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Abstract

Two main secondary constructions of bent functions are the direct and indirect sum
methods. We show that the direct sum, under more relaxed conditions compared to those
in [19], can generate bent functions provably outside the completed Maiorana-McFarland
class (MM#). We also show that the indirect sum method, though imposing certain
conditions on the initial bent functions, can be employed in the design of bent functions
outsideMM#. Furthermore, applying this method to suitably chosen bent functions we
construct several generic classes of homogenous cubic bent functions (considered as a dif-
ficult problem) that might posses additional properties (namely without affine derivatives
and/or outsideMM#). Our results significantly improve upon the best known instances
of this type of bent functions given by Polujan and Pott [19], and additionally we solve
an open problem in [19, Open Problem 5.1]. More precisely, we show that one class of
our homogenous cubic bent functions is non-decomposable (inseparable) so that h under
a non-singular transform B cannot be represented as h(xB) = f(y) ⊕ g(z). Finally, we
provide a generic class of vectorial bent functions strongly outside MM# of relatively
large output dimensions, which is generally considered as a difficult task.

Keywords: Bent functions, Direct and indirect sum, Completed classes, Homogenous
bent functions, Strongly outside MM#.

1 Introduction

The concept of bent functions was introduced by Rothaus [20] as a family of Boolean functions
possessing several nice combinatorial properties, which allowed for their great range of appli-
cations such as in design theory, coding theory, sequences, cryptography to mention a few.
An exhaustive survey on bent functions related to their design and properties can be found
in [8] and in the recent textbook [16]. In general, the design methods of bent function can
be divided into primary and secondary constructions. Whereas the two main primary classes
(the partial spread [9] and Maiorana-McFarland class [14]) specify bent functions directly
(without involving other bent functions), the known secondary constructions involve other
bent functions either on the same or on smaller variable spaces. A non-exhaustive list of var-
ious secondary constructions can be found in the following works [4,5,7,11,15,26]. However,
the question regarding the class inclusion of bent functions stemming from these secondary
construction methods is commonly left open, apart from a few works [1,2,4,12,15,22,23,23,24]
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where some explicit families of bent functions provably outside the completedMM class are
given.

The best known secondary constructions are the direct and indirect sum method, where
the latter approach was introduced by Carlet [5, 7]. However, the class inclusion of bent
functions generated by these methods has not been addressed in the literature. Only recently,
the direct sum method was analysed in this context by Polujan and Pott [19] and it was
shown that h(x, y) = f(x)⊕ g(y) can lie outside the completed MM# class, assuming that
f and g are suitably selected. In addition, it was shown [19] that the direct sum method
can be efficiently used in the design of homogenous cubic bent functions. In this article, we
analyse the cryptographic properties of the indirect sum and show that this approach gives
significant improvements over the direct sum employed in [19]. In the first place, we derive
two generic families of bent functions that are provably outsideMM#. One of these methods
is then employed for specifying infinite families of homogenous cubic bent functions outside
MM# (on significantly smaller variable spaces), which may possess additional cryptographic
properties such as the absence of affine derivatives and inseparability.

More precisely, we first demonstrate that the direct sum method h(x, y) = f(x) ⊕ g(y),
under more relaxed conditions on f and g compared to those in [19], can generate bent
functions provably outside MM#. This also improves a recent result in [17], where g was a
quadratic bent function of a special form but still violating the sufficient conditions in [17].
The analysis regarding the class exclusion fromMM# of bent functions generated by means
of the indirect sum (thus considering h(x, y) = f1(x) ⊕ g1(y) ⊕ (f1 ⊕ f2)(x)(g1 ⊕ g2)(y))
is commonly tedious and we provide two explicit sets of conditions on fi and gi so that
h is provably outside MM#. We remark that, also supported by computer simulations,
these conditions appear not to be necessary and there might be a possibility of relaxing
these conditions further (see also Remark 3.3 and Open problem 2). In particular, the
use of indirect sum in Theorem 4.1 provides an infinite family of homogenous cubic bent
functions outside MM# which additionally are without affine derivatives. Most notably,
employing our another method of specifying homogenous cubic bent functions outsideMM#

given in Theorem 4.2, we show that these bent functions are non-decomposable/inseparable
(considered in general as a difficult problem) so that h under a non-singular transform B
cannot be represented as h(xB) = f(y) ⊕ g(z). This also provides a solution to the open
problem of Polujan and Pott [19, Open Problem 5.1]. Our results on homogenous cubic bent
functions are summarized in Table 1, which illustrates significant improvements compared to
the other approaches [13,19]. Finally, we address another difficult task of specifying vectorial
bent functions {F} strongly outside MM#, the concept introduced in [18] that refers the
property that all the non-zero components of F are outside MM#. We provide a generic
construction method (based on the so-called companion matrices) of these objects having
relatively large output dimension, which is a significant improvement compared to the results
in [18] and [1].

The rest of this paper is organized as follows. In Section 2, we give some basic definitions
related to Boolean functions. A set of sufficient conditions on the initial bent functions
used, for the purpose of excluding them from the MM# class, is specified for both the
direct and indirect sum method (for the latter approach two different sets of conditions are
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given) in Section 3. In Section 4, we provide several methods (using the indirect sum) for
constructing homogenous cubic bent functions outside MM# which additionally might not
have affine derivatives. In particular, we show in Section 4.2 that certain subclasses of these
homogenous cubic bent functions are also non-decomposable which positively answers the
open problem in [19, Open Problem 5.1]. In Section 5, we provide a generic class of vectorial
bent functions strongly outside MM# of relatively large output dimensions. Finally, some
concluding remarks are given in Section 6.

2 Preliminaries

The vector space Fn2 is the space of all n-tuples x = (x1, . . . , xn), where xi ∈ F2. For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn2 , the usual scalar (or dot) product over F2 is
defined as x ·y = x1y1⊕· · ·⊕xnyn. The Hamming weight of x = (x1, . . . , xn) ∈ Fn2 is denoted
and computed as wt(x) =

∑n
i=1 xi. By “

∑
” we denote the integer sum (without modulo

evaluation), whereas “
⊕

” denotes the sum evaluated modulo two. By 0n we denote the all-
zero vector with n coordinates, that is (0, 0, . . . , 0) ∈ Fn2 . By 1n we denote the all-one vector
with n coordinates, that is (1, 1, . . . , 1) ∈ Fn2 .

The set of all Boolean functions in n variables, which is the set of mappings from Fn2
to F2, is denoted by Bn. Especially, the set of affine functions in n variables is given by
An = {a · x ⊕ b : a ∈ Fn2 , b ∈ {0, 1}}, and similarly Ln = {a · x : a ∈ Fn2} ⊂ An denotes the
set of linear functions. It is well-known that any f : Fn2 → F2 can be uniquely represented by
its associated algebraic normal form (ANF) as follows:

f(x1, . . . , xn) =
⊕
u∈Fn

2

λu(
n∏
i=1

xi
ui), (1)

where xi, λu ∈ F2 and u = (u1, . . . , un) ∈ Fn2 . The algebraic degree of f , denoted by deg(f),
is equal to the maximum Hamming weight of u ∈ Fn2 for which λu 6= 0.

The first order derivative of a function f in the direction a ∈ Fn2 is given by Daf(x) =
f(x) ⊕ f(x ⊕ a). The point a ∈ Fn2 is called a fast point of a function f ∈ Bn if it satisfies
deg(Daf) < deg(f) − 1, and a slow point if deg(Daf) = deg(f) − 1. The set of fast points
FPf forms a vector subspace and its dimension is bounded by dim(FPf ) ≤ n− deg(f), as it
was shown in [10].

The Walsh-Hadamard transform (WHT) of f ∈ Bn, and its inverse WHT, at any point
ω ∈ Fn2 are defined, respectively, by

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)⊕ω·x

and

(−1)f(x) = 2−n
∑
ω∈Fn

2

Wf (ω)(−1)ω·x. (2)
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A function f ∈ Bn, for even n, is called bent if Wf (u) = 2
n
2 (−1)f

∗(u) for a Boolean function
f∗ ∈ Bn which is also a bent function, called the dual of f .

The Maiorana-McFarland classMM is the set of n-variable (n is even) Boolean functions
of the form

f(x, y) = x · π(y)⊕ g(y), for all x, y ∈ Fn/22 , (3)

where π is a permutation on Fn/22 , and g is an arbitrary Boolean function on Fn/22 . We
recall that the completed class is obtained by applying the so-called extended affine (EA)
equivalence to the functions in a given class. More precisely, if we consider the class MM,
given an arbitrary f ∈ MM defined on Fn2 , this affine equivalence class includes a set of
functions {g} obtained by

g(x) = f(Ax+ b)⊕ c · x⊕ d,

where A ∈ GL(n,F2) (the group of invertible matrices under composition), b, c ∈ Fn2 and
d ∈ F2. Thus, the completed class MM# can be defined as

MM# = {f(Ax⊕ b)⊕ c · x⊕ d : f ∈MM, A ∈ GL(n,F2), b, c ∈ Fn2 , d ∈ F2}.

3 Direct and indirect sum method

The direct sum method is probably one of the best known design rationales when constructing
new bent functions form the known ones. Namely, provided that both f and g are bent
functions on Fn2 and on Fm2 (both n and m are even), respectively, the function h(x, y) =
f(x)⊕g(y) is also bent on Fn+m2 . A special case of this approach arises when g is a quadratic
bent function given in a canonical form g(y) = y1y2 ⊕ · · · ⊕ ym−1ym, which was recently
considered in [17]. It was shown that in this particular case h is outsideMM# if and only if
f is outside MM#. This motivates us to investigate other choices of g (not only quadratic
canonical ones) in this context.

3.1 Specifying sufficient conditions for the direct sum method

In this section, we consider the conditions under which h(x, y) = f(x) ⊕ g(y) is outside
MM#. The following lemma, due to Dillon [9], is of crucial importance for the discussion
on class inclusion.

