initially empty set Z, otherwise sets $b_i = 1$ and obtains nothing. At last, the receiver outputs $Y \cup Z$.

Next we first argue that the protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ in Figure 12 realizes the functionality $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$ correctly, and then show it satisfies the security properties.

Correctness. The receiver obtains the Cuckoo hash table Y_C filled with the set Y and dummy items d. Then through $\mathcal{F}_{\mathsf{PS}}$, the receiver obtains the shuffled secret share set $\{a_1, \cdots, a_b\}$ of Y_C and the sender receives the other shares $\{a'_1, \cdots, a'_b\}$, where $a'_i \oplus a_i = Y_C[\pi(i)]$. For an item $x^* \in X$, if $x^* \in Y$, say $x^* = y_i$, then y_i must be inserted into one of the bins of Y_C indexed by $\{h_j(x^*)\}_{j \in [\gamma]}$, and so the share of y_i held by the sender must belong to $\{a'_{q_1}, \cdots, a'_{q_{\gamma}}\}$ where $q_j = \pi^{-1}(h_j(x^*))$ for all $j \in [\gamma]$. Without loss of generality, we assume that the share of y_i is a'_{q_w} , then $x^* \oplus a'_{q_w} = y_i \oplus a'_{q_w} = a_{q_w}$, and thus $F(k, x^* \oplus a'_{q_w}) = F(k, a_{q_w})$. So in this case the intersection of $I^* = \{F(k, x^* \oplus a'_{q_j})\}_{j \in [\gamma]}$ and $\{F(k, a_i)\}_{i \in [b]}$ is non-empty, the receiver sets $b^* = 1$ and receives nothing from $\mathcal{F}_{\mathsf{OT}}$. Otherwise (i.e., $x^* \notin Y$), we have $x^* \oplus a'_{q_j} \neq a_{q_j}$ for all $j \in [\gamma]$. Moreover, for any a_t where $t \in [b] \setminus \{q_j\}_{j \in [\gamma]}, x^* \oplus a'_{q_j} \neq a_t$ with an overwhelming probability, as long as the length ℓ_1 of the share is sufficiently large. Thus the intersection of $\{F(k, x^* \oplus a'_{q_j})\}_{j \in [\gamma]}$ and $\{F(k, a_i)\}_{i \in [b]}$ is empty except for a negligible probability, then the receiver will set $b^* = 0$ and receive x^* through $\mathcal{F}_{\mathsf{OT}}$.

We remark that the correctness error comes from the following two types of collisions. Specifically, the first type is incurred by the secret shares, that is, for $x^* \notin Y$ and some $j \in [\gamma]$, $x^* \oplus a'_{q_j} \in \{a_1, \cdots, a_b\}$ holds. The other case is incurred by PRF, that is $F(k, x^* \oplus a'_{q_j}) = F(k, a_t)$ for some $x^* \oplus a'_{q_j} \neq a_t$. To make the correctness hold with an overwhelming probability, we need to ensure the probability of collisions happening is less than $2^{-\lambda}$. To this end, we set both the share length ℓ_1 and the PRF output length ℓ_2 to be at least $\lambda + \log(\epsilon n_2) + \log(\gamma n_1)$.

Security. Now we proceed to show the semi-honest security of Π_{PSU}^{R} in the $\{\mathcal{F}_{PS}, \mathcal{F}_{mpOPRF}, \mathcal{F}_{OT}\}$ -hybrid model.

Theorem 1. The protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ presented in Figure 12 securely realizes $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$ in the $\{\mathcal{F}_{\mathsf{PS}},\mathcal{F}_{\mathsf{mpOPRF}},\mathcal{F}_{\mathsf{OT}}\}$ -hybrid model, in the presence of semi-honest adversaries.

Proof. We construct $\mathsf{Sim}_{\mathcal{S}}$ and $\mathsf{Sim}_{\mathcal{R}}$ to simulate the views of corrupted sender \mathcal{S} and corrupted receiver \mathcal{R} respectively.

Corrupt sender. Simulator $\mathsf{Sim}_{\mathcal{S}}$ simulates a real execution in which the sender \mathcal{S} is corrupted. Since \mathcal{A} is semi-honest, $\mathsf{Sim}_{\mathcal{S}}$ can obtain the input $X = \{x_1, \cdots, x_{n_1}\}$ where $x_i \in \{0,1\}^{\ell_1}$ of \mathcal{S} directly, and externally send the set X to $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$. When receiving a permutation π from \mathcal{A} , $\mathsf{Sim}_{\mathcal{S}}$ checks if it is a permutation of b items. If so, $\mathsf{Sim}_{\mathcal{S}}$ randomly selects $\{a'_1, \cdots, a'_b\}$ where $a'_i \in \{0,1\}^{\ell_1}$ as shuffled shares, and simulates $\mathcal{F}_{\mathsf{PS}}$ sending them to \mathcal{A} . Then, $\mathsf{Sim}_{\mathcal{S}}$ randomly selects a key k of PRF and sends it to \mathcal{A} to simulate $\mathcal{F}_{\mathsf{mpOPRF}}$, and waits for the set I from \mathcal{A} . As for the $\mathcal{F}_{\mathsf{OT}}$, \mathcal{A} does not need to obtain outputs from it, and thus $\mathsf{Sim}_{\mathcal{S}}$ does nothing.

We argue that the outputs of $\mathsf{Sim}_\mathcal{S}$ are indistinguishable from the real view of \mathcal{S} by the following hybrids:

 $\mathsf{Hyb_0}$: \mathcal{S} 's view in the real protocol.

Hyb₁: Same as Hyb₀ except that the output of \mathcal{F}_{PS} is replaced by $\{a'_1, \dots, a'_b\}$ chosen by $\mathsf{Sim}_{\mathcal{S}}$, and $\mathsf{Sim}_{\mathcal{S}}$ runs the \mathcal{F}_{PS} simulator to produce the simulated view for \mathcal{S} . The security of protocol Π_{PS} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.

 Hyb_2 : Same as Hyb_1 except that the output key of \mathcal{F}_{mpOPRF} is replaced by the k chosen by $Sim_{\mathcal{S}}$, and $Sim_{\mathcal{S}}$ runs the \mathcal{F}_{mpOPRF} simulator to produce the simulated view for \mathcal{S} . The security of protocol Π_{mpOPRF} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.

 Hyb_3 : Same as Hyb_2 except that Sim_S runs the \mathcal{F}_{OT} simulator to produce the simulated view for S. This hybrid is computationally indistinguishable from Hyb_2 by the security of the protocol Π_{OT} . The hybrid is the view output by Sim_S .

Corrupt receiver. Simulator $\operatorname{Sim}_{\mathcal{R}}$ simulates a real execution in which the receiver \mathcal{R} is corrupted. $\operatorname{Sim}_{\mathcal{R}}$ begins by invoking \mathcal{A} who corrupts \mathcal{R} , and receives the set $Y = \{y_1, \cdots, y_{n_2}\}$ (s.t $y_i \in \{0, 1\}^{\ell_1}$) that \mathcal{A} would send to $\mathcal{F}_{\operatorname{PS}}$ in a real execution. Then, $\operatorname{Sim}_{\mathcal{R}}$ forwards the set Y to the ideal functionality $\mathcal{F}_{\operatorname{PSU}}^{n_1, n_2}$, and waits for the output from $\mathcal{F}_{\operatorname{PSU}}^{n_1, n_2}$. To simulate $\mathcal{F}_{\operatorname{PS}}$ outputting the shuffled shares of Y_C , $\operatorname{Sim}_{\mathcal{R}}$ randomly chooses $\{a_1, \cdots, a_b\}$ where $a_i \in \{0, 1\}^{\ell_1}$, and sends them to \mathcal{A} . Once receiving the input $\{a_1, \cdots, a_b\}$ of $\mathcal{F}_{\operatorname{mpOPRF}}$ from \mathcal{A} , $\operatorname{Sim}_{\mathcal{R}}$ randomly chooses a key k of the PRF $F(\cdot, \cdot)$, and simulate $\mathcal{F}_{\operatorname{mpOPRF}}$ sending $\{F(k, a_1), \cdots, F(k, a_b)\}$ to \mathcal{A} .

After obtaining the output $|X \cap Y|$ and $X \cup Y$ from $\mathcal{F}_{\mathsf{PSU}}^{n_1,n_2}$, $\mathsf{Sim}_{\mathcal{R}}$ needs to simulate generating a set I for each item in $\pi'(X) = \{x'_1, \cdots, x'_{n_1}\}$. Note that $\mathsf{Sim}_{\mathcal{R}}$ does not know $\pi'(X) = \{x'_1, \cdots, x'_{n_1}\}$. $\mathsf{Sim}_{\mathcal{R}}$ knows the number $|X \cap Y|$, so he can randomly select $|X \cap Y|$ items from $[n_1]$ to form a set L in ascending order. This process refers to $\mathsf{Sim}_{\mathcal{R}}$ randomly selecting the indexes of items in $\pi'(X)$ that belong to the intersection and recording these indexes in the set L. In addition, $\mathsf{Sim}_{\mathcal{R}}$ randomly chooses $|X \cap Y|$ items from $\{F(k,a_1),\cdots,F(k,a_b)\}$ to form a set S in random order, which is used to generate the set S for each item in S for each S in random order, which is used to generate the set S for each item in S for each S for each S in random order, which is used to generate the set S for each item in S for each S for ea

We argue that the outputs of $\mathsf{Sim}_\mathcal{R}$ are indistinguishable from the real execution through the following hybrids:

 $Hyb_0: \mathcal{R}$'s view in the real protocol.

Hyb₁: Same as Hyb₀ but the protocol aborts if there exists $a_t = a_i' \oplus x_j'$ where a_t is not a_i or $F(k, a_t) = F(k, a_i' \oplus x_j')$ for $a_t \neq a_i' \oplus x_j'$. The aborting probability can be $2^{-\lambda}$ by setting the share length ℓ_1 and $F(k, \cdot)$ output length ℓ_2 .

