
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 1

FSMx-Ultra: Finite State Machine Extraction from
Gate-Level Netlist for Security Assessment

Rasheed Kibria, Farimah Farahmandi, Member, IEEE, and Mark Tehranipoor, Fellow, IEEE
Email: rasheed.kibria@ufl.edu, farimah@ece.ufl.edu, tehranipoor@ece.ufl.edu

Abstract—Numerous security vulnerability assessment tech-
niques urge precise and fast finite state machines (FSMs) extrac-
tion from the design under evaluation. Sequential logic locking,
watermark insertion, fault-injection assessment of a System-on-
a-Chip (SoC) control flow, information leakage assessment, and
reverse engineering at gate-level abstraction, to name a few,
require precise FSM extraction from the synthesized netlist of the
design. Unfortunately, no reliable solutions are currently available
for fast and accurate extraction of FSMs from the highly unstruc-
tured gate-level netlist for effective security evaluation. The major
challenge in developing such a solution is precise recognition of
FSM state flip-flops in a netlist having a massive collection of
flip-flops. In this paper, we propose FSMx-Ultra, a framework for
extracting FSMs from extremely unstructured gate-level netlists.
FSMx-Ultra utilizes state-of-the-art graph theory concepts and
algorithms to distinguish FSM state registers from other registers
and then constructs gate-level state transition graphs (STGs) for
each identified FSM state register using automatic test pattern
generation (ATPG) techniques. The results of our experiments
on 14 open-source benchmark designs illustrate that FSMx-Ultra
can recover all FSMs quickly and precisely from synthesized
gate-level netlists of diverse complexity and size utilizing various
state encoding schemes.

Index Terms—FSM Automata Theory, FSM Extraction, Netlist
Analysis, Security Assessment

I. INTRODUCTION

Modern System-on-a-Chip (SoC) designs are sophisticated
entities and primarily composed of several functional units
known as hardware Intellectual Property (IP) cores that inter-
act with each other and collaborate to accomplish complex
tasks and provide the desired functionality. To reduce the
overall expenses and shorten the time-to-market (TMT) as
much as possible, the design firms extensively rely on third-
party vendors to develop, implement, integrate, and fabricate
their IP designs. As a result, the designer’s IPs get trans-
parent to numerous untrusted stakeholders. Therefore, IPs
eventually become vulnerable to tampering attacks [1] and
IP infringement [28]. Furthermore, researchers have shown
that SoC security may be at risk when deployed in operation
[2]. Attackers may use the design for test (DFT) structures to
their advantage or perform power, timing, and electromagnetic
emission-based analysis, inject faults to access the system
illegally, or leak sensitive and secret information such as the
keys used in cryptographic encryption and decryption [3]–[6].

Numerous security assessment techniques have been pro-
posed to evaluate and address the abovementioned threats
over the past years. These techniques have primarily con-
centrated on protecting the device’s control flow, which is
crucial to the entire system’s operation. Since control logic
units are typically FSM-based, such techniques frequently
require precise recognition of all finite state machine (FSM)

A preliminary version of this work was published in the Proceeding of
2022 IEEE 40th VLSI Test Symposium (VTS).

structures. For instance, when translating from RTL to gate-
level abstraction, the Computer-Aided Design (CAD) tools
may add more don’t-care states to the design’s control FSM.
Attackers might use fault-injection techniques to access the
design’s protected states via utilizing the don’t-care states [44].
Furthermore, while integrating the DFT structures at the gate-
level abstraction, untrustworthy third-party IP (3PIP) vendors
can implant sequential Trojans into the design’s control FSM
[7]–[9]. Therefore, the overall system security can be im-
proved by identifying and addressing fault-injection and Trojan
insertion-based vulnerabilities linked to the extracted FSMs
during the pre-silicon design phases [44].

In addition, some FSM-based watermarking strategies em-
bed the authorship information in the states or transitions
which need precise FSM extraction to prevent IP infringement
[16], [17]. Other FSM-based methods for watermarking alter
the State Transition Graph (STG) of the FSM subtly for em-
bedding the watermark as a property [16], [17]. Furthermore,
partitioned FSM-based sequential logic locking strategies have
shown an enormous potential to be more resistant to oracle-
guided attacks than combinational logic locking while prevent-
ing overproduction [10]–[14]. Researchers have demonstrated
that it is essential to understand a design’s extracted FSM to
reduce the susceptibility to information leakage problems [15].
Additionally, in the hardware verification domain, equivalence
checking between the extracted FSMs from higher abstraction
levels (such as RTL) and gate-level netlist abstraction should
be conducted for secure design transformation and to reduce
the verification gap between specification and implementation
[18], apart from the security applications mentioned earlier.
However, because of the numerous shortcomings of the con-
temporary gate-level FSM extraction frameworks [26]–[29] as
discussed in Section III, many of these hardware protection
and validation schemes aimed at increasing the security of
an SoC can not be properly implemented in practice, unfor-
tunately. Therefore, a fast, scalable, and precise technique is
essential for extracting all the states and transactions of FSMs
present in an SoC, particularly for the security-critical IPs.

Although precise extraction of a design’s control FSMs is
crucial for numerous security and verification applications,
the methods and algorithms for FSM extraction reported
in the literature primarily focus on extracting FSMs from
higher levels of design abstraction (such as RTL) [19], [20].
However, because of design flattening and several optimization
stages (e.g., area, power, and performance) performed by the
CAD tools, the FSM state registers are mixed with non-FSM
registers during synthesis. As a result, it is challenging to
distinguish the FSM state registers and identify the additional
don’t-care states and don’t-care transitions included at the
gate-level abstraction succeeding logic synthesis from highly
unstructured gate-level netlists. Moreover, identifying all gates

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 2

in the prospective FSM state registers’ feedback loop using
the cycle (loop) identification technique [39] exhibits polyno-
mial time complexity. As a result, retrieving every state and
transition of a large design’s FSMs becomes very difficult.
Identifying an FSM from an accumulator or other analogous
arithmetic logic blocks with similar feedback loop properties
is another challenge in the precise control FSM extraction
process. Several recent research works have proposed methods
for extracting FSMs from flattened gate-level netlists [26]–
[29]. Nevertheless, they are associated with several drawbacks
when applied to large-scale and control-intensive benchmarks.

In this paper, we propose a framework named Finite State
Machine Extractor Ultra (FSMx-Ultra) to reconstruct FSMs
from synthesized gate-level netlists automatically while taking
a short time for computation with 100% accuracy. FSMx-Ultra
utilizes state-of-the-art efficient graph algorithms and various
industry-standard CAD tools based on the proposed mathe-
matical metrics in [29] to recover the control FSMs of designs
with diverse sizes and complexity. The FSMx-Ultra framework
is a rethought version of the recently proposed novel graph
theory-based FSMx framework [29]. More specifically, our
major contributions in this paper are as follows:

• Developing FSMx-Ultra, an automated framework for
fast, scalable, and accurate control FSM extraction from
highly unstructured gate-level netlists (either flattened or
hierarchical) obtained after logic synthesis;

• Utilizing the state-of-the-art graph theory concepts and
the Input Similarity Metric (ISM) and FSM Probability
Metric (FPM), presented in [29], to isolate the non-FSM
registers with 100% accuracy;

• Extracting human-readable individual gate-level STGs for
each of the recognized control FSMs present in the highly
unstructured gate-level netlists;

• Demonstrating the efficacy of the FSMx-Ultra framework
on 14 open-source benchmarks from [21] with different
sizes, complexity, and state encoding schemes.

The remainder of the paper is organized as follows. In
Section II, we provide an overview and definitions of the
terminologies used in the paper. Section III discusses the
shortcomings of the contemporary FSM extraction techniques
and the underlying motivation behind our work. Section IV
provides a detailed overview of our proposed FSMx-Ultra
framework. The experimental results with elaborated algo-
rithmic complexity analysis and efficacy of FSMx-Ultra are
presented in Section V. Section VI presents the potential
applications of the proposed FSMx-Ultra framework. Finally,
the paper concludes with Section VII.

II. PRELIMINARIES AND DEFINITIONS

Finite State Machine (FSM): From a mathematical stand-
point, a Finite State Machine (FSM) can be described as a 6-
tuple element (S, I, O, s0, ϕ, λ). Here, S is a finite collection
of states, I is a finite set of inputs, O is a finite set of outputs
generated from the FSM, s0 is the reset (or initial) state of the
FSM, λ is the output logic function, and ϕ : S × I → S is the
state transition function that defines the next state of the FSM.
In Fig. 1, the generic architecture of a typical FSM is depicted.
Three primary components form the high-level architecture of
an FSM: (i) the State Register (also termed as State Memory)
storing the current state of the FSM and implementing S, (ii)
the combinational State Transition Logic implementing ϕ, and
(iii) the Output Logic of the FSM realizing λ. FSMs can be

classified into two major categories considering the type of the
output logic: Moore FSM [24] and Mealy FSM [25]. If the
output logic of the FSM relies not only on the current state
of the FSM but also on the inputs (λ : S × I → O), then the
FSM is denoted as a Mealy FSM. Conversely, if the output
logic of an FSM depends solely on the present state of the
FSM (λ : S → O), then the FSM is defined as a Moore FSM.

Fig. 1: Architecture of a typical FSM. The black dashed line
is present only in the generic architecture of Mealy FSM. The
state transition logic and the state register form the minimum
extraction region of the FSM.

FSM Minimum Extraction Region: The minimum extrac-
tion region of an FSM is primarily composed of two parts of
the FSM: (i) the State Register and (ii) the pure combinational
State Transition Logic, as defined in the existing literature [26].
The purple-colored bounding box pictured in Fig. 1 represents
the minimum extraction region of the FSM. An accurate
extraction mechanism of the minimum extraction region of
the FSM is required for analyzing the FSM to automatically
yield the FSM’s state transition graph (STG).

Control FSM: When an FSM serves as the control unit
of a design, it is termed a control FSM. We provide this
definition to distinguish control FSMs from counters. Control
FSMs control and sequence operations in the design’s datapath
by activating control signals precisely at the required time for
action. On the contrary, a counter is typically utilized to count
in a pre-defined sequence. For instance, a 3-bit binary counter
can generate the count sequence 0, 1, 2, 3, 4, 5, 6, 7, repeatedly
providing a specific count value at a particular active edge of
the clock signal driving the counter.

Fig. 2: State transition graph (STG) of a certain control FSM.
The nodes and edges of the graph represent the states and
transitions between the two states of the FSM, respectively.