Lemma 3.1. [9, p. 102] A bent function f in n variables belongs to MM# if and only if
there exists an n

2 -dimensional linear subspace V of Fn2 such that the second order derivatives

DαDβf(x) = f(x)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x⊕ α⊕ β)

vanish for any α, β ∈ V .

Notice that, as remarked recently in [17], we always have f ∈ MM# if and only if
f∗ ∈ MM#. In addition, the following special cases of the direct sum constructions have
been recently addressed in [17].
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Theorem 3.1. [17] Let n be even and f be a bent function in n variables. Set h(x, y1, y2) =
f(x) ⊕ y1y2 for yi ∈ F2, so that h = f ||f ||f ||f ||1 ⊕ f ∈ Bn+2. Then f is outside MM# if
and only if h is outside MM#.

Corollary 1. [17] Let n and m be even positive integers and h be a bent function in Bn.
Then, the function f(x, y1, . . . , ym) = h(x) ⊕ y1y2 ⊕ · · · ⊕ ym−1ym is outside MM# if and
only if h is outside MM#.

Before we provide a more general statement of the above result, we provide an important
observation useful in the analysis of the direct and indirect sum methods.

Proposition 3.1. Let n be an even positive integer, and let E be a vector subspace of Fn2
with dim(E) ≥ n/2 + 1. Then, for every bent function f ∈ Bn and for every x0 ∈ Fn2 there
are a, b ∈ E such that

DaDbf(x)|x=x0 6= 0.

Proof. Assume that there is a bent function f : Fn2 → F2 and x0 ∈ Fn2 such that DaDbf(x0) =
0, for every a, b ∈ E. We can assume that x0 = 0 (otherwise we can take f ′(x) = f(x⊕ x0)),
and that f(0) = 0 (otherwise we can take f ⊕ 1). Then, from DaDbf(0) = 0 we have
f(0)⊕ f(a) = f(b)⊕ f(a⊕ b), i.e. f(a⊕ b) = f(a)⊕ f(b) for every a, b ∈ E. This means that
f is linear on E and so there is a linear function L : Fn2 → F2 that agrees with f on E. To
see this, take a basis e1, . . . , ek of E, extend it to a basis e1, . . . , en on Fn2 , and define L as
L(
∑n

i=1wiei) =
∑k

i=1wif(ei), for every w1, . . . , wn ∈ F2. Then, L is linear and agrees with
f on E. Let l ∈ Fn2 be such that L(x) = l · x, for every x ∈ Fn2 . Then, f(x) ⊕ l · x = 0 for
every x ∈ E. By the Poisson summation formula [6, Corollary 1] we have:∑

u∈v⊕E⊥
(−1)w·uϕ̂(u) = |E⊥|(−1)w·v

∑
x∈w⊕E

(−1)v·xϕ(x),

for any pseudo-Boolean function ϕ on Fn2 where ϕ̂(u) =
∑

x∈Fn
2
ϕ(x)(−1)u·x denotes the

Fourier transform of ϕ at point u ∈ Fn2 . Setting w = 0, v = l, ϕ = (−1)f , and denoting by f∗

the dual of f , we get:

1

|E⊥|
∑

u∈l⊕E⊥
2n/2(−1)f

∗(u) =
∑
x∈E

(−1)f(x)⊕l·x =
∑
x∈E

(−1)0 = 2dim(E).

But
∑

u∈l⊕E⊥(−1)f
∗(u) ≤ |E⊥|, so we have 2dim(E) ≤ 2n/2, and this is a contradiction because

dim(E) ≥ n/2 + 1.

We also recall a useful concept of relaxed MM-subspaces introduced by Polujan and
Pott [19].

Definition 3.1. [19] A vector subspace U ⊆ Fn2 is called a relaxed MM-subspace of a
Boolean function f ∈ Bn, if for all a, b ∈ U the second order derivatives DaDbf are either
constant zero or constant one functions. i.e., DaDbf = 0 or DaDbf = 1. We denote by
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RMSr(f) the collection of all r-dimensional relaxed MM-subspaces of a Boolean function
f and by RMS(f) the collection

RMS(f) :=

n⋃
r=1

RMSr(f).

Definition 3.2. [19] For a Boolean function f ∈ Bn its relaxed linearity index r-ind(f) is
defined by r-ind(f):= max

U∈RMS(f)
dim(U).

Notice that for a quadratic Boolean function f ∈ Bn its relaxed linearity index equals
r-ind(f)= n.

Lemma 3.2. [19, Corollary 4.6] Let f and g be two bent function on Fn2 and Fm2 , respectively.
The function h, defined as h(x, y) = f(x) ⊕ g(y), is outside MM# if r-ind(f) < n/2 and
r-ind(g) 6 m/2.

The following result further refines the above claim by dropping the condition that r-
ind(g) 6 m/2.

Theorem 3.2. Let f and g be two bent function on Fn2 and Fm2 , respectively. The function
h, defined as h(x, y) = f(x)⊕ g(y), is outside MM# if r-ind(f) < n/2.

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that h does not belong toMM#, by
using Lemma 3.1. We need to show that there does not exist an (n+m2 )-dimensional subspace
V such that

D(a(1),b(1))D(a(2),b(2))h = 0,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . We have

D(a(1),b(1))D(a(2),b(2))h(x, y) = Da(1)Da(2)f(x)⊕Db(1)Db(2)g(y). (4)

Let V ba a (n+m2 )-dimensional subspace of Fn2 × Fm2 . There are two cases to be considered.

a. If dim({x|(x, y) ∈ V }) > n/2, we can select two a(1), a(2) ∈ {x|(x, y) ∈ V } such that

Da(1)Da(2)f(x) 6= constant

since r-ind(f) < n/2. Thus, we have

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= 0

for any b(1), b(2) ∈ {y|(x, y) ∈ V } since Da(1)Da(2)f(x) only depends on variables x.

b. If dim({x|(x, y) ∈ V }) < n/2, then we must have

dim({y|(0n, y) ∈ V }) > m/2
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since dim(V ) = (n + m)/2 (that is, ||V || = 2(n+m)/2). From Proposition 3.1, we can
select two vectors b(1), b(2) ∈ {y|(0n, y) ∈ V } such that

Db(1)Db(2)g(y) 6= 0.

Thus, we can select (0n, b
(1)), (0n, b

(2)) ∈ V such that

D(0n,b(1))
D(0n,b(2))

h(x, y) = Db(1)Db(2)g(y) 6= 0.

Example 3.1. Let f ∈ B8 be a bent function in PS# outside MM# whose truth table in
hexadecimal form corresponds to

Tf = 0x813dcc51a81752a59d810e0f1761c3c124a73361682b629908db9455710bfffe,

and let g ∈ B4 be defined by g(x0, . . . , x3) = x0x3⊕x1x2⊕x1x3. The function h ∈ B12 defined
as the direct sum of f and g is a bent function outside MM#, which was checked using the
Sage implementation described in [17].

Remark 3.1. By Theorem 3.2, the function h in Example 3.1 is outside MM#. However,
since r-ind(g) = m > m/2, this does not follow from Lemma 3.2.

In the other direction, it is necessary that either f or g is outsideMM# so that h = f⊕g
is outside MM#.

Theorem 3.3. Let f and g be two bent function on Fn2 and Fm2 , respectively. If the function
h, defined as h(x, y) = f(x)⊕ g(y), is outside MM#, then either f or g is outside MM#.

Proof. Assuming that both f and g are in MM# implies the existence of two subspaces
∆(n) ∈ Fn2 and ∆(m) ∈ Fm2 with dimension n/2 and m/2, respectively, such that Da(1)Da(2)f =
0 and Db(1)Db(2)g = 0 for any a(1), a(2) ∈ ∆(n), b(1), b(2) ∈ ∆(m). Hence, we can set ∆ =
∆(n) ×∆(m). Further, we have

D(a(1),b(1))D(a(2),b(2))h = 0

for any (a(1), b(1)), (a(2), b(2)) ∈ ∆. From Lemma 3.1, h is in MM#, which contradicts the
fact that h is outside MM#.

Open Problem 1. It is clear that f ∈ Bn is outside MM# implies that there exist two
vectors a, b ∈ V ⊂ Fn2 such that DaDb(f) 6= 0, for some V with dim(V ) > n/2. From Lemma
3.1, we know f ∈ Bn is outside MM# if r-ind(f) < n/2. However, there might exist bent
functions {f} with r-ind(f) = n/2 outside MM# (that is, for which there exists a subspace
V , with dim(V ) = n/2, so that DaDb(f) = 0 or DaDb(f) = 1). We leave the construction of
such functions as an open problem.
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3.2 Indirect sum method giving rise to bent functions outside MM#

The indirect sum method, introduced by Carlet [5, 7], is a secondary construction of bent
functions that does not impose any additional conditions on the initial bent functions. In
this section, we provide sufficient conditions on the bent functions fi and gi so that h defined
by (5) is provably outside MM#.

Corollary 2. [5] Let f1 and f2 be bent functions on Fn2 (n even) and g1 and g2 be bent
functions defined on Fm2 . Then, h : Fn2 × Fm2 defined as

h(x, y) = f1(x)⊕ g1(y)⊕ (f1 ⊕ f2)(x)(g1 ⊕ g2)(y), x ∈ Fn2 , y ∈ Fm2 , (5)

is a bent function and its dual is obtained from f∗1 , f∗2 , g∗1 and g∗2 by the same formula as h
is obtained from f1, f2, g1 and g2.

It is important to notice that fi and gi are arbitrary bent functions, but interestingly
enough the condition that both f1 ⊕ f2 and g1 ⊕ g2 are bent implies that h defined by (5) is
outside MM#.

