JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

Solving Small Exponential ECDLP in EC-based
Additively Homomorphic Encryption and
Applications

Fei Tang, Guowei Ling, Chaochao Cai, Jinyong Shan, Xuanqi Liu, Peng Tang, Weidong Qiu

Abstract—Additively Homomorphic Encryption (AHE) has
been widely used in various applications, such as federated learn-
ing, blockchain, and online auctions. Elliptic Curve (EC) based
AHE has the advantages of efficient encryption, homomorphic
addition, scalar multiplication algorithms, and short ciphertext
length. However, EC-based AHE schemes require solving a small
exponential Elliptic Curve Discrete Logarithm Problem (ECDLP)
when running the decryption algorithm, i.e., recovering the
plaintext m € {0, 1}£ from m * G. Therefore, the decryption of
EC-based AHE schemes is inefficient when the plaintext length
¢ > 32. This leads to people being more inclined to use RSA-
based AHE schemes rather than EC-based ones.

This paper proposes an efficient algorithm called FastECDLP
for solving the small exponential ECDLP at 128-bit security level.
We perform a series of deep optimizations from two points:
computation and memory overhead. These optimizations ensure
efficient decryption when the plaintext length ¢ is as long as
possible in practice. Moreover, we also provide a concrete imple-
mentation and apply FastECDLP to some specific applications.
Experimental results show that FastECDLP is far faster than the
previous works. For example, the decryption can be done in 0.35
ms with a single thread when ¢ = 40, which is about 30 times
faster than that of Paillier. Furthermore, we experiment with ¢
from 32 to 54, and the existing works generally only consider
¢ < 32. The decryption only require 1 second with 16 threads
when ¢ = 54. In the practical applications, we can speed up
model training of existing vertical federated learning frameworks
by 4 to 14 times. At the same time, the decryption efficiency is
accelerated by about 140 times in a blockchain financial system
(ESORICS 2021) with the same memory overhead.

Index Terms—ECDLP, additively homomorphic encryption,
fast decryption, BSGS, cuckoo hashing.

I. INTRODUCTION

The concept of Homomorphic Encryption (HE) was intro-
duced by Rivest et al. [1] to resolve the privacy-preserving
problems of ciphertext computation. HE contains two cate-
gories: fully homomorphic encryption [2] and partially homo-
morphic encryption [3]. Additively Homomorphic Encryption
(AHE) is a sort of partially homomorphic encryption that
supports addition computation in the ciphertext state. AHE is

Fei Tang and Guowei Ling are with Chongqing University of Posts and
Telecommunications, China, Chongging, 400065.
E-mail: tangfei@cqupt.edu.cn; s200201071@stu.cqupt.edu.cn

Chaochao Cai and Jinyong Shan are with Beijing Sudo Technology Co.,
LTD, China, Beijing, 100083.

Xuangi Liu is with Tsinghua University, China, Beijing, 100084.

Peng Tang and Weidong Qiu are with Shanghai Jiao Tong University, China,
Shanghai, 200240.

This work was supported by the National Key Research and Development
Program of China under Grant 2021 YFF0704102.

usually the fundamental core component for building privacy-
preserving machine learning frameworks [4], [5], federated
learning frameworks [6], [7], blockchain systems [8], [9], and
online auction systems [10], [11].

There are two types of mainstream AHE schemes are: EC-
based AHE [8], [9], [12]-[14] and RSA-based AHE [3], [10],
[15]-[17]. EC-based AHE schemes usually have advantages
over RSA-based AHE schemes in terms of efficiency and
ciphertext length since a very large RSA modulus n should
be chosen for security. For example, n should be set to 3072
bits for 128-bit security level, and it is recommended not to
set n to 2048 bits' after 2023 [18]. However, EC-based AHE
schemes encode the plaintext m € {0, 1}* as m*G in order to
obtain additive homomorphism. Therefore, we cannot directly
get m in EC-based AHE schemes because of the Elliptic
Curve Discrete Logarithm Problem (ECDLP). Note that the
performance of ECDLP is almost the same as that of EC-
based AHE decryption. Thus, existing works [6], [8], [9], [14]
usually only consider the case of ¢ < 32 for the decryption
efficiency. This severely limits the application of EC-based
AHE schemes. Consequently, RSA-based AHE schemes are
more widely used than EC-based AHE schemes, especially
Paillier [3].

TABLE I
RUNTIME AND CORRESPONDING MEMORY OVERHEAD FOR SOLVING
ECDLP WITH A SINGLE THREAD AT 128-LEVEL SECURITY. {1 AND {2
DENOTE THE PARAMETERS OF THE BSGS ALGORITHM, WHERE

01+ b = 4.
¢ (bits) ¢1 £2 Runtime (s) Memory (GB)
20 13 7 0.001 0.0004
24 17 7 0.001 0.0078
28 21 7 0.001 0.125
32 24 8 0.002 1.03
36 27 9 0.003 8.05
40 27 13 0.049 8.05
44 27 17 0.883 8.05
48 27 21 16.202 8.11
52 27 25 291.670 9.07
54 27 27 1312.519 11.91

Although there are also many methods [19]-[24] for solving
ECDLP, they are only efficient when plaintext length ¢ is short
(i.e., £ < 32) [8], [9], [14]. For example, we use the Baby-
Step Giant-Step (BSGS) algorithm [19], [24] to recover m €
{0,1}* from m*G and give the runtime and memory overhead

'In industry, n is sometimes set to 2048 bits for efficiency, but this only
corresponds to 112-bit security level.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

TABLE II
BENCHMARKS OF EXISTING AHE SCHEMES (128-BIT SECURITY LEVEL, AVERAGE OF 1000 TIMES, PLAINTEXT LENGTH £: 48-BIT, {1 = 27,02 = 21, A
SINGLE THREAD). Enc AND Enc* DENOTE THE ENCRYPTION ALGORITHMS BEFORE AND AFTER PRECOMPUTATION (I.E., GENERATING ZERO’S
CIPHERTEXTS IN ADVANCE), RESPECTIVELY. Dec, HomoAdd, AND ScalarMult DENOTE THE DECRYPTION, HOMOMORPHIC ADDITION, AND SCALAR
MULTIPLICATION ALGORITHMS, RESPECTIVELY. NOTE THAT DGK [10] IS A SPECIAL RSA-BASED AHE SCHEME THAT ALSO REQUIRES SOLVING THE
SMALL EXPONENTIAL DISCRETE LOGARITHM PROBLEM DURING DECRYPTION PROCESS.

Schemes | Category | Enc (ms) Enc* (ms) Dec(ms) HomoAdd (ms) ScalarMult (ms) | Ciphertext length (bits)
Exp-ElGamal [12] EC 0.193 0.03 16202.13 0.002 0.22 528
OU [15] RSA 8.74 0.28 1.33 0.005 0.22 3072
Paillier [3] RSA 35.68 0.25 9.58 0.02 0.82 6144
BGN [13] EC 33.51 0.55 20515.84 0.016 0.83 264
DGK [10] RSA 3.50 0.24 16792.25 0.006 0.25 3072
JL [16] RSA 0.46 0.25 2.32 0.005 0.29 3072
Twisted-ElGamal [8] EC 1.57 0.55 16195.24 0.003 0.68 528
Opt-Paillier [17] RSA 47.18 0.26 6.38 0.02 0.81 6144

in Table I. BSGS is a commonly used method in practice for
solving ECDLP [24] due to its stable performance. Note that
in choosing the parameters of BSGS, we almost maximized
the performance with an acceptable memory overhead for an
ordinary PC (i.e., less than 12 GB). As seen from Table I,
although the recovery from m x G to m is efficient when ¢ <
32, the performance is unacceptable as ¢ gradually increases.
When /¢ is 40, 48, and 54, it costs about 0.05, 16, and 1312
seconds, respectively.

We also evaluate almost all mainstream AHE schemes with
a single thread at 128-bit security level and show their perfor-
mance when ¢ = 48 in Table II. It shows that the decryption
efficiency of EC-based AHE schemes is inefficient compared
to that of RSA-based AHE schemes when ¢ > 32. As a result,
even though EC-based AHE schemes have advantages in other
aspects, people have to use RSA-based AHE schemes because
of the decryption efficiency. For instance, Exp-ElGamal [12], a
well-known EC-based AHE scheme, has efficient encryption,
homomorphic addition, scalar multiplication algorithms, and
a short ciphertext length, according to Table II. However, its
poor decryption efficiency is unacceptable if the plaintext m is
slightly large since the ECDLP should be solved. Therefore,
a host of works [25]-[28] use Paillier [3] rather than Exp-
ElGamal [12].

To sum up, the ECDLP limits the application of EC-based
AHE schemes. That is, the decryption is inefficient if ¢ >
32. Our main goal is to improve the decryption efficiency of
EC-based AHE schemes when the plaintext length is as long
as possible. Note that the plaintext length ¢ is limited since
ECDLP is hard to solve when m € {0, 1}* is very large. Even
so, the plaintexts to be encrypted are not very large in many
application scenarios [6], [8], [9]. Therefore, our work can
enable EC-based AHE schemes to be more widely used.