State Transition Graph (STG): From the mathematical
perspective, the State Transition Graph (STG) of a control
FSM is defined as a directed graph where each node (or vertex)
of the graph represents a particular state s ∈ S and each edge
of the graph represents a specific transition between two states,
t = T (si, sj) from the current state si to its next state sj [44].
The current state si and the next state sj can also be termed
as source state and destination state respectively for the state
transition T (si, sj). In Fig. 2, the state transition graph of a
particular control FSM is depicted.

Reset State: The Reset State of an FSM is defined as the
entry state to the other states existing in the FSM according
to FSM automata theory [35]. As the name implies, the reset
state of an FSM represents a particular state to which an
FSM switches when the reset condition is applied. The reset

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 3

condition forces the control FSM to transit to the reset state
irrespective of the current state of the FSM. For the control
FSM depicted in Fig. 2, the ‘00’ state is the reset state.

State Encoding Schemes: States of a particular control
FSM can be encoded using three major schemes: Binary,
Gray, and One-Hot. One specific state encoding technique
solely relies on the design’s optimization goal, such as the
design’s performance, area, or power consumption [36], [37].
In the binary state encoding scheme, all states of the FSM
are enumerated serially initiating from 0 in order of their
appearance and will be implemented as a state register having
| log2(|S|)| numbered flip-flops in hardware, where |S| is
the number of states of the FSM. However, in the one-hot
state encoding approach, the FSM states are encoded so that
all state encoding bits except one are equal to 0 at any
point. Consequently, the control FSM state register can be
implemented with a register having |S| numbered flip-flops.
Finally, in the Gray encoding technique, the states of the FSM
are encoded so that the bit difference between the binary-
represented state encoding values of two consecutive states
is 1. The Gray encoding of the states of an FSM results in
implementing a state register with a bit width of | log2(|S|)|
bits, similar to the binary state encoding method.

Flattened Netlist and Hierarchical Netlist: The gate-level
netlist of a design is a complex interconnection of logic gates
via connecting wires. The gate-level netlist of a particular
design is obtained using logic synthesis, and the logic gates
present in the netlist come from the standard cell library used
during the logic synthesis process. The synthesized gate-level
netlist may or may not preserve the modular hierarchy of the
design. If the netlist does not maintain any design hierarchy,
causes mixing of logic blocks, and allows further optimization
by the logic synthesis tool via flattening, then the netlist is
termed as Flattened Netlist. However, if the designer specifies
explicitly not to flatten the synthesized gate-level netlist by
the synthesis tool, then the synthesis tool will yield a gate-
level netlist preserving the design’s modular hierarchy. In that
scenario, the obtained gate-level netlist after logic synthesis is
defined as Hierarchical Netlist.

Netlist Graph: A synthesized gate-level netlist can be
modeled as a complex directed graph from the mathematical
viewpoint. The directed graph of the netlist can be defined
mathematically as a 2-tuple entity G = (V, E) where V is
the number of logic gates, i.e., number of nodes, and E
is the number of interconnections between two connected
gates existing in the netlist, i.e., number of edges. In Fig.
3, the netlist graph representation of a particular gate-level
netlist is depicted. The graph nodes stand for the logic gates
present in the netlist, and the edges of the graph imply the
interconnections between two connected gates of the gate-level
netlist. Graph representation of the netlist makes it suitable for
applying state-of-the-art efficient graph algorithms to perform
topological analysis on the highly unstructured netlist.

Fig. 3: Directed graph representation of a certain gate-level
netlist. The nodes of the graph represent the gates present in
the netlist, and the edges of the graph portray the interconnec-
tions between two connected gates of the netlist.

III. RELEVANT WORK AND MOTIVATION

Precise recognition of FSM structures and isolating the
control FSM state registers from the non-FSM registers are
challenging in a flattened gate-level netlist due to multi-level
optimizations during logic synthesis. The method proposed in
[26] was the first extraction scheme of FSMs from a gate-
level netlist using topological analysis based on the structural
facts of the FSMs to the best of our knowledge. However,
this proposed method is associated with several drawbacks,
unfortunately. The technique can not successfully isolate con-
trol FSMs from accumulators or similar logic blocks since
it relies entirely on identifying flip-flops with combinational
feedback loops. In addition, the scheme fails to analyze gate-
level netlists containing multiple control FSMs and is only
applicable to small-sized gate-level netlists.

A strongly connected component (SCC) based control FSM
identification methodology was proposed in [27], mounting
on [38] to address these limitations. Mathematically, an SCC
region is defined as the region of a graph with at least a
single cycle (loop). This FSM extraction scheme only aims
to identify and analyze the flip-flops with pure combinational
feedback loops to detect FSMs in an SCC region since FSM
structures always exist inside SCC regions. Consequently,
it fails to isolate control FSM state registers from counter
registers since counters have very high structural similarities
with control FSMs. Moreover, the approach proposed in [27]
did not present any methodology to extract STGs of the
recognized FSMs, which does not ensure that the identified
registers represent FSMs in practice. Finally, this scheme
assumes that control signals generated from the FSMs can be
identified in the netlist by examining whether the control signal
is connected to the selection pin of a particular multiplexer.
However, this method did not clarify how the control output
signals can be identifiable in a highly unstructured netlist.
The fan-in cones of the multiplexers present in the netlist,
whether structured or unstructured, can be analyzed to identify
such control output signals of the FSMs. Tracing whether the
outputs of the control flip-flops are connected to the selector
ports of the multiplexers, the control output signals of the
FSMs can be identified. Since this approach can not precisely
isolate the control FSMs from counters, there is no guarantee
that the obtained control output signals are the ones generated
from correct FSMs if employed in practice.

The authors presented an FSM extraction methodology in
[28], which considers two structural properties of a control
FSM: self and cross flip-flop (FF) influence characteristics.
This technique can not perfectly isolate control FSMs from
counters despite considering these two structural properties of
control FSMs and proposing a scheme for removing counters
from the FSM candidates after topological analysis on the
gate-level netlist. Furthermore, this approach requires addi-
tional manual analysis of the set of final FSM candidates
to determine which FSMs are control FSMs. Unfortunately,
none of the proposed FSM recognition schemes can extract
human-readable gate-level STGs separately for each detected
control FSM since these entirely depend on identifying SCCs
for FSM region localization. An SCC region may contain
multiple FSMs inside, and in that scenario, the proposed
scheme will yield a single and composite STG that mingles
all the individual STGs of the FSMs. Additionally, the loop
identification technique for detecting potential FSM state FFs
using [39] exhibits polynomial time complexity and hence

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 4

has scalability issues even in analyzing medium-sized netlists.
Finally, the STG generation technique of the detected FSMs
presented in [28] possesses inherent scalability issues since it
performs the exhaustive gate-level simulation of the extracted
state transition logic of the potential FSM candidates.

Most recently, a novel graph theory-based framework named
FSMx has been proposed in [29] for fast and precise extraction
of all control FSMs present in a flattened gate-level netlist
to overcome the mentioned limitations of existing state-of-
the-art FSM extraction schemes proposed in [26]–[28]. FSMx
is much more accurate and roughly 10 times faster on av-
erage compared to existing approaches [26]–[28]. However,
as mentioned below, the framework still suffers from several
drawbacks to be resolved for its general adoption.

• The FSMx framework can only analyze flattened netlists
to extract all control FSMs present. It can not handle gate-
level netlists preserving the hierarchy of the design. There
are numerous applications where flattening, mixing logic
blocks, and further design optimization are strictly pro-
hibited. For example, designers opt for threshold imple-
mentation (TI) [41]–[43] to make cryptographic hardware
resilient against differential power analysis (DPA) attacks.
In that scenario, designers explicitly specify not to flatten
the gate-level netlist during logic synthesis, impeding the
sharing of logic blocks of the design. As a result, the
obtained netlist conserves the hierarchy of the design,
and the FSMx framework can not extract control FSMs
from such a netlist. To resolve this issue, the hierarchy
of the designs present in the netlist should be recognized
properly at first. Then, the hierarchical netlist must be
unrolled to deconstruct the hierarchy and thus transform
the entire netlist into smaller netlists which represent
the gate-level netlists of the individual design modules.
Lastly, graph topological analysis should be performed to
extract the control FSMs present in the netlist perfectly.

• FSMx has inherent scalability issues since it uses exhaus-
tive gate-level simulation to extract STGs of the detected
control FSMs. Exhaustive gate-level simulation is entirely
prohibited if the number of primary inputs of a design is
high or even moderate. Therefore, the framework fails
to extract the STG of a control FSM if the number
of primary inputs of the extracted state transition logic
is high or the state transition logic is too complex. To
address this shortcoming, exhaustive gate-level simulation
can be replaced with the ATPG-based analysis technique
since it is computationally efficient and effective.

• The FSMx framework can not extract STGs from bench-
marks with a massive number of FSM state FFs. For
instance, the memory controller IP core [59] contains
a control FSM state register with 66 state FFs, and the
framework fails to handle such a scenario. Furthermore,
the framework is not scalable to complex benchmarks
with a massive number of gates. The primary reason
behind this is the analysis of the entire flattened netlist
graph, which is highly complex with a vast number
of nodes and edges. If such a complex netlist graph
is deconstructed into smaller sub-graphs using suitable
graph algorithms like [40] and the smaller sub-graphs
are considered for further analysis, the computational
processes for performing graph algorithmic analysis get
simpler as the number of nodes and edges in the sub-
graphs is significantly smaller. Therefore, such an analy-

Fig. 4: Overview of the FSMx-Ultra framework. The frame-
work analyzes the input synthesized gate-level netlist of a
particular RTL design and yields the state transition graphs
of the detected control FSMs.

sis aids in achieving a much shorter overall run-time due
to the obtained computational advantage.

Therefore, there is no guarantee that the FSMx framework
can extract control FSMs and STGs in every possible use
case. Our proposed FSMx-Ultra framework is an extended
version of the FSMx framework [29] and intends to address
its drawbacks mentioned above. Fast, precise, and automatic
extraction of all control FSMs from hierarchical and flattened
netlists with their corresponding human-readable gate-level
STGs have motivated us in developing FSMx-Ultra frame-
work. We primarily focus on extracting control FSMs from
synthesized gate-level netlists using standard cell technology
libraries. However, the concepts of our proposed FSMx-Ultra
framework can be expanded to support netlists synthesized
using Field Programmable Gate Array (FPGA) libraries.

