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ABSTRACT

We present a three-party sorting protocol secure against passive

and active adversaries in the honest majority setting. The protocol

can be easily combined with other secure protocols which work

on shared data, and thus enable different data analysis tasks, such

as private set intersection of shared data, deduplication, and the

identification of heavy hitters. The new protocol computes a stable

sort. It is based on radix sort and is asymptotically better than

previous secure sorting protocols. It improves on previous radix

sort protocols by not having to shuffle the entire length of the items

after each comparison step.

We implemented our sorting protocol with different optimiza-

tions and achieved concretely fast performance. For example, sort-

ing one million items with 32-bit keys and 32-bit values takes less

than 2 seconds with semi-honest security and about 3.5 seconds

with malicious security. Finding the heavy hitters among hundreds

of thousands of 256-bit values takes only a few seconds, compared

to close to an hour in previous work.

1 INTRODUCTION

Secure sorting allows two ormore participants to privately sort a list

ofm secret-shared valueswithout revealing the underlying values to

any of the participants. Secure sorting is an important building block

in much more complex secure multiparty computations, such as

private set intersection, join, graph analysis, private data analytics,

secure deduplication, and more.

A secure sort must have a control flow that is data-independent.

A common method is to apply any of the generic secure com-

putation protocols (such as GMW [19] or BGW [9]) on common

sorting networks, such as the AKS sorting network [2] or Bitonic

sort [7]. This approach also allows to compose the sort with some

pre-processing or post-processing, which is essential for the afore-

mentioned applications. Nevertheless, this approach is often ineffi-

cient. Specifically, basing the secure computation on some (oblivi-

ous) sorting in the RAM model is often more efficient than basing

the secure computation on sorting networks (circuits).

In this paper, we design a custom protocol for sortingm shared

items among three servers in the presence of one corruption. We

present both semi-honest andmalicious variants and show that both

outperform the state of the art. The run time of themalicious version

is roughly just twice the running time of our semi-honest version.

(This ratio depends on the security parameter that is used for the

malicious variant.) Our sorting protocol can be easily composed

with circuits or other protocols on shared data which can implement

arbitrary pre-sorting and post-sorting computations on the data.

Our sorting protocol has better asymptotic communication com-

plexity than that of previous protocols that compute the same task.

Those include a radix sort protocol suggested in the context of

the Sharemind system [11], oblivious quicksort [4, 23], and secure

sorting using a Batcher sorting network. (We compare only be-

tween protocols that are run between three parties which share

the data.) The asymptotic behavior of the different communication

complexities is described in Section 1.3.

We implement our protocol with security against one corrup-

tion, and demonstrate in Section 7.2 that the implementation is

concretely efficient. For example, sorting 1M, 5M and 10M records

of 20-bit keys and 32-bit values, with security against semi-honest

behavior, takes about 2.3 , 15 and 37 seconds, respectively. Obtain-

ing security against malicious behavior with cheating probability

2
−31

, increases the run time by a factor of less than 2.5.

1.1 Secure Sorting for Secure Data Analysis

Let us elaborate on a few examples of secure data analysis that can

be implemented using secure sorting, such as private set intersec-

tion (PSI) and its variants, and privacy-preserving telemetry

(computing heavy-hitters).

Private set intersection. Consider the private set intersection

problem (PSI), where multiple parties have private sets of items

and wish to learn the intersection of their sets (see, e.g. [10, 26, 29,

34] and references within). Most of the previous solutions were

of protocols specific to PSI. These protocols could not be easily

composed with other secure protocols for computing on the result
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of the intersection while keeping it private. For example, it is hard

to use these protocols to compute the maximum of the values that

appear in the intersection.

There are few protocols that compute PSI using a circuit (e.g. [24,

35]). Such circuit-based protocols can be composed with further pro-

cessing that computes a function of the intersection. Still, just like

in sorting, existing circuit-based protocols have a higher overhead

than protocols specifically designed to solve the PSI problem.

A sorting protocol enables to easily compute the intersection

of the input set of an arbitrary number of parties. This can be

achieved by sorting the union of n input sets and then looking

in the sorted union for n consecutive items which are equal to

each other (as suggested in [24] for the two-party case). A sorting

protocol on shared data seems ideal for computing the intersection

of data of many parties, and further computing additional analysis

on the intersection: Many parties (data owners) can share their

data between a few semi-trusted servers, which then compute the

sorting and the additional secure computation. This solution has a

communication patternwhich is very appealing for data owners

since they do not need to communicate with (or even be aware

of) other data owners. We describe here several examples of tasks

for which previous secure solutions were prohibitively expensive,

and which can efficiently and securely be computed using secure

sorting as a building block.

Threshold multi-party PSI. Assume that many parties have pri-

vate sets of data and wish to compute a modified version of the

intersection functionality, which identifies any item appearing in

at least 75% of the sets. This functionality is useful for identifying

popular items even if they do not appear in all sets.

Sorting enables an efficient solution for computing this function-

ality: Suppose there are n parties. Each party separately shares its

data between the servers. The servers first securely sort all inputs

and obtain shares of all sorted items. The servers then compute a

circuit that scans the list of sorted values looking for an item that

appears in at least 0.75n consecutive locations. This final scan is

done in linear time and can be implemented by a circuit of loga-

rithmic depth. (In a sense, our heavy-hitters protocol of Section 6

implements a variant of this functionality where each client has a

set of a single item.)

Data deduplication. In this task, the data owners submit data sets,

and the goal is to compute a set which contains a single copy of

each item regardless of the number of parties which submitted it.

This computation is useful for cleaning data from duplicates before

further analyzing it. It was also suggested in the iDash 2017 privacy

challenge, in a context where many hospitals have private lists of

patients, and need to identify patients who are registered in more

than one hospital.
1

Privacy-preserving telemetry and computing heavy hitters.

To improve their products, device and service manufacturers must

understand how products work in the field. For example, theywould

like to identify popular usage patterns, or conditions that cause

crashes for many clients. Client data, however, must be treated as

private and must not be revealed in this analysis.

1
Track 1: De-duplication for Global Alliance for Genomics and Health (GA4GH),

http://www.humangenomeprivacy.org/2017/competition-tasks.html

The Internet Security Research Group (ISRG) runs a system

called Divvi-Up
2
for “privacy-respecting aggregate statistics”, based

on the Prio system [15]. The service works with the clients that

divide their data into shares sent to non-colluding servers, which

can compute aggregate statistics such as sums and more complex

functions. The system ensures robustness by verifying that corrupt

clients cannot send syntactically incorrect data.