A. Motivations

Since EC-based AHE schemes require solving the small ex-
ponent ECDLP during decryption, RSA-based AHE schemes
are preferred in the previous works [25]-[29]. As a result,
the advantages of EC-based schemes hardly come into play
in the AHE scenarios. Therefore, there is a great need for
an efficient solution to ensure efficient decryption when the
plaintext length is as long as possible. A few existing works

[22], [24], [30], [31] also try to speed up the solution of
the small exponential ECDLP in EC-based AHE schemes.
However, they are still relatively inefficient when ¢ > 32
at 128-bit security level. Moreover, they are theoretical and
provide only a rough estimate of the complexity. At the same
time, no adequate experimental results were given. Therefore,
it is not easy to evaluate their specific performance when
the plaintext length ¢ is longer. In this work, we present a
new algorithm called FastECDLP to solve the above prob-
lems. We provide a concrete implementation and show some
specific application scenarios, including federated learning,
blockchain, and online auctions. Furthermore, we also do our
best to show as complete experimental results as possible,
which can enhance readers’ confidence in applying EC-based
AHE schemes combined with FastECDLP.

B. Contributions

We summarize the main contributions in this paper as
follows.

e We propose an efficient algorithm called FastECDLP
for solving the small exponential ECDLP in EC-based AHE
schemes. The foundation of FastECDLP is the BSGS algo-
rithm [19] combined with the tree-based Montgomery’s trick
[32] and cuckoo hashing [33]. In addition, we also perform
a series of optimizations about computation and memory
overhead.

e We give all experimental results of £ from 32 to 54, which
demonstrates that FastECDLP is amazing for the decryption
efficiency of EC-based AHE schemes. For instance, when
£ = 40, the decryption only require about 0.35 ms with a single
thread, which is about 4 and 30 times faster than that of OU
and Paillier, respectively. We also present some experimental
results of applying FastECDLP to various EC-based AHE
schemes [8], [12], [13]. It indicates that FastECDLP is generic
for any EC-based AHE scheme. Furthermore, the decryption
can be done in about 4 seconds with a single thread when
¢ = 54, while the BSGS algorithm [19], [24] requires about
20 minutes, according to Tables IV and 1. Meanwhile, the
decryption only costs about 1 second with 16 threads when
¢ =54.

e We apply FastECDLP to three specific applications,
i.e., federated learning, blockchain, and online auctions. In

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

federated learning, we can speed up model training of existing
frameworks [7], [25], [34], [35] by about 4 to 14 times. In
blockchain, compared to [8], we can accelerate the decryption
efficiency by about 20 times and reduces memory overhead
by about 11 times with the same parameters. Furthermore,
if the memory overhead is constant, then we can improve
the decryption efficiency by 140 times. If the computation
overhead is constant, then we can reduce the memory overhead
by 325 times. In online auctions, compared to [10], we expand
the range of bids and experiment at a higher security level.

e We have opened the source code of FastECDLP, which
can be found at: https://github.com/ShallMate/FastECDLP.
This paper is a comprehensive work in solving the small
exponential ECDLP in EC-based AHE schemes, including
the design of the algorithm, optimization details, code, and
applications. Our work can bring renewed attention to EC-
based AHE schemes.

II. RELATED WORKS

This section briefly reviews the works devoted to solving
ECDLP when the exponent is in an interval, i.e., m € {0, 1}5,
which is the essence of decryption efficiency for EC-based
AHE schemes.

Shanks [19] described the well-known BSGS algorithm
runing in time O(2%2) using a table of size O(2%), where
l1 4+ ¢5 = (. Pollard [20] presented the kangaroo method
run in time O(2%?) with constant memory overhead. They
are the two most commonly used algorithms to solve the
ECDLP. Since the average complexity of BSGS is within a
constant factor of its worst-case complexity, its performance is
better than the kangaroo method in practice [24]. Matsuo et al.
[36] showed a variation of BSGS to improve the square—root
algorithm. However, [36] is only efficient under the 135-bit
prime order curves, which is far from the security requirements
of EC-based AHE schemes. Subsequently, Gaudry and Schost
[37] gave the parallel version of [36] but still could not
overcome the inefficiency for a large prime order. Moreover,
Galbraith and Ruprai [21] designed an algorithm based on
[20], [37] with smaller computation overhead than previous
works. However, they also pointed out that the algorithm is
inefficient in practice due to problems with pseudorandom
walks going outside the boundaries of the search space and the
overhead of handling fruitless cycles. At the same time, the
experiments are only completed under a 50-bit prime order
curve, which falls far short of the security requirements for
EC-based AHE schemes. Bernstein and Lange [22] proposed
an algorithm with computation complexity of O(2?) and
memory complexity of O(2%/?). It seems to be an excellent
computation and memory overhead. However, the complexities
are estimated in the particular case of a 48-bit prime order
group rather than through theoretical analysis. Gao et al.
[38] proposed a solution for ECDLP using MapReduce and
parallel collision search in the cloud environment. Although
[38] can increase the plaintext length of EC-based AHE
schemes by using a distributed database, the communication
and database queries result in inferior performance. Galbraith
et al. [30] improved the efficiency of BSGS [19] by getting

P, + P, when computing P, — P, for two EC points P}
and P,. However, it requires three tables of size (O(2¢/2),
which is roughly equivalent to 3 times the memory of BSGS.
Moreover, [30] did not consider memory optimizations. There-
fore, this algorithm is only suitable for scenarios with an
very short plaintext length due to the considerable memory
overhead, which further limits the application of EC-based
AHE schemes. Shafagh et al. [31] described an optimization
on BSGS based on the Chinese Remainder Theorem (CRT).
They divided the plaintext into three parts and performed
encryption, decryption, and homomorphic operations on them,
respectively. The computation overhead and the ciphertext
length are increased by three times. Although this approach is
friendly for the homomorphic addition operation, it will cause
overflow when performing the scalar multiplication operation.
Therefore, it is also difficult to use it in some applications
with many multiplications, such as vertical federated learning
[25], [29], [34]. Chatzigiannis et al. [24] reduced the memory
overhead of BSGS by compressing coordinates. However, they
ignored that the hashmap has much redundancy in practice and
did not have any computation overhead optimization.

In conclusion, existing works do not meet the goal of this
paper, i.e., efficient decryption of EC-based AHE schemes
when the plaintext length is as long as possible, enabling EC-
based AHE schemes to be more widely used.

III. PRELIMINARIES
A. Notations

Let GroupGen be a polynomial probabilistic time algorithm
that on input the security parameter A, outputs descriptions of
an EC point-group G of prime order N, and a generator G
of the group, where G is the base point of an elliptic curve
E, : y?> = 2% + ax + b mod p on finite field F, and p is a
large prime number. Other notations are as follows.

e m denotes the plaintext. Given a plaintext m, [m] denotes
its ciphertext of AHE schemes. P, denotes m x GG, where ‘x’
denotes the scalar multiplication on E,,.

e [a, (] denotes the set {o, e+ 1,---, 5},

e We use ¢ = {1 + #5 to control the plaintext length ¢ and
balance the computation and memory overhead by adjusting
61 and 62.

e k denotes the number of hash functions for cuckoo
hashing [33].

e Given an element z on F,, 2~ 1 denotes the inversion of
z modulo p.

e |a| denotes the bit length of an integer .

e (o,) denotes a key-value pair, where « is key and S is
value.

e | denotes decryption failure.

e Given an EC point P, P[x] and P[y| denote its x-
coordinate and y-coordinate, respectively.

o Let Ty = {t1; = (i*G,i) | i € [0,2% — 1]} be a hash
table. We will define T} = {t;; = (ixG[z],4) | i € [1,2471]}
to replace T in section IV-B, and ¢; ; occupies only 64 bits
after our memory overhead optimizations.

eLet Ty = {to; = (j-2°)xG | j €[0,2% —1]} be a linear
table. We will define T = {to; = (j-24)*G | j € [1,271]}
to replace T2 in section IV-C.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

e BT, and BT are binary trees in the form of arrays with
subscripts starting from 0. BT[i] and BT;[j] denote their
(14 1)-th and (j + 1)-th elements, respectively. BT [¢, j] and
BT,i, j] denote the elements of BT and BTy correspond-
ing to subscripts ¢ to j, respectively.

B. EC-based Additively Homomorphic Encryption

We run GroupGen(1*) to obtain {E,,G,G, N}. An EC-
based AHE scheme contains the following algorithms.
e KeyGen(1*): KeyGen inputs a security parameter)\, then
outputs the public key pk and private key sk.
e Enc(pk,m): Enc inputs the public key pk and a message
m € {0,1}¢, then outputs a ciphertext [m].
o Dec(sk, [m]): Dec inputs the private key sk and a ciphertext
[m], then outputs m or L.
e HomoAdd(pk, [m1], [mez]): HomoAdd inputs two cipher-
texts [m;] and [ms] encrypted by pk, then outputs a ciphertext
[[m1 + mg]].
e ScalarMult([m], r): ScalarMult inputs a ciphertext [m] and
a random scalar r € Z?%;, then outputs [r - m].

C. Exp-ElGamal

Exp-ElGamal is a simple variant of the original ElGamal
[39], proposed by Cramer et al [12]. Recently, Exp-ElGamal
has been accepted as the ISO standard [40]. It requires solving
the ECDLP during the decryption process, and other EC-
based AHE schemes [8]-[10], [13], [14] are similar. We run
GroupGen(1*) to obtain {E,,G,G, N}.