IV. FSMX-ULTRA FRAMEWORK

The high-level overview of our proposed FSMx-Ultra
framework is presented in Fig. 4. From a bird’s-eye view,
the framework comprises two major modules: (A) Netlist
Graph Analyzer, and (B) Gate-Level State Transition Graph
Extractor. The primary purpose of the Netlist Graph Analyzer
module is to generate the graph representation of the synthe-
sized gate-level netlist and then to perform the topological
analysis of the netlist graph based on state-of-the-art efficient
graph algorithms. The synthesized gate-level netlist is obtained
after logic synthesis of the input Register-Transfer Level (RTL)
design using any commercial state-of-the-art synthesis tool
and can be either flattened or hierarchical. Although we
have used Cadence Genus as the logic synthesis tool in
our experiments, Design Compiler from Synopsys can also
be used. The Gate-Level State Transition Graph Extractor
module is intended for yielding the individual STGs for each
of the recognized control FSMs using Automatic Test Pattern
Generation (ATPG) techniques. The standard cell technology
library in .lib format is required during synthesis and used
by the Netlist Graph Analyzer module. Moreover, the stan-
dard cell technology library in .v format is required by the
TetraMAX tool from Synopsys for generating test patterns.
Finally, state encoding information of the control FSMs from
the RTL design is needed by the Gate-Level State Transition
Graph Extractor module to decide how many test pattern files
will be generated by the ATPG tool. It is an essential task
to extract gate-level STGs of the control FSMs. The state
encoding information of a control FSM incorporates the name

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 5

of the state variable representing a control FSM, the state
variable’s width implying the state register’s size, and the state
encoding scheme used for the control FSM. Analysis of the
synthesis report from Design Compiler or the extracted RTL
state transition graph of a control FSM by Cadence JasperGold
provides such essential information. Most recently, an accurate
and fast FSM extractor from high-level RTL codes named
RTL-FSMx has been proposed, which also can be used to
obtain that information since sometimes Design Compiler fails
to extract all control FSMs from the RTL design [30].

A. Netlist Graph Analyzer
The Netlist Graph Analyzer module performs topological

analysis based on existing state-of-the-art graph algorithms to
identify the portions of the input design netlist representing
potential control FSM structures. It can be partitioned into
two major sub-modules, as shown in Fig. 4: Netlist-to-Graph
Representation Converter and Netlist Graph Topological An-
alyzer. The Connected Components Report is generated as
an intermediary output from the first sub-module, which is
eventually taken as input to the second sub-module.

1) Netlist-to-Graph Representation Converter: This sub-
module aims to convert the input synthesized gate-level netlist
into a directed graph format appropriate for applying es-
tablished graph algorithms, as depicted in Fig. 5. The sub-
module is composed of three stages: unrolling of the input
synthesized gate-level netlist, formation of the intermediate
representation of the input unstructured gate-level netlist, and
finally, generation of the graph presentation of the input
unstructured gate-level netlist.

Fig. 5: Netlist-to-Graph Representation Converter framework.
It generates the associated graph representations of the recog-
nized unstructured gate-level netlists from the input gate-level
netlist, which can be either hierarchical or flattened.

(i) Gate-Level Netlist Unroller: The first stage Gate-
Level Netlist Unroller takes the synthesized gate-level netlist
as input, and the synthesized gate-level netlist can be either
hierarchical or flattened. This netlist unrolling stage is one
of the major distinguishing features between the FSMx and
FSMx-Ultra frameworks. FSMx-Ultra can analyze hierarchical
netlists preserving design hierarchy for this characteristic,
which is absent in the FSMx framework. If a flattened gate-
level netlist of a particular RTL design (having a single module
containing the unstructured gate-level netlist of the entire
design) is provided as input, the Gate-Level Netlist Unroller
stage remains inactive. It is because the primary purpose of
the Gate-Level Netlist Unroller stage is to unroll the design
hierarchy of a hierarchical netlist and deconstruct it into nu-
merous smaller netlists. These smaller netlists extracted from
the hierarchical netlist represent the corresponding netlists of
the individual modules present in the design. During flattening
in the synthesis process, the modules of a particular design

get mixed for further optimization. It results in a single netlist
of the entire design exhibiting no hierarchy. Therefore, if the
Gate-Level Netlist Unroller stage analyzes a flattened netlist,
netlist unrolling does not take place and remains inactive.
However, in the case of having the hierarchical gate-level
netlist of the RTL design (with multiple modules having
portions of the entire synthesized netlist), this stage recognizes
the design hierarchy, performs unrolling operation, and thus
decomposes the input netlist into multiple smaller unstructured
gate-level netlists. Each of the obtained unstructured netlists is
analyzed individually via the later stages of Netlist-to-Graph
Representation Converter.

(ii) Intermediate Gate-Level Netlist Processor: The sec-
ond stage Intermediate Gate-Level Netlist Processor generates
an intermediate representation of the unstructured input gate-
level netlist, Structured Nets Report with Instances. It is
highly structured and is the input to the third stage, Graph
Representation Generator. The intermediate representation of
the netlist is used in later stages to reconstruct the fragments of
the input netlist representing FSM structures. First, the input
and output pins of all the cells in the input technology library
are detected. The intermediate representation of the netlist
contains the names of the standard cells, cell instance names,
pin names, pin types, and the names of the wires connected
to the pins in a well-structured manner. This stage is identical
in both FSMx and FSMx-Ultra frameworks.

(iii) Graph Representation Generator: The final stage
Graph Representation Generator analyzes the obtained inter-
mediate representation of the gate-level netlist for constructing
the required directed graph of the netlist, Connected Compo-
nents Report. The directed netlist graph can be presented using
adjacency list representation. In this representation, a netlist
graph is denoted as an entity with numerous pairs of nodes.
Each node in a particular pair stands for a cell. Moreover, each
pair indicates a specific edge of the netlist graph that implies
the link between two interconnected cells since a particular
cell’s output is connected to another cell’s input port. We can
find the number of edges of the netlist graph by counting the
number of pairs. The number of nodes of the netlist graph
comes from the total cell count mentioned in the synthesis
report generated by the logic synthesizer tool. The adjacency
list format of the netlist graph has been chosen to minimize
the complexity of the employed graph algorithms.

For a flattened netlist, a single, gigantic, and complex
netlist graph representation is generated by this sub-module.
Nonetheless, multiple relatively simpler and smaller netlist
graph representations are yielded by this sub-module if a
hierarchical netlist is analyzed due to the gate-level netlist
unrolling stage present. Hence, a single Connected Compo-
nents Report is generated as the output of this module if a
flattened netlist is analyzed. On the other hand, if a hierarchical
netlist is taken as the input, multiple Connected Components
Reports are generated as shown in Fig. 5. It needs to be
noted that depending on the number of yielded netlist graph
representations, the rest of the analysis performed by the
FSMx-Ultra framework is done only once for a flattened netlist
or multiple times sequentially considering a single netlist
graph of a particular design module at a time if a hierarchical
netlist is analyzed. Analysis of numerous simpler and smaller
netlist graphs (for a hierarchical netlist) individually comes
with more inherent computational advantages than analysis
of a single but highly complex and gigantic netlist graph

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 6

(in the case of a flattened netlist). Consequently, the FSMx-
Ultra framework extracts control FSMs from a particular RTL
design’s hierarchical netlist more quickly than the same RTL
design’s flattened netlist. We have demonstrated this fact of
the FSMx-Ultra framework in Section V-D.

2) Netlist Graph Topological Analyzer: Depending on the
type of netlist under analysis, the Netlist Graph Topological
Analyzer sub-module receives a single (for a flattened netlist)
or multiple (for a hierarchical netlist) graph representations as
its input as presented in Fig. 6. The sub-module is intended for
performing graph algorithmic analysis on an obtained netlist
graph representation Connected Components Report from the
previous sub-module. The flow of this sub-module is divided
into four parts: (i) netlist graph construction and register
formation, (ii) application of Tarjan’s algorithm with Nuutila’s
modifications to identify SCC regions, (iii) minimization of
SCC regions via merging to construct modified SCC regions,
and (iv) structural analysis of modified SCC regions for the
precise detection of control FSM regions.

Fig. 6: Netlist Graph Topological Analyzer framework. It
generates a list of FSM register candidates with the maximum
values of FPM. Later stages use these register candidates to
reconstruct the control FSM netlists.

(i) Netlist Graph Construction and Register Formation:
Analyzing an input graph representation report generated by
the previous sub-module, this framework first constructs the
Netlist Graph, which is often highly complex with a large
number of nodes and edges in case of practical benchmarks,
as illustrated in Table I. Next, all the flip-flops are identified in
this netlist graph, and registers are formed by grouping them.
This analysis stage is identical in FSMx and FSMx-Ultra.

(ii) Application of Tarjan’s Algorithm with Nuutila’s
Modifications: The Tarjan’s Strongly Connected Components
(SCC) Algorithm with Nuutila’s Modifications [40] algorithm
is applied on the obtained Netlist Graph. The main reason
behind choosing this algorithm is its memory efficiency while
keeping similar time complexity to the proposed Tarjan’s
algorithm for finding SCC regions [38]. This stage decomposes
the input netlist graph into smaller sub-graphs representing the
graph’s strongly connected component (SCC) regions. We are
only interested in analyzing the SCC regions of the graph since
these regions contain potential FSM structures mathematically.
This process resembles the divide-and-conquer approach and
makes a clear distinction between FSMx-Ultra and FSMx
proposed in [29]. Performing analysis on smaller sub-graphs
has more computational advantages than analyzing the entire
giant graph, especially for larger netlist graphs. It is one of
the underlying reasons that explain why FSMx-Ultra is so
much faster compared to FSMx, which is also evident from

the experimental results shown in Table I. Detailed algorith-
mic complexity analysis from the mathematical viewpoint is
presented in Section V-A.

(iii) Minimization of SCC Regions Via Merging: In the
next stage, the number of SCC regions is minimized. A single
flip-flop, a part of a particular register, with a combinational
feedback loop can also form a separate SCC region while
other flip-flops of that register exist in another SCC region.
Hence, these SCC regions can be merged to form a single
SCC region instead of two (the modified SCC). We have used
the Enable Tree Identification Algorithm described in [27] for
merging the SCC regions. The motivation behind this is that
flip-flops controlled by the same enable signal are generally
highly related since those represent the constituent flip-flops
of a particular register. In this way, a list of minimized
SCC regions is constructed. This minimization process also
helps to improve overall run-time. Finally, structural analysis
(marked by the orange bounding box in Fig. 6) is performed
on each of the SCC regions present in the minimized SCC
region list using the novel graph theory-based approach, and
mathematical metrics presented in [29] and an FSM register
candidates’ list is obtained as the output from this sub-module.

(a) FSM of a sequence detector [31] (b) A 4-bit accumulator [32]

Fig. 7: An FSM and accumulator example [29].