Theorem 3.4. Let f1 and f2 be bent functions on Fn2 (n even). Let g1 and g2 be bent
functions defined on Fm2 (m even). Let h be defined as in (5). If f1⊕ f2 and g1⊕ g2 are bent,
then h is outside MM#.

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that h does not belong to MM# by
using Lemma 3.1. We need to show that there does not exist an (n+m2 )-dimensional subspace
V such that

D(a(1),b(1))D(a(2),b(2))h = 0,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . We have

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Da(1)Da(2)f1(x)⊕Db(1)Db(2)g1(y)⊕ (g1 ⊕ g2)(y)Da(1)Da(2)(f1 ⊕ f2)(x)
⊕(f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)⊕Da(1)(f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y)
⊕Da(2)(f1 ⊕ f2)(x)Db(2)(g1 ⊕ g2)(y)⊕Da(1)⊕a(2)(f1 ⊕ f2)(x)Db(1)⊕b(2)(g1 ⊕ g2)(y)

(6)

There are three cases to be considered.

(i) For n = m, there are two subcases.

(a) If dim({x|(x, y) ∈ V }) = dim({y|(x, y) ∈ V }) = n (that is, {x|(x, y) ∈ V } =
{y|(x, y) ∈ V } = Fn2 ), then there are two cases to be considered.

i. Assume that either deg(f1 ⊕ f2) > 2 or deg(g1 ⊕ g2) > 2. Without loss
of generality, we suppose deg(f1 ⊕ f2) > 2. Then, we can find two vectors
a(1), a(2) ∈ Fn2 such that

Da(1)Da(2)(f1 ⊕ f2)(x) 6= constant. (7)

Since the algebraic degree of g1⊕g2 is strictly greater than the algebraic degree
of its derivatives, from (6) and (7), we obtain

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= 0.
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ii. For deg(f1⊕ f2) = 2 and deg(g1⊕ g2) = 2, we can find two vectors a(1), a(2) ∈
Fn2 such that

Da(1)Da(2)(f1 ⊕ f2)(x) = 1. (8)

Since g1 ⊕ g2 is bent and deg(g1 ⊕ g2) = 2, its derivatives are affine function-
s. We also know Db(1)Db(2)g1(y) has nonzero linear structures, since g1 is a
quadratic function. Hence, from (6) and (8), we get

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= 0.

(b) If dim({x|(x, y) ∈ V }) < n or dim({y|(x, y) ∈ V }) < n, then we have {y|(0n, y) ∈
V } 6= ∅ or {x|(x, 0n) ∈ V } 6= ∅. Without loss of generality, we suppose that
{y|(0n, y) ∈ V } 6= ∅. Hence, we can select (0n, b

(1)) ∈ V ∩ ({0n} × Fn∗2 ) and
(a(2), b(2)) ∈ V ∩ (Fn∗2 × Fn∗2 ). From (6), we have

D(0n,b(1))
D(a(2),b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)

⊕Da(2)(f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y ⊕ b(2))
6= 0,

(9)

since f1⊕f2, g1⊕g2 are bent (that is, Da(2)(f1⊕f2)(x) 6= constant and Db(1)(g1⊕
g2)(y ⊕ b(2)) 6= constant ) and deg((f1 ⊕ f2)(x)) > deg(Da(2)(f1 ⊕ f2)(x)).

(ii) For n 6= m, there are also two cases to be considered.

(a) For n > m, we have (n+m)/2 > m. Thus, we can select two vectors (a(1), 0m) ∈
V ∩ (Fn∗2 × {0m}) and (a(2), b(2)) ∈ V ∩ (Fn∗2 × Fm∗2 ). From (6), we have

D(a(1),0m)D(a(2),b(2))h(x, y)

= Da(1)Da(2)f1(x)⊕ (g1 ⊕ g2)(y)Da(1)Da(2)(f1 ⊕ f2)(x)

⊕Da(1)(f1 ⊕ f2)(x⊕ a(2))Db(2)(g1 ⊕ g2)(y)
6= 0,

(10)

since f1 ⊕ f2, g1 ⊕ g2 are bent (that is, Da(1)(f1 ⊕ f2)(x ⊕ a(2)) 6= constant and
Db(2)(g1 ⊕ g2)(y) 6= constant ) and deg((g1 ⊕ g2)(y)) > deg(Db(2)(g1 ⊕ g2)(y)).

(b) For n < m, we have (n + m)/2 > n. Now, we select (0n, b
(1)) ∈ V ∩ ({0n} ×

Fm∗2 ) and (a(2), b(2)) ∈ V ∩ (Fn∗2 × Fm∗2 ) and from item (i) − (b) we conclude that
D(0n,b(1))

D(a(2),b(2))h(x, y) 6= 0. This concludes the proof.

It is tempting to relax the conditions on the initial functions as illustrated in the following
example. The condition that either deg(f1⊕f2) > 2 or deg(g1⊕g2) > 2 seems to be sufficient
at least for certain choices of the initial functions. However, proving this in general appears

to be a difficult task since there exist certain (n + m)/2-dimensional subspaces of F(n+m)/2
2 ,

say {V }, for which this condition is not enough to ensure the existence of a, b ∈ V so that
DaDbh 6= 0, for h defined by (5).
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Example 3.2. Let f1, f2 ∈ B6 and g1, g2 ∈ B4 be bent functions such that deg(f1 ⊕ f2) > 2.
Then, h ∈ B10 defined by (5) is a bent function outside MM#. For example, we may take

f1(x0, . . . , x5) = x0x1x2 ⊕ x0x1x3 ⊕ x0x1x4 ⊕ x0x2x3 ⊕ x0x2x5 ⊕ x0x3x4 ⊕ x0x3x5
⊕ x0x4x5 ⊕ x1x2x4 ⊕ x1x2x5 ⊕ x1x3x4 ⊕ x1x3x5 ⊕ x1x4x5 ⊕ x2x3x4
⊕ x2x3x5 ⊕ x2x4x5

f2(x0, . . . , x3) = x0x1 ⊕ x2x3 ⊕ x4x5
g1(x0, . . . , x3) = x0x1 ⊕ x0x3 ⊕ x1x2 ⊕ x0 ⊕ x1
g2(x0, . . . , x3) = x0x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ x1

The truth table in hexadecimal form of the function h obtained from (5) equals:

0x4874842e842eb78b842e7bd17bd14874842e48747bd17bd1b78b7bd17bd14874842e7bd148747bd17

bd1b78bb78b842e7bd1b78bb78b842e4874842e842e842e842e7bd17bd17bd14874b78bb78b842e7bd1b78b8

42e842e7bd1842e842e842eb78b48747bd148747bd1842e842e842e7bd1842e842e842e4874842e842e842e

Using the Sage implementation from [17], we have confirmed that h ∈ B10 is outside
MM#.

Open Problem 2. We leave as an open problem the specification of more relaxed sufficient
conditions on the initial bent functions fi and gi used to define h in (5) so that h is provably
outside MM#.

3.2.1 OutsideMM# property from the class membership of the initial functions

We remark that the previous results do not impose any condition on the constituent bent
functions in terms of their class membership. However, it turns out that the indirect sum
behave quite similarly as the direct sum, though requiring additional constraints on the initial
functions which ensure that h is outsideMM#. The following lemma is needed in the proof
of our main result.

Lemma 3.3. Let f1 be a bent function on Fn2 . If r-ind(f1) < n/2, then there exist three
vectors a(1), a(2), a(3) ∈ E such that Da(1)Da(2)f1(x) 6= constant, Da(1)Da(3)f1(x) 6= constant,
and Da(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) 6= constant, where E ⊆ Fn2 is a subspace with dim(E) >
n/2.

Proof. Since r-ind(f1) < n/2, from Definitions 3.1 and 3.2, we know dim(RMS(f1)) < n/2.
Without loss of generality, set dim(RMS(f1)) = n/2− 1 and dim (E) = n/2 + 1.

Let U ⊆ E be a relaxed MM-subspace of f1 such that U ∪ {α ⊕ U} is not a relaxed
MM-subspace for all α ∈ E \ U. Then, we have

dim (E)− dim(U) ≥ dim (E)− dim(RMS(f1)) ≥ 2. (11)

Without loss of generality, we suppose dim(U) = n/2 − 1. We set {α(1), α(2), . . . , α(n/2−1)}
to be a basis of U and {α(1), α(2), . . . , α(n/2+1)} be a basis of E.
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We set U (α) = {γ : DγDαf1(x) = constant, γ ∈ E}, where α ∈ {α(n/2), α(n/2+1), α(n/2) ⊕
α(n/2+1)}. From r-ind(f1) < n/2 and the definition of U , we have

U (α(n/2)) ⊂ E, U (α(n/2+1)) ⊂ E, U (α(n/2)⊕α(n/2+1)) ⊂ E. (12)

We also know U (α(n/2)), U (α(n/2+1)) and U (α(n/2)⊕α(n/2+1)) are subspaces of E. From (12), we
have

∆ :=
(
E \ U (α(n/2))

)
∩
(
E \ U (α(n/2+1))

)
∩
(
E \ U (α(n/2)⊕α(n/2+1))

)
= E \

(
U (α(n/2)) ∪ U (α(n/2+1)) ∪ U (α(n/2)⊕α(n/2+1))

)
6= ∅.

(13)

Hence, we can select a(1) ∈ ∆, a(2) = α(n/2), a(3) = α(n/2+1). Further, we have
Da(1)Da(2)f1(x) 6= constant, Da(1)Da(3)f1(x) 6= constant andDa(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) 6=
constant, since Da(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) = Da(1)Da(2)⊕a(3)f1(x).

Theorem 3.5. Let f1 and f2 be bent functions on Fn2 (n even). Let g1 and g2 be bent
functions defined on Fm2 (m even) such that deg(g1 ⊕ g2) > 0. Let h be defined as in (5). If
r-ind(f1) < n/2 (hence f1 6∈ MM#) and deg(f1 ⊕ f2) = 1, then h is outside MM#.

