
Bitslicing Arithmetic/Boolean Masking
Conversions for Fun and Profit

with Application to Lattice-Based KEMs

Olivier Bronchain and Gaëtan Cassiers

Crypto Group, ICTEAM Institute, UCLouvain, Louvain-la-Neuve, Belgium.
{olivier.bronchain,gaetan.cassiers}@uclouvain.be

Abstract. The performance of higher-order masked implementations of lattice-based
based key encapsulation mechanisms (KEM) is currently limited by the costly
conversions between arithmetic and boolean masking. While bitslicing has been
shown strongly speed up to masked implementations of symmetric primitives, it has
never been used in higher-order arithmetic-to-boolean and boolean-to-arithmetic
masking conversion gadgets. In this paper, we first show that bitslicing can indeed
accelerate existing conversion gadgets. We then optimize these gadgets, exploiting
the degrees of freedom offered by bitsliced implementations. As a result, we introduce
new arbitrary-order boolean masked addition, arithmetic-to-boolean and boolean-to-
arithmetic masking conversion gadgets, each in two variants: modulo 2k and modulo
p (for any integers k and p). Practically, our new gadgets achieve a speedup of up to
25x over the state of the art. Turning to the KEM application, we develop the first
open-source embedded (Cortex-M4) implementations of Kyber768 and Saber masked
at arbitrary order. The implementations based on the new bitsliced gadgets achieve
a speedup of 1.8x for Kyber and 3x for Saber, compared to the implementation based
on state of the art gadgets. The bottleneck of the bitslice implementations is the
masked Keccak-f[1600] permutation.
Keywords: Masking · Lattice-based KEM · Kyber · Saber · Bitslice · PINI

1 Introduction
Quantum attacks against traditional asymmetric cryptography schemes (based on RSA,
discrete logarithm or elliptic curves) have been a growing concern. This led to the
introduction of post-quantum (PQ) schemes for signatures and key encapsulation mechanisms
(KEM), many of which are based on lattices. Their implementation raises new challenges, in
particular for embedded systems that require protection against side-channel attacks (SCA)
such as power or electro-magnetic analysis [KJJ99, QS01]. Such attacks are particularly
powerful against many state-of-the-art PQ KEMs due to their usage of the Fujisaki-
Okamoto (FO) transform [FO99]: an adversary can carefully forge ciphertexts to trigger
the re-encryption of a single bit whose value depends on a secret (sub-)key. The leakage
from this re-encryption depends only on this single secret bit, which is thus easily recovered
and from which information on the secret key can be retrieved [RRCB20, UXT+22]. Strong
protection against side-channel attacks is therefore a must for lattice-based cryptography
in embedded systems deployed on-the-field [ABH+22].

The most studied countermeasure against SCA is masking, whose core idea is to
randomize the intermediate computations while maintaining their correctness [CJRR99,
ISW03]. When using arithmetic masking, each intermediate variable x of the original
computation is replaced by a sharing (x0, . . . , xd−1) such that x = x0 + · · ·+ xd−1 mod p

mailto:{olivier.bronchain,gaetan.cassiers}@uclouvain.be

for some integer p, where the addition degenerates to the boolean XOR in the particular
case p = 2, which is therefore named boolean masking. Masked implementations are usually
analyzed in the t-probing model [ISW03], which formalizes the notion of t-order security by
requiring all tuples of t intermediate values in the computation to be independent of any
secret value. However, security in the t-probing model is not composable: the sequential
use of two t-probing secure gadgets (gadgets are algorithms computing on masked values)
is not necessarily probing secure [CPRR13]. To circumvent the t-probing security analysis
of a full masked cryptographic algorithm (which is impractical), composable security
properties have been introduced, such as (strong-)non-interference (NI/SNI) [BBD+16], or
probe-isolating non-interference (PINI) [CS20]. These properties are stronger than probing
security and gadgets that satisfy them can be securely composed.

The protection of masking does not come for free and sometimes leads to orders of
magnitudes larger costs than non-masked implementation [BGR+21]. A key question in the
design of masked implementation is therefore the minimization of computational cost, which
is particularly critical when considering embedded software PQ KEMs implementations.
Indeed, unprotected implementations of PQ KEMs are already computationally expensive [KRSS],
and on top of this a high masking order is needed, due to the low intrinsic noise level
on commercial micro-controllers [BS20, BS21]. Masking overheads (in randomness usage
and runtime) generally grow quadratically with the number of shares, except for masked
linear operations modulo p, which incur only only linear computational overhead (and no
randomness usage).

Lattice-based KEMs use many arithmetic operations in the field of integers modulo
p (e.g., p = 3329, 210 or 213). These operations are often linear with respect to the
secret values [ABD+19, BBMD+19], which leads a to very efficient implementation when
using arithmetic masking modulo p [RRVV15, OSPG18]. These KEMs also use symmetric
cryptography primitives to generate pseudo-randomness, which are often best implemented
using boolean masking since they contain many bit-level operations [BDPA13, GR16,
BDM+20]. As a result, conversions between arithmetic and boolean masking are key
components of masked implementations of lattice-based KEMs.

These conversions are a bottleneck of the current state of the art implementations [BGR+21,
FBR+22] and they are an active field of research. Arbitrary-order arithmetic-to-boolean
masking conversions (A2B) were first introduced in [CGV14] for fields of characteristic two
and a masking order equal to half of the number of shares. In a series of works [CGTV15,
BBE+18, SPOG19], the construction was generalized to arbitrary p and optimal masking
order (d − 1), along with optimizations to reach O

(
d2 log(log p)

)
CPU instructions.

Alternative table-based constructions have also been introduced, achieving similar properties [CGMZ21b].
Boolean-to-arithmetic conversion (B2A) has also been studied thoroughly. The original
arbitrary-order B2A [CGV14] is based on A2B and benefited from its improvements, as
well as being proven secure at optimal security order in [BBE+18]. Recently, efficient
B2A algorithms for conversion of a single bit have been introduced [SPOG19, CGMZ21b],
from which a B2A algorithm for arbitrary number of bits can be derived. Finally, the
compression modulo p is an operation which consists in a linear scaling then a rounding,
and is commonly found in Lattice-based KEMs. Its masking can be performed thanks to
A2B conversions and has been recently optimized in [BPO+20, BDH+21, CGMZ21a].

In parallel over the last years, the bitslicing technique has brought significant speed
improvements to software implementations of symmetric cryptography, be it masked [GR16,
BDM+20] or not [Bih97, AP21]. In short, bitslicing leverages the intrinsic parallelism of
bitwise operations within processors. E.g., a processor that manipulates 32-bit integers can
perform 32 bitwise operations with a single instruction. Therefore, bitslicing only applies
to algorithms whose operations are bitwise, such as [GLSV14], but sometimes an algorithm
can be re-written to use bit-level operations (while preserving efficiency) [BMP13]. In
particular, boolean masking is very well suited to bitslicing since most boolean masking

2

gadgets only use bit-level operations, whereas arithmetic masking gadgets use additions
and multiplications (whose equivalent bitwise circuits are large) and therefore do not
benefit from bitslicing. To the best of our knowledge, despite the large number of works
on A2B and B2A, no efficient bitslice implementation of such conversion algorithm has
ever been introduced.

Contributions We introduce the usage of bitslicing for the masked implementation of
lattice-based cryptography, and for this purpose, we design new masked gadgets for all
masking orders. Our new gadgets are A2B and B2A conversions. Additionally, we also
design a new addition gadget for boolean masking which is used in the conversion gadgets.
These gadgets come in two variants: one for arithmetic modulo any integer p, and one for
the particular case of arithmetic modulo 2k, which is more efficient. All our gadgets are
PINI, and are therefore easily composed.

As a testbed for our new gadgets, we develop arbitrary-order masked Kyber and
Saber implementations on the Cortex-M4 platform. First, for each of them, we build a
non-bitsliced masked implementation (hereafter named respectively K1 and S1) based on
state-of-the-art components: the gadgets and implementations of Coron et al. [CGMZ21b],
some gadgets from [SPOG19] and some (non-masked) functions from the NIST PQ
benchmarking project (PQM4) [KRSS]. To the best of our knowledge, implementations
K1 and S1 are the first open-source1 embedded masked at arbitrary order Kyber and
Saber software implementations. Next, we build new bitslice implementations (named K2
and S2) that use our new gadgets and satisfy the PINI secure composition strategy.
Implementation K2 achieves a speedup of up to 1.84 over K1, and up to 8.7 over the
best reported performance in the state-of-the-art on an embedded platform [BGR+21].
Similarly S2 achieves a speedup to 3x over S1. In both K2 and S2, the execution time is
dominated by hashing respectively by 50% for Kyber and 72% for Saber.

Finally, exploiting the PQM4 [KRSS] framework, we release an easily reusable and
extensible implementation of Kyber768.2 These implementations are based on the same
gadgets as K2 and S2.

Organization In Section 2, we introduce some preliminaries on masking and describe the
state-of-the-art gadgets for boolean masked addition, A2B masking conversion, as well as
B2A. Next, we present our new gadgets and prove that they are PINI in Section 3, before
comparing their performance to the state-of-the-art in Section 4. Finally, we describe our
Kyber and Saber implementations and measure their performance in Section 5.

2 Background

In this Section, we first introduce our notations and the masking schemes we use, then
we describe state-of-the-art gadgets that operate on masked values to perform simple
operations, namely addition and conversion between masking schemes.

Notations We denote by Jx, yK the set [x, y] ∩ N and by Jx, yJ the set [x, y) ∩ N. For
non-negative integers x and y, x⊕ y is the (unsigned) integer whose binary representation
is the bitwise XOR of the binary representations of x and y.

1Available at https://github.com/uclcrypto/pqm4_masked/files/8049274/implems.zip.
2Available at https://github.com/uclcrypto/pqm4_masked.

