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Abstract. We’re presenting mining-based techniques to reduce the size of various cryptographic outputs
without loss of security. Our approach can be generalized for multiple primitives, such as key generation,
signing, hashing and encryption schemes, by introducing a brute-forcing step to provers/senders aiming
at compressing submitted cryptographic material. As a result, in systems that we can tolerate sender’s
work to be more demanding and time-consuming, we manage to optimize on verification, payload size and
storage cost, especially when:

– receivers have limited resources (i.e. mobile, IoT);
– storage or data-size is financially expensive (i.e. blockchains, cloud storage and ingress cost);
– multiple recipients perform verification/decryption/lookup (i.e. blockchains, TLS certs, IPFS lookups).

Interestingly, mining can result in record-size cryptographic outputs, and we show that 5%-12% shorter
hash digests and signatures are practically feasible even with commodity hardware. Obviously, the first
thing that comes to mind is compressing addresses and transaction signatures in order to pay less gas fees in
blockchain applications, but in fact even traditional TLS certificates and public keys, which are computed
once and reused in every new connection, can be slightly compressed with this “mining” trick without
compromising security. The effects of “compressing once - then reuse” at mass scale can be economically
profitable in the long run for both the Web2 and Web3 ecosystems.

Our paradigm relies on a brute-force search operation in order to craft the primitive’s output such that it
fits into fewer bytes, while the “missing” fixed bytes are implied by the system parameters and omitted
from the actual communication. While such compression requires computational effort depending on the
level of compression, this cost is only paid at the source (typically in blockchains consisting of a single
party) which is rewarded by lowered transaction fees, and the benefits of the compression are enjoyed by
the whole ecosystem. As a starting point, we show how our paradigm applies to some basic primitives (com-
monly used in blockchain applications), and show how security is preserved using a bit security framework.
Surprisingly, we also identified cases where wise mining strategies require proportionally less effort than
naive brute-forcing, an example is WOTS [12] (and inherently SPHINCS [10]) post-quantum signatures
where the target goal is to remove or compress the Winternitz checksum part. Moreover, we evaluate our
approach for several primitives based on different levels of compression which concretely demonstrates the
benefits (both in terms of financial cost and storage) if adopted by the community.

Finally, as this work is inspired by the recent unfortunate buggy “gas golfing” software in Ethereum,
where weakly implemented functions incorrectly generated addresses (hashes) with “prefixed zeroes for gas
optimization”, resulting in millions of losses [1,18,6], we expect our Truncator approach to be naturally
applied in the blockchain space as a secure solution to more succinct transactions, addresses and states.

1 Introduction

In blockchain applications like Bitcoin [20], a distributed common ledger is maintained among all
participants. As the size of the ledger monotonically increases, most blockchains have large storage
requirements for nodes, which can be several hundreds of gigabytes, even after applying techniques
to prune or compact the needed storage. In addition, there is typically an upper bound of storage
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space per block (e.g. in Bitcoin it is 1MB)5, while concretely for Bitcoin at the time of writing, 250
bytes roughly cost $1.5 of transaction fees to include in next block with high probability. Therefore,
blockchain space is a scarce resource, and typically there are mechanisms in place to disincentivize
posting large amounts of data to the public ledger (e.g. in cryptocurrencies, transaction fees are
proportional to the size of that transaction in bytes).

In this work, we present several methods to trade off storage for computation in several crypto-
graphic primitives used in both Web2 (i.e. succinct TLS keys and certificates) and blockchain applica-
tions. Our approach is based on the principle that a few extra operations on behalf of the transaction’s
sender, which could require crafting a valid transaction in a few seconds or minutes instead of millisec-
onds, would be beneficial for the sender (by lowering transaction fees) as well as all other blockchain
participants (by fitting more transactions per block or by reducing the overall blockchain size by a
constant factor). Our underlying paradigm for these operations is a brute-force search in the crypto-
graphic primitive’s inputs/randomness, in order to craft each primitive’s output in a specific way that
satisfies the modified system’s public parameters, e.g. requiring some specific bits of the output to be
constant. This enables us to omit these bits from the output entirely, as these implied constant bits
can be “glued back” to the output by the receiver, effectively allocating fewer bits per such output for
communication and storage. For each primitive, we argue that security is preserved compared to the
standard primitive.

Finally, while in this paper we focus on the basic cryptographic primitives commonly used in
the blockchain space (where storage costs are of particularly importance), our techniques can be
further applied to the whole spectrum of cryptography (e.g. zero-knowledge proofs, lattices, multi-
party computation etc.) with the level of potential benefits depending on the specific application
where these primitives are deployed.