Proof. Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that h does not belong toMM#, by
using Lemma 3.1. We need to show that there does not exist an (n+m2 )-dimensional subspace
V of Fn+m2 such that

D(a(1),b(1))D(a(2),b(2))h = 0,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . Since deg(f1 ⊕ f2) = 1, we have

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Da(1)Da(2)f1(x)⊕Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)
⊕Da(1)(f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y)⊕Da(2)(f1 ⊕ f2)(x)Db(2)(g1 ⊕ g2)(y)
⊕Da(1)⊕a(2)(f1 ⊕ f2)(x)Db(1)⊕b(2)(g1 ⊕ g2)(y)

= Da(1)Da(2)f1(x)⊕Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y)
⊕εa(1)Db(1)(g1 ⊕ g2)(y)⊕ εa(2)Db(2)(g1 ⊕ g2)(y)⊕ εa(1)⊕a(2)Db(1)⊕b(2)(g1 ⊕ g2)(y),

(14)

where εa(1) , εa(2) , εa(1)⊕a(2) ∈ F2. Since r-ind(f1) < n/2, we know deg(f1) ≥ 3.
There are three cases to be considered.

(i) For dim ({x|(x, y) ∈ V }) > n/2, since r-ind(f1) < n/2, from Definitions 3.1 and 3.2, we
know dim(RMS(f1)) < n/2. Without loss of generality, set dim(RMS(f1)) = n/2−1.

From Lemma 3.3, we know there exist (a(1), b(1)), (a(2), b(2)), (a(3), b(3)) ∈ V such that

Da(1)Da(2)f1(x) 6= constant,
Da(1)Da(3)f1(x) 6= constant,

Da(1)Da(2)f1(x)⊕Da(1)Da(3)f1(x) = Da(1)Da(2)⊕a(3)f1(x) 6= constant.
(15)

Since f1 ⊕ f2 is given, from (15), we get

Da(1)Da(2)f1(x)⊕ (f1 ⊕ f2)(x) 6= constant (16)

11



or
Da(1)Da(3)f1(x)⊕ (f1 ⊕ f2)(x) 6= constant. (17)

Without loss generality, we assume that (16) holds. There are three cases to be con-
sidered.

(a) If Db(1)Db(2)(g1 ⊕ g2)(y) 6= constant, from (14), we obtain

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= constant.

(b) If Db(1)Db(2)(g1 ⊕ g2)(y) = 1, we conclude

Db(1)(g1 ⊕ g2)(y) 6= constant,

Db(2)(g1 ⊕ g2)(y) 6= constant

and
Db(1)⊕b(2)(g1 ⊕ g2)(y) 6= constant.

If (15), (16) and (14), we deduce

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= constant.

(c) Finally, when Db(1)Db(2)(g1 ⊕ g2)(y) = 0, from (15) and (14), we get

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= constant.

(ii) If dim({x|(x, y) ∈ V }) = n/2, then there are three cases to be considered.

(a) If dim({y|(x, y) ∈ V }) = m/2, then

V = {x|(x, 0m) ∈ V } × {y|(0n, y) ∈ V }

since dim(V ) = (n+m)/2. Using the assumption that r-ind(f1) < n/2, there will
exist (a(1), 0m), (a(2), 0m) ∈ V such that

Da(1)Da(2)f1(x) 6= constant.

Applying this to (14), we deduce that

D(a(1),0m)D(a(2),0m)h(x, y) 6= constant.

(b) Assume now that m/2 < dim({y|(x, y) ∈ V }) < (n+m)/2. Then, for arbitrary
a1, a2 ∈ {x|(x, y) ∈ V }, we always have {y|(a1, y) ∈ V } ∩ {y|(a2, y) ∈ V } 6= ∅.
Hence, we can select two vectors (a(1), b(1)), (a(2), b(2)) ∈ V such that b(1) = b(2)

and Da(1)Da(2)f1(x) 6= constant. Again, using that Da(1)Da(2)f1(x) 6= constant in
(14), we conclude

D(a(1),b(1))D(a(2),b(2))h(x, y) 6= constant.
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(c) When dim({y|(x, y) ∈ V }) = (n+m)/2, we have {y|(a1, y) ∈ V } ∩ {y|(a2, y) ∈
V } = ∅ for arbitrary a1, a2 ∈ {x|(x, y) ∈ V } and dim({y|(0n, y) ∈ V }) = m/2.
Since dim({α|Dα(f1 ⊕ f2) = 0}) = n − 1 and dim({x|(x, y) ∈ V }) = n/2, we can
select one nonzero vector a ∈ {x|(x, y) ∈ V } such that Da(f1 ⊕ f2) = 0. Further,

dim({(0n, y)|(0n, y) ∈ V } ∪ {(a, y)|(a, y) ∈ V }) = m/2 + 1.

Then, by Proposition 3.1, we can select two vectors (a(1), b(1)), (a(2), b(2)) ∈
{(0n, y)|(0n, y) ∈ V } ∪ {(a, y)|(a, y) ∈ V } such that

Db(1)Db(2)g1(y) 6= 0.

Setting this in (14), we obtain

D(a(1),b(1))D(a(2),b(2))h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) 6= 0.
(18)

(iii) If dim({x|(x, y) ∈ V }) < n/2, then we have dim({y|(x, y) ∈ V }) ≥ m/2 + 1. Further,
we have dim({y|(0, y) ∈ V }) ≥ m/2 + 1 since dim(V ) = (n + m)/2. Hence, from
Proposition 3.1, we can select two vectors (0n, b

(1)), (0n, b
(2)) ∈ V such that

Db(1)Db(2)g1(y) 6= 0.

Again, putting this in (14), we have

D(0n,b(1))
D(0n,b(2))

h(x, y)

= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) 6= 0.
(19)

Remark 3.2. We note that the functions f1 and f2 as well as g1 and g2 in Example 3.2 are
not affine related, that is, deg(f1 ⊕ f2),deg(g1 ⊕ g2) > 1. This leads us to believe that the
condition deg(f1 ⊕ f2) = 1 in Theorem 3.5 seems to be only sufficient but not necessary.

Remark 3.3. The main reason for using the condition that deg(f1 ⊕ f2) = 1 in Theorem
3.5 is related to n/2-dimensional subspaces V of Fn+m2 with the property that dim({x|(x, y) ∈
V }) ≥ n/2 and dim({y|(x, y) ∈ V }) ≥ m/2. In this case, we cannot ensure that some of the
following inequalities Da(1)Da(2)f1(x) 6= (f1⊕ f2)(x), Da(1)Da(2)f1(x) 6= Da(1)(f1⊕ f2)(x) and
Da(1)Da(2)f1(x) 6= Da(2)(f1 ⊕ f2)(x) hold.

Similarly to Theorem 3.5, we can prove even a stronger statement which excludes the
possibility of having constant second order derivatives of h on any (n + m)/2-dimensional
subspace. The proof of Theorem 3.6 can be found in Appendix.

Theorem 3.6. Let f1 and f2 be bent functions on Fn2 (n even). Let g1 and g2 be bent
functions defined on Fm2 (m even) such that deg(g1 ⊕ g2) > 0. Let h be defined as in (5). If
r-ind(f1) < n/2, deg(f1 ⊕ f2) = 1 and r-ind(g1) < m/2 + 1, then h is outside MM# and
r-ind(h) < (n+m)/2.
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4 Design methods for homogenous bent functions

The design methods for homogenous bent functions are very few and it appears that this
subclass of bent functions is quite small. The main progress has been made recently in [19],
where the authors efficiently specified new homogenous cubic bent functions using the direct
sum and stated the following open problem: Construct homogeneous cubic bent functions
without affine derivatives outside theMM# class without the use of the direct sum. In this
section, we positively answer this problem by applying the indirect sum method to suitably
selected initial bent functions. Moreover, we improve the results in [19] with respect to the
dimension of input variable space, see Table 1.

4.1 Homogenous bent functions using the indirect sum

In what follows, we construct homogeneous cubic bent functions without affine derivatives
outside the MM# by using the indirect sum and thereby partially solve the open problem
in [19].

Theorem 4.1. Let n and m be two positive even integers. Let f1 and g1 be two homogeneous
cubic bent functions on Fn2 and Fm2 , respectively. Let f2(x) = f1(x)⊕c ·x, where c ∈ Fn2 \{0n},
and g2(y) = g1(y)⊕Q(y) be also bent, where Q is a homogeneous quadratic function. Then,
the function h ∈ Bn+m defined by (5) is a homogeneous cubic bent function. Further, if r-
ind(f1) < n/2, then h is outsideMM#. If f1 has no affine derivatives and FPg1 ∩FPg1⊕g2 =
{0m}, then h has no affine derivatives.

Proof. From Corollary 2, h is a bent function in n+m variables. Since deg(f1⊕ f2) = 1 and
Q is a homogeneous quadratic function in m variables, then h is a homogeneous cubic bent
function.

From Theorem 3.5, since r-ind(f1) < n/2 and deg(f1 ⊕ f2) = 1, h is outside MM#. For
a(1) ∈ Fn2 and b(1) ∈ Fm2 , we have

D(a(1),b(1))h(x, y) = Da(1)f1(x)⊕Db(1)g1(y)

⊕(g1 ⊕ g2)(y)Da(1)(f1 ⊕ f2)(x)⊕ (f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y).
(20)

To show that h has no affine derivatives, we consider two cases:

a) If a(1) = 0n, then b(1) 6= 0m. From (20), we deduce

D(0n,b(1))
h(x, y) = Db(1)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)(g1 ⊕ g2)(y).