Exp-ElGamal scheme contains the following algorithms.

o KeyGen(1*): KeyGen inputs a security parameter)\, then
outputs the public key pk = sk * G and private key sk € Z},.
e Enc(pk,m): Enc inputs the public key pk and a message
m € {0, 1}, then outputs a ciphertext [m] = (c1, ca), where
aa=rxG,co=m+xG+rxpk,reZy.

e Dec(sk, [m]): Dec inputs the private key sk and a ciphertext
[m] = (c1,c2), then computes P, = ca — sk % ¢;. We get
m = logq P, or L over running an algorithm for solving the
ECDLP.

e HomoAdd(pk, [m1], [m2]): HomoAdd inputs two cipher-
texts [m1] = (¢1,1,c¢1,2) and [ma] = (ca,1, c2,2) encrypted by
pk, then outputs a ciphertext [mq +mq] = (11 +c21,¢12+
2,2)-

e ScalarMult([m], r): ScalarMult inputs a ciphertext [m] =
(c1,¢2) and a random scalar r € Z%, then outputs [r - m] =
(r*cy,r*co).

Remark. There is an elliptic curve E,, : y* = 23 +az + b
mod p. The addition operation ‘+’ on E, is subject to the
following calculation rules. Given two EC points P; : (z1,¥1),
Py : (z2,y2), the operation rule of P3 = P, 4+ P; is:

{ P3[z] =72 — (1 +22) mod p 0
Pslyl = 7(z1 —x3) —y1 mod p,
where
T=2-% modp (P =D))
2
T= 33;1% mod p, (P # P)

and a is the coefficient of [E,,. Furthermore, given an EC point
Py i (21,91), then —Py is (w1,p — y1).

D. Baby-Step Giant-Step Algorithm (BSGS)

EC-based AHE schemes [8], [9], [12]-[14] encode the
plaintext m € {0,1}* as m * G in order to obtain additive
homomorphism. Therefore, we need to employ a dedicated al-
gorithm to compute the ECDLP in an interval more efficiently.
In this paper, we construct FastECDLP based on the BSGS al-
gorithm [19] since it admits flexible time/space trade-offs and
is amenable to parallelization. Let Ty = {1, = (i*G,i) | i €
(0,2 —1]} and Ty = {t2; = (j-2)x G | j € [0,2% — 1]},
where ¢ + {5 = {. The key-value table T and linear table
T2 can be precomputed. The BSGS algorithm for EC-based
AHE decryption is illustrated in Algorithm 1.

Algorithm 1 BSGS for EC-based AHE decryption
Il’lpllt: p,fhfg,g = 51 + EQ,Tl = {tl,i = <7, * G,Z> |)
[07221 —1]}, Ty = {tQJ = (j'2£1)*G |j € [0’262_1]}’ m
m x G, where m € {0, 1}
Output: m € {0,1}¢ or L

1: for j =0to 22 — 1 do

€

20 zj =ty [x] — Pyplz] mod p

3: if z; =0 then

4 return m = j - 24

5 end if

6 n=2z"1 modp

7 7= (p—t2;lyl = Pnly]) -n modp
8 QU] =72 - (Pula] + toe]) mod p
9: Q[y] :T(Pm[x] _Q[xD _Pm[y} modp
10: if exist () = t;; then

11: return m = j -2 4+

12: end if

13: end for

14: return L

Note that lines 3 to 5 can be sure that P,, ¢ Ty such
that P,, # ty; holds. That is, if P, = ty;, then m is
directly obtained in line 4. Lines 2 to 9 are for calculating
Q = P, — t2;. In every loop, this process requires 6
modular additions, 3 modular multiplications, and one modular
inversion. After benchmarking, we show the specific efficiency
of various operations on [F,, in Table III.

TABLE III
EFFICIENCY OF VARIOUS OPERATIONS ON IFP, WHERE ‘p| = 256 FOR
SECURITY (UNIT: NS).

inversion

10346

operations ‘ addition multiplication

runtime | 4 46

According to Table III, the modular inversion (i.e., n =
zj_l mod p in line 6) is very time-consuming. We need to
compute at most 22 modular inversions for the decryption.
They account for more than 98% of the computation overhead

in Algorithm 1.

E. Cuckoo Hashing

Cuckoo hashing [33] is a kind of key-value data structure
that uses & hash functions h; : {0,1}* — [1,¢],¢ € [1,k] to

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

determine the position of ¢ elements, where ¢ is generally set
to about 1.3t and k£ = 3. It is suitable for application scenarios
with a large number of look-up operations and a small number
of insertion operations. When a new element e is inserted into
the cuckoo hashing, its position is h,(e), where ¢ € [1,k]. If
there is already an element ¢’ at that position, it will be moved
to position hj(e'), where h;(e’) # hi(e),j € [1,k]. The
procedure is repeated until no more evictions are necessary or
until a threshold number of relocations has been performed. If
the insert operation cannot be completed, then the last element
is put in a stash. When searching for an element e, it should
be compared with the elements at position h;(e) and with the
elements in the stash. According to Pinkas et al. [41], cuckoo
hashing does not require an additional stash if ¢ = 1.3¢ and
k=3.

IV. FastECDLP: AN EFFICIENT ALGORITHM FOR SOLVING
THE SMALL EXPONENTIAL ECDLP DURING THE
DECRYPTION OF EC-BASED AHE SCHEMES

In this section, we construct an efficient algorithm called
FastECDLP based on the BSGS algorithm [19] for EC-based
AHE decryption. FastECDLP can be applied to existing EC-
based AHE schemes, such as Exp-ElGamal [12], BGN [13],
and Twisted-ElGamal [8]. In these AHE schemes, the plaintext
m needs to be recovered from an EC point P,, = m * G.

A. The Tree-based Montgomery’s Trick

In Algorithm 1, the decryption requires at most 2¢2 mod-
ular inversions, which is one of the crucial reasons for the
poor decryption efficiency of EC-based AHE schemes. The
Montgomery’s trick [42] is an algorithm that allows for the
efficient solution of multiple modular inversions. The core
idea is to replace modular inversions with efficient modular
multiplications. However, the computation process of [42] is
serial and does not support parallel computation. Tree-based
Montgomery’s trick [32] is a variant that can support parallel
computation. For the sake of completeness and readability of
FastECDLP, we introduce the tree-based Montgomery’s trick
and show how to implement it. Since [32] is used to accelerate
scalar multiplication rather than combining it with BSGS, the
presentation of tree-based Montgomery’s trick in this paper
differs slightly from [32].

Fig. 1. [Illustration for Algorithm 2 (BuildMulTree) and Algorithm 3
(BuildInvTree) with o = 2.

For the clarity, we divide the tree-based Montgomery’s trick
into two parts. Specifically, we create two binary trees, BT
and BT5, of height /5 + 1 for each decryption, where all

the modular inversions needed for the decryption are the leaf
nodes of BTy, as shown in Figure 1. We show the readers
how to implement it by pseudo-code form in Algorithm 2 and
Algorithm 3.

Algorithm 2 Generation of BT (BuildMulTree)
Il’lpllt: p7€2az = {Zj = t2,j[m] - Pm[‘r] | J € [07262 -

1]},BT; =0

Output: BT,
1: for j =0to 22 — 1 do
22 BTi[j] =z

3: end for

4 f=22h=22,i=0

5. for | =2 to {5+ 1 do

6: h=h/2

7. for j=1to h do

8 BT, [f] = BT [i]- BT1[i + 1] mod p (using asyn-
chronous execution)
f=f+1Li=i+2

10: end for

11: Waiting for all the ¢-th layer nodes to be generated, then

starting the next outside loop.
12: end for
13: return BT,

b

BT, and BT, are complete binary trees in the form of
arrays that store elements in a level order. The construction
rule of BT, is that the parent node is obtained by modular
multiplication of two child nodes. Therefore, the root node
of BT, is the modular multiplications of all leaf nodes. We
let Z = {z; = ta[z] — Pnlz] | j € [0,2% — 1]}, where
t2,; € T2. We can generate BT using the elements in Z as
the leaf nodes of BT;. Note that z; # 0 because if z; = 0, m
is returned in line 4 of Algorithm 1. The generation process of
BT, is shown in Algorithm 2, which requires 22 — 1 modular
multiplications.

Algorithm 3 Generation of binary tree BT (BuildlnvTree)
Il’lpllt: p, 62, BTl, BTQ = @
Output: BT,

L f=20t 2 k=1

2: BTo[f] = (BT1[f])~! mod p

3 fori=/4y;1>0;i=1i—1do

4 h=f-2-k

5: forj=0t0o2-k—1do

6: v=j+hw=vdl

7 BTs[v] = BT [w] - BTs[f + (j/2)] mod p (using
asynchronous execution)

8: end for

99 f=hk=2k

10: Waiting for all the ¢-th layer nodes to be generated, then
starting the next loop.

11: end for

12: return BT,

After generating BT, we can use BT, to generate BT5.
The generation process is illustrated in Algorithm 3, which

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

includes 2¢2*! — 2 modular multiplications and one modular
inversion. Contrary to BT;, which is generated bottom-up,
BT, is generated top-down, and its root node is the inverse
element of the root node of BT;. The rule for the generation
of BT is that the node value is equal to the parent node
multiplied by the brother node position of BT;. The XOR
operation ‘@’ is a simple trick to quickly find the position of
the brother node in a binary tree.

BT, and BT require layer-by-layer generation, i.e., the
creation of nodes on the same layer can be parallelized.
Meanwhile, BT; and BT5 can share an array in the specific
implementation. Therefore, a certain amount of memory can
be saved. Moreover, after BTs is generated, the remaining
memory, i.e., non-leaf nodes BT[2¢2, 2¢2+1 —2], can be freed
to optimize the memory overhead.

