
Shuffle-based Private Set Union: Faster and More
Secure⋆

Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

1 Shanghai Jiao Tong University, China
{jiayanxue,shifeng.sun,cqdujiajun,dwgu}@sjtu.edu.cn

2 Virginia Commonwealth University, USA
hszhou@vcu.edu

Abstract. Private Set Union (PSU) allows two players, the sender and the re-
ceiver, to compute the union of their input datasets without revealing any more
information than the result. While it has found numerous applications in practice,
not much research has been carried out so far, especially for large datasets.

In this work, we take shuffling technique as a key to design PSU protocols for the
first time. By shuffling receiver’s set, we put forward the first protocol, denoted
as ΠR

PSU, that eliminates the expensive operations in previous works, such as
additive homomorphic encryption and repeated operations on the receiver’s set.
It outperforms the state-of-the-art design by Kolesnikov et al. (ASIACRYPT
2019) in both efficiency and security; the unnecessary leakage in Kolesnikov et
al.’s design, can be avoided in our design.

We further extend our investigation to the application scenarios in which both
players may hold unbalanced input datasets. We propose our second protocol
ΠS

PSU, by shuffling the sender’s dataset. This design can be viewed as a dual
version of our first protocol, and it is suitable in the cases where the sender’s
input size is much smaller than the receiver’s.

Finally, we implement our protocols ΠR
PSU and ΠS

PSU in C++ on big datasets, and
perform a comprehensive evaluation in terms of both scalability and paralleliz-
ability. The results demonstrate that our design can obtain a 4-5× improvement
over the state-of-the-art by Kolesnikov et al. with a single thread in WAN/LAN
settings.

1 Introduction

Private set operations allow mutually distrustful parties to perform set operations (like
intersection and union) on their datasets, while revealing no more information about
their own private input than what can be deduced from the results. Over the past decade,
much progress has been made on Private Set Intersection (PSI), which has become
considerably efficient and been deployed widely in practice [27,16,30,29,25,26,6,32]. In
contrast, little attention has been drawn on Private Set Union (PSU).

Like the well-researched PSI, PSU also has numerous applications [17,11,3,4]. For
example, it can be used for cyber risk assessment and management. Specifically, “Indi-
vidual blacklists today suffer from several drawbacks that limit their accuracy in malicious
source identification. ... Aggregating blacklists from different maintainers and across var-
ious attack types can improve the accuracy of malicious source identification over any
individual blacklist,” as pointed out by Ramanathan et al. [35]. Therefore, it is signifi-
cant for organizations (namely, maintainers of IP blacklists) to compute the joint list of
individual IP blacklists, which will help minimize vulnerabilities in their infrastructure.

⋆ This is a full version of the paper accepted at USENIX Security 2022.

2 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

In addition, each individual IP blacklist is generated based on a detection strategy de-
veloped by the maintainer, which cannot be leaked; note that certain attacks could be
launched by the adversaries via evading the detection strategy.

A straightforward way to obtain the joint list is to let the organizations simply
exchange their blacklists. However, this will reveal the intersection of their blacklists.
Then a curious organization may deduce the detection strategy of the other organization
according to the IP addresses in the intersection3. Whereas, he cannot do this via the
IP addresses not in his own blacklist4. Therefore, to mitigate the privacy concerns, what
we essentially need is to generate the joint blacklist with the intersection hidden, which
is exactly the functionality of PSU.

According to [35,1], most blacklists in real scenarios contain 1, 000 - 500, 000 IP
addresses, and the update frequency is expected to be 5 - 15 minutes. With our new PSU
protocol ΠR

PSU (cf. the high level ideas in Section 1.1), a joint blacklist can be obtained
from individual blacklists of size 220 in 67.756s (cf. our experiments in Section 4) with
a single thread in the WAN setting, which is efficient enough for this use case.

In addition, as mentioned in [15,17], PSU can be employed to compute the union of
cancer patients of different hospitals while hiding the identities of the patients who had
cancer treatment at multiple hospitals, which involves patient privacy. Also, it can be
used for privacy-preserving aggregation of network traffic statistics [4], merger of two
Internet providers without revealing the information of their existing networks [3], and
private database supporting full join [17]. Therefore, it is highly desirable to develop
efficient, scalable, and secure PSU protocols.

Many interesting variants of PSU (e.g., multi-party, set-size hidden, and shared-
output PSU) have been proposed for real-world applications. In this paper, we focus on
PSU in the two-party setting, where a sender and a receiver hold sets X and Y respec-
tively, and aim to compute their union X ∪ Y without revealing any more information
than the result (especially what are the items in X ∩ Y). Particularly, the goal is to
enable the receiver to learn no more information than X ∪ Y and the sender to learn
nothing (see Section 2.1 for the formal definition).

PSU for balanced datasets. The state-of-the-art work is by Kolesnikov et al. [17];
there, they proposed the first scalable two-party PSU protocol based on symmetric-key
techniques. Before that, except for the circuit-based PSU [2], all designs [15,9,7] rely on
public-key operations like additive homomorphic encryption (AHE), which make the con-
structed protocols unscalable in practice, especially for large datasets. To develop efficient
PSU protocols, Kolesnikov et al. introduced the notion of Reverse Private Membership
Test (RPMT) functionality as a basic building block.

A unified view for PSU design with single sender’s item. Interestingly, when
focusing on a special case of two-party PSU where the sender’s data-size is 1, we observe
that, the designs [9,7,17] can be presented in the same framework5. Please see Figure
1: the sender has only one item x and the receiver holds a set Y = {y1, · · · , yn}, and
we denote this special case of PSU by (1, n)-PSU. We note that, protocols in this design
framework, consist of two phases: (1) the two parties execute a RPMT functionality,

3 The curious organization knows his own detection strategy that is used to identify the IP
addresses in the intersection. Thus, it is reasonable for him to deduce that a similar detection
strategy is used by the other organization.

4 Different organizations usually monitor different areas of the Internet, as mentioned in [35].
Therefore, the curious organization knows nothing about the traffic through these IP ad-
dresses. Even if the curious organization can monitor the traffic, it is difficult to deduce the
detection strategy as e.g., some sensitive strategies are based on features that can be only
extracted from encrypted data.

5 More precisely, [9,7,17] all realize a relaxed RPMT functionality where if x /∈ Y , the infor-
mation about x can be leaked to the receiver.

Shuffle-based Private Set Union: Faster and More Secure 3

through which the receiver obtains a bit b, where b = 0 means x /∈ Y , otherwise x ∈ Y .
The receiver knows no more information about x beyond whether x belongs to Y , and
the sender learns nothing about Y . (2) if b = 0 (which means x /∈ Y), the receiver
obtains x (and thus {x} ∪ Y) while the sender learns nothing.

Sender () Receiver ()

if

-

Fig. 1. Design framework for (1, n)-PSU protocols.

Under this framework, in [9,7] the RPMT functionality has been realized by em-
ploying homomorphic encryption, and in this case the receiver is able to obtain x by a
straightforward decryption. As pointed out in [17], however, the public-key operations
have become the workhorse of these works. Therefore, Kolesnikov et al. [17] proposed a
new way of realizing RPMT in the first phase, based only on symmetric-key operations,
and then they implemented the second phase of the design by using Oblivious Transfer
(OT).

PSU design: From single to multiple sender’s items. Now let’s consider how to
extend the special case (1, n)-PSU into a more general (m,n)-PSU, where m can be a
very large integer. Two different approaches, as shown in Figure 2, have been proposed
in [9,7] and in [17], respectively.

For :

Sender () Receiver ()

-

if

-

(a) [9,7]

Sender () Receiver ()

/

/

/

-

(b) [17]

Fig. 2. Two design frameworks for (m,n)-PSU protocols.

More concretely, in [9,7], a generalized version of RPMT, denoted as g-RPMT, has
been used, to support a large input set X = {x1, x2, . . . , xm} from the sender. Please
refer to Figure 2(a). The receiver needs only to encrypt Y once, and the ciphertext for
xi can be used to test if xi ∈ Y for all i ∈ [m]. However, we note that the schemes in
[9,7] suffer from heavy public-key operations.

In contrast, in [17] based on symmetric-key operations, for each xi ∈ X from the
sender, a (1, n)-PSU sub-protocol will be executed; to implement (m,n)-PSU, thus, in
total,m number of (1, n)-PSU sub-protocols will be executed. Please refer to Figure 2(b).

4 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Here for each (1, n)-PSU sub-protocol, the receiver needs to perform a polynomial in-
terpolation with degree n for Y , which requires time O(n log2 n). Thus when X’s size
m = n, this approach will result in a quadratic computation complexity O(n2 log2 n).

Bucketing techniques: The gain and the loss. To further improve the performance,
Kolesnikov et al. introduced the bucketing technique in PSU protocol design for the first
time. Please see Figure 3: First, the setsX and Y are inserted into two simple hash tables
with b bins, respectively, which means that the set X (resp., Y) is divided into b disjoint
subsets X1, · · · , Xb (resp., Y1, · · · , Yb). Then, each bin is padded with dummy items up
to the maximum bin size ρ. The two parties perform a (ρ, ρ)-PSU sub-protocol on the
items of each bin separately. In this way, the complexity of each sub-protocol on each bin
is O(ρ2 log2 ρ), so the total cost can be reduced to O(bρ2 log2 ρ) = O(n log n log2 log n).

Sender ()

-

-

Receiver ()

-

Fig. 3. Bucketing technique in [17].

However, as mentioned by Kolesnikov et al. [17], the bucketing technique will incur
certain information leakage about the items in the intersection, during the execution;
intuitively, the receiver could learn if there are items inX∩Y in certain subsets Yi, where
Yi ⊂ Y . Note that in the ideal PSU, from the view of receiver, any item in the entire set
Y could be an item in X ∩ Y . But here, the receiver can know that some subsets have
items in X ∩ Y and others do not. To address this issue, Kolesnikov et al. proposed to
add special items to each bin, with the goal of reducing the leakage. Unfortunately, we
find that their way of adding only special items, is insufficient to resolve the problem
(More details are given in Section 5).

Kolesnikov et al.’s bucketing technique [17] is significant since it improves the per-
formance of the PSU design a lot; however, we must note that, the downside of this
bucketing technique is that, the designed protocols will suffer from certain level of in-
formation leakage. This leakage may not be necessary! Recall that, in prior works [9,7]
under the design framework in Figure 2(a), all items in the receiver’s set Y are processed
at the same time; although the involved public-key operations make the design much
less scalable (than that in [17]) for large datasets, the resulting protocol does not suffer
from the information leakage issue (as that in [17]).

Main question. Based on above discussions, we ask the following natural question:

Is it possible to design a PSU protocol to achieve the “best of the two worlds,” i.e.,
(1) fast and scalable, and at the same time, (2) without any unnecessary information
leakage?

We will give an affirmative answer to this question. In particular, we propose a
practical, scalable two-party PSU protocol named ΠR

PSU under the design framework in
Figure 2(a) by shuffling the receiver’s set. Our protocol ΠR

PSU relies only on lightweight
symmetric-key primitives (along with some OTs; we note the OTs are also needed in the
state-of-the-art result [17]). More details will be shown in Section 1.1 and Section 3.

PSU for unbalanced datasets. To the best of our knowledge, previous works on PSU
mainly focus on designing efficient protocols for balanced datasets. We now investigate

Shuffle-based Private Set Union: Faster and More Secure 5

how to design practical PSU protocols in the unbalanced application scenarios, in which
the receiver’s input size is significantly larger than the sender’s, or vice versa. In fact,
existing protocols (including our ΠR

PSU above) are already very fast when the size of
receiver’s input is significantly smaller than the sender’s, as the relatively heavy opera-
tions mainly depend on the size of receiver’s set. However, in the case that the size of
receiver’s input is much larger than the sender’s, the performance of these protocols is
reduced significantly. Hence, the second question we ask is:

Is it possible to design a fast and scalable PSU protocol when the sender’s input size
is much smaller than the receiver’s?

We answer this question affirmatively by presenting a new protocol named ΠS
PSU;

this new protocol can be viewed as the dual version of ΠR
PSU, exactly by shuffling the

sender’s set. More details about protocol ΠS
PSU are given in Section 1.1 and Section 3.

1.1 Technical Overview

Protocol ΠR
PSU: shuffling receiver’s set. We now present how to construct practical

two-party PSU protocols following the design framework in Figure 2(a). A big challenge
is that, we need to efficiently realize the functionality g-RPMT, which allows the receiver
to perform membership tests while not revealing the receiver’s set Y to the sender. In
previous works [9,7], functionality g-RPMT has been realized but not efficiently due to
the heavy public-key operations.

The high-level idea of our design is shown in Figure 4 and the details are as follows.
Initially, each item y ∈ Y is split into two shares s and y ⊕ s by an additive secret
sharing, where s is distributed uniformly at random and perfectly hides y. The set
Y = {y1, · · · , yn} can be shared into two sets {s1, · · · , sn} and {y1 ⊕ s1, · · · , yn ⊕ sn};
the receiver will keep the former herself, and send the latter to the sender. Now we can see
that for each item xi ∈ X, if it belongs to Y (i.e., ∃ j s.t. xi = yj), then xi⊕yj⊕sj = sj .
Thus the sender can compute and send {xi⊕y1⊕s1, · · · , xi⊕yn⊕sn} to the receiver, and
the receiver can check if the sender’s item xi belongs to Y by computing the intersection
of this set and {s1 · · · , sn}. If empty, it means xi /∈ Y . Otherwise, the receiver learns
that xi ∈ Y .

Sender () Receiver ()

multi-point

 /
 /

if s.t. ,
 ;
else, .

 For :

Fig. 4. Core design idea of protocol ΠR
PSU for (m,n)-PSU.

Now, the receiver can learn if xi ∈ Y without revealing Y to the sender. However,
if xi ∈ Y , the receiver can additionally figure out which item of Y is exactly equal to

6 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

xi according to sj ∈ {xi ⊕ y1 ⊕ s1, · · · , xi ⊕ yn ⊕ sn} ∩ {s1, · · · , sn} as she knows the
mapping of the shares {s1, · · · , sn} to the items in Y . Note that such information is not
allowed to be obtained by the receiver in the RPMT. Thus, next we need to find a way
to defend against such information leakage.

Recall that, the receiver is able to obtain additional information is due to the fact
that the receiver knows which share corresponds to which item in Y . Our key design
idea now is to break the mapping by shuffling the receiver’s set (and shares) with
a permutation not known to the receiver. Together with the additive secret sharing
explained before, what we essentially need is a Permute+ Share functionality: taking as
input a set Y = {y1, · · · , yn} from the receiver and a permutation π (over {1, 2, · · · , n})
from the sender, the functionality outputs the shares {sπ(1), · · · , sπ(n)} and {yπ(1) ⊕
sπ(1), · · · , yπ(1)⊕sπ(n)} to the receiver and the sender, respectively. After executing this
functionality, the sender computes {xi⊕yπ(1)⊕sπ(1), · · · , xi⊕yπ(n)⊕sπ(n)} and sends it
to the receiver. Then the receiver can check if the sender’s item belongs to Y as before.
Following this way, the receiver will learn that there is an item sπ(j) ∈ {sπ(1), · · · , sπ(n)}
equal to xi⊕yπ(j)⊕sπ(j) if xi ∈ Y , but she is unable to find out yπ(j) according to sπ(j),
as she does not know π.