Since g1 is cubic and FPg1∩FPg1⊕g2 = {0m}, then deg(Db(1)g1(y)) = 2 or deg(Db(1)(g1⊕
g2)(y)) = 1. Hence, deg(D(0n,b(1)

h) = 2.

b) If a(1) 6= 0n, then deg(Da(1)f1) = 2 due to the assumption on f1. From (20), we have
deg(D(a(1),b(1))h) = 2 since f1 ⊕ f2 is a linear function.
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Remark 4.1. One can also set Q(y) := g1(y) ⊕ g1(y ⊕ a) ⊕ A(y) in Theorem 4.1, where
a ∈ Fn2 \ FPg1 and A(y) stands for the affine terms of g1(y)⊕ g1(y ⊕ a).

Corollary 3. Let n,m and t be three positive even integers such that t ≤ m. Let f1 and g1 be
two homogeneous cubic bent functions on Fn2 and Fm2 , respectively. Let f2(x) = f1(x)⊕ c · x,

where c ∈ Fn2 \ {0n}, and g2(y) = g1(y ⊕ e(t)), where e(t) = (e
(t)
1 , e

(t)
2 , . . . , e

(t)
m ) ∈ Fm2 , e

(t)
i = 1

if i = t, e
(t)
i = 0 otherwise. Let h be defined as in (5). If r-ind(f1) < n/2, then h is a

homogeneous cubic bent functions on Fn+m2 outside MM#. If f1 has no affine derivatives
and FPg1 ∩ FPg1⊕g2 = {0m}, then h has no affine derivatives.

Proof. Since g1 is a homogeneous cubic bent function, g1(y)⊕ g1(y ⊕ e(t)) is a homogeneous
quadratic function. From Theorem 4.1, identifying Q(y) := g1(y) ⊕ g1(y ⊕ e(t)), we know
that h is a homogeneous cubic bent function since g2(y) = g1(y) ⊕

(
g1(y)⊕ g1(y ⊕ e(t))

)
=

g1(y) + Q(y) is a bent function. Furthermore, Theorem 4.1 implies that h has no affine
derivatives if f1 has no affine derivatives and FPg1 ∩ FPg1⊕g2 = {0m}.

Homogeneous cubic bent function without affine derivatives outsideMM# were specified
by Polujan and Pott [19, Theorem 4.9] with the number of variables n ≥ 50. The following
example demonstrates that such functions can be specified on much smaller variable spaces
compared to [19] (namely for n = 20).

Example 4.1. Let f1 be a homogenous cubic bent function without affine derivatives on F10
2 ,

with r-ind(f1) = 4, whose ANF is given as (see [19, Table 4])
f1(x0, . . . , x9) = x0x1x5⊕ x0x1x6⊕ x0x1x7⊕ x0x1x9⊕ x0x2x3⊕ x0x2x4⊕ x0x2x6⊕ x0x2x8⊕
x0x2x9⊕x0x3x4⊕x0x3x5⊕x0x3x7⊕x0x3x8⊕x0x3x9⊕x0x4x6⊕x0x5x6⊕x0x5x7⊕x0x5x9⊕
x0x6x8⊕x0x6x9⊕x0x8x9⊕x1x2x4⊕x1x2x7⊕x1x2x8⊕x1x2x9⊕x1x3x5⊕x1x3x6⊕x1x3x7⊕
x1x4x5⊕x1x4x8⊕x1x5x6⊕x1x5x8⊕x1x5x9⊕x1x6x7⊕x1x6x9⊕x1x7x8⊕x1x7x9⊕x1x8x9⊕
x2x3x6⊕x2x3x8⊕x2x4x5⊕x2x4x6⊕x2x4x7⊕x2x4x9⊕x2x5x7⊕x2x5x8⊕x2x6x9⊕x2x7x8⊕
x2x7x9⊕x2x8x9⊕x3x4x6⊕x3x4x8⊕x3x4x9⊕x3x5x7⊕x3x5x9⊕x3x6x7⊕x3x6x8⊕x3x6x9⊕
x3x7x9⊕x3x8x9⊕x4x5x7⊕x4x5x8⊕x4x5x9⊕x4x6x8⊕x4x6x9⊕x4x7x8⊕x4x7x9⊕x4x8x9⊕
x5x6x7 ⊕ x5x7x9 ⊕ x5x8x9 ⊕ x6x7x9,
and let g1 = f1 . Then, from Corollary 3, the function h defined as in (5) via f1, f2, g1, g2,
is a homogeneous cubic bent function without affine derivatives on F20

2 outside MM#.

Seberry, Xia and Pieprzyk in [21, Theorem 8] proved that one can construct homogeneous
cubic bent functions for all even m 6= 8. Let F : Fm2 → F2 be defined as in [21, Theorem 8]

F (y) =

m/2⊕
i=1

yiyi+m/2 ⊕ C(ym/2+1, ym/2+2, . . . , ym),

where C(ym/2+1, ym/2+2, . . . , ym) is a certain cubic function. Then, there exists a nonsingular
matrix T such that F (Ty) is a homogeneous cubic bent function [21]. Let φ be a linear

permutation on Fm/22 such that φ ⊕ I is also a linear permutation, where I is the identity
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permutation. Thus, Q′(y) :=
(
φ(y1, y2, . . . , ym/2)

)
· (ym/2+1, ym/2+2, . . . , ym) is bent. Further,

we have that
F (Ty)⊕Q(y) (21)

is a bent function, where Q(y) = Q′(Ty) ⊕ A(y) is a homogeneous quadratic function and
A(y) is affine.

In [19], the authors provided one 10-variable function, denoted by h104 ∈ B10, which is a
homogeneous cubic bent function without affine derivatives and r-ind(h104 ) = 4 < 10/2, thus
h104 6∈ MM#.

Theorem 4.1, employing h104 and F (Ty), implies the following result.

Theorem 4.2. Let n = 10 and m ≥ 6 be a positive even integer such that m 6= 8. Let
f1 = h104 , g1(y) = F (Ty) and g2(y) = g1(y) ⊕ Q(y), where F (Ty) and Q(y) are defined
by (21). Let also f2(x) = f1(x) ⊕ c · x, where c ∈ F10

2 \ {010}. Then, h defined by (5)
is a homogeneous cubic bent function in m + 10 variables without affine derivatives outside
MM#.

Proof. Since r-ind(h104 ) = 4 < 10/2, from Theorem 4.1, we deduce that h is a homoge-
neous cubic bent functions in m + 10 variables outside the MM#. Since Q is a quadratic
bent function, we have FPQ = FPg1⊕g2 = {0m}. Theorem 4.1 implies that h has no affine
derivatives.

Theorem 4.3. Let n,m be two positive even integers such that n ≥ 6,m ≥ 6. Let f1 be a
(homogeneous) cubic bent function with dim (FPf1) = 1 on Fn2 . Without loss of generality,
we set FPf1 = {0n, ε}. Let c ∈ {α|α ∈ Fn2 , α · ε = 1} and define f2(x) = f1(x) ⊕ c · x.
Let g1 be a (homogeneous) cubic bent function without affine derivatives on Fm2 such that
r-ind(g1) < m/2. Define a bent function g2(y) = g1(y)⊕Q(y), where Q is a (homogeneous)
quadratic function such that deg(Dbg1(y) ⊕ Q(y)) = 2, for any b ∈ FPQ \ {0m}. Then,
h defined by (5) is a (homogeneous) cubic bent function without affine derivatives outside
MM#.

Proof. From Theorem 4.1, we know that h is a (homogeneous) cubic bent function outside
MM#.

Now we prove h does not have affine derivatives. There are two cases to be considered.
Let a(1) ∈ Fn2 and b(1) ∈ Fm2 .

i) If a(1) /∈ FPf1 = {0n, ε}, then deg(Da(1)f1) = 2. From (20), we have deg(D(a(1),b(1))h) =
2 since f1 ⊕ f2 is a linear function.

ii) If a(1) = ε, from (20), we have

D(ε,b(1))h(x, y) = Dεf1(x)⊕Db(1)g1(y)

⊕(g1 ⊕ g2)(y)Dε(c · x)⊕ (c · x)Db(1)(g1 ⊕ g2)(y)
= Dεf1(x)⊕Db(1)g1(y)⊕Q(y)⊕ (c · x)Db(1)Q(y).

(22)

There are two cases to be considered.
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(a) If b(1) ∈ FPQ \ {0m}, then deg(Db(1)g1(y)⊕Q(y)) = 2. Hence, from (22), we have
deg(D(ε,b(1))h(x, y)) = 2.

(b) If b(1) /∈ FPQ \ {0m}, from (22), we get deg(D(ε,b(1))h(x, y)) = 2 since deg((c ·
x)Db(1)Q(y)) = 2 or b(1) = 0m.

Remark 4.2. Let us consider the homogeneous quadratic function Q(y) = De(t)g1(y) as

defined in Corollary 3, where e(t) = (e
(t)
1 , e

(t)
2 , . . . , e

(t)
m ) ∈ Fm2 , e

(t)
i = 1 if i = t, e

(t)
i = 0

otherwise. The vector e(t) is obviously a fast point for the function Q (more precisely, it is a
linear structure) because De(t)Q(y) = De(t)De(t)g1 ≡ 0. With respect to the above notation, we
have that De(t)(g1(y)⊕Q(y)) = De(t)g1(y)⊕De(t)g1(y) = 0, thus Q does not satisfy Theorem
4.3. We also note that D(ε,e(t))h(x, y) = Dεf1(x), which is an affine function. Using Sage we
observed that ε is the only affine derivative of h.

Based on the above remark, the following open problem is an interesting research chal-
lenge.

Open Problem 3. Find instances of quadratic homogeneous bent functions Q which satisfy
Theorem 4.3 and thus give rise to homogeneous cubic bent functions without affine derivatives
outside MM#.

From Theorems 3.5 and 4.2, we note that [19, Theorem 4.9] (see Theorem 4.7) can be
generalized as follows:

Theorem 4.4. On Fn2 there exist homogeneous cubic bent functions (without affine deriva-
tives) outside MM# for n ≥ 16, n 6= 18.