3

https://github.com/uclcrypto/pqm4_masked/files/8049274/implems.zip
https://github.com/uclcrypto/pqm4_masked

2.1 Masking and elementary gadgets
In this paper, we consider two masking schemes: arithmetic and boolean masking. A secret
variable x ∈ J0, pJ for some integer p is represented by the d-shares arithmetic sharing

xAp =
(

x
Ap

i

)
i=0,...,d−1

∈ J0, pJd such that x = x
Ap

0 + x
Ap

1 + · · ·+ x
Ap

d−1 mod p.

In order to achieve d− 1-order security for x, any set of d− 1 shares must be uniformly
distributed. Similarly, the k-bit boolean sharing of a secret x ∈

q
0, 2k

q
is

xB,k =
(

xB,k
i

)
i=0,...,d−1

∈
q
0, 2k

qd such that x = xB,k
0 ⊕ xB,p

1 ⊕ . . .⊕ xB,k
d−1.

Computation on sharings is performed by algorithms named gadgets. The inputs
and outputs of a d-share gadget are d-shares sharings, which allows such gadgets to be
composed: the composition of multiple gadgets (which must all have the same number
of shares) results in a composite gadget. The input sharings of the composing gadgets
(named hereafter sub-gadgets) may be the input sharing of the composite gadget, or an
output sharing of another sub-gadget.

For both arithmetic and boolean masking, the operations that are linear with respect
to the sharing operation are implemented by simple gadgets: the operation can be applied
share-wise, hence the computational cost is O (d). In particular, for arithmetic (respectively
boolean) masking, one such operation is the addition modulo p (resp. bitwise XOR) of
two shared variables. We denote these algorithms as +A (resp. ⊕B).

The ISW multiplication gadget [ISW03], which we denote SecAnd allows to compute
bitwise AND of boolean-shared values at a randomness and computational cost O

(
d2)

.
This gadget may also be used to compute the product modulo p of two arithmetically
shared secrets.

A last commonly used gadget is the refresh gadget, which implements the identity
function, but re-randomizes the sharing. This gadget is sometimes used to ensure the
security of a computation that composes multiple simpler gadgets.

2.2 Composable probing security
In this paper, we target (d− 1)-probing security for our d-shares implementations. That
is, the statistical distribution of any d − 1 intermediate values (named probes) in our
computation should be independent of any secret. We build our masked gadgets by
composing multiple smaller gadgets. However, probing security is not composable [CPRR13]:
composing (d− 1)-probing secure gadgets is not enough to ensure (d− 1)-probing security.

As a result, we consider stronger security definitions which are composable. The two
following definitions were introduced in [BBD+16].
Definition 1 (t-NI). A gadget is t-Non-Interfering (t-NI) if every set of t probes can be
simulated by using at most t shares of each input sharing.
Definition 2 (t-SNI). A gadget with one output sharing is t-Strong-Non-Interfering
(t-SNI) if every set of t1 probes on the internal values and t2 probes on the output shares,
with t1 + t2 ≤ t, can be simulated by using at most t1 shares of each input sharing.

The +A and ⊕B gadgets are (d − 1)-NI while the ISW multiplication is (d − 1)-
SNI. Furthermore, the refresh gadget obtained by setting one input sharing of the ISW
multiplication to (1, 0, . . . , 0) is also SNI, and this set of gadgets enables to securely mask
any computation [BBD+16].

Composition based on the NI and SNI definitions requires usage of refresh gadgets,
which may significantly increase the computationnal and randomness cost. More recently,
Cassiers and Standaert [CS20] introduced a new definition which allows to remove those
refresh gadgets.

4

Definition 3 (t-PINI). A gadget is t-Probe-Isolating-Non-Interfering (t-PINI) if, for every
set P of t1 probes on the internal values and set A ⊂ J0, dJ with t1 + |A| ≤ t, there exists
a set B ⊂ J0, dJ with |B| ≤ t1 such that the probes in P and the output shares whose
index (i.e., position of the share in the sharing) belongs to A can be simulated by using
the input shares whose share index belongs to A ∪B.

Following [CGZ20], we say in the following that a gadget with d shares is PINI if it is
(d−1)-PINI, since this implies that it is t-PINI for any t. The +A and ⊕B are share-isolating:
all the computation on the input and output shares with a given share index is isolated
from computations for any other share index. All share-isolating gadgets are PINI [CS20],
but the ISW multiplication is not PINI. There however exists a PINI multiplication gadget
([CS20], Algorithm 2) with a similar cost as the ISW multiplication: same amount of
randomness and roughly double the number of arithmetic operations. Finally, PINI gadgets
are trivially composable: the composition of t-PINI gadgets is t-PINI [CS20], which enables
composition without the use of refresh gadgets.

2.3 Modular addition in boolean masking
We first consider the addition modulo 2k of two k-bit boolean sharings, and denote this
gadget as SecAdd. It can be implemented by taking the boolean circuit of a k-bit binary
adder, rewriting it to only use AND and XOR gates, and finally implementing this circuit
with 1-bit SecAnd and ⊕B gadgets. The 1-bit inputs of this circuit are obtained by selecting
single bit sharings in the k-bit input sharings. Using a chain of full-adders, this technique
yields a complexity of O

(
kd2)

operations (each on single-bit words).
This technique has been refined in [CGTV15] by using the Kogge-Stone (KS) adder.

This circuit allows to perform some boolean operations in parallel, that is, with multiple-bit
SecAnd and ⊕B gadgets. This gives a complexity of O

(
log(k)d2)

operations (on up-to
k-bit words). Using adequate refreshing [BBE+18], the SecAdd gadget is made (d− 1)-NI.

Algorithm 1 SecAddModpd
k from [BBE+18] (NI)

Input: Boolean sharings xB,k and yB,k, integer p such that p < 2k and x, y ∈ J0, pJ.
Output: Boolean sharing zB,k such that z = x + y mod p.

1: pB,k+1 ←
(
2k − p, 0, . . . , 0

)
2: sB,k+1 ← SecAddd

k+1
(
xB,k, yB,k

)
▷ Left 0-extend the input sharings by 1 bit.

3: s′B,k+1 ← SecAddd
k+1

(
sB,k+1, pB,k+1)

4: bB,1 ← s′B,k+1[k]
5: cB,1 ← RefreshSNId

1

(
bB,1

)
6: c′B,1 ← ¬RefreshSNId

1

(
bB,1

)
7: cB,k ← BitCopyMaskd

k

(
cB,1, 2k − 1

)
▷ Copy input sharing where bitmask (2k − 1) is set.

8: c′B,k ← BitCopyMaskd
k

(
c′B,1

, 2k − 1
)

9: zB,k ← SecAndd
k

(
sB,k+1[J0, kJ], cB,k

)
⊕B SecAndd

k

(
s′B,k+1[J0, kJ], c′B,1

)
▷ MUX

Next, we consider the SecAddModp gadget which performs the addition modulo p. The
construction of Algorithm 1 (from [BBE+18]) is based on the SecAdd gadget. Namely,
it first computes the sum s of the inputs x and y on k + 1 (to avoid overflow and thus
modulo 2k reduction), then adds 2k−p to obtain s′. The most significant bit of s′ indicates
whether x + y ≥ p. Based on this bit, either s or s′ is selected as the output, using a MUX
implemented with SecAnd and ⊕B gadgets. Finally the most significant bit is dropped to

5

get the result on k bits. The complexity is still O
(
log(k)d2)

operations on up-to k-bit
words.

2.4 Arithmetic-to-boolean masking conversion
Coron et al. [CGV14] introduced a simple way to convert from arithmetic to boolean
masking (SecA2BModp): mask with boolean masking each arithmetic share, then perform
the addition modulo p of the resulting sharings. Remarking that the addition of d′

arithmetic shares can be securely masked uinsg d′-shares boolean masking instead of d, and
organizing the d− 1 additions to perform in a binary tree (halving the number of shares at
each layer) leads to Algorithm 2 (from [SPOG19]), which has a complexity of O

(
log(k)d2)

on up-to k-bit words. As an alternative, a table-based SecA2BModp implementation with
the same complexity was recently introduced in [CGMZ21b].

Algorithm 2 SecA2BModpd
k from [SPOG19] (SNI)

Input: d shares arithmetic sharing xAp , integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares boolean sharing zB,k such that z = x.

1: if d = 1 then
2: zB,k ← xAp

3: else
4: yB,k ← SecA2BModp⌊d/2⌋

k

(
xAk

J0,⌊d/2⌋J

)
5: y′B,k ← SecA2BModpd−⌊d/2⌋

k

(
xAk

J⌊d/2⌋,dJ

)
6: yB,k ← RefreshSNId

k

((
yB,k

0 , yB,k
1 , . . . , yB,k

⌊d/2⌋−1, 0, . . . , 0
))

▷ Expand to d shares.

7: y′B,k ← RefreshSNId
k

((
0, . . . , 0, yB,k

⌊d/2⌋, . . . , yB,k
d−1

))
▷ Expand to d shares.

8: zB,k ← SecAddModpd
k

(
yB,k, y′B,k

)

2.5 Boolean-to-arithmetic masking conversion
Similarly to arithmetic to boolean, there are multiple efficient techniques for boolean-to-
arithmetic conversion. First, one may generate d− 1 random arithmetic shares, generate a
d-share boolean masking of the opposite of their sum (using SecA2BModp), add this to the
input sharing (with SecAddModp), and finally unmask (that is, XOR the shares together)
the result to get the last arithmetic share. This idea, originally introduced in [CGTV15],
has been adapted to the modulo p setting in [BBE+18] (see Algorithm 3). This gadget is
(d− 1)-SNI.3

Second, Schneider et al. [SPOG19] introduced a conversion based on the observation
that if x, y ∈ J0, 1K, x⊕ y = x + y − 2xy. The gist of the conversion algorithm is to start
from a 1-bit boolean sharing xB,1, then arithmetically mask each share, and finally use
the previous equation to compute the XOR of these arithmetic sharings. This single-bit
conversion algorithm may then be applied to each of a multi-bit input, and the results
can be recombined sharewise (see Algorithm 4). Thanks to various optimizations of the
algorithm [SPOG19], the complexity of this technique is O

(
kd2)

operations on k-bit words.
Finally, Coron et al. [CGMZ21b] introduced recently another conversion algorithm.

