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1 Introduction

Zero-knowledge proofs [GMR89] allow a prover to convince a verifier about the truth of a statement without
revealing more information than its validity. They are a core tool in complexity theory, cryptography, and
security. Over the past decades, remarkable progress has been made to make zero-knowledge proof schemes
practical but unfortunately no zero-zero-knowledge proof system is fit for all uses, and different schemes rely
on different algebraic structures with different security guarantees. The problem of bridging proof systems
is well-known in the literature, and often boils down to proving equality of two committed values across the
same or different groups.

Our contribution. We provide a simple protocol to prove that two secrets, committed across different
groups, are equal. We will use Gp and Gq to denote groups of prime order p and q, with generators (Gp, Hp)
and (Gq, Hq) and constant bx > 0 such that bx < ⌈log2(min(p, q))⌉ − 2. We prove the following theorem.

Theorem 1 (informal). If discrete logarithm is hard in Gp and Gq, and 0 ≤ x < 2bx , then Πdleq of Figure 1
is a Σ-protocol for relation

Rdleq := {((x, rp, rq), Xp, Xq) : Xp = xGp + rpHq ∧ Xq = xGq + rqHq} .

The protocol itself is parametrized by two constants bf > 0 (determining the prover’s runtime) and
bc > 0 (determining the so-called knowledge error) such that bx+bc+bf < ⌈log2(min(p, q))⌉. The restriction
x < 2bx can be overcome with a small extension (cf. Section 5) and the restriction on the knowledge error
can be reduced via generic amplification techniques (repeating the proof τ times). We illustrate some valid
choices for the above parameters in Table 2.

Intuitively, we require that x is bounded to simplify the reasoning about the relation above, and work
with x over Z. We formalize this precondition by requiring a zero-knowledge proof be provided as input to
the protocol. This can be guaranteed via an explicit range proof either in Gp or Gq, or one of the input
commitments may already be known to satisfy the length constraint (e.g., because of an earlier range proof,
or because the commitments are authenticated and their opening was previously validated). We list some
range proofs in Section 5, but consider the problem of building an efficient range proof outside the scope of
this paper.

Our protocol adopts the Fiat-Shamir with abort paradigm of Lyubashevsky [Lyu08, Lyu09]. We also
investigated a version without aborts, however we found that the constraints on parameters were limiting and
the resulting scheme was less efficient (see the discussion of Girault’s scheme in [Lyu09, §1.3] for intuition).

Applications. While the above relation can always be proven with zero-knowledge proofs for arbitrary
NP statements, generic approaches must embed foreign group arithmetic in the proof statement and fail to
deliver efficient protocols, whereas proofs with our protocol Πdleq require on average 3–6 scalar multiplications
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in each of Gp and Gq (more details in Table 2) and as little as 118 bytes. We believe this protocol to be
suitable for the following applications:

• Credential Linking. Our main application is to show that two credentials from different cryptographic
groups, are linked. By credential, we refer to anonymous credentials defined in groups of prime order
such as bilinear CL [CL04], BBS+ [LKWL22, BBS04, ASM06], U-Prove [PZ13] and Brands [Bra94],
PS signatures [PS16], Coconut [SAB+19] and keyed-verification credentials such as those used in the
Signal private groups system [CMZ14, BBDT16, CDDH19, CPZ20]. For instance, if the first credential
contains a user’s account ID, e-mail address, phone number, and social security number – the second
credential can be linked to the first by including the user ID attribute in both credentials. This is
possible both for credentials to be provided by the same issuer, as well as across multiple issuers.

Linking credentials allows to essentially join authorization attributes via a unique linking attribute,
and giving the relying party assurance that both credentials were issued to the same user. In the case
of sharing credentials across issuers, the issuers must rely on each other’s credential security for the
attributes being issued. The second issuer may use a blind issuance protocol to use a unique attribute
from the first credential, as a linking attribute in the second credential. Since the cryptographic groups
defining the credential systems may be different, the issuers do not need to coordinate.

• Extending SNARKs. Expressing arithmetic circuits as Plonk relations [GWC19] or rank-1 constraint
systems [BCG+13] is non-trivial. Failure in properly engineering a zero-knowledge circuit might result
in either efficiency losses, or void the security guarantees of the proof system itself. As a result, it
is difficult to update and maintain the statements being proven, or change the underlying algebraic
constructions. By using our protocol to efficiently export data from its home group to the native group
of a proof system, proofs become much simpler, and more efficient.

Linking secrets across groups generically provides not only more flexibility, but also better security: we
can decouple the security level of the of the proof system from the security level of the larger protocol.
For instance, a larger protocol could work on a large security parameter, say ≈ 500 bit group order,
while some predicate proofs could be run with a smaller security parameter, perhaps even using a
160-bit curve elliptic curve group for performance.