At this point, it seems that xi can be completely hidden from the receiver at the first
glance. Unfortunately, xi⊕yπ(j)⊕sπ(j) may still leak partial information about xi to the
receiver. This is because yπ(j)⊕sπ(j) is not distributed uniformly and independently from
the perspective of the receiver who knows sπ(j) and yπ(j). To overcome this obstacle,
we further employ multi-point Oblivious Pseudorandom Function (OPRF)6 F (k, ·) to
conceal {x ⊕ yπ(1) ⊕ sπ(1), · · · , x ⊕ yπ(n) ⊕ sπ(n)}. More concretely, the receiver takes
{sπ(1), · · · , sπ(n)} as the input to multi-point OPRF, then the sender receives the PRF
key k and the receiver obtains {F (k, sπ(1)), · · · , F (k, sπ(n))}. In this case, the sender
with the key k can compute Ii = {F (k, xi ⊕ yπ(1) ⊕ sπ(1)), · · · , F (k, xi ⊕ yπ(n) ⊕ sπ(n))}
for each xi and sends it to the receiver. Then the receiver proceeds to perform the
membership test as before, but learns nothing about xi as she does not know the PRF
key k. For the second phase, the receiver can receive xi /∈ Y through OT as in [17].

Optimization. Following our core idea, it can be seen that the protocol executes Permute+
Share and multi-point OPRF only once for all xi ∈ X, but needs to send m sets (i.e.,
I1, · · · , Im) to receiver. In addition, the sender and receiver need to execute OT sub-
protocol m times. Fortunately, we find that the functionality Permute+ Share (resp.
multi-point OPRF) can be securely realized by the protocols in [5,20] (resp. [6]) with
computation and communication cost O(n log n) (resp. O(n)). However, the sender needs
to compute and send Ii containing n PRF values for each xi ∈ X, thus it results in a
quadratic computation and communication complexity O(mn).

The main reason for this quadratic complexity is that the sender does not know
which item in Y may be equal to his item xi, so he has to XOR xi with all shares
{yπ(1)⊕ sπ(1), · · · , yπ(n)⊕ sπ(n)}. To improve the efficiency, our key idea is to reduce the
number of items in Y that could be equal to xi by leveraging Cuckoo hashing [24] (defined
in Section 2.2). Briefly, we insert Y into a Cuckoo hash table with γ hash functions, ϵ ·n
bins and stash size 07, and then execute ΠR

PSU over the hash table. To make it clear, we
take a concrete example to explain the optimization via Cuckoo hashing, as illustrated
in Figure 5. In particular, we assume that the sender’s item to be checked is xi, and
that the receiver’s set Y = {y1, · · · , y6}, can be inserted to the Cuckoo hash table with

6 Multi-point OPRF is evaluated on different inputs with the same key, while single-point OPRF
is evaluated with a different key for each input.

7 According to the empirical analysis in [32], the stash size can be reduced to 0 by increasing
the number of hash functions while achieving a hashing failure probability of 2−40.

Shuffle-based Private Set Union: Faster and More Secure 7

Sender Receiver

Cuckoo
hash
table

(1)

(2)

(3)

(4)

Fig. 5. ΠR
PSU: Optimization via Cuckoo hashing.

8 bins and 2 hash functions h1(·) and h2(·)8. Then the optimized protocol works as
follows: (1) The receiver inserts Y into the Cuckoo hash table and adds a dummy item
d to each empty bin, then obtains the filled table denoted by Y ∗. (2) The receiver and
the sender execute Permute+ Share with a randomly chosen permutation π and Y ∗ as
inputs, and obtain the shuffled secret share sets Sh1 and Sh2, respectively. Here, s1d and
s2d in Sh1 are the shares of dummy item and s1d ̸= s2d. The dotted arrows mean that after
permutation π, the 4-th (resp. 7-th) item in Sh1 is the share of the 2-th (resp. 6-th)
item in Y ∗, but the receiver does not know the corresponding relations. In addition, the
other share is the 4-th (resp. 7-th) item in Sh2. (3) With h1(·) and h2(·), the sender
computes h1(xi) and h2(xi), say h1(xi) = 2 and h1(xi) = 6; we note that according to
the principle of filling the Cuckoo hash table, the potential item of Y that is equal to
xi must be inserted to the position h1(xi) or h2(xi) of Y

∗. Then he uses π to locate the
corresponding shares (namely, 4-th and 7-th items) in Sh2 and generates Ii with them.
(4) The sender sends Ii to the receiver and the receiver proceeds as before.

Based on the above optimization, we can reduce the number of items in Ii to a
constant γ that is the number of hash functions. Hence, the computation and communi-
cation cost incurred by {I1, · · · , Im} can be reduced to O(γm). In Table 1, we summarize
the computation and communication costs of main steps in our ΠR

PSU. And we will give
a more detailed complexity analysis by taking account of the error rate and security
parameters in Section 3.3.

Table 1. The computation and communication costs of ΠR
PSU.

Permute+ Share multi-point OPRF {Ii}i∈[m] OT

Costs O(n logn) O(n) O(m) O(m)

m is the sender’s set size; n is the receiver’s set size.

Protocol ΠS
PSU: shuffling sender’s set. From Table 1 we can see that when m ≫

n the overall cost of ΠR
PSU is dominated by {Ii}i∈[m] and OT that are linear in m.

However, when m≪ n the cost is dominated by Permute+ Share that is superlinear in
n. Therefore, when considering unbalanced datasets, ΠR

PSU is more suitable for the case
that the sender’s set size is much larger than the receiver’s (i.e., m ≫ n). To develop
efficient solutions for the other case where m ≪ n, we propose a second protocol ΠS

PSU

by shuffling the sender’s set. As a whole, it can be regarded as the dual version of ΠR
PSU.

The high-level idea is shown in Figure 6.

8 Note that the parameters used here are to simplify the explanation, please refer to Section 4.1
for the concrete parameter choices.

8 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Sender () Receiver ()

multi-point

if

 For :

Fig. 6. Core idea of ΠS
PSU for (m,n)-PSU.

The basic idea of ΠS
PSU is to share the sender’s set X into two share sets obtained by

the sender and the receiver, respectively. Then, the sender sends the shares of the items
in X \ Y to the receiver such that the receiver can recover the items in X \ Y . While
being shared, the sender’s set X needs to be shuffled by a permutation not known by
the sender such that the sender cannot know the correspondence between shares and
the items in X. More concretely, through Permute+ Share with set X and permutation
π as inputs, the sender obtains the set of shuffled shares {sπ(1), · · · , sπ(m)} and the
receiver obtains the remaining ones {xπ(1) ⊕ sπ(1), · · · , xπ(m) ⊕ sπ(m)}. Note that for an
item xπ(i) ∈ X, if xπ(i) ∈ Y , say xπ(i) = yj , then yj ⊕ xπ(i) ⊕ sπ(i) = sπ(i), otherwise
yj ⊕ xπ(i) ⊕ sπ(i) ̸= sπ(i) for any yj ∈ Y . Moreover, it is obvious that the receiver can
recover xπ(i) by computing sπ(i) ⊕ (xπ(i) ⊕ sπ(i)) provided that she can also obtain the
corresponding share sπ(i). Thus, for each share xπ(i) ⊕ sπ(i) the receiver can generate
Ii = {y1 ⊕ xπ(i) ⊕ sπ(i), · · · , yn ⊕ xπ(i) ⊕ sπ(i)} and send it to the sender, so that the
sender is able to determine whether to send sπ(i) by checking if sπ(i) ∈ Ii; if sπ(i) /∈ Ii
meaning xπ(i) /∈ Y , the sender sends sπ(i) to the receiver, otherwise does nothing. As
in ΠR

PSU, however, xπ(i) ⊕ sπ(i) is not enough to completely hide Y as the sender knows
both xπ(i) and sπ(i). To avoid this leakage, we adopt the same approach as ΠR

PSU. That
is, we compute Ii = {F (k, y1 ⊕ xπ(i) ⊕ sπ(i)), · · · , F (k, yn ⊕ xπ(i) ⊕ sπ(i))} through an
mpOPRF F with the key not known to the sender.

We remark that the sender does not know the correspondence between shares and
his original items, so he cannot learn which item is in X ∩ Y . Nevertheless, the sender
can know |X ∩ Y |, which is not revealed to the sender in ΠR

PSU.

Optimization. Similar to ΠR
PSU without optimization, {I1, · · · , Im} here also results in a

high computation and communication complexity O(mn). To further reduce the cost, we
adopt the similar idea as ΠR

PSU to reduce the size of Ii. Besides the Cuckoo hashing, here
we additionally need a simple hash table to record Y , which is crucial for locating the
candidate items of Y equal to the item of X. For ease of exposition, we take a concrete
example to explain the main idea, also illustrated in Figure 7. Particularly, we assume
that s4 is the share to be checked by using I1. Then the optimized protocol works as
follows: (1) The sender and receiver inserts their sets X and Y into a Cuckoo hash table
and a simple hash table respectively, using hash functions h1(·) and h2(·). We denote
the Cuckoo hash table containing X as X∗. (2) After Permute+ Share on X∗, the sender
and receiver can obtain share sets Sh1 and Sh2, respectively. (3) The counterpart of s4
is the first item in Sh2, say x4 ⊕ s4. Since the receiver knows the permutation π, she
can learn that x4 ⊕ s4 is the share of 3-th item (namely, x4) in X∗. According to the
principle of filling the Cuckoo hash table and simple hash table, the receiver knows that
only the items (y9 and y16) mapped to the 3-th position of the simple hash table may

Shuffle-based Private Set Union: Faster and More Secure 9

equal the 3-th item in X∗. Then she computes F (k, y9⊕x4⊕ s4) and F (k, y16⊕x4⊕ s4)
and adds them into I1. To hide the number of the receiver’s items inserted into the bin,
the receiver further pads I1 up to the maximum size of bin with random elements r
chosen from the range of F (k, ·). (4) Once receiving I1, the sender determines whether
to send s4 as before.

Unfortunately, we can see from above that if x4 /∈ Y and the sender sends s4 im-
mediately to the receiver, then the receiver can recover x4 and learn its position in the
Cuckoo hash table. Since an item’s position in the Cuckoo hash table is also impacted by
the other items, the position will leak information about the entire set X. In addition,
if x4 ∈ Y and the sender does not send s4 to the receiver, then the receiver knows that
an item belonging to X ∩ Y is in {y9, y16}, which is not allowed in PSU. To overcome
the above problems, our basic idea is to let the sender record the shares that should be
sent first and then send them together in a random order. We implement this by using
Permute+ Share again. For more details, please refer to Section 3.2.

Sender Receiver

Cuckoo
hash
table

Simple
hash
table

(4)

(1)

(2)

(1)(3)

Fig. 7. ΠS
PSU: Optimization via Cuckoo hashing.

In general, when n items are inserted into a simple hash table with m bins using γ
hash functions, the maximum bin size is O(γn/m) 9 when n > m logm according to [33].
Therefore, the computation and communication costs of {I1, · · · , Im} can be reduced to
m ·O(γn/m) = O(γn).

1.2 Our Contributions

We explore new techniques of designing two-party PSU protocols for both balanced
and unbalanced datasets, and propose two efficient and secure PSU protocols ΠR

PSU and
ΠS

PSU supporting big datasets in Section 3. More specifically, our main contributions are
summarized as below.

New protocols. We for the first time, give a scalable and secure construction, named
ΠR

PSU, for realizing two-party PSU. Note that the state-of-the-art design by Kolesnikov et
al. [17] faces the issue of partial information leakage of items in intersection. While this
protocol is efficient for balanced datasets, we further extend our study to the unbalanced
case in the sense that the receiver’s input size is significantly larger than the sender’s, or
vice versa. Then we propose a second efficient and secure protocol, dubbed ΠS

PSU. This
protocol is suitable in the applications where the sender’s input size is much smaller
than the receiver’s; this can be viewed as a dual version of our first protocol which is
more suitable for the opposing case.

9 To be precise, the maximum bin size should be Θ(γn/m).

10 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

New design techniques. To avoid the leakage incurred by the leverage of bucketing
technique on the receiver’s set, our key point is to process the receiver’s set at the same
time. Then we designΠR

PSU under the framework in Figure 2(a) by shuffling the receiver’s
set. Regarding designing PSU protocols for unbalanced datasets, our observation is to
perform heavy operations on the smaller dataset. Thus we design ΠS

PSU by shuffling the
sender’s set for the case that the sender’s set size is much smaller than the receiver’s.
With the key technique shuffling, our design avoids expensive computations like public-
key operations and repeated operations on sender/receiver’s set. Furthermore, we reduce
the communication and computation overhead by employing the Cuckoo hashing, which
is for the first time used in PSU.

Implementation & evaluation. We implement our protocols in C++ and perform
a comprehensive evaluation in Section 4. The results demonstrate that ΠR

PSU is 4-5×
faster than the state-of-the-art PSU protocol [17] with a single thread in WAN/LAN
settings. Moreover, we show that our protocols support parallelization; ΠR

PSU and ΠS
PSU

can achieve a speedup of 2.89× and 3.49× respectively at 8 threads in LAN setting. Be-
yond, the results indicate that our protocols are also efficient and scalable for unbalanced
datasets.

New leakage analysis. In Section 5 we show the bucketing technique adopted in
the state-of-the-art design [17] will leak the information of intersection. Specifically, we
demonstrate that after knowing all the sender’s items in a bin belong to the intersection,
the receiver can learn that her corresponding bin has items in X ∩ Y with an extremely
large probability.

1.3 Related Work

As a special case of secure two-party computation, privacy-preserving set operation also
includes generic and custom constructions. The generic PSI protocol (also called circuit-
based PSI) was firstly proposed by Huang et al. [12], and the first generic PSU protocol
was proposed in [2]. In general, the generic protocols are less efficient than the custom
ones but more flexible to support different functionalities. In this work, we are mainly
interested in the custom constructions.

Over the past decades, a large amount of work has been done on specific PSI (e.g.,
[19,27,16,30,29,25,26,6,32]). The recent works are mainly based on oblivious transfer
extension [27,31,37,23] and various OPRF constructions [16,25,26,6,38]. The state-of-
the-art protocols have become considerably efficient for practical applications.

Although PSI and PSU are similar and they share some building blocks (e.g., OPRF
[16,25,17]), PSU cannot be obtained by directly employing existing PSI techniques, and
little process has been made towards practical PSU so far.