This algorithm also performs k single-bit conversions, but the single-bit conversion is a
table-based gadget.

3The proof that SecB2AModp is SNI is not given explicitly, in [BBE+18], but it can be deduced from
the proof of Lemma 5, if SecA2BModp is SNI.

6

Algorithm 3 SecB2AModpd
k from [BBE+18] (SNI)

Input: d shares boolean sharing xB,k, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = x.

1: for i = 0 to d− 2 do
2: zAk

i
$← Zp

3: z′Ak

i ← p− zAk
i

4: z′Ak

d−1 ← 0
5: aB,k ← SecA2BModpd

k

(
z′Ap

)
6: bB,k ← SecAddModpd

k

(
aB,k, xB,k

)
7: zAk

d−1 ← UnMaskd−1
k

(
FullRefreshd−1

k

(
bB,k

))
Algorithm 4 SecB2AModpd

k based single bit conversion (from [SPOG19])

Input: d shares boolean sharing xB,k, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = x.

1: zAp ← SecB2AModpBitd
k

(
xB,k[k − 1]

)
2: for i = k − 2 down to 0 do
3: bAp ← SecB2AModpBitd

k

(
xB,k[i]

)
4: zAp ← 2 · zAp +A bAp mod p

3 New gadgets
As we already mentioned in introduction, our starting point is the observation that high-
level cryptographic algorithms such as Kyber have large data parallelism, hence they may
benefit from bitsliced implementations for the boolean sharings (while staying non-bitsliced
for the arithmetic sharings). We therefore introduce algorithms that work on 1-bit words,
and which are therefore well-suited to bitslicing. As main elementary gadgets, we use ⊕B

and PINI SecAnd, where the SecAnd is more expensive than ⊕B (O
(
d2)

vs. O (d)).
The complexity of our algorithms is measured in single-bit operations, which may be

amortized over the bit width w of the processor thanks to bitslicing. In order to compare
to the algorithms of Section 2 which required k-bit words, the complexity should be divided
by k to consider k-bit bitslicing (in practice, if w > k, the gain is even larger).

3.1 SecAdd: Bitslice boolean masked addition modulo 2k

Our first algorithm is a new SecAdd implementation (Algorithm 6). Thanks to bitslicing,
we do not have any structure constraint and simply aim to minimize the number of
SecAnd. Therefore, we use a simple chain of full-adders, where the addition of x, y and c
computes a := x⊕ y, then outputs (a⊕ c, x⊕ a · (x⊕ c)). This requires only one SecAnd
per full-adder, hence k − 1 in total (since the carry-out does not have to be computed for
the most significant bits addition), which is the minimum achievable (we prove this in
Appendix A). The total complexity of Algorithm 6 is O

(
kd2)

bit operations. We finally
prove the security of this gadget.

Proposition 1. Algorithm 6 and Algorithm 5 are PINI.

Proof. These two gadgets are the composition of PINI gadgets, therefore they are PINI.

7

Algorithm 5 SecFullAdderd New (PINI)

Input: Boolean sharings xB,1, yB,1 and zB,1.
Output: Boolean sharing wB,2 such that w = x + y + z.

1: aB,1 ← xB,1 ⊕B yB,1

2: wB,2[0]← zB,1 ⊕B aB,1

3: wB,2[1]← xB,1 ⊕B SecAndd
1

(
aB,1, xB,1 ⊕B zB,1)

▷ PINI SecAnd

Algorithm 6 SecAddd
k New (PINI)

Input: Boolean sharings xB,k and yB,k, such that x, y ∈
q
0, 2k

q
.

Output: Boolean sharing zB,k such that z = x + y mod 2k.

1: cB,1 ← (0, 0, . . . , 0)
2: for i = 0 to k − 2 do
3: tB,2 ← SecFullAdderd

(
xB,k[i], yB,k[i], cB,1)

▷ Algorithm 5
4:

(
zB,k[i], cB,1)

←
(
tB,2[0], tB,2[1]

)
5: zB,k[k − 1]← xB,k[k − 1]⊕B yB,k[k − 1]⊕B cB,1

3.2 SecAddModp: Bitslice boolean masked addition modulo p

Next, we consider addition modulo p. A simple approach is to adapt Algorithm 1 to use
Algorithm 6 as SecAdd. On top of this adaptation, we remark that the MUX in Algorithm 1
costs 2k 1-bit SecAnd gadgets, and that we can replace it with the computation of s′ + p · b
mod 2k, which costs one SecAddd

k (i.e., k − 1 single-bit SecAnd). This replacement is
correct: if b = 0, the result is s′, and if b = 1 the result is s′ + p mod 2k = s. Overall,
our new addition modulo p requires two k + 1-bit adders and one k-bit adder, totaling to
3k − 1 1-bit PINI SecAnd, hence O

(
kd2)

bit operations and randomness.

Proposition 2. Algorithm 7 is PINI.

Proof. All the sub-gadgets are PINI (BitCopyMask only replicates a sharing, hence it is
share-isolating, which implies that it is PINI).

Algorithm 7 SecAddModpd
k New (PINI)

Input: Boolean sharings xB,k and yB,k, integer p such that p < 2k and x, y ∈ J0, pJ.
Output: Boolean sharing zB,k such that z = x + y mod p.

1: pB,k+1 ←
(
2k+1 − p, 0, . . . , 0

)
2: sB,k+1 ← SecAddd

k+1
(
xB,k, yB,k

)
▷ Use Algorithm 6.

3: s′B,k+1 ← SecAddd
k+1

(
sB,k+1, pB,k+1)

▷ Use Algorithm 6.
4: bB,1 ← s′B,k+1[k]
5: aB,k ← BitCopyMaskd

k

(
bB,1, p

)
▷ Copy sharing b where bitmask p is set (computes a = p · b).

6: zB,k ← SecAddd
k

(
aB,k, s′B,k+1

)
▷ Use Algorithm 6.

3.3 SecA2B: Bitslice arithmetic-to-boolean conversion modulo 2k

For arithmetic modulo 2k to boolean conversion (SecA2B), we take inspiration from the
conversion algorithm of [SPOG19] (Algorithm 2). Namely, we also use a recursive structure

8

Figure 1: Example of 2-share to 4-share gadget embedding.

where two halves of the arithmetic sharing are first converted to boolean, then the two
resulting sharing are added together. We use our new SecAdd (Algorithm 6) for this
purpose, which, thanks to PINI composition, allows us to remove the refresh gadget, giving
Algorithm 8 whose complexity is O

(
kd2)

random bits and single-bit operations.

Algorithm 8 SecA2Bd
k New (PINI)

Input: d shares arithmetic sharing xA2k , such that x ∈
q
0, 2k

q
.

Output: d shares boolean sharing zB,k such that z = x.

1: if d = 1 then
2: zB,k ← xA2k

3: else
4: yB,k ← SecA2B⌊d/2⌋

k

(
xA2k [J0, ⌊d/2⌋J]

)
▷ ⌊d/2⌋ sharing.

5: y′B,k ← SecA2Bd−⌊d/2⌋
k

(
xA2k [J⌊d/2⌋, dJ]

)
▷ d − ⌊d/2⌋ sharing.

6: sB,k ←
(

yB,k
0 , yB,k

1 , . . . , yB,k
⌊d/2⌋−1, 0, . . . , 0

)
▷ Expand to d shares.

7: s′B,k ←
(

0, . . . , 0, y′B,k
⌊d/2⌋, . . . , y′B,k

d−1,
)

▷ Expand to d shares.

8: zB,k ← SecAddd
k

(
sB,k, s′B,k

)
▷ Use Algorithm 6.

To prove that Algorithm 8 is PINI, we will use the PINI composition theorem
from [CS20], and introduce a new technique to deal with the composition of PINI gadget
with various number of shares. The core idea is to embed gadgets that use a lower number
of shares into “virtual gadgets” that use more shares, with a mapping from the share
indexes of the embedded gadgets to the indexes of the embedding gadgets. The embedding
gadget discards the input shares that are not used, and sets to 0 the output shares that
are not generated by the embedded gadgets, as illustrated in Figure 1.

Definition 4 (Gadget embedding). Let G be a d′-share gadget and let m ∈ J0, dJd′
(with

d ≥ d′) have unique components (mi ̸= mj for all i, j). The d-share embedding of G
with mapping m is the d-share gadget denoted EG

d,m and built as follows. EG
d,m has the

same number of input and output sharings as G (with a one-to-one correspondence), and
instantiates G internally. Each input sharing x′j of G is generated as

(
xj

mi

)
i=0,...,d′−1,

where xj is the input sharing of EG
d,m that corresponds to x′j . For each output sharing

yj of EG
d,m, we set yj

mi
= y′j

i for all i ∈ J0, d′J where y′j is the output sharing of G that
corresponds to yj . For all i ∈ J0, dJ that do not appear in m, we set yj

i = 0.

Lemma 1 (PINI embedding). If G is a PINI gadget, its embedding EG
d,m is PINI for any

d and m.

Proof. We describe the (d−1)-PINI simulator for EG
d,m that has to simulate a set of internal

probes P and the output shares with index in B. First of all, P can be partitioned in a
set PG of probes in G and a set Pi of probes on the input shares. Next, B is partitioned
as B0 (the elements of B that appear in m), and B1 (the remaining elements).