• Proofs for assets. It is challenging to prove in zero-knowledge complex statements about data on-chain,
like to prove that a payment happened or that some assets are held by a public key. On the one hand
we have that most cryptocurrencies work over a group without a pairing, and on the other that many
efficient proof systems require a pairing. The problem is even harder when attempting to bridge assets
across shielded currencies, where values being transmitted are committed across different groups and
not publicly available.

For instance, signatures in Ethereum [But14] or Bitcoin [Nak08] are done over non-pairing-friendly
curves, which excludes a large class of efficient proof systems that could be used for proving in zero-
knowledge that a payment happened. The protocol Πdleq works on Pedersen commitments which are
used (across different elliptic-curve groups) in confidential transactions for Bitcoin [Max15], Monero,
and Mimblewimble [FOS19]. Previous attempts at linking assets in these currencies [SSS+22] had to
resort to full-fledged proof systems for NP, which entail a larger set of assumptions, a larger engineering
burden and higher cost.

Related work. The (simpler) case where p = q has been studied by Chaum and Pedersen [CP93]. The
problem of efficiently proving discrete logarithm equality across different groups can be found in Camenisch
and Lysyanskaya [CL02], who describe describe an efficient zero-knowledge proof of knowledge that a com-
mitted value is in an accumulator. Values are committed in a group where the discrete logarithm (DL) is
hard, while the accumulator is constructed in an RSA group. The problem considered in this work is slightly
different, because we consider two groups where DL is hard. The problem of proving discrete logarithm
equality across two generic DL groups was not addressed until Agrawal, Ganesh, and Mohassel [AGM18],
who also underline the applications for extending SNARKs. A protocol directly comparable to ours is given
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Table 1: Summary of notation and variables names used throughout this work.

p, q Order of the groups Gp and Gq

Gp, Gq Generators of Gp and Gq

Hp, Hq Additional generators of Gp and Gq, independent of Gp, Gq

x, xp, xq The witness as an integer x, or a value mod p or q
bg bitlength of the smaller group, i.e., bg = ⌈log2(min(p, q))⌉
bc bitlength of the challenge c
bx bitlength of the witness x
bf Parameter controlling the probability of aborts

in [AGM18], however the protocol is more involved than ours (e.g., it requires commitments to the bits of x
in both Gp and Gq) and thus considerably more expensive.

In the cryptocurrency area, the problem was already highlighted in Zerocoin [MGGR13], where they
use the same techniques of Camenisch and Lysyanskaya [CL02] to provide an anonymous cryptocurrency.
Dagher et al. [DBB+15] provide proofs of assets, solvency and non-collusion for Bitcoin, evoking the need of
zkSNARKs for efficiency but the associated cost in expressing a large circuit. Sun et al. [SSS+22] formulate
the problem of proving discrete logarithm equality across pairing-friendly and non-pairing-friendly groups.

The aborting technique we use to avoid leaking information about the secret when the prover sends a
response computed over the integers originates in [Lyu08, Lyu09], where it was used in the context of lattice-
based signatures. It then was adapted to signatures based on the short discrete log problem in Abdalla et
al. [AFLT12]. The setting of this latter work is closer to ours and we use the main lemma in our analysis.

2 Preliminaries

We denote by (Gp, p,Gp, Hp) the description of a group Gp of prime order p, with with two “nothing-up-
my-sleeve”generators Gp, Hp (that is, two generators in Gp such that the discrete logarithm of Hp to the
base Gp is not known to anyone). We denote group operations additively, and given a scalar x ∈ Zp we
denote with xGp scalar multiplication. Since we will have two groups in our protocol, we use the subscripts
p and q to indicate that an element or scalar belongs to Gp or Gq. We will often lift scalars from Zp to Z
in the canonical way, and when we say that values xp ∈ Zp and xq ∈ Zq are equal we mean they are the
same as integers. In Table 1 we summarize the variable names and and notation used in this work. We
denote probabilistic algorithms in sans-serif, and by writing y ← M(x) we denote the act of sampling the
value y from the probabilistic algorithm M on input x. We assume that probabilistic algorithms run in time
polynomial in the security parameter λ (abbrev p.p.t.) and have the security parameter implicitly as input.

DL assumption. The discrete logarithm problem asks, given a group description (Gp, p,Gp, Hp) and an
element X ←$ Gp, to find x ∈ Zp such that X = xGp. The discrete logarithm (DL) is hard in Gp if no p.p.t.
algorithm solves the discrete logarithm problem with more than negligible advantage ϵDLp

.

Pedersen commitments. Pedersen’s commitment scheme [Ped92] lets us commit to a value x ∈ Zp. To
do so, sample r ←$ Zp and set

Cp := xGp + rHp .