(iv) Structural Analysis of Modified SCC Regions: The
structural analysis stage on the modified SCC regions in the
minimized SCC list is crucial for precisely identifying the
control FSM register candidates. The central point to be noted
here is that this sort of analysis is performed on sub-graphs
representing SCC regions by FSMx-Ultra. However, FSMx
performs this analysis on the entire netlist graph. Hence,
its overall time complexity is higher than FSMx-Ultra. The
structural truths of accumulators, data registers, control FSMs,
and counters were thoroughly investigated in [29], and three
essential properties were found based on the implementations
of these entities. Those properties (P) were used to derive and
formulate two important mathematical metrics named ISM and
FPM metrics for isolating FSM registers from the non-FSM
ones, and FSMx did not require any further post-processing
stage or human decision [29]. These properties of potential
FSM registers are illustrated first, and then the flow of this
structural analysis phase is presented.
(a) Properties (P) of Potential FSM Registers:

P-I: The first property (P-I) states that data (D) inputs of
potential state FFs are driven by dissimilar standard cells
[29]. This property can effectively separate data registers
from counters, accumulators, and control FSMs. The data
registers form the essential part of the data flow in a design.
Therefore, similar standard cells tend to drive the D-inputs
of flip-flops, constituting a data register after logic synthesis
[33]. Counter and accumulator register FFs also exhibit this
property occasionally, which is apparent from Fig. 7b. On the
contrary, different standard cells tend to drive the D-inputs of
the control FSM FFs since those represent the control flow of

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 7

a design [33]. It is also evident from Fig. 7a. P-I was utilized
to develop a metric called Input Similarity Metric (ISM) in
[29] to calculate the D-input similarity of the FFs present in
a particular register which was denoted as follows:

ISM =
max(N1, N2, N3,)

N
× 100% (1)

Here, N represents the size of a particular register which
implies that it consists of a total of N FFs. Among the N FFs,
N1 FFs have one type, N2 FFs have another type of cells
driving their corresponding D-inputs, and it goes on similarly.
The maximum of all these values was taken since we want to
consider the maximum similarity in the worst-case scenario.
As depicted in Fig. 7a, the control FSM has an ISM of 50%. It
is because a 2-input OR gate drives the D-input of a FF of the
FSM register. Additionally, the D-input of the other FF gets
driven by a 3-input OR gate. This scenario makes max(N1,
N2) = 1 and N = 2 (as the control FSM consists of 2 FFs).
Conversely, as illustrated in Fig. 7b, the 4-bit accumulator has
an ISM of 100%. The underlying reason is the presence of
four 2-input XOR gates in the adder block, which drive the
four FFs of the accumulator register. It means that a single
type of standard cell is driving all four FFs. In other words,
we get N = max(N1) = 4. We have set ISM = 85% as the
threshold R for eliminating the non-FSM registers similar to
what was done for FSMx [29].

P-II: The second property (P-II) is presented as potential
state FFs must contain pure combinational self-feedback loops
in [29]. It implies that each FF of a particular FSM register
should influence itself via at least one combinational feedback
loop. From the graph theory perspective, the same FF should
be reachable through a combinational logic starting from a par-
ticular FF. It can also be observed in Fig. 7a. Mathematically, it
gives birth to a parameter named Self-influence Parameter and
a register with N FFs must have a self-influence parameter of
N [29]. However, this property also exists in the accumulator
structure [27], which is evident for the 4-bit accumulator
example presented in Fig. 7. Hence, a clear distinction is
required between FSM and accumulator structures.

P-III: The third property (P-III) was presented to accom-
plish such an objective and narrated as potential state FFs of
a prospective FSM register should influence the rest of the
state FFs and must also be influenced by the other state FFs
of that register [29]. This property is absent in accumulator
structures and emphasizes the cross-influence characteristics of
control FSM structures which ultimately helps to find another
parameter called Cross-influence Parameter. A potential FSM
state register of size N should have N(N – 1) as the value of
this parameter. P-II and P-III were combined to develop the
second mathematical metric named FSM Probability Metric
(FPM) in [29], which calculates the probability of a register
present in the SCC region of being an FSM. FPM was defined
as the following equation:

FPM =
S + C

N2
× 100% (2)

Here, S is the number of self-influence paths, and C repre-
sents the number of cross-influence paths. Finally, N stands for
the size of the register. For the FSM of the sequence detector,
shown in Fig. 7a, we get N = 2, S = 2, and C = 2. Hence,
it exhibits an FPM of 100%. On the other hand, the 4-bit
accumulator shown in Fig. 7b has an FPM of only 25% since

N = 4, S = 4, and C = 0. This noticeable difference between
the FPM values of the accumulator and the control FSM can
be used to remove accumulator structures.
(b) Overview of Structural Analysis Flow:

In the structural analysis stage of the modified SCC regions
after the minimization process, we deconstruct a particular
modified SCC region into two directed acyclic graphs (DAGs),
namely Combinational DAG and Sequential DAG. Since these
DAG portions do not contain any cycle (loop) inside, anal-
ysis of those provides tremendous computational advantages
inherently [29]. Analysis of a cyclic graph directly is com-
putationally more expensive. The sequential DAG contains all
the edges of the SCC region sub-graph, with one node of the
edge representing a sequential cell (FF or latch) and the other
one standing for a non-sequential cell. Conversely, the rest
of the edges of that modified SCC region is accommodated
by the combinational DAG. Let us assume that the modified
SCC can be represented as a sub-graph, G = (V, E). Hence,
E gets minimized to Ec, holding only the edges between two
non-sequential cells. The remaining portion of E belongs to
the sequential DAG. It contains only the edges between a
sequential cell and a non-sequential cell. Moreover, V gets
partitioned into two parts. The first part, Vs, holds all the
sequential cells (i.e., flip-flops and latches). The remaining
nodes Vc containing the rest of the non-sequential cells form
the second portion. Next, ISM is calculated based on Eq.
1, and the sequential DAG is minimized mounting on the
obtained ISM value. All the registers with ISM exceeding
the threshold R are discarded by FSMx-Ultra. We term the
registers remaining in the minimized form of the sequential
DAG as Potential State Registers. Utilizing the ISM, potential
state FF vertices Vr are extracted from Vs via minimization.
Logically, Vr is only a tiny fraction of Vs in number.

Lastly, the starting and ending points of the FFs of the
potential state registers are detected. Then, we apply Depth-
First Search (DFS) on the combinational DAG to analyze self-
influence and cross-influence among the FFs of a particular
register. Moreover, registers having Vr are analyzed instead
of considering the entire Vs. These two actions help to im-
prove the overall run-time of FSMx-Ultra. Additionally, those
simplify post-processing methods for precisely extracting the
control FSM Netlists [29]. We adopted the same FPM-based
post-processing method as FSMx. The FSM Register Candi-
dates Report contains all the names and sizes of the potential
state registers. Moreover, the obtained FPM and the extracted
FSM candidates region (having FF names and other gates
for a potential FSM register) are also included. If a flattened
gate-level netlist is analyzed by FSMx-Ultra, then a single
FSM Register Candidates Report is generated. Nonetheless,
in the case of analyzing hierarchical gate-level netlists, such a
report is generated multiple times due to the unrolling stage
presented in Section IV-A. This report is an essential input for
the subsequent stages of FSMx-Ultra.

B. Gate-Level State Transition Graph Extractor
The primary objective of this module is the automatic ex-

traction of the associated state transition graphs (STGs) of the
recognized control FSMs. The extracted STGs by our proposed
FSMx-Ultra framework are human-readable and identical to
the STGs generated by the recently proposed FSMx framework
[29]. Additionally, the Gate-Level State Transition Graph
Extractor module of the FSMx-Ultra framework seems to be

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 8

functionally analogous to the Gate-Level Boolean Function
Analyzer module of the FSMx framework. However, two major
differences between these modules make the FSMx-Ultra
framework unique in terms of performance and scalability.

The Gate-Level State Transition Graph Extractor module
takes the state encoding information of the control FSMs
present in the RTL description of the design as an additional
input which is absent in the Gate-Level Boolean Function
Analyzer module of the FSMx framework. This input contains
the name of the FSM state variable and its width with the
utilized state encoding scheme, which can be readily obtained
from existing commercial synthesis or formal verification tools
like Design Compiler or Cadence JasperGold as mentioned
before. This additional input’s primary purpose is the partial
contribution to making the proposed FSMx-Ultra framework
more scalable compared to the FSMx framework by aiding in
determining the number of test pattern files generated by the
ATPG tool from Synopsys named TetraMAX.

Fig. 8: Framework of the Gate-Level State Transition Graph
Extractor module. It performs ATPG-based analysis to extract
the gate-level STGs of the detected control FSMs.

Furthermore, the Gate-Level State Transition Graph Ex-
tractor module performs ATPG-based analysis to extract the
gate-level STGs of the control FSMs. On the contrary, the
Gate-Level Boolean Function Analyzer module of the FSMx
framework performs the exhaustive gate-level simulation of
the extracted pure combinational state transition logic using
the corresponding automatically generated Verilog testbenches.
Exhaustive gate-level simulation fails if the state transition
logic of a particular FSM is highly complex or the number
of primary inputs of the state transition logic is high or even
moderate. Therefore, this module of the FSMx framework [29]
fails to handle such possible use cases and extract gate-level
STGs of the identified control FSMs, suffers from inherent
scalability issues, and is not applicable for analyzing any
flattened gate-level netlist in general. The high-level overview
of the framework of the Gate-Level State Transition Graph
Extractor module is shown in Fig. 8. The operation of this
module can be decomposed into four major stages: (i) recon-
struction of the control FSM netlists, (ii) generation of the
Modified State Transition Logic, (iii) automatic generation of
Tcl scripts to perform ATPG-based analysis using TetraMax,
and (iv) extraction of the gate-level STGs of the FSMs.

(i) FSM Netlist Reconstructor: The Gate-Level State Tran-
sition Graph Extractor module takes the previously generated
FSM Register Candidates Report and Structured Connected
Components Report as its major inputs. FSM candidate netlists
with the maximum FSM Probability Metric are reconstructed
using these two inputs. One major output after such a process
is the automatic extraction of all such FSM Netlists. A par-

Fig. 9: Generic architecture of the FSM Netlist. ‘m’ and ‘n’
represent the bus sizes of the associated inputs and outputs.
The FSM state register is ‘n’-bit wide and has ‘n’ flip-flops.
ticular control FSM Netlist comprises only the flip-flops and
pure combinational state transition logic. Hence, it serves as
the Minimum Extraction Region of a certain control FSM [26]
as shown in Fig. 1. A more detailed view of the FSM Netlist
architecture is depicted in Fig. 9. The data D inputs to the
flip-flops forming the FSM state register are termed as Next
State (NS) and the data Q outputs from those flip-flops are
called Present State (PS) collectively. The Inputs refer to the
primary inputs of the FSM Netlist. The Next State of the FSM
is solely determined by the Present State and the Inputs and
can be represented mathematically as NS = f(Inputs, PS). The
extracted pure combinational state transition logic of the FSM
Netlist implements the state transition function f and serves
as an essential entity for yielding the gate-level STG of the
detected control FSM.