We now merge Algorithm 2 (BuildMulTree) and Algorithm
3 (BuildInvTree) to show the complete tree-based Mont-
gomery’s trick. That is, given Z = {z; = to j[z] — Pp[z] |
j €[0,2% —1]}, we can efficiently compute all the inversions
7' ={z;=z"]jel0,2" —1]}.

Algorithm 4 Tree-based Montgomery’s trick (TreeMon)
Input: p, (>, Z = {z; = tzj[z] — Pu[z] | j € [0,2 — 1]}
Output: Z' = {2} = zj_l}

BT, < BuildMulTree(p, {2, Z)

BT, + BuildlnvTree(p, {5, BT1)

free BT,

free BT,[2¢2, 26211 — 2]

return Z' = BT,[0,2% — 1]

A

Due to Algorithm 4 (TreeMon), the decryption of EC-based
AHE schemes no longer do so many modular inversions (line
6) in Algorithm 1. Therefore, the decryption efficiency is con-
siderably improved. In other words, we have transformed 22
modular inversions into one modular inversion and 3 - 22 — 3
modular multiplications using TreeMon.

Remark. According to Table III, executing one modular
multiplication and one modular inversion take 46 ns and
10346 ns, respectively. Consequently, we can enhance the
efficiency of this step by as much as at least 75 times. In
addition, BSGS with TreeMon is the basic skeleton of our
FastECDLP. However, simply applying TreeMon to BSGS for
solving ECDLP during the decryption is still insufficient since
it still involves numerous table look-up operations, modular
multiplications, and a huge memory overhead caused by T,
and T5. Meanwhile, if we use a classic hash table, such as
hashmap, to store T, this is still a huge memory overhead
since hashmap will cause about 8 times memory redundancy
in practical implementation. Therefore, we need to do further
optimizations in following subsections regarding computation
and memory overhead to ensure efficient decryption.

B. Memory Overhead Optimizations

In this subsection, we show how to optimize FastECDLP’s
memory overhead. The majority of FastECDLP’s memory
overhead consists of precomputed T; = {{(i * G,4) | i €
(0,24 — 1]} and Ty = {(j - 29)* G | j € [0,22 — 1]}

since T and T should be in memory during the decryption
process of EC-based AHE schemes. The memory overhead
caused by T is 2% - (|p| + 8) bits (for security, [p| = 256).
That is, only one byte is needed to denote the positive or
negative of the y-coordinate. Meanwhile, there is no memory
redundancy for the linear table in practical implementation.
Therefore, the memory overhead caused by T5 is small. For
example, when /5 takes a maximum of 23 in FastECDLP,
T, takes up only 0.25 GB? of memory. What needs to be
reduced is the memory overhead associated with T;. We use
the following three methods to optimize the memory overhead
caused by T;.

1) Only store the x-coordinates in Ti: In line 10 of
Algorithm 1, we should determine whether there is an element
t1; € Ty such that Q = t; ; holds, where i € [0,2° —1],Q =
P,, —t2;, and t3; € T,. Thus, if we want to determine
whether there is an EC point @) in Ty, it is sufficient to
store {(i *x G)[x] | i € [0,2% — 1]}. Furthermore, since
(i x GQ)[z] = (—i* G)[x], we can use (i * G)[z] to correspond
to {i,—i}. That is, T; can represent 2“1*1 baby steps. We
only need 2‘ baby steps to cover the giant step. Therefore,
we can define T} = {t;,; = (i * G[z],4) | i € [1,2471]} to
replace T;. The plaintext space is still {0, 1}, reducing the
memory overhead by 2 times.

2) Truncating the x-coordinates while ensuring no colli-
sions occur: Storing the whole x-coordinates, i.e., {(ixG)[z] |
i € [1,2971]}, is also unnecessary since a part of them is
enough to denote keys for a hash table without collision. For
example, storing the first 6 bits of (i x G)[x] is sufficient
as long as no collision occurs. In our experimental part, ¢;
takes a maximum of 31. According to the birthday attack?,
the probability of a collision is about

—3.2f1-1(3.201-1_1)
20

3)

If # = 64 and ¢; = 31, then the Equation (3) is approximately
equal to 0.24. We have tested that there is no collision occurs
at 20-1 EC points when ¢; = 31. Therefore, we can save
about 4 times the memory overhead by storing only 64-bit
x-coordinates for T. Note that we actually do not care what
the probability of a collision is, because all we need to do
is determine the minimum value of # on the premise that no
collision occurs in practice when ¢; = 31. Therefore, if ¢; <
31, then 6 can be set to smaller than 64, further reducing the
memory overhead.

3) Using cuckoo hashing [33] instead of a classic hash
table: The typical hash table (i.e., hashmap) causes a lot of
memory redundancy, leading to memory waste. According to
our benchmarking, hashmap leads to 8 times more memory
redundancy. Cuckoo hashing only require 1.3 - 2“2~ bins for
T, = {t1, = (i * G[x],4) | i € [1,271]}. Note that cuckoo
hashing is essentially two linear tables of size 1.3 - 2171,
representing keys and values, respectively. Therefore, there is
no additional redundancy in practical implementation. Cuckoo
hashing saves about 5 times more memory than hashmap. If

1—e

2 After T2 is optimized to T%, it is actually only about 0.12 GB.
3We use cuckoo hashing to store T’ rather than the hashmap. Therefore,
there are actually at most 3 - 2¢2 =1 hash functions when k = 3.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

storing i € [1,2%171] with the uint32 type, then T takes about
1.3+ (64 4 32) - 2“171 bits of memory. We will continue with
the optimization to 1.3-64-2%~1 bits, which will be presented
together with the performance optimization of cuckoo hashing.

C. Further Computation Overhead Optimizations

In this subsection, we describe how to optimize FastECDLP
in terms of computation overhead. This part further improves
the efficiency of FastECDLP and ensures efficient decryption.
We use the following three methods to optimize the compu-
tation overhead.

1) Computing (to; — Py,)|z] using (P, — t2,;)[z]: After
our previous optimizations, the essence of solving ECDLP is
to find 7 € [1,2%71] and j € [1,2%] such that

(P, — ta;)[z] =i+ Glz] € T} “)

holds, where P, = m=+G and m = j - 241 4 4. Since T only
stores the z-coordinates, line 9 of Algorithm 1 (calculating
(P, — t2,5)[y]) can be ignored, saving one modular multipli-
cation in every loop. We know that (i x G)[z] = (—i * G)[z]
in T. Therefore, we should transform Equation (4) into

(ta; — Pm)[z] = (=i G)[z] € T, 5)

(P —t2;)[z] and (t2 ; — P,)[z] need to compute (—to ;[z] —
Pplz])™! and (—Pnz] — to [z])!, respectively. Since
P[z] = —P[z] holds for any given EC point P, we can see that
(P, —t2,j)[x] and (tg j—Pp,)[x] share the same modular inver-
sions. It means that when £ is constant, we only require half of
the modular inversions. That is, we can transform the plaintext
space from {0, 1}* to [-2¢71, 21 —1]*, thereby reducing 22
modular inversions to 22~ modular inversions in Algorithm
4. Therefore, T'5 can store half of the elements. We can define
Th = {t2; = (j-2°)*G | j € [1,2°271]} to replace T5. The
way to recover the plaintext m becomes to find i € [1,2471]
and j € [1,2%71] such that Equation (4) or Equation (5) holds.
Then, we judge m € {j-2°1+i, j-20 —i, —j-24 44, —j5.261 —4}
such that P,, = m * G holds.

We replace T; and T, of sizes 241 and 2% with T/ and
T}, of sizes 261=1 gpd 2621, respectively. Therefore, we can
solve the ECDLP of scale ¢ with scale £ — 2. The computation
and memory overhead can be balanced by adjusting ¢, and /5.
Thus, if ¢ is constant, then the computation overhead can be
reduced by 4 times. If the computation overhead is constant,
then the memory overhead can be reduced by 4 times.

2) Using the coordinate values directly as hash values of
cuckoo hashing: In line 10 of Algorithm 1, there are a large
number of hash table look-up operations, which also means
a large computation overhead for the cuckoo hashing. To
further improve the efficiency, we should boost the query
speed of the cuckoo hashing. The cuckoo hashing requires
computing k£ small hash values, typically only 32 bits, when
performing a look-up operation. We can split the coordinates
of points into multiple hash values to avoid a lot of hash
functions during decryption. In addition, we also discuss how
to optimize memory overhead for T using the truncation of

2J
1

“Note that the size of the plaintext space has not changed. Subtracting 2¢—1
from the upper and lower bounds of {0, 1}* gives [—2¢~1 2¢-1 —1].

coordinates. For example, Figure 2 shows that for k = 3, we
can treat (i * G)[z] as the 3 hash values of cuckoo hashing.
The hash values point to the indexes of the bins, and they do
not need to be stored. The 32-bit values connected by the hash
values in Figure 2 are stored in the bins as keys. Thus, only
1.3+ (32 + 32) - 2271 bits are needed to store T since the
values i € [1,271] use the uint32 type.

hash1 hash2 hash3

! ! !

‘ 32 bits | 32 bits ‘ 32 bits ‘ 32 bits ‘ 32bits‘ 32 bits

32 bits | 32 bits

Fig. 2. The z-coordinate is considered the hash values and keys of the cuckoo
hashing when k = 3. (|p| = 256)

The hash values and the keys together form 64 bits to ensure
finding the correct ¢ from T. According to Equation (3), the
probability of a collision is about 24% when ¢; = 31 and
6 = 64. It should be emphasized that we only need to ensure
that 21~1 key-value pairs can be successfully inserted into
the bins of cuckoo hashing. We show the probability just to
prove that our method is worth trying. Since we only need
a suitable method to split the z-coordinates, and as long as
we successfully obtain T once, T can be used for all the
decryptions in this setting (the curve and /¢1).