4.2 Non-decomposability of our bent functions

In this section, we solve an open problem on the decomposability of bent functions raised
in [19, Open Problem 5.1]. We essentially show that the homogenous cubic bent functions
constructed by means of Theorem 4.5 are non-decomposable in the sense of the definition
below.

Definition 4.1. [25] A function f ∈ Bn is said to be decomposable if there exists a nonsingu-
lar n×n matrix B over F2 and an integer l with 1 ≤ l ≤ n−1 such that f(xB) = g(y)⊕h(z),
where x = (y, z), y ∈ Fl2, z ∈ Fn−l2 , g ∈ Bl and h ∈ Bn−l. Otherwise, f is said to be non-
decomposable.

Lemma 4.1. [25, Theorem 2] A function f ∈ Bn is decomposable if and only if there
exists an integer p with 1 ≤ p ≤ n − 1, a p-dimensional linear subspace W of Fn2 and a
complementary subspace U in Fn2 (thus U + W = Fn2 ) such that for every non-zero vector
α ∈W and every non-zero vector β ∈ U , we have

f(x)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x⊕ α⊕ β) = 0.
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The following result specifies some useful properties of the function h104 mentioned earlier.

Lemma 4.2. Let A := (a(1), a(2), . . . , a(10)) be a basis of F10
2 . Then, ||{ε ∈ A | Da(i)Dεh

10
4 6=

0}|| ≥ 3, for any a(i) ∈ A. Moreover, for disjoint non-empty subsets S, T ⊂ A that partition
A, S ∪ T = A, there exist two vectors α(1) ∈ S and α(2) ∈ T such that Dα(1)Dα(2)h104 6= 0.

Proof. From Theorem 4.2, we know that h given by (5), defined using h104 , is a homogeneous
cubic bent function in m+10 variables without affine derivatives (with m even). In particular,
deg(Da(i)h

10
4 ) = 2, for any i = 1, . . . , 10. Without loss of generality, we set i = 1. We also

know dim(FPD
a(1)

h104
) ≤ n− deg(Da(1)h

10
4 ). Hence,

dim(FPD
a(1)

h104
) = dim({ε | Da(1)Dεh

10
4 = constant}) ≤ n− 2. (23)

Since h104 is bent, Da(1)h
10
4 is a quadratic balanced function, that is, there exists at least

one vector β such that Da(1)Dβh
10
4 = 1 (due to the existence of linear terms in the ANF of

Da(1)h
10
4 ). Furthermore, using (23), we have

dim({ε ∈ F10
2 | Da(1)Dεh

10
4 = 0}) ≤ n− 3, (24)

which implies that

dim(〈{ε ∈ F10
2 | Da(i)Dεh

10
4 6= 0, ε ∈ A}〉) ≥ 3, ∀a(i) ∈ A, (25)

where 〈·〉 denotes the span of a set.
Now we prove Dα(1)Dα(2)h104 6= 0. There are two cases to be considered.

a. For ||S|| ≤ 3 or ||T || ≤ 3 , from (25), we must two vectors α(1) ∈ S and α(2) ∈ T such
that Dα(1)Dα(2)h104 6= 0 since DαDαh

10
4 = 0 for any α ∈ F10

2 .

b. Let ||S|| = 4 (resp. 5) and ||T || = 6 (resp. 5). There are also two cases to be considered.
Since r-ind(h104 ) = 4, without loss of generality, let U be a 4-dimensional subspace
of F10

2 such that Da(1)Da(2)h
10
4 = constant, for any a(1), a(2) ∈ U . From Definitions

3.1, and 3.2, there exist a(1), a(2) ∈ U ∪ (α(2) ⊕ U) for any α(2) ∈ F10
2 \ U such that

Da(1)Da(2)h
10
4 6= constant.

(a) When either U ⊆ 〈S〉 or U ⊆ 〈T 〉, using Definitions 3.1 and 3.2, we can find two
vectors α(1) ∈ S and α(2) ∈ T such that Dα(1)Dα(2)h10 6= 0.

In fact, for any α(2) ∈ F10
2 \ U , there must exist one vector α(1) ∈ U such that

Dα(1)Dα(2)h10 6= 0 since

Dα(1)Dα(2)h104 = Dα(1)Dα(1)⊕α(2)h104 = Dα(2)Dα(1)⊕α(2)h104 .

(b) When U * 〈S〉 and U * 〈T 〉, we know ||S|| = 4 (resp. 5) and ||T || = 6 (resp.
5). Further, ||U ∪ 〈S〉|| < 24 and ||U ∪ 〈T 〉|| < 24. Hence, we can find two vectors
α(1) ∈ S and α(2) ∈ T such that Dα(1)Dα(2)h104 6= 0.
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Theorem 4.5. For n = 10 , and even m ≥ 6 such that m 6= 8, let h be defined as in Theorem
4.2. Then, h is a homogeneous non-decomposable cubic bent function in m + 10 variables
without affine derivatives outside MM#.

Proof. From Theorem 4.2, h ∈ Bm+10 is a homogeneous cubic bent function without affine
derivatives outside MM#.

It remains to prove that h is non-decomposable. From Lemma 4.1, we need to show that
for arbitrary integer p with 1 ≤ p ≤ m + 10 − 1, any p-dimensional linear subspace W of
Fn+m2 and its arbitrary complementary subspace U in Fn+m2 , there always exists two vectors
(a(w), b(w)) ∈W and (a(u), b(u)) ∈ U , such that

D(a(w),b(w))D(a(u),b(u))h 6= 0,

where a(w), a(u) ∈ Fn2 and b(w), b(u) ∈ Fm2 . Similarly to (14), we have

D(a(w),b(w))D(a(u),b(u))h(x, y)

= Da(w)Da(u)f1(x)⊕Db(w)Db(u)g1(y)⊕ (f1 ⊕ f2)(x)Db(w)Db(u)(g1 ⊕ g2)(y)
⊕Da(w)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y)⊕Da(u)(f1 ⊕ f2)(x)Db(u)(g1 ⊕ g2)(y)
⊕Da(w)⊕a(u)(f1 ⊕ f2)(x)Db(w)⊕b(u)(g1 ⊕ g2)(y).

(26)

Since W is a p-dimensional linear subspace of Fm+10
2 and U is the complementary subspace

of W in Fm+10
2 , we have

〈{x | (x, y) ∈W} ∪ {x | (x, y) ∈ U}〉 = Fn2 ,
〈{y | (x, y) ∈W} ∪ {y | (x, y) ∈ U}〉 = Fm2 .

(27)

Further, for any vector (a, b) ∈ Fn+m2 , we have (a(w), b(w)) ∈W and (a(u), b(u)) ∈ U such that
(a, b) = (a(w), b(w))⊕ (a(u), b(u)).

There are two cases to be considered:

a) For {x | (x, y) ∈W} = {0n}, from (27), we have {x | (x, y) ∈ U} = Fn2 and W ⊆ {0n}×
Fm2 . Further, we can select (0n, b

(w)) ∈ W, (a(u), b(u)) ∈ U such that Da(u)(f1 ⊕ f2) = 1
(since deg(f1 ⊕ f2) = 1) and

Db(w)Db(u)g1(y)⊕Db(w)(g1 ⊕ g2)(y ⊕ b(u)) 6= constant, (28)

since g1 ⊕ g2 is a bent function (that is, Dβ(1)(g1 ⊕ g2)(y) ⊕ Dβ(2)(g1 ⊕ g2)(y) =

Dβ(1)⊕β(2)(g1 ⊕ g2)(y ⊕ β(1)) 6= constant if β(1) 6= β(2)) and {x | (x, y) ∈ U} = Fn2 .
From (26), we have

D(a(w),b(w))D(a(u),b(u))h(x, y)

= Db(w)Db(u)g1(y)⊕ (f1 ⊕ f2)(x)Db(w)Db(u)(g1 ⊕ g2)(y)

⊕Db(w)(g1 ⊕ g2)(y ⊕ b(u)) 6= 0.

(29)
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b) For {x | (x, y) ∈ U} = {0n}, from (27), we have {x | (x, y) ∈ W} = Fn2 and U ⊆
{0n} × Fm2 . Similarly to a), we deduce D(a(w),b(w))D(a(u),b(u))h(x, y) 6= 0.

c) When both {x|(x, y) ∈ W} 6= {0n} and {x | (x, y) ∈ U} 6= {0n}, from Lemma 4.2,
there exist two vectors a(w) ∈ {x | (x, y) ∈ W} and a(u) ∈ {x | (x, y) ∈ U} such that
Da(w)Da(u)f1 6= 0. Then, there must exist (a(w), b(w)) ∈ W and (a(u), b(u)) ∈ U such
that b(w) = b(u), since (a(w) ⊕ a(u), 0m) ∈ Fn+m2 . From (26), we have

D(a(w),b(w))D(a(u),b(w))h(x, y)

= Da(w)Da(u)f1(x)⊕Db(w)Db(w)g1(y)⊕ (f1 ⊕ f2)(x)Db(w)Db(w)(g1 ⊕ g2)(y)
⊕Da(w)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y)⊕Da(u)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y)
⊕Da(w)⊕a(u)(f1 ⊕ f2)(x)Db(w)⊕b(w)(g1 ⊕ g2)(y)

= Da(w)Da(u)f1(x)⊕Da(w)⊕a(u)(f1 ⊕ f2)(x)Db(w)(g1 ⊕ g2)(y).

(30)

There are two cases to be considered:

i) IfDa(w)⊕a(u)(f1⊕f2) = 0, thenD(a(w),b(w))D(a(u),b(w))h(x, y) = Da(w)Da(u)f1(x) 6= 0.

ii) If Da(w)⊕a(u)(f1 ⊕ f2) = 1, then D(a(w),b(w))D(a(u),b(w))h(x, y) = Da(w)Da(u)f1(x) ⊕
Db(w)(g1 ⊕ g2)(y) 6= 0 since g1 ⊕ g2 is a bent function.