(ii) Modified State Transition Logic Generator: Another
primary output from the Gate-Level State Transition Graph
Extractor module is the associated Modified State Transition
Logic of the FSM Netlist after the reconstruction phase is
over. The pure combinational state transition logic of the
FSM Netlist is modified to make it suitable for performing
ATPG-based simulation and analysis to assist the automated
extraction process of its corresponding gate-level state tran-
sition graph. ATPG-based analysis feature of FSMx-Ultra
makes the exhaustive gate-level simulation of the extracted
state transition logic entirely obsolete performed by the FSMx
framework. Hence, our proposed FSMx-Ultra framework re-
solves the inherent scalability issues of the FSMx framework
[29]. Finally, the State Encoding Information from RTL is
also required to determine the number of test pattern files to
be yielded by the Synopsys TetraMAX tool while generating
Tcl scripts for performing the ATPG-based analysis of the
extracted Modified State Transition Logic.

Fig. 10: General architecture of the Modified State Transition
Logic. ‘m’ and ‘n’ represent the bus widths of the associated
inputs and intermediate outputs. The final output ‘Y’ is a single
wire which provides the equality checking result.

The generic architecture of the Modified State Transition
Logic is shown in Fig. 10. It primarily comprises two blocks:
the pure combinational state transition logic of the control
FSM and an equality checker circuit connected to its output.
The pure combinational state transition logic of the control
FSM can be readily extracted when the FSM Netlist gets
reconstructed as it is an integral part of the control FSM
Netlist. As mentioned before, the Next State (NS) is a direct
function of the Present State (PS) and the primary Inputs of
the control FSM. The equality checker block checks whether
the Test State (TS) matches with the Next State (NS) or not.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 9

It generates ‘0’ at the output ‘Y’ if TS matches with the NS;
otherwise, ‘1’ is generated at ‘Y’. Therefore, the ‘n’ bits of
NS can be logically XORed with the ‘n’ bits of TS, and the
outputs of XOR gates can be ORed together. This logical
configuration represents the implementation of the equality
checker from a high-level perspective. Our implementation of
the equality checker uses only 2-input XOR gates, 2-input OR
gates, and interconnections between them. We need to provide
all possible logical values of TS as an input of the equality
checker. These possible logical values of the following states
should be finite as those depend on the FSM encoding style.

Information on the control FSM encoding style can only be
obtained from the design’s RTL description. It is impossible
to get such crucial information after performing the logic
synthesis of a design. Hence, the State Encoding Information
from RTL is required as a major input to our proposed FSMx-
Ultra framework. If the control FSM is encoded using Binary
or Gray encoding scheme, 2n combinations of the logical
values are applied at the TS sequentially one at a time and
checked for matching with the value at NS. On the other hand,
if the control FSM is encoded using the One-Hot technique,
the ‘n’ combinations of test values are checked sequentially,
as mentioned, keeping only a single bit active (set to ‘1’) at a
time. In this manner, the State Encoding Information from RTL
determines how many times the ATPG tool named Synopsys
TetraMAX should run, and thus help to make the FSMx-Ultra
framework scalable by keeping the overall run-time limited.

It needs to be noted that if the state encoding information is
inaccurate, either due to human error or intentionally hidden
information, the proposed FSMx-Ultra framework will still
be able to extract control FSMs perfectly. It is because the
structural analysis process to recognize control FSMs is similar
to the methodology employed by the FSMx framework [29]
and based on the proposed ISM and FPM metrics. However,
in such a scenario, to keep the overall run-time limited and
extract the gate-level STG to detect the hidden state transitions,
a policy is adopted by FSMx-Ultra. Generally, control FSM
registers are smaller in size than the other registers if Binary
or Gray encoding scheme is employed. On the contrary, its
size increases if the control FSM is encoded using the One-
Hot approach. Considering this, FSMx-Ultra will assume that
Binary or Gray encoding scheme has been employed if the size
of the FSM register is less than or equal to 20 bits. Otherwise,
One-Hot encoding approach will be assumed for the FSM
register under consideration. The ATPG-based analysis will
be performed based on this assumption accordingly to extract
the gate-level STGs of the detected control FSMs.

(iii) Script Generator for ATPG-based Analysis: The
most interesting processing phases of the Gate-Level State
Transition Graph Extractor module start from when Tcl scripts
are generated automatically for performing ATPG-based simu-
lation and analysis of the Modified State Transition Logic using
the ATPG tool named Synopsys TetraMAX. These scripts for
running the ATPG tool are planned for generating test patterns
that violate the stuck-at-1 (SA1) condition at the output wire
‘Y’ of the Modified State Transition Logic, equivalent to
removing all faults and generating test patterns for SA1 fault
at ‘Y’ sequentially for all possible combinations determined
in the previous stage. Therefore, the ATPG tool must yield ‘0’
at ‘Y’ to generate test patterns for this fault. It implies that
TS has matched perfectly with NS. Moreover, we have used
‘n-detect’ option of Synopsys TetraMAX to generate 200 test

patterns for such a perfect match. As a result, 2n test pattern
files are generated sequentially in total if the control FSM
is encoded with Binary or Gray encoding technique, else ‘n’
numbered test pattern files are produced. Each test pattern file
contains 200 test patterns for the SA1 fault at ‘Y’ if not empty.

(iv) State Transition Graph Constructor: Present state
and next state information, which is crucial for generating the
gate-level STG of the control FSM, can be extracted after
rigorous analysis of the obtained test patterns using Synopsys
TetraMAX. Empty test pattern files stand for the unmatched
scenarios of TS and NS, implying such state transitions are not
possible. The State Transition Graph Constructor, as depicted
in Fig. 8, implements this stage which eventually extracts the
gate-level STGs of the FSMs present in the netlist in the textual
representation. Finally, we have used the PyGraphviz package
to yield the gate-level STG in graphical format.

The conditions for a particular state transition between two
states can be found via analyzing the obtained test patterns
from the Synopsys TetraMAX tool. Such conditions are also
reported in the textual presentation of the gate-level STG and
will assist designers in performing security assessments in
later stages, such as fault-injection and information leakage
assessments. Additionally, this information can aid designers
in developing novel FSM-based watermarking and sequential
logic locking schemes. Last but not least, we have compared
the extracted gate-level STGs of the control FSMs of the
open-source benchmark designs, enlisted in [29], by the FSMx
framework with the STGs generated by the proposed FSMx-
Ultra framework. We have found that all of the extracted
gate-level STGs by these two frameworks are identical, which
suggests that the generation of 200 test patterns is quite enough
and effective for obtaining the entire gate-level STGs of the
associated control FSMs by our FSMx-Ultra framework. Last
but not least, FSMx-Ultra can perfectly isolate the control
FSMs from the counters by utilizing the proposed ISM and
FPM metrics presented in [29]. Therefore, the control output
signals can be accurately identified once the FSM registers
have been detected by adopting the tracing methodology of
the selector ports of the multiplexers, as mentioned in Section
III. It is the primary advantage of using the FSMx-Ultra
framework to precisely identify such control output signals
compared to the approach proposed in [27].

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Algorithmic Complexity
1) Time Complexity: Our proposed FSMx-Ultra framework

utilizes the divide-and-conquer strategy to decompose the
entire graph of input gate-level netlist, which is often quite
massive with a large number of nodes and edges, into smaller
sub-graphs by applying the Tarjan’s Strongly Connected Com-
ponents Algorithm with Nuutila’s Modifications [40]. This
efficient graph algorithm is an improved version of the Tarjan’s
Strongly Connected Components Algorithm [38], which can
identify all the sub-graphs of the input graph having at least
one cycle (loop) inside and can be applied to directed graphs.
The time complexity of the algorithm presented in [40] is
O(|V| + |E|) where |V| is the number of vertices (nodes) and
|E| is the number of edges of the graph. Due to the associated
linear time complexity, identifying the graph’s strongly con-
nected components (SCCs) is rapid. From the analysis results
of the practical benchmarks listed in Table I, it is evident
that the number of SCCs in the netlist graph mismatches with

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 10

TABLE I: Worst-case run-time comparison between FSMx and FSMx-Ultra for 14 benchmarks obtained from [21]–[23].

Benchmark Name Gate Count FF Count Edge Count SCC Count FSM Count FSM-FF Count FSM ISM(%) FSMx Run-time FSMx-Ultra Run-time Speedup

UART Core [48] 576 89 1402 9 2 3, 3 67, 33 0.8 s. 0.4 s. 2x
XTEA Cipher [49] 955 105 2214 96 1 2 50 1 s. 0.5 s. 2x
SAYEH CPU [50] 1320 170 9601 1 1 4 50 10 s. 6 s. 1.7x
CMAC Cipher [51] 1549 264 3255 139 1 3 67 1 s. 0.6 s. 1.7x
SHA-256 [52] 5254 1806 120075 492 1 2 50 19 s. 2.5 s. 7.6x
SHA-512 [53] 10763 3666 361582 1005 1 2 50 3 min. 28 s. 15 s. 13.9x
POLY1305 MAC [54] 11586 1724 81709 635 2 3, 3 67, 33 4 min. 30 s. 20 s. 13.5x
AES-128 [55] 12976 2987 838121 12 4 2, 2, 2, 2 50, 50, 50, 50 6 min. 20 s. 31 s. 12.3x
Tiny MIPS CPU [56] 17443 9285 662773 1 1 4 50 4 min. 11 s. 57 s. 4.4x
Smart Card RSA [57] 35521 14578 83882 66 3 2, 3, 4 50, 67, 75 2 min. 16 s. 39 s. 3.5x
USB HOST [58] 3163 1326 9524 139 1 4 50 N/A 6 s. N/A
Memory Controller [59] 3207 1051 8489 166 1 66 50 N/A 8 min. 45 s. N/A
PicoRV32 CPU [60] 6439 1680 19278 202 3 3, 2, 2 33, 50, 50 N/A 10 s. N/A
OpenRISC 1200 [61] 201445 69943 492286 103 5 2, 2, 2, 3, 3 50, 50, 50, 67, 33 N/A 6 h. 55 min. N/A

the control FSM count in most scenarios. However, for two
benchmarks (Tiny MIPS [56] and SAYEH [50] CPUs), the
number of SCC regions matched with the FSM count. The
underlying reason is that an SCC region is a sub-graph with
at least a single loop, mathematically, and loops can be present
not only in FSM flip-flops but also in accumulator and counter
flip-flops. Hence, performing appropriate structural analysis on
the detected SCC regions is crucial to isolate the control FSMs
from other non-FSM registers.