Hyb₂: Same as Hyb₁ except that the output of \mathcal{F}_{PS} is replaced by $\{a_1, \dots, a_b\}$ chosen by $\mathsf{Sim}_{\mathcal{R}}$, and $\mathsf{Sim}_{\mathcal{R}}$ runs the \mathcal{F}_{PS} simulator to produce the simulated view for \mathcal{R} . The security of protocol Π_{PS} and the pseudorandomness of $F(k,\cdot)$ guarantee the view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb₃: Same as Hyb₂ except that the output of \mathcal{F}_{mpOPRF} and corresponding items in sets I are replaced by $\{F(k,a_1),\cdots,F(k,a_b)\}$ computed by $\mathsf{Sim}_{\mathcal{R}}$, and $\mathsf{Sim}_{\mathcal{R}}$ runs the \mathcal{F}_{mpOPRF} simulator to produce the simulated view for \mathcal{R} . More concretely, in Hyb₂, the output of \mathcal{F}_{mpOPRF} to \mathcal{R} is still $\{F(k^*,a_1^*),\cdots,F(k^*,a_b^*)\}$, which are the values in the real protocol. And the set I of an item in $X \cap Y$ will contain an item in $\{F(k^*,a_1^*),\cdots,F(k^*,a_b^*)\}$. In this hybrid, each $F(k^*,a_i^*)$ is replaced by $F(k,a_i)$. The security of protocol \mathcal{I}_{mpOPRF} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol. Note that at this point, the items in $\{F(k,a_1),\cdots,F(k,a_b)\}$ that also exist in set I are not the items selected into set S by $\mathsf{Sim}_{\mathcal{R}}$. The next hybrid is to change these items.

Hyb₄: Same as Hyb₃ except that the items in $\{F(k, a_1), \dots, F(k, a_b)\}$ that belong to some sets I are changed to the items in S and the corresponding items in set I are also changed. This hybrid is perfectly indistinguishable from Hyb₃ as the permutation π is random.

 Hyb_5 : Same as Hyb_4 except that the items in sets I that are not equal to the PRF values of the receiver are changed to the randomnesses chosen by $Sim_{\mathcal{R}}$. Hyb_5 is computationally indistinguishable from Hyb_4 because of the pseudorandom property of PRF.

 $\mathsf{Hyb_6}$: Same as $\mathsf{Hyb_5}$ except that the sets I are sent in the order chosen by $\mathsf{Sim}_{\mathcal{R}}$. This hybrid is perfectly indistinguishable from $\mathsf{Hyb_5}$ as the permutation π' is random.

 Hyb_7 : Same as Hyb_6 except that $Sim_{\mathcal{R}}$ runs the \mathcal{F}_{OT} simulator to produce the simulated view for \mathcal{R} . This hybrid is computationally indistinguishable from Hyb_5 by the security of the protocol Π_{OT} . The hybrid is the view output by $Sim_{\mathcal{R}}$.

The protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ is very scalable for balanced datasets, as demonstrated in Section 4. When considering unbalanced datasets, we observe that it is already considerably efficient for the case that the sender's set size is much larger than the receiver's, but not so friendly for the opposite case. To deal with this case, we propose a second protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ as below.

3.2 Protocol Π_{PSU}^{S} : Shuffling Sender's Set

In contrast to $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, the core idea of designing $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ is to shuffle the sender's set, rather than the receiver's. A brief description is given below and the details are shown in Figure 13.

Similarly, the sender's set and the receiver's set are assumed to be $X = \{x_1, \cdots, x_{n_1}\}$ and $Y = \{y_1, \cdots, y_{n_2}\}$, respectively. Then the protocol works as follows. Firstly, the sender inserts X into the Cuckoo hash table with b bins by using γ hash functions $\{h_1, \cdots, h_\gamma\}$ and fills each empty bin with a dummy item d. After that, the sender sends to the receiver the parameters of the Cuckoo hashing. Then the receiver inserts Y into a simple hash table with b bins by using the same hash functions. In general, when n items are inserted into a simple hash table with m bins using γ hash functions, the maximum bin size is $O(\gamma n/m)^{12}$ when $n > m \log m$ according to [33]. Therefore, the maximum bin size ρ of simple hash table is $O(\gamma n_2/b)$. For simplicity, we denote by X_C and Y_B the filled Cuckoo hash table and simple hash table, respectively.

Secondly, the sender and the receiver invoke \mathcal{F}_{PS} with input X_C and a random permutation π , respectively. Then the sender obtains the shuffled secret shares $\{a_1, \dots, a_b\}$ of X while the receiver obtains other shares $\{a'_1, \dots, a'_b\}$. Further, by running \mathcal{F}_{mpOPRF} with the input $\{a_i\}_{i\in[b]}$ the sender obtains $\{F(k, a_i)\}_{i\in[b]}$ and the receiver obtains the PRF key k.

Thirdly, for $i \in [b]$ the receiver generates a set I_i with her i-th share a_i' and sends it to the sender, so that the sender can test if the item of X associated with a_i' belongs to Y. Note that as the receiver selects the permutation π , she knows that a_i' is the share of the $\pi(i)$ -th item of X_C , whereas the sender does not know which item of X_C is being tested. Moreover, if $X_C[\pi(i)] \in Y$, then the item in Y equal to $X_C[\pi(i)]$ must be contained in the $\pi(i)$ -th bin of Y_B . So to check if $X_C[\pi(i)] \in Y$, we need only to check if $X_C[\pi(i)] \in Y_B[\pi(i)]$. To do so, the receiver computes the XOR of a_i' and each item in $Y_B[\pi(i)]$, then evaluates PRFs over them, namely $\{F(k,y_j \oplus a_i')\}_{y_j \in Y_B[\pi(i)]}$, and adds them into set I_i . To further hide from the sender the actual number of items in Y mapped to the bin, the receiver pads I_i with $\rho - |Y_B[\pi(i)]|$ random values from $\{0,1\}^{\ell_2}$ if the number (i.e., $|Y_B[\pi(i)]|$) of items in I_i is less than the maximum bin size ρ . Note that if there is a y_j that is mapped to the bin multiple times using different hash functions, Π_{PSU}^S only puts it to the bin once, and thus there are no duplicates in I_i .

Finally, after receiving $I_i \supseteq \{F(k, y_j \oplus a_i')\}_{y_j \in Y_B[\pi(i)]}$, the sender checks if $F(k, a_i) \in I_i$. If not, the sender sends a_i to the receiver in order for the receiver to obtain $X_C[\pi(i)] = a_i \oplus a_i'$, otherwise sends \bot . By this way, however, the receiver will learn that an item belonging to $X \cap Y$ is in the bin $Y_B[\pi(i)]$ if she receives \bot , which will leak the information about intersection to the receiver as mentioned in [17]. On the other hand, if the receiver

¹² To be precise, the maximum bin size should be $\Theta(\gamma n/m)$.

$\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ Protocol using Cuckoo hashing

Parameters:

- Hash functions $h_1, \dots, h_{\gamma} : \{0, 1\}^{\ell_1} \to [b];$
- A Cuckoo hash table based on h_1, \dots, h_{γ} , with $b = \epsilon \cdot n_1$ bins, stash size s = 0;
 A simple hash table based on h_1, \dots, h_{γ} , with $b = \epsilon \cdot n_1$ bins and bin size ρ , where $\rho = O(\gamma n_2/b);$
- Ideal functionalities \mathcal{F}_{PS} and \mathcal{F}_{mpOPRF} (the underlying PRF is $F(k,\cdot): \{0,1\}^{\ell_1} \to \{0,1\}^{\ell_2}$);

- Sender S: set $X = \{x_1, \dots, x_{n_1}\}, x_i \in \{0, 1\}^{\ell_1}$; - Receiver \mathcal{R} : set $Y = \{y_1, \dots, y_{n_2}\}, y_i \in \{0, 1\}^{\ell_1};$

- 1. \mathcal{S} inserts set X into the Cuckoo hash table, and fills empty bins with the dummy item d, then denotes the filled Cuckoo hash table as X_C and the item in i-th bin as $X_C[i]$; \mathcal{R} inserts set Y into the simple hash table, and deletes the duplicates in each bin, then denotes the set of items in the *i*-th bin as $Y_B[i]$;
- 2. S and R invoke the ideal functionality F_{PS} :
 - S acts as P_0 with input set X_C , and R acts as P_1 with a permutation π ;
 - S obtains the shuffled shares $\{a_1, a_2, \dots, a_b\}$, R obtains the another shuffled shares $\{a'_1, a'_2, \cdots, a'_b\}$ where $X_C[\pi(i)] = a'_i \oplus a_i$;
- 3. $\mathcal S$ and $\mathcal R$ invoke the ideal functionality $\mathcal F_{mpOPRF}$:
 - S acts as P_0 with his shuffled shares $\{a_i\}_{i\in[b]}$, and obtains the outputs ${F(k,a_i)}_{i\in[b]};$
 - R obtains the key k;
- 4. \mathcal{R} initializes a set $Z = \emptyset$, \mathcal{S} initializes a string $U = 0^b$;
- 5. For $i \in [b]$:
 - \mathcal{R} initializes a set $I_i = \emptyset$;
 - For each $y_i \in Y_B[\pi(i)]$, \mathcal{R} adds $F(k, y_j \oplus a_i')$ to I_i ;
 - \mathcal{R} pads I_i up to bin size ρ by different $r \stackrel{\$}{\leftarrow} \{0,1\}^{\ell_2}$, and sends I_i to \mathcal{S} ;
 - S checks if $F(k, a_i)$ is in I_i , if not, S sets U[i] = 1, otherwise, sets U[i] = 0;
- 6. S and R invoke the ideal functionality \mathcal{F}_{PS} :
 - \mathcal{R} acts as P_0 with input set $\{a_i'\}_{i\in[b]}$, and \mathcal{S} acts as P_1 with a random permutation
 - S and R obtains the shuffled share sets $\{s_1^1, s_2^1, \dots, s_b^1\}$ and $\{s_1^2, s_2^2, \dots, s_b^2\}$ respectively, where $s_i^1 \oplus s_i^2 = a'_{\pi'(i)}$;
- - If $U[\pi'(i)] = 1$, S sets $z_i = a_{\pi'(i)} \oplus s_i^1$, otherwise, sets $z_i = \bot$, then sends z_i to \mathcal{R} ;
 - If $z_i \neq \perp$ and $z_i \oplus s_i^2 \neq d$, \mathcal{R} sets $Z = Z \cup \{z_i \oplus s_i^2\}$;
- 8. \mathcal{R} outputs $Y \cup Z$;

Fig. 13. Protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ using Cuckoo Hashing.

obtains the sender's item, she may learn partial information about the whole sender's set as she knows the position in Cuckoo hash table to which the item is mapped.

To solve the above problems, we opt to postpone sending the sender's shares. More specifically, instead of sending the share directly, the sender first records which shares should be sent using a bit-string U and then sends them in a new order. Since the receiver needs to match the shares from the sender with her shares, the receiver also needs to permute her shares in the same order. To this end, we leverage \mathcal{F}_{PS} again. Roughly speaking, the receiver takes her shares $\{a'_1, a'_2, \cdots, a'_b\}$ as the input and the sender randomly chooses a permutation π' as his input. After \mathcal{F}_{PS} , the sender receives the shuffled shares $\{s^1_1, s^1_2, \cdots, s^1_b\}$, and the receiver obtains the other shares $\{s^2_1, s^2_2, \cdots, s^2_b\}$ where $s^1_i \oplus s^2_i = a'_{\pi'(i)}$. As the sender knows the permutation π' , he can check if $a_{\pi'(i)}$ should be sent to the receiver according to $U[\pi'(i)]$. If so, the sender sends $z_i = a_{\pi'(i)} \oplus s^1_i$ to the receiver, otherwise sends $z_i = \bot$. Once $r \in s^1_i \oplus s^2_i = a_{\pi'(i)} \oplus a'_{\pi'(i)}$. If the receiver ditem is not the dummy item d, the receiver will add it into Z. Finally, the receiver outputs $Y \cup Z$.