We say that Cp is a Pedersen commitment. A pair (x, r) ∈ Z2
p is a valid opening if Cp = xGp+rHp. Pedersen

commitments are perfectly hiding and computationally binding under the discrete logarithm assumption.
Informally, perfectly hiding means that no information about the pair (x, r) is revealed by Cp. Com-

putationally binding means that no efficient adversary can produce two different valid openings (x, r) and
(x′, r′) for a commitment Cp. Any adversary that given as input a group description is able to output a
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commitment Cp along with two distinct valid openings immediately gives a solution to an instance of DL.
In fact, if (x, r) and (x′, r′) are a pair of valid openings, then logGp

Hp = (r − r′)−1(x− x′).
In Section 5 we will use the well-known fact that Pedersen commitments are additively homomorphic:

given commitments Cp, C
′
p, the sum of the openings (xp+x′

p, rp+r′p) is valid for the sum of the commitments
Cp + C ′

p.

Σ-protocols. We briefly recap Σ-protocols. Our definition is a slight variation of the standard Σ-protocol
definition from Cramer [Cra97] (as described in Boneh–Shoup [BS20, §19.4]), except we make a few minor
changes to model the prover’s ability to abort the protocol. Let R be a binary relation between statements
denoted by ϕ and witnesses denotes by w. By R(ϕ) we denote the set of possible witnesses for the statement
ϕ in R. A Σ-protocol for relation R is a three-move protocol between a prover (with inputs ϕ and w) and a
verifier (with input ϕ) consisting of a triple of efficient algorithms (Com,Ch,Resp) run as follows:

• the prover executes (a, ρ)← Com(ϕ,w), sends a and internally stores the state ρ. Com is a randomized
algorithm and may have additional inputs such as the group description and security parameter

• the verifier sends c ← Ch() to the prover; c is distributed uniformly at random from a fixed set of
possible challenges

• the prover calls Resp(ϕ,w, ρ, c) which may return some value z or abort (in which case we consider
z = ⊥)

• finally, the verifier calls Verify(ϕ, (a, c, z)) which returns a bit b ∈ {0, 1}. If b = 1 the verifier accepts
the proof, otherwise rejects.

The tuple of exchanged messages (a, c, z) is called transcript ; a is called commitment, c is called challenge,
and z response. An accepting transcript (a, c, z) for ϕ is a transcript for which Verify(ϕ, (a, c, z)) = 1.
Σ-protocols must satisfy

• Completeness: A Σ-protocol is δ-complete if honestly-generated transcripts always verify, except
when the prover aborts (with probability δ). More formally, for all honestly generated transcripts
(a, c, z) and (ϕ,w) ∈ R we have that

Pr[Verify(ϕ, a, c, z) = 1 | z ̸= ⊥] = 1 , and Pr[z = ⊥] = δ

over the choice of prover randomness.

• Special soundness: A Σ-protocol is (computationally) special sound if there exists an efficient extrac-
tor Ext such that for any p.p.t. adversary outputting a statement ϕ and two (non-aborting) accepting
transcripts (a, c, z), (a, c′, z′) for ϕ such that c ̸= c′, Ext(ϕ, (a, c, z), (a, c′, z′)) returns a valid witness
w ∈ R(ϕ) except with probability ϵ. The probability ϵ is called the knowledge error of the protocol.

• Honest verifier zero-knowledge: A Σ-protocol is honest verifier zero-knowledge (HVZK) if there
exists an efficient simulator algorithm Sim such that for all (ϕ,w) ∈ R the distributions

{(a, z) | c← Ch(); (a, z)← Sim(ϕ, c)}, and

{(a, z) | c← Ch(); (a, ρ)← Com(ϕ,w); z ← Resp(ϕ,w, ρ, c)}

are identical. Our definition is sometimes referred to as perfect special HVZK: perfect since the simu-
lated distribution is identical to the real one, and special since the challenge is input to the simulator,
as opposed to being chosen by the simulator.

Two example Σ-protocols relevant to our protocol are Schnorr’s protocol [Sch91], which proves knowledge
of a discrete logarithm and Okamoto’s protocol [Oka93], which proves knowledge of the opening of a Pedersen
commitment. The protocols and their knowledge extractors are well-known in the literature, see for example
the description in the textbook of Boneh and Shoup [BS20, §19.1, 19.5.1].
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Non-interactive proofs. As is common in the the literature on Σ-protocols and identification schemes, we
present and analyze the interactive version of our protocol with the understanding that can be easily made
non-interactive using the Fiat-Shamir (FS) transform [FS87]. In the FS transform, the prover computes
(a, ρ) ← Com(ϕ,w) as usual, then computes the challenge as c ← H(ϕ∥a) where H is a cryptographic hash
function whose image is in the codomain of Ch. The response is computed as before, and the output is
(a, c, z), which can usually be compressed to (c, z) (as in our protocol). The resulting protocol is secure
in the random oracle model, via the forking lemma [PS00]. Again, since the FS transform and the related
analysis are well-known, we refer to Boneh and Shoup [BS20] for additional details.