1.1 Overview of our approach

As discussed above, our approach will be an iterative search of the primitive’s input such that the
conditions we require for the primitive’s output are satisfied. As a first example, in the key generation
algorithm for dlog-based keys, we perform an iterative search a secret key sk such that its derived
public key pk = gsk has a pre-determined ℓ-bit prefix. On other probabilistic primitives, e.g. in a
public key encryption scheme, we can simply brute-force the scheme’s randomness to achieve the
desired truncation. However if we need to truncate a deterministic primitive (e.g. a hash function),
a nonce (or salt) must be used. Another possible technique is to introduce some randomness within
the primitive’s payload without altering its semantics, e.g. slightly altering some pixels in images to
nearby colors, or replacing spaces with non-printable characters in text files. The latter approach is
straightforward and easy to implement, without directly modifying the cryptographic primitive, but
is only applicable within certain application scenarios.

Based on the above, we distinguish between the 2 main ways of a brute-force search on a primitive’s
input: brute-forcing the internal randomness of a primitive (if any) or brute-forcing the primitive’s
payload (e.g. the message of a signature). Brute-forcing the payload can be implemented in 3 different
ways:

– Use a nonce, and send it along with the payload. This method is preferable if the application
already includes such a nonce.

– Use a nonce, and have the receiver perform a brute-force operation as well to recover it. A sim-
ilar method was recently proposed by Pornin for signatures [23], but this is not suitable for our
applications as there we try to optimize on the verifier’s side.

5 In Ethereum there is no upper bound in block size, but each block has a maximum total gas, which has a similar
effect.
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– Brute-force the payload directly without changing it semantics, e.g. slightly altering pixels in
images, use non-printable chars instead of spaces in documents etc.

Randomness search. In the case where we perform a brute-force search on a primitive’s randomness,
it is particularly important on how this search is algorithmically performed. Simply incrementing the
randomness might lead to potential attacks in some applications, (e.g. in RSA, two random values
having a difference of 1 might result in the same key pair from the primality checks) and the safest
way is to generate fresh randomness for each iteration [7,8]. While this is a bit costlier in terms of
computation (because it needs to invoke /dev/urandom each time), a potential cheaper alternative
would be to increment by a large constant instead (although this needs to be carefully considered for
each primitive). For the case of hash functions, randomness generation could be performed similarly
as in Randomized Hashing for Digital Signatures [16]. Finally, we highlight a recent attack on an
Ethereum vanity address generator [4], where the randomness for brute-forcing the prefix on addresses
was only 32 bits, making a reverse brute-force search to recover the corresponding private keys feasible,
which in turn led to loss of funds [6].

The role of bit security. In our work, we will use a recent bit security framework [25] to analyze
the security of our proposed scheme modifications. Bit-security, is commonly used to describe the
level of security offered by a concrete instantiation of a cryptographic primitive P and offers a middle
ground approach between the common asymptotic proof approach and the concrete security approach.
Informally, we say that P has κ-bit security if it takes an adversary 2κ operations to break it, or
alternatively, an efficient adversary breaks the scheme with at most ϵ < 2−κ probability. This implies
that for any attack with computational cost T and success probability ϵ, it must hold that T/ϵ > 2κ.
Intuitively, bit-security captures that P is as secure as an idealized perfect cryptographic primitive
with an κ-bit key.

Our results. We show how to apply our truncation paradigm on some common cryptographic primi-
tives, such as hash digests, ECC public keys and signature outputs, resulting in about 7% compression
(2 bytes less) in less than a second for ed25519 signatures, and less than 10 milliseconds for compressed
Blake3 digests, using our optimized Rust Truncator implementation [13]. Using the framework by
Watanabe and Yasunaga [25], we show that bit security of the original primitive is preserved after our
modifications, and we evaluate the computational overhead compared to the communication/storage
savings. In addition, we consider primitives that involve an auxiliary output such as Winternitz one-
time signatures, and we show how our paradigm has the potential to be even more efficient when
applied in these cases. Note that these “truncated” versions of the primitives we considered only serve
as a starting point, as our paradigm can be applied to the whole space of cryptography.