The above optimizations can speed up each look-up oper-
ation by about 5 to 10 ns. In the experimental part, we will
show the specific experimental results of our cuckoo hashing.
Since the decryption of EC-based AHE schemes requires at
most k-2¢~1 hash functions, even a single-query nanosecond
level improvement is meaningful concerning many large-scale
practical applications [8], [25], [29].

3) The implementation of F,: The entire process of recov-
ering the plaintext m is operations on the finite field IF,,. At
the same time, we can see that Algorithm 4 brings a host
of additional modular multiplications. Therefore, we have to
optimize the implementation of IF,,. The most straightforward
representation would be using an array of 4 uint64s (64 -4 =
256). However, there is no space left for overflow when
intermediate calculations are performed between two arrays,
resulting in expensive carry propagation. The representation
in our paper is ten uint32s with base 226 (26 - 10 = 260,
so the last word needs only 22 bits), leaving the desired
64 bits (32 - 10 = 320,320 — 256 = 64) for overflow.
This representation was inspired by the implementation of the
secp256k1 curve in Bitcoin [43]. It can speed up the whole
process of solving the small exponential ECDLP by about 2
to 3 times.

D. Exp-ElGamal Decryption using Our FastECDLP

We take Exp-ElGamal [12] as the example to describe how
FastECDLP is embedded in an EC-based AHE scheme. Note
that FastECDLP is generic to any EC-based AHE scheme and
that the method embedded in other schemes [8], [9], [13], [14]
is similar to that of Exp-ElGamal, which is not repeated in this
paper.

Let Search(T},F,) — {i,0k} be the input of a cuckoo
hashing T} and Plz] € F,. If Plz] is in T}, then it

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

returns ok = true and the index %; otherwise, ok = false
and i = (). Following the optimizations in this section, we
show the complete FastECDLP in Algorithm 5, which can
ensure efficient decryption EC-based AHE schemes when the
plaintext length ¢ is as long as possible. The computational
complexity and required memory space of FastECDLP are
O(2%271) and 1.3 -64 - 26071 + 264 - 2f2~1 bits, respectively.

Algorithm 5 Solving ECDLP fastly (FastECDLP)

Input: p, (1, 02,0, T} = {t1; = (i x Gz],i) | i € [1,2871]}
with the memory optimizations, T4 = {t2; = (j - 2) * G |
je[1,227 1}, P, = mx G, where m € [-2¢71 201 — 1]
Output: m or L

cZ+— 0

/I Determine whether P, is in T}.

if {i,0k} < Search(T%, P,,); ok then

mi =1, My = —1
goto line 33
end if
/I Determine whether P, is in T% and generate Z = {z;}.
for j € [1,2%271,t5; € T, do
zj = by j[z] — Pr[7]
if z; = 0 then
my = -2 my = —j- 24
12: goto line 33
13: end if
14 Z=7ZU{z}
15: end for
16: // The modular inversions are calculated by Algorithm 4.
17: Z' = {7} = z;l | j € [1,227 1]} « TreeMon(p, {2 —
1,7)
18: for j € [1,2271],t5 ; € T) do
19: ¢ = Py[z] +to [z] mod p
20: // Determine whether Equation (4) holds.
21 Qla] = ((p — ta,5[y] — Puly]) - 2j)> — » mod p
22: if {4, 0k} < Search(T%, Q[z]); ok then

R A A ol S

—_—
—_ O

23: my=j-2% +i5me =j-2% —
24: break
25: end if

26: // Determine whether Equation (5) holds.

270 Q] = ((t2,5[y] — Pmly]) - 25)* — ¢ mod p
28: if {4, 0k} < Search(T%, Q[z]); ok then

29: my=—j-24 —i;mg = —j-24 44
30: break

31: end if

32: end for

33: if my x G = P,, then

34: return m = mg

35: else if my * G = P, then
36: return m = mso

37: end if

38: return L

The encryption and decryption process of Exp-ElGamal
combined with FastECDLP is as follows.

e Enc(pk, m): Enc inputs the public key pk and a message
m € [-271,271 — 1], then outputs a ciphertext [m] =
c1,¢2), where ¢; = rxG,co = m* G+ 1 pk.

e Dec(sk, [m]): Dec inputs the private key sk and a cipher-
text [m] = (c1, c2), then computes skxcy . If skxkeq = ¢o holds,
then return m = 0; otherwise compute P,, = co —sk*c;. We
run FastECDLP to get m = logg P, or L.

Remark. FastECDLP can actually recover m € [—2¢~1 —
26=1 26=1 4 926:-1] from P,,. In order to keep the size of the
plaintext space unchanged, we still set m to [—2¢71, 2671 —1]
in Algorithm 5. In other words, FastECDLP can handle the
size of 2¢++2%1, which can further prevent overflow in practical
applications.

V. EXPERIMENTS

This section introduces the experimental details and presents
the experimental results, demonstrating that FastECDLP can
ensure efficient decryption and maximizing ¢ = {1 + {s.

A. Experiment Setup

Experimental environment is Ubuntu 20.04 with Intel(R)
Xeon(R) Gold 5218 (2.30 GHz), 32 cores, and 98 GB RAM.
The security level of AHE is 128-bit, that is, the RSA modulus
n is 3072 bits, and p is 256 bits. The plaintext length ¢ is set
from 32 to 54. /1 is set from 21 to 31, and /5 is set from 11
to 23. This ensures that decryption can be completed within 1
second and the memory overhead is within 12 GB. EC-based
AHE schemes are implemented in the go language with the
secp256k1 curve [44]. For cuckoo hashing, k is set to 3, and
the number of bins is set to 1.3 - 26471,

B. Experimental results

1) Benchmarks for cuckoo hashing: We benchmark our
customized cuckoo hashing, which is an essential fundamental
component for FastECDLP. We use the hashmap and our
cuckoo hashing to store T} = {t1; = (i * G[z],i) | i €
[1,2%711} by varying ¢;. As can be seen in Figure 3, the
hashmap and our cuckoo hashing need about 60 GB and 11
GB of memory when ¢; = 31, respectively. It is worth noting
that [24] also compresses { (i * G[z], 1)} to 64-bit values with
another point compression method, but the data structure is
the hashmap. Therefore, FastECDLP can save about 5 times
as much memory as [24] with our cuckoo hashing. Moreover,
the point compression method in [24] requires a small amount
of computation, while we do not, since we directly truncate
the coordinates as hash values and keys for cuckoo hashing.

We then give the efficiency of the look-up operation in our
cuckoo hashing and compare it to the original cuckoo hashing
and the hashmap. As shown in Figure 4, our cuckoo hashing
performs a look-up operation 5 to 10 ns faster than hashmap
and original cuckoo hashing. Note that we are not concerned
here with the efficiency of insertions and deletions since they
are never used after T is generated.

2) Exp-ElGamal combined with FastECDLP: We combine
FastECDLP with Exp-ElGamal [12] to show experimental
results with the plaintext length ranging from 32 to 54 bits.
Due to limited space, we choose some representative results
in Table IV.

We can see from Table IV that FastECDLP combines
well with concurrent programming and performs at its best

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

TABLE IV
DECRYPTION EFFICIENCY AND MEMORY ABOUT EXP-ELGAMAL COMBINED WITH FastECDLP (UNIT: MS, AVERAGE OF 1000 RUNS, £ = £1 + £2). T
DENOTES THE NUMBER OF THREADS. NOTE THAT £; — 1 CORRESPONDS TO THE SIZE OF T, AND {2 — 1 CORRESPONDS TO THE COMPUTATION
OVERHEAD AND THE SIZE OF T%.

Plaintext length £ | ¢2 ¢; | FastECDLP (T =1)

FastECDLP (T = 2)

FastECDLP (T =4) FastECDLP (T = 16) ‘ Memory (GB)

32 11 21 1.02 0.57
33 11 22 1.01 0.58
34 11 23 1.02 0.55
35 11 24 0.99 0.52
36 1125 1.04 0.56
37 11 26 0.87 0.57
38 11 27 0.89 0.48
39 11 28 0.83 0.57
40 11 29 0.78 0.51
41 11 30 1.01 0.58
42 11 31 1.02 0.56
43 12 31 1.83 1.19
44 13 31 3.68 2.37
45 14 31 8.01 4.48
46 15 31 14.80 8.81
47 16 31 27.48 16.78
48 17 31 58.50 35.55
49 18 31 122.42 72.45
50 19 31 237.36 141.80
51 20 31 502.59 292.44
52 21 31 922.24 547.70
53 22 31 1892.31 1103.24
54 23 31 4164.85 2436.23

0.41 0.35 0.010
0.42 0.36 0.021
0.43 0.35 0.043
0.44 0.36 0.086
0.45 0.37 0.173
0.46 0.39 0.345
0.37 0.31 0.690
0.36 0.32 1.380
0.35 0.28 2.761

0.45 0.36 5.522
0.41 0.35 11.044
0.83 0.54 11.044
1.62 1.14 11.044
3.20 2.41 11.045
6.44 4.44 11.045
11.62 7.93 11.046
2391 17.08 11.047
50.13 34.14 11.049
95.33 63.93 11.052
198.56 127.15 11.060
371.01 248.13 11.076
764.29 501.43 11.107
1587.77 989.78 11.170

—m— our cuckoo hashing
—8— hashmap
50 4

B
=1
L

Memory (unit: GB)
w
=1
|

N
=1
!