9

Let B′
0 = {i ∈ J0, d′J s.t. mi ∈ B0}, we have |B′

0| = |B0|. We use the PINI simulator of
G to simulate the probes PG and its output shares with index in B′

0 (which are the outputs
of EG

d,m with index in B0). This simulator requires knowledge of its input shares with index
in A′ ∪ B′, for some A′

0 such that |A′
0| ≤ |PG|. Let us define A0 = {mi for all i ∈ A′

0},
such that knowing the input shares of EG

d,m with index in A0∪B0 allows to send the inputs
required to the simulator of G, hence to simulate the probes PG and the output shares
with index in B0.

Finally, the probes in Pi can be simulated with the input shares with index in A1, for
some A1 such that |A1| ≤ |Pi|, and all the output shares with index in B1 can be trivially
simulated (their value is always 0). As a result, all the required values can be simulated
with the input shares of EG

d,m with index in (A0 ∪A1) ∪B, and |A0 ∪A1| ≤ |P |.

Proposition 3. Algorithm 8 is PINI.

Proof. In the case d = 1, this is trivial. In the other cases, we decompose the gadget in three
sub-gadgets: E

SecA2B⌊d/2⌋
k

d,(0,...,⌊d/2⌋−1) (which computes sB,k from xA2k), E
SecA2Bd−⌊d/2⌋

k

d,(⌊d/2⌋,...,d−1) (which
computes s′B,k from xA2k) and SecAddd

k (which computes zB,k from sB,k and s′B,k). Since
SecA2B⌊d/2⌋

k and SecA2Bd−⌊d/2⌋
k are PINI (by induction on d), their embeddings are PINI

(by Lemma 1). Furthermore, SecAddd
k is PINI (Proposition 1). Therefore, Algorithm 8 is

a composition of PINI gadgets.

3.4 SecA2BModp: Bitslice arithmetic-to-boolean conversion modulo p

A simple way to implement arithmetic modulo p to boolean masking conversion is to adapt
Algorithm 8 (SecA2B) to use addition modulo p (SecAddModp, Algorithm 7) instead of
addition modulo 2k (SecAdd, Algorithm 6).4 On top of this adaptation, we can perform a
small optimization inspired by the first-order A2B conversion from [FBR+22]: the first
operation of our addition modulo p (Algorithm 7) is to subtract p from one of the two
operands which can be done before double the number of shares in the A2B algorithm.
This has no impact on the final result, but the cost of this subtraction is divided by about 4
(since this operation is in O

(
kd2)

).
These changes do not impact the asymptotic complexity of the algorithm, which is still

O
(
kd2)

random bits and single-bit operations.

Proposition 4. Algorithm 9 is PINI.

Proof. The proof is almost identical to the proof of Algorithm 9. The case d = 1 is
trivial, and in the other cases, we exhibit a decomposition into PINI sub-gadgets. We
first consider the d-share embedding of the ⌊d/2⌋-share composite gadget whose input is
xAp [J0, ⌊d/2⌋J] and whose output is sB,k+1. This gadget is the composition of two PINI
gadgets (SecA2BModp⌊d/2⌋

k and SecAdd⌊d/2⌋
k+1), hence it is PINI, and the embedding is PINI.

Next, the d-share embedding of SecA2BModpd−⌊d/2⌋
k is PINI, as well as the other d-share

sub-gadgets (SecAdd, BitCopyMask).

3.5 SecB2AModp: Bitslice boolean-to-arithmetic conversion modulo p

We now adapt in Algorithm 10 the SecB2AModp from [BBE+18] (Algorithm 3) to use our
new SecA2BModp and SecAddModp algorithms.5 Furthermore, we replace the refresh gadget

4Another solution would be to use the compression algorithm (HOCompress) from [CGMZ21a] which it
has a worse asymptotic complexity of O

(
kd2 log(d)

)
, but which might be an interesting alternative if we

care only about small enough d.
5The conversion modulo 2k SecB2Ad

k can be implemented following Algorithm 10, using the new SecA2B
and SecAdd instead of SecA2BModp and SecAddModp. The security proof is not changed.

10

Algorithm 9 SecA2BModpd
k New (PINI)

Input: d shares arithmetic sharing xAp , integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares boolean sharing zB,k such that z = x.

1: if d = 1 then
2: zB,k ← xAp

3: else
4: yB,k ← SecA2BModp⌊d/2⌋

k

(
xAp [J0, ⌊d/2⌋J]

)
▷ ⌊d/2⌋ sharing.

5: y′B,k ← SecA2BModpd−⌊d/2⌋
k

(
xAp [J⌊d/2⌋, dJ]

)
▷ d − ⌊d/2⌋ sharing.

6: pB,k+1 ←
(
2k − p, 0, . . . , 0

)
▷ ⌊d/2⌋ sharing.

7: sB,k+1 ← SecAdd⌊d/2⌋
k+1

(
pB,k+1, yB,k

)
▷ Use Algorithm 6.

8: sB,k+1 ←
(

yB,k+1
0 , yB,k+1

1 , . . . , yB,k+1
⌊d/2⌋−1, 0, . . . , 0

)
▷ Expand to d shares.

9: s′B,k ←
(

0, . . . , 0, y′B,k
⌊d/2⌋, . . . , y′B,k

d−1,
)

▷ Expand to d shares.

10: uB,k+1 ← SecAddd
k+1

(
sB,k+1, s′B,k

)
▷ Use Algorithm 6.

11: bB,1 ← uB,k+1[k]
12: aB,k ← BitCopyMaskd

k

(
bB,1, p

)
▷ Copy sharing b where bitmask p is set (a := p · b).

13: zB,k ← SecAddd
k

(
aB,k, uB,k+1)

▷ Use Algorithm 6.

to reduce its cost (from O
(
d2)

to O (d log d)). The new refresh gadget is input-output
separative (IOS) and is described in Algorithm 17 (Appendix B). It is a generalization (to
handle any value of d, and not only power of 2) of the one introduced in [GPRV21].

Definition 5 (IOS ([GPRV21], adapted)). A refresh gadget G is t-IOS if it is uniform6

and if for every admissible pair (x, y)7 and every set of probes P with |P | ≤ t, there exists
a simulator which can perfectly simulate the probes by knowing only |P | input shares and
|P | output shares. A refresh gadget with d shares is said to be IOS if it is (d− 1)-IOS.

Algorithm 10 SecB2AModpd
k New (PINI)

Input: d shares boolean sharing xB,k, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = x.

1: for i = 0 to d− 2 do
2: z

Ap

i
$← Zp

3: z′Ap

i ← p− z
Ap

i

4: z′Ap

d−1 ← 0
5: aB,k ← SecA2BModpd

k

(
z′Ap

)
▷ Use Algorithm 9.

6: bB,k ← SecAddModpd
k

(
aB,k, xB,k

)
▷ Use Algorithm 7.

7: cB,k ← RefreshIOSd
k

(
bB,k

)
▷ Use Algorithm 17.

8: z
Ap

d−1 ← UnMaskd
k

(
cB,k

)
▷ XOR all shares together.

Proposition 5. Algorithm 10 is PINI.
6Its output is an uniformly distributed sharing of x for any fixed input sharing x. This implies that

the distribution of the output sharing y is independent of x, conditioned on x.
7The pair (x, y) is admissible if there exists an assignment for the randomness used is G such that, on

input x, the output of G is y .

11

Proof. We build a PINI simulator: given a set of probes P and share indexes B. We
distinguish two cases: either (i) d− 1 ∈ B or there is a probe of P in the UnMask gadget,
or (ii) there is no such probe.

In case (ii), we remark that the gadgets SecA2BModp and SecAddModp are PINI, as well
as RefreshIOS (Proposition 7, Appendix B). The probes in these gadgets can thus be
simulated by knowing at most |P | shares of xB,k and some z

Ap

i for i ∈ J0, d− 2K. Such
z

Ap

i , which also are the possible output shares to simulate, can be perfectly simulated
since they are randomly generated by the gadget.

In case (i), we consider the (d − 1)-PINI simulator that has to simulate the output
shares with index in B and the internal probes P . Let (P0, Pr, Pu) be a partition of P
such that the probes of P0 are in SecA2BModp and SecAddModp, the ones of Pr are in
RefreshIOS, and the ones of Pu are in UnMask. We first describe the simulator, then prove
that it is correct.