The recent Poplar system [12] extends this line of work to com-

pute heavy-hitters of client data, namely compute the most popular

items. That construction uses two non-colluding servers and is

based on incremental distributed point functions. There are several

areas in which Poplar can be improved: When finding heavy-hitters

among strings of length n, it requires as many as n communication

rounds with the clients. The construction also leaks some informa-

tion about the distribution of the strings held by the clients. The

runtime depends on the length of the strings, and is about an hour

for 400,000 clients with 256 bit strings (although this number can

be improved with stronger machines). The protocol can only be

used for computing the basic heavy hitters problem, rather than

securely computing additional analysis of this result.

Sorting can be used as a basic building block for computing

aggregate statistics. We highlight here two sample use cases.

Computing heavy-hitters. A solution based on secure sorting can

work in the following way: Each client shares its data between the

servers, and can also prove in that step that its data is syntactically

correct. The servers sort the elements they received, based on the

desired key. As a result, items with the same key that different

clients sent are moved to be adjacent to each other. The servers can

then run a circuit for computing the length of runs of identical items,

sort these values, and output the values appearing at least t times. In

this construction clients have a single communication round with

servers. Also, nothing else but the final output is released. Since

the final output is computed by a circuit, this construction enables

flexibility and control over the data that is released: the top values

can be released with or without their counts, or even with noisy

counts to support differential privacy. The output can include the

most popular values, or only values which appear more often than

some threshold. We describe a heavy-hitters protocol in Section 6,

based on our 3-server honest-majority sorting protocols. Sorting

takes seconds, and computing the circuits takes a similar amount

of time. On the downside, our protocol assumes a trusted majority

among three servers, whereas Poplar uses only two servers.

Computing percentiles. Assume that each client provides a value,

such as a salary, or even multiple values. The goal is outputting the

values at the 10%, 20%,. . .,90% percentiles of the union of all values

provided by the clients. Sorting enables to securely compute this

by sorting the set of contributed values, and outputting the values

at locations 0.1m, 0.2m, . . . (wherem is the total number of values).

1.2 Our Contributions

Our contribution is a new sorting protocol based on radix sort and

its optimized implementation. In order to describe and compare

the asymptotic communication complexity of secure sorting, let us

introduce the following notation. We considerm (shared) items of

2
https://divviup.org/
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the form (key,value), and let ℓk be the bit-length of the keys and

ℓp be the bit-length of the associated values (payload). Our protocol

and implementation have the following advantages compared to

previous works on the secure sorting of shared data.

• Improved communication complexity. We provide a semi-honest

sorting protocol where each server has to send or receive O(m ·
ℓk · logm +m · ℓp ) bits. This improves the communication of

all previous protocols (as described in Table 1.1). The hidden

constants of our construction are also relatively small.

• Security against malicious servers.We show how to extend the

protocol to provide security against malicious adversaries. The

overhead of achieving this level of security is roughly twice

compared to our semi-honest sort (for large enough fields). The

transformation from semi-honest to malicious is based on the

compiler of Chida et al. [13]. However, this compiler works on

arithmetic circuits and supports few operations (additions and

multiplications). We extend it to support also some additional

gadgets, such as resharing and revealing of secrets. This contri-

bution might be of independent interest.

• Concretely efficient implementation.We implemented our sorting

protocol with novel optimizations. The results are described in

Section 7 and are considerably faster than the state of the art.

• Applications: Our implementation enables a new set of applica-

tions on datasets whose sizes were previously beyond the reach

of secure sorting protocols. We demonstrate it to implement the

heavy hitters functionality.

Stable sort. Since our sorting protocol is based on radix sort, our

sorting protocol is also stable. This means that two items with the

same key are ordered according to their initial positions. Previ-

ous sorting protocols based on quicksort are unstable [23]. Stable

sorting is particularly useful if, say, one needs to sort the list once

according to a first key and a second key (say, a state and a city),
and afterwards using the first key and a third key (say, the state
and a name). With stable sort this can be done by sorting first using

the first key (state), and then sorting the result once using the

second key, and once using the third key. This minimizes the length

of the keys that are used by the sorting operations.

1.3 Related Work

Efficient sorting forMPC can be implemented based on sorting net-

works. Ajtai et al. [2] proposed an asymptotically optimal sorting

network known as the AKS sorting network, which has a complex-

ity of O(m logm) comparisons, where m is the number of input

items. However, this algorithm is not practical since its constant

factor is very large. By contrast, Batcher’s bitonic sort [7] has a

complexity of O(m log
2m) comparisons with a small constant, and

is more efficient for any reasonable input size.

An algorithm is data-oblivious if its control flow is independent

of the input. Data-oblivious sorting algorithms have been studied to

use in MPC schemes, or in the setting where a client outsources its

data to the cloud and it wishes to hide its access pattern. Goodrich

proposed a data-oblivious sort called randomized Shellsort [20].

While returning a wrong output with low probability, it exhibits a

complexity of O(m) rounds and O(m logm) comparisons. ZigZag

sort [21] is a deterministic algorithm with only O(km logm) gates
(for k-bit keys) but a large depth of O(m logm) [22]. Asharov et

al. [5] presented a simple data-oblivious protocol in the client-server

model that works in 6(ℓk +ℓp )m logmwork and has a negligible fail-

ure probability. Such algorithms are important for the client-server

model, and are designed to work in the case of a semi-honest server.

Faster, maliciously-secure protocols can be constructed when there

are three parties with an honest majority, such as in our settings.

Quicksort is very efficient in practice, but the control flow of

this algorithm is data dependent and therefore might leak infor-

mation about the inputs, even if the comparisons themselves are

implemented using a secure algorithm. Hamada et al. [23] describe

a secure sorting algorithm that first randomly shuffles the data,

and then applies quicksort to the shuffled data. Therefore, since

quicksort is applied to a random permutation of the data, the con-

trol flow of the algorithm is independent of the original order of

the inputs and is easily simulatable. A drawback of this protocol is

that the security proof is valid only if all keys are different. If this is

not guaranteed by the setting in which the protocol is used, then

this property can be ensured by concatenating a running index to

all keys, but this solution increases the overhead. Another disad-

vantage of quicksort is that it does not implement a stable-sort. A

quicksort protocol in the 3-party setting, secure against malicious

server, was recently presented and implemented in [4].