Range proofs. In Figure 1 require an input πRP, a range proof (as discussed in Section 1). A range proof
is parametrized by the group description (Gp, p,Gp, Hp) and the bound bx. It proves the relation

Rrp :=
{
((x, r), Xp) : Xp = xGp + rHp ∧ 0 ≤ x < 2bx

}
.

We ask the range proof to satisfy honest verifier zero-knowledge and knowledge soundness. To simplify the
presentation, we assume the range proof is non-interactive and straight-line extractable (also named online
extractable in the literature), meaning that there exists an efficient algorithm that can extract the witness
from an accepting proof without interacting with the prover.

Since our protocol is using the range proof in a limited way, only on the input commitment, we see
no reason why more common notions would not be sufficient: in the interactive case, range proofs that
satisfy witness-extended emulation as defined by Lindell [Lin03, Def. 10], and computational knowledge
soundness [Gro16, p. 8] in the non-interactive case.

3 Candidate protocol

Our protocol is described in Figure 1, and is parametrized on values bx, bc, bf > 0 such that bx+ bc+ bf < bg
with bg := ⌈log2(min(p, q))⌉. It has a similar structure to Okamoto’s identification protocol [Oka93] and
Chaum–Pedersen’s representation proof [CP93]. The main differences are: we require a range proof to
ensure that the discrete log “fits” in both groups, and the response value is computed over the integers, so
that a single value is used in both groups during verification.

The verifier’s input to the protocol are two Pedersen commitments (Xp, Xq) ∈ Gp × Gq committing to
values (xp, xq) ∈ Zp × Zq. The verifier is also given a range proof πRP that the committed value xp is in{
0, . . . , 2bx − 1

}
. The relation being proven can be expressed as

Rdleq := {((Xp, Xq) , (x, rp, rq)) : Xp = xGp + rpHp ∧ Xq = xGq + rqHq} (1)

(where (x, rp, rq) is the witness) and holds under the precondition that πRP is valid. Our analysis will require
that the range proof be knowledge sound, since in our analysis we need to extract the opening of the Pedersen
commitment Xp from both πRP and from our new protocol, to ensure that both proofs are about the same
opening of Xp (which holds since Pedersen commitments are binding). In practice, πRP can be realized for
example with Bulletproofs [BBB+18] when Gp is a prime-order group (we discuss some options in Section 5).

We describe the protocol as an interactive Σ-protocol (with aborts) with the understanding that it can be
directly made non-interactive with the Fiat-Shamir transform [FS87] (with aborts [Lyu09]). Provers in this
class will abort the protocol with a bounded probability: intuitively, the prover will abort when providing
a response would leak information about the witness. When this occurs, the prover and verifier restart the
protocol from the beginning. In the non-interactive version, the prover repeats locally, and only outputs a
non-aborting transcript.

Parameter selection. In Table 2 we give some possible parameters when bg = min(253, 255) = 253,
where the bitlengths 253 and 255 correspond to the group orders of the Ristretto [HdVLA22] group and the
BLS12-381 group [BLS03, Bow17]. We must choose parameters so that bx+bc+bf < bg so that the response
is an integer and no modular reduction occurs in either group. We must also choose the number of parallel
repetitions τ so that τ · bc ≥ 128, for non-interactive security.
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Prover Verifier

Input: x, rp, rq Input: πRP, Xp, Xq

k ←$ {0, . . . , 2bx+bc+bf−1}
tp ←$ {0, . . . , p−1}
tq ←$ {0, . . . , q−1}
Kp := kGp + tpHp

Kq := kGq + tqHq Kp,Kq

c←$ {0, . . . , 2bc−1}c

check c ∈ {0, . . . , 2bc−1}
z := k + cx (in Z)
sp = tp + crp (mod p)

sq = tp + crq (mod q)

if z ̸∈ {2bx+bc , . . . , 2bx+bc+bf−1}
then abort z, sp, sq

check

(i) zGp + spHp = Kp + cXp

(ii) zGq + sqHq = Kq + cXq

(iii) z ∈ {2bx+bc , . . . , 2bx+bc+bf−1}

Figure 1: Protocol Πdleq, a Σ-protocol for equality of committed values across groups. The input commit-
ments are Xp = xGp + rpHp ∈ Gp and Xq = xGq + rqHq ∈ Gq for x ∈ {0, . . . , 2bx−1}, rp ∈ Zp and rq ∈ Zq.
The verifier’s input includes πRP, a range proof that x is in the specified range, which we assume the verifier
has checked is valid before the protocol begins.

Performance. For τ repetitions, the size of the proof after applying the Fiat-Shamir transform and com-
pressing the transcript into π = (c, z, sp, sq) is τ(bx + bc + bf + bc + ⌈log2 p⌉ + ⌈log2 q⌉) bits. The prover
and verifier computational costs are 2τ multi-scalar multiplications (τ in each of Gp and Gq, each with three
terms) when there is no abort (in general the expected cost depends on bf ). Some proof size estimates are
given in Table 2.