1.2 Related works

Perhaps the first technique in the blockchain space that resembles our paradigm is Bitcoin vanity
address generator [5], which attempts to create a new valid Bitcoin public address (i.e. a double-
hashed ECDSA public key) given a user-specified address prefix. Later, this approach was leveraged
to create slightly shorter signatures in Bitcoin [2,3]. A more recent work by Pornin [23] presented
techniques to reduce the size of EdDSA and ECDSA signatures, however these techniques required
computational work on behalf of the verifier. Ethereum developers also proposed the use of addresses
with a prefix of many zeroes in order to reduce gas fees (called “gas golfing”) [1]. Also a recent work
by Fleischhacker et al. [17] presented algorithms on compressing sparsely-encrypted vectors. Finally,
a recent work by Blocki and Lee [11] which showed how to compress Schnorr signatures. However this
type of compression might affect security [14]. Nevertheless, our approach is orthogonal and can be
applied on top of such compression.
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2 Preliminaries

Notation. We denote a probabilistic polynomial-time (PPT) algorithm B with input a and output b as

b
$←− B(a). We denote the security parameter by λ, the bit security by κ and the truncation parameter

(i.e. the number of bits truncated) by ℓ.

2.1 Computational Hardness Assumptions

Definition 1 (Discrete-logarithm problem). The discrete-logarithm problem for a cyclic group G
of order q = |λ| is hard if ∀ ppt algorithms A, ∃ negligible function negl s.t.:

Pr


g generator of G;

h
$←− G;

x← A(g, h);
if gx = h output 1, else output 0

 = 1 ≤ negl(λ)

2.2 Definitions of Cryptographic Primitives

Definition 2 (Hard Relation). A relation R with a randomized PPT sampling algorithm Gen is a
hard relation if:

– For any (x, y)
$←− Gen() we have (x, y) ∈ R.

– ∃ a PPT algorithm that decides if (x, y) ∈ R.

– ∀ PPT algorithms A, Pr
[
(x, y)

$←− Gen();x∗ ← A(y);R(x∗, y) = 1
]
≤ negl(λ)

2.3 Bit security of cryptographic primitives

We use the bit-security framework defined in recent work by Watanabe and Yasunaga [25] and provide
an brief overview here (the alternative framework from [19] can also be used instead and gives the
same results).

Basic intuition. Abstractly, if a cryptographic primitive has κ-bit security, then the intuition is that
any adversary would need at least 2κ operations to break it where the computational cost comes
from the security game played by the adversary and the challenger. To precisely quantify bit security,
the framework models two adversaries: an inner adversary A which plays the “usual” security game
against the challenger, and an outer adversary B which invokes A a total of NA,B times in order to
amplify its final winning probability ϵA,B.

In an κ-bit security game, the challenger chooses a secret u ∈ {0, 1}κ uniformly at random, and
sends the challenge X(u) to A. The game is classified as a search game when u >> 1, and as a decision
game when u = 1. For instance, in the IND-CPA security game A’s goal is to distinguish between two
encryptions (i.e. u is 0 or 1) while in the simple discrete-logarithm experiment the adversary’s goal
is to output the value of u for a challenge gu. Based on this distinction, the framework’s structure
is somewhat different according to the security game type. In search games, each inner adversary is
invoked with a fresh random secret u, and the probability that B wins is defined as the probability
that some A wins (i.e., finds the appropriate search quantity). In contrast, for decision games, each
inner adversary plays an independent game with consistent secret u across all invocations. B can use
the outputs from all inner adversaries to produce its output u′; its probability of winning can now be
defined as Pr[u = u′].
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Definition 3 (Bit Security [25]). The bit security of an κ-bit game G is defined by:

BSµG = min
A,B
{log2(NA,B · TA) : ϵA,B ≥ 1− µ}

= min
A

{
log2(TA) + log2

(
min
B
{NA,B : ϵA,B ≥ 1− µ}

)}
where NA,B is the number of instances of A invoked by B, TA is the computational complexity for
playing the inner game by A and µ > 0 some small constant for B success probability 1− µ.

Based on the above definition and Theorems 1 and 2 provided in [25], the framework for a
primitive with a search-type game provides an approximate bit security of κ = log2(TA/ϵA) where ϵA
is A’s success probability in the security game. For primitives with decision-type games (e.g. PRG,
encryption, DDH) the framework approximates a lower bound for κ ≥ log2(TA/δ) where δ is the
advantage of A when playing a decision game.

3 Truncating cryptographic primitive outputs

Using the bit-security framework from Section 2.3, we now show how a number of different primitives
can be compressed or truncated without affecting their concrete security.