The PINI simulator for SecB2AModp first selects randomly z
Ap

d−1, then it generates a
uniformly random sharing cB,k of z

Ap

d−1, from which it can simulate any probe in Pu. Next,
using the IOS simulator, it determines the set of share indexes Br of bB,k required to
simulate Pr, with |Br| ≤ |Pr| (some shares from cB,k are also needed for this simulation,
but they are already simulated). We then consider the PINI simulation of the composition
of SecA2BModp and SecAddModp (since these two gadgets are PINI): the shares of bB,k

with index in Br and the probes P0 can be simulated with the shares of xB,k and z′Ap

whose index belongs to Br ∪B0, for some B0 such that |B0| ≤ |P0|. Finally, the simulator
completes the simulation by requesting the shares of xB,k with index in Br ∪B0 and draws
randomly all shares z

Ap

i with i ∈ (Br ∪B0 ∪B) \ {d− 1}, which enables the simulation of
the required z′Ap

i .
Let us first observe that the number of inputs required for the simulation is admissible:

|Br ∪B0| ≤ |P |. Further, let us denote by B∗ ⊂ J0, d− 2K the set of i such that z
Ap

i is used
in the simulation (we exclude z

Ap

d−1 for now). We remark B∗ = Br ∪B0 ∪ (B \ {d− 1}),
an therefore that |B∗| ≤ |Pr ∪ P0| + |B \ {d− 1}| ≤ d − 2 where the latter inequality
comes from the hypothesis that either |Pu| ≥ 1 (hence |P0 ∪ Pr| + |B| ≤ d − 2), or
d−1 ∈ B (hence |P |+ |B \ {d− 1}| ≤ d−2). As a result |J0, d− 2K \B∗| ≥ 1, and, taking
i∗ ∈ J0, d− 2K \B∗, we observe that z

Ap

i∗ is never used in the simulation.
We now show that the simulation is correct: for each value that is simulated, we show

that its distribution matches the true distribution, and furthermore we prove that the
simulation is consistent with (i.e., the simulated joint distribution is equal to the true
distribution) the simulation of the values for which we already proved the correctness.
First, the simulated shares z

Ap

i (except z
Ap

d−1) and z′Ap

i follow the same distribution as
in Algorithm 10. Next, since z

Ap

d−1 = z −
∑d−2

i=0 z
Ap

i mod p and since one of the terms of
the sum (zAp

i∗) is not used in the simulation and is uniformly distributed, z
Ap

d−1 appears
to the adversary as a fresh uniform value, and its simulation is correct. We continue
with the correct simulation of the probes in P0 and the shares bB,k

i : it follows from the
PINI simulators of SecA2BModp and SecAddModp. Since RefreshIOS is uniform, its output
sharing cB,k is a uniform sharing of z

Ap

d−1 which is independent of bB,k. The simulation of
the probes in Pr by the RefreshIOS simulator ensures that the simulation of these probes
and of cB,k are correct. Finally, the simulation of the probes Pu is trivially correct.

4 Gadgets performance
In this Section, we will compare the performance of each of our new gadgets to the state of
the art gadgets implementing the same feature (ignoring the difference in security property).

12

4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

KS add, k = 32

KS add, k = 13

Alg. 6, k = 32

Alg. 6, k = 13

(a) Cycle count.

4 6 8 10 12 14 16

0

10

20

Number of shares

Sp
ee

du
p

KS add, k = 32

KS add, k = 13

Alg. 6, k = 32

Alg. 6, k = 13

(b) Speedup w.r.t. KS adder, k = 13.

Figure 2: Performance comparison of SecAdd implementations.

We first describe the benchmark setup and the general implementation strategy, then we
report the performance of state of the art gadgets compared to the new gadgets.

4.1 Benchmarking setup
We implement all the gadgets in C and measure the performance on a ARM Cortex-M4, a
32-bit micro-controller. Concretely, we target the NUCLEO-L4R5ZI development board
which is used by the PQM4 benchmarking library [KRSS].8 The firmware and clock tree
are the same as the one used in PQM4, as well as the performance measurement method
(i.e., we use the cycle accurate counter DWT_CYCNT). In order to generate randomness,
we use the dedicated TRNG. According to the datasheet, a fresh random 32-bit word
is available in a dedicated register every 40 cycles. In practice, access to this TRNG is
wrapped with checks to ensure that randomness is not used twice, which increases the cost
of loading 32 bits of randomness to 53 cycles. In order to generate uniform randomness in
Zp, we generate two random elements based on 32 random bits and use rejection sampling.
Overall, one random over Zp is available every 26.5 cycles. When uniform randomness in
Fk

2 with k < 32 is needed (e.g., in the Kyber implementation, k = 13 for the KS adder),
we generate ⌊32/k⌋ k-bit words from 32 bits of randomness, dropping the remaining bits.
Finally, we used naive implementation of the recursive algorithms, only forcing inlining at
a few places where the control flow overhead was identified as a bottleneck.

In the rest of this Section, we report the performance of concrete implementations, for
which we have to fix the value of p. We take the prime of Kyber: p = 3329, which implies
that most of the gadgets will be benchmarked for k = ⌈log2(p)⌉ = 12. All the cycle counts
reported in this Section are for 256 independent calls to a given gadgets since it is the
polynomial size of Kyber. Since 256 is a multiple of the register width (32 bits), we fully
exploit the bitslicing potential of the processor.

4.2 Performance of SecAddd
k

We first analyze masked adders on k bits. We compare in Figure 2 the Kogge-Stone
adder from [BBE+18], which has a complexity of O(log(k)d2) word operations, and the
Algorithm 6 which has a complexity of O(kd2) bit operations. First, we observe that
Algorithm 6 requires less cycles than the KS adder. For k = 13, Algorithm 6 is about 23
times faster and for k = 32, the speedup is about 9x. Interestingly, Algorithm 6 is faster
than the KS adder despite its higher asymptotic complexity, thanks to the bitslicing gain.

8Our benchmarks are compiled with options -O2 -flto, and we note that speedup figures for the -O3
and -Os optimization levels are very similar.

13

4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

Alg. 1 (KS add)

Alg. 1 (Alg. 6 add)

Alg. 7

(a) Cycle count.

4 6 8 10 12 14 16

0

5

10

15

20

Number of shares

Sp
ee

du
p

Alg. 1 (KS add)

Alg. 1 (Alg. 6 add)

Alg. 7

(b) Speedup w.r.t. Alg. 1 (KS adder).

Figure 3: Performance comparison of SecAddModpd
12 implementations.

As expected form the complexities, the gain of Algorithm 6 decreases as k increases. Yet for
relevant parameters for lattice-based cryptography, it provides a significant improvement.

4.3 Performance of SecAddModpd
k

Next, we compare in Figure 3 the execution time for various SecAddModpk
d gadgets.

Concretely, we compare (i) Algorithm 1 when using the KS adder (not bitsliced), (ii)
Algorithm 1 with the Algorithm 6 as underlying SecAdd (hence leveraging bitslicing), and
(iii) Algorithm 7 (also using Algorithm 6). We observe that (ii) has a speedup of about
12x over (i), which is smaller than the improvement of 21x on the adder (SecAdd) itself.
Indeed, the execution time of (ii) is dominated by the SecAdd calls and the MUX (Line 9)
since both require in total 2(13 − 1) SecAnd executions, and while the speedup for the
SecAdd part is 21x, the one for the MUX part is only the bitslicing gain of 32/12 = 2.7x.
Finally, in case (iii), the dedicated gadget allows to roughly halve the cost of the MUX by
replacing it with a SecAdd, which gives a speedup of about 1.3x over (ii).

4.4 Performance of SecA2BModpd
k

Similarly, we compare the performance of SecA2BModpd
k implementations in Figure 4. The

reference implementation (i) is Algorithm 2 (with KS adder). We compare it to (ii)
a modified Algorithm 2 using the bitsliced adder (Algorithm 7), and to (iii) the new
Algorithm 9. We note that the speedup of (ii) over (i) is similar to the one we got for the
corresponding SecAddModp gadgets (albeit a bit lower due to the presence of RefreshSNI
whose bitslicing speedup is only 32/12). The new gadget (iii) has a speedup of 2x over
(ii), thanks to the removal of refresh gadgets and the execution of one SecAdd with the
number of shares halved.

4.5 Performance of SecB2AModpd
k

Finally, we compare in Figure 5 the performance of various implementations of SecB2AModp.
We consider as state of the art the algorithms from [SPOG19] and [CGMZ21b] which both
implement SecB2AModpd

k from single-bit conversions using Algorithm 4. As a result, their
computational cost is proportional to k, and we observe that they have comparable cost,
with a small advantage for [SPOG19] (which agree with the results on Intel x86 processors
of [CGMZ21b], Table 4).

Our bitsliced conversion gadget (Algorithm 10) always operates on ⌈log2(p)⌉ bits (here,
12). Concretely, for 16 shares, the bitsliced conversion of any x ∈ Zp is only twice as slow

14

4 6 8 10 12 14 16

105

106

107

108

Number of shares

C
yc

le
s

Alg. 2 (KS add)

Alg. 2 (Alg. 6 add)

Alg. 9

(a) Cycle count.

4 6 8 10 12 14 16

0

5

10

15

20

25

Number of shares

Sp
ee

du
p

Alg. 2 (KS add)

Alg. 2 (Alg. 6 add)

Alg. 9

(b) Speedup w.r.t. Alg. 2 (KS adder).

Figure 4: Performance comparison of SecA2BModpd
12 implementations.

4 6 8 10 12 14 16

105

106

107

Number of shares

C
yc

le
s

[SPOG19], k = 1

[CGMZ21b], k = 1

Alg.10, k = 12

(a) Cycle count.

4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

Number of shares

Sp
ee

du
p

[SPOG19], k = 1

[CGMZ21b], k = 1

Alg.10, k = 12

(b) Speedup w.r.t. [SPOG19], k = 1.

Figure 5: Performance comparison of SecB2AModp implementations.

as the state of the art single-bit conversions, and is therefore on par with state of the
art 2-bit conversions. For larger k-bit conversions, the advantage of Algorithm 10 grows
linearly with k.

5 Application to lattice-based KEMs
In this Section, we put our new gadgets together into an implementation of Kyber. We
focus on Kyber768 to maximize to comparability with the recent works of Coron et
al. [CGMZ21b, CGMZ21a]. Eventually, we applied the same methodology to Saber and
report the results.

5.1 Overview of masked Kyber
Kyber leverages the Fujisaki-Okamoto (FO) transform to transform a chosen-plaintext
attack (CPA) secure public encryption scheme (PKE) intro a chosen-ciphertext attack
(CCA) secure KEM [FO99, ABD+19]. Kyber decapsulation is described Algorithm 11
where the ciphertext c is decrypted with CPAPKE.Dec(·) to obtain the message m′. This
message is then re-encrypted with CPAPKE.Enc(·) to derive the ciphertext c′ using some
pseudo-randomness σ′ derived from m′ and the public key. The encapsulated secret K is
then returned only if c and c′ are identical, which ensures that the c has been derived from
the public key. We focus on the masked implementation of Kyber.CCAKEM.Dec since it is
the most sensitive to SCA [RRCB20, UXT+22]. In the following algorithms, green means

15

Algorithm 11 Kyber.CCAKEM.Dec(c, sk)
Input: Ciphertext c = (cu, cv), secret key

sk := (ŝ, pk, H(pk), z).
Output: Decapsulated secret K.