Table 2: Possible parameter choices for 128-bit security when Gp is Ristretto and Gq is BLS12-381. Column
τ is the number of parallel repetitions; |π| = τ(bc+bf+⌈log2 p⌉+⌈log2 q⌉) is the proof size in bits after applying
the Fiat-Shamir transform and excluding the size of the range proof (not required in all applications).

bc bx bf τ |π| Notes

192 52 8 1 951
128 112 12 1 887 Ideal for the credential linking application
64 128 60 2 1646 Increase bf since τ = 2 means we can reduce bc
64 180 8 2 1646
32 212 8 4 3164
16 228 8 8 6200

See alternative approach for large x in Section 5
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4 Analysis

In this section, we prove our main theorem (Theorem 1) by showing that Πdleq satisfies completeness, special
soundness, and honest-verifier zero-knowledge. We introduce a lemma, which is essentially the same as
[AFLT12, Lemma 1], propaedeutic for the proofs of completeness and zero-knowledge. The protocols are
different, but this lemma applies almost exactly because of the way the response is computed over Z and
the aborting condition.

Lemma 2 ([AFLT12]). In an honest execution of Πdleq the probability that the prover aborts is 1/2bf . If the
prover does not abort, the value z in the transcript is uniformly distributed in {2bx+bc , . . . , 2bx+bc+bf−1}.

Proof. In the response value z = k + cxp, since k and c are independent and k is distributed uniformly at
random, the value z is distributed uniformly at random in the set

Z0 = {cx, cx+ 1, . . . , cx+ 2bx+bc+bf−1} .

Let Z = {2bx+bc , . . . , 2bx+bc+bf −1} be the set of responses for which the prover does not abort, and note
that Z is properly contained in Z0. The probability that z ∈ Z is

|Z|/|Z0| =
2bx+bc+bf − 2bx+bc

2bx+bc+bf
= 1− 1/2bf

and hence the probability that the prover aborts is 1/2bf . Consider a fixed response z0 ∈ Z, we have

Pr[z = z0|z ∈ Z] =
Pr[z = z0]

Pr[z ∈ Z]
=

1/2bx+bc+bf

|Z|/2bx+bc+bf
=

1

|Z|

and so the response is uniformly distributed in the set of responses that do not cause the prover to abort.

Given the above lemma, completeness is straightforward.

Theorem 3. The protocol Πdleq for relation Rdleq is 2−bf -complete.

Proof. By Lemma 2, we have that the prover aborts with probability 2−bf . When the prover does not abort,
the verification equation is always satisfied, since 0 ≤ c < 2bc and

zGp + spHp = (k + cx)Gp + (tp + crp)Hp = (kGp + tpHp) + c (xGP + rpHp) = Kp + cXp .

Similarly, one proves that also (ii) is satisfied.

4.1 Soundness

Our soundness analysis reduces to the binding property of Pedersen commitments, and establishes the
constraints on the protocol parameters bx, bc, and bf .

Theorem 4. If bx+bc+bf < ⌈log2(min(p, q))⌉, the protocol Πdleq is computational special sound for relation
Rdleq with knowledge error ϵ = 2−bc+1+ ϵRP + ϵDL, where ϵRP is the knowledge error of πRP and ϵDL = ϵDLp

+ϵDLq

is the advantage in solving the discrete logarithm problem in Gp or Gq.

Proof. We describe an extractor algorithm Ext, that on input πRP, (Xp, Xq) ∈ Gp × Gq, and accepting
transcripts ((Kp,Kq), c, z, s) and ((Kp,Kq), c

′, z′, s′p, s
′
q) with must recover x, rp, rq, such that Xp = xGp +

rpHp and Xq = xGq + rqHq.
Since πRP is assumed to be valid, using the knowledge extractor for that proof we can extract (x∗

p, r
∗
p)

such that Xp = x∗
pGp + r∗pHp and x∗

p < 2bx . We denote by ϵRP the probability that the range proof extractor
fails in providing a valid witness (x∗

p, r
∗
p). From the parts of verification that are done mod p and mod q,

we have two pairs of accepting transcripts proving knowledge of the opening of a Pedersen commitment (or,
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transcript of Okamoto’s identification protocol [Oka93]) in Gp and Gq, namely ((Kp, c, z, sp), (Kp, c
′, z′, s′p))

and ((Kq, c, z, sq), (Kq, c
′, z′, s′q)). Ext internally runs the Okamoto extractor for both pairs of transcripts,

which succeeds with probability 2−bc (since c ̸= c′) in producing witnesses (xp, rp) and (xq, rq), such that
Xp = xpG+ rpHp and Xq = xqG+ rqHq.