3.1 Truncated Hash Functions

We first consider the truncation of simple hash functions. Let H : {0, 1}∗ → Y = {0, 1}λ be a
(cryptographic) hash function. Suppose that we wish to communicate the λ-bit hash output H(x)
of an input x. To compress the amount of communication required, we now define a truncated hash
function H ′. For truncation parameter ℓ, we define H ′ as a function from {0, 1}∗ to {0, 1}λ−ℓ; this
will intuitively denote the output of H truncated by ℓ bits. In particular, we start by fixing an ℓ-bit
string s = s1, . . . , sℓ. Let Ys ⊆ Y denote the subset of Y that contains exactly those outputs that
begin with s. We consider the prefix for simplicity, but in general the truncated bits can be in any
positions and do not have to be consecutive—this would also support e.g., truncation to a subgroup
of the output group. Intuitively, our truncated function H ′ = H ′

s will now sample a nonce r such that
y = H(r ∥ x) ∈ Ys; this will be taken as the output of H ′.

The upshot is that now the first ℓ bits do not need to be communicated as part of the hash output;
this can be done since the string s, while part of the hash output, will be publicly known to the receiver
and therefore assumed to be implicit without needing to be communicated.

Truncated Hashing

H ′
s(x):

For r = 0, 1, 2, . . . :
y ← H(r ∥ x)
If y ∈ Ys, then output y

Fig. 1. Truncated Hash Function

We now argue that the bit-security is preserved despite outputting fewer bits of the digest.
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Theorem 1. Let H : {0, 1}∗ → {0, 1}λ a hash function with κ-bit security and computational cost
TH . Then the truncated hash function H ′

s : {0, 1}∗ → {0, 1}λ where the first ℓ bits are fixed to string
s ∈ {0, 1}ℓ is also κ-bit secure.

Proof (Sketch). Applying the bit-security paradigm from Definition 3 to the hash function H, let A
denote the inner adversary that minimizes log2(TA/ϵA) where TA denotes the computational com-
plexity of A and ϵA denotes its success probability. Then κ = log2(TA/ϵA). We now need to show
that the truncated hash function H ′

s also provides κ bits of security. For this, first, notice that an
evaluation of H ′

s takes on expectation 2ℓ times the cost to evaluate H. However, since the output
is also truncated by ℓ, the success probability of the inner adversary will also increase by a factor
of 2ℓ. This means that the expected bit-security of any A′ playing the game for H will be given by
log2((TA′/2ℓ)/(ϵA′/2ℓ) = log2(TA′/ϵA′). Since this value is minimized for adversary A, we obtain that
the bit-security of H ′ will also be log2(TA/ϵA) = κ.

3.2 Truncated DL-based public keys

Let G be a cyclic group of prime order p and g be a generator of G. The key generation algorithm,

KeyGen(1λ) for DL based keys works as follows: sk = x, pk = gx where x
$←− Zp.

Let y1y2 . . . yλ denote the binary representation of pk which forms the output space for public
keys Y . For truncation parameter ℓ < λ, we fix an ℓ-bit string s = s1, . . . , sℓ. Let Ys ⊆ Y denote the
subset of Y that contains exactly those outputs that begin with s. (As with hash functions above, we
consider truncation on the prefix for simplicity.) The new key generation algorithm KeyGen′(1λ) now

works as follows: x
$←− Zp, compute pk = gx, if pk ̸∈ Ys repeat by picking a new x, else output pk ∈ Ys.

We note that for the case of public keys, while sampling a “valid” private key requires this overhead
of additional repeated “brute-force” style operations, the space savings are permanent for the key’s
lifetime, which makes this compression attractive particularly for blockchain applications.

Theorem 2. Let KeyGen(1λ) be a key generation algorithm for the DL hard relation with κ-bit security
and computational cost TA. Then the truncated key generation algorithm KeyGen′(1λ) where the first
ℓ bits are fixed to string s ∈ {0, 1}ℓ is also κ-bit secure.

Proof (Sketch). The key generation algorithm for DL based keys is a hard relation (as defined in
Def. 2) under the DL problem. A hard relation is a search-type game which provides bit security of
log2(TA/ϵA) where ϵA is A’s success probability in the security game and TA is the computational
cost of the adversary. We argue that our truncated algorithm maintains the same bit security as the
one offered by the underlying group G 6.

Without loss of generality, assume that the truncation parameter ℓ = λ−1 and thus the size of the
public key is a single bit. Then, our truncated key sampling method for public key space Ys as defined
above creates a secret key space X ′ where |X ′| = 2. However, an adversary cannot efficiently compute
X ′ as this would directly reduce to breaking the DL assumption with non-negligible probability.