Open Problem 4. [19, Open Problem 5.1] Construct homogeneous cubic bent functions
without affine derivatives outside the class MM# without the use of the direct sum.

Apparently, if h is obtained by using the direct sum of two functions, then h is decompos-
able. Thus, if h is non-decomposable, then h is a bent function which cannot be represented
as a direct sum of two functions on disjoint variable spaces (under an invertible linear trans-
form). The functions constructed by Theorem 4.5 are homogeneous cubic bent functions
without affine derivatives outside the class MM# and does not fall into the framework of
the direct sum. Hence, we answer positively the open problem above.

4.3 Another method of specifying (non-decomposable) cubic bent func-
tions

We now utilize a method of specifying cubic bent functions without affine derivatives specified
in [3], suitable to be used in the indirect sum. Before we proceed, recall that the absolute

trace function from F2k to F2 is defined as Trk1(x) = x+ x2
1

+ · · ·+ x2
k−1

.

Lemma 4.3. [3] Let m = 2t be an even integer m ≥ 6,m 6= 8, and let j be an integer
such that 1 ≤ j < t and gcd(2j + 1, 2t − 1) = 1. The cubic bent function g on Fm2 defined by

g(z, w) = Trt1(zw
2j+1) has no affine derivatives.

This approach can be embedded in the indirect sum method so that the resulting bent
functions are without affine derivatives and additionally do not belong to MM#.
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Theorem 4.6. Let n,m = 2t be two even integers n ≥ 10,m ≥ 6 and m 6= 8 (due to Lemma
4.3). Let 1 ≤ j < t such that gcd(2j + 1, 2t − 1) = 1. Let f be a cubic function on Fn2
without affine derivatives such that r-ind(f) < n/2. Define a cubic function g on Fm2 as

g(z, w) = Trt1(zw
2j+1) and let the function h on Fn+m2 be given as

h(x, z, w) = f(x) + g(z, w) + Trn1 (ax)
(
Trt1(zw

2j+1) + Trt1((z + c)w2j+1)
)
,

where x ∈ F2n , z, w ∈ F2t and c ∈ F2t \ {0}. Then, h is a cubic bent function without affine
derivatives outside MM#.

Proof. From Lemma 4.3, we know that g is a bent function in m variables. Set f ′(x) =
f(x) + Trn1 (ax) and g′(z, w) = g(z, w) + (g(z, w) + g(z + c, w)) = g(z + c, w). Then, f ′ and
g′ are bent. Corollary 2 implies that h is a cubic bent function.

By Lemma 4.3, g has no affine derivatives. Similarly to the proof of Theorem 4.1, one
can show that h has no affine derivatives.

Furthermore, r-ind(f) < n/2 and deg(f + f ′) = 1. By Theorem 4.1, using the fact that
r-ind(f) < n/2, h is outside MM#.

Remark 4.3. Theorem 4.6 provides a generic construction of cubic bent functions on Fk2
(with k = n+m) without affine derivatives and outside MM#, for even k ≥ 16 with k 6= 18.
However, these bent functions are not necessarily homogeneous. A similar approach, based
on Lemma 4.3 above, was considered by Mandal et al. in [13] but without the condition that
resulting bent functions are outside MM#.

Nevertheless, referring to the above remark, by selecting f = h104 the function h in Theo-
rem 4.6 is a non-decomposable cubic bent function without affine derivatives outsideMM#,
see also Section 4.2.

In [19], the series of existence results about cubic bent functions with nice cryptographic
properties were presented.

Theorem 4.7. [19, Theorem 4.9] On Fn2 there exist:

1. Cubic bent functions outside MM# for all n ≥ 10.

2. Cubic bent functions without affine derivatives outside MM# for all n ≥ 26.

3. Homogeneous cubic bent functions outside MM# for all n ≥ 26.

4. Homogeneous cubic bent functions without affine derivatives outside MM# for all n ≥
50.

According to Corollary 3 and Theorem 4.6, we substantially improve the above results in
terms of decreased variable spaces by provide new instances of (homogenous) cubic bent func-
tions having additional properties (not having affine derivatives and being outside MM#).

Theorem 4.8. On Fn2 there exist:
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1. Cubic bent functions outside MM# for all n ≥ 10.

2. (Non-decomposable) cubic bent functions without affine derivatives outside MM# for
all n ≥ 20.

3. Homogeneous non-decomposable cubic bent functions outside MM# for all n ≥ 20.

4. Homogeneous non-decomposable cubic bent functions without affine derivatives outside
MM# for all n ≥ 20.

Proof. We know that h104 is a homogeneous cubic bent function without affine derivatives
outside MM#. From Theorem 3.2, we know cubic bent functions outside MM# in n
variables can be obtained for n ≥ 10, thus Case 1 holds. Theorems 4.5 and 4.6 support Case
2., whereas Theorem 4.5 implies that Cases 3 and 4 hold.

Let “(H)CBF” denote “(homogeneous) cubic bent functions”’ and “wAD” denote “with-
out affine derivatives”. To give a better overview and comparison of the results in this paper
with those in [19], we present the following table:

Function [19] n ≥ Missing n n ≥ Missing n

CBF outside MM# 10 - 10 -

CBFwAD outside MM# 26 14, 18∗ , 24 20 14, 18

HCBF outside MM# 26 12, 14, 18, 24 20 12, 14, 18

HCBFwAD outside MM# 50 12, 14, 16, 18, 24, 26, 28, 38, 48 20 12, 14, 18

Table 1: Comparison of bounds for the dimension n obtained in [19] and this article. The
entry denoted 18∗ is the correct value instead of 16 stated in [19].

5 Vectorial bent functions strongly outside MM#

Constructing vectorial bent functions whose all nonzero component functions are outside
MM#, named strongly outside MM# in [18], is considered to be a difficult problem.

Below we use the indirect sum in connection to Theorem 3.4 to show the existence of
these objects for relatively large output dimensions.

Theorem 5.1. Let F : F2n
2 → Fn2 and G : F2m

2 → Fm2 be two vectorial bent functions, with n <
m, whose coordinate representations are F = (f0, . . . , fn−1) and G = (g0, . . . , gn, . . . , gm−1),
respectively. We set

hi(x, y) = fi(x)⊕ gi(y)⊕ (fi ⊕ f(i+1) mod n)(x)gn(y), (31)

where i = 0, 1, . . . , n − 1. Then, H = (h0, h1, . . . , hn−1) is a bent (2(n + m), n)-function,

i.e. H : F2(n+m)
2 → Fn2 is vectorial bent. Furthermore, the (2(n + m), n − 1)-function H ′ =

(h0, h1, . . . , hn−2) is strongly outside MM#.
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Proof. We first prove any hi is a bent function in n + m variables. We know that
fi, f(i+1) mod n are bent. From Corollary 2, hi is bent if gi and gi ⊕ gn are bent. Note, that
gn = gi ⊕ (gi ⊕ gn). Since G is vectorial bent, it follows that hi is bent.

Let 0 6= c ∈ Fn+m2 be arbitrary and let us consider the bentness of the component c ·H.
We have:

c ·H = c · (h0, h1, . . . , hn−1)(x, y)
= (c0h0 ⊕ c1h1 ⊕ · · · ⊕ cn−1hn−1)(x, y)
= (c0f0 ⊕ c1f1 ⊕ · · · ⊕ cn−1fn−1)(x)⊕ (c0g0 ⊕ c1g1 ⊕ · · · ⊕ cn−1gn−1)(y)
⊕(c0(f0 ⊕ f1)⊕ c1(f1 ⊕ f2)⊕ · · · ⊕ cn−1(fn−1 ⊕ f0))(x)gn(y)

= (c · F )(x)⊕ (c ·G′)(y)⊕ (c · F ⊕ c · F ′)(x)gn(y)
= (c · F )(x)⊕ (c ·G′)(y)⊕ (c · F ⊕ c · F ′)(x)(c ·G′ ⊕ (c ·G′ ⊕ gn))(y),

(32)

where G′ = (g0, . . . , gn−1) and F ′ = (f1, . . . , fn−1, f0). We know that c · F , c · F ′, c · G′
and c · G′ ⊕ gn are bent, as F and G are vectorial bent. Thus, from Corollary 2, it follows
that c·H ′ is also bent, for all 0 6= c ∈ Fn+m2 . In other words, H is a bent (2(n+m), n)-function.

If c /∈ {0n, 1n}, then the function c · F ⊕ c · F ′ is bent. We also know that gn is
bent. Hence, from Theorem 3.4, the function c · (h0, h1, . . . , hn−1) is outside MM# for
c ∈ Fn2\{0n, 1n} and consequently, H ′ = (h0, h1, . . . , hn−2) is a bent (2(n+m), n−1)-function
strongly outside MM#.

Remark 5.1. Since G is vectorial bent, the function gn in (31) can be replaced by d ·
(gn, gn+1, . . . , gm−1), where d ∈ Fm−n2 \{0m−n}.

For n = m, from Theorem 5.1, we have the following corollary.

Corollary 4. Let F,G : F2n
2 → Fn2 be two vectorial bent functions, whose coordinate repre-

sentations are F = (f0, . . . , fn−1) and G = (g0, . . . , gn−1), respectively. We set

hi(x, y) = fi(x)⊕ gi(y)⊕ (fi ⊕ fi+1)(x)gn−1(y), x, y ∈ F2n
2 , (33)

where i = 0, 1, . . . , n − 2. Then, H ′ = (h0, h1, . . . , hn−2) is a vectorial bent function, where
H ′ : F4n

2 → Fn−12 , and it is strongly outside MM#.