Then, the extractor checks that all commitment openings are consistent between each other, and that the
adversary did not manage to change the committed values in the second transcript. The extractor aborts if
(xp, rp) ̸= (x∗

p, r
∗
p) or (z − cxp, sp − crp) ̸= (z′ − c′xp, s

′
p − c′rp). Then, it makes a similar check for Gq too:

if (z − cxq, sq − crq) ̸= (z′ − c′xq, s
′
q − c′rq), abort. This happens with negligible probability, by the binding

property of Pedersen commitments Xp, Kp and Kq (that is, hardness of DL in Gp and Gq).
Finally, the extractor returns (xp, rp, rq). We must now argue that xp = xq, when seen as integers. From

the verification checks (i) and (ii) we have that ∃ k, k′, a, a′, b, b′ ∈ Z such that

z = k + cxp + ap z = k′ + cxq + bq

z′ = k + c′xp + a′p z′ = k′ + c′xq + b′q

Note that k and k′ are well-defined, since the check above establishes a single commitment opening for Kp,
Kq in each pair of transcripts. The integers (a, a′, b, b′) are non-negative because verification checks that
2bx+bc ≤ z < 2bx+bc+bf and parameters are chosen such that bx+ bc+ bf < ⌈log2(min(p, q))⌉. By subtracting
the responses corresponding to the mod p and mod q equations, we have

(z − z′) = (c− c′)xp + (a− a′)p (z − z′) = (c− c′)xq + (b− b′)q,

Without loss of generality, assume that z − z′ is positive. Since πRP ensures that xp is “small” and |c− c′| is
also “small”, then (a− a′) = 0. More precisely, z− z′ has bitlength less than bg ≤ ⌈log2(p)⌉ by our choice of
parameters (namely the constraint bx + bc + bf < bg), and check (iii) during verification, which ensures that
z < 2bx+bc+bf .

Equating the two representations of z − z′, and noting that (a− a′) = 0 we have (still over Z):

(c− c′)xp = (c− c′)xq + (b− b′)q

(c− c′)(xp − xq) = (b− b′)q

Since q is prime, it must divide (c− c′) or (xp − xq). But since the bitlength of q is at least bg, and bg > bc,
then q is too large to divide |c− c′|. Therefore q | (xp − xq) which means that xp = xq (mod q). Since xp

and xq are equal mod q, and the bitlength of xp is strictly less than ⌈log2(q)⌉, it must be that xp = xq over
Z as well. To conclude, Ext extracts a valid witness with error ϵ = 2−bc+1 + ϵRP + ϵDLp

+ ϵDLq
.

Parallel repetitions. The knowledge error might not be negligible depending on the choice of bc. Gener-
ically, τ repetitions result in a knowledge knowledge error ϵτ , but in this case the extractor for the range
proofs needs to be run only once for all repetitions, and the reductions to commitment binding can be done
all at once. This means that τ repetitions of Πdleq lead to a knowledge error 2(−bc+1)τ + ϵRP + ϵDLp

+ ϵDLq
.

4.2 Zero-knowledge

Zero-knowledge with aborts. Identification schemes where the prover may abort [Lyu09, AFLT12] are
generally not honest-verifier zero-knowledge (HVZK). The challenge in proving HVZK is in simulating the
prover’s commitment message in aborting transcripts. However, it is often possible to prove the schemes satis-
fies a relaxed notion of HVZK, sometimes called no-abort honest-verifier zero-knowledge (naHVZK) [KLS18].
In naHVZK, the simulator either returns a valid transcript, or returns ⊥ and the verifier forgets about the
incomplete session made only of commitment and challenge. Since naHVZK is sufficient to simulate non-
interactive proofs (or signatures) when the Fiat-Shamir transform is applied, naHVZK is still a useful notion.
Our protocol in Figure 1 is not affected by this limitation: intuitively, the responses sp, sq, which are dis-
tributed uniformly at random in Zp, guarantee that the commitment message is always uniformly random,
both in aborting as well as succeeding transcripts. Thus, we prove standard honest-verifier zero-knowledge,
and our protocol may also be used interactively.
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Theorem 5. The protocol Πdleq for relation Rdleq is perfectly honest-verifier zero-knowledge.

Proof. On input c, the simulator samples z uniformly at random from {2bx+bc , . . . , 2bx+bc+bf −1} and sp
and sq uniformly from Zp and Zq. Then the simulator solves for Kp, as Kp := (zGp+spHp)− cXp (similarly
for Kq). With probability 1/2bf the simulator outputs (Kp,Kq, c,⊥) (the abort case) and otherwise outputs
(Kp,Kq, c, (z, sp, sq)).