The sorting protocol that we present is most similar to the proto-

col of Bogdanov et al. that is based on radix sort [11]. The protocols

repeatedly sort items according to bits of the keys, starting from

the least significant bit. The advantage of our protocol is that while

the protocol of [11] computes a secure permutation of all items

after sorting by each bit, our protocol computes a composition

of these permutations, and only applies it to the items after pro-

cessing all bits of the keys. This means that for sorting m items

which have ℓk -bit keys and ℓp -bit values (payloads) associated with

the keys, the m payloads are permuted only once instead of ℓk
times. This significantly improves performance since the bulk of

the communication was previously used to permute the (ℓk +ℓp )-bit

items according to each bit. In addition, Bogdanov et al. [11] only

considered semi-honest security, while we also achieve malicious

security.

Comparison to other sorting protocols.We summarize the com-

plexities of previous protocols that work in the same setting in

Table 1.1. Our protocol is asymptotically better than the previous

works. The asymptotics of our malicious protocol is the same as

the semi-honest one (the overhead is roughly as little as 2).

Protocol Communication (bits)

Semi-honest

Sharemind system [11] O(ℓkm logm + ℓ2km + ℓk ℓpm)

Quicksort [4, 23] O((ℓk + logm)m logm + ℓpm)
Batcher sorting network [7] O(ℓkm log

2m + ℓpm log
2m)

Ours O(ℓkm logm + ℓpm)

Malicious

Quicksort [4] O((ℓk + logm)m logm + (ℓp + log
1

ϵ )m)

Ours O(ℓkm(log
m
ϵ ) + (ℓp + log

1

ϵ )m)

Table 1.1: Asymptotic Communication of secure sorting protocols,

wherem is the number of items, ℓk is the number of bits of each key,

ℓp is the number of bits of each associated payload, and ϵ is the failure

probability.
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Our sort achieves a substantial advantage when ℓk (the number

of bits of the key) is smaller than logm (number of bits required for

representing an index in the input array). In many scenarios, ℓk is

much smaller than logm. For example, when retrieving elements

that satisfy a one-bit predicate, the key is just one bit. This includes

examples such as retrieving all employees with a salary greater

than some threshold, all users that were exposed to a certain ad, or

all patients that have diabetes and are treated using some specific

medicine. For 1M records, ℓk is 1 whereas logm is 20, i.e., our

protocol is x20 faster than previous works.

2 PRELIMINARIES

We describe here the notation and definitions used in this paper,

and the basic protocols used in our protocol.

Let a := b denote that a is defined by b, a | |b denote the concate-

nation of a and b, and G, R, F, Z, and Z2 be a group, a ring, a field,
the set of integers, and Z/2Z, respectively. If a is an ℓ-bit element,

a(i) denotes the i-th bit of a, where we count the indices in the right-

to-left order with 1 being the initial index, i.e., a := a(ℓ) | | · · · | |a(1).
If A is a probabilistic algorithm, a ← A(b) means a is an output of

A on input b. If A is a set, |A| denotes the cardinality of A and | |A| |
denotes the required bits to represent an element in A.

2.1 Setting and Security Model

We assume a setting of three servers P1, P2 and P3, of which at most

one server might be corrupt. This is the same setting and security

model as in [3].

For notational simplicity, when we use an index to denote the

i-th party, i − 1 and i + 1 refer to the previous and subsequent party.
For example, Pi+1 means P3 if i = 2, Pi+1 means P1 if i = 3, and

Pi−1 means P3 if i = 1.

In this work, we consider the client/server model. This model is

used to outsource secure computation, where any number of clients

send shares of their inputs to the servers. Therefore, we assume

that the (three) servers see the input and the output of the protocol

in a shared way (defined below).

We prove the security of our protocols in the standard ideal-real

world paradigm [18]. We begin with semi-honest (passive) security,

where the corrupted party controlled by the adversary follows

the protocol but may try to learn private information. Then, we

show how to compile our protocol to malicious (active) security,

where the corrupted party can act in an arbitrary manner. We stress

that our malicious secured protocol achieves security with abort,

meaning that the adversary can cause the honest parties to abort

without obtaining their output.

To prove security, we work in a hybrid model, where parties run

a protocol with real messages and also have access to a trusted party

computing a subfunctionality for them. When the subfunctionality

is д, we say that the protocol works in the д-hybrid model.

2.2 Linear Secret Sharing

Our protocols rely on linear secret sharing schemes. In the 3-party

setting, it is convenient to instantiate this using replicated secret

sharing scheme [25]. In this scheme, a secret x is shared by choosing

three random elements x1,x2 and x3 such that x1 + x2 + x3 = x ,
and then P1’s share is (x1,x2), P2’s share is (x2,x3) and P3’s share

is (x3,x1). In general, party Pi holds the pair (xi ,xi+1). We use the

notation [[x]] to denote a secret sharing of x .
We define the following local operations:

• [[x]] + [[y]]: Each party adds its local shares of x and y and

stores the result, i.e., Pi stores (xi + yi ,xi+1 + yi+1).
• α · [[x]]: Each party Pi computes and stores (α · xi ,α · xi+1).

• α + [[x]]: P1 computes and stores (α+x1,x2), P2 stores (x2,x3)

and P3 computes and stores (x3,α + x1).

It is easy to verify that [[x + y]] = [[x]] + [[y]], [[α · x]] = α · [[x]]
and [[α + x]] = α + [[x]].

Next, we define two basic interactive procedures that will be

used in our protocols:

• reveal[[x]]: In this interactive procedure, the parties reveal x by

sending their shares to each other. Recall that each party misses

one share, and so it suffices for party Pi to send xi to Pi+1 and
xi+1 to Pi−1. Upon receiving xi−1 from the other parties, party

Pi can check that it received the same share from both parties.

If the shares are not identical, then Pi aborts. Otherwise, it can
reconstruct x . When there are many values to be reconstructed,

we can use the following optimization which reduces the com-

munication by half. Each party only sends xi to Pi+1 and defers

the verification to a later stage. Then, when verification takes

place, Pi can send a collision-resistance hash of all xi+1s to Pi−1,
who can compare it with the hash of the values it received before.