The FSMx-Ultra framework analyzes the detected SCCs
further, as discussed in Section IV-A for precise recognition
of the control FSM structures present in the synthesized gate-
level netlist. Let us assume that ‘k’ is the total number of
modified SCCs after the SCC merging phase (if required)
and focus only on a modified SCC for detailed analysis.
A modified SCC is deconstructed by FSMx-Ultra into two
acyclic sub-graphs called Sequential DAG and Combinational
DAG. The Sequential DAG can be represented as a 2-tuple
entity Gr = (Vr, Er), where Vr and Er represent its nodes
and edges, respectively. Similarly, The Combinational DAG
can be represented as a 2-tuple entity Gc = (Vc, Ec), where
Vc and Ec represent its nodes and edges, respectively. The
overall time complexity for analyzing a single modified SCC
is O(|Vr| × (|Vc| + |Ec|)) which can be derived similarly
as presented in [29]. We need to do this sort of analysis
for ‘k’ numbered modified SCCs. Therefore, the overall time
complexity for this stage is O(

∑k
i=1[|Vri| × (|Vci|+ |Eci|)]).

Since this analysis stage is associated with quadratic time
complexity, it has the dominant effect on the overall run-
time of the FSMx-Ultra framework. The time required for
detecting SCCs is minimal compared to this, therefore having a
minor effect on the overall run-time of FSMx-Ultra and can be
neglected. Moreover, the overall time the ATPG tool requires
to aid in extracting gate-level STGs is so small that it is also
negligible. Furthermore, the other processing phases require
reading from and writing into text files, which can also be
ignored. An essential fact of the FSMx-Ultra framework is
that it analyzes the detected SCCs, which are small portions
of the entire netlist graph. As a result, this divide-and-conquer-
based processing phase has inherent computational advantages
over the analysis feature of FSMx [29]. On the other hand,
FSMx performs analysis on the entire netlist graph, which is
often highly complex in practical benchmarks [21]–[23]. Ad-
ditionally, the exhaustive gate-level simulation of the extracted
state transition logic to yield gate-level STGs also adversely
affects the performance and scalability of FSMx. Hence, FSMx
is much slower and less scalable compared to FSMx-Ultra
when both of them analyze a large and complex netlist graph.
It is also evident from the experimental results presented in
Table I. From this mathematical analysis, we can easily make
a logical conclusion that FSMx-Ultra is much faster compared

to the existing methods [26]–[28] since FSMx is 10 times faster
on average than those approaches [29].

2) Space (Memory) Complexity: The entire input netlist
graph can form an SCC region in the worst-case scenario.
Hence, the input netlist graph must be stored in the computer
memory stack. Therefore, the space complexity of FSMx-Ultra
is approximately O(V) since the entire netlist graph containing
all the nodes must be stored in the computer memory stack.
It roughly equals the space complexity of the modified and
improved version of Tarjan’s SCC algorithm proposed in
[40]. The space complexity of FSMx-Ultra is comparable to
existing SCC-based FSM recognition approaches [27], [28].
However, as presented in [29], the space complexity of FSMx
is O(|Vr| + |Vc|), where |Vr| and |Vc| are the number of
nodes of the sequential and combinational DAGs of the
netlist graph, respectively. It is smaller than the overall space
complexity of FSMx-Ultra. This analysis shows that FSMx-
Ultra requires only a bit more memory compared to FSMx.
Nonetheless, FSMx-Ultra supersedes FSMx in terms of run-
time, performance, and scalability. Hence, the proposed FSMx-
Ultra framework is a more promising solution than the state-
of-the-art FSM extraction methodologies [26]–[29].

B. FSM Extraction Run-time

The FSMx-Ultra framework was implemented using Python
programming language to develop an automated tool. We have
used the NetworkX [47] package to apply the efficient graph
algorithms for analyzing the netlist graph as discussed in
Section IV. The package contains almost all existing state-
of-the-art graph algorithms. We have used Cadence Genus as
the logic synthesizer to obtain the flattened gate-level netlists
of the 14 benchmarks shown in Table I. The typical version of
the standard cell technology library Synopsys SAED90nm in
.lib format was used during synthesis. However, FSMx-Ultra
does not restrict the application of other available standard cell
technology libraries for academic and industry usage. We have
examined the effectiveness of the automated tool implementing
our proposed FSMx-Ultra framework via analyzing synthe-
sized netlists which used 10 different industry-standard tech-
nology libraries from Cadence, Synopsys and GlobalFoundries
during synthesis. It was found that FSMx-Ultra supported
netlists synthesized using all the 10 standard cell technology
libraries under test. However, the tool implementing the FSM
extraction framework proposed in [28] supports fewer standard
cell technology libraries till now, to the best of our knowledge.
It implies that FSMx-Ultra is more efficacious than that. FSMx
also supports several standard cell technology libraries [29].

Since the FSMx framework is faster compared to the pre-
viously proposed approaches [26]–[28], we have compared
the performance of our proposed FSMx-Ultra framework with

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 11

TABLE II: Worst-case run-time of FSMx-Ultra for Memory Controller [59] with different netlist types and state encoding.

Netlist Type State Encoding Gate Count FF Count Edge Count Control FSM-FF Count Control FSM ISM(%) Run-time

Flattened
Binary 3137 992 8363 7 57 43 s.
Gray 3185 1008 8412 7 57 54 s.

One-Hot 3207 1051 8489 66 50 8 min. 45 s.

Hierarchical
Binary 3292 1006 9245 7 57 31 s.
Gray 3248 1032 9378 7 57 42 s.

One-Hot 3322 1065 9536 66 50 6 min. 35 s.

it. Table I illustrates the worst-case run-time comparison
between these two frameworks. The run-time of FSMx and
all other experimental data except the run-time of FSMx-
Ultra was obtained from [29]. The name of the benchmarks,
gate count, flip-flop count, edge count, control FSM count,
control FSM-FF count, ISM (in %) of the control FSM, and
overall run-times of the FSMx and FSMx-Ultra frameworks
with the relative speedup of FSMx-Ultra compared to FSMx
have been presented. The FPM (in %) of all the detected
control FSMs was found to be 100%. We set ISM of 85%
as the threshold R to remove the non-control FSM registers to
provide more flexibility, similar to FSMx [29]. We performed
all the experiments on the flattened netlists of the benchmarks
using an Intel Core i7-1065G7 processor clocked at 1.3 GHz
with 16GB RAM on a personal desktop. Both frameworks
analyzed the flattened gate-level netlists of the open-source
benchmarks collected from [21]–[23].

From the last 4 rows of Table I, it is evident that FSMx
fails to handle flattened netlists of more complex and larger
benchmarks. FSMx was unable to extract the gate-level STGs
of the control FSM of the Memory Controller IP [59] since
the FSM has a state transition logic with a massive number of
primary inputs. As a result, the Gate-Level Boolean Function
Analyzer of FSMx failed due to inherent scalability issues
since it tried to perform the exhaustive gate-level simulation
of the extracted combinational state transition logic. The same
thing is true for the OpenRISC 1200 CPU [61], which is a
gigantic netlist graph with an enormous number of nodes and
edges and other benchmarks presented in Table I. The run-
times of FSMx have been denoted as Not Available (N/A)
in such scenarios since obtaining the overall run-time was
practically infeasible. Therefore, getting the relative speedup
of FSMx-Ultra compared to FSMx is impossible and denoted
as N/A also. The FSM extraction schemes presented in [26],
[28] are also associated with similar scalability issues and
fail to analyze complex netlist graphs. However, all control
FSMs of the netlists were extracted by FSMx-Ultra for all
the benchmarks presented much faster, as shown in Table I.
It suggests that FSMx-Ultra is better than existing methods in
terms of performance, run-time, and scalability.

C. FSM Extraction Accuracy

The gate count and flip-flop count, as shown in Table I, were
obtained from the Cadence Genus generated synthesis report.
The edge count was obtained from the report generated by
Netlist-to-Graph Representation Converter. The total count of
the control FSM and the corresponding FFs were obtained
from the benchmarks’ RTL descriptions. An industry-grade
formal verification tool Cadence JasperGold was used for
this purpose, along with extracting the RTL STG of the
control FSMs of the benchmarks. The ISM (in %) of the
control FSMs were obtained from the reports generated by
both FSMx and FSMx-Ultra, and those were identical. Since
FSMx is more precise than other approaches [26]–[28] and

can identify hidden don’t-care states and transitions in the
netlist abstraction, we have compared its extracted gate-level
STGs with the ones yielded by FSMx-Ultra for the first 10
benchmarks presented in Table I in which analysis performed
by FSMx was successful. It was observed that all the gate-level
STGs obtained by these two frameworks matched perfectly. It
must be noted that FSMx was able to extract the control FSM
netlists for all the benchmarks but failed to extract the gate-
level STGs for the last 4 benchmarks due to scalability issues.

Moreover, we also compared the RTL STGs extracted by
Cadence JasperGold with the gate-level STGs obtained by
FSMx-Ultra as it was performed in [29]. We found that the
RTL STG of a control FSM is always a subset of its gate-level
STG for practical benchmarks enlisted in Table I (even for the
complex memory controller core with 66 states and utilizing
the One-Hot encoding scheme). It implies that FSMx-Ultra
can successfully recover the control flow of the design after
logic synthesis. Finally, we have used Synopsys Formality,
a formal verification tool, to compare the extracted control
FSM netlists by the FSMx and FSMx-Ultra frameworks. It
was noted that the extracted FSM netlists matched properly.
We have also compared the extracted control FSM netlists
with their corresponding RTL descriptions using the same tool,
and perfect matching was obtained. To conclude, all these
employed validation methods suggest that the accuracy of
the FSMx-Ultra framework is 100%, even when FSMx failed
to extract the gate-level STGs. It makes FSMx-Ultra a more
accurate solution compared to state-of-the-art methods [26]–
[29] to extract control FSMs from synthesized netlists.

However, it is probable that for very large sequential netlists,
the use of ATPG-based test vectors may not reach some
functional parts of the Modified State Transition Logic. In that
case, certain hidden states and transitions can not be detected
due to the absence of analyzable test vectors. Therefore,
FSMx-Ultra will yield a partial gate-level STG instead of
the complete gate-level STG of the FSM. Finally, from the
security viewpoint, not all hidden states and transitions of a
control FSM are potentially dangerous. Suppose the designer
considers state transition between two states important from
the security perspective and suspects that FSMx-Ultra has
yielded partial gate-level STG of the FSM under assessment.
In that case, formal properties can be written and verified using
Cadence JasperGold for the Modified State Transition Logic
to validate if such state transition happens. Then, the partial
gate-level STG of the FSM yielded by FSMx-Ultra can be
modified manually to include such additional state transitions.