We now argue that the real and simulated transcripts are identically distributed. For the prover’s first
message, since sp was chosen uniformly by the simulator, then Kp = kGp + tpHp = kGp + (sp − zc)Hp is
distributed uniformly at random in Gp, regardless of whether the response is ⊥ or (z, sp, sq). We note that
in the abort case k will be distributed differently in real and simulated transcripts, but because Kp and
Kq are perfectly hiding commitments they are identically distributed. In non-aborted transcripts, both real
and simulated transcripts have uniform z value (in the given range), by Lemma 2 and (sp, sq) are sampled
uniformly at random in both cases. The abort probability of the simulator is the same as the honest prover,
by Lemma 2 honest transcripts are aborted with probability 1/2bf exactly as in the simulated case.

5 Instantiation and Extensions

In this section we discuss some of the considerations for concretely realizing and implementing Πdleq.

Handling larger values. One limitation of the protocol presented above is that it requires that x be bx
bits or fewer, and bx cannot be as large as the group order (of the smaller group). Here we describe how
to address this, by breaking x into chunks and proving the relation on each chunk using Πdleq.Let Cp and
Cq be commitments to the same value x ∈ {0, . . . , min(p, q)−1}, and suppose bx has be chosen subject to
the constraints given above. Define ℓ := ⌈log2 x/bx⌉. Denote by (x(0), . . . , x(ℓ−1)) the representation of x in

base 2bx that is, x =
∑ℓ−1

i=0 2
i·bxx(i). Sample random r

(i)
p such that rp =

∑
i 2

i·bxr
(i)
p (mod p). Construct the

commitments C
(0)
p , . . . , C

(ℓ−1)
p as C(i) := x(i)Gp + r

(i)
p Hp. Proceed in the same way for Cq. They satisfy

Cp =

ℓ−1∑
i=0

2i·bxC(i)
p Cq =

ℓ−1∑
i=0

2i·bxC(i)
q (2)

The prover sends C
(0)
p , . . . C

(ℓ−1)
p and C

(0)
q , . . . , C

(ℓ−1)
q , along with ℓ range proofs1, to prove that each x(i) ∈

{0, . . . , 2bx−1}. Then the prover and verifier invoke the protocol in Figure 1 for each i ∈ {0, . . . , ℓ−1}
to prove that C

(i)
p and C

(i)
q commit to the same short value. The verifier additionally checks Equation (2)

holds.

Range proofs. Range proofs may not be necessary if the application provides assurance that x is in
the correct range. For example, in the credential linking application, we can trust that the issuer only
issues credentials with a valid x. In systems using keyed-verification anonymous credentials [CMZ14], this
is especially reasonable since the issuer and verifier are the same party. When the credential is presented in
order to produce Xp, our soundness analysis of Theorem 4 can be modified to extract x from the presentation
proof, rather than the range proof.

When a range proof is necessary, Bulletproofs [BCC+16, BBB+18] give a practical solution. For example,
creating range proofs for 64-bit values using the Rust crate bulletproofs from the Dalek project [dVYA],
the prover time is about 7.3 ms, the verifier time is 1 ms and the proof size is 672 bytes. See [dVYA] for
details of the benchmark platform, and benchmarks of other libraries offering range proofs. The library does
not support 128-bit ranges, but we expect prover and verifier times to roughly double, and the range proof

1It is not secure to send a single range proof for x instead of ℓ proofs for each x
(i)
p . Consider commitments Cp, Cq to different

values xp < p and xq < q, and πRP a range proof of Cp with witness xp. By the Chinese remainder theorem there exists a unique

integer x < pq such that xp = x (mod p) and xq = x (mod q). An attacker is able to freely choose ℓ values x
(0)
p , . . . x(ℓ−1)

larger than bx such that
∑

i 2
ibxxi = x, and commit to them both in Gp and Gq , passing the verification procedure.
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size to increase to 704 bytes. We also note that when using the strategy given above that breaks x into ℓ
pieces, range proofs for each of the pieces can be grouped together into a single proof, which will be shorter
than ℓ individual proofs, for example, a proof of four 64-bit ranges is only 800 bytes (but prover and verifier
times are only slightly better than four individual proofs).

When one of the groups is a pairing-based group, one could alternatively do πRP in that group using a
zkSNARK with constant size and concretely very short proofs, e.g., [Gro16]. Since our analysis requires a
range proof for x in either one of Gp or Gq, applications can choose to implement the range proof in the
group that offers better performance.

Constant-time implementation. Depending on the abort probability 1/2bf , implementations may leak
the number of times the protocol was aborted, since the prover’s time is directly proportional to the number
of aborts (in a direct implementation). If the number of aborts depends on the secret, this would be sensitive
information. However, from Lemma 2 we can see that the abort probability is the same for any secret, and
therefore independent of the secret. Therefore, it is not required that implementations attempt to hide the
number of aborts that occur when generating a proof.

A prominent example signature scheme that uses rejection sampling is Dilithium [LDK+22]. For for the
same reason, implementations of that scheme can safely reveal the number of aborts [LDK+22, §5.5] (which
is relatively high when compared to our protocol, it is expected to be between 3–6).

