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Abstract

In [Pan21] a linearization attack is proposed in order to break the
cryptosystem proposed in [Gli21]. We want to propose here an analysis of
linearization using the algorithm and cryptosystem proposed in [NN21],
and set as a general solution not to reuse keys at the protocol level, both
of digital signature and secret agreement to avoid the linearization strat-
egy. Furthermore we will show that an entropic quasigroup's linearized
form is indeed a valid start to set up a valid cryptosystem.

1 Algorithm description

Let's de�ne in simple terms the algorithm described in [NN21].

We're working with a set G, with a �nite number of elements and an entropic
operation ∗, de�ning entropic as satisfying (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d),
a, b, c, d ∈ G.

Let's explain a mixing function based on (G, ∗), R = m(T,K). We de�ne
T = [ti], K = [ki] tables of elements in G, so ti ∈ G, ki ∈ G, i ∈ 1..n. This
function is the same as the one proposed in [NN21].

The hard problem we're working with is in R = m(T,K), �nding K know-
ing T and R.

To make it simpler to read let's set n = 4, the size of the tables, so we have two
initial tables:

T = [t1, t2, t3, t4]
K = [k1, k2, k3, k4]

And from these two tables we create an initial mixing state, applying ∗ position-
wise:

V = [t1 ∗ k1, t2 ∗ k2, t3 ∗ k3, t4 ∗ k4]

1



And we start mixing, the procedure is to select two positions in the range
1..4 of the table in a pseudorandom deterministic way and operate both with ∗
and placing the result in one of both selected positions. For example, if we have:

V = [v1, v2, v3, v4]

we can iterate (the operation is arbitrary but �xed and known at each step):

V ← [v1, v2 ∗ v4, v3, v4]

were we've selected in this case v2 ← v2 ∗ v4.

This can be done as many times as needed with di�erent positions of the state
table, so we repeat vi ← vi ∗ vj with di�erent i and j, chosen randomly in a
deterministic way at each step.

Finally, after the pseudorandom mixing we operate K again to the state to
get the result:

R = [v1 ∗ k1, v2 ∗ k2, v3 ∗ k3, v4 ∗ k4]

Now, it's proven in [NN21] that the operation R = m(T,K) is as well entropic
if ∗ is.

2 Linearization analysis

At this point let's see what happens if we have found a linearization of ∗. This
is the attack proposed in [Pan21] to the algorithm proposed in [Gli21].

So we have a ∗ b = σ(f) · g, f ∈ G, g ∈ G, σ(σ(x)) = x, and f = ι(a),
g = ι(b). (G, ·) is an abelian group, σ an automorphism of order 2 of this group,
and ι is an isomorphism ι : (G, ∗)→ (G, ·).

Now, with this linearization we can redo and trace the mixing procedure R =
m(T,K) but in (G, ·) instead of in (G, ∗), applying vi = σ(vi) · vj . In the exam-
ple above it will be v2 ← σ(v2) · v4. We're ignoring the isomorphism as is not
relevant, so ι(v) = v.

Finally, we get with n = 4, 4 equations each one corresponding to a position
in the result table R, that, moving out known values to the left side of each
equation, in the right side we have products of elements of the form:

σ(ki)
epi · kf

p
i

i

So for each result position we can get an equation of the following form:

rp =
∏

i=1..4

(σ(ki)
epi · kf

p
i

i )
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and an equation system considering p = 1 . . . 4, of 4 equations:

r1 = σ(k1)
e11 · (k1)f

1
1 · σ(k2)e

1
2 · (k2)f

1
2 · σ(k3)e

1
3 · (k3)f

1
3 · σ(k4)e

1
4 · (k4)f

1
4

r2 = σ(k1)
e21 · (k1)f

2
1 · σ(k2)e

2
2 · (k2)f

2
2 · σ(k3)e

2
3 · (k3)f

2
3 · σ(k4)e

2
4 · (k4)f

2
4

r3 = σ(k1)
e31 · (k1)f

3
1 · σ(k2)e

3
2 · (k2)f

3
2 · σ(k3)e

3
3 · (k3)f

3
3 · σ(k4)e

3
4 · (k4)f

3
4

r4 = σ(k1)
e41 · (k1)f

4
1 · σ(k2)e

4
2 · (k2)f

4
2 · σ(k3)e

4
3 · (k3)f

4
3 · σ(k4)e

4
4 · (k4)f

4
4

Now, if we consider σ(ki) and ki as linearly unrelated, they must be treated
as diferent unknowns, so in the example we have 4 equations and 8 unknowns.

Also all the epi and fpi are known but in general the linear relation of ep1

i and
fp1

i , and ep2

i and fp2

i , for two positions p1 and p2 is not the same due to the
pseudorandom mixing, so gaussian-like elimination cannot eliminate σ(ki) and
ki at once.

The best method at �rst glance to solve the problem is bruteforce half of ki's
and then do a gaussian-like elimination on the rest, considering exponentials.

3 Conclusion

The previous analysis is correct if we only hold a single application of R =
m(T,K), so it's a requirement not to reuse keys, in particular not to encrypt
two di�erent T with the same K, an this can be done at the protocol level,
where we use m to build a key agreement and a signature protocol. Let's add
that not reusing keys also addresses the break in [Niu21].

As a proposal of a protocol to do signatures, we can pro�t from the follow-
ing formula:

m(m(C,H),m(K,Q)) = m(m(C,K),m(H,Q))

Then 〈C,m(C,K)〉 are the signer credentials, and 〈m(H,Q),m(K,Q)〉 the sig-
nature. Q must be di�erent for each signature, while K is always the same. H
is the hash to sign and C a constant value.

The secret agreement protocol is the same as in [NN21].

4 Building a cryptosystem

The Bruck-Murdoch-Toyoda theorem [Bru44] [Mur41] [Toy41] states that every
entropic quasigroup has the form:

a ∗ b = σ(a) · τ(b) · c

where (G, ·) is an abelian group and σ and τ are commuting automorphisms
of (G, ·).
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Now, we assert that with any quasigroup expressed as a ∗ b = σ(f) · τ(g) · h, or
one reduced variant with σ = id, τ = id or c = 1, we can derive a signature and
key agreement scheme, as we can do it even with this linearized form, taking
into account that we do not do key reusing as it has been explained.

This is a method to create cryptosystems once an automorphism on some abelian
group is found. This construction of course doesn't exclude the fact that the
cryptosystem can be broken in other ways.

5 Cryptosystem building example

Let's add an example of linearization that leads to a possible cryptosystem.

Let's work in Fpn , and de�ne an abelian group (G, ·), where a · b = ab+ a+ b,
a, b ∈ Fpn .

Let's de�ne an automorphism σ(a) = ap, a ∈ Fpn . σ is an automorphism
of (G, ·).

The resulting linearization and entropic operation is:

a ∗ b = σ(a) · b

So we can conclude that σ(k) and k, for a given value k, are not linearly related
in (G, ·). In particular σ(k) · k = kp · k 6= kp+1, since the power in σ(k) is in Fpn

and not in (G, ·).

This is a simple illustrative example that cannot be broken by linearization,
although is possible it can be broken in another ways.

6 Cryptosystem building based on a non-commutative

ring

Let's present another way to build a cryptsystem from a non-commutative ring,
as is for example the one of square matrices.

Let R be a non-commutative ring, with addition and product expressed the
usual way, we de�ne the following entropic quasigroup using the Bruck-Murdoch-
Toyoda form:

A∗B = CAD+B, here the automorphism is σ(A) = CAD, where A,B,C,D ∈
R, and C,D are known arbitrary constants. Using the mixing introduced in
this document produces a valid cryptosystem, and σ(A) and A are not linearly
related as it would if we had de�ned σ(A) = CA for example.
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