1: m′ := Kyber.CPAPKE.Dec(ŝ, c)
2: (K̄′, σ′) := Gd(m′||H(pk))
3: (c′

u, c′
v) := Kyber.CPAPKE.Enc(pk, m′, σ′)

4: if (cu = c′
u) & (cv = c′

v) then
5: K := KDF(K̄′||H(c))
6: else
7: K := KDF(z||H(c))

Algorithm 12 Kyber.CPAPKE.Dec(ŝ,c)

Input: Secret key ŝ ∈ Rl
p, ciphertext c =

(cu, cv).
Output: Plaintext m.

1: u := Decompressd
p,du

(cu) ▷ u ∈ Rl
p, du = 10

2: v := Decompressd
p,dv

(cv) ▷ v ∈ Rp, dv = 4
3: ẑ = ŝT ◦ NTT(u) ▷ ẑ ∈ Rp

4: w := v − NTT−1(ẑ) ▷ w ∈ Rp

5: m := Compressd
p,1(w) ▷ m is a 256-bit string

that no masking is required9, blue that masking is required and has linear complexity with
d (when implemented with arithmetic masking), and red that masking with quadratic
complexity is required, which means that bitsliced boolean masking may be beneficial.

Kyber.CPAPKE manipulates polynomial ring Zp[X]/(Xn + 1) that we denote as Rp.
Vectors of size l of polynomials are next denoted with bold such that x ∈ Rl

p. Kyber
makes also use of NTT representation that we denote x̂ := NTT(x). The first step (Line 1-2)
in decryption is to map the ciphertext c into the corresponding (vector of) polynomial(s).
Then, the secret key ŝ is multiplied with u and subtracted to v (Line 3-4). Concretely, these
operations (addition, multiplications and NTT) are performed with arithmetic masking and
can be applied share-by-share, hence with a linear complexity. Finally, each coefficient (in
Zp) of the resulting polynomial is compressed to a single bit, which represents the rounding
to ⌈p/2⌉ or 0. We detail the masked implementation of Compressd

p,c in Algorithm 14.
Finally, Kyber.CPAPKE.Enc is described in Algorithm 13. This algorithm starts by

generating 2l + 1 noise polynomials (Line 2-4) whose coefficients follow a central binomial
distribution (CBD, see Algorithm 16) with parameter η, such that they belong to J−η, ηK.
The CBD takes as input a pseudo-random string of bits which is computed as the hash PRF
of the random seed σ and a nonce. Next, the noise (e1 and e2) is added to the product
of the public key and the vector of noise polynomials r (Line 5-7). The message m is
decompressed to a polynomial with Decompressd

q,1 (see Algorithm 15) and added to the
sum. The last step is to compress (i.e., rounding then divide) both u to du bits and v to
dv bits, which gives the ciphertext (Line 8-9).

Algorithm 13 Kyber.CPAPKE.Enc(pk,m,σ)

Input: pk = (t̂, Â) with t̂ ∈ Rl
p, Â ∈ Rl×l

p ; message m ∈ {0, 1}n, randomness σ ∈ {0, 1}256.
Output: Ciphertext c = (cu, cv).

1: for i = 0 to l − 1 do ▷ Noise sampling
2: r[i] := CBDd

η1 (PRFd(σ, i)) ▷ r ∈ Rl
p, η1 = 2

3: e1[i] := CBDd
η2 (PRFd(σ, i + l)) ▷ e1 ∈ Rl

p, η2 = 2

4: e2 := CBDd
η2 (PRFd(σ, 2 · l)) ▷ e2 ∈ Rp, η2 = 2

5: r̂ := NTT(r)
6: u := NTT−1(ÂT ◦ r̂) + e1 ▷ u ∈ Rl

p

7: v := NTT−1(t̂T ◦ r̂) + e2 + Decompressd
p,1(m) ▷ v ∈ Rp

8: cu := Compressd
p,du

(u) ▷ du = 10
9: cv := Compressd

p,dv
(v) ▷ dv = 4

9We focus on long-term security of the Kyber private key, and assume that the exchanged key K can
be leaked to a side-channel adversary. Otherwise, the derivation of K should also be protected.

16

Algorithm 14 Compressd
q,c, from [CGMZ21a]

Input: d shares arithmetic sharing xAp such that p < 2k

and x ∈ J0, pJ. Compression factor c ∈ J1, kJ.
Output: d shares Boolean sharing zB,c such that z =
⌊(2c/p) · x⌉ mod 2c.

1: α← ⌈log2(p · d)⌉
2: y

A2c+α

d−1 ← ⌊(xAp

d−1 ·2
c+α+1+p)/(2p)⌋+2α−1 mod 2c+α

3: for i = 0 to d− 2 do
4: y

A2c+α

i ← ⌊(xAp

i · 2c+α+1 + p)/(2p)⌋ mod 2c+α

5: zB,c+α ← SecA2Bd
c+α

(
yA2c+α

)
▷ Algorithm 8

6: zB,c ← zB,c+α[Jα, α + cJ]

Algorithm 15 Decompressd
q,1

Input: d shares Boolean sharing
xB,1, integer p such that p < 2k

and x ∈ J0, pJ.
Output: d shares arithmetic sharing

zAp such that z = x · (p/2)
mod p.

1: yAp ← SecB2AModpBitd
k

(
xB,1)

2: xAp ← (p/2) · yAp mod p

5.2 Implementations: K1 and K2
Next, we detail our implementation of Kyber768, whose parameters are du = 10, dv = 4,
η1 = η2 = 2, l = 3 and p = 3329.10 For each of the algorithms Compressd

p,c, Decompressd
p,c

and CBDd
η, we will describe our new construction together with the previous state-of-the-art

solution.
The implementations K1 and K2 based on the one developed by Coron et al. [CGMZ21b,

CGMZ21a]. We changed the NTT and arithmetic operations with the optimized version
for Cortex-M4 from [KRSS]. We also keep a single noise polynomial in memory at any
time in Algorithm 13 to reduce the stack usage. Implementation K1 relies on the original
gadget provided by Coron et al., but we replaced some of them with our implementations
of the gadgets of [SPOG19] which perform better. Implementation K2 leverages our new
bitsliced gadgets.

Compressd
p,c. The Compress allows to map an element in Zp to z = ⌊(2c/p) · x⌉ mod 2c.

We leverage the masked compression algorithm from [CGMZ21a] (Algorithm 14) for
the implementation of Compressd

k in K2. Our Compressd
k algorithm takes as input an

arithmetic sharing xAp and transforms it into an arithmetic sharing mod 2c+α (where
α = ⌈log2(p ·d)⌉) using sharewise operations. The result is then converted into a (c+α)-bit
boolean sharing with the bitsliced SecA2B (Algorithm 8). Finally, the c most significant
bits of the boolean sharing are taken as output. After compression, we test the joint
equality to the ciphertext of all the compressed polynomial coefficients (c′

u and c′
v) using

bitsliced boolean ⊕B (for individual bit equality testing) then SecAnd (to summarize all
equality test results in a single bit).

For K1, each of the polynomial comparison are detailed in [CGMZ21a]. More precisely,
we consider as reference for their hybrid-method. For the test of cu, Coron et al. compare
(in arithmetic masking) u′ with all the possible candidates u that could lead to the
compression cu. For the test of cv, Coron et al. uses Algorithm 14 without bitslicing.
Eventually, the Compressd

p,1 in K1 is performed with the table-based conversion from
[CGMZ21b].

Decompressd
p,1. Decompress is mapping a single bit to ⌈p/2⌉ or 0, and we implement it

with Algorithm 15, in which single-bit boolean sharing xB,1 is converted to arithmetic
sharing yAp with the single-bit dedicated conversion from [SPOG19]. We do not use our

10Note that the proposed construction also applies to both Kyber512 (with l = 2, η1 = 3) and Kyber1024
(with l = 4, du = 11, dv = 5).

17

generic SecB2AModpd
k for this purpose since, as shown in Figure 5, it is slower by a factor

2 for single-bit conversions.

CBDd
2. The CBD takes as input two random strings a and b of η bits and outputs HW(a)−HW(b)

mod p. For K1, we use the implementation from [SPOG19] which computes HW(a)−HW(b)+
η in boolean masking (using their SecAddd

k), then converts it to arithmetic masking
using Algorithm 4 and their SecB2AModpBitd

k, and finally subtracts η. For K2, we use
Algorithm 16, which is close to the gadget of [SPOG19], but uses an optimal full adder
composition for the addition of the bits of a and ¬b, and furthermore uses our new
SecFullAdder and SecB2AModp bitslice gadgets. The new CBDd

η uses ⌊2η/2⌋ + ⌊2η/4⌋ +
⌊2η/8⌋+ . . . full-adders to compute HW(a)− HW(b) + η, which amounts to 3 SecAnd when
η = 2, instead of 8 SecAnd for the implementation of [SPOG19].

Algorithm 16 CBDd
η New (PINI, by composition)

Input: d shares Boolean sharing aB,η and bB,η, integer p such that p < 2k and x ∈ J0, pJ.
Output: d shares arithmetic sharing zAp such that z = HW(a)− HW(b) mod p.