The first PSU protocol was proposed by Kissner and Song in [15], and realized by us-
ing threshold additively homomorphic encryption (AHE) and polynomial representation.
Later, Frikken [9] proposed a new PSU protocol with intersection hidden by leveraging
similar techniques. Roughly, their protocol works as follows: the receiver holding the se-
cret key of AHE sends to the sender the encrypted polynomial representation Enc(f) of
her own set Y , then the sender with set X calculates the tuples (Enc(xf(x)),Enc(f(x)))
for each x ∈ X, and sends them to the receiver. If x ∈ Y , the receiver can only recover
(0, 0) from the tuple without learning any information about x. Otherwise, the receiver
can recover (xf(x), f(x)) and then obtain x. Following the similar idea in [9], David-
son and Cid [7] presented a new protocol by replacing polynomial representation with
inverted Bloom Filter10.

10 If there is an item mapped to an entry of Bloom Filter, the entry will be filled with a bit 0,
otherwise, with a bit 1.

Shuffle-based Private Set Union: Faster and More Secure 11

All the above protocols encrypt the (polynomial or Bloom Filter) representation of
the receiver’s set using AHE and perform a large number of operations in an encrypted
manner. As pointed out by Kolesnikov et al. in [17], the public-key operations have
become the workhorse of these works. Then they proposed the first scalable PSU pro-
tocol using only symmetric-key techniques. In their work, a polynomial is also used to
represent the receiver’s set, but the receiver is required to re-generate her polynomial
representation for testing each item of the sender. By this way, the design in [17] avoids
the usage of the expensive additive homomorphic encryption, but still suffers from the
repeated high-degree polynomial interpolation. To further reduce this cost, Kolesnikov
et al. proposed an efficient optimization by using the bucketing technique.

Next, we summarize the asymptotic complexities of the above PSU protocols [15,9,7,17]
and ours in Table 2. In terms of asymptotic complexity, the scheme in [7] is the most
efficient. However, according to the experimental comparison shown in [17], the pro-
tocol in [7] is 7607× slower than [17] due to heavy public-key operations. Note that
our protocol ΠR

PSU is 4-5× faster than [17]. On the other hand, the PSU protocols in
[17] and our work are only based on symmetric-key operations, but the complexities
are super-linear. Therefore, designing a PSU protocol with linear complexity by using
symmetric-key operations is still left open.

Protocol Comm. (bits)
Comp. (#Ops)

pub-key symm-key

[15] O(n2) O(n2) -

[9] O(n) O(n log log(n)) -

[7] O(n) O(n) -

[17] O(n log(n)) - O(n log(n))

Π
R/S
PSU O(n log(n)) - O(n log(n))

Table 2. Comparisons of asymptotic communication (bits) and computation (#operations)
costs of two-party PSU protocols in the semi-honest setting. pub/symm-key: public/symmetric-
key operations. Here, n is the size of the parties’ input sets. For [17] and ours, we ignore the
pub-key cost of κ base OTs where κ is computational security parameter.

Finally, we provide a concrete comparison for the state-of-the-art results on PSU and
on PSI for the large datasets of size 220 in LAN setting. We can see that the performance
of PSI is far better than that of PSU. Our ΠR

PSU outperforms Kolesnikov et al. [17] by a
factor of 5.4, but is still 20× lower than the PSI protocol in [16]. More research on PSU
design should be encouraged to further improve the performance.

PSU PSI
[17] ΠR

PSU [16] [38]

Time (s) 263.476 48.703 2.441 5.396

Comm.(MB) 2470.11 1338.79 128.5 53.55

Table 3. Comparisons of total runtime (in seconds) and communication (in MB) between the
state-of-the-art works on PSU and PSI for set size 220 in LAN setting.

2 Preliminaries

Notation. We denote by κ and λ the computational and statistical security parameters,
respectively. We use [m] to denote the set {1, 2, · · · ,m}, and X = {x1, · · · , xn} to denote
a set with size |X| = n. Given a permutation π on n items, we use π(X) to denote the
set {xπ(1), xπ(2), · · · , xπ(n)}.

12 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

2.1 Security Model

Our PSU protocol involves two parties, and we follow the static semi-honest security
definition in [18] for secure two-party computation in this work.

Static Semi-Honest Security. There are two parties denoted by P0 and P1. Let
fi(X,Y) be the output for Pi in the ideal functionality F and f(X,Y) = (f0(X,Y), f1(X,Y))
be the joint output. Let the view of Pi during an execution of Π on inputs (X,Y) be
viewΠ

i (X,Y) that consists of the input X or Y , the contents of Pi’s internal random tape
and the messages received during the execution. Similarly, outputΠi (X,Y) is the output
of Pi during an execution of Π on inputs (X,Y) and can be computed from the Π’s view.
And the joint output of both parties is outputΠ(X,Y) = (outputΠ0 (X,Y), outputΠ1 (X,Y)).

Definition 1. A protocol Π securely computes F against static semi-honest adversaries
if there exist probabilistic polynomial-time (PPT) algorithms Sim0 and Sim1 such that

(Sim0(X, f0(X,Y)), f(X,Y))
c≡ (viewΠ

0 (X,Y), outputΠ(X,Y)),

(Sim1(Y, f1(X,Y)), f(X,Y))
c≡ (viewΠ

1 (X,Y), outputΠ(X,Y)).

PSU Functionality. The ideal functionality for PSU, denoted as Fn1,n2

PSU , is shown in
Figure 8 (except for the text marked in blue). This functionality allows two players, the
sender and the receiver, who hold private datasets with size n1 and n2, respectively,
to compute the union of the both input datasets. Note that our formulation of PSU
functionality is identical to that in [17], and we allow only the receiver, not the sender,
to obtain the union of the two input sets.

We remark that, in this formulation, based on the obtained output, the receiver can
easily calculate the size of the intersection of the two input sets. However, the receiver is
not allowed to learn any additional information about the data items in the intersection.
On the other hand, the sender is not allowed to learn any information about the union
or the intersection of the two private input sets.

Parameters:

– Set size for sender S is n1, set size for receiver R is n2;
– Maximum length of all elements is ℓ.

Functionality:

1. Wait for input X = {x1, · · · , xn1} from S, abort if |X| ̸= n1 or ∃ xi ∈ X such that
|xi| > ℓ;

2. Wait for input Y = {y1, · · · , yn2} from R, abort if |Y | ≠ n2 or ∃ yi ∈ Y such that
|yi| > ℓ;

3. Give output |X ∩ Y | to S , and give output X ∪ Y to R, then R can compute
|X ∩ Y | = n1 + n2 − |X ∪ Y |.

Functionality Fn1,n2
PSU / Fn1,n2

PSU∗

Fig. 8. Ideal Functionalities for PSU (The difference is marked in blue).

With the goal of investigating PSU design comprehensive, we further consider a
natural relaxation of the ideal PSU functionality, by allowing the sender to learn the
size of the intersection; as mentioned above, the receiver by default, is allowed to obtain
the intersection size. We denote the relaxed ideal functionality as Fn1,n2

PSU∗ ; we also show
it in Figure 8 while the difference from Fn1,n2

PSU is marked in blue.

Shuffle-based Private Set Union: Faster and More Secure 13

2.2 Building Blocks

We briefly recollect the main cryptographic tools, including Permute+ Share, multi-point
Oblivious PRF, 1-out-of-2 Oblivious Transfer, simple hashing and Cuckoo hashing.

Permute + Share. The Permute+ Share functionality FPS shown in Figure 9 is defined
by Chase et al. in [5]. There are two parties P0 and P1 in this functionality, where P0

possesses a set X = {x1, · · · , xn} of size n and P1 picks a permutation π on n elements.
The goal of FPS is to let P0 learn the shares {sπ(1), sπ(2), · · · , sπ(n)} and P1 learn nothing
but the other shares {xπ(1)⊕ sπ(1), xπ(2)⊕ sπ(2), · · · , xπ(n)⊕ sπ(n)}. As mentioned in [5],
some earlier works [12,20] can also be used for securely realizing FPS. These solutions
all have computation/communication complexity O(n log n).

Parameters:

– Two parties: P0 and P1;
– Set size n for P0;
– Length of element ℓ.

Functionality:

1. Wait for input X = {x1, · · · , xn} from P0, abort if |X| ̸= n, or ∃ xi ∈ X such that
|xi| > ℓ;

2. Wait for input a permutation π from P1, abort if π is not a permutation on n items;
3. Give output shuffled shares {sπ(1), sπ(2), · · · , sπ(n)} to P0, and another shuffled shares
{xπ(1) ⊕ sπ(1), xπ(2) ⊕ sπ(2), · · · , xπ(n) ⊕ sπ(n)} to P1.

Functionality FPS

Fig. 9. Permute+ Share functionality.

Multi-Point Oblivious PRF. Oblivious PRF (OPRF) is a protocol involving two par-
ties P0 and P1, where P1 obtains the key of the PRF F (·, ·) and P0 takes as input x
and obtains F (k, x). OPRF has been widely used in PSI protocols, and extensive ef-
forts have been made to develop efficient single-point OPRF protocols [8,10,28,16]. Most
recently, Pinkas et al. [25] proposed for the first time to use multi-point OPRF to real-
ize more efficient PSI protocols. Particularly, in a multi-point OPRF, P0 takes as input
{x1, · · · , xn}n≥1 and obtains {F (k, x1), · · · , F (k, xn)}n≥1 while P1 obtains the PRF key
k. Later, Chase et al. [6] designed a more efficient multi-point OPRF with computation
complexity O(n) while the computation cost of [25] is O(n log2 n). Moreover, the scheme
in [6] only involves efficient OT extension and AES operations, rather than the high-
degree polynomial interpolation/evaluation over a large field as in [25]. The functionality
FmpOPRF is shown in Figure 10.

1-out-of-2 Oblivious Transfer. 1-out-of-2 oblivious transfer (OT) is a two-party pro-
tocol, where party P0 takes as input two strings {x0, x1}, and the other party P1 chooses
a random bit b and obtains nothing other than xb while P0 learns nothing about b. The
first OT protocol was proposed by Rabin in [34]. And due to the lower bound in [13], all
the OT protocols require expensive public-key operations. To improve the performance,
Ishai et al. [14] introduced the concept of OT extension that enables us to carry out
many OTs based on a small number of basic OTs. The functionality FOT is shown in
Figure 11.

Simple Hashing. In the simple hashing scheme, there are γ hash functions h1, · · · , hγ :
{0, 1}∗ → [b] used to map n items into b bins B1, · · · , Bb. An item x will be added into

14 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Parameters:

– Two parties: P0 and P1;
– A PRF F (·, ·).

Functionality:

1. Wait for input X = {x1, · · · , xn} from P0;
2. Randomly select a key k for F (·, ·);
3. Give output {F (k, x1), F (k, x2), · · · , F (k, xn)} to P0, and the key k to P1.

Functionality FmpOPRF

Fig. 10. Multi-Point OPRF functionality.

Parameters:

– Two parties: P0 and P1.

Functionality:

1. Wait for input {x0, x1} from P0;
2. Wait for input b ∈ {0, 1} from P1;
3. Give output xb to P1.

Functionality FOT

Fig. 11. 1-out-of-2 Oblivious Transfer functionality.

Bh1(x), Bh2(x), · · · , Bhγ(x), regardless of whether these bins are empty. According to the
following inequality [21], the maximum bin size ρ can be set to ensure that no bin will
contain more than ρ items except with probability 2−λ when hashing n items into b
bins.

Pr[∃ bin with ≥ ρ items] ≤ b

 n∑
i=ρ

(
n

i

)
·
(
1

b

)i

·
(
1− 1

b

)n−i

Cuckoo Hashing. Cuckoo hashing was introduced by Pagh and Rodler in [24]. In this
hashing scheme, there are γ hash functions h1, · · · , hγ used to map n items into b = ϵn
bins and a stash, and we denote the i-th bin as Bi. Unlike the simple hashing, the
Cuckoo hashing can guarantee that there is only one item in each bin, and the approach
to avoid collisions is as follows: For an item x, it can be inserted into any empty bin of
Bh1(x), Bh2(x), · · · , Bhγ(x). If there are no empty bins in the k bins, randomly select a
bin Bhr(x) in these γ bins, and evict the prior item y in Bhr(x) where hr(x) = hr(y) to a
new bin Bhi

(y) where i ̸= r. The above procedure is repeated until no more evictions are
necessary, or until the number of evictions has reached a threshold. In the latter case,
the last item will be put in the stash. According to the empirical analysis in [32], we
can adjust the values of γ and ϵ to reduce the stash size to 0 while achieving a hashing
failure probability of 2−40.

3 Private Set Union via Shuffling

In this section, we propose two scalable PSU protocols ΠR
PSU and ΠS

PSU by leveraging
shuffling and Cuckoo hashing techniques. The first protocol ΠR

PSU realizes Fn1,n2

PSU , which
is obtained by shuffling the receiver’s set. In contrast, the second ΠS

PSU realizes Fn1,n2

PSU∗ ,
which is obtained by shuffling the sender’s set. To ease the understanding of our main

Shuffle-based Private Set Union: Faster and More Secure 15

idea, we also present the simplified versions ofΠR
PSU andΠS

PSU (without using the Cuckoo

hashing) denoted by Π̂R
PSU and Π̂S

PSU, respectively, in Appendix A.

3.1 Protocol ΠR
PSU: Shuffling Receiver’s Set

The first protocol ΠR
PSU is designed under the framework in Figure 2(a). Our basic idea

is to realize the functionality g-RPMT by shuffling the secret shares of the receiver’s set.
In the following, we first give a brief description of this protocol and then present the
details in Figure 12.

We assume that the sender’s set is X = {x1, · · · , xn1} and the receiver’s set is
Y = {y1, · · · , yn2

}. Then the protocol proceeds as follows. Firstly, the receiver chooses
the parameters of Cuckoo hash table without a stash, including the number of bins
b = ϵ · n2 and γ hash functions h1, · · · , hγ . Then she inserts Y into this table and pads
each empty bin with a dummy item d. Please refer to Section 2.2 for the details of
Cuckoo hashing. After successfully inserting Y into the Cuckoo hash table, the receiver
sends the parameters to the sender. Hereafter, we denote by YC the Cuckoo hash table
filled with Y and YC [i] the item in the i-th bin of the table.