Parallel repetition. In Theorem 4 it is shown that Πdleq has knowledge error 2−bc and because of our
constraints on parameter selection, bc may not be as large as the security parameter λ, so the soundness error
may be non-negligible. In practice, assuming the hash function of the FS transform h sas output bit-length
bcτ , the challenges are obtained by considering each of the τ chunks of bc bits2. The well-known approach
to boost soundness of the protocol is to repeat it τ times in parallel, so that the soundness error is 2−bcτ

such that bcτ ≥ λ. Note that we exclude πRP from the parallel repetitions, since we consider it to be part
of the input statement and have negligible soundness error. We also require that none of the τ repetitions
abort, which increases the abort probability from 1/2bc to τ/2bc , so to hold the abort probability constant
bf should be increased by ⌈log2(τ)⌉. Since Πdleq is zero-knowledge, it is also witness hiding [FS90, Theorem
3] and therefore parallel composition is also witness hiding (at least witness hiding; we expect Theorem 5
can be generalized to handle parallel repetition).

Denote the challenge with parallel repetition as c = (c1, . . . , cτ ). Special soundness provides two tran-
scripts with c ̸= c′, and when both transcripts are different everywhere, that is ci ̸= c′i for i ∈ [τ ], we have τ
transcripts where Ext succeeds with probability 2−bc . Therefore soundness is boosted as expected to 2−τbc in
this case. More generally, when c is chosen at random (either by an honest verifier or a hash function) there
may be a small loss in concrete soundness, since some ci may be equal. While this loss is in our analysis, we
do not know of an attack matching it.

When there are multiple instances of the protocol, like in the variant described above where the protocol
is run ℓ times, the witnesses are independent and protocols may be run in parallel. As a minor optimization,
each of the ℓ instances may share the same random challenge from the verifier.

Ignoring aborts safely? For some secret lengths and group sizes, it is possible to choose parameters
such that the abort probability 2−bf is statistically negligible. In such cases an implementation that ignores
aborts will leak a small amount of information occasionally. For example, suppose we have bx = 128, bc = 64,
bg = 253 and bf = 60. Then we expect one in 260 proofs to output a “leaky” response; a response that would
have caused an abort, but that we output anyway. In the case of Schnorr and ECDSA signatures slight biases
in the nonce appear to be difficult to exploit, see e.g., [ANT+20]. However, since our setting is somewhat
different and we do not have a detailed analysis we do not recommend ignoring aborts, but encourage future
work on this question. Avoiding the abort path simplifies writing and testing of implementations.

2In particular, we ask not to use the same hash function for each each repetition to mitigate grinding attacks, also known
in the literature as precomputation attacks.
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5.1 Equality of simple discrete logarithms

Our protocol takes Pedersen commitments to (xp, xq) as input. A natural question is whether a variant of
this protocol also works when the inputs are simple discrete logarithm commitments, namely Xp = xpGp and
Xq = xqGq. We investigated this question and believe it has a positive answer, subject to some technicalities
and limitations. We did not formalize this section as our main motivation of linking credentials requires
Pedersen commitments, so that they can be re-randomized by the credential holder before each presentation
proof, in order to make repeated proofs with the same credentials unlinkable. We list some of the issues that
must be addressed.

Concrete DL hardness. Our protocol allows x to be short (e.g., 64 or 128 bits), but solving for x
given X = xG is easier when x is short. For generic groups, the best-known attack cost (Pollard’s lambda
algorithm [Pol78]) is 2(log2 x)/2. Therefore, x must be large enough so that the DL instance is hard, and
this restricts the choices available for parameter selection (cf. Table 2): in order to keep the response size
below the group order, we must use smaller challenges, and this increases the number of parallel repetitions
required, or the abort probability and consequently the proving time. With Pedersen commitments, instead,
x is unconditionally hidden.

Cross-group DL hardness. Again, when the commitments to x are simple discrete log instances, we have
to make a new hardness assumption. Namely, we must assume that given short DL instances Xp = xGp and
Xq = xGq with the same x, the advantage ϵDL of finding x is as hard as the short DL in either Gp or Gq.
That is, ϵDL ≤ max(ϵDLp

, ϵDLq
). This seems reasonable when x is large enough and the DL problem is hard in

both Gp and Gq, but is not a common cryptographic assumption as secrets are almost universally used only
in one primitive, and not across groups.

Simuation of aborting transcripts. Another issue is how to (perfectly) simulate the prover’s first mes-
sage in aborted transcripts. In Section 4 we discuss how our protocol avoids this challenge (in short, the first
message consists of Pedersen commitments, which are always uniformly random, independent of whether the
prover aborts). For a variant of our protocol that does not use Pedersen commitments, the weaker notion
of no-abort HVZK [KLS18] (discussed in Section 4.2) should be achievable, and while weaker, this notion is
still sufficient for non-interactive proofs, which are suitable for the applications we consider.
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