D. Case Studies

We have presented case studies on two practical benchmarks
from [21] to demonstrate that our proposed FSMx-Ultra frame-
work can extract FSMs from complex and large benchmarks,
although the recently proposed FSMx framework failed, as
shown in Table I. The first benchmark is the Memory Con-
troller IP, and the second is the OpenRISC 1200 CPU, a large

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 12

sequential netlist benchmark. Moreover, we have demonstrated
the efficacy of FSMx-Ultra framework to successfully extract
the control flow of the IP Reset Sequencer described in [65].

1) Memory Controller: The Memory Controller from [21]
is intended for various embedded applications. It supports
SDRAM, SSRAM, FLASH memory, ROM, and several other
devices. It has eight chip selects, and each of them is
programmable. Moreover, it provides default boot sequence
support with other vital features [59]. The IP has a single
control FSM, as evident from Table I. We have analyzed
the flattened gate-level netlists of this benchmark with 3
different state encoding schemes, namely Binary, Gray, and
One-Hot, using FSMx-Ultra to illustrate that our proposed
framework can extract control FSMs utilizing the conventional
state encoding practices. Moreover, we have also performed
analyses on the hierarchical netlist of this design with the
mentioned 3 state encoding schemes. The obtained experi-
mental results are presented in Table II. FSMx extracted the
control FSM netlist but failed to yield the gate-level STG in
all the mentioned scenarios in this table. However, FSMx-
Ultra succeeded in handling all such use cases, as evident
from Table II. It points to the general applicability of FSMx-
Ultra in analyzing flattened and hierarchical netlists having
control FSMs utilizing various state encoding approaches.
The extracted gate-level STG contains the 66 states in the
RTL description with hidden don’t-care states and transitions.
Exhaustive gate-level simulation performed by FSMx to extract
this gate-level STG fails since the extracted combinational
state transition logic contains 98 primary inputs, and testing
298 patterns is practically infeasible.

Fig. 11: The obtained 5 gate-level STGs of the control FSMs of
OpenRISC 1200 CPU [61]. All the control FSMs are encoded
using the Binary state encoding. However, FSMx failed to
extract the gate-level STGs since the associated state transition
logic circuits contain a massive number of primary inputs.

2) OpenRISC 1200: The OpenRISC 1200 CPU from [21]
is a 32-bit scalar RISC utilizing Harvard micro-architecture
and a 5-stage integer pipeline with virtual memory support
(MMU) and basic DSP capabilities. It is an implementation
of the OpenRISC 1000 processor family. Additional features
incorporate a high-resolution tick timer, programmable in-
terrupt controller, debug unit for real-time debugging pur-
poses, and power management support [61]. Analysis of the
flattened gate-level netlist of this processor core was the
most challenging among all the benchmarks presented in

Table I since it contains 201,445 gates (nodes) with 69,943
flip-flops and 492,286 interconnections between two gates
(edges). Unfortunately, none of the existing FSM extraction
frameworks [26], [28], [29] were validated on such a huge
and complex benchmark. We tried to analyze this huge netlist
graph with those methods. It is quite unfortunate that all of
those failed due to their inherent scalability issues since this
CPU core contains control FSMs with a complex pure combi-
national state transition logic with a massive number of gates
and primary inputs. Nevertheless, FSMx-Ultra successfully
analyzed this massive netlist and extracted all the gate-level
STGs shown in Fig. 11 within 7 hours. It emphasizes that
our proposed FSMx-Ultra framework is free from scalability
issues while the existing FSM extraction techniques [26]–[29]
suffer from such problems tremendously in analyzing such
huge gate-level netlists. Additionally, we performed analysis
on the hierarchical netlist of OpenRISC 1200 as well. We
observed that the same gate-level STGs, shown in Fig. 11,
were successfully extracted by FSMx-Ultra in 5 h. 49 min.
These two case studies demonstrate that FSMx-Ultra is a
more promising solution than existing techniques regarding
run-time, performance, and scalability to extract control FSMs
from the synthesized netlists of industry-grade designs.

Fig. 12: The extracted gate-level STG of the Reset Sequencer.
3) IP Reset Sequencer: For a complex SoC design, a well-

defined reset sequence is usually utilized for an IP [65],
[66]. Such a sequence can be modeled using a control FSM,
and the FSM will be responsible for adequately controlling
and sequencing the flow of the reset sequence of the IP. As
presented in [65], the IP core resets properly in 12 consecutive
steps, which the constituent 12 states of the FSM represent. We
have implemented the RTL design of the control FSM using
Verilog HDL. Later, the design was synthesized using Cadence
Genus, and the obtained gate-level netlist was analyzed by
our proposed FSMx-Ultra framework. The control FSM was
recognized perfectly, and the corresponding gate-level STG
was extracted successfully, as shown in Fig. 12. The extracted
FSM netlist was compared with the RTL description using
Synopsys Formality, and both matched perfectly. Additionally,
the RTL STG of the FSM was found to be a subset of the
extracted gate-level STG. These demonstrate that FSMx-Ultra
can successfully recover the control flow of the IP Reset
Sequencer present in a particular SoC design.

VI. APPLICATIONS OF FSMX-ULTRA

Our proposed FSMx-Ultra framework automatically detects
all control FSMs present in a gate-level netlist with the corre-

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 13

sponding gate-level STGs without any further manual analysis.
The gate-level STGs of the control FSMs are generated in both
textual and graphical representations and are human-readable.
Therefore, these STGs can be utilized to reverse engineer the
control flow of a complex SoC by an adversary. The attacker
may quickly understand the control FSMs’ functionality in a
design and model those FSMs at a higher abstraction layer.
In conjunction, these gate-level STGs of the control FSMs
can be used for the rapid verification of the control flow of
an SoC after logic synthesis since FSMx-Ultra supports both
hierarchical and flattened gate-level netlists and provide FSM
extraction results much faster and more scalable compared to
state-of-the-art schemes presented in [26]–[29].

The FSMx-Ultra framework can be highly efficacious for
applications to ensure hardware security and trust effectively.
First, the fault-injection assessment of the control FSMs
present in a particular design in gate-level netlist abstraction
has been proposed recently in [44]–[46]. Our proposed FSMx-
Ultra framework can be easily extended to perform such
a security assessment. In addition, FSMx-Ultra can also be
used for performing information leakage assessment since the
framework can identify the hidden states and transitions of
the control FSMs, which are absent in the RTL description
of a design. Analyzing the extracted gate-level STGs, it
can be easily verified whether the hidden don’t-care states
and transitions of the security-critical control FSMs assist in
making an SoC design prone to information leakage issues via
identifying the vulnerable state transitions of the FSMs.

Secondly, several FSM-based IP watermarking techniques
have been proposed in existing literature [62]–[64]. Besides,
numerous sequential logic locking schemes have been pre-
sented in [11], [28]. Precise recognition and extraction of all
control FSMs and other relevant information present in the
synthesized gate-level netlist of an RTL design are crucial for
such security applications as a major pre-processing phase,
and FSMx-Ultra is a distinguishing candidate for this. The
obtained control FSMs’ gate-level STGs are handy for such
an application since the FSMx-Ultra framework provides infor-
mation on the state transition conditions, which can be utilized
in developing watermarking and FSM-based logic locking
schemes. This feature is similar to the FSMx framework [29].
However, FSMx-Ultra is better than the FSMx framework in
terms of performance, scalability, and general applicability, as
discussed in detail in Section V.

Finally, apart from the applications for ensuring hardware
security and trust, the FSMx-Ultra framework can be misused
if it falls into the wrong hand. The proposed framework
localizes the control FSM regions present in a highly un-
structured gate-level netlist more precisely compared to ex-
isting approaches [26]–[28]. Thus, it may aid an adversary in
launching powerful structural attacks on a synthesized gate-
level netlist and performing malign activities. For instance, an
attacker can implant malicious Trojan in a control FSM region
of interest to bypass particular state transitions and ultimately
leak sensitive information such as keys for cryptographic
encryption and decryption operations [44]. The accuracy, run-
time, and scalability of FSMx-Ultra can help tremendously in
the localization phase of the control FSMs, thus will reduce
the overall time required for performing a particular structural
attack. Nonetheless, FSMx-Ultra can help the security engi-
neers to evaluate the efficacy of a particular FSM-based logic
locking technique from a defense perspective by analyzing the

minimum time an attacker may take to localize all the control
FSM regions in the unstructured gate-level netlist and hence
launch powerful structural attacks. Overall, FSMx-Ultra is a
more attractive solution than FSMx [29].

VII. CONCLUSION

This paper proposes a fast, scalable, and precise technique
based on state-of-the-art efficient graph algorithms and ATPG-
based analysis to automatically recognize all the control FSMs
from the synthesized gate-level netlist of a particular RTL
design with the corresponding human-readable gate-level state
transition graphs. Experimental results on the synthesized gate-
level netlists of several benchmark RTL designs varying in
size and complexity have proved the efficacy of our pro-
posed FSMx-Ultra framework’s performance, accuracy, and
scalability, which is unfortunately absent in the state-of-the-
art FSM extraction schemes. We intend to utilize FSMx-
Ultra for performing fault-injection and information-leakage
assessments in the post-synthesis gate-level netlist abstraction.
Moreover, we envision incorporating FSMx-Ultra to develop
novel sequential logic obfuscation and control FSM-based wa-
termarking schemes. To conclude, the FSMx-Ultra framework
can be easily integrated into the concurrent VLSI design flow
just after the logic synthesis stage. Existing FSM extraction
techniques at the gate-level netlist abstraction suffer from
scalability and accuracy issues. Therefore, FSMx-Ultra may
open a new horizon in detecting security vulnerabilities present
in a design, assisting rapid verification of the control flow of
an SoC design after logic synthesis and aiding designers to
take numerous security countermeasures for making an SoC
design more secure at the pre-silicon stage of the state-of-the-
art VLSI implementation flow.

REFERENCES

[1] R. Karri et al., “Trustworthy hardware: Identifying and classifying hard-
ware trojans,” Computer, Vol. 43, No. 10, pp. 39-46, IEEE, 2010.

[2] N. Farzana et al., “SoC security verification using property checking,”
2019 IEEE International Test Conference (ITC), pp. 1-10, 2019.

[3] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” Annual International Cryptology Confer-
ence, pp. 104-113, Springer, 1996.

[4] E. Biham et al., “Differential fault analysis of secret key cryptosystems,”
Advances in Cryptology — CRYPTO ’97, pp. 513-525, Springer, 1997.

[5] P. C. Kocher et al., “Differential power analysis,” Annual International
Cryptology Conference, pp. 388-397, Springer, 1999.

[6] D. Hély et al., “Scan design and secure chip secure IC testing,” IOLTS:
International On-Line Testing Symposium, pp. 219-224, IEEE, 2004.