1:
(
sB,2η[J0, ηJ], sB,2η[Jη, 2ηJ]

)
←

(
aB,η,¬bB,η

)
▷ HW(s) = HW(a) − HW(b) + η

2: ℓ← 2η
3: k ← ⌈log2(ℓ + 1)⌉
4: for i = 0 to k − 1 do ▷ Iterate from output LSB to MSB.
5: xB,1 ← if ℓ mod 2 = 1 then sB,2η[ℓ− 1] else (0, 0, . . . , 0)
6: ℓ← ⌊ℓ/2⌋
7: for j = 0 to ℓ− 1 do ▷ Accumulate all bits of weight i.
8: tB,2 ← SecFullAdderd

(
sB,2η[2j], sB,2η[2j + 1], xB,1)

▷ Algorithm 5
9:

(
xB,1, sB,2η[j]

)
←

(
tB,2[0], tB,2[1]

)
▷ Sum bit goes to xB,1 and carry to sB,2η [j].

10: yB,k[i]← xB,1

11: zAp ← SecB2AModpp
d

(
yB,k

)
▷ Algorithm 10, y = HW(a) − HW(b) + η

12: z
Ap

0 ← z
Ap

0 − η mod p

G, H and PRF. All the hash functions used are based on SHA-3 and therefore all use the
Keccak-f[1600] permutation. Concretely, we use the masked Keccak-f[1600] provided
by Coron et al. and a SNI SecAnd for K1, while we use a PINI SecAnd for K2.

Probing security The Kyber implementation K2 is a composition of PINI gadgets, hence
it is PINI itself, and therefore probing secure.

5.3 Kyber performance
We show in Figure 6 the performance of the top-level masked components of the Kyber
implementations K1 (based on state of the art gadgets) and K2 (new).

First, we remark that Compressd
p,1 in K2 achieves a speedup of more than 10x over K1,

showing that Algorithm 14 (bitsliced) is faster than the table-based approach by Coron et
al. For Compressd

p,4, the speedup (about 20x) is exactly the one of our new SecA2Bd
k since

both implementations implement the same algorithm and SecA2B is the bottleneck. Next,
the speedup for the compressed comparison of cu and c′

u is smaller. Indeed, Coron et al.
have already vastly improved this polynomial comparison in [CGMZ21a], which limits the
speedup of K2 to 1.8x. Finally, regarding the CBD (which includes the boolean to arithmetic
masking conversion of the noise), the gain in performances is directly dependent on the
gain for SecB2AModpd

k that we discussed in Figure 5, since this gadget is the bottleneck.

18

4 6 8 10 12 14 16

106

107

108

Number of shares

C
yc

le
s

Kyber768

CBD

Compressd
p,10

Compressd
p,4

Compressd
p,1

(a) Cycle count (K1: dashed, K2: solid line).

4 6 8 10 12 14 16

100

101

Number of shares

Sp
ee

du
p

Kyber768

CBD

Compressd
p,10

Compressd
p,4

Compressd
p,1

(b) Speedup of K2 over K1.

Figure 6: Comparison of the performance of various components of Kyber768:
implementations K1 (state of the art gadgets) and K2 (new).

d
=

3

d
=

4

d
=

5

d
=

6

d
=

7

d
=

8

d
=

9

d
=

10

d
=

11

d
=

12

d
=

13

d
=

14

d
=

15

d
=

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

others

Decompressd
p,1

Compressd
p,1

Compressd
p,4

Compressd
p,10

SecB2AModp: Alg. 16 L-11

CBD: Alg.16 L1-10

Gen Â

NTT

Keccak-f[1600]

Figure 7: Performance comparison of Kyber768 implementations: K1 (state of the art
gadgets, left) and K2 (new, right). Performance is normalized w.r.t. K1. For better
performances and small d, users should swap SecB2AModpd

k conversions.

For number of shares up to 6, the CBD based only on gadgets from [SPOG19] is faster,
while for a larger number of shares, the gain is around 1.5.

Overall, our new gadgets lead to a speedup of about 1.8x for the entire Kyber768. As
shown in the decomposition of Figure 7, the speedup mostly comes from the improvement
on polynomial compressions and comparisons (reduced from 45% to about 10% of the
total execution time). This leaves the implementation K2, dominated by the masked
Keccak-f[1600] (for 50% of the cycles) whose implementation is already efficiently bitsliced
in the state of the art, and by the SecB2AModpd

k conversion of the noise polynomials (in
Algorithm 16) for about 30% of the cycles.

5.4 Saber performance

We implement and benchmark Saber [BBMD+19] with the methodology we used for
Kyber. Indeed, the structure of Saber is very similar to the one of Kyber, the main
difference being the use of a field of characteristic two instead of a prime order field.
We developed the implementation S1 starting from the one of Coron et al. [CGMZ21a],
adapting and optimizing it for the Cortex-M4, and finally integrating the best state of

19

d
=

3

d
=

4

d
=

5

d
=

6

d
=

7

d
=

8

d
=

9

d
=

10

d
=

11

d
=

12

d
=

13

d
=

14

d
=

15

d
=

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
others

Decompressd
213,1

Compressd
210,21

Compressd
210,24

Compressd
213,210

SecB2A: Alg. 16 L-11

CBD: Alg.16 L1-10

Gen Â

NTT

Keccak-f[1600]

Figure 8: Performance comparison of Saber implementations: S1 (state of the art gadgets,
left) and S2 (new, right). Performance is normalized w.r.t. S1.

the art gadgets.11 We then developed implementation S2, replacing the SecA2B, SecB2A
and CBD implementations by our new bitslice algorithms. Implementation S2 is trivially
probing secure thanks to PINI composition.

Overall, implementation S2 achieves a speedup of about 3x over S1 for the entire Saber
as reported in Figure 8. Concretely, our new gadgets reduces the execution time of the
conversions by a large factor such that the fraction of runtime dedicated to them is reduced
from 78% down to 20%. In implementation S2 (for d = 16), 72% of the execution is spent
in masked Keccak-f[1600], 12% in SecB2Ad

k and around 10% in SecA2Bd
k to perform

polynomial compression.

6 Conclusion
We begin our conclusion with the performance improvements. Thanks to very large
performance improvement (about 20x) on arithmetic-to-boolean masking conversion gadgets
and to various smaller improvements (notably on boolean-to-arithmetic conversions), our
Kyber768 implementation K2 based on new gadgets achieves a speedup of 1.8x over the
implementation K1 based on state of the art gadgets (see Figure 7). Similarly, we improve
the performance of Saber by a factor 3x. The bottleneck of both new implementations of
Kyber and Saber is the computation of masked Keccak, meaning that without improvement
on the masked hash function, further speedup opportunities are limited.

Next, we remark that in addition to improving performance in software by 1.3x to 25x,
our bitsliced gadgets are very amenable to simple and efficient hardware implementations
thanks to their bit-level structure, compared to tabled-based gadget or to other non-
bitsliced gadgets. Additionally, we expect that the use of PINI as security property will
help for security against glitches and transitions [CGLS21, CS21].

Finally, we note that most of the security proofs of this paper are simple: their
sole argument is that a gadget is a composition of PINI sub-gadgets. We next discuss
the takeaways of the more interesting security proofs. The proofs of Propositions 3
and 4 (arithmetic-to-boolean conversion) rely on the new definition of gadget embedding
(Definition 4 and Lemma 1), which can be viewed as an extension of trivial PINI composition
to the composition of sub-gadgets with mixed number of shares. Futher, the proof of
Proposition 5 (SecB2AModp) shows that one may securely “unmask” a sharing using only
a RefreshIOS, instead of the FullRefresh which was used in previous works.

11We only replaced the CBD with the from [SPOG19].

20

Acknowledgments. Gaëtan Cassiers is a Research Fellow of the Belgian Fund for
Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the Walloon
Region through the FEDER project USERMedia (convention number 501907-379156).

References
[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber algorithm specifications and supporting documentation.
NIST PQC Round, 3:4, 2019.

[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,
Tobias Schneider, and François-Xavier Standaert. Systematic study of
decryption and re-encryption leakage: the case of kyber. Cryptology ePrint
Archive, Report 2022/036, 2022. https://ia.cr/2022/036.

[AP21] Alexandre Adomnicai and Thomas Peyrin. Fixslicing aes-like ciphers new
bitsliced AES speed records on arm-cortex M and RISC-V. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(1):402–425, 2021.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In CCS, pages 116–129.
ACM, 2016.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In EUROCRYPT (2), volume 10821 of Lecture
Notes in Computer Science, pages 354–384. Springer, 2018.

[BBMD+19] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshuman
Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Frederik
Vercauteren. Saber: Mod-lwr based kem. NIST PQC Round, 3, 2019.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In CHES, volume 9813 of Lecture Notes in Computer
Science, pages 23–39. Springer, 2016.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(3):334–359, 2021.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In EUROCRYPT (3), volume 12107 of
Lecture Notes in Computer Science, pages 311–341. Springer, 2020.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
313–314. Springer, 2013.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

21

https://ia.cr/2022/036

[Bih97] Eli Biham. A fast new DES implementation in software. In FSE, volume
1267 of Lecture Notes in Computer Science, pages 260–272. Springer, 1997.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization
techniques with applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
kems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):483–507, 2020.

[BS20] Olivier Bronchain and François-Xavier Standaert. Side-channel
countermeasures’ dissection and the limits of closed source security
evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):1–25,
2020.

[BS21] Olivier Bronchain and François-Xavier Standaert. Breaking masked
implementations with many shares on 32-bit software platforms or when the
security order does not matter. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):202–234, 2021.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware private circuits: From trivial composition to full
verification. IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CGMZ21a] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order polynomial comparison and masking lattice-based encryption.
Cryptology ePrint Archive, Report 2021/1615, 2021. https://ia.cr/2021/
1615.