Example 5.1. Let us consider the functions F (x, y) = xy and G(x, y) = xy5, where x, y ∈
F23. From Corollary 4, the function H = (h0, h1), where hi is defined with (33), is a bent
(12, 2)-function strongly outsideMM#.The base64 representations of h0 and h1 are (35) and
(36), which can be found in the appendix. Additionally, the bentness of H and its exclusion
from MM# have been confirmed using Sage.

5.1 A generic construction using companion matrices

We now employ the indirect sum and primitive polynomials in the design of vectorial bent
functions strongly outsideMM#. It is well-known that if p(z) = zm+am−1z

m−1+. . .+a1z+
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1, ai ∈ F2 is a primitive polynomial over the field F2 (which implies that wt((a1, . . . , am−1))
is odd), then its order is equal to 2m − 1. The companion matrix A of p(z) is

A =


0 0 . . . 0 1
1 0 . . . 0 a1
...

...
. . .

...
...

0 0 . . . 1 am−1

 .
Thus, we have Ai 6= Aj for 0 ≤ i < j ≤ 2m − 2. Theorem 5.1 then induces the following
generic construction of vectorial bent functions that are strongly outside MM#.

Theorem 5.2. Let n,m be two positive integers such that n < m. Let π and φ be two
arbitrary permutations in n and m variables, respectively. Let

fi(x
(1), x(2)) = Aiπ(x(2))·x(1), gj(y

(1), y(2)) = Bjφ(y(2))·y(1), x(1), x(2) ∈ Fn2 , y(1), y(2) ∈ Fm2 ,
(34)

where i = 0, 1, . . . , n − 1, j = 0, 1, . . .m − 1, and A,B be companion matrices of the corre-
sponding primitive polynomials over F2 of degree n and m, respectively. Let F : F2n

2 → Fn2
and G : F2m

2 → Fm2 be two vectorial bent functions, whose coordinate representations are
F = (f0, . . . , fn−1) and G = (g0, . . . , gn, . . . , gm−1), respectively. Let hi be defined by (31).
Then, H = (h0, h1, . . . , hn−1) is a bent (2(n+m), n)-function. Further, the (2(n+m), n−1)-
function H ′ = (h0, h1, . . . , hn−2) is strongly outside MM#.

Proof. Since A,B are companion matrices of the corresponding primitive polynomials over F2

of degree n and m, respectively, we conclude that
⊕n−1

i=0 λiA
iπ(x(2)) and

⊕m−1
j=0 λjB

jφ(y(2))
are also permutations in n and m variables, respectively. Hence, F and G are two vectorial
bent functions. From Theorem 5.1, H is a bent (2(n+m), n)-function and the (2(n+m), n−1)-
function H ′ = (h0, . . . , hn−2) is strongly outside MM#.

In difference to [18], where the output dimension of this class of vectorial bent functions
was only two, the value n − 1 is a significant improvement. It can be easily verified that
(2(n+m), n−1) functions provide a larger output dimension compared to (n, n/6) functions
(also strongly outside MM#) recently specified in [1]. Notice, however, that the maximal
output dimension of a vectorial bent function in 2(n + m) variables is n + m. Therefore,
our approach still does not provide vectorial bent functions strongly outside MM# with
maximal output dimension. The existence of these objects still remains unknown.

6 Conclusions

We have shown that the indirect sum method, under certain conditions on its initial bent
functions, can generate bent functions that are provably outside the completed Maiorana-
McFarland class. Most notably, this method also give rise to homogenous cubic bent functions
outside MM# which are characterized by some interesting cryptographic properties such
as the absence of affine derivatives and inseparability. Moreover, vectorial bent functions
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strongly outside MM# with the largest output space dimension currently known can be
designed using this technique. An interesting research problem is to further relax the sufficient
conditions on the initial bent functions for the purpose of enlarging the class of bent functions
lying outside MM#.
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Appendix

The base64 representations of h0 and h1 in Example 5.1:

AE0eU3Q5aicATR5TdDlqJwBNHlN0OWonAE0eU3Q5aicATR5TdDlqJwBNHlN0OWonAE0eU3Q5
aicATR5TdDlqJwBNHlN0OWon/6yVxtiLsuEAU2o5J3RNHv+y4ayLxpXYAE0eU3Q5aif/rJXG2Iuy
4QBTajkndE0e/7LhrIvGldgATR5TdDlqJwBTajkndE0eAE0eU3Q5aicAU2o5J3RNHv+y4ayLxpXY
/6yVxtiLsuH/suGsi8aV2P+slcbYi7LhAE0eU3Q5aif/suGsi8aV2ABTajkndE0e/6yVxtiLsuH/suGsi8a
V2ABNHlN0OWon/6yVxtiLsuEAU2o5J3RNHgBNHlN0OWonAE0eU3Q5aif/suGsi8aV2P+y4ayLxp
XYAFNqOSd0TR4AU2o5J3RNHv+slcbYi7Lh/6yVxtiLsuEATR5TdDlqJ/+slcbYi7Lh/6yVxtiLsuE
ATR5TdDlqJwBTajkndE0e/7LhrIvGldj/suGsi8aV2ABTajkndE0eAE0eU3Q5aicAU2o5J3RNHv+y4
ayLxpXY/6yVxtiLsuH/rJXG2Iuy4f+y4ayLxpXYAFNqOSd0TR4ATR5TdDlqJwBNHlN0OWon/7L
hrIvGldj/rJXG2Iuy4QBTajkndE0e/6yVxtiLsuEAU2o5J3RNHgBNHlN0OWon/7LhrIvGldg=

(35)

ACc5Hk1qdFMAJzkeTWp0UwAnOR5NanRTACc5Hk1qdFMAJzkeTWp0UwAnOR5NanRTACc5H
k1qdFMAJzkeTWp0UwAnOR5NanRTACc5Hk1qdFP/xrKL4dislf/Gsovh2KyVADlNdB4nU2oAOU
10HidTav/YxuGylYus/9jG4bKVi6wAJzkeTWp0U//Gsovh2KyVADlNdB4nU2r/2MbhspWLrP/Gso
vh2KyVACc5Hk1qdFP/2MbhspWLrAA5TXQeJ1NqACc5Hk1qdFP/xrKL4dislf/YxuGylYusADlNd
B4nU2r/2MbhspWLrAA5TXQeJ1NqACc5Hk1qdFP/xrKL4dislQAnOR5NanRTADlNdB4nU2r/xrK
L4dislf/YxuGylYus/9jG4bKVi6z/xrKL4dislQA5TXQeJ1NqACc5Hk1qdFMAJzkeTWp0UwA5TXQ
eJ1NqACc5Hk1qdFMAOU10HidTav/Gsovh2KyV/9jG4bKVi6z/xrKL4dislf/YxuGylYusACc5Hk1qd
FP/2MbhspWLrP/YxuGylYusACc5Hk1qdFMAOU10HidTav/Gsovh2KyV/8ayi+HYrJUAOU10Hid
TagAnOR5NanRT/9jG4bKVi6wAOU10HidTav/Gsovh2KyVACc5Hk1qdFP/2MbhspWLrAA5TXQ
eJ1Nq/8ayi+HYrJU=

(36)

Proof. (of Theorem 3.6) Let a(1), a(2) ∈ Fn2 and b(1), b(2) ∈ Fm2 . We prove that r-ind(h) < (n+m)/2,
by using Definitions 3.1 and 3.2. We need to show that there does not exist an (n+m2 )-dimensional

subspace V of Fn+m2 such that

D(a(1),b(1))D(a(2),b(2))h = constant,

for any (a(1), b(1)), (a(2), b(2)) ∈ V . There are three cases to be considered.

(i) For dim ({x|(x, y) ∈ V }) > n/2, the proof is same with the proof of Theorem 3.5.

(ii) If dim({x|(x, y) ∈ V }) = n/2, then there are three cases to be considered.
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(a) For dim({y|(x, y) ∈ V }) = m/2, the proof is same with the proof of Theorem 3.5.

(b) For m/2 < dim({y|(x, y) ∈ V }) < (n+m)/2, the proof is same with the proof of Theorem
3.5.

(c) For dim({y|(x, y) ∈ V }) = (n+m)/2, we have {y|(a1, y) ∈ V } ∩ {y|(a2, y) ∈ V } = ∅
for arbitrary a1, a2 ∈ {x|(x, y) ∈ V }, a1 6= a2 and dim({y|(0n, y) ∈ V }) = m/2. Since
dim({α|Dα(f1 ⊕ f2) = 0}) = n − 1 and dim({x|(x, y) ∈ V }) = n/2, we can select one
nonzero vector a ∈ {x|(x, y) ∈ V } such that Da(f1 ⊕ f2) = 0. Further,

dim({(0n, y)|(0n, y) ∈ V } ∪ {(a, y)|(a, y) ∈ V }) = m/2 + 1.

Thus, from r-ind(g1) < m/2 + 1, we can select two vectors (a(1), b(1)), (a(2), b(2)) ∈
{(0n, y)|(0n, y) ∈ V } ∪ {(a, y)|(a, y) ∈ V } such that

Db(1)Db(2)g1(y) 6= constant.

From (14), we have

D(a(1),b(1))D(a(2),b(2))h(x, y)
= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) 6= constant.

(37)

(iii) If dim({x|(x, y) ∈ V }) < n/2, then we have dim({y|(x, y) ∈ V }) ≥ m/2 + 1. Further, we have
dim({y|(0, y) ∈ V }) ≥ m/2 + 1 since dim(V ) = (n + m)/2. Hence, from r-ind(g1) < m/2 + 1,
we can select two vectors (0n, b

(1)), (0n, b
(2)) ∈ V such that

Db(1)Db(2)g1(y) 6= constant.

From (14), we have

D(0n,b(1))D(0n,b(2))h(x, y)
= Db(1)Db(2)g1(y)⊕ (f1 ⊕ f2)(x)Db(1)Db(2)(g1 ⊕ g2)(y) 6= constant.

(38)
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