• reshare([[x]], i): In this procedure, party Pi−1 and party Pi+1 re-

share [[x]] to party Pi . This is done in two steps: first, Pi−1 and
Pi+1 add a random secret sharing of 0 to the shares, and then

send Pi its new shares. More formally, given the shares x1,x2,x3
of x , party Pi−1 and party Pi+1 first choose r1, r2 and r3 such that

r1+r2+r3 = 0 and set x ′
1
= x1+r1, x

′
2
= x2+r2 and x

′
3
= x3+r3.

Then, Pi−1 sends x
′
i to Pi and Pi+1 sends him x ′i+1.

Note that the total communication cost of reveal is three ring
elements, whereas the cost of reshare is two ring elements. This

assumes that each pair of parties has some shared PRF key for

generating the shared randomness.

Pseudorandom secret sharing. It is well known that the parties

can generate shares of a random number without interaction. This is

known as pseudorandom secret sharing (PRSS) [16]. In PRSS, each

pair of parties preliminary shares a key, i.e., Pi share keyi with Pi−1
and keyi+1 with Pi+1. When the parties compute shares of a random

number α , each party Pi computes a pseudorandom function with

their keys asαi := PRF
keyi
(ctr ) andαi+1 := PRF

keyi+1
(ctr ) for some

onetime counter ctr , and regard (αi ,αi+1) as the share of a random
number. PRSS securely computes the following functionality F

rand
.

Functionality 2.1 (F
rand

– Generate shares of a random value):

Let Pi be the corrupted party controlled by the ideal world adver-
sary. F

rand
is invoked by the honest parties and S. Upon receiv-

ing Pi ’s shares (αi ,αi+1) from S, functionality Frand chooses a
random α ∈ R and set αi−1 = α −(αi +αi+1). Then, Frand hands
the pair (αi−1,αi ) to Pi−1 and the pair (αi+1,αi−1) to Pi+1.

4
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Remark 2.2. Although the above operations and procedures are

defined for replicated secret sharing, it is easy to define similar proce-

dures also for other linear secret sharing schemes such as Shamir’s

secret sharing scheme [36].

2.3 Permutation

A permutation σ is a bijective function from a finite set to itself,

usually the underlying set is [m] = {1, . . . ,m}. In the context of

this work, we have a vector of items ®a = (a1, . . . ,am ) and we apply
the permutation σ over ®a. Then, the item ai is moved to position

σ (i). We abuse notation and use σ (®a) to denote applying σ on ®a,

which results with a vector
®b. Since ai is moved to position σ (i), it

holds that bj = aσ −1(j), or equivalently, ai = bσ (i).

We use ®σ = (σ (1), . . . ,σ (m)) to denote the vector of destinations
of the permutation σ . Note that we distinguish between the nota-

tions σ and ®σ : σ denotes the bijection function (the permutation

itself), whereas ®σ is the representation of the vector of destinations.

Using our notation above, we have that σ ([m]) = ®σ .
We denote by π◦σ the composition of two permutations, meaning

that π ◦ σ (i) = π (σ (i)). This implies that π ◦ σ (®a) results with ®b,
where bj = aσ −1(π −1(j)). We thus have the following fact:

Fact 2.3. Let σ ,π be permutations from [m] to [m] and let ®a =
(a1, . . . ,am ) be a vector of items. Then:

• (π ◦ σ )−1(®a) = σ−1 ◦ π−1(®a) .
• π ◦ π−1(®a) = π−1 ◦ π (®a) = ®a .

We next show an important observation used in our protocols.

Observation 2.4. Let π and σ be permutations over the set [m],
and let ®σ = (σ (1), . . . ,σ (m)) be the vector of destinations of the
permutationσ . Then, π (®σ ) = σ◦π−1([m]), i.e., a vector of destinations
for the permutation σ ◦ π−1.

Proof: Let ®σ = (σ (1), . . . ,σ (m)) and let ®a = π (®σ ). We have that

aj = ®σπ −1(j) = σ (π−1(j)). Therefore, π (®σ ) = σ ◦ π−1([m]) as re-
quired. □

Notations. We work with permutations that are shared across

the parties. Specifically, we have two types of sharing of a secret

permutation σ :

• [[®σ ]]: This notation means that we consider the permutation σ as

a vector of destinations ®σ = (σ (1), . . . ,σ (m)), and each element

of the vector is secret shared across the parties. That is, the

parties hold a sharing of ([[σ (1)]], . . . , [[σ (m)]]).
• ⟨⟨σ ⟩⟩: This notation means that the permutation σ is shared

among the parties in the following sense. We let σ = σ3 ◦σ2 ◦σ1
for random permutations σ1,σ2,σ3 under the above constraints,
and σ is secret shared across the parties in a replicated way:

Specifically, party Pi and party Pi+1 hold the permutation σi+1,
and thus, each party Pi holds the pair (σi ,σi+1).

3 BUILDING BLOCKS

In this section, we specify the fundamental sub-protocols used as

the components of our new sorting protocol: multiplication and

shuffling.

3.1 Multiplication

A multiplication protocol receives as input [[a]] and [[b]] and out-

puts [[a · b]]. The ideal functionality for the multiplication protocol

appears in Functionality 3.1. Observe that F
mult

lets the corrupted

party choose its shares of the output.

Functionality 3.1 (F
mult

– Multiplication):

Let Pi be the corrupted party. Upon receiving from the honest

parties their shares of a and b, and an input (ci , ci+1) from Pi ,
F
mult

reconstructs (a,b), computes c = ab, computes ci−1 =
c − (ci + ci+1) and send the honest parties their shares.

This functionality can be realized with semi-honest (passive)

security via the multiplication protocol of Araki et al. [3], which

requires each party Pi to send exactly one single element to Pi+1.

3.2 Shuffling and Unshuffling

We describe in Protocol 3.2 a shuffling protocol based on Laur

et al. [30]. The protocol receives as input a shared input vector

[[®a]] and a shared random permutation ⟨⟨π ⟩⟩ and outputs a shared

vector [[®b]], where bi = aπ −1(i). Recall that π = π3 ◦ π2 ◦ π1 where
each πi is known by exactly two parties Pi and Pi−1. Thus, the
protocol works by letting the two parties Pi and Pi−1 knowing πi ,
to apply it over the shares of [[®a]] (recall that Pi and Pi−1 together
know all the shares of ®a), and then reshare it to the third party. The

resharing procedure ensures that the third party receives random

shares, and therefore does not learn any information about the

permutation πi . Since each party misses one permutation (i.e., π1,
π2 or π3), it follows that the resulting permutation is random.