In what follows, we first show the correctness of the protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ in Figure 13 and then argue that it securely realizes the functionality $\mathcal{F}_{\mathsf{PSU}^*}^{n_1,n_2}$.

Correctness. The sender gets the Cuckoo hashing table X_C filled with the set X and dummy items d, and the receiver gets the simple hashing table Y_B filled with the set Y. Then through \mathcal{F}_{PS} , the receiver gets the shuffled secret shares $\{a'_1, \dots, a'_b\}$ of X_C and the sender gets the other shares $\{a_1, \dots, a_b\}$, where $a'_i \oplus a_i = X_C[\pi(i)]$.

For an item $x^* \in X$, if $x^* \in Y$, say $x^* = y_j$ and a_q , a'_q are the shares of x^* , then y_j must be in the $\pi(q)$ -th bin of the simple hashing table (i.e., $y_j \in Y_B[\pi(q)]$) and $y_j \oplus a'_q = x^* \oplus a'_q = a_q$. Therefore, once the sender gets I_q containing $F(k, y_j \oplus a'_q)$, he will find that $F(k, a_q) \in I_q$ and thus sets U[q] = 0. Otherwise (i.e., $x^* \notin Y$), $y_j \oplus a'_q \neq a_q$ for all $y_j \in Y_B[\pi(i)]$, thus $F(k, a_q) \notin I_q$ and U[q] is set to be 1 with an overwhelming probability. Then through \mathcal{F}_{PS} with $\{a'_1, \cdots, a'_b\}$ and π' as the inputs, the sender gets the shuffled secret shares $\{s^1_1, \cdots, s^1_b\}$ and the receiver gets the other secret shares $\{s^2_1, \cdots, s^2_b\}$ where $s^1_i \oplus s^2_i = a'_{\pi'(i)}$. If U[q] = 1 meaning $x^* \notin Y$, the receiver will get $a_q \oplus s^1_i$ where $i = \pi'^{-1}(q)$ and thus recover $x^* = a_q \oplus s^1_i \oplus s^2_i = a_q \oplus a'_q$, otherwise gets nothing about x^* .

As noted for $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, the correctness here is guaranteed unless collisions occur. In $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$, a_i is not equal to $y_k \oplus a_i'$ for any $y_k \in Y_B[\pi(i)]$, if $y_k \neq X_C[\pi(i)]$. Therefore, the collisions can only come from the PRF, i.e., $F(k,y_j \oplus a_i') = F(k,a_i)$ for $y_j \oplus a_i' \neq a_i$. Then by setting the output length ℓ_2 of $F(k,\cdot)$ as $\lambda + \log(\epsilon n_1) + \log(\gamma n_2)$, we can bound the probability of collision happening to $2^{-\lambda}$.

Security. Now we show that Π_{PSU}^{S} securely realizes $\mathcal{F}_{PSU^*}^{n_1,n_2}$.

Theorem 2. The protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ presented in Figure 13 securely realizes $\mathcal{F}_{\mathsf{PSU}^*}^{n_1,n_2}$ in the $\{\mathcal{F}_{\mathsf{PS}},\mathcal{F}_{\mathsf{mpOPRF}}\}$ -hybrid model, in the presence of semi-honest adversaries.

Proof. We construct $Sim_{\mathcal{S}}$ and $Sim_{\mathcal{R}}$ to simulate the views of corrupted sender \mathcal{S} and corrupted receiver \mathcal{R} respectively.

Corrupt sender. Simulator Sim_S simulates a real execution where the sender S is corrupted. Sim_S begins by invoking adversary A who corrupts S, and receives the set $X = \{x_1, \dots, x_{n_1}\}, x_i \in \{0, 1\}^{\ell_1}$ that A would send to \mathcal{F}_{PS} in a real execution. Then, Sim_S forwards the set X to the ideal functionality $\mathcal{F}_{PSU^*}^{n_1, n_2}$, and waits for the output from $\mathcal{F}_{PSU^*}^{n_1, n_2}$. To simulate \mathcal{F}_{PS} outputting the shuffled shares of X, Sim_S randomly chooses $\{a_1, \dots, a_b\}$ where $a_i \in \{0, 1\}^{\ell_1}$, and sends them to A. Once receiving the input $\{a_1, \dots, a_b\}$ of \mathcal{F}_{mpOPRF} from A, Sim_S will randomly choose a key k for PRF $F(\cdot, \cdot)$, and simulate \mathcal{F}_{mpOPRF} sending $\{F(k, a_1), \dots, F(k, a_b)\}$ to A.

simulate $\mathcal{F}_{\mathsf{mpOPRF}}$ sending $\{F(k, a_1), \cdots, F(k, a_b)\}$ to \mathcal{A} . After obtaining the output $|X \cap Y|$ from $\mathcal{F}_{\mathsf{PSU}^*}^{n_1, n_2}$, $\mathsf{Sim}_{\mathcal{S}}$ begins to simulate generating a set I for each item in $\{F(k, a_1), \cdots, F(k, a_b)\}$. $\mathsf{Sim}_{\mathcal{S}}$ randomly selects $|X \cap Y|$ items from [b] to form set L in ascending order. The above process refers to $\mathsf{Sim}_{\mathcal{S}}$ randomly selecting items belonging to the intersection and recording their index in the set L. For each $F(k,a_i)$, if $i\in L$, $\mathsf{Sim}_{\mathcal{S}}$ inserts $F(k,a_i)$ and other $\rho-1$ randomnesses that are not equal to any $\{F(k,a_1),\cdots,F(k,a_b)\}$ into set I and sends I to \mathcal{A} . If $i\notin L$, $\mathsf{Sim}_{\mathcal{S}}$ randomly selects ρ randomnesses that are not equal to any $\{F(k,a_1),\cdots,F(k,a_b)\}$ to insert into the corresponding set I and sends it to \mathcal{A} . When \mathcal{A} invokes $\mathcal{F}_{\mathsf{PS}}$ again with random permutation π' as input, $\mathsf{Sim}_{\mathcal{S}}$ randomly chooses $\{s_1^1,\cdots,s_b^1\}$ and sends the share set to \mathcal{A} .

We argue that the outputs of $\mathsf{Sim}_{\mathcal{S}}$ are indistinguishable from the real execution through the following hybrids:

 Hyb_0 : S's view in the real protocol.

Hyb₁: Same as Hyb₀ but the protocol aborts if there exists $a_i \neq a_i' \oplus y_j$ such that $F(k, a_i) = F(k, a_i' \oplus y_j)$. The aborting probability can be $2^{-\lambda}$ by setting the $F(k, \cdot)$ output length ℓ_2 .

Hyb₂: Same as Hyb₁ except that the output of the first \mathcal{F}_{PS} is replaced by $\{a_1, \dots, a_b\}$ chosen by $\mathsf{Sim}_{\mathcal{S}}$, and $\mathsf{Sim}_{\mathcal{S}}$ runs the \mathcal{F}_{PS} simulator to produce the simulated view for \mathcal{S} . The security of protocol Π_{PS} and pseudorandomness of $F(k,\cdot)$ guarantee the view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb₃: Same as Hyb₂ except that the output of \mathcal{F}_{mpOPRF} and corresponding items in sets I are replaced by $\{F(k, a_1), \cdots, F(k, a_b)\}$ computed by $\mathsf{Sim}_{\mathcal{S}}$, and $\mathsf{Sim}_{\mathcal{S}}$ runs the \mathcal{F}_{mpOPRF} simulator to produce the simulated view for \mathcal{S} . The security of protocol Π_{mpOPRF} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb₄: Same as Hyb₃ except that the items in $\{F(k, a_1), \dots, F(k, a_b)\}$ that belong to some sets I are changed to the items indexed by the set L and the corresponding items in set I are also changed. This hybrid is perfectly indistinguishable from Hyb₃ as the permutation π is random.

 Hyb_5 : Same as Hyb_4 except that the items in sets I that are not equal to the PRF values of the receiver are changed to the randomnesses chosen by Sim_S . Hyb_5 is computationally indistinguishable from Hyb_4 because of the pseudorandom property of PRF.

Hyb₆: Same as Hyb₅ except that the output of the second \mathcal{F}_{PS} is replaced by $\{s_1^1, \dots, s_b^1\}$ chosen by $\mathsf{Sim}_{\mathcal{S}}$, and $\mathsf{Sim}_{\mathcal{S}}$ runs the \mathcal{F}_{PS} simulator to produce the simulated view for \mathcal{S} . The security of protocol Π_{PS} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol. The hybrid is the view output by $\mathsf{Sim}_{\mathcal{S}}$.

Corrupt receiver. Simulator $\operatorname{Sim}_{\mathcal{R}}$ simulates a real execution in which the receiver \mathcal{R} is corrupted. Since \mathcal{A} is semi-honest, $\operatorname{Sim}_{\mathcal{R}}$ can obtain the input $Y = \{y_1, \cdots, y_{n_2}\}$ (s.t. $y_i \in \{0,1\}^{\ell_1}$) of \mathcal{R} directly, and externally send Y to $\mathcal{F}_{\mathsf{PSU}}^{\mathsf{S}}$. When receiving a permutation π from \mathcal{A} , $\operatorname{Sim}_{\mathcal{R}}$ checks if it is a permutation of b elements. If so, $\operatorname{Sim}_{\mathcal{R}}$ randomly selects $\{a'_1, \cdots, a'_b\}$ where $a'_i \in \{0,1\}^{\ell_1}$ as shuffled shares, and simulates $\mathcal{F}_{\mathsf{PS}}$ sending them to \mathcal{A} . Then, $\operatorname{Sim}_{\mathcal{R}}$ randomly selects a key k of PRF and sends it to \mathcal{A} to simulate $\mathcal{F}_{\mathsf{MPOPRF}}$, and waits for the set I from \mathcal{A} . When \mathcal{A} invokes $\mathcal{F}_{\mathsf{PS}}$ with $\{a'_1, \cdots, a'_b\}$ as input, $\operatorname{Sim}_{\mathcal{R}}$ randomly chooses $\{s_1^2, \cdots, s_b^2\}$ and sends them to \mathcal{A} .

as input, $\mathsf{Sim}_{\mathcal{R}}$ randomly chooses $\{s_1^2, \cdots, s_b^2\}$ and sends them to \mathcal{A} . Once receiving the output $X \cup Y$ from $\mathcal{F}_{\mathsf{PSU}^*}^{n_1, n_2}$, $\mathsf{Sim}_{\mathcal{R}}$ randomly selects $|\{X \cup Y\} - Y|$ items from [b] to form set L in ascending order. In addition, to simulate the dummy item, $\mathsf{Sim}_{\mathcal{R}}$ also needs to randomly selects $b - n_1$ items from [b] to form set D in ascending order while guarantee that $L \cap D = \emptyset$. And we denote the set $\{X \cup Y\} - Y$ as \hat{X} . For $i \in [b]$, if $i \in L$ and $i = L[\hat{i}]$, $\mathsf{Sim}_{\mathcal{R}}$ sends $z_i = \hat{X}[\hat{i}] \oplus s_i^2$ to \mathcal{A} . If $i \in D$, $\mathsf{Sim}_{\mathcal{R}}$ sends $z_i = d \oplus s_i^2$ to \mathcal{A} . If $i \notin L \cup D$, $\mathsf{Sim}_{\mathcal{R}}$ sends $z_i = \bot$ to \mathcal{A} .