Fig. 3. Memory comparison between hashmap and our cuckoo hashing by
varying ¢ (unit: GB).

performance in 16 thread. For example, when ¢; = 21 and
ly = 11 (i.e., £ = 32), FastECDLP requires 1.02 ms and
0.35 ms with a single thread and 16 threads, respectively.
When ¢, = 31, {5 = 23 (i.e.,, { = 54), FastECDLP takes
about 1 second to complete a decryption with 16 threads.
Compared to the decryption efficiency of RSA-based AHE
schemes, this seems relatively low, but it is acceptable. First,
few applications require encryption of a 54-bit number for
additive homomorphic operations. Furthermore, although the
decryption efficiency is relatively low, the advantages of EC-
based AHE schemes are significant in other aspects, such as
the encryption efficiency, ciphertext length, and homomorphic
operations.

The computational complexity of FastECDLP is O(2¢271).
Therefore, the efficiency of FastECDLP depends mainly on /5.

—m— our cuckoo hashing
140 4 —e— hashmap
—— cuckoo hashing

130 +

120 4

Look-up time (unit: ns)

110 o

100

Fig. 4. Look-up running time comparison with hashmap, cuckoo hashing,
and our cuckoo hashing by varying ¢1 (unit: ns).

We show the decryption efficiency of /o from 11 to 23 under
16 threads in Figure 5. It shows that the decryption time almost
doubles when /5 is increased by one and that FastECDLP is
very efficient when /5 < 18.

3) FastECDLP is generic for EC-based AHE schemes:
FastECDLP is generic to any EC-based AHE scheme since
they all need to solve the small exponential ECDLP during
decryption. We show the decryption efficiency of mainstream
EC-based AHE schemes after applying our FastECDLP when
f1 =29 and /5 = 11 with a single thread in Table V. That is,
the plaintext space is [—237,23°], and the plaintext length ¢ =
40. The reason for choosing 40 bits is that this is an appropriate
length for some applications, e.g., vertical federated learning
and online auction systems, in this paper.

Any EC-based AHE scheme combined with FastECDLP

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

—8— Exp-ElGamal combined with FastECDLP

@
=3
=]

=)
=]
=1

Decryptien efficiency (unit: ms)
= F3
[=] (=}
S 151

—————
1 12 13 14 15 16 17 18 19 20 21 22 23
5}

Fig. 5. Decryption efficiency under 16 threads by varying ¢2 (unit: ms).

TABLE V
DECRYPTION EFFICIENCY COMPARISON USING THE BSGS ALGORITHM
[19] AND FastECDLP WITH A SINGLE THREAD
(¢ = 40,47 = 29,¢2 = 11, AVERAGE OF 1000 RUNS).

Schemes BSGS [19] (ms) FastECDLP (ms) vs. BSGS
Exp-ElGamal [12] 10.65 0.33 1 32x
BGN [13] 11.14 0.35 T 32x%
Twisted-ElGamal [8] 11.88 0.34 1 35x%

can perform decryption within about 0.35 ms with a single
thread if ¢ = 40, which is more than 30 times better than the
scheme combined with BSGS [19], i.e., the original scheme.
Therefore, FastECDLP can increase the decryption speed by
more than 30 times for any EC-based AHE scheme when ¢ =
40. Moreover, the decryption efficiency of Exp-ElGamal [12]
combined with FastECDLP surpasses that of all RSA-based
AHE schemes when ¢ = 40. For example, according to Table
II, OU [15] and Paillier [3] require about 1.3 ms and 9.5 ms to
execute the decryption, respectively. Note that the decryption
efficiency of RSA-based AHE schemes is hardly affected by
£. The decryption efficiency of any EC-based AHE scheme
combined with FastECDLP is about 4 and 30 times faster
than OU and Paillier, respectively.

VI. APPLICATIONS

In this section, using Exp-ElGamal [12] as the example, we
show three specific applications of EC-based AHE schemes
with the blessing of FastECDLP. In addition, we also report
some specific experimental results of these applications. These
show that EC-based AHE schemes have advantages in com-
putation and communication overhead over RSA-based AHE
schemes after applying FastECDLP. This further illustrates the
great practical significance of FastECDLP in AHE scenarios.

A. Application to Federated Learning

Federated Learning (FL) [45] enables participants to per-
form joint model training without revealing source data. We
take Vertical Federated Learning (VFL) as an example, which
describes the case where data is vertically partitioned by
features. Define two parties .4 and B, both of whom wish

to train a machine learning model by consolidating their
respective data D, and D;. A and B have the same batch
of samples but different features, i.e., D, and D, vertically
partitioned. The VFL system obtains D = D, ND,, (similar to
a “join” operation in databases) to train a model M, in which
process A or B does not expose its data to each other. Most
existing VFL frameworks [7], [25], [34], [35] are constructed
based on Paillier [3]. However, Paillier needs to choose a
3072-bit RSA modulus at 128-bit security. Therefore, the AHE
operations of Paillier are inefficient, resulting in low efficiency
of the existing VFL frameworks.

We can apply Exp-ElGamal [12] combined with
FastECDLP to existing Paillier-based VFL frameworks
to speed up the speed of model training. Meanwhile, since
the short ciphertext length of Exp-ElGamal, communication
overhead also can be reduced. We choose four well-known
Paillier-based VFL frameworks, including two federated
logistic regression frameworks (HeteroLR [25] and VFLwC
[34]) and two federated gradient boosting decision tree
frameworks (SecureBoost [35] and VF?Boost [7]). The
distributed architecture of VFL is simulated using Docker.
We evaluate the performance using three datasets: MNIST
[46], Ionosphere [47], and Breast Cancer [48], which are
classic datasets and are suitable for VFL model training. For
an FL system, 40-bit is a sufficient plaintext length since
the model parameters that need to be encrypted, such as
gradients or labels, are very small. For example, the gradients
are only about 32 bits [6]. However, the result of scalar
multiplication can easily overflow the plaintext space when
¢ = 32. Therefore, to be on the safe side, we set the plaintext
length parameters ¢; and ¢ to 29 and 11, respectively. That
is, the plaintext length is ¢ = 40. According to Table 1V, the
memory overhead is only 2.76 GB. It shows that FastECDLP
does not overload VFL participants. Even a lightweight
virtual container can run FastECDLP. Note that the accuracy
of the jointly trained models is hardly affected by ¢ = 40.

We report the concrete results under a single thread in
Table VI on the training time and communication overhead
for every VFL framework. Table VI shows that Exp-ElGamal
combined with FastECDLP can improve can speed up model
training of existing Paillier-based VFL frameworks by at
most about 4 to 14 times. The interactive data of the VFL
frameworks is predominantly the ciphertexts. Therefore, the
communication largely depends on the ciphertext length. The
ciphertext length of Paillier is 6144 bits, while that of Exp-
ElGamal is only 528 bits, according to Table II. Therefore, the
overall communication overhead can be reduced by a factor
of 10 to 15.

In summary, our work has solid practical significance in the
VFL scenarios.

B. Application to Blockchain

Blockchain is a sort of tamper-proof digital ledger of
transactions in chronological order maintained by distributed
consensus nodes (called miners). It is derived from a decentral-
ized peer-to-peer digital currency system called Bitcoin [49].
Digital currency can be regarded as the most successful appli-

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

TABLE VI
RESULTS OF WHOLE TRAINING TIME AND COMMUNICATION PER ITERATION. COMMUNICATION OF EACH ITERATION IS OBTAINED BY PORT LISTENING.

Training time (min)

Communications (MB/iter)

Frameworks Datasets Paillier [3] | Ours | vs. Paillier | Paillier [3] | Ours | vs. Paillier | “*ccuracy (%)
MNIST [46] 275.3 19.9 T 14x 234 20.6 T11x 96.1
HeteroLR [25] Tonosphere [47] 4.6 0.15 T 30x 0.76 0.05 T 15X% 90.0
Breast Cancer [48] 4.7 0.18 126 X% 1.16 0.09 T 13x 96.6
MNIST [46] 286.4 20.4 T 14x 234 20.6 T11x 96.0
VFLwC [34] Tonosphere [47] 4.4 0.16 T 28x% 0.76 0.05 T 15% 89.7
Breast Cancer [48] 4.1 0.15 T 27x 1.16 0.09 T 13x 97.1
MNIST [46] 192.6 47.8 T 4x 8.8 0.73 T12% 98.5
SecureBoost [35] Tonosphere [47] 2.6 1.5 T 1.7x 0.26 0.02 T 13x 98.2
Breast Cancer [48] 2.6 1.8 T1.4x 0.41 0.03 T 14x 98.4
MNIST [46] 80.5 22.9 T4x 8.8 0.73 T12x 98.5
VF2Boost [7] Tonosphere [47] 1.5 0.34 T4x 0.26 0.02 T 13x 96.8
Breast Cancer [48] 1.3 0.45 T4x 0.41 0.03 T 14x 98.6

cation scenario for blockchain, and various digital currencies
[81, [50]-[52] have also been proposed in recent years.

In order to achieve the confidentiality of the transaction,
a typical approach is to commit the balance and the transfer
amount with a global homomorphic commitment scheme (e.g.,
Pedersen commitment [53]) and then derive a secret from
hidden coincidences to prove the correctness of the transaction
and authorize the transfer.