Protocol 3.2 (Shuffling protocol):

Notation: [[ ®b]] ← Shuffle(⟨⟨ π ⟩⟩; [[ ®a]]).
Input: A secret-shared permutation ⟨⟨ π ⟩⟩ and a shared vector [[ ®a]],

where π = π3 ◦ π2 ◦ π1 and ®a = (a1, . . . , am ). Each Pi holds
πi , πi+1 and shares of each aj .

Output: The secret-shared shuffled vector [[ ®b]] = [[π ( ®a)]].
1: Let

®b0 = ®a.
2: for i = 1 to 3 do

3: Party Pi−1 and Pi define [[ ®bi ]] = [[πi ( ®bi−1)]].
4: The parties run reshare([[ ®bi ]], i + 1)
5: The parties set

®b := ®b3.
6: return [[ ®b]].

Similarly, it is possible to define an unshuffling protocol, where

the parties apply the inverse of π on ®a. To achieve this, the parties

work in reverse order, i.e., apply first π−1
3

, then π−1
2

and then π−1
3

.

This ensures that π−1 = (π3 ◦ π2 ◦ π1)
−1 = π−1

1
◦ π−1

2
◦ π−1

3
is

applied on ®a as required. The unshuffling protocol is described in

Protocol 3.3.

Communication complexity. In both the shuffling and the un-

shuffling protocol, the parties communicate when resharing the

vector [[®bi ]]. When a pair of parties reshare a secret to the third

party, each of them sends him one ring element. Assuming
®b is of

sizem, each party thus sendsm elements in each resharing. Since

each party is required to reshare twice, the overall communication

per party is 2m ring elements.
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Protocol 3.3 (Unshuffling Protocol):

Notation: [[ ®a]] ← Unshuffle⟨⟨ π ⟩⟩; [[ ®b]].
Input: A secret-shared permutation ⟨⟨ π ⟩⟩ and a vector [[ ®b]].
Output: The secret-shared unshuffled vector [[ ®a]] = [[π−1( ®b)]].
1: Let

®b4 = ®b .
2: for i = 3 to 1 do

3: Party Pi−1 and Pi compute [[ ®bi ]] = [[π−1i ( ®bi+1)]].
4: The parties run reshare([[ ®bi ]], i + 1)
5: The parties set ®a := ®b1.
6: return [[ ®a]].

4 SECURE SORTINGWITH SEMI-HONEST

SECURITY

In this section, we introduce our secure sorting protocol. Our pro-

tocol begins with the parties holding keys and items to sort in a

secret shared way. Moreover, we assume that the parties hold a

secret sharing of each bit of the keys. Note that if this is not the case,

then the parties can run a secure protocol for bit decomposition

such as [28]. Our protocol computes stable sorting: it rearranges

the order of the items based on the keys, and maintains the relative

order of items that have equal keys. In other words, given two items

vi and vj with keys ki = kj and i < j , the sorting permutation will

map them into positions i ′ and j ′ that satisfy the condition i ′ < j ′.
Our protocol is inspired by the protocol of Bogdanov et al. [11].

We reduce significantly their communication cost. Furthermore,that

protocol considered only semi-honest security while we show in

Section 5 how to add malicious security.

The protocol of Bogdanov et al. [11] implements a distributed

version of Radix sort. In the kth step of the protocol, the parties

compute a secret sharing of a stable permutation of the kth bit of

the keys and then apply the permutation over the keys and items.

GenBitPerm: Generating stable bit sorting permutation.The

protocolGenBitPerm, which is described in Protocol 4.1, computes

the permutation of a stable sort for a single bit key. That is, given

the keys, it finds which permutation should be applied on the keys

such that the result would be a stable sorting of the input keys.

Stable sorting one-bit keys is also known in the literature as stable

compaction [6, 32, 33].

Intuitively, GenBitPerm works as follows. If we are interested

in sorting
®k = (1, 1, 0, 0), then the output permutation should be

ρ = (3, 4, 1, 2). Observe that ρ(®k) = (0, 0, 1, 1), as required. The key

idea is to count the number of 0 keys in
®k ; let Z be this number.

Then, the ith 0-key in
®k should be moved to the ith position in

the output vector, and the jth 1-key in
®k should be moved to the

(Z + j)th position in the output vector.

An MPC-friendly implementation of the above procedure is the

following. First, compute two vectors
®f (0) = ®1 − ®k and

®f (1) = ®k ,
where the i-th element in each one of the vectors represents whether

the i-th key of
®k is 0 and 1, respectively. In our example,

®f (0) =

(0, 0, 1, 1) and ®f (1) = (1, 1, 0, 0). Then, we compute prefix sums of

the vector
®f (0) to obtain a vector

®s(0) = (0, 0, 1, 2), where s
(0)

i =∑
j≤i f

(0)

j . It is easy to see that the vector
®s(0) tells the destination

of each 0-element in
®k . In our example, this tells us that the third

element in
®k should be moved to position 1, and the forth element

should be moved to position 2. Moreover, the last element in
®s(0)

represents the number of 0s in the input
®k . This is Z from above.

We then compute also prefix sums of the vector
®f (1), while starting

the sum from Z , to obtain ®f (1) = (3, 4, 4, 4). The vector ®s(1) tells the

destination of each 1-element in
®k . To obtain the final permutation

ρ, we need to select for each element in
®k whether to take the

destination from
®s(0) or ®s(1). This is achieved by computing

(1 − ki ) · s
(0)

i + ki · s
(1)

i = s
(0)

i + ki · (s
(1)

i − s
(0)

i ) .

The result is ®ρ = (3, 4, 1, 2).
To convert the above into a secure protocol, our input is now a

vector of shared keys [[®k]], and the output should be [[ ®ρ]]. Observe
that all steps in the above computation are linear except for the

last step, which involves one multiplication per key. Proceed to

Protocol 4.1 for the specification.

Protocol 4.1 (Generating permutation of stable sort for a single

bit key):

Notation: [[ ®ρ]] ← GenBitPerm([[®k ]]).
Input: Secret-shared bit-wise keys [[®k ]], where ®k = (k1, . . . , km ) and

ki ∈ {0, 1} for 1 ≤ i ≤ m.

Output: The secret-shared permutation [[ ®ρ]] which is a stable sorting

of
®k .