We now need to show that the truncated key generation algorithm also provides κ bits of security.
If x’s are sampled uniformly at random, computing the truncated pk will take on expectation 2ℓ time.
However, since the possible secret key space is also truncated by ℓ, the success probability of the inner
adversary will also increase by a factor of 2ℓ. This means that the expected bit-security of any A′

playing the game for KeyGen′ will be given by log2((TA′/2ℓ)/(ϵA′/2ℓ) = log2(TA′/ϵA′).

6 We note that for the case of secp256k1 discrete log keys, if the group size is λ-bits, then the probability of success
for the adversary is roughly 1/2λ/2 and thus the bit security is λ/2-bits, i.e. in secp256k1 a 256-bit key roughly offers
128-bit security [21].
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3.3 Truncated Schnorr Signatures

We now consider compression on DL-based signatures, and we show an application of our approach on
Schnorr signatures as an example. In Figure 2 we present a version of our truncated Schnorr signature
(we use red font to indicate the differences from standard Schnorr Signatures).

As before, let G be a cyclic group of prime order p and g be a generator of G. Let H() be a random
oracle implemented with a hash function that outputs a uniformly random element e ∈ Zp where p is
a prime of size 2λ-bits (in order to achieve λ-bit security)7. We truncate the hash function in the same
way as in Sec. 3.1 and we denote the truncation string by s′ given as input to the signing algorithm.
The resulting signature σ = (s, e) will save ℓ bits (the truncation parameter).

Note that while our truncation approach could alternatively be applied to the value s, this is not
efficient since e is computed first during Sign. Also, attempting to truncate signature values e and s
simultaneously would exponentially increase the truncation time. Therefore in general, for primitives
where the output consists of two or more elements, it is recommended to truncate the element that is
computed first in the algorithm.

Also note that generally in truncated signature schemes the space savings can be “stacked” with
the savings from truncated public keys as well.

KeyGen(1λ) Sign(sk,m, s′) Verify(σ,m, pk)

x
$←− Zp 1. r

$←− Zp Parse σ = (s, e)
sk← x 2. I ← gr I ← gspk−e

pk← gx 3. e← H(I ∥ m) If (H(I ∥ m) = e) then
return (pk, sk) 4. If e ̸∈ Ys return to step 1. return 1

5. s← r + sk · e mod p else return 0
6. return σ = (s, e)

Fig. 2. The truncated Schnorr Signature Scheme

The security of Schnorr signatures (existential unforgeability) has been thoroughly analyzed in
the literature [22,24]. We now argue that our truncated Schnorr signature scheme maintains the same
bit security as the underlying non-truncated version. The theorem below is straightforward given
Theorem 1.

Theorem 3. Let SchnorrSign be a Schnorr signature scheme with κ-bit security and computational
cost TA. Then the truncated signing algorithm as defined in Fig.2 where the first ℓ bits are fixed to
string s′ ∈ {0, 1}ℓ, is also κ-bit secure.

4 Truncating Primitives’ Auxiliary Outputs

While in the previous section we showed how to truncate the primitive’s main output, we also consider
special cases where some primitives might include a secondary (or auxiliary) output. As an example, we
consider the Winternitz one-time signature scheme (WOTS) [12], where the auxiliary output consists
of a checksum of the number of zero bits, which is appended to the main output in order to prevent
forgery (i.e. flipping 1-bits to 0’s), as shown in Fig. 3. Here our technique can be applied by requiring
a fixed checksum, therefore omitting it entirely from the signature. Because the checksum value has
a much higher probability to fall within the median of the checksum range, we can require the fixed-
value checksum to be simply the median of the range (as shown in Fig. 4), which provides a way of

7 We note that one could create a short Schnorr signature, by assuming an H() that maps to random λ-bit values, thus
the final signature σ is of size 3λ-bits (2λ-bits to encode s and λ-bits to encode e) [11]. Our truncation technique can
also apply on top of short Shnorr signatures.
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Fig. 3. Winternitz one-time signature example
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Fig. 4. WOTS checksum frequency diagram for
w = 16 and 1 million signatures.

more efficient compression. Therefore, in these cases the computation cost paid upfront for truncating
can be significantly lower compared to the “fixed-bit” approach discussed in Section 3. We showcase
this efficiency benefit in Section 5. Note that a similar approach and implied security of constant sum
WOTS has been discussed in [9].