[CGMZ21b] Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun.
High-order table-based conversion algorithms and masking lattice-based
encryption. IACR Cryptol. ePrint Arch., page 1314, 2021.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and
Praveen Kumar Vadnala. Conversion from arithmetic to boolean masking
with logarithmic complexity. In FSE, volume 9054 of Lecture Notes in
Computer Science, pages 130–149. Springer, 2015.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between boolean and arithmetic masking of any order. In
CHES, volume 8731 of Lecture Notes in Computer Science, pages 188–205.
Springer, 2014.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel
masking with pseudo-random generator. In EUROCRYPT (3), volume 12107
of Lecture Notes in Computer Science, pages 342–375. Springer, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In FSE,
volume 8424 of Lecture Notes in Computer Science, pages 410–424. Springer,
2013.

22

https://ia.cr/2021/1615
https://ia.cr/2021/1615

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe than
sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158, 2021.

[FBR+22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):414–460, 2022.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 537–554. Springer, 1999.

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem
Varici. Ls-designs: Bitslice encryption for efficient masked software
implementations. In FSE, volume 8540 of Lecture Notes in Computer Science,
pages 18–37. Springer, 2014.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.
Probing security through input-output separation and revisited quasilinear
masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):599–640,
2021.

[GR16] Dahmun Goudarzi and Matthieu Rivain. On the multiplicative complexity
of boolean functions and bitsliced higher-order masking. In CHES, volume
9813 of Lecture Notes in Computer Science, pages 457–478. Springer, 2016.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical cca2-secure and masked ring-lwe implementation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(1):142–174, 2018.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis
(EMA): measures and counter-measures for smart cards. In E-smart, volume
2140 of Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on cca-secure lattice-based PKE and
kems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. A masked ring-lwe implementation. In CHES, volume 9293 of
Lecture Notes in Computer Science, pages 683–702. Springer, 2015.

23

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu.
Efficiently masking binomial sampling at arbitrary orders for lattice-based
crypto. In Public Key Cryptography (2), volume 11443 of Lecture Notes in
Computer Science, pages 534–564. Springer, 2019.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis
on post-quantum kems. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(1):296–322, 2022.

A Minimum number of AND gates for a k-bit adder
In the following, we name k-bit adder the boolean function with 2k inputs and k coordinates
that implements addition modulo 2k when its inputs and outputs are viewed as k-bit
binary representations of integers.

Proposition 6. A boolean circuit implementing a k-bit adder, When implemented with
only 2-input AND, XOR and NOT gates, uses at least k − 1 AND gates.

Proof. We next prove the lower bound of k − 1 AND gates for the addition of two k-bit
integers. Let B0 be the set of all linear and affine boolean functions whose inputs are the
2k adder input bits, then by induction, ci be the product of two elements ai and bi of Bi,
and Bi+1 be the span (in the vector space of boolean functions) of Bi ∪ {ci}. We remark
that for any (vectorial) boolean function f that can be implemented with i 2-input AND
gates and any number of XOR and NOT gates, there exists (aj)j=0,...,i−1 and (bj)j=0,...,i−1
such that f has all its coordinates in Bi.

Let Di be the set of all the degrees of the functions in Bi. We have D0 = {0, 1}, and
for any i, |Di+1| ≤ |Di| + 1, thus |Di| ≤ i + 2. The induction inequality can be proven
as follows: by construction, any function in Bi+1 can be written as α0ci ⊕

⊕k
j=1 αjfi

where all coefficients α belong to F2 and all fj belong to Bi. Since Bi is a vector subspace,
there exists f ∈ Bi such that f =

⊕k
j=1 αjfj . Therefore, all elements of Bi+1 \ Bi can

be written as ci ⊕ f for some f ∈ Bi. If the degree of ci (denoted deg (ci)) does not
belong to Di, then deg (ci ⊕ f) is either deg (ci) or deg (f), thus Di+1 ⊂ Di ∪ {deg (ci)}
and the inequality follows. Let us now assume that deg (ci) ∈ Di. Let f, f ′ ∈ Bi such
that deg (ci ⊕ f) ̸= deg (ci ⊕ f ′), let d = max (deg (ci ⊕ f) , deg (ci ⊕ f ′)) and assume by
contradiction that both degrees do not belong do Di. Therefore, deg (ci ⊕ f) ≤ deg (ci)
and the sets of terms in the algebraic normal forms (ANF) of ci and f whose degree belong
to Jdeg (ci ⊕ f) , deg (ci)K are equal. The same goes for f ′, and furthermore the sets of
terms of degree d of f and f ′ are distinct. As a result, deg (f ⊕ f ′) = d ∈ Di, which
contradicts the hypothesis.

Numbering from 0 to k − 1 (from least to most significant) the output bits of the
adder, the bit i is a function of degree i + 1 of the input bits. Therefore, the k-bit adder
vectorial boolean function has coordinates of all degrees in J1, kK. Hence, the adder does
not belong to any Bk−2: since 0 ∈ Dk−2, |Dk−2 \ {0}| ≤ k − 1 < |J1, kK|, and therefore
Dk−2 ̸⊂ J1, kK. We conclude that the k-bit adder cannot be implemented with k − 2 AND
gates (or less).

B Generalized IOS refresh gadget
In this Section, we generalize the IOS refresh algorithm of [GPRV21] to deal with any
number of shares (instead of only power-of-2). In a nutshell, we take the SNI refresh
of [BCPZ16] and apply the same changes as [GPRV21] applied to the power-of-2 special

24

case, resulting in Algorithm 17. The main difference with [GPRV21] is that the recursive
call do not necessarily have the same number of shares, and that the last share is not
re-randomized in the final layer when d is odd. For the sake of simplicity and consistency
of notations, we specialize the gadget to boolean masking, but the generalization of the
gadget and the proofs to linear masking are trivial.

Algorithm 17 RefreshIOSd
k

Input: Boolean sharing xB,k.
Output: Boolean sharing yB,k such that x = y.

1: if d = 1 then
2: yB,k ← xB,k

3: else if d = 2 then
4: r

$← Fk
2

5: yB,k
0 ← xB,k

0 ⊕ r

6: yB,k
1 ← xB,k

1 ⊕ r
7: else
8: zB,k

J0,⌊d/2⌋J ← RefreshIOS⌊d/2⌋
k

(
xB,k

J0,⌊d/2⌋J

)
9: zB,k

J⌊d/2⌋,dJ ← RefreshIOSd−⌊d/2⌋
k

(
xB,k

J⌊d/2⌋,dJ

)
10: for i ∈ J0, ⌊d/2⌋J do
11: ri

$← Fk
2

12: yB,k
i ← zB,k

i ⊕ ri

13: yB,k
⌊d/2⌋+i ← zB,k

⌊d/2⌋+i ⊕ ri

14: if d mod 2 = 1 then
15: yB,k

d−1 ← zB,k
d−1

Security proof We now prove that Algorithm 17 is input-output separative for d ≥ 2.
Since the proof is very similar to the original proof of [GPRV21], we only mention the few
significant differences. Throughout the proof we denote L = J0, ⌊d/2⌋J and H = J⌊d/2⌋, dJ.
Furthermore, we replace d/2 by ⌊d/2⌋ everywhere and adapt the indices (from 0 to d− 1
instead of 1 to n).

Uniformity The proof is still by induction, and the base cases are d = 1 and d = 2.
The proof for d = 2 is unchanged, while the case d = 1 is trivial since there is only one
admissible output sharing for a fixed input. Next, for d ≥ 3, the original induction proof
still holds.

IOS The case d = 1 is trivial: the full input and output sharings are known if there
is at least one probe. The case d = 2 is not changed. The induction case only requires
changes when d is odd, in order to handle the share zB,k

d−1 (wlog we assume that yB,k
d−1 is not

probed): we define Vd−1 as {zB,k
d−1} and add d− 1 for J if Vd−1 is not empty, and in that

case the simulator sets zB,k
d−1 = yB,k

d−1. Simulation then proceeds as in the original proof.

Re-ordering operations The execution of Algorithm 17 can be re-written in the following
manner. Let first Ld be well a well-chosen list of pairs (xi, yi) (formally, Ld ∈

(
J0, dJ2

)∗
).

Then, for each (xi, yi) in Ld, generate ri ∈ Fk
2 and update the shares with index xi and yi

by XORing ri to them. We remark that Ld may be shuffled without impacting the set of

25

internal variables if we preserve the relative order of any pairs (xi, yi) and (xj , yj) such
that {xi, yi} ∩ {xj , yj} ≠ ∅. This gives freedom in the implementation to choose the order
that minimizes control flow and spilling (i.e., copies from registers to the RAM) overheads.

PINI Finally, we prove that Algorithm 17 is PINI.

Proposition 7. Algorithm 17 is PINI.

Proof. Algorithm 17 it can be partitioned in one randomness generation circuit G, and
d sub-circuits that each take as input randomness (produced by G) and one input share
of RefreshIOS, and output the corresponding output share. The simulator can simply
simulate the randomness generation circuit, as well as any sub-circuit in which there is a
probe (or for which the output must be simulated).

26

	Introduction
	Background
	Masking and elementary gadgets
	Composable probing security
	Modular addition in boolean masking
	Arithmetic-to-boolean masking conversion
	Boolean-to-arithmetic masking conversion

	New gadgets
	SecAdd: Bitslice boolean masked addition modulo 2k
	SecAddModp: Bitslice boolean masked addition modulo p
	SecA2B: Bitslice arithmetic-to-boolean conversion modulo 2k
	SecA2BModp: Bitslice arithmetic-to-boolean conversion modulo p
	SecB2AModp: Bitslice boolean-to-arithmetic conversion modulo p

	Gadgets performance
	Benchmarking setup
	Performance of SecAddkd
	Performance of SecAddModpkd
	Performance of SecA2BModpkd
	Performance of SecB2AModpkd

	Application to lattice-based KEMs
	Overview of masked Kyber
	Implementations: K1 and K2
	Kyber performance
	Saber performance

	Conclusion
	Minimum number of AND gates for a k-bit adder
	Generalized IOS refresh gadget