1: for 1 ≤ i ≤ m do

2: [[f (0)i ]] := 1 − [[ki ]].

3: [[f (1)i ]] := [[ki ]].
4: [[s]] := [[0]].
5: for j = 0 to 1 do

6: for i = 1 tom do

7: [[s]] := [[s]] + [[f (j )i ]].

8: [[s (j )i ]] := [[s]].
9: for 1 ≤ i ≤ m do

10: The parties send ([[ki ]], [[s
(1)

i ]] − [[s
(0)

i ]]) to Fmult
(Functional-

ity 3.1), and receive [[ti ]].
11: [[ρ(i)]] := [[s (0)i ]] + [[ti ]].
12: return [[ ®ρ]] = ([[ρ(1)]], . . . , [[ρ(m)]]).

Applying the shared permutation. Recall that in Radix sort, we

use stable sort for sorting each bit of the keys, each such sort will be

performed using an independent invocation of Protocol 4.1. Once

the parties obtain the permutation ρ j for the jth bit of the key, they

need to apply it over the keys
®k , while keeping ρ j as secret. I.e., the

goal is to compute [[ρ j (®k)]]. To keep ρ j secret, the parties choose
a random shared permutation ⟨⟨π ⟩⟩ and apply it over ρ j . Recall
also that ρ j is shared as [[ ®ρ j ]] and π is shared as ⟨⟨π ⟩⟩, i.e., [[ ®ρ j ]] =

([[ρ j (1)]], . . . , [[ρ j (m)]]) and ⟨⟨π ⟩⟩ =
(
(πi ,πi+1)

3

i=1

)
. Thus, we can

invoke Protocol 3.2 to apply π on ®ρ j and the parties reveal the

result publicly. By Observation 2.4, we know that π ( ®ρ j ) = ρ j ◦ π
−1
,

and this permutation is now public. The parties invoke Protocol 3.2

again to shuffle [[®k]] using π to obtain [[π (®k)]]. Finally, by applying

locally the public permutation ρ j ◦ π
−1

over [[π (®k)]], the parties

obtain [[ρ j ◦ π
−1 ◦ π (®k)]] = [[ρ j (®k)]] as required.
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Our protocol to apply a shared permutation over a list of shared

keys is called ApplyPerm and is formally described in Protocol 4.2.

Protocol 4.2 (Applying a shared-vector permutation):

Notation: [[®k ′]] ← ApplyPerm([[ ®ρ]]; [[®k ]]).
Input: A secret-shared permutation [[ ®ρ]] and a secret-shared vector

[[®k ]] = ([[k1]], . . . , [[km ]]).
Output: The secret-shared vector [[k ′]] such that

®k ′ = ρ(®k ).
1: The parties call F

rand
and receive ⟨⟨ π ⟩⟩.

2: [[π ( ®ρ)]] ← Shuffle(⟨⟨ π ⟩⟩; [[ ®ρ]]) ▷ (Protocol 3.2)

3: [[π (®k )]] ← Shuffle(⟨⟨ π ⟩⟩; [[®k ]]) ▷ (Protocol 3.2)

4: The parties run reveal([[π ( ®ρ)]]) and obtain π ( ®ρ) = ρ ◦ π−1

▷ (see Observation 2.4)

5: The parties locally apply ρ ◦ π−1 on [[π (®k )]] and obtain [[®k ′]] =
[[ρ(®k )]].

6: return [[®k ′]].

A bottleneck in [11]. In [11], each permutation ρ j is applied over
each one of the bits of each key. That is, the parties first compute

GenBitPerm on the least significant bit to obtain ρ1, and apply it

over
®k to sort the keys according to the least significant bit. Denote

the result by
®k ′. Then, the parties compute GenBitPerm again on

®k ′, this time on the second less significant bit, and then apply it

over the
®k ′ to obtain a vector which is sorted according to the two

less significant bits, and so on. Since each bit of the key is secret

shared across the parties separately, this yields high communication

overhead, as when the parties shuffle
®k , each pair of parties need to

reshare the secrets to the third party. If the keys are of size ℓk , this

implies 2ℓk ·m ring elements sent per party for resharing (since

there arem keys and each party does resharing twice for each of

the ℓk shared bits).

Reducing the overhead. To reduce this overhead, we observe that

instead of applying the permutation over the entire key, it suffices

to apply a composed permutation over a single shared bit each time.

Specifically, after the first call to GenBitPerm to sort according

to the least significant bit, the parties obtain the permutation ρ1.

Instead of applying ρ1 over all bits of the keys ®k , it suffices to apply

the permutation over just the the shared second least significant

bit. The parties then can apply GenBitPerm on the result to obtain

ρ2, and then apply ρ2 ◦ ρ1 on the third significant bit of the keys
®k ,

and run GenBitPerm again to obtain ρ3, and so on. To implement

this idea, we show how to compose two secret permutations (e.g.,

ρ2 ◦ ρ1) below.
The crucial point here is that composing two permutations re-

quires each pair of parties to reshare a single secret. Hence, in each

step of the protocol, instead of applying a permutation over all the

remaining bits which are shared separately, the parties now need to

compose two permutations and apply the result over a single shared

bit. The communication overhead is now 4 ·m, thereby removing

the multiplicative ℓk factor.

Composing two secret permutations. Our protocol to compose

two permutations ρ and σ is called Compose and is formally de-

scribed in Protocol 4.3. Similarly toApplyPerm, it starts by shuffling

σ with a random permutation π . From Observation 2.4, it follows

that π (®σ ) = σ ◦π−1. Then, the parties reveal σ ◦π−1 and apply its in-
verse locally over [[ ®ρ]]. The parties then obtain [[γ ]] = [[π ◦σ−1( ®ρ)]],
which is a sharing of the permutation ρ ◦ σ ◦ π−1.

The goal is to obtain a sharing of ρ◦σ , and thus we have to cancel
π−1. To do that, we simply unshuffle ®γ with π . In other words, we

compute π−1(®γ ). Using Observation 2.4, it holds that

π−1(®γ ) = γ ◦ (π−1)−1 = ρ ◦ σ ◦ π−1 ◦ π = ρ ◦ γ .

Protocol 4.3 (Composition of two share-vector permutations):

Notation: [[®τ ]] ← Compose([[ ®σ ]], [[ ®ρ]]).
Input: Secret-shared two permutations ([[ ®σ ]], [[ ®ρ]]).
Output: The secret-shared permutation [[®τ ]], where τ = ρ ◦ σ .
1: The parties call F

rand
and obtain ⟨⟨ π ⟩⟩.