We argue that the outputs of $\mathsf{Sim}_\mathcal{R}$ are indistinguishable from the real view of \mathcal{R} by the following hybrids:

 Hyb_0 : \mathcal{R} 's view in the real protocol.

Hyb₁: Same as Hyb₀ except that the output of the first \mathcal{F}_{PS} is replaced by $\{a'_1, \dots, a'_b\}$ chosen by $\mathsf{Sim}_{\mathcal{R}}$, and $\mathsf{Sim}_{\mathcal{R}}$ runs the \mathcal{F}_{PS} simulator to produce the simulated view for \mathcal{R} . The security of protocol Π_{PS} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.

 Hyb_2 : Same as Hyb_1 except that the output key of \mathcal{F}_{mpOPRF} is replaced by the k chosen by $Sim_{\mathcal{R}}$, and $Sim_{\mathcal{R}}$ runs the \mathcal{F}_{mpOPRF} simulator to produce the simulated view for \mathcal{R} . The security of protocol Π_{mpOPRF} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb₃: Same as Hyb₂ except that z_i is sent in the order chosen by $\mathsf{Sim}_{\mathcal{R}}$ and the items in share set generated by the second $\mathcal{F}_{\mathsf{PS}}$ are also permuted according to the order chosen by $\mathsf{Sim}_{\mathcal{R}}$. This hybrid is perfectly indistinguishable from Hyb_2 as the permutation π' is random.

Hyb₄: Same as Hyb₃ except that the output of the second \mathcal{F}_{PS} is replaced by $\{s_1^2, \dots, s_b^2\}$ chosen by $\mathsf{Sim}_{\mathcal{R}}$ and the corresponding z_i is changed according to s_i^2 , and $\mathsf{Sim}_{\mathcal{R}}$ runs the \mathcal{F}_{PS} simulator to produce the simulated view for \mathcal{R} . The security of protocol Π_{PS} guarantees the view in simulation is computationally indistinguishable from the view in the real protocol. The hybrid is the view output by $\mathsf{Sim}_{\mathcal{R}}$.

3.3 Cost Analysis

Given the statistical security parameter λ , according to [32], we choose the parameters of Cuckoo hashing without stash, exactly including $b=\epsilon \cdot n$ bins (where $n=n_2$ for $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $n=n_1$ for $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$) and γ hash functions, to ensure that the hashing failure probability is less than $2^{-\lambda}$. Besides, to guarantee the error rate incurred by collisions is less than $2^{-\lambda}$ in $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, we set the share/item length ℓ_1 and the output length ℓ_2 of $F(k,\cdot)$ to be at least $\lambda + \log(\gamma n_1) + \log(\epsilon n_2)$. Likewise, the output length ℓ_2 of $F(k,\cdot)$ in $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ is at least $\lambda + \log(\epsilon n_1) + \log(\gamma n_2)$. In addition, the costs of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ also rely on the sub-protocols used to realize the building blocks. Particularly, we realize $\mathcal{F}_{\mathsf{PS}}$, $\mathcal{F}_{\mathsf{mpOPRF}}$ and $\mathcal{F}_{\mathsf{OT}}$ with the protocols in [20], [6] and [14], respectively.

Table 4. The costs of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$

	Part-1	Part-2	Part-3	Part-4
Comp.	$O(b \log b)$	O(b)	$O(\gamma n)$	$O(n_1)$
Comm.	$O(\ell_1 b \log b)$	O(b)	$O(\ell_2 \gamma n)$	$O(\ell_1 n_1)$

 $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$: $b = \epsilon n_2, \, n = n_1; \, \Pi_{\mathsf{PSU}}^{\mathsf{S}}$: $b = \epsilon n_1, \, n = n_2;$ Part-1 is executed twice.

Since $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ mainly consist of 4 parts: (1) Permute + Share, (2) multi-point OPRF, (3) computing and sending $\{I_i\}$, and (4) obtaining items in $X \setminus Y$, we for clarity summarize their complexities in Table 4 according to each part. In $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ (resp. $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$), Part-1 and Part-2 are performed on the receiver's set Y (resp. the sender's set X) while Part-3 is performed on the sender's set X (resp. the receiver's set Y), and thus $b = \epsilon n_2, n = n_1$ (resp. $b = \epsilon n_1, n = n_2$).

4 Performance Evaluation

In this section, we experimentally evaluate our PSU protocols $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$. In Section 4.1, we first give our benchmarking environment. In section 4.2, we compare our protocols with the state-of-the-art work [17] in terms of communication cost and single-threaded runtime on different networks, and the results are reported in Table 5. To demonstrate the scalability and parallelizability of our protocols, we evaluate our two protocols on small and large sets with different threads in Section 4.3, and show the

		D., . 4 1				S	et size n			
		Protocol	2^{8}	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{22}
		[17]	1.064	1.379	2.164	5.326	17.541	86.358	333.073	1459.539
	WAN	H_{PSU}^{R}	0.671	0.892	1.132	1.778	4.412	16.104	67.756	341.758
Time (s)		Π_{PSU}^{S}	0.712	0.993	1.238	2.214	6.233	22.78	102.039	458.731
Time (s)		[17]	0.578	0.69	1.278	3.551	13.285	69.19	263.476	1191.703
	LAN	H_{PSU}^{R}	0.265	0.308	0.412	0.87	2.702	10.751	48.703	251.091
		Π_{PSU}^{S}	0.274	0.32	0.434	1.051	3.452	13.382	60.16	279.97
		[17]	0.41	1.86	7.72	31.8	131.17	600.62	2470.11	10233.28
Comm.(MB)	H_{PSU}^{R}	0.22	0.814	3.576	15.848	70.198	307.192	1338.79	5779.599
	, ,		0.376	1.554	7.019	31.381	140.604	617.654	2725.932	11746.69

Table 5. Comparisons of total runtime (in seconds) and communication (in MB) between Π_{PSU}^{R} , Π_{PSU}^{S} and [17] with a single thread in WAN/LAN settings where $n_1 = n_2 = n$. Best results are marked in bold.

results in Table 6, Table 7 and Table 8. Besides the equal set sizes, we also consider the unbalanced sets in Section 4.4. We perform $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ in the cases where the sender's set is larger than the receiver's set, and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ in the opposite cases, and show the results in Table 9. Our complete implementation is available on GitHub: https://github.com/dujiajun/PSU.

4.1 Benchmarking Environment

We implement $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ in C++, and run our experiments on a single Intel Xeon with 2.39GHz and 128GB RAM. We evaluate our protocols in two networks settings, LAN network with 10Gbps bandwidth and 0.02 ms RTT and WAN network with 400Mbps and 80ms RTT, which are emulated using Linux tc command. We set the computational security parameter $\kappa=128$ and statistical security parameter $\lambda=40$, and the item length in bits ℓ_1 is 128.

Our protocols are built on Permute + Share, multi-point OPRF, and OT extension. We implement Permute + Share with the design in [20] and OT extension [14] using libOTe library [36] with Naor-Pinkas Base OT [22]. For multi-point OPRF, we use the source code from [6]. The details of Permute + Share sub-protocol and multi-point OPRF sub-protocol are shown in Appendix B.

Parameters about Cuckoo Hashing. For the equal set sizes, Permute + Share subprotocol costs most of the runtime, and thus we need to minimize the number of items to be shuffled as far as possible. Moreover, items in the stash of Cuckoo hashing need to be compared with each item of the other party rather than certain items picked out by the hash functions. Hence, we also need to limit the stash size to be 0. The empirical analysis in [32] shows that increasing the number of hash functions can drastically reduce the number of bins and the required stash size. According to the results reported in [32], we decide to use 4 hash functions to implement Cuckoo hashing with $1.09 \cdot n$ bins and 0 stash. However, for the unbalanced set sizes, calculating PRFs will dominate, to reduce the number of PRFs calls and keep the stash size 0, we choose to use 3 hash functions and $1.27 \cdot n$ bins.

4.2 Performance Comparisons

In this section, we compare $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ and [17] in terms of runtime and communication, and the results are reported in Table 5. More concretely, compared to [17], our $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ can obtain a 4-5× improvement in runtime for large datasets $(n_1 = n_2 \geq 2^{14})$ in both WAN and LAN settings. And the communication is about 50% communication of [17].

Although we also consider $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ in this comparison, it is worth noting that $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ realises a different functionality than the other two protocols, because the sender can obtain the intersection size in advance. Moreover, to avoid the leakage of intersection information, $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ has to execute the Permute + Share sub-protocol twice (cf. Section 3.2 for more details). Therefore, the runtime of $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ is longer than that of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$. Nevertheless, compared to [17], our $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ can still obtain a 3-4× improvement in runtime for large datasets ($n_1 = n_2 \geq 2^{14}$) in both WAN and LAN settings. But for communication, the cost of $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ is almost equal to that of [17].

4.3 Scalability and Parallelizability

In this section, we show that our two protocols can be efficiently executed on small sets without Cuckoo hashing, which can simplify development in practice. And using Cuckoo hashing, our protocols can be scaled to large sets. Moreover, we show that our protocols can be executed in parallel. Specifically, for the set of size 2^{22} , $\Pi_{\rm PSU}^{\rm R}$ and $\Pi_{\rm PSU}^{\rm S}$ can achieve a speedup of $3.49\times$ and $2.89\times$ using 8 threads, respectively.