Secondly, the two parties invoke FPS with inputs YC and π randomly chosen by
the receiver. After this, the sender and receiver obtain the shares {a′1, a′2, · · · , a′b} and
{a1, a2, · · · , ab} respectively, where a′i ⊕ ai = YC [π(i)]. Further through FmpOPRF with
{ai}i∈[b] as the input, the sender receives PRF key k and the receiver obtains {F (k, ai)}i∈[b]

where F (k, ai) ∈ {0, 1}ℓ2 .
Next, for each xi ∈ X, the sender generates a set Ii so that the receiver can test if

xi ∈ Y via Ii. If not, the receiver can obtain the item xi. However, we observe that if the
sender picks items from X in a special order, then when the receiver obtains a certain
item xi she can obtain extra information about X according to the order11. To avoid
this leakage, the sender permutes his set X to π′(X) = {x′

1, · · · , x′
n1
} by a randomly

chosen permutation π′, and then generates Ii for each item x′
i of π′(X) in turn, the

details of which are shown below.
Note that for each item x′

i ∈ π′(X), if there is an item y ∈ Y equal to x′
i, then y

must be inserted into one of the positions of YC indexed by {hj(x
′
i)}j∈[γ], according to

the property of the Cuckoo hashing. Hence, to test if x′
i ∈ Y , we need only to check

if x′
i ∈ {YC [h1(x

′
i)], · · · , YC [hγ(x

′
i)]}. To do so, the sender first uses the permutation

π of FPS to identify the shares of YC [h1(x
′
i)], · · · , YC [hγ(x

′
i)] from {a′1, a′2, · · · , a′b}, say

{a′q1 , a
′
q2 , · · · , a

′
qγ}, where qj = π−1(hj(x

′
i)) for j ∈ [γ]. Then he computes Ii as Ii =

{F (k, x′
i ⊕ a′q1), · · · , F (k, x′

i ⊕ a′qγ)}. However, we notice that if there are distinct hash
functions, say hjs and hjt s.t. hjs(x

′
i) = hjt(x

′
i), then we have Ii[js] = Ii[jt], from which

the receiver may learn partial information about x′
i. To overcome this shortcoming, Ii

is generated in a slightly different way: Ii[js] is computed and recorded in Ii as before,

but Ii[jt] is replaced with a random value r
$←− {0, 1}ℓ2 . In Particular, for each x′

i, the
sender initializes a set Ii = ∅ and a set Qi = ∅, where Qi is used to record the indices of
the shares (in {a′1, · · · , a′b}) that are XORed with x′

i. Then for each j ∈ [γ], the sender
computes qj = π−1(hj(x

′
i)). If it does not appear before (i.e., qj /∈ Qi), the sender adds

it into Qi and records F (k, x′
i ⊕ a′qj) into Ii. Otherwise, the sender randomly chooses

r ∈ {0, 1}ℓ2 and records it into Ii. At the end, the sender sends Ii to the receiver. Recall
that if x′

i ∈ Y , then there is an item in Ii that belongs to {F (k, ai)}i∈[b].
Finally, upon receiving Ii, the receiver checks if the intersection of Ii and {F (k, aj)}j∈[b]

is non-empty. If not, the receiver sets bi = 0 and obtains xi through FOT and adds it to

11 For example, assuming that X consists of the ages of a group people, if the sender picks the
items of X in an ascending order and the receiver obtains an item x = 16 through the third
OT, then the receiver can learn that two people in X are under the age of 16.

16 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Parameters:

– Hash functions h1, · · · , hγ : {0, 1}ℓ1 → [b];
– A Cuckoo hash table based on h1, · · · , hγ with b = ϵ · n2 bins, stash size s = 0;
– Ideal functionalities FPS, FOT and FmpOPRF (the underlying PRF is

F (k, ·) : {0, 1}ℓ1 → {0, 1}ℓ2);

Inputs:

– Sender S: set X = {x1, · · · , xn1}, xi ∈ {0, 1}ℓ1 ;
– Receiver R: set Y = {y1, · · · , yn2}, yi ∈ {0, 1}ℓ1 ;

Protocol:

1. R inserts set Y into the Cuckoo hash table based on h1, · · · , hγ as shown in Section 2.2,
and adds a dummy item d in each empty bin, then denotes the filled Cuckoo hash table
as YC and the item in i-th bin as YC [i];

2. S and R invoke the ideal functionality FPS:
• R acts as P0 with input set YC , and S acts as P1 with a permutation π;
• R obtains the shuffled shares {a1, a2, · · · , ab}, and S obtains the other shuffled

shares {a′
1, a

′
2, · · · , a′

b} where YC [π(i)] = a′
i ⊕ ai;

3. S and R invoke the ideal functionality FmpOPRF:
• R acts as P0 with her shuffled shares {ai}i∈[b], and obtains the outputs
{F (k, ai)}i∈[b];

• S obtains the key k;
4. R initializes set Z = ∅, S randomly selects a permutation π′, and obtains

π′(X) = {x′
1, x

′
2, · · · , x′

n1
};

5. For i ∈ [n1] :
• S initializes sets Qi = ∅ and Ii = ∅;
• For j ∈ [γ]:

- S computes qj = π−1(hj(x
′
i));

- if qj /∈ Qi,
Qi = Qi ∪ {qj}, Ii = Ii ∪ {F (k, x′

i ⊕ a′
qj)}, else,

r
$←− {0, 1}ℓ2 and Ii = Ii ∪ {r};

• S sends Ii to R;
• R checks if {F (k, aj)}j∈[b] ∩ Ii ̸= ∅. If so, R sets bi = 1, otherwise, sets bi = 0;
• S and R invoke the ideal functionality FOT:

- S acts as P0 with input {x′
i,⊥};

- R acts as P1 with input b;
- if bi = 0, R obtains x′

i, otherwise, obtains ⊥;
• Once receiving x′

i, R sets Z = Z ∪ {x′
i};

6. R outputs Y ∪ Z;

Protocol ΠR
PSU using Cuckoo hashing

Fig. 12. Protocol ΠR
PSU using Cuckoo Hashing.

Shuffle-based Private Set Union: Faster and More Secure 17

an initially empty set Z, otherwise sets bi = 1 and obtains nothing. At last, the receiver
outputs Y ∪ Z.

Next we first argue that the protocol ΠR
PSU in Figure 12 realizes the functionality

Fn1,n2

PSU correctly, and then show it satisfies the security properties.

Correctness. The receiver obtains the Cuckoo hash table YC filled with the set Y and
dummy items d. Then through FPS, the receiver obtains the shuffled secret share set
{a1, · · · , ab} of YC and the sender receives the other shares {a′1, · · · , a′b}, where a′i⊕ai =
YC [π(i)]. For an item x∗ ∈ X, if x∗ ∈ Y , say x∗ = yi, then yi must be inserted into one
of the bins of YC indexed by {hj(x

∗)}j∈[γ], and so the share of yi held by the sender
must belong to {a′q1 , · · · , a

′
qγ} where qj = π−1(hj(x

∗)) for all j ∈ [γ]. Without loss of
generality, we assume that the share of yi is a

′
qw , then x∗⊕a′qw = yi⊕a′qw = aqw , and thus

F (k, x∗⊕ a′qw) = F (k, aqw). So in this case the intersection of I∗ = {F (k, x∗⊕ a′qj)}j∈[γ]

and {F (k, ai)}i∈[b] is non-empty, the receiver sets b∗ = 1 and receives nothing from FOT.
Otherwise (i.e., x∗ /∈ Y), we have x∗ ⊕ a′qj ̸= aqj for all j ∈ [γ]. Moreover, for any at
where t ∈ [b] \ {qj}j∈[γ], x

∗ ⊕ a′qj ̸= at with an overwhelming probability, as long as the
length ℓ1 of the share is sufficiently large. Thus the intersection of {F (k, x∗ ⊕ a′qj)}j∈[γ]

and {F (k, ai)}i∈[b] is empty except for a negligible probability, then the receiver will set
b∗ = 0 and receive x∗ through FOT.

We remark that the correctness error comes from the following two types of collisions.
Specifically, the first type is incurred by the secret shares, that is, for x∗ /∈ Y and some
j ∈ [γ], x∗ ⊕ a′qj ∈ {a1, · · · , ab} holds. The other case is incurred by PRF, that is
F (k, x∗ ⊕ a′qj) = F (k, at) for some x∗ ⊕ a′qj ̸= at. To make the correctness hold with an
overwhelming probability, we need to ensure the probability of collisions happening is
less than 2−λ. To this end, we set both the share length ℓ1 and the PRF output length
ℓ2 to be at least λ+ log(ϵn2) + log(γn1).

Security.Now we proceed to show the semi-honest security ofΠR
PSU in the {FPS,FmpOPRF,

FOT}-hybrid model.

Theorem 1. The protocol ΠR
PSU presented in Figure 12 securely realizes Fn1,n2

PSU in the
{FPS,FmpOPRF,FOT}-hybrid model, in the presence of semi-honest adversaries.

Proof. We construct SimS and SimR to simulate the views of corrupted sender S and
corrupted receiver R respectively.

Corrupt sender. Simulator SimS simulates a real execution in which the sender S is
corrupted. Since A is semi-honest, SimS can obtain the input X = {x1, · · · , xn1

} where
xi ∈ {0, 1}ℓ1 of S directly, and externally send the set X to Fn1,n2

PSU . When receiving a
permutation π from A, SimS checks if it is a permutation of b items. If so, SimS randomly
selects {a′1, · · · , a′b} where a′i ∈ {0, 1}ℓ1 as shuffled shares, and simulates FPS sending
them to A. Then, SimS randomly selects a key k of PRF and sends it to A to simulate
FmpOPRF, and waits for the set I from A. As for the FOT, A does not need to obtain
outputs from it, and thus SimS does nothing.

We argue that the outputs of SimS are indistinguishable from the real view of S by
the following hybrids:

Hyb0: S’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of FPS is replaced by {a′1, · · · , a′b} chosen

by SimS , and SimS runs the FPS simulator to produce the simulated view for S. The
security of protocol ΠPS guarantees the view in simulation is computationally indistin-
guishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that the output key of FmpOPRF is replaced by the k chosen
by SimS , and SimS runs the FmpOPRF simulator to produce the simulated view for S.
The security of protocol ΠmpOPRF guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol.

18 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Hyb3: Same as Hyb2 except that SimS runs the FOT simulator to produce the sim-
ulated view for S. This hybrid is computationally indistinguishable from Hyb2 by the
security of the protocol ΠOT. The hybrid is the view output by SimS .

Corrupt receiver. Simulator SimR simulates a real execution in which the receiver
R is corrupted. SimR begins by invoking A who corrupts R, and receives the set Y =
{y1, · · · , yn2

} (s.t yi ∈ {0, 1}ℓ1) that A would send to FPS in a real execution. Then,
SimR forwards the set Y to the ideal functionality Fn1,n2

PSU , and waits for the output
from Fn1,n2

PSU . To simulate FPS outputting the shuffled shares of YC , SimR randomly
chooses {a1, · · · , ab} where ai ∈ {0, 1}ℓ1 , and sends them to A. Once receiving the input
{a1, · · · , ab} of FmpOPRF from A, SimR randomly chooses a key k of the PRF F (·, ·), and
simulate FmpOPRF sending {F (k, a1), · · · , F (k, ab)} to A.

After obtaining the output |X ∩ Y | and X ∪ Y from Fn1,n2

PSU , SimR needs to simulate
generating a set I for each item in π′(X) = {x′

1, · · · , x′
n1
}. Note that SimR does not

know π′(X) = {x′
1, · · · , x′

n1
}. SimR knows the number |X ∩ Y |, so he can randomly

select |X ∩ Y | items from [n1] to form a set L in ascending order. This process refers to
SimR randomly selecting the indexes of items in π′(X) that belong to the intersection
and recording these indexes in the set L. In addition, SimR randomly chooses |X ∩ Y |
items from {F (k, a1), · · · , F (k, ab)} to form a set S in random order, which is used to
generate the set I for each item in X∩Y . For each x′

i, if i ∈ L and i = L[̂i], SimR inserts
S [̂i] and other γ − 1 randomnesses that are not equal to any {F (k, a1), · · · , F (k, ab)}
into set I and sends I to A. If i /∈ L, SimR randomly selects γ randomnesses that are not
equal to any {F (k, a1), · · · , F (k, ab)} to insert into the corresponding set I and sends it
to A. When receiving the input bi of FOT from A, if bi = 0, SimR takes one item from
{X ∪ Y } − Y in random order and sends it to A, otherwise, SimR sends ⊥.

We argue that the outputs of SimR are indistinguishable from the real execution
through the following hybrids:

Hyb0: R’s view in the real protocol.

Hyb1: Same as Hyb0 but the protocol aborts if there exists at = a′i ⊕ x′
j where at is

not ai or F (k, at) = F (k, a′i ⊕ x′
j) for at ̸= a′i ⊕ x′

j . The aborting probability can be 2−λ

by setting the share length ℓ1 and F (k, ·) output length ℓ2.

Hyb2: Same as Hyb1 except that the output of FPS is replaced by {a1, · · · , ab} chosen
by SimR, and SimR runs the FPS simulator to produce the simulated view for R. The
security of protocol ΠPS and the pseudorandomness of F (k, ·) guarantee the view in
simulation is computationally indistinguishable from the view in the real protocol.

Hyb3: Same as Hyb2 except that the output of FmpOPRF and corresponding items
in sets I are replaced by {F (k, a1), · · · , F (k, ab)} computed by SimR, and SimR runs
the FmpOPRF simulator to produce the simulated view for R. More concretely, in Hyb2,
the output of FmpOPRF to R is still {F (k∗, a∗1), · · · , F (k∗, a∗b)}, which are the values
in the real protocol. And the set I of an item in X ∩ Y will contain an item in
{F (k∗, a∗1), · · · , F (k∗, a∗b)}. In this hybrid, each F (k∗, a∗i) is replaced by F (k, ai). The
security of protocol ΠmpOPRF guarantees the view in simulation is computationally in-
distinguishable from the view in the real protocol. Note that at this point, the items in
{F (k, a1), · · · , F (k, ab)} that also exist in set I are not the items selected into set S by
SimR. The next hybrid is to change these items.

Hyb4: Same as Hyb3 except that the items in {F (k, a1), · · · , F (k, ab)} that belong to
some sets I are changed to the items in S and the corresponding items in set I are also
changed. This hybrid is perfectly indistinguishable from Hyb3 as the permutation π is
random.

Hyb5: Same as Hyb4 except that the items in sets I that are not equal to the PRF
values of the receiver are changed to the randomnesses chosen by SimR. Hyb5 is compu-
tationally indistinguishable from Hyb4 because of the pseudorandom property of PRF.

Shuffle-based Private Set Union: Faster and More Secure 19

Hyb6: Same as Hyb5 except that the sets I are sent in the order chosen by SimR.
This hybrid is perfectly indistinguishable from Hyb5 as the permutation π′ is random.

Hyb7: Same as Hyb6 except that SimR runs the FOT simulator to produce the sim-
ulated view for R. This hybrid is computationally indistinguishable from Hyb5 by the
security of the protocol ΠOT. The hybrid is the view output by SimR.

The protocol ΠR
PSU is very scalable for balanced datasets, as demonstrated in Section

4. When considering unbalanced datasets, we observe that it is already considerably
efficient for the case that the sender’s set size is much larger than the receiver’s, but not
so friendly for the opposite case. To deal with this case, we propose a second protocol
ΠS

PSU as below.

3.2 Protocol ΠS
PSU: Shuffling Sender’s Set

In contrast to ΠR
PSU, the core idea of designing ΠS

PSU is to shuffle the sender’s set, rather
than the receiver’s. A brief description is given below and the details are shown in
Figure 13.