[7] M. Tehranipoor et al., “Integrated circuit authentication,” Switzerland:
Springer, Vol. 10, pp. 978-3, Springer, 2014.

[8] G. K Contreras et al., “Security vulnerability analysis of design-for-test
exploits for asset protection in SoCs,” 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 617-622, IEEE, 2017.

[9] S. Bhunia et al., “The Hardware Trojan War,” Switzerland: Springer,
Springer, 2018.

[10] D. Forte et al., “Hardware protection through obfuscation,” Springer,
2017.

[11] K. Juretus et al., “Synthesis of hidden state transitions for sequential
logic locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 40, No. 1, pp. 11-23, 2020.

[12] M. T. Rahman et al., “CSST: Preventing distribution of unlicensed and
rejected ICs by untrusted foundry and assembly,” 2014 IEEE International
symposium on defect and fault tolerance in VLSI and nanotechnology
systems (DFT), pp. 46-51, IEEE, 2014.

[13] S. E Quadir et al., “A survey on chip to system reverse engineering,”
ACM journal on emerging technologies in computing systems (JETC), Vol.
13, No. 1, pp. 1-34, ACM, 2016.

[14] S. E Quadir et al., “State encoding watermarking for field authentica-
tion of sequential circuit intellectual property,” 2012 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 3013-3016, IEEE, 2012.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, MARCH 2023 14

[15] M. Borowczak et al., “Mitigating information leakage during critical
communication using S* FSM,” IET Computers & Digital Techniques,
Vol. 13, No. 4, pp. 292-301, IET, 2019.

[16] A. T Abdel-Hamid et al., “A survey on IP watermarking techniques,”
Design Automation for Embedded Systems, Vol. 9, No. 3, pp. 211-227,
Springer, 2004.

[17] N. Anandakumar et al., “Rethinking Watermark: Providing Proof of IP
Ownership in Modern SoCs,”Cryptology ePrint Archive, 2022.

[18] F. Farahmandi et al., “FSM Anomaly Detection Using Formal Analy-
sis,” 2017 IEEE International Conference on Computer Design (ICCD),
pp. 313-320, IEEE, 2017.

[19] J. Giomi, “Method of extracting implicit sequential behavior from
hardware description languages,” US Patent 5,774,370, 1998.

[20] M. E. Gilford et al., “Recognition of a state machine in high-level
integrated circuit description language code,” US Patent 6,675,359, 2004.

[21] https://opencores.org/, “OpenCores”.
[22] https://github.com/freecores, “FreeCores”.
[23] https://github.com/secworks, “SecWorks”.
[24] E. F. Moore, “Gedanken-experiments on sequential machines,” Automata

Studies.(AM-34), Vol. 34, Princeton University Press, 2016.
[25] G. H. Mealy, “A method for synthesizing sequential circuits,” The Bell

System Technical Journal, Vol. 34, No. 5, pp. 1045-1079, 1955.
[26] K. S. McElvain, “Methods and apparatuses for automatic extraction of

finite state machines,” US Patent 6,182,268, Tech. Rep., 2001.
[27] Y. Shi et al., “A highly efficient method for extracting FSMs from

flattened gate-level netlist,” Proceedings of 2010 IEEE international sym-
posium on circuits and systems, pp. 2610-2613, 2010.

[28] M. Fyrbiak et al., “On the difficulty of FSM-based hardware obfus-
cation,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 293-330, 2018.

[29] R. Kibria et al., “FSMx: Finite State Machine Extraction from Flattened
Netlist With Application to Security,” 2022 IEEE 40th VLSI Test Sympo-
sium (VTS), pp. 1-7, 2022.

[30] R. Kibria et al., “RTL-FSMx: Fast and Accurate Finite State Machine
Extraction at the RTL for Security Applications,” 2022 IEEE International
Test Conference (ITC), pp. 165-174, 2022.

[31] http://www.ee.ncu.edu.tw/ jimmy/courses/DSD06/06 FSM.pdf.
[32] G. Vera et al., “Integrating Reconfigurable Logic in the First Digital

Logic Course,” 2006.
[33] T. Meade et al., “Gate-level netlist reverse engineering for hardware

security: Control logic register identification,” 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1334-1337, 2016.

[34] A. Nahiyan et al., “AVFSM: A framework for identifying and mitigating
vulnerabilities in FSMs,” 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-6, 2016.

[35] Z. Kohavi and N. K. Jha, “Switching and Finite Automata Theory,”
Cambridge University Press, 2009.

[36] T. Villa et al., “Synthesis of Finite State Machines : Logic Optimization,”
Springer, 1997.

[37] T. Villa et al., “Synthesis of Finite State Machines : Functional Opti-
mization,” Springer, 1997.

[38] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM
Journal on Scientific Computing, Vol. 1, pp. 146-160, 1972.

[39] D. B. Johnson, “Finding All the Elementary Circuits of a Directed
Graph,” SIAM Journal on Computing, Vol. 4, No. 1, pp. 77-84, 1975.

[40] E. Nuutila et al., “On finding the strongly connected components in a
directed graph,” Information processing letters, Vol. 49, No. 1, pp. 9-14,
Elsevier, 1994.

[41] B. Bilgin et al., “A more efficient AES threshold implementation,”
International Conference on Cryptology in Africa, pp. 267-284, 2014.

[42] T. D. Cnudde et al., “Higher-order threshold implementation of the AES
S-box,” International conference on smart card research and advanced
applications, pp. 259-272, Springer, 2015.

[43] R. Ueno et al., “Toward more efficient DPA-resistant AES hardware
architecture based on threshold implementation,” International Workshop
on Constructive Side-Channel Analysis and Secure Design, pp. 50-64,
Springer, 2017.

[44] A. Nahiyan et al., “AVFSM: A framework for identifying and mitigating
vulnerabilities in FSMs,” 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-6, 2016.

[45] A. Nahiyan et al., “Security-Aware FSM Design Flow for Identifying
and Mitigating Vulnerabilities to Fault Attacks,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 38, No.
6, pp. 1003-1016, 2019.

[46] V. S. Rathor et al., “An energy-efficient trusted FSM design technique
to thwart fault injection and trojan attacks,” 2018 31st International
Conference on VLSI Design and 2018 17th International Conference on
Embedded Systems (VLSID), pp. 73-78, IEEE, 2018.

[47] https://networkx.org/, “NetworkX”.
[48] https://github.com/secworks/uart/tree/master/src/rtl, “UART Core”.
[49] https://github.com/secworks/xtea/tree/master/src/rtl, “XTEA Cipher”.
[50] https://opencores.org/projects/sayeh processor, “SAYEH CPU”.
[51] https://github.com/secworks/cmac/tree/master/src/rtl, “CMAC Cipher”.

[52] https://github.com/secworks/sha256/tree/master/src/rtl, “SHA-256”.
[53] https://github.com/secworks/sha512/tree/master/src/rtl, “SHA-512”.
[54] https://github.com/secworks/poly1305/tree/master/src/rtl, “POLY-1305”.
[55] https://github.com/secworks/aes/tree/master/src/rtl, “AES-128”.
[56] https://github.com/gremerritt/multicycle-processor, “Tiny MIPS”.
[57] https://github.com/wvangansbeke/Smart-Card-RSA, “Smart Card RSA”.
[58] https://github.com/ultraembedded/core usb host, “USB HOST IP”.
[59] https://github.com/freecores/mem ctrl, “Memory Controller IP”.
[60] https://github.com/YosysHQ/picorv32/blob/master/picorv32.v.
[61] https://github.com/openrisc/or1200, “OR1200 RISC Core”.
[62] A. Cui et al., “A robust FSM watermarking scheme for IP protection of

sequential circuit design,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 30, No. 5, pp. 678-690, 2011.

[63] K. Nguyen et al., “An FSM-based IP protection technique using added
watermarked states,” 2013 International Conference on Advanced Tech-
nologies for Communications (ATC 2013), pp. 718-723, IEEE, 2013.

[64] R. Karmakar et al., “A cellular automata guided finite-state-machine
watermarking strategy for IP protection of sequential circuits,” IEEE
Transactions on Emerging Topics in Computing, 2020.

[65] https://www.intel.com/content/www/us/en/docs/programmable/683023/22-
1/reset-sequence.html, “IP Reset Sequencer”.

[66] https://docs.xilinx.com/r/en-US/pg354-versal-acap-soft-rldram3-mem-
ip/Reset-Sequence

Rasheed Kibria obtained his BS in Electrical En-
gineering from the Bangladesh University of Engi-
neering and Technology (BUET) in 2019. Currently,
he is a Ph.D. student in the Electrical and Computer
Engineering department at the University of Florida,
Gainesville, USA. His Ph.D. studies are supported
by Defense Advanced Research Projects Agency
(DARPA). His research interest includes Hardware
Security, Static Code Analysis, Gate-Level Netlist
Analysis, Secure VLSI Design, and SoC Security
Verification and Validation.

Farimah Farahmandi (S’13-M’18) is an Assis-
tant Professor in the Department of Electrical and
Computer Engineering (ECE) at the University of
Florida (UF). She received her Ph.D. from the De-
partment of Computer and Information Science and
Engineering (CISE) at the University of Florida in
2018. She received her B.Sc. and M.Sc. from the
Department of Computer Engineering at the Uni-
versity of Tehran, Tehran, Iran, in 2010 and 2013,
respectively. Her research interests include design
automation of System-on-Chips and energy-efficient

systems, formal verification, hardware security validation, and post-silicon
validation. Dr. Farahmandi is currently the associate director of Edaptive
Computing Inc, Transition Center (ECI-TC) at the University of Florida.

Mark Tehranipoor (S’02-M’04-SM’07-F’18) is
currently the Intel Charles E. Young Preeminence
Endowed Chair Professor in Cybersecurity and ECE
Department Chair at the University of Florida. His
current research projects include hardware security
and trust, supply chain security, IoT security, VLSI
design, testing, and reliability. Dr. Tehranipoor has
published over 500 journal articles and conference
papers, delivered many talks, and published 13
books. He is a recipient of a dozen best paper awards
and nominations, the 2008 IEEE Computer Society

(CS) Meritorious Service Award, the 2012 IEEE CS Outstanding Contribution,
the 2009 NSF CAREER Award, and the 2014 AFOSR MURI award. He
received the 2020 University of Florida Innovation of the Year award. He
serves on the program committee of more than a dozen leading conferences
and workshops. He has also served as program chair of several IEEE and
ACM-sponsored conferences and workshops (HOST, ITC, DFT, D3T, DBT,
NATW, and more). He co-founded the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST) and served as HOST-2008
and HOST-2009 General Chair. Dr. Tehranipoor is a fellow of the IEEE, a
golden core member of IEEE CS, and a member of ACM and ACM SIGDA.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