The cases with small sets. In table 6, we show that $\hat{H}_{\mathsf{PSU}}^{\mathsf{R}}$ and $\hat{H}_{\mathsf{PSU}}^{\mathsf{S}}$ can be executed on small sets directly without Cuckoo hashing (please see Appendix A for more details of $\hat{H}_{\mathsf{PSU}}^{\mathsf{R}}$ and $\hat{H}_{\mathsf{PSU}}^{\mathsf{S}}$). In LAN setting, they cost about 10 seconds with 8 threads on the set of size 2^{12} However, we can see that as the set size increases, the runtime and communication increase dramatically. For set size of 2^{14} , the two protocols both need more than 3 minutes with 8 threads, and the communication is so much that it will affect the protocol executed in the WAN setting. Therefore, for large sets, we test the runtime and communication of the protocols with Cuckoo hashing.

			$\hat{\Pi}$	rR PSU		$\hat{H}^{ ext{S}}_{PSU}$				
		2^{8}	2^{10}	2^{12}	2^{14}	2^{8}	2^{10}	2^{12}	2^{14}	
	T=1	0.620	5.582	89.862	1423.955	0.526	5.827	86.037	1425.376	
Time (s)	T=2	0.432	3.108	45.295	722.29	0.358	2.862	44.967	719.325	
Time (s)	T=4	0.356	1.722	23.094	363.270	0.295	1.861	22.231	360.131	
	T=8	0.349	1.067	11.713	183.181	0.261	0.986	11.640	183.838	
Comm. (MB)		0.665	9.624	162.759	2828.476	0.641	9.588	162.63	2827.972	

Table 6. Runtime (in seconds) and communication (in MB) of $\hat{H}^{\rm R}_{\sf PSU}$ and $\hat{H}^{\rm S}_{\sf PSU}$ for small set $(n_1 = n_2 \in \{2^8, 2^{10}, 2^{12}, 2^{14}\})$ and threads $T \in \{1, 2, 4, 8\}$ threads in LAN setting.

The cases with large sets. In both Π_{PSU}^R and Π_{PSU}^S , PRF values in set I are independent of each other, and thus can be calculated in parallel. In addition, the Permute + Share sub-protocol in [20] and the multi-point OPRF sub-protocol in [6] can be partially parallelized. We demonstrate the scalability and parallelizability of Π_{PSU}^R and Π_{PSU}^S by evaluating it on the large set sizes $n_1 = n_2 = n \in \{2^{12}, 2^{14}, 2^{16}, 2^{18}, 2^{20}, 2^{22}\}$ in parallel with $T \in \{1, 2, 4, 8\}$ threads. Table 7 shows the experimental results of Π_{PSU}^R in both WAN/LAN settings, and the last row presents the ratio between the runtime of the single thread and 8 threads. We can see that, the speedup becomes better as the set size increases. Specifically, when the set size is 2^{22} , we can obtain a speedup of 2.08×10^{12} in Table 8. On the whole, as the set sizes and number of threads increase, the runtime of Π_{PSU}^S changes in the same way as that of Π_{PSU}^R . However, the speedup of Π_{PSU}^S is less than that of Π_{PSU}^R , since Π_{PSU}^S performs Permute + Share sub-protocol twice, which is not completely parallelized.

				set s	ize n		
		2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{22}
	T=1	1.132	1.778	4.412	16.104	67.756	341.758
WAN	T=2	1.127	1.658	3.315	11.025	48.321	230.218
WAIN	T=4	1.117	1.553	2.965	8.852	37.847	181.657
	T=8	0.957	1.512	2.626	7.666	34.701	163.82
	T=1	0.412	0.87	2.702	10.751	48.703	251.091
LAN	T=2	0.367	0.615	1.721	6.221	29.812	148.538
LAN	T=4	0.351	0.489	1.256	3.96	21.272	107.298
	T=8	0.325	0.477	1.093	3.582	14.304	71.782
Spee	edup	1.31-1.26 imes	1.18- $1.95 imes$	1.68-2.47 imes	2.10- $3.00 imes$	1.95-3.40 imes	$2.08 ext{-}3.49 imes$

Table 7. Scaling of Π_{PSU}^{R} with set size $(n_1 = n_2 = n)$ and number of threads $(T \in \{1, 2, 4, 8\})$ in WAN/LAN settings.

				set s	ize n		
		2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{22}
	T=1	1.238	2.214	6.233	22.78	102.039	458.731
WAN	T=2	1.368	1.984	4.731	16.346	77.137	347.897
WAIN	T=4	1.388	1.79	3.909	13.856	65.319	292.226
	T=8	1.196	1.711	3.504	12.041	59.736	258.244
	T=1	0.434	1.051	3.452	13.382	60.16	279.97
LAN	T=2	0.378	0.764	2.322	7.863	38.434	175.485
LAN	T=4	0.356	0.614	1.685	5.632	25.842	116.678
	T=8	0.408	0.606	1.397	5.204	20.992	96.723
Spee	edup	1.04-1.06 imes	1.29- $1.73 imes$	1.78- $2.47 imes$	1.89 - 2.57 imes	1.70- $2.87 imes$	1.78- $2.89 imes$

Table 8. Scaling of Π_{PSU}^{S} with set size $(n_1 = n_2 = n)$ and number of threads $(T \in \{1, 2, 4, 8\})$ in WAN/LAN settings.

4.4 Design for Unbalanced Datasets

In this section, we show that $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ can be chosen according to the sizes of the two sets. Considering that the set to be shuffled is small (2⁸ or 2¹²) and the items that will be calculated PRFs are too many (more than 2¹⁶, 2²⁰ or 2²⁴), we adjust the parameters of Cuckoo hashing to 3 hash functions and $1.27 \cdot n$ bins with stash size s=0 according to the results in [32]. Table 9 shows the performances of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ with 8 threads in WAN/LAN settings.

		LAN						WAN				
n_2 (resp. n_1)	$ n_1 $ $ 2^8 $				2^{12}			2^{8}		2^{12}		
n_1 (resp. n_2)	2^{16}	2^{16} 2^{20} 2^{24}			2^{20}	2^{24}	2^{16} 2^{20} 2^{24} 2		2^{16}	2^{20}	2^{24}	
$arPi_{PSU}^{\mathrm{R}}$	0.487	3.17	47.788	0.524	3.648	51.513	1.266	5.101	64.109	1.396	5.341	67.802
H_{PSU}^{S}	0.511	2.918	44.606	0.581	2.958	48.379	1.042	3.759	51.043	1.406	3.789	57.352

Table 9. Runtime (in seconds) of $\Pi_{\sf PSU}^{\sf R}$ for unbalanced set sizes $(n_1 \in \{2^{16}, 2^{20}, 2^{24}\}, n_2 \in \{2^8, 2^{12}\})$ and $\Pi_{\sf PSU}^{\sf S}$ for unbalanced set sizes $(n_1 \in \{2^8, 2^{12}\}, n_2 \in \{2^{16}, 2^{20}, 2^{24}\})$ with 8 threads in WAN/LAN settings.

When the receiver's set is much smaller than the sender's set (i.e., $n_2 \ll n_1$), we perform $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ to obtain the union. We can see that for the sender's set of size 2^{24} , $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ only needs about 50 seconds in LAN setting, and about 65 seconds in WAN setting, which is reasonable in practice. As for the opposite unbalanced cases (i.e., $n_1 \ll n_2$), $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ can obtain a better performance since it replaces OT related to the larger set with Permute + Share just related to the smaller set.

5 Leakage Analysis on [17]

In this section, we first recall the optimization via bucketing in [17], and then explain in detail why the usage of bucketing technique will leak the intersection information. Please refer to Appendix C.1 for more details of the protocol in [17]. Also, we further explain why the protocol in [17] cannot benefit from Cuckoo hashing in Appendix C.2.

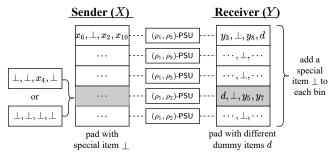


Fig. 14. The bucketing technique in [17].

Optimization via bucketing. In order to improve the performance, Kolesnikov et al. [17] proposed to optimize their protocol by using the bucketing technique, as shown in Figure 14. More specifically, the sender and receiver in [17] first assign their items in Xand in Y, into two simple hash tables with the same number of bins, and the maximum bin sizes are assumed to be ρ_1 and ρ_2 , respectively. Then they perform the (ρ_1, ρ_2) -PSU sub-protocol on the items of each bin separately. As pointed out by Kolesnikov et al. in [17], however, the bucketing technique will leak the information "which bins contain items in $X \cap Y$ " to the receiver. To avoid this leakage, in [17] the receiver is required to put a special item \perp into each bin, and to pad the bins with different dummy items d, while the sender pads his bins with the special item \perp . For example, in Figure 14, the items $\{x_6, x_2, x_{10}\}\$ of X are mapped to the first bin of the sender's simple hash table, and the items $\{y_3, y_8\}$ of Y are mapped to the first bin of the receiver's hash table. Without the special item \perp , if $x_2 = y_3$, the receiver can learn that an item belonging to $X \cap Y$ is in $\{y_3, y_8\}$ after executing the (ρ_1, ρ_2) -PSU. By adding the special item \perp to both sides, if the receiver learns that an item from the sender belongs to $\{y_3, \perp, y_8, d\}$, it seems that the receiver cannot know whether the item is a real item (namely, in X) or the special item \perp . Unfortunately, we observe that this strategy is insufficient to avoid the leakage incurred by the bucketing technique. A detailed analysis is given below.

Leakage analysis. For ease of exposition, we take the 4-th bin in Figure 14 as an example to explain why the optimization in [17] fails to hide the intersection information. We assume that after executing the (ρ_1, ρ_2) -PSU sub-protocol over the 4-th bin, the receiver finds that all the items in the sender's 4-th bin belong to the subset in her 4-th bin (say $\{d, \perp, y_5, y_7\}$). Then, one of the following cases happens for the sender's bin:

- Case₁: all real items mapped to the bin (say x_4 in Figure 14) belong to $\{y_5, y_7\}$;
- Case₂: no real items are mapped to the bin (i.e., all items are special item \perp).

Clearly, if the receiver can determine that Case_1 occurs with a high probability, she will know that items belonging to $X \cap Y$ are in $\{y_5, y_7\}$ with the same probability. Next we proceed to estimate the probability of Case_1 happening, denoted by $\mathsf{Pr}[\mathsf{Case}_1]$. Since $\mathsf{Pr}[\mathsf{Case}_1] = 1 - \mathsf{Pr}[\mathsf{Case}_2]$, we only need to bound $\mathsf{Pr}[\mathsf{Case}_2]$. In general, assuming that there are αn bins and n items and the hash mapping is a random oracle, the probability of Case_2 happening is: $P = \mathsf{Pr}[\mathsf{Case}_2] = (1 - \frac{1}{\alpha n})^n \approx e^{-1/\alpha}$.