Similarly, the sender’s set and the receiver’s set are assumed to be X = {x1, · · · , xn1
}

and Y = {y1, · · · , yn2
}, respectively. Then the protocol works as follows. Firstly, the

sender inserts X into the Cuckoo hash table with b bins by using γ hash functions
{h1, · · · , hγ} and fills each empty bin with a dummy item d. After that, the sender
sends to the receiver the parameters of the Cuckoo hashing. Then the receiver inserts Y
into a simple hash table with b bins by using the same hash functions. In general, when
n items are inserted into a simple hash table with m bins using γ hash functions, the
maximum bin size is O(γn/m)12 when n > m logm according to [33]. Therefore, the
maximum bin size ρ of simple hash table is O(γn2/b). For simplicity, we denote by XC

and YB the filled Cuckoo hash table and simple hash table, respectively.
Secondly, the sender and the receiver invoke FPS with input XC and a random per-

mutation π, respectively. Then the sender obtains the shuffled secret shares {a1, · · · , ab}
of X while the receiver obtains other shares {a′1, · · · , a′b}. Further, by running FmpOPRF

with the input {ai}i∈[b] the sender obtains {F (k, ai)}i∈[b] and the receiver obtains the
PRF key k.

Thirdly, for i ∈ [b] the receiver generates a set Ii with her i-th share a′i and sends it
to the sender, so that the sender can test if the item of X associated with a′i belongs
to Y . Note that as the receiver selects the permutation π, she knows that a′i is the
share of the π(i)-th item of XC , whereas the sender does not know which item of XC

is being tested. Moreover, if XC [π(i)] ∈ Y , then the item in Y equal to XC [π(i)] must
be contained in the π(i)-th bin of YB . So to check if XC [π(i)] ∈ Y , we need only to
check if XC [π(i)] ∈ YB [π(i)]. To do so, the receiver computes the XOR of a′i and each
item in YB [π(i)], then evaluates PRFs over them, namely {F (k, yj ⊕ a′i)}yj∈YB [π(i)], and
adds them into set Ii. To further hide from the sender the actual number of items in Y
mapped to the bin, the receiver pads Ii with ρ−|YB [π(i)]| random values from {0, 1}ℓ2 if
the number (i.e., |YB [π(i)]|) of items in Ii is less than the maximum bin size ρ. Note that
if there is a yj that is mapped to the bin multiple times using different hash functions,
ΠS

PSU only puts it to the bin once, and thus there are no duplicates in Ii.
Finally, after receiving Ii ⊇ {F (k, yj ⊕ a′i)}yj∈YB [π(i)], the sender checks if F (k, ai) ∈

Ii. If not, the sender sends ai to the receiver in order for the receiver to obtainXC [π(i)] =
ai ⊕ a′i, otherwise sends ⊥. By this way, however, the receiver will learn that an item
belonging to X∩Y is in the bin YB [π(i)] if she receives ⊥, which will leak the information
about intersection to the receiver as mentioned in [17]. On the other hand, if the receiver

12 To be precise, the maximum bin size should be Θ(γn/m).

20 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Parameters:

– Hash functions h1, · · · , hγ : {0, 1}ℓ1 → [b];
– A Cuckoo hash table based on h1, · · · , hγ , with b = ϵ · n1 bins, stash size s = 0;
– A simple hash table based on h1, · · · , hγ , with b = ϵ · n1 bins and bin size ρ, where

ρ = O(γn2/b);
– Ideal functionalities FPS and FmpOPRF (the underlying PRF is F (k, ·) : {0, 1}ℓ1 → {0, 1}ℓ2);

Inputs:

– Sender S: set X = {x1, · · · , xn1}, xi ∈ {0, 1}ℓ1 ;
– Receiver R: set Y = {y1, · · · , yn2}, yi ∈ {0, 1}ℓ1 ;

Protocol:

1. S inserts set X into the Cuckoo hash table, and fills empty bins with the dummy item d,
then denotes the filled Cuckoo hash table as XC and the item in i-th bin as XC [i]; R
inserts set Y into the simple hash table, and deletes the duplicates in each bin, then
denotes the set of items in the i-th bin as YB [i];

2. S and R invoke the ideal functionality FPS:

• S acts as P0 with input set XC , and R acts as P1 with a permutation π;

• S obtains the shuffled shares {a1, a2, · · · , ab}, R obtains the another shuffled shares
{a′

1, a
′
2, · · · , a′

b} where XC [π(i)] = a′
i ⊕ ai;

3. S and R invoke the ideal functionality FmpOPRF:
• S acts as P0 with his shuffled shares {ai}i∈[b], and obtains the outputs
{F (k, ai)}i∈[b];

• R obtains the key k;
4. R initializes a set Z = ∅, S initializes a string U = 0b;
5. For i ∈ [b]:

• R initializes a set Ii = ∅;
• For each yj ∈ YB [π(i)], R adds F (k, yj ⊕ a′

i) to Ii;

• R pads Ii up to bin size ρ by different r
$←− {0, 1}ℓ2 , and sends Ii to S;

• S checks if F (k, ai) is in Ii, if not, S sets U [i] = 1, otherwise, sets U [i] = 0;
6. S and R invoke the ideal functionality FPS:

• R acts as P0 with input set {a′
i}i∈[b], and S acts as P1 with a random permutation

π′;

• S and R obtains the shuffled share sets {s11, s12, · · · , s1b} and {s21, s22, · · · , s2b}
respectively, where s1i ⊕ s2i = a′

π′(i);
7. For i ∈ [b]:

• If U [π′(i)] = 1, S sets zi = aπ′(i) ⊕ s1i , otherwise, sets zi =⊥, then sends zi to R;
• If zi ̸=⊥ and zi ⊕ s2i ̸= d, R sets Z = Z ∪ {zi ⊕ s2i };

8. R outputs Y ∪ Z;

ΠS
PSU Protocol using Cuckoo hashing

Fig. 13. Protocol ΠS
PSU using Cuckoo Hashing.

Shuffle-based Private Set Union: Faster and More Secure 21

obtains the sender’s item, she may learn partial information about the whole sender’s
set as she knows the position in Cuckoo hash table to which the item is mapped.

To solve the above problems, we opt to postpone sending the sender’s shares. More
specifically, instead of sending the share directly, the sender first records which shares
should be sent using a bit-string U and then sends them in a new order. Since the
receiver needs to match the shares from the sender with her shares, the receiver also
needs to permute her shares in the same order. To this end, we leverage FPS again.
Roughly speaking, the receiver takes her shares {a′1, a′2, · · · , a′b} as the input and the
sender randomly chooses a permutation π′ as his input. After FPS, the sender receives the
shuffled shares {s11, s12, · · · , s1b}, and the receiver obtains the other shares {s21, s22, · · · , s2b}
where s1i ⊕ s2i = a′π′(i). As the sender knows the permutation π′, he can check if aπ′(i)

should be sent to the receiver according to U [π′(i)]. If so, the sender sends zi = aπ′(i)⊕s1i
to the receiver, otherwise sends zi =⊥. Once receiving zi from the sender, if it is not ⊥,
the receiver can calculate zi⊕ s2i = aπ′(i)⊕ s1i ⊕ s2i = aπ′(i)⊕a′π′(i). If the recovered item
is not the dummy item d, the receiver will add it into Z. Finally, the receiver outputs
Y ∪ Z.

In what follows, we first show the correctness of the protocol ΠS
PSU in Figure 13 and

then argue that it securely realizes the functionality Fn1,n2

PSU∗ .

Correctness. The sender gets the Cuckoo hashing table XC filled with the set X and
dummy items d, and the receiver gets the simple hashing table YB filled with the set Y .
Then through FPS, the receiver gets the shuffled secret shares {a′1, · · · , a′b} of XC and
the sender gets the other shares {a1, · · · , ab}, where a′i ⊕ ai = XC [π(i)].

For an item x∗ ∈ X, if x∗ ∈ Y , say x∗ = yj and aq, a
′
q are the shares of x∗, then yj

must be in the π(q)-th bin of the simple hashing table (i.e., yj ∈ YB [π(q)]) and yj⊕a′q =
x∗ ⊕ a′q = aq. Therefore, once the sender gets Iq containing F (k, yj ⊕ a′q), he will find
that F (k, aq) ∈ Iq and thus sets U [q] = 0. Otherwise (i.e., x∗ /∈ Y), yj ⊕ a′q ̸= aq for all
yj ∈ YB [π(i)], thus F (k, aq) /∈ Iq and U [q] is set to be 1 with an overwhelming probability.
Then through FPS with {a′1, · · · , a′b} and π′ as the inputs, the sender gets the shuffled
secret shares {s11, · · · , s1b} and the receiver gets the other secret shares {s21, · · · , s2b} where
s1i⊕s2i = a′π′(i). If U [q] = 1 meaning x∗ /∈ Y , the receiver will get aq⊕s1i where i = π′−1(q)

and thus recover x∗ = aq ⊕ s1i ⊕ s2i = aq ⊕ a′q, otherwise gets nothing about x∗.

As noted for ΠR
PSU, the correctness here is guaranteed unless collisions occur. In

ΠS
PSU, ai is not equal to yk ⊕ a′i for any yk ∈ YB [π(i)], if yk ̸= XC [π(i)]. Therefore, the

collisions can only come from the PRF, i.e., F (k, yj ⊕ a′i) = F (k, ai) for yj ⊕ a′i ̸= ai.
Then by setting the output length ℓ2 of F (k, ·) as λ+log(ϵn1)+ log(γn2), we can bound
the probability of collision happening to 2−λ.

Security. Now we show that ΠS
PSU securely realizes Fn1,n2

PSU∗ .

Theorem 2. The protocol ΠS
PSU presented in Figure 13 securely realizes Fn1,n2

PSU∗ in the
{FPS,FmpOPRF}-hybrid model, in the presence of semi-honest adversaries.

Proof. We construct SimS and SimR to simulate the views of corrupted sender S and
corrupted receiver R respectively.

Corrupt sender. Simulator SimS simulates a real execution where the sender S
is corrupted. SimS begins by invoking adversary A who corrupts S, and receives the
set X = {x1, · · · , xn1

}, xi ∈ {0, 1}ℓ1 that A would send to FPS in a real execution.
Then, SimS forwards the set X to the ideal functionality Fn1,n2

PSU∗ , and waits for the
output from Fn1,n2

PSU∗ . To simulate FPS outputting the shuffled shares ofX, SimS randomly
chooses {a1, · · · , ab} where ai ∈ {0, 1}ℓ1 , and sends them to A. Once receiving the input
{a1, · · · , ab} of FmpOPRF from A, SimS will randomly choose a key k for PRF F (·, ·), and
simulate FmpOPRF sending {F (k, a1), · · · , F (k, ab)} to A.

After obtaining the output |X ∩Y | from Fn1,n2

PSU∗ , SimS begins to simulate generating
a set I for each item in {F (k, a1), · · · , F (k, ab)}. SimS randomly selects |X ∩ Y | items

22 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

from [b] to form set L in ascending order. The above process refers to SimS randomly
selecting items belonging to the intersection and recording their index in the set L. For
each F (k, ai), if i ∈ L, SimS inserts F (k, ai) and other ρ − 1 randomnesses that are
not equal to any {F (k, a1), · · · , F (k, ab)} into set I and sends I to A. If i /∈ L, SimS
randomly selects ρ randomnesses that are not equal to any {F (k, a1), · · · , F (k, ab)} to
insert into the corresponding set I and sends it to A. When A invokes FPS again with
random permutation π′ as input, SimS randomly chooses {s11, · · · , s1b} and sends the
share set to A.

We argue that the outputs of SimS are indistinguishable from the real execution
through the following hybrids:

Hyb0: S’s view in the real protocol.

Hyb1: Same as Hyb0 but the protocol aborts if there exists ai ̸= a′i ⊕ yj such that
F (k, ai) = F (k, a′i ⊕ yj). The aborting probability can be 2−λ by setting the F (k, ·)
output length ℓ2.

Hyb2: Same as Hyb1 except that the output of the first FPS is replaced by {a1, · · · , ab}
chosen by SimS , and SimS runs the FPS simulator to produce the simulated view for
S. The security of protocol ΠPS and pseudorandomness of F (k, ·) guarantee the view in
simulation is computationally indistinguishable from the view in the real protocol.

Hyb3: Same as Hyb2 except that the output of FmpOPRF and corresponding items
in sets I are replaced by {F (k, a1), · · · , F (k, ab)} computed by SimS , and SimS runs
the FmpOPRF simulator to produce the simulated view for S. The security of protocol
ΠmpOPRF guarantees the view in simulation is computationally indistinguishable from
the view in the real protocol.

Hyb4: Same as Hyb3 except that the items in {F (k, a1), · · · , F (k, ab)} that belong to
some sets I are changed to the items indexed by the set L and the corresponding items
in set I are also changed. This hybrid is perfectly indistinguishable from Hyb3 as the
permutation π is random.

Hyb5: Same as Hyb4 except that the items in sets I that are not equal to the PRF
values of the receiver are changed to the randomnesses chosen by SimS . Hyb5 is compu-
tationally indistinguishable from Hyb4 because of the pseudorandom property of PRF.

Hyb6: Same as Hyb5 except that the output of the second FPS is replaced by {s11, · · · , s1b}
chosen by SimS , and SimS runs the FPS simulator to produce the simulated view for
S. The security of protocol ΠPS guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol. The hybrid is the view output by
SimS .

Corrupt receiver. Simulator SimR simulates a real execution in which the receiver
R is corrupted. Since A is semi-honest, SimR can obtain the input Y = {y1, · · · , yn2

}
(s.t. yi ∈ {0, 1}ℓ1) of R directly, and externally send Y to FS

PSU. When receiving a
permutation π from A, SimR checks if it is a permutation of b elements. If so, SimR
randomly selects {a′1, · · · , a′b} where a′i ∈ {0, 1}ℓ1 as shuffled shares, and simulates FPS

sending them to A. Then, SimR randomly selects a key k of PRF and sends it to A to
simulate FmpOPRF, and waits for the set I from A. When A invokes FPS with {a′1, · · · , a′b}
as input, SimR randomly chooses {s21, · · · , s2b} and sends them to A.

Once receiving the output X ∪Y from Fn1,n2

PSU∗ , SimR randomly selects |{X ∪Y }−Y |
items from [b] to form set L in ascending order. In addition, to simulate the dummy item,
SimR also needs to randomly selects b − n1 items from [b] to form set D in ascending
order while guarantee that L ∩D = ∅. And we denote the set {X ∪ Y } − Y as X̂. For
i ∈ [b], if i ∈ L and i = L[̂i], SimR sends zi = X̂ [̂i] ⊕ s2i to A. If i ∈ D, SimR sends
zi = d⊕ s2i to A. If i /∈ L ∪D, SimR sends zi =⊥ to A.