AHE schemes can be viewed as a computationally hid-
ing and perfectly binding commitment, in which the secret
key serves as a natural trapdoor to recovering the message.
Meanwhile, EC-based AHE schemes [8], [12] are generally
used here to ensure the efficiency of the digital currency
system while reducing the communication overhead during the
transfer process. In order to ensure efficient decryption, the
plaintext length is generally set to about 32 bits in previous
works [8], [9], [51]. However, when we deployed a blockchain
financial system, we found that 32 bits were not enough
because 6 to 8 bits were needed to represent the fractional
part. After our actual test, 48 bits is a sufficient plaintext
length for a blockchain financial system in our implemen-
tation. Unfortunately, existing EC-based AHE schemes are
highly time-consuming to decrypt when the plaintext length
¢ = 48. According to Table II, Exp-ElGamal [12] and Twisted-
ElGamal [8] require about 16202 ms and 16195 ms to execute
decryption when ¢ = 48, respectively.

TABLE VII
DECRYPTION EFFICIENCY AND MEMORY ABOUT EXP-ELGAMAL
COMBINED WITH FastECDLP WHEN ¢ = 48 (UNIT: MS, AVERAGE OF
1000 RUNS). T DENOTES THE NUMBER OF THREADS.

L 4| T=1 T=4 T=16 | Memory (GB)
17 31 58.50 2391 19.05 11.046
18 30 109.22 46.14 36.25 5.526
19 29 207.81 84.88 59.78 2.769
20 28 398.10 162.13 112.84 1.396
21 27 711.63 309.53 222.90 0.721
22 26 1664.74 641.18 452.01 0.407
23 25 | 339497 1295.76 896.575 0.298

We present the experimental results of FastECDLP com-
bined with Exp-ElGamal when ¢ = 48 in Table VII. We
show our experimental results as much as possible and hope
readers can better apply FastECDLP in a blockchain system

requiring EC-based AHE schemes. According to the hardware
configuration, ¢; and /5 can be configured according to Table
VII to balance decryption efficiency and memory space. For
example, if the blockchain node is lightweight and can only
run a maximum of 2 GB of memory and 4 threads, ¢; = 28
and /o = 20 are the optimal configurations.

PGC [8] is a decentralized confidential payment system
with audibility, and the AHE scheme used is Twisted-ElGamal
with ¢ = 32. We compare the decryption efficiency of Exp-
ElGamal combined with FastECDLP and Twisted-ElGamal
with a single thread at ¢ = 32 in Table VIII. It shows that
the advantages of FastECDLP become more pronounced as
{5 increases, and the decryption efficiency can be improved
by at most 20 times.

TABLE VIII
DECRYPTION EFFICIENCY OF EXP-ELGAMAL COMBINED WITH
FastECDLP AND TWISTED-ELGAMAL [8] WITH A SINGLE THREAD AT
£ = 32 (UNIT: MS, AVERAGE OF 1000 RUNS).

b 0 ‘ Twisted-ElGamal [8] Ours ‘ vs. Twisted-ElGamal
7 25 1.878 0.148 T 13x
8 24 2.891 0.213 T 13x
9 23 4.375 0.330 1 13x
10 22 8.147 0.522 T 16x
11 21 14.753 0.867 T17x
12 20 30.520 1.665 T 18x%
13 19 57.488 3.148 T 18x%
14 18 124.227 6.437 1 20x

As for the memory overhead, we also compare the memory
of Exp-ElGamal combined with FastECDLP and Twisted-
ElGamal at / = 32 in Table IX. Twisted-ElGamal [8] uses
the point compression technique from [24]. Therefore, an
element in T'; of Twisted-ElGamal theoretically occupies only
64 bits of memory, the same as optimized T} at a single
element. However, the sizes of T and T are 201 and 2601,
respectively. Moreover, our cuckoo hashing can reduce the
memory overhead by 5 times due to the redundancy of the
hashmap. Therefore, we should reduce the memory overhead
by more than 10 times.

According to Table IX, Twisted-ElGamal require 0.953 GB
of memory when ¢ = 8, and we need only 0.086 GB,
which reduces memory overhead by about 11 times, which
also confirms our above analysis.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

TABLE IX
MEMORY OVERHEAD OF EXP-ELGAMAL COMBINED WITH FastECDLP
AND TWISTED-ELGAMAL [8] AT £ = 32 (UNIT: GB).

by 4 ‘ Twisted-ElGamal [8] Ours ‘ vs. Twisted-ElGamal
7 25 1.952 0.172 T 11x
8 24 0.953 0.086 T11x
9 23 0.478 0.043 T 11x
10 22 0.246 0.021 T 11x
11 21 0.126 0.010 T 11x
12 20 0.063 0.006 T 12x
13 19 0.036 0.003 T12x
14 18 0.015 0.001 T12x

When the computation or memory overhead is constant,
we compare Exp-ElGamal combined with FastECDLP and
Twisted-ElGamal in Table X. If the required memory is
almost equal (0.015 GB and 0.010 GB), then the decryp-
tion of Twisted-ElGamal and Exp-ElGamal combined with
FastECDLP cost 124.227 ms and 0.867 ms, respectively. If
the computation overhead is almost equal (1.878 ms and 1.665
ms), then Twisted-ElGamal and Exp-ElGamal combined with
FastECDLP require 1.952 GB and 0.006 GB of memory,
respectively. In other words: If the memory overhead is
constant, then we can improve the decryption efficiency by
140 times, and if the computation overhead is constant, then
we can reduce the memory overhead by 325 times.

TABLE X
COMPARISON OF EXP-ELGAMAL COMBINED WITH FastECDLP AND
TWISTED-ELGAMAL [8] AT £ = 32 WHEN THE COMPUTATION OR
MEMORY OVERHEAD IS CONSTANT.

Constant ‘ Schemes Memory (GB) Runtime (ms) ‘ vs. [8]
[8] 0.015 124.227
Memory ‘ Ours 0.010 0.867 ‘ T 140x
. [8] 1.952 1.878
Runtime | ¢ 15 0.006 1.665 ‘T3%X

To sum up, FastECDLP also has solid practical significance
in the blockchain payment system.

C. Application to online auctions

Many online auction systems offer a service to customers
that one can submit a maximum bid to the system. Obviously, a
maximum bid is private information. Moreover, all participants
should conduct online auctions fairly. Therefore, a Secure
Comparison (SC) protocol is usually used here. SC is an
important problem in multi-party computation, and it involves
the comparison of two or more secret values in a privacy-
preserving manner. There are many SC protocols [10], [54],
[55] based on the AHE schemes. Meanwhile, RSA-based AHE
schemes cause a lot of communication overhead in frequent
bidding comparisons due to the long ciphertext. Therefore,
EC-based AHE schemes also has certain advantages in the
online auction scenario.

Damgard et al. [10] set ¢ = 16 in their online auction
system, and only conducted experiments at 80-bit security
level. That is, the bid should be less than 65536, which can
easily cause bid overflow. To ensure the bid cannot overflow,

TABLE XI
DECRYPTION EFFICIENCY AND MEMORY ABOUT EXP-ELGAMAL
COMBINED WITH FastECDLP WHEN ¢ = 40 (UNIT: MS, AVERAGE OF
1000 RUNS). T DENOTES THE NUMBER OF THREADS.

Lo 4| T=1 T=4 T=16 | Memory (GB)
9 31 0.254 0.142 0.135 11.044
10 30 0.458 0.272 0.242 5.522
11 29 0.833 0.385 0.330 2.761
12 28 1.612 0.702 0.536 1.381
13 27 3.076 1.365 1.018 0.690
14 26 6.294 3.822 2.421 0.345
15 25 13.273 5.610 4.617 0.173
16 24 24.369 11.631 7.977 0.087
17 23 45.701 21.689 15.454 0.045
18 22 93.257 40.344 30.273 0.025
19 21 175.123 177.700 59.834 0.018
20 20 | 351.186 153.452 111.559 0.021
21 19 | 721.261 308.065 223.793 0.034

we set £ = 40 bits, i.e., the maximum bid is about one trillion.
We apply Exp-ElGamal [12] combined with FastECDLP to the
online auction system in [10]. We present the experimental
results at 128-bit security level when ¢ = 40 in Table XI.
Similar to the blockchain payment system, ¢; and /> can be
set according to the needs of the auction system to balance
the computation and memory overhead.

VII. CONCLUSION

In this paper, we design an efficient algorithm to solve the
small exponential ECDLP for EC-based AHE schemes. We
combine the BSGS algorithm, the tree-based Montgomery’s
trick, and cuckoo hashing to form the basic architecture of
FastECDLP and perform deep optimizations from two points:
computation and memory overhead. Furthermore, we provide
a concrete implementation and fully report the experimental
results. We try our best to ensure efficient decryption while
maximizing the plaintext length of EC-based AHE schemes.
As far as we know, our work is state-of-the-art in solving the
small exponential ECDLP for EC-based AHE schemes. On
this issue, we welcome further research. We strongly expect
that the plaintext length of EC-based AHE schemes can be
further extended (e.g., 64 bits) with acceptable decryption
efficiency, which is also the direction of our future efforts.

REFERENCES

[11 R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “paillier99,”
Foundations of secure computation, vol. 4, no. 11, pp. 169-180, 1978.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.500.3989&rep=rep1 &type=pdf

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC. ACM, 2009, pp. 169-178.

[3] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in EUROCRYPT, ser. Lecture Notes in Computer Science,
vol. 1592. Springer, 1999, pp. 223-238.