According to the parameters in [17], we compute the probability P for different set sizes as shown in Table 10. From the results, we can see that the probability P is very

,				set s	ize n			
parameters	2^{8}	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{22}
α	0.043	0.055	0.05	0.053	0.058	0.052	0.06	0.051
$Pr(\times 10^{-11})$	7.946	1270	206.1	639.4	3252	444.8	5778	305.1

Table 10. The probability of Case₂ for different set sizes

small. For example, when the set size is $n=2^{20}$, $P=5.778\times 10^{-8}$. This means that when the receiver finds that all items in a bin belong to the intersection, she can learn that this bin has at least one real item with probability $1-5.778\times 10^{-8}$, and that her corresponding bin contains at least an item in $X\cap Y$ with the same probability. Hence, their approach is insufficient to avoid the leakage incurred by the bucketing technique.

On the contrary, in our Π_{PSU}^R shown in Figure 12, for an item x_i in $X \cap Y$, the receiver will find a $F(k, a_j) \in I_i$ where a_j is the share of $y_{\pi^{-1}(j)}$, which means that $y_{\pi^{-1}(j)}$ is the item equal to x_i . But from the receiver's point of view, any item in Y may corresponds to $F(k, a_j)$ as she does not know π , and thus any item in Y may be the item in $X \cap Y$. In our Π_{PSU}^S shown in Figure 13, the receiver's set Y is inserted into a simple hash table as in [17], but our protocol does not suffer from the leakage analyzed before. This is because we use the shuffling technique to hide which bins contain items in $X \cap Y$. To sum up, in Π_{PSU}^R and Π_{PSU}^S , any item in Y may be the item in $X \cap Y$, whereas in the protocol [17], the receiver can know that items belonging to $X \cap Y$ are in a bin (namely, a subset of Y) with a overwhelming probability.

6 Discussion

In this work, we focus on designing efficient PSU protocols for both balanced and unbalanced datasets. Somewhat surprisingly, our techniques can also be used for designing PSI protocols with only slight modification. With our techniques, it is extremely convenient to design fast protocols when both functionalities, set intersection and set union, are required; details are below.

Recall that in $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, the receiver sets b_i depending on whether the sender's item x_i belongs to her set Y; if $x_i \in Y$, sets $b_i = 1$, otherwise $b_i = 0$. Then through $\mathcal{F}_{\mathsf{OT}}$ the receiver obtains x_i if $b_i = 0$, and nothing otherwise. To obtain a PSI protocol from $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, the receiver only needs to set $b_i' = b_i \oplus 1$ and obtains the sender's items through $\mathcal{F}_{\mathsf{OT}}$ according to b_i' , rather than b_i . In this way, the receiver will obtain the sender's items belonging to Y. Thus we obtain a PSI protocol, denoted by $\Pi_{\mathsf{PSI}}^{\mathsf{R}}$. In $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$, the sender sends the shares of the items in $X \setminus Y$ according to the bit string U, then the receiver uses them to recover the items in $X \setminus Y$. Therefore, the sender can send the shares associated with the items in $X \cap Y$ by flipping each bit in U, and then the receiver will obtain items in $X \cap Y$. Thus we obtain a PSI protocol, denoted by $\Pi_{\mathsf{PSI}}^{\mathsf{S}}$.

It can be seen that $\Pi_{\mathsf{PSI}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSI}}^{\mathsf{S}}$ are obtained from the PSU protocols with almost no extra overhead. Therefore, it is believed that they have nearly the same performance as the proposed PSU protocols. Due to the page limit, we leave their formal descriptions and security analysis to future work.

In addition, as stated in Section 1.3, it is desirable to have better PSU protocols designed. Notice that our protocols, $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ are designed in a modular manner; thus, a natural way to achieve better performance is to improve the performance of the underlying building blocks. More concretely, if the underlying Permute + Share protocol can be designed with linear complexity, the cost of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ can be reduced to be linear. Finally, it is also interesting to design PSU with better security (e.g., defending against malicious adversaries) and/or with better functionalities (e.g., new variants of PSU including multi-party PSU and PSU with payload).

Acknowledgments

We thank the anonymous reviewers and especially our shepherd, Mayank Varia, for their insightful suggestions and comments, that substantially helped in improving the paper. This work was supported in part by the National Key Research and Development Project 2020YFA0712300. Yanxue Jia was supported by the China Scholarship Council (CSC NO. 201906230146) for her research visit at Virginia Commonwealth University, and this work was partially carried out during the visit. Hong-Sheng Zhou acknowledges support by NSF grant CNS-1801470, a Google Faculty Research Award and a research gift from Ergo Platform.

References

- 1. SSL blacklist. https://sslbl.abuse.ch/blacklist/.
- Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations. In Heung Youl Youm and Yoojae Won, editors, ASIACCS 12, pages 40–41. ACM Press, May 2012.
- 3. Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest model. In Bimal K. Roy, editor, *ASIACRYPT 2005*, volume 3788 of *LNCS*, pages 236–252. Springer, Heidelberg, December 2005.
- Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos. SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In USENIX Security 2010, pages 223–240. USENIX Association, August 2010.
- Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III, volume 12493 of Lecture Notes in Computer Science, pages 342–372. Springer, 2020.
- 6. Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology CRYPTO 2020 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer Science, pages 34-63. Springer, 2020.
- Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In Josef Pieprzyk and Suriadi Suriadi, editors, ACISP 17, Part II, volume 10343 of LNCS, pages 261–278. Springer, Heidelberg, July 2017.
- 8. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious pseudorandom functions. In Joe Kilian, editor, *TCC 2005*, volume 3378 of *LNCS*, pages 303–324. Springer, Heidelberg, February 2005.
- 9. Keith B. Frikken. Privacy-preserving set union. In Jonathan Katz and Moti Yung, editors, *ACNS 07*, volume 4521 of *LNCS*, pages 237–252. Springer, Heidelberg, June 2007.
- Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 155–175. Springer, Heidelberg, March 2008.
- 11. K. Hogan, N. Luther, N. Schear, E. Shen, D. Stott, S. Yakoubov, and A. Yerukhimovich. Secure multiparty computation for cooperative cyber risk assessment. In 2016 IEEE Cybersecurity Development (SecDev), pages 75–76, 2016.
- 12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better than custom protocols? In NDSS 2012. The Internet Society, February 2012.
- 13. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.
- 14. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Dan Boneh, editor, *CRYPTO 2003*, volume 2729 of *LNCS*, pages 145–161. Springer, Heidelberg, August 2003.

- 15. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, August 2005.
- 16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.
- 17. Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from symmetric-key techniques. In Steven D. Galbraith and Shiho Moriai, editors, *ASI-ACRYPT 2019, Part II*, volume 11922 of *LNCS*, pages 636–666. Springer, Heidelberg, December 2019.
- 18. Yehuda Lindell. How to simulate it A tutorial on the simulation proof technique. Cryptology ePrint Archive, Report 2016/046, 2016. http://eprint.iacr.org/2016/046.
- Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In 1986 IEEE Symposium on Security and Privacy, pages 134–134, 1986.
- Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient framework for private function evaluation. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 557–574. Springer, Heidelberg, May 2013.
- Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university press, 1995.
- 22. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In 31st ACM STOC, pages 245–254. ACM Press, May 1999.
- Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT extension with application to private set intersection. In Helena Handschuh, editor, CT-RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Heidelberg, February 2017.
- 24. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Friedhelm Meyer auf der Heide, editor, Algorithms ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001, Proceedings, volume 2161 of Lecture Notes in Computer Science, pages 121–133. Springer, 2001.
- 25. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight private set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431. Springer, Heidelberg, August 2019.
- Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast, malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Heidelberg, May 2020.
- 27. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors, *USENIX Security 2015*, pages 515–530. USENIX Association, August 2015.
- 28. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computation is practical. In Mitsuru Matsui, editor, *ASIACRYPT 2009*, volume 5912 of *LNCS*, pages 250–267. Springer, Heidelberg, December 2009.
- Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer, Heidelberg, May 2019.
- 30. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors, *EU-ROCRYPT 2018, Part III*, volume 10822 of *LNCS*, pages 125–157. Springer, Heidelberg, April / May 2018.
- 31. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, *USENIX Security 2014*, pages 797–812. USENIX Association, August 2014.
- Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on ot extension. ACM Trans. Priv. Secur., 21(2), January 2018.

- 33. Martin Raab and Angelika Steger. "balls into bins" a simple and tight analysis. In Michael Luby, José D. P. Rolim, and Maria Serna, editors, *Randomization and Approximation Techniques in Computer Science*, pages 159–170, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
- 34. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.
- 35. Sivaramakrishnan Ramanathan, Jelena Mirkovic, and Minlan Yu. BLAG: improving the accuracy of blacklists. In 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet Society, 2020.
- 36. Peter Rindal. libote: an efficient, portable, and easy to use oblivious transfer library. https://github.com/osu-crypto/libOTe.
- Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual execution.
 In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1229–1242. ACM Press, October / November 2017.
- 38. Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from vectorole. In Anne Canteaut and François-Xavier Standaert, editors, *Advances in Cryptology EUROCRYPT 2021*, pages 901–930, Cham, 2021. Springer International Publishing.

A Additional Materials for Section 3: Simplified Protocols

In this section, we present the simplified version of protocol $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$ and of protocol $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$, respectively. We note that, these two simplified versions, denoted by $\hat{\Pi}_{\mathsf{PSU}}^{\mathsf{R}}$ and $\hat{\Pi}_{\mathsf{PSU}}^{\mathsf{S}}$ respectively, have not been optimized by using Cuckoo hashing yet, and they are only efficient for datasets with small size.