We argue that the outputs of SimR are indistinguishable from the real view of R by
the following hybrids:

Hyb0: R’s view in the real protocol.

Shuffle-based Private Set Union: Faster and More Secure 23

Hyb1: Same as Hyb0 except that the output of the first FPS is replaced by {a′1, · · · , a′b}
chosen by SimR, and SimR runs the FPS simulator to produce the simulated view for
R. The security of protocol ΠPS guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that the output key of FmpOPRF is replaced by the k chosen
by SimR, and SimR runs the FmpOPRF simulator to produce the simulated view for R.
The security of protocol ΠmpOPRF guarantees the view in simulation is computationally
indistinguishable from the view in the real protocol.

Hyb3: Same as Hyb2 except that zi is sent in the order chosen by SimR and the items
in share set generated by the second FPS are also permuted according to the order chosen
by SimR. This hybrid is perfectly indistinguishable from Hyb2 as the permutation π′ is
random.

Hyb4: Same as Hyb3 except that the output of the second FPS is replaced by {s21, · · · , s2b}
chosen by SimR and the corresponding zi is changed according to s2i , and SimR runs
the FPS simulator to produce the simulated view for R. The security of protocol ΠPS

guarantees the view in simulation is computationally indistinguishable from the view in
the real protocol. The hybrid is the view output by SimR.

3.3 Cost Analysis

Given the statistical security parameter λ, according to [32], we choose the parameters
of Cuckoo hashing without stash, exactly including b = ϵ · n bins (where n = n2 for
ΠR

PSU and n = n1 for ΠS
PSU) and γ hash functions, to ensure that the hashing failure

probability is less than 2−λ. Besides, to guarantee the error rate incurred by collisions
is less than 2−λ in ΠR

PSU, we set the share/item length ℓ1 and the output length ℓ2 of
F (k, ·) to be at least λ + log(γn1) + log(ϵn2). Likewise, the output length ℓ2 of F (k, ·)
in ΠS

PSU is at least λ + log(ϵn1) + log(γn2). In addition, the costs of ΠR
PSU and ΠS

PSU

also rely on the sub-protocols used to realize the building blocks. Particularly, we realize
FPS, FmpOPRF and FOT with the protocols in [20], [6] and [14], respectively.

Table 4. The costs of ΠR
PSU and ΠS

PSU

Part-1 Part-2 Part-3 Part-4

Comp. O(b log b) O(b) O(γn) O(n1)
Comm. O(ℓ1b log b) O(b) O(ℓ2γn) O(ℓ1n1)

ΠR
PSU: b = ϵn2, n = n1;Π

S
PSU: b = ϵn1, n = n2;

Part-1 is executed twice.

Since ΠR
PSU and ΠS

PSU mainly consist of 4 parts: (1) Permute+ Share, (2) multi-point
OPRF, (3) computing and sending {Ii}, and (4) obtaining items in X \Y , we for clarity
summarize their complexities in Table 4 according to each part. In ΠR

PSU (resp. ΠS
PSU),

Part-1 and Part-2 are performed on the receiver’s set Y (resp. the sender’s set X)
while Part-3 is performed on the sender’s set X (resp. the receiver’s set Y), and thus
b = ϵn2, n = n1 (resp. b = ϵn1, n = n2).

4 Performance Evaluation

In this section, we experimentally evaluate our PSU protocols ΠR
PSU and ΠS

PSU. In Sec-
tion 4.1, we first give our benchmarking environment. In section 4.2, we compare our
protocols with the state-of-the-art work [17] in terms of communication cost and single-
threaded runtime on different networks, and the results are reported in Table 5. To
demonstrate the scalability and parallelizability of our protocols, we evaluate our two
protocols on small and large sets with different threads in Section 4.3, and show the

24 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

set size n
Protocol

28 210 212 214 216 218 220 222

[17] 1.064 1.379 2.164 5.326 17.541 86.358 333.073 1459.539
ΠR

PSU 0.671 0.892 1.132 1.778 4.412 16.104 67.756 341.758WAN
ΠS

PSU 0.712 0.993 1.238 2.214 6.233 22.78 102.039 458.731
[17] 0.578 0.69 1.278 3.551 13.285 69.19 263.476 1191.703

Time (s)

ΠR
PSU 0.265 0.308 0.412 0.87 2.702 10.751 48.703 251.091LAN

ΠS
PSU 0.274 0.32 0.434 1.051 3.452 13.382 60.16 279.97

[17] 0.41 1.86 7.72 31.8 131.17 600.62 2470.11 10233.28
ΠR

PSU 0.22 0.814 3.576 15.848 70.198 307.192 1338.79 5779.599Comm.(MB)
ΠS

PSU 0.376 1.554 7.019 31.381 140.604 617.654 2725.932 11746.69

Table 5. Comparisons of total runtime (in seconds) and communication (in MB) between ΠR
PSU,

ΠS
PSU and [17] with a single thread in WAN/LAN settings where n1 = n2 = n. Best results are

marked in bold.

results in Table 6, Table 7 and Table 8. Besides the equal set sizes, we also con-
sider the unbalanced sets in Section 4.4. We perform ΠR

PSU in the cases where the
sender’s set is larger than the receiver’s set, and ΠS

PSU in the opposite cases, and
show the results in Table 9. Our complete implementation is available on GitHub:
https://github.com/dujiajun/PSU.

4.1 Benchmarking Environment

We implement ΠR
PSU and ΠS

PSU in C++, and run our experiments on a single Intel
Xeon with 2.39GHz and 128GB RAM. We evaluate our protocols in two networks set-
tings, LAN network with 10Gbps bandwidth and 0.02 ms RTT and WAN network with
400Mbps and 80ms RTT, which are emulated using Linux tc command. We set the
computational security parameter κ = 128 and statistical security parameter λ = 40,
and the item length in bits ℓ1 is 128.

Our protocols are built on Permute+ Share, multi-point OPRF, and OT extension.
We implement Permute+ Share with the design in [20] and OT extension [14] using
libOTe library [36] with Naor-Pinkas Base OT [22]. For multi-point OPRF, we use the
source code from [6]. The details of Permute+ Share sub-protocol and multi-point OPRF
sub-protocol are shown in Appendix B.

Parameters about Cuckoo Hashing. For the equal set sizes, Permute+ Share sub-
protocol costs most of the runtime, and thus we need to minimize the number of items to
be shuffled as far as possible. Moreover, items in the stash of Cuckoo hashing need to be
compared with each item of the other party rather than certain items picked out by the
hash functions. Hence, we also need to limit the stash size to be 0. The empirical analysis
in [32] shows that increasing the number of hash functions can drastically reduce the
number of bins and the required stash size. According to the results reported in [32], we
decide to use 4 hash functions to implement Cuckoo hashing with 1.09 · n bins and 0
stash. However, for the unbalanced set sizes, calculating PRFs will dominate, to reduce
the number of PRFs calls and keep the stash size 0, we choose to use 3 hash functions
and 1.27 · n bins.

4.2 Performance Comparisons

In this section, we compareΠR
PSU,Π

S
PSU and [17] in terms of runtime and communication,

and the results are reported in Table 5. More concretely, compared to [17], our ΠR
PSU

can obtain a 4-5× improvement in runtime for large datasets (n1 = n2 ≥ 214) in both
WAN and LAN settings. And the communication is about 50% communication of [17].

https://github.com/dujiajun/PSU

Shuffle-based Private Set Union: Faster and More Secure 25

Although we also consider ΠS
PSU in this comparison, it is worth noting that ΠS

PSU

realises a different functionality than the other two protocols, because the sender can
obtain the intersection size in advance. Moreover, to avoid the leakage of intersection
information, ΠS

PSU has to execute the Permute+ Share sub-protocol twice (cf. Section 3.2
for more details). Therefore, the runtime of ΠS

PSU is longer than that of ΠR
PSU. Never-

theless, compared to [17], our ΠS
PSU can still obtain a 3-4× improvement in runtime for

large datasets (n1 = n2 ≥ 214) in both WAN and LAN settings. But for communication,
the cost of ΠS

PSU is almost equal to that of [17].

4.3 Scalability and Parallelizability

In this section, we show that our two protocols can be efficiently executed on small
sets without Cuckoo hashing, which can simplify development in practice. And using
Cuckoo hashing, our protocols can be scaled to large sets. Moreover, we show that our
protocols can be executed in parallel. Specifically, for the set of size 222, ΠR

PSU and ΠS
PSU

can achieve a speedup of 3.49× and 2.89× using 8 threads, respectively.

The cases with small sets. In table 6, we show that Π̂R
PSU and Π̂S

PSU can be executed
on small sets directly without Cuckoo hashing (please see Appendix A for more details
of Π̂R

PSU and Π̂S
PSU). In LAN setting, they cost about 10 seconds with 8 threads on

the set of size 212 However, we can see that as the set size increases, the runtime and
communication increase dramatically. For set size of 214, the two protocols both need
more than 3 minutes with 8 threads, and the communication is so much that it will
affect the protocol executed in the WAN setting. Therefore, for large sets, we test the
runtime and communication of the protocols with Cuckoo hashing.

Π̂R
PSU Π̂S

PSU

28 210 212 214 28 210 212 214

Time (s)

T=1 0.620 5.582 89.862 1423.955 0.526 5.827 86.037 1425.376
T=2 0.432 3.108 45.295 722.29 0.358 2.862 44.967 719.325
T=4 0.356 1.722 23.094 363.270 0.295 1.861 22.231 360.131
T=8 0.349 1.067 11.713 183.181 0.261 0.986 11.640 183.838

Comm. (MB) 0.665 9.624 162.759 2828.476 0.641 9.588 162.63 2827.972

Table 6. Runtime (in seconds) and communication (in MB) of Π̂R
PSU and Π̂S

PSU for small set
(n1 = n2 ∈ {28, 210, 212, 214}) and threads T ∈ {1, 2, 4, 8} threads in LAN setting.

The cases with large sets. In both ΠR
PSU and ΠS

PSU, PRF values in set I are indepen-
dent of each other, and thus can be calculated in parallel. In addition, the Permute+ Share
sub-protocol in [20] and the multi-point OPRF sub-protocol in [6] can be partially par-
allelized. We demonstrate the scalability and parallelizability of ΠR

PSU and ΠS
PSU by

evaluating it on the large set sizes n1 = n2 = n ∈ {212, 214, 216, 218, 220, 222} in parallel
with T ∈ {1, 2, 4, 8} threads. Table 7 shows the experimental results of ΠR

PSU in both
WAN/LAN settings, and the last row presents the ratio between the runtime of the
single thread and 8 threads. We can see that, the speedup becomes better as the set
size increases. Specifically, when the set size is 222, we can obtain a speedup of 2.08×
in WAN setting and 3.49× in LAN setting. Similarly, we report the results of ΠS

PSU in
Table 8. On the whole, as the set sizes and number of threads increase, the runtime of
ΠS

PSU changes in the same way as that of ΠR
PSU. However, the speedup of ΠS

PSU is less
than that of ΠR

PSU, since ΠS
PSU performs Permute+ Share sub-protocol twice, which is

not completely parallelized.

26 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

set size n
212 214 216 218 220 222

WAN

T=1 1.132 1.778 4.412 16.104 67.756 341.758
T=2 1.127 1.658 3.315 11.025 48.321 230.218
T=4 1.117 1.553 2.965 8.852 37.847 181.657
T=8 0.957 1.512 2.626 7.666 34.701 163.82

LAN

T=1 0.412 0.87 2.702 10.751 48.703 251.091
T=2 0.367 0.615 1.721 6.221 29.812 148.538
T=4 0.351 0.489 1.256 3.96 21.272 107.298
T=8 0.325 0.477 1.093 3.582 14.304 71.782

Speedup 1.31-1.26× 1.18-1.95× 1.68-2.47× 2.10-3.00× 1.95-3.40× 2.08-3.49×
Table 7. Scaling of ΠR

PSU with set size (n1 = n2 = n) and number of threads (T ∈ {1, 2, 4, 8})
in WAN/LAN settings.

set size n
212 214 216 218 220 222

WAN

T=1 1.238 2.214 6.233 22.78 102.039 458.731
T=2 1.368 1.984 4.731 16.346 77.137 347.897
T=4 1.388 1.79 3.909 13.856 65.319 292.226
T=8 1.196 1.711 3.504 12.041 59.736 258.244

LAN

T=1 0.434 1.051 3.452 13.382 60.16 279.97
T=2 0.378 0.764 2.322 7.863 38.434 175.485
T=4 0.356 0.614 1.685 5.632 25.842 116.678
T=8 0.408 0.606 1.397 5.204 20.992 96.723

Speedup 1.04-1.06× 1.29-1.73× 1.78-2.47× 1.89-2.57× 1.70-2.87× 1.78-2.89×
Table 8. Scaling of ΠS

PSU with set size (n1 = n2 = n) and number of threads (T ∈ {1, 2, 4, 8})
in WAN/LAN settings.

4.4 Design for Unbalanced Datasets

In this section, we show that ΠR
PSU and ΠS

PSU can be chosen according to the sizes of
the two sets. Considering that the set to be shuffled is small (28 or 212) and the items
that will be calculated PRFs are too many (more than 216, 220 or 224), we adjust the
parameters of Cuckoo hashing to 3 hash functions and 1.27 ·n bins with stash size s = 0
according to the results in [32]. Table 9 shows the performances of ΠR

PSU and ΠS
PSU with

8 threads in WAN/LAN settings.

LAN WAN

n2 (resp. n1) 28 212 28 212

n1 (resp. n2) 216 220 224 216 220 224 216 220 224 216 220 224

ΠR
PSU 0.487 3.17 47.788 0.524 3.648 51.513 1.266 5.101 64.109 1.396 5.341 67.802

ΠS
PSU 0.511 2.918 44.606 0.581 2.958 48.379 1.042 3.759 51.043 1.406 3.789 57.352

Table 9. Runtime (in seconds) of ΠR
PSU for unbalanced set sizes (n1 ∈ {216, 220, 224}, n2 ∈

{28, 212}) and ΠS
PSU for unbalanced set sizes (n1 ∈ {28, 212}, n2 ∈ {216, 220, 224}) with 8 threads

in WAN/LAN settings.

When the receiver’s set is much smaller than the sender’s set (i.e., n2 ≪ n1), we
perform ΠR

PSU to obtain the union. We can see that for the sender’s set of size 224, ΠR
PSU

only needs about 50 seconds in LAN setting, and about 65 seconds in WAN setting,
which is reasonable in practice. As for the opposite unbalanced cases (i.e., n1 ≪ n2),
ΠS

PSU can obtain a better performance since it replaces OT related to the larger set with
Permute+ Share just related to the smaller set.

Shuffle-based Private Set Union: Faster and More Secure 27

5 Leakage Analysis on [17]

In this section, we first recall the optimization via bucketing in [17], and then explain
in detail why the usage of bucketing technique will leak the intersection information.
Please refer to Appendix C.1 for more details of the protocol in [17]. Also, we further
explain why the protocol in [17] cannot benefit from Cuckoo hashing in Appendix C.2.