[4] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and
Privacy. 1EEE Computer Society, 2017, pp. 19-38.

[5] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in CCS. ACM, 2017, pp.
619-631.

[6] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
USENIX Annual Technical Conference. USENIX Association, 2020,
pp. 493-506.

JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, OCTOBER 2022

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

F. Fu, Y. Shao, L. Yu, J. Jiang, H. Xue, Y. Tao, and B. Cui, “szboost:
Very fast vertical federated gradient boosting for cross-enterprise learn-
ing,” in SIGMOD Conference. ACM, 2021, pp. 563-576.

Y. Chen, X. Ma, C. Tang, and M. H. Au, “PGC: decentralized confi-
dential payment system with auditability,” in ESORICS (1), ser. Lecture
Notes in Computer Science, vol. 12308. Springer, 2020, pp. 591-610.
S.Ma, Y. Deng, D. He, J. Zhang, and X. Xie, “An efficient NIZK scheme
for privacy-preserving transactions over account-model blockchain,”
IEEE Trans. Dependable Secur. Comput., vol. 18, no. 2, pp. 641-651,
2021.

I. Damgard, M. Geisler, and M. Krgigaard, “Efficient and secure com-
parison for on-line auctions,” in ACISP, ser. Lecture Notes in Computer
Science, vol. 4586. Springer, 2007, pp. 416—430.

W. Gao, W. Yu, F. Liang, W. G. Hatcher, and C. Lu, “Privacy-preserving
auction for big data trading using homomorphic encryption,” IEEE
Trans. Netw. Sci. Eng., vol. 7, no. 2, pp. 776-791, 2020.

R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally
efficient multi-authority election scheme,” in EUROCRYPT, ser. Lecture
Notes in Computer Science, vol. 1233. Springer, 1997, pp. 103-118.
D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in TCC, ser. Lecture Notes in Computer Science, vol. 3378.
Springer, 2005, pp. 325-341.

F. Tang, G. Ling, and J. Shan, “Additive homomorphic encryption
schemes based on sm2 and sm9,” Journal of Cryptologic Research,
vol. 9, no. 3, pp. 535-549, 2022.

T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure
as factoring,” in EUROCRYPT, ser. Lecture Notes in Computer Science,
vol. 1403. Springer, 1998, pp. 308-318.

M. Joye and B. Libert, “Efficient cryptosystems from 2 k _th power
residue symbols,” in EUROCRYPT, ser. Lecture Notes in Computer
Science, vol. 7881. Springer, 2013, pp. 76-92.

H. Ma, S. Han, and H. Lei, “Optimized paillier’s cryptosystem with fast
encryption and decryption,” in ACSAC. ACM, 2021, pp. 106-118.

E. Barker, E. Barker, W. Burr, W. Polk, M. Smid et al., Recommendation
for key management: Part 1: General. National Institute of Standards
and Technology, Technology Administration, 2006.

D. Shanks, “Class number, a theory of factorization, and genera,” in
Proc. of Symp. Math. Soc., 1971, vol. 20, 1971, pp. 41-440.

J. M. Pollard, “Monte carlo methods for index computation (mod) p,”
Mathematics of computation, vol. 32, no. 143, pp. 918-924, 1978.

S. D. Galbraith and R. S. Ruprai, “Using equivalence classes to
accelerate solving the discrete logarithm problem in a short interval,”
in Public Key Cryptography, ser. Lecture Notes in Computer Science,
vol. 6056. Springer, 2010, pp. 368-383.

D. J. Bernstein and T. Lange, “Computing small discrete logarithms
faster,” in INDOCRYPT, ser. Lecture Notes in Computer Science, vol.
7668. Springer, 2012, pp. 317-338.

F. Zhang and S. Liu, “Solving ECDLP via list decoding,” in ProvSec,
ser. Lecture Notes in Computer Science, vol. 11821. Springer, 2019,
pp. 222-244.

P. Chatzigiannis, K. Chalkias, and V. Nikolaenko, “Homomorphic de-
cryption in blockchains via compressed discrete-log lookup tables,” in
DPM/CBT@ESORICS, ser. Lecture Notes in Computer Science, vol.
13140. Springer, 2021, pp. 328-339.

S. Hardy, W. Henecka, H. Ivey-Law et al., “Private federated learning
on vertically partitioned data via entity resolution and additively
homomorphic encryption,” arXiv preprint arXiv:1711.10677, 2017.
[Online]. Available: https://arxiv.org/abs/1711.10677

M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, “Privacy-preserving
support vector machine training over blockchain-based encrypted iot
data in smart cities,” IEEE Internet Things J., vol. 6, no. 5, pp. 7702—
7712, 2019.

Q. Wang, J. Huang, Y. Chen, C. Wang, F. Xiao, and X. Luo, “PROST:
Privacy-preserving and truthful online double auction for spectrum
allocation,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 2, pp. 374—
386, 2019.

B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, and Y. Liang, “Blockchain-
enabled federated learning data protection aggregation scheme with
differential privacy and homomorphic encryption in iiot,” IEEE Trans.
Ind. Informatics, vol. 18, no. 6, pp. 4049—4058, 2022.

C. Chen, J. Zhou, L. Wang, X. Wu, W. Fang, J. Tan, L. Wang, A. X. Liu,
H. Wang, and C. Hong, “When homomorphic encryption marries secret
sharing: Secure large-scale sparse logistic regression and applications in
risk control,” in KDD. ACM, 2021, pp. 2652-2662.

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

S. D. Galbraith, P. Wang, and F. Zhang, “Computing elliptic curve
discrete logarithms with improved baby-step giant-step algorithm,” Adv.
Math. Commun., vol. 11, no. 3, pp. 453-469, 2017.

H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and S. Duquennoy,
“Secure sharing of partially homomorphic encrypted iot data,” in SenSys.
ACM, 2017, pp. 29:1-29:14.

P. K. Mishra, “Efficient simultaneous inversion in parallel and appli-
cation to point multiplication in ecc,” in International Conference on
Information Security and Cryptology. Springer, 2005, pp. 324-335.
R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,
no. 2, pp. 122-144, 2004.

S. Yang, B. Ren, X. Zhou et al., “Parallel distributed logistic regres-
sion for vertical federated learning without third-party coordinator,” in
Proceedings of the IJCAI'19 Workshop, 2019.

K. Cheng, T. Fan, Y. Jin et al., “Secureboost: A lossless federated
learning framework,” IEEE Intelligent Systems, vol. 36, no. 6, pp. 87-98,
2021.

K. Matsuo, J. Chao, and S. Tsujii, “An improved baby step giant step
algorithm for point counting of hyperelliptic curves over finite fields,”
in ANTS, ser. Lecture Notes in Computer Science, vol. 2369. Springer,
2002, pp. 461-474.

P. Gaudry and E. Schost, “A low-memory parallel version of matsuo,
chao, and tsujiis algorithm,” in ANTS, ser. Lecture Notes in Computer
Science, vol. 3076. Springer, 2004, pp. 208-222.

Z. Gao, L. Xu, and W. Shi, “Mapreduce for elliptic curve discrete
logarithm problem,” in SERVICES. IEEE Computer Society, 2016,
pp. 39-46.

T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” in Proceedings of Annual International
Cryptology Conference (CRYPTO). Springer, 1984, pp. 10-18.

IT Security techniques-Encryption algorithms-Part 6: Homomorphic
encryption. ISO/IEC 18033-6:2019.

B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-
based PSI with linear communication,” in EUROCRYPT (3), ser. Lecture
Notes in Computer Science, vol. 11478. Springer, 2019, pp. 122-153.
P. L. Montgomery, “Speeding the pollard and elliptic curve methods of
factorization,” Mathematics of computation, vol. 48, no. 177, pp. 243—
264, 1987.

[Online]. Available: https://github.com/btcsuite/btcd/tree/master/btcec
D. R. Brown, “Sec 2: Recommended elliptic curve domain parameters,”
Standars for Efficient Cryptography, 2010.

J. Kone¢ny, McMahan et al., “Federated learning: Strategies for
improving communication efficiency,” arXiv preprint arXiv:1610.05492,
2016. [Online]. Available: https://arxiv.org/abs/1610.05492

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

V. G. Sigillito, S. P. Wing, L. V. Hutton, and K. B. Baker, “Classification
of radar returns from the ionosphere using neural networks,” Johns
Hopkins APL Technical Digest, vol. 10, no. 3, pp. 262-266, 1989.

A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp.
1-32, 2014.

P. Chatzigiannis and F. Baldimtsi, “Miniledger: Compact-sized anony-
mous and auditable distributed payments,” in ESORICS (1), ser. Lecture
Notes in Computer Science, vol. 12972. Springer, 2021, pp. 407-429.
A. Tomescu, A. Bhat, B. Applebaum, I. Abraham, G. Gueta, B. Pinkas,
and A. Yanai, “UTT: decentralized ecash with accountable privacy,”
IACR Cryptol. ePrint Arch., p. 452, 2022.

T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in CRYPTO, ser. Lecture Notes in Computer
Science, vol. 576. Springer, 1991, pp. 129-140.

I. F. Blake and V. Kolesnikov, “Strong conditional oblivious transfer and
computing on intervals,” in ASIACRYPT, ser. Lecture Notes in Computer
Science, vol. 3329. Springer, 2004, pp. 515-529.

T. Veugen, “Encrypted integer division and secure comparison,” Int. J.
Appl. Cryptogr., vol. 3, no. 2, pp. 166-180, 2014.