A.1 $\hat{\Pi}_{PSU}^{R}$: Simplified version of Π_{PSU}^{R}

```
Protocol \hat{\Pi}_{PSU}^{R}
  – Ideal functionalities \mathcal{F}_{PS}, \mathcal{F}_{OT} and \mathcal{F}_{mpOPRF} (the underlying PRF is
      F(k,\cdot): \{0,1\}^{\ell_1} \to \{0,1\}^{\ell_2});
Inputs:
  - Sender S: set X = \{x_1, \dots, x_{n_1}\}, x_i \in \{0, 1\}^{\ell_1};
  - Receiver \mathcal{R}: set Y = \{y_1, \dots, y_{n_2}\}, y_i \in \{0, 1\}^{\ell_1};
Protocol:
 1. S and R invoke the ideal functionality \mathcal{F}_{PS}:
        • \mathcal{R} acts as P_0 with input set Y = \{y_1, \dots, y_{n_2}\};
        • S acts as P_1 with a permutation \pi;
        • \mathcal{R} obtains the shuffled shares \{s_{\pi(1)}, s_{\pi(2)}, \cdots, s_{\pi(n_2)}\};
        • S obtains the another shuffled shares \{y_{\pi(1)} \oplus s_{\pi(1)}, y_{\pi(2)} \oplus s_{\pi(2)}, \cdots, y_{\pi(n_2)} \oplus s_{\pi(n_2)}\};
 2. S and R invoke the ideal functionality \mathcal{F}_{mpOPRF}:
        • \mathcal{R} acts as P_0 with her shuffled shares \{s_{\pi(1)}, s_{\pi(2)}, \cdots, s_{\pi(n_2)}\}, and obtains the
            outputs \{F(k, s_{\pi(1)}), F(k, s_{\pi(2)}), \cdots, F(k, s_{\pi(n_2)})\};
        • S obtains the key k;
 3. \mathcal{R} initializes set Z = \emptyset;
 4. S randomly selects a permutation \pi', and obtains \pi'(X) = \{x_1', x_2', \cdots, x_{n_1}'\};
 5. For i \in [n_1]:
        • S uses the key k to compute I = \{F(k, x_i' \oplus y_{\pi(j)} \oplus s_{\pi(j)})\}_{j \in [n_2]} and sends I to \mathcal{R};
        • \mathcal{R} checks if there is a F(k, s_{\pi(j)})_{j \in [n_2]} in I, if so, \mathcal{R} sets b = 1, otherwise, sets b = 0;
        • \mathcal{S} and \mathcal{R} invoke the ideal functionality \mathcal{F}_{OT}:
               - S acts as P_0 with input \{x_i', \bot\};
               - \mathcal{R} acts as P_1 with input b;
               - if b = 0, \mathcal{R} obtains x_i', otherwise, obtains \perp;
        • Once receiving x_i', \mathcal{R} sets Z = Z \cup \{x_i'\};
 5. \mathcal{R} outputs Y \cup Z;
```

Fig. 15. $\hat{\Pi}_{\mathsf{PSU}}^{\mathsf{R}}$: Simplified version of $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$

The specification of $\hat{H}^{\mathbb{R}}_{\mathsf{PSU}}$ is shown in Figure 15. We assume that the sender's set is $X = \{x_1, \cdots, x_{n_1}\}$ and the receiver's set is $X = \{x_1, \cdots, x_{n_1}\}$. We first shuffle the receiver's set Y while generating their shares, by a permutation π only known to the sender. By invoking Permute + Share, the sender can obtain the share set $\{s_{\pi(1)}, s_{\pi(2)}, \cdots, s_{\pi(n_2)}\}$, and the receiver obtains the other share set $\{s'_{\pi(1)}, s'_{\pi(2)}, \cdots, s'_{\pi(n_2)}\} = \{y_{\pi(1)} \oplus s_{\pi(1)}, y_{\pi(2)} \oplus s_{\pi(2)}, \cdots, y_{\pi(n_2)} \oplus s_{\pi(n_2)}\}$. After executing the Permute + Share, the two parties proceed to perform multi-point OPRF, through which the receiver obtains $\{F(k, s'_{\pi(1)}), \cdots, F(k, s'_{\pi(n_2)})\}$ and the sender obtains the OPRF key k. Then, for each $x \in X$, the sender computes

 $I_x = \{F(k, x \oplus s_{\pi(1)}), \cdots, F(k, x \oplus s_{\pi(n_2)})\}$ and sends it to receiver. Then, if there is no $F(k, s'_{\pi(i)})$ belonging to I_x , the receiver obtains x through $\mathcal{F}_{\mathsf{OT}}$. At last, the receiver outputs the items from the sender, as well as Y.

A.2 $\hat{\Pi}_{PSII}^{S}$: Simplified version of Π_{PSII}^{S}

```
Protocol \hat{\Pi}_{PSII}^{S}
Parameters:
  - Ideal functionalities \mathcal{F}_{PS} and \mathcal{F}_{mpOPRF} (the underlying PRF is F(k,\cdot): \{0,1\}^{\ell_1} \to \{0,1\}^{\ell_2});
   \begin{array}{l} - \text{ Sender } \mathcal{S} \text{: set } X = \{x_1, \cdots, x_{n_1}\}, \, x_i \in \{0, 1\}^{\ell_1}; \\ - \text{ Receiver } \mathcal{R} \text{: set } Y = \{y_1, \cdots, y_{n_2}\}, \, y_i \in \{0, 1\}^{\ell_1}; \end{array} 
Protocol:
 1. S and R invoke the ideal functionality \mathcal{F}_{PS}:
         • S acts as P_0 with input set X = \{x_1, \dots, x_{n_1}\} in a random order;
         • \mathcal{R} acts as P_1 with a permutation \pi;
         • S obtains the shuffled shares \{s_{\pi(1)}, s_{\pi(2)}, \cdots, s_{\pi(n_1)}\};
         \bullet \mathcal{R} obtains the another shuffled shares
             {x_{\pi(1)} \oplus s_{\pi(1)}, x_{\pi(2)} \oplus s_{\pi(2)}, \cdots, x_{\pi(n_1)} \oplus s_{\pi(n_1)}};
 2. S and R invoke the ideal functionality \mathcal{F}_{mpOPRF}:
         • S acts as P_0 with his shuffled shares \{s_{\pi(1)}, s_{\pi(2)}, \cdots, s_{\pi(n_1)}\}, and obtains the
             outputs \{F(k, s_{\pi(1)}), F(k, s_{\pi(2)}), \cdots, F(k, s_{\pi(n_1)})\};
         • \mathcal{R} obtains the key k;
 3. \mathcal{R} initializes set Z = \emptyset;
 4. For i \in [n_1]:
         • \mathcal{R} uses the key k to compute I = \{F(k, y_j \oplus x_{\pi(i)} \oplus s_{\pi(i)})\}_{j \in [n_2]} and sends I to \mathcal{S};
         • S checks if F(k, s_{\pi(i)}) is in I, if so, S does nothing, otherwise, S sends (i, s_{\pi(i)}) to R;
         • Once receiving (i, s_{\pi(i)}), \mathcal{R} finds x_{\pi(i)} \oplus s_{\pi(i)} according to the index i, then computes
             x_{\pi(i)} = x_{\pi(i)} \oplus s_{\pi(i)} \oplus s_{\pi(i)}, and sets Z = Z \cup \{x_{\pi(i)}\};
 5. \mathcal{R} outputs Y \cup Z;
```

Fig. 16. $\hat{\Pi}_{PSU}^{S}$: Simplified version of Π_{PSU}^{S} .

The specification of $\hat{H}^{\rm S}_{\sf PSU}$ is shown in Figure 16. Similarly, we assume that the sender's set is $X = \{x_1, \cdots, x_{n_1}\}$ and the receiver's set is $Y = \{y_1, \cdots, y_{n_2}\}$. $\Pi^{\rm S}_{\sf PSU}$ first executes Permute + Share on $X = \{x_1, \cdots, x_{n_1}\}$. After this, the sender obtains the shares $\{s_{\pi(1)}, \cdots, s_{\pi(n_1)}\}$ of his items, while the receiver obtains the other shares $\{s'_{\pi(1)}, \cdots, s'_{\pi(n_2)}\}$ and the permutation π . Note that π is hidden from the sender, so he cannot link his shares with his original items. Then for each item of the sender (e.g., the $\pi(i)$ -th item), the receiver uses $s'_{\pi(i)}$ and the OPRF key k to generate $I_{\pi(i)} = \{F(k, y_1 \oplus s'_{\pi(i)}), \cdots, F(k, y_{n_2} \oplus s'_{\pi(i)})\}$. Once receiving $I_{\pi(i)}$ for the $\pi(i)$ -th item, the sender checks if $F(k, s_{\pi(i)}) \in I_{\pi(i)}$, if not, the sender will send the share $s_{\pi(i)}$ to the receiver. Then, the receiver can obtain $x_{\pi(i)} = s_{\pi(i)} \oplus s'_{\pi(i)}$. Finally, the receiver outputs the items from the sender, as well as set Y.

\mathbf{B} Additional Materials for Section 4: Constructions for the building blocks

In this section, we introduce the specific protocols Π_{PS} and Π_{mpOPRF} that securely realize \mathcal{F}_{PS} and \mathcal{F}_{mpOPRF} , respectively. As for \mathcal{F}_{OT} , we use the OT extension proposed by [14] that is commonly used in multi-party protocols and use the OT protocol in [22] as the base OT.

Protocol Π_{PS}

Parameters:

- A switching network with q switches and n inputs/outputs, and the 2q + n wires are denoted as w_1, \dots, w_{2g+n} .

Inputs:

- P_0 : selection bit set $S = \{(s_0(1), s_1(1)), \cdots, (s_0(q), s_1(q))\}$ for the switching network; - P_1 : set $X = \{x_1, \dots, x_n\}, x_i \in \{0, 1\}^{\ell}$.

Protocol:

- 1. For each wire, P_1 randomly chooses $r_i \stackrel{\$}{\leftarrow} \{0,1\}^{\ell}$ as the wire's label;
- 2. For each switch u with input wires w_i and w_j , and output wires w_k and w_l :
 - P_1 computes $T_0 = T_0^0 || T_0^1 = (r_i \oplus r_k) || (r_i \oplus r_l), T_1 = T_1^0 || T_1^1 = (r_i \oplus r_k) || (r_j \oplus r_l),$ $T_2 = T_2^0 ||T_2^1 = (r_j \oplus r_k)||(r_i \oplus r_l) \text{ and } T_3 = T_3^0 ||T_3^1 = (r_j \oplus r_k)||(r_j \oplus r_l);$
 - P_0 and P_1 engage in a 1-out-of-4 oblivious transfer where P_0 's (the receiver) input is $s(u) = 2s_1(u) + s_0(u)$ and P_1 's (the sender) input is (T_0, T_1, T_2, T_3) , and P_0 obtains $(T_{s(u)}^0||T_{s(u)}^0);$
- 3. For each input wire w_i , P_1 sends $x_i \oplus r_i$ to P_0 ;
- 4. In topological order, for each switch u with input wires w_i and w_i , and output wires w_k and w_l , P_0 does the following:
 - If $s_0(u) = 0$, then $y_k = y_i \oplus T^0_{s(u)}$, else, $y_k = y_j \oplus T^0_{s(u)}$; If $s_1(u) = 0$, then $y_l = y_i \oplus T^1_{s(u)}$, else, $y_l = y_j \oplus T^1_{s(u)}$;
- 5. P₀ outputs the blinded values for all the output wires of the switching network as the share set, and P_1 outputs the output wires' labels as the other share set.

Fig. 17. The Permute + Share Protocol in [20].