Sender ()

-

-

-

-

-

pad with
special item

add a
special

item to
each bin

pad with different
dummy items

Receiver ()

or

Fig. 14. The bucketing technique in [17].

Optimization via bucketing. In order to improve the performance, Kolesnikov et al.
[17] proposed to optimize their protocol by using the bucketing technique, as shown in
Figure 14. More specifically, the sender and receiver in [17] first assign their items in X
and in Y , into two simple hash tables with the same number of bins, and the maximum
bin sizes are assumed to be ρ1 and ρ2, respectively. Then they perform the (ρ1, ρ2)-PSU
sub-protocol on the items of each bin separately. As pointed out by Kolesnikov et al.
in [17], however, the bucketing technique will leak the information “which bins contain
items in X ∩ Y ” to the receiver. To avoid this leakage, in [17] the receiver is required to
put a special item ⊥ into each bin, and to pad the bins with different dummy items d,
while the sender pads his bins with the special item ⊥. For example, in Figure 14, the
items {x6, x2, x10} of X are mapped to the first bin of the sender’s simple hash table,
and the items {y3, y8} of Y are mapped to the first bin of the receiver’s hash table.
Without the special item ⊥, if x2 = y3, the receiver can learn that an item belonging to
X ∩ Y is in {y3, y8} after executing the (ρ1, ρ2)-PSU. By adding the special item ⊥ to
both sides, if the receiver learns that an item from the sender belongs to {y3,⊥, y8, d},
it seems that the receiver cannot know whether the item is a real item (namely, in X) or
the special item ⊥. Unfortunately, we observe that this strategy is insufficient to avoid
the leakage incurred by the bucketing technique. A detailed analysis is given below.

Leakage analysis. For ease of exposition, we take the 4-th bin in Figure 14 as an
example to explain why the optimization in [17] fails to hide the intersection information.
We assume that after executing the (ρ1, ρ2)-PSU sub-protocol over the 4-th bin, the
receiver finds that all the items in the sender’s 4-th bin belong to the subset in her 4-th
bin (say {d,⊥, y5, y7}). Then, one of the following cases happens for the sender’s bin:

Case1: all real items mapped to the bin (say x4 in Figure 14) belong to {y5, y7};
Case2: no real items are mapped to the bin (i.e., all items are special item ⊥).
Clearly, if the receiver can determine that Case1 occurs with a high probability, she

will know that items belonging to X ∩Y are in {y5, y7} with the same probability. Next
we proceed to estimate the probability of Case1 happening, denoted by Pr[Case1]. Since
Pr[Case1] = 1 − Pr[Case2], we only need to bound Pr[Case2]. In general, assuming that
there are αn bins and n items and the hash mapping is a random oracle, the probability
of Case2 happening is: P = Pr[Case2] = (1− 1

αn)
n ≈ e−1/α.

According to the parameters in [17], we compute the probability P for different set
sizes as shown in Table 10. From the results, we can see that the probability P is very

28 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

Table 10. The probability of Case2 for different set sizes

parameters
set size n

28 210 212 214 216 218 220 222

α 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051

Pr(×10−11) 7.946 1270 206.1 639.4 3252 444.8 5778 305.1

small. For example, when the set size is n = 220, P = 5.778 × 10−8. This means that
when the receiver finds that all items in a bin belong to the intersection, she can learn
that this bin has at least one real item with probability 1− 5.778× 10−8, and that her
corresponding bin contains at least an item in X ∩ Y with the same probability. Hence,
their approach is insufficient to avoid the leakage incurred by the bucketing technique.

On the contrary, in our ΠR
PSU shown in Figure 12, for an item xi in X∩Y , the receiver

will find a F (k, aj) ∈ Ii where aj is the share of yπ−1(j), which means that yπ−1(j) is the
item equal to xi. But from the receiver’s point of view, any item in Y may corresponds
to F (k, aj) as she does not know π, and thus any item in Y may be the item in X ∩ Y .
In our ΠS

PSU shown in Figure 13, the receiver’s set Y is inserted into a simple hash table
as in [17], but our protocol does not suffer from the leakage analyzed before. This is
because we use the shuffling technique to hide which bins contain items in X ∩ Y . To
sum up, in ΠR

PSU and ΠS
PSU, any item in Y may be the item in X ∩ Y , whereas in the

protocol [17], the receiver can know that items belonging to X ∩Y are in a bin (namely,
a subset of Y) with a overwhelming probability.

6 Discussion

In this work, we focus on designing efficient PSU protocols for both balanced and un-
balanced datasets. Somewhat surprisingly, our techniques can also be used for designing
PSI protocols with only slight modification. With our techniques, it is extremely conve-
nient to design fast protocols when both functionalities, set intersection and set union,
are required; details are below.

Recall that in ΠR
PSU, the receiver sets bi depending on whether the sender’s item xi

belongs to her set Y ; if xi ∈ Y , sets bi = 1, otherwise bi = 0. Then through FOT the
receiver obtains xi if bi = 0, and nothing otherwise. To obtain a PSI protocol from ΠR

PSU,
the receiver only needs to set b′i = bi ⊕ 1 and obtains the sender’s items through FOT

according to b′i, rather than bi. In this way, the receiver will obtain the sender’s items
belonging to Y . Thus we obtain a PSI protocol, denoted by ΠR

PSI. In ΠS
PSU, the sender

sends the shares of the items in X \ Y according to the bit string U , then the receiver
uses them to recover the items in X \ Y . Therefore, the sender can send the shares
associated with the items in X ∩ Y by flipping each bit in U , and then the receiver will
obtain items in X ∩ Y . Thus we obtain a PSI protocol, denoted by ΠS

PSI.
It can be seen that ΠR

PSI and ΠS
PSI are obtained from the PSU protocols with almost

no extra overhead. Therefore, it is believed that they have nearly the same performance
as the proposed PSU protocols. Due to the page limit, we leave their formal descriptions
and security analysis to future work.

In addition, as stated in Section 1.3, it is desirable to have better PSU protocols
designed. Notice that our protocols, ΠR

PSU and ΠS
PSU are designed in a modular manner;

thus, a natural way to achieve better performance is to improve the performance of the
underlying building blocks. More concretely, if the underlying Permute+ Share protocol
can be designed with linear complexity, the cost of ΠR

PSU and ΠS
PSU can be reduced to be

linear. Finally, it is also interesting to design PSU with better security (e.g., defending
against malicious adversaries) and/or with better functionalities (e.g., new variants of
PSU including multi-party PSU and PSU with payload).

Shuffle-based Private Set Union: Faster and More Secure 29

Acknowledgments

We thank the anonymous reviewers and especially our shepherd, Mayank Varia, for
their insightful suggestions and comments, that substantially helped in improving the
paper. This work was supported in part by the National Key Research and Development
Project 2020YFA0712300. Yanxue Jia was supported by the China Scholarship Council
(CSC NO. 201906230146) for her research visit at Virginia Commonwealth University,
and this work was partially carried out during the visit. Hong-Sheng Zhou acknowledges
support by NSF grant CNS-1801470, a Google Faculty Research Award and a research
gift from Ergo Platform.

References

1. SSL blacklist. https://sslbl.abuse.ch/blacklist/.

2. Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations.
In Heung Youl Youm and Yoojae Won, editors, ASIACCS 12, pages 40–41. ACM Press,
May 2012.

3. Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages
236–252. Springer, Heidelberg, December 2005.

4. Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos. SEPIA:
Privacy-preserving aggregation of multi-domain network events and statistics. In USENIX
Security 2010, pages 223–240. USENIX Association, August 2010.

5. Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III, volume 12493
of Lecture Notes in Computer Science, pages 342–372. Springer, 2020.

6. Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, vol-
ume 12172 of Lecture Notes in Computer Science, pages 34–63. Springer, 2020.

7. Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations.
In Josef Pieprzyk and Suriadi Suriadi, editors, ACISP 17, Part II, volume 10343 of LNCS,
pages 261–278. Springer, Heidelberg, July 2017.

8. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378 of
LNCS, pages 303–324. Springer, Heidelberg, February 2005.

9. Keith B. Frikken. Privacy-preserving set union. In Jonathan Katz and Moti Yung, editors,
ACNS 07, volume 4521 of LNCS, pages 237–252. Springer, Heidelberg, June 2007.

10. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern
matching with security against malicious and covert adversaries. In Ran Canetti, editor,
TCC 2008, volume 4948 of LNCS, pages 155–175. Springer, Heidelberg, March 2008.

11. K. Hogan, N. Luther, N. Schear, E. Shen, D. Stott, S. Yakoubov, and A. Yerukhimovich.
Secure multiparty computation for cooperative cyber risk assessment. In 2016 IEEE Cy-
bersecurity Development (SecDev), pages 75–76, 2016.

12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS 2012. The Internet Society, February 2012.

13. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

14. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

https://sslbl.abuse.ch/blacklist/

30 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

15. Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, August
2005.

16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 818–829. ACM Press, October 2016.

17. Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union
from symmetric-key techniques. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part II, volume 11922 of LNCS, pages 636–666. Springer, Heidelberg,
December 2019.

18. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryp-
tology ePrint Archive, Report 2016/046, 2016. http://eprint.iacr.org/2016/046.

19. Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In 1986 IEEE Symposium on Security and
Privacy, pages 134–134, 1986.

20. Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient
framework for private function evaluation. In Thomas Johansson and Phong Q. Nguyen,
editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 557–574. Springer, Heidelberg,
May 2013.

21. Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge university
press, 1995.

22. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In 31st ACM
STOC, pages 245–254. ACM Press, May 1999.

23. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT ex-
tension with application to private set intersection. In Helena Handschuh, editor, CT-
RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Heidelberg, February 2017.

24. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Friedhelm Meyer auf der
Heide, editor, Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus, Denmark,
August 28-31, 2001, Proceedings, volume 2161 of Lecture Notes in Computer Science, pages
121–133. Springer, 2001.

25. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight private
set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431. Springer,
Heidelberg, August 2019.

26. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast, malicious
private set intersection. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 739–767. Springer, Heidelberg, May 2020.

27. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set
intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors,
USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

28. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-
party computation is practical. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912
of LNCS, pages 250–267. Springer, Heidelberg, December 2009.

29. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer, Heidelberg,
May 2019.

30. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer, Heidelberg,
April / May 2018.

31. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014,
pages 797–812. USENIX Association, August 2014.

32. Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on ot extension. ACM Trans. Priv. Secur., 21(2), January 2018.

http://eprint.iacr.org/2016/046

Shuffle-based Private Set Union: Faster and More Secure 31

33. Martin Raab and Angelika Steger. “balls into bins” — a simple and tight analysis. In
Michael Luby, José D. P. Rolim, and Maria Serna, editors, Randomization and Approxima-
tion Techniques in Computer Science, pages 159–170, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

34. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

35. Sivaramakrishnan Ramanathan, Jelena Mirkovic, and Minlan Yu. BLAG: improving the
accuracy of blacklists. In 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet Society, 2020.

36. Peter Rindal. libote: an efficient, portable, and easy to use oblivious transfer library.
https://github.com/osu-crypto/libOTe.

37. Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual execution.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 1229–1242. ACM Press, October / November 2017.

38. Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from vector-
ole. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, pages 901–930, Cham, 2021. Springer International Publishing.

http://eprint.iacr.org/2005/187
https://github.com/osu-crypto/libOTe

32 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

A Additional Materials for Section 3: Simplified Protocols

In this section, we present the simplified version of protocol ΠR
PSU and of protocol ΠS

PSU,

respectively. We note that, these two simplified versions, denoted by Π̂R
PSU and Π̂S

PSU

respectively, have not been optimized by using Cuckoo hashing yet, and they are only
efficient for datasets with small size.

A.1 Π̂R
PSU: Simplified version of ΠR

PSU

Parameters:

– Ideal functionalities FPS, FOT and FmpOPRF (the underlying PRF is
F (k, ·) : {0, 1}ℓ1 → {0, 1}ℓ2);

Inputs:

– Sender S: set X = {x1, · · · , xn1}, xi ∈ {0, 1}ℓ1 ;
– Receiver R: set Y = {y1, · · · , yn2}, yi ∈ {0, 1}ℓ1 ;

Protocol:

1. S and R invoke the ideal functionality FPS:
• R acts as P0 with input set Y = {y1, · · · , yn2};
• S acts as P1 with a permutation π;
• R obtains the shuffled shares {sπ(1), sπ(2), · · · , sπ(n2)};
• S obtains the another shuffled shares {yπ(1) ⊕ sπ(1), yπ(2) ⊕ sπ(2), · · · , yπ(n2) ⊕ sπ(n2)};

2. S and R invoke the ideal functionality FmpOPRF:
• R acts as P0 with her shuffled shares {sπ(1), sπ(2), · · · , sπ(n2)}, and obtains the

outputs {F (k, sπ(1)), F (k, sπ(2)), · · · , F (k, sπ(n2))};
• S obtains the key k;

3. R initializes set Z = ∅;
4. S randomly selects a permutation π′, and obtains π′(X) = {x′

1, x
′
2, · · · , x′

n1
};

5. For i ∈ [n1] :
• S uses the key k to compute I = {F (k, x′

i ⊕ yπ(j) ⊕ sπ(j))}j∈[n2] and sends I to R;
• R checks if there is a F (k, sπ(j))j∈[n2] in I, if so, R sets b = 1, otherwise, sets b = 0;
• S and R invoke the ideal functionality FOT:

- S acts as P0 with input {x′
i,⊥};

- R acts as P1 with input b;
- if b = 0, R obtains x′

i, otherwise, obtains ⊥;
• Once receiving x′

i, R sets Z = Z ∪ {x′
i};

5. R outputs Y ∪ Z;

Protocol Π̂R
PSU

Fig. 15. Π̂R
PSU: Simplified version of ΠR

PSU.

The specification of Π̂R
PSU is shown in Figure 15. We assume that the sender’s set is

X = {x1, · · · , xn1
} and the receiver’s set is X = {x1, · · · , xn1

}. We first shuffle the re-
ceiver’s set Y while generating their shares, by a permutation π only known to the sender.
By invoking Permute+ Share, the sender can obtain the share set {sπ(1), sπ(2), · · · , sπ(n2)},
and the receiver obtains the other share set {s′π(1), s

′
π(2), · · · , s

′
π(n2)

} = {yπ(1)⊕sπ(1), yπ(2)⊕
sπ(2), · · · , yπ(n2)⊕ sπ(n2)}. After executing the Permute+ Share, the two parties proceed
to perform multi-point OPRF, through which the receiver obtains {F (k, s′π(1)), · · · , F (k, s′π(n2)

)}
and the sender obtains the OPRF key k. Then, for each x ∈ X, the sender computes

Shuffle-based Private Set Union: Faster and More Secure 33

Ix = {F (k, x ⊕ sπ(1)), · · · , F (k, x ⊕ sπ(n2))} and sends it to receiver. Then, if there is
no F (k, s′π(i)) belonging to Ix, the receiver obtains x through FOT. At last, the receiver
outputs the items from the sender, as well as Y .