5 Evaluation

We performed a series of evaluation experiments [13] to measure the trade-off between the truncation
parameter and the computational effort for the primitives we considered. Our evaluation series were
performed using fastcrypto library in Rust [15] on a Macbook M1 Pro as well as on an AWS t3.xlarge
instance, using a single CPU core (note that our truncation algorithms are naturally parallelizable,
but our implementation did not apply multi-threads focusing on the worst case).

We present our results for the primitives discussed in Section 38 in Table 1, using a sample size
of 100 for one byte of truncation (ℓ=8). For more bytes there is an factor of 28 computational cost
blowup for each additional byte truncated, therefore our results can be naturally extrapolated to derive
the expected costs for larger truncation, as shown in Fig. 5. Consequently, the equilibrium between
the tolerated computational overhead and the desired truncation benefits ultimately depends on the
specific primitive and its application scenario (e.g. even a week’s worth of computational work might
be tolerable in order to reduce the public address size by 5 bytes in a blockchain application, where
the benefit will be permanent). Note that there are additional techniques we can apply to speed up
the computation stage, e.g. using pre-computed lookup tables for public key generation and perform
elliptic curve additions rather multiplications. We also evaluate truncated hashed public keys as shown
in Table 2 (which are a common practice to derive public addresses in cryptocurrencies such as Bitcoin).

Ed25519
public
keys

secp256k1
public
keys

Ed25519
signature

ECDSA
secp256k1
signature

SHA2-256 SHA3-256 BLAKE3-256

Macbook Pro M1 MAX 3.0589 ms 4.0909 ms 3.2539 ms 15.649 ms 63.033 µs 71.786 µs 36.335 µs
AWS t3.xlarge 5.5355 ms 7.4514 ms 5.5283 ms 30.529 ms 110.11 µs 166.18 µs 43.198 µs

Table 1. Evaluation on truncated primitives for ℓ=8.

8 Ed25519 is a deterministic scheme, but we assume analogy with a randomized version, effectively representing Schnorr
signature schemes in this list.
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Ed25519 +
SHA2-256

Ed25519 +
SHA3-256

Ed25519 +
BLAKE3-
256

ECDSA
secp256k1 +
SHA2-256

ECDSA
secp256k1 +
SHA3-256

ECDSA
secp256k1 +
BLAKE3-256

Macbook Pro M1 MAX 3.1746 ms 3.3702 ms 3.1199 ms 4.0191 ms 4.1623 ms 3.9293 ms

AWS t3.xlarge 5.4751 ms 5.4873 ms 5.6650 ms 7.0932 ms 7.0677 ms 7.4188 ms
Table 2. Hashed public key truncation for ℓ=8.
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Fig. 5. Truncating primitives for larger truncation parameters

Truncated WOTS. We evaluate truncated WOTS separately, as it involves truncating its auxiliary
output instead of truncating the main output in the other primitives we considered (i.e. requiring a
fixed checksum instead of fixed bits). By considering the standard Winternitz parameter w = 16, the
probability of successfully finding an output with the median checksum is roughly 1.1%. This implies
that on average, truncated WOTS needs about 90 retries to output a valid one-time signature. Conse-
quently, since WOTS is used in SPHINCS [10], the state-of-the-art stateless post-quantum signature
scheme, with 64 hash elements output plus 3 elements as checksum, we can achieve about 4.5% com-
pression with only 26.5 effort (because of the bell-like normal distribution frequency curve in Fig. 4),
compared to the “fixed-bit” approach used in truncated hash functions which would require 212 effort
to achieve the same level of compression. Note that we could also reduce the size of checksum instead
of completely eliminating it (i.e. to 1 element instead of 3 for w = 16), which would require a lot less
effort on the signer’s side.

6 Conclusion and Future Directions

We presented Truncator, a paradigm to truncate the output size of cryptographic primitives with a
computational trade-off. As a starting point, we showed how our approach can be applied on basic
cryptographic primitives, while showing an additional benefit in certain types of primitives (e.g. in
primitives with auxiliary outputs such as checksums). Our paradigm opens many possibilities for
exploration, such as its implications in cryptoeconomics (e.g. the equilibrium of the trade-off when
quantifying the benefits and the initial investment in computation), or the ways of applying it (e.g.
delegating the computational effort to external services). We also intend to further explore how our
truncation paradigm is applicable for more advanced cryptographic primitives (e.g. for truncated
non-interactive zero-knowledge proofs) and formally prove their security. Finally, another future work
direction is proposing novel primitives specifically handcrafted to utilize mining techniques on sender’s
side, towards improved efficiency for communication and receiver’s work.
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