The Permute + Share protocol. We use the protocol in [20] to realize \mathcal{F}_{PS} , and give the details in Figure 17. Generally speaking, the protocol leverages a switching network to realize the permutation, and the random labels of wires are used to form secret shares. A switching network consists of q switches and 2q + n wires where n is the number of items to be permuted. The party P_0 who inputs the permutation π will transfer π into a selection bit set S, in which each item is used to control a switch. The other party P_1 randomly chooses the label of each wire, and uses the labels of input wires to mask the input set $X = \{x_1, \dots, x_n\}$. The masked values are then sent to P_0 and taken as the switching network's input. Then, in topological order, the two parties jointly compute an atomic swap on each switch. And each atomic swap is implemented by using oblivious transfer according to the corresponding selection bit in the set S. After this, set X is permuted to $\pi(X)$, and each share is re-randomized by the labels in the path. At last, P_0 obtains the blinded values for all the output wires as the share set, and P_1 uses the labels of output wires as the other share set.

Protocol Π_{mpOPRF}

Parameters:

- Two hash functions $H_1: \{0,1\}^* \to \{0,1\}^{\ell_1}$ and $H_2: \{0,1\}^w \to \{0,1\}^{\ell_2}$;
- Pseudorandom function $\hat{F}: \{0,1\}^{\lambda} \times \{0,1\}^{\ell_1} \to [m]^w$;

Inputs:

- P_0 : no input;
- P_1 : set $X = \{x_1, \dots, x_n\}, x_i \in \{0, 1\}^*$;

Protocol:

- 1. P_0 samples a random string $s \stackrel{\$}{\leftarrow} \{0,1\}^w$;
- 2. P_1 does the following:
 - Initialize an $m \times w$ binary matrix D to all 1's. Denote its column vectors by D^1, \dots, D^w . Then $D^1 = \dots = D^w = 1^m$;
 - Sample a uniformly random PRF key $\hat{k} \stackrel{\$}{\leftarrow} \{0,1\}^{\kappa}$, and send it to P_0 ;
 - For each $x \in X$, compute $\mathbf{v} = \hat{F}(\hat{k}, H_1(x))$ where $\mathbf{v} = (\mathbf{v}[1], \mathbf{v}[2], \dots, \mathbf{v}[w])$ with the i-th coordinate $\mathbf{v}[i] \in [m]$, and set $\mathbf{D}^i[\mathbf{v}[i]] = 0$ for all $i \in [w]$, then denote the new matrix as \mathbf{D}_X ;
 - Randomly sample an $m \times w$ binary matrix A, and compute matrix $B = A \oplus D_X$;
- 3. P_0 and P_1 run w oblivious transfer where P_1 is the sender with inputs $\{A^i, B^i\}_{i \in [w]}$ and P_0 is the receiver with inputs $s[1], \dots, s[w]$. As a result P_0 obtains w number of m-bit strings as the column vectors of matrix C (with dimension $m \times w$). So far, P_0 obtains the key (C, \hat{k}) of the multi-point OPRF.
- 4. For each $x \in X$, P_1 computes $\mathbf{v} = \hat{F}(\hat{k}, H_1(x))$ and obtains its OPRF value $H_2(\mathbf{A}^1[\mathbf{v}[1]]||\cdots||\mathbf{A}^w[\mathbf{v}[w]]|)$.

Fig. 18. The Multi-Point OPRF Protocol in [6].

The multi-point OPRF protocol. Chase and Miao in [6] proposed a new construction for multi-point OPRF whose functionality is shown in Figure 10, and they leveraged the new construction to realize a lightweight private set intersection (PSI) protocol. In essence, the construction in [6] is an extension of BaRK-OPRF in [16], and Chase and Miao have pointed it out in their paper. To be self-contained, we rewrite their construction in Figure 18. The key of the multi-point OPRF is (C, \hat{k}) and the pseudorandom function is as follows:

$$v = \hat{F}(\hat{k}, H_1(x_i))$$

 $F((C, \hat{k}), x_i) = H_2(C^1[v[1]]|| \cdots ||C^w[v[w]])$

Generally speaking, the two parties both know a pseudorandom function \hat{F} with key \hat{k} that maps a ℓ_1 -bit item into a vector $\mathbf{v} \in [m]^w$. Firstly, P_1 prepares two $m \times w$ binary matrices \mathbf{A} and \mathbf{B} . More concretely, all the items in X will be mapped to some positions in a $m \times w$ matrix (i.e., \mathbf{D}_X in Figure 18) by \hat{F} . \mathbf{A} is randomly chosen, and in \mathbf{B} , the 1-bit elements that are located in these position are equal to the corresponding values in \mathbf{A} while the other elements will be different. P_0 picks a random string $s \in \{0, 1\}^w$, then P_0 and P_1 perform w OTs. For the i-th OT, P_0 takes s[i] as input, and P_1 takes \mathbf{A}^i and \mathbf{B}^i as input, then P_0 will obtain output \mathbf{A}^i or \mathbf{B}^i according to s[i]. After OTs, P_0 will obtain w column vectors, which will form matrix \mathbf{C} . P_1 obtains PRFs of her items using \mathbf{A} and \hat{k} . Note that for $\forall x \in X$, $F((\mathbf{C}, \hat{k}), x) = F((\mathbf{A}, \hat{k}), x)$. The protocol needs O(n) communication and computation cost, and only involves cheap symmetric-key and bitwise operations.

C Additional Materials for Section 5

In this section, we first describe the protocol in [17], and then further explain why the protocol in [17] and earlier constructions [9,7] cannot benefit from Cuckoo hashing.

C.1 Details of the protocol in [17]

According to the design idea in [17], we first give the protocol for (1,n)-PSU where the sender only holds an item x^* and the receiver holds a set $Y = \{y_1, \cdots, y_n\}$ in Figure 19. More specifically, their protocol works in the following way: the two parties first execute an OPRF sub-protocol for F, then the sender obtains F(k,x) without knowing k and the receiver obtains the PRF key k. After that, the receiver interpolates a polynomial P over points $\{(y,s\oplus F(k,y))\}_{y\in Y}$, where s is a random value chosen by the receiver, and sends P to the sender. Once receiving the polynomial P, the sender calculates $s' = P(x) \oplus F(k,x)$ and sends s' to the receiver. Then the receiver checks if s' = s. If not, meaning that $x \notin Y$, the receiver obtains x through OT, otherwise obtains a dummy item.

Kolesnikov et al. [17] extend (1,n)-PSU to the general case (namely, (n_1,n_2) -PSU) by repeatedly using (1,n)-PSU. Then in Figure 20, we give the protocol for (n_1,n_2) -PSU where the sender and receiver hold $X = \{x_1, \dots, x_{n_1}\}$ and $Y = \{y_1, \dots, y_{n_2}\}$, respectively. Note that for each sender's item, both the secret value s and the key k for OPRF need to be *refreshed*, otherwise the sender can learn information about the intersection.

```
(1, n)-PSU protocol in [17]
Parameters:
  - A bit-length \ell;
  - Ideal functionalities \mathcal{F}_{OT} and \mathcal{F}_{OPRF} (F(k,x) \in \{0,1\}^{\sigma});
  - A collision-resistant hash function h(x): \{0,1\}^{\ell} \to \{0,1\}^{\sigma};
Inputs:
   \begin{array}{l} - \text{ Sender } \mathcal{S} \colon x^* \in \{0,1\}^\ell; \\ - \text{ Receiver } \mathcal{R} \colon \text{set } Y = \{y_1,\cdots,y_n\}, y_i \in \{0,1\}^\ell; \end{array} 
 1. S acts as \mathcal{F}_{\mathsf{OPRF}} receiver, sends x^* to \mathcal{F}_{\mathsf{OPRF}}, and S receives q^* = F(k, x^*) and R receives
 2. \mathcal{R} randomly picks s \stackrel{\$}{\leftarrow} \{0,1\}^{\sigma}, and interpolates a polynomial P(y) over points
      \{(h(y_i), s \oplus q_i)\}\ where q_i = F(k, y_i), \forall i \in [n]. Here s \oplus q_i is computed as operation on
      \sigma-bit strings.
 3. \mathcal{R} sends the coefficients of P(y) to \mathcal{S};
 4. S computes s^* = P(h(x^*)) \oplus q^* and sends it to \mathcal{R};
 5. S and R invoke F_{OT}:
         • \mathcal{R} acts as receiver with input 1 if s^* = s and input 0 otherwise;
         • \mathcal{S} acts as sender with input (x^*, \perp);
 6. If s^* = s, then \mathcal{R} gives output Y. Otherwise, it learns x^* and outputs Y \cup x^*.
```

Fig. 19. (1, n)-PSU protocol in [17].

C.2 Discussion about Cuckoo hashing

6. \mathcal{R} outputs Z.

As for Cuckoo hashing, Kolesnikov et al. [17] pointed out that "this hashing scheme (and the corresponding performance improvement) does not immediately fit in the PSU case." Recall that the protocols [9,7,17] share the same design framework as in Figure 1. We can see that the sender's set can be inserted into Cuckoo hash table. Then, for the item in each bin of Cuckoo hash table, the receiver will check if it belongs to the intersection, if not, the receiver will get the item. Note that the receiver also knows the item's position in Cuckoo hash table. Since the position of an item in Cuckoo hash table is also affected by other items, the receiver can obtain partial information about the sender's entire input set based on the received item and its position in Cuckoo hash table.

```
(n_1, n_2)-PSU protocol in [17]
Parameters:
  - A bit-length \ell and n = \max(n_1, n_2);
 - Number of bins \beta = \beta(n), hash function H: \{0,1\}^{\ell} \to [\beta], and max bin size m;
  - A special item \perp \in \{0,1\}^*;
  - Sender S: X = \{x_1, \dots, x_{n_1}\}, x_i \in \{0, 1\}^{\ell}
- Receiver \mathcal{R}: \text{ set } Y = \{y_1, \dots, y_{n_2}\}, y_i \in \{0, 1\}^{\ell};
Protocol:
 1. S and R hash items of their sets X and Y into \beta bins under hash function H. Let B_S[i]
     and B_{\mathcal{R}}[i] denote the set of items in the sender's and receiver's i-th bin, respectively;
 2. S pads each bin B_S[i] with the special item \perp up to the maximum bin size m+1, and
     randomly permutes all items in this bin;
 3. \mathcal{R} pads each bin B_{\mathcal{R}}[i] with one special item \perp and different dummy items to the
     maximum bin size m+1;
 4. \mathcal{R} initializes set Z = \emptyset;
 5. For each bin i \in [\beta], for each item x_j \in B_{\mathcal{S}}[i]:
       • S and R invoke the (1, n)-PSU sub-protocol in Figure 19 and n = m + 1:
             * \mathcal{S} acts as sender with input x_i;
             * \mathcal{R} acts as receiver with input set B_{\mathcal{R}}[i];
             * \mathcal{R} obtains output Z_{i,j} and sets Z = Z \cup Z_{i,j};
```

Fig. 20. (n_1, n_2) -PSU protocol in [17].