A.2 Π̂S
PSU: Simplified version of ΠS

PSU

Parameters:

– Ideal functionalities FPS and FmpOPRF (the underlying PRF is F (k, ·) : {0, 1}ℓ1 → {0, 1}ℓ2);

Inputs:

– Sender S: set X = {x1, · · · , xn1}, xi ∈ {0, 1}ℓ1 ;
– Receiver R: set Y = {y1, · · · , yn2}, yi ∈ {0, 1}ℓ1 ;

Protocol:

1. S and R invoke the ideal functionality FPS:
• S acts as P0 with input set X = {x1, · · · , xn1} in a random order;
• R acts as P1 with a permutation π;
• S obtains the shuffled shares {sπ(1), sπ(2), · · · , sπ(n1)};
• R obtains the another shuffled shares
{xπ(1) ⊕ sπ(1), xπ(2) ⊕ sπ(2), · · · , xπ(n1) ⊕ sπ(n1)};

2. S and R invoke the ideal functionality FmpOPRF:
• S acts as P0 with his shuffled shares {sπ(1), sπ(2), · · · , sπ(n1)}, and obtains the

outputs {F (k, sπ(1)), F (k, sπ(2)), · · · , F (k, sπ(n1))};
• R obtains the key k;

3. R initializes set Z = ∅;
4. For i ∈ [n1] :

• R uses the key k to compute I = {F (k, yj ⊕ xπ(i) ⊕ sπ(i))}j∈[n2] and sends I to S;
• S checks if F (k, sπ(i)) is in I, if so, S does nothing, otherwise, S sends (i, sπ(i)) to R;
• Once receiving (i, sπ(i)), R finds xπ(i) ⊕ sπ(i) according to the index i, then computes

xπ(i) = xπ(i) ⊕ sπ(i) ⊕ sπ(i), and sets Z = Z ∪ {xπ(i)};
5. R outputs Y ∪ Z;

Protocol Π̂S
PSU

Fig. 16. Π̂S
PSU: Simplified version of ΠS

PSU.

The specification of Π̂S
PSU is shown in Figure 16. Similarly, we assume that the

sender’s set is X = {x1, · · · , xn1} and the receiver’s set is Y = {y1, · · · , yn2}. ΠS
PSU

first executes Permute+ Share on X = {x1, · · · , xn1
}. After this, the sender obtains

the shares {sπ(1), · · · , sπ(n1)} of his items, while the receiver obtains the other shares
{s′π(1), · · · , s

′
π(n2)

} and the permutation π. Note that π is hidden from the sender, so
he cannot link his shares with his original items. Then for each item of the sender
(e.g., the π(i)-th item), the receiver uses s′π(i) and the OPRF key k to generate Iπ(i) =

{F (k, y1 ⊕ s′π(i)), · · · , F (k, yn2
⊕ s′π(i))}. Once receiving Iπ(i) for the π(i)-th item, the

sender checks if F (k, sπ(i)) ∈ Iπ(i), if not, the sender will send the share sπ(i) to the
receiver. Then, the receiver can obtain xπ(i) = sπ(i)⊕ s′π(i). Finally, the receiver outputs
the items from the sender, as well as set Y .

34 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

B Additional Materials for Section 4: Constructions for the
building blocks

In this section, we introduce the specific protocolsΠPS andΠmpOPRF that securely realize
FPS and FmpOPRF, respectively. As for FOT, we use the OT extension proposed by [14]
that is commonly used in multi-party protocols and use the OT protocol in [22] as the
base OT.

Parameters:

– A switching network with q switches and n inputs/outputs, and the 2q + n wires are
denoted as w1, · · · , w2q+n.

Inputs:

– P0: selection bit set S = {(s0(1), s1(1)), · · · , (s0(q), s1(q))} for the switching network;
– P1: set X = {x1, · · · , xn}, xi ∈ {0, 1}ℓ.

Protocol:

1. For each wire, P1 randomly chooses ri
$←− {0, 1}ℓ as the wire’s label;

2. For each switch u with input wires wi and wj , and output wires wk and wl:
• P1 computes T0 = T 0

0 ||T 1
0 = (ri ⊕ rk)||(ri ⊕ rl), T1 = T 0

1 ||T 1
1 = (ri ⊕ rk)||(rj ⊕ rl),

T2 = T 0
2 ||T 1

2 = (rj ⊕ rk)||(ri ⊕ rl) and T3 = T 0
3 ||T 1

3 = (rj ⊕ rk)||(rj ⊕ rl);
• P0 and P1 engage in a 1-out-of-4 oblivious transfer where P0’s (the receiver) input is

s(u) = 2s1(u) + s0(u) and P1’s (the sender) input is (T0, T1, T2, T3), and P0 obtains
(T 0

s(u)||T 0
s(u));

3. For each input wire wi, P1 sends xi ⊕ ri to P0;
4. In topological order, for each switch u with input wires wi and wj , and output wires wk

and wl, P0 does the following:
• If s0(u) = 0, then yk = yi ⊕ T 0

s(u), else, yk = yj ⊕ T 0
s(u);

• If s1(u) = 0, then yl = yi ⊕ T 1
s(u), else, yl = yj ⊕ T 1

s(u);
5. P0 outputs the blinded values for all the output wires of the switching network as the

share set, and P1 outputs the output wires’ labels as the other share set.

Protocol ΠPS

Fig. 17. The Permute+ Share Protocol in [20].

The Permute+ Share protocol. We use the protocol in [20] to realize FPS, and give the
details in Figure 17. Generally speaking, the protocol leverages a switching network to
realize the permutation, and the random labels of wires are used to form secret shares.
A switching network consists of q switches and 2q + n wires where n is the number of
items to be permuted. The party P0 who inputs the permutation π will transfer π into
a selection bit set S, in which each item is used to control a switch. The other party P1

randomly chooses the label of each wire, and uses the labels of input wires to mask the
input set X = {x1, · · · , xn}. The masked values are then sent to P0 and taken as the
switching network’s input. Then, in topological order, the two parties jointly compute
an atomic swap on each switch. And each atomic swap is implemented by using oblivious
transfer according to the corresponding selection bit in the set S. After this, set X is
permuted to π(X), and each share is re-randomized by the labels in the path. At last,
P0 obtains the blinded values for all the output wires as the share set, and P1 uses the
labels of output wires as the other share set.

Shuffle-based Private Set Union: Faster and More Secure 35

Parameters:

– Two hash functions H1 : {0, 1}∗ → {0, 1}ℓ1 and H2 : {0, 1}w → {0, 1}ℓ2 ;
– Pseudorandom function F̂ : {0, 1}λ × {0, 1}ℓ1 → [m]w;

Inputs:

– P0: no input;
– P1: set X = {x1, · · · , xn}, xi ∈ {0, 1}∗;

Protocol:

1. P0 samples a random string s
$← {0, 1}w;

2. P1 does the following:
• Initialize an m× w binary matrix D to all 1’s. Denote its column vectors by

D1, · · · ,Dw. Then D1 = · · · = Dw = 1m;

• Sample a uniformly random PRF key k̂
$← {0, 1}κ, and send it to P0;

• For each x ∈ X, compute v = F̂ (k̂, H1(x)) where v = (v[1],v[2], · · · ,v[w]) with the
i-th coordinate v[i] ∈ [m], and set Di[v[i]] = 0 for all i ∈ [w], then denote the new
matrix as DX ;

• Randomly sample an m× w binary matrix A, and compute matrix B = A⊕DX ;
3. P0 and P1 run w oblivious transfer where P1 is the sender with inputs {Ai,Bi}i∈[w] and

P0 is the receiver with inputs s[1], · · · , s[w]. As a result P0 obtains w number of m-bit
strings as the column vectors of matrix C (with dimension m× w). So far, P0 obtains
the key (C, k̂) of the multi-point OPRF.

4. For each x ∈ X, P1 computes v = F̂ (k̂, H1(x)) and obtains its OPRF value
H2(A

1[v[1]]|| · · · ||Aw[v[w]]).

Protocol ΠmpOPRF

Fig. 18. The Multi-Point OPRF Protocol in [6].

The multi-point OPRF protocol. Chase and Miao in [6] proposed a new construction for
multi-point OPRF whose functionality is shown in Figure 10, and they leveraged the new
construction to realize a lightweight private set intersection (PSI) protocol. In essence,
the construction in [6] is an extension of BaRK-OPRF in [16], and Chase and Miao
have pointed it out in their paper. To be self-contained, we rewrite their construction in
Figure 18. The key of the multi-point OPRF is (C, k̂) and the pseudorandom function
is as follows:

v = F̂ (k̂, H1(xi))

F ((C, k̂), xi) = H2(C
1[v[1]]|| · · · ||Cw[v[w]])

Generally speaking, the two parties both know a pseudorandom function F̂ with key
k̂ that maps a ℓ1-bit item into a vector v ∈ [m]w. Firstly, P1 prepares two m×w binary
matrices A and B. More concretely, all the items in X will be mapped to some positions
in a m× w matrix (i.e., DX in Figure 18) by F̂ . A is randomly chosen, and in B, the
1-bit elements that are located in these position are equal to the corresponding values
in A while the other elements will be different. P0 picks a random string s ∈ {0, 1}w,
then P0 and P1 perform w OTs. For the i-th OT, P0 takes s[i] as input, and P1 takes Ai

and Bi as input, then P0 will obtain output Ai or Bi according to s[i]. After OTs, P0

will obtain w column vectors, which will form matrix C. P1 obtains PRFs of her items
using A and k̂. Note that for ∀ x ∈ X, F ((C, k̂), x) = F ((A, k̂), x). The protocol needs
O(n) communication and computation cost, and only involves cheap symmetric-key and
bitwise operations.

36 Yanxue Jia1, Shi-Feng Sun1(B), Hong-Sheng Zhou2, Jiajun Du1, and Dawu Gu1(B)

C Additional Materials for Section 5

In this section, we first describe the protocol in [17], and then further explain why the
protocol in [17] and earlier constructions [9,7] cannot benefit from Cuckoo hashing.

C.1 Details of the protocol in [17]

According to the design idea in [17], we first give the protocol for (1, n)-PSU where the
sender only holds an item x∗ and the receiver holds a set Y = {y1, · · · , yn} in Figure 19.
More specifically, their protocol works in the following way: the two parties first execute
an OPRF sub-protocol for F , then the sender obtains F (k, x) without knowing k and
the receiver obtains the PRF key k. After that, the receiver interpolates a polynomial
P over points {(y, s ⊕ F (k, y))}y∈Y , where s is a random value chosen by the receiver,
and sends P to the sender. Once receiving the polynomial P , the sender calculates
s′ = P (x) ⊕ F (k, x) and sends s′ to the receiver. Then the receiver checks if s′ = s.
If not, meaning that x /∈ Y , the receiver obtains x through OT, otherwise obtains a
dummy item.

Kolesnikov et al. [17] extend (1, n)-PSU to the general case (namely, (n1, n2)-PSU)
by repeatedly using (1, n)-PSU. Then in Figure 20, we give the protocol for (n1, n2)-
PSU where the sender and receiver hold X = {x1, · · · , xn1

} and Y = {y1, · · · , yn2
},

respectively. Note that for each sender’s item, both the secret value s and the key k
for OPRF need to be refreshed, otherwise the sender can learn information about the
intersection.

Parameters:

– A bit-length ℓ;
– Ideal functionalities FOT and FOPRF (F (k, x) ∈ {0, 1}σ);
– A collision-resistant hash function h(x) : {0, 1}ℓ → {0, 1}σ;

Inputs:

– Sender S: x∗ ∈ {0, 1}ℓ;
– Receiver R: set Y = {y1, · · · , yn}, yi ∈ {0, 1}ℓ;

Protocol:

1. S acts as FOPRF receiver, sends x∗ to FOPRF, and S receives q∗ = F (k, x∗) and R receives
k;

2. R randomly picks s
$←− {0, 1}σ, and interpolates a polynomial P (y) over points

{(h(yi), s⊕ qi)} where qi = F (k, yi), ∀i ∈ [n]. Here s⊕ qi is computed as operation on
σ-bit strings.

3. R sends the coefficients of P (y) to S;
4. S computes s∗ = P (h(x∗))⊕ q∗ and sends it to R;
5. S and R invoke FOT:

• R acts as receiver with input 1 if s∗ = s and input 0 otherwise;
• S acts as sender with input (x∗,⊥);

6. If s∗ = s, then R gives output Y . Otherwise, it learns x∗ and outputs Y ∪ x∗.

(1, n)-PSU protocol in [17]

Fig. 19. (1, n)-PSU protocol in [17].

Shuffle-based Private Set Union: Faster and More Secure 37

C.2 Discussion about Cuckoo hashing

As for Cuckoo hashing, Kolesnikov et al. [17] pointed out that ”this hashing scheme
(and the corresponding performance improvement) does not immediately fit in the PSU
case.” Recall that the protocols [9,7,17] share the same design framework as in Figure 1.
We can see that the sender’s set can be inserted into Cuckoo hash table. Then, for
the item in each bin of Cuckoo hash table, the receiver will check if it belongs to the
intersection, if not, the receiver will get the item. Note that the receiver also knows the
item’s position in Cuckoo hash table. Since the position of an item in Cuckoo hash table
is also affected by other items, the receiver can obtain partial information about the
sender’s entire input set based on the received item and its position in Cuckoo hash
table.

Parameters:

– A bit-length ℓ and n = max(n1, n2);
– Number of bins β = β(n), hash function H : {0, 1}ℓ → [β], and max bin size m;
– A special item ⊥∈ {0, 1}∗;

Inputs:

– Sender S: X = {x1, · · · , xn1}, xi ∈ {0, 1}ℓ
– Receiver R: set Y = {y1, · · · , yn2}, yi ∈ {0, 1}ℓ;

Protocol:

1. S and R hash items of their sets X and Y into β bins under hash function H. Let BS [i]
and BR[i] denote the set of items in the sender’s and receiver’s i-th bin, respectively;

2. S pads each bin BS [i] with the special item ⊥ up to the maximum bin size m+ 1, and
randomly permutes all items in this bin;

3. R pads each bin BR[i] with one special item ⊥ and different dummy items to the
maximum bin size m+ 1;

4. R initializes set Z = ∅;
5. For each bin i ∈ [β], for each item xj ∈ BS [i]:

• S and R invoke the (1, n)-PSU sub-protocol in Figure 19 and n = m+ 1:
∗ S acts as sender with input xj ;
∗ R acts as receiver with input set BR[i];
∗ R obtains output Zi,j and sets Z = Z ∪ Zi,j ;

6. R outputs Z.

(n1, n2)-PSU protocol in [17]

Fig. 20. (n1, n2)-PSU protocol in [17].

	Shuffle-based Private Set Union: Faster and More Secure