2: [[π ( ®σ )]] ← Shuffle(⟨⟨ π ⟩⟩; [[ ®σ ]]). ▷ (Protocol 3.2)

3: Reveal [[π ( ®σ )]] and obtain π ( ®σ ), i.e., σ ◦ π−1 ▷ (Observation 2.4)

4: The parties locally apply (σ ◦ π−1)−1 = π ◦ σ−1 to [[ ®ρ]] and obtain
[[®γ ]] = [[π ◦ σ−1( ®ρ)]], i.e., γ = ρ ◦ σ ◦ π−1 ▷ (Observation 2.4)

5: [[®τ ]] ← Unshuffle(⟨⟨ π ⟩⟩; [[®γ ]]) ▷ (Protocol 3.3)

Note that τ = π−1(®γ ) = γ ◦ π = ρ ◦ σ .
6: return [[®τ ]].

Putting it all together: Generating the permutation of stable

sort. We describe in Protocol 4.4 our main stable sorting protocol.

As explained above, the parties go over the shared bits from the

least significant to the most significant. In each step, they generate

a stable sorting permutation of the current bit, compose it with

permutation from the previous step, and apply it over the next

shared bit.

Protocol 4.4 (Securely Generating a Stable Sorting Permutation):

Notation: [[ ®σ ]] ← GenPerm([[®k ]]).
Input: Secret-shared keys [[®k ]] = ([[k1]], . . . , [[km ]]) where [[ki ]] =
([[k (1)i ]], . . . , [[k

(ℓk )
i ]]).

Output: [[ ®σ ]], where ®σ is the permutation for stable sorting the vec-

tor
®k .

1: For each j ∈ [ℓk ], let [[®k (j )]] = ([[k
(j )
1
]], . . . , [[k (j )m ]])

2: [[ ®ρ1]] ← GenBitPerm([[®k (1)]]). ▷ (Protocol 4.1)

3: [[ ®σ1]] := [[ ®ρ1]].
4: for j = 2 to ℓk do

5: [[®k ′(j )]] ← ApplyPerm([[ ®σj−1]]; [[®k (j )]]). ▷ (Protocol 3.2)

6: [[ ®ρ j ]] ← GenBitPerm([[®k ′(j )]]). ▷ (Protocol 4.1)

7: [[ ®σj ]] ← Compose([[ ®σj−1]], [[ ®ρ j ]]). ▷ (Protocol 4.3)

8: return [[ ®σℓk ]]

Once the parties hold a the shared permutation, the parties can

call the protocol ApplyPerm once again on the data itself to apply

the permutation on the shared data. Then, the parties will obtain a

secret sharing of the sorted vector of data items, as required.

4.1 Communication complexity

In this section, we analyze the communication cost of our protocol.

Assume that there arem items to sort and the size of each key is

ℓk bits and the size of the payload is ℓp bits. We let | |R | | be the

bit length of representing an element in the ring. Recall that our

protocol uses the following three building blocks to sortm items:
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• GenBitPerm includesm calls to F
mult

, each involving sending

one ring element. Thus, each party sendsm | |R | | bits.
• ApplyPerm includes two calls to the shuffling protocol (Pro-

tocol 3.2) and revealing ofm secrets in the ring R. Each secret

represents a destination in the permutation, and those we assume

that |R | ≥ m. The shuffling protocol requires communication of

2m ring elements sent per party. Revealing requires sendingm
ring element in the semi-honest setting. So, ApplyPerm requires

sending 5m | |R | | bits.
• Compose has the same complexity as ApplyPerm, i.e., 5m | |R | |.

Iterating over the ℓk bits of the keys, we get that the number of

bits sent by each party in GenPerm (Protocol 4.4) is

11m · | |R | | · ℓk

The parties then call ApplyPerm to apply the stable sorting per-

mutation on the shared data. In that call we distinguish between

working on the keys and the shuffle of the payload (Step 3 in Pro-

tocol 4.2) where there we embed the payload in a ring R ′ with

|R ′ | ≥ 2
ℓp
. Overall we get:

11m · | |R | | · ℓk + 3m · | |R | | + 2m | |R
′ | | (1)

bits sent per party. Letting | |R | | = logm and | |R ′ | | = ℓp , we get

that each party sends is bounded by 14ℓk ·m logm + 2ℓpm.

This communication complexity is asymptotically better than

that of all the previous protocols, as depicted in Table 1.1. Fur-

thermore, we improve the concrete efficiency of our protocol by

introducing several optimization techniques in Appendix A, which

allow us to reduce the communication cost of the protocol described

above to about 1/3. Some of the optimization techniques are appli-

cable to the protocol with malicious security presented in Section 5.

4.2 Security

In order to prove security, we first define an ideal functionality for

stable sorting. Observe that our protocol actually supports comput-

ing two functionalities: generating the permutation of a stable sort,

and sorting a vector of shares by applying this permutation. We

define the functionality Fsort (in Functionality 4.5) to support these

two functions.Note that Fsort outputs only a secret sharing to the

parties. This is in alignment with the client-server model that we

consider in this work.

Functionality 4.5 (Fsort – Stable sorting):

• GenPerm: Upon receiving (GenPerm, [[®k]]) from the honest

parties, Fsort reconstructs ®k , and computes the permutation σ
such that σ (i) ≤ σ (k) if ki ≤ kj and i < j. Then, it generates
[[®σ ]] and sends each party its shares.

• ApplyPerm: Upon receiving (ApplyPerm, [[®σ ]], [[®v]]) from
the honest parties, Fsort reconstructs ®v and the permutation

σ and applies σ (®v) to obtain ®v ′. It computes shares of ®v ′ and
sends each party its shares.

Therefore, we have the following theorem. proven in Appendix B:

Theorem 4.6. Protocol (GenPerm, ApplyPerm) securely computes

Fsort in the (Frand,Fmult
)-hybrid model in the presence of semi-honest

adversaries controlling a single party.

5 ACHIEVING MALICIOUS SECURITY

In this section we show how to augment our protocol to ensure ma-

licious security. Following the same approach as in, e.g., [8, 14, 31],

we use an existing efficient compiler from semi-honest to mali-

cious security– namely, the popular compiler of Chida et al. [13]–

and adapt it to our protocol. This compiler works by adding an

information-theoretic MAC for each secret throughout the compu-

tation, and then use the MAC to detect cheating. However Chida

et al. [13] only considered protocols for computing simple arith-

metic circuits, using only addition and multiplication operations.

In contrast we have two additional types of operations with in-

teraction: revealing and resharing. It turns out that applying the

compiler to these operations is not straightforward. We show how

to extend the compiler to this richer set of operations. These new

techniques may be of independent interest.

5.1 Building Blocks

We start with introducing some building blocks that we use in

our malicious protocol. Specifically, we take the same building

blocks and protocols from the semi-honest setting and examine

what security they guarantee when the adversary is malicious.

Authenticated secret sharing. The first step towards achieving

malicious security, according to the compiler, is to add a MAC to

each secret. Specifically, for each secret x that is held by the parties

during the computation, the parties will hold the pair ([[x]], [[r · x]]),
where r is a random secret unknown to any of the parties. Note that

linear operations can be still carried-out locally without interaction.

To multiply ([[x]], [[r ·x]]) and ([[y]], [[r ·y]]), the idea of [13] is to call
F
mult

twice: once to multiply [[x]] and [[y]], and a second time to

multiply [[r · x]] with [[y]]. If no one cheats, then clearly the parties

will obtain the pair ([[x · y]], [[r · (xy)]]) as required. However, if the
adversary cheats, then the honest parties can use the MAC to detect

cheating, relying on the fact that r is unknown by the adversary.

Security up to additive attacks. The compiler of Chida et al. [13]

converts a semi-honest protocol to a maliciously secure protocol.

In order for the compiler to work, the semi-honest protocol has to

be secure up to an additive attack [17]. Informally, this requirement

means that if we run the semi-honest protocol, as is, but with a

malicious adversary, then this the only attack that this adversary

can carry out is introducing additive errors to the output. E.g.,

when multiplying two private inputs x and y, the adversary can

only cause the output to be xy + e for an error e of its choice.
To model this, one can modify the functionality that the semi-

honest protocol realizes with an augmented functionality, in which

the ideal world adversary chooses an offset and hands it to the func-

tionality. The offset should be independent of the underlying secrets.

The augmented functionality computes the output in the same man-

ner as the underlying semi-honest functionality, but adds the offset

to the outputs. Then, we have to show that the semi-honest protocol

realizes this augmented functionality in the presence of a malicious

adversary. The compiler of Chida et al. [13] then adds a lightweight

verification step that can detect such attacks, thereby providing

security against fully-malicious adversaries.

The inner-product functionality (Fadd
ℓ−mult). The first building

block that we discuss is the inner product of two shared vectors.
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Note that this functionality also implements a standard multiplica-

tion of two shared inputs.

In Functionality 5.1, we describe F add

ℓ−mult
which is just an explicit

description of an augmented functionality of a semi-honest inner

product. The inputs of the parties are shares of two secret vectors,

and the functionality first receives those inputs from the honest

parties (recall that in the honest majority setting, the honest parties

hold all the shares). It then reconstructs the vectors and computes

their inner product. It adds to the resulting vector an offset chosen

by the adversary, and sends shares of this output to the parties.

Functionality 5.1 (F add

ℓ−mult
– Extended Multiplication with an Ad-

ditive Error):

Let S be the ideal world adversary controlling party Pi .
Upon receiving from the honest parties their shares of

(a1, . . . ,aℓ) and (b1, . . . ,bℓ), and an input (ci , ci+1,∆) from S,

F add

ℓ−mult
proceeds as follows:

(1) Reconstruct (a1, . . . ,aℓ), (b1, . . . ,bℓ) and send S all the cor-

rupted party’s shares of these values.

(2) Compute c =
∑ℓ
k=1 ak · bk + ∆.

(3) Compute ci−1 = c − (ci + ci+1).
(4) Send (ci−1, ci ) to Pi−1 and (ci+1,ci−1 ) to Pi+1.

Chida et al. [13] showed that the efficient three party semi-honest

multiplication protocol of [3], which is the multiplication protocol

that we used in the semi-honest setting, securely computes F add

ℓ−mult

with ℓ = 1 in the presence of a malicious adversary. Moreover,

the protocol can also be easily extended for inner product, i.e.,

ℓ > 1, and securely computes F add

ℓ−mult
, without increasing the cost

(regardless of the size of ℓ).

The resharing local shuffle functionality (Fadd

reshare-shuffle
).We

proceed to the resharing operation. Recall that resharing is carried-

out in Shuffle (Protocol 3.2), when a pair of parties locally permute

a vector of shares and then reshare the result to the third party. We

model a functionality associated with each such iteration in the

protocol. Specifically, in each iteration parties Pi−1 and Pi locally
shuffle the current vector ®x and then reshare the result, by having

each of them sending one element to Pi+1. A corrupted party might

introduce an error in such an iteration, and we now show that this

is just an additive attack.

Looking ahead, the reason why we do not show a functionality

for the entire shuffling protocol, but rather just for each iteration of

the protocol, is that we will have to store the intermediate values

that the parties receive in this procedure and verify that no additive

attack was introduced in the process. A verification procedure could

have been introduced at the end of this building block to ensure

that no additive attack was introduced; this would allow a “cleaner"

modeling. However, this would increase the cost of the protocol,

and we defer the verification step only when truly needed.

In the functionality (Functionality 5.2), the honest parties hand

the functionality all the input shares and the permutation (in each

iteration, at least one of the honest parties knows the permutation).

Then, the functionality applies the permutation and randomizes

the output shares, by adding a sharing of 0. If the corrupted party

is one of the resharing parties, then the adversary is allowed to add

an error to one of its shares.

Functionality 5.2 (F add

reshare-shuffle
– Resharing after a Local Shuf-

fling with an Additive Error):

Let Pi be the corrupted party controlled by the ideal world

adversary S.

The functionality receives from the honest parties the vector

of shares of ®x1, ®x2, ®x3 of lengthm and an iteration index j. The
shares of Pi are handed to S.

The functionality chooses ®r1, ®r2, ®r3 such that ®r1 + ®r2 + ®r3 = 0.

If j = i or j = i + 1 (i.e., Pi is one the resharing parties), then it

hands ®r1, ®r2 and ®r3 to S.
Then:

• Case I: j = i: (In this case, Pi and Pi−1 permute their shares

and reshare them to Pi+1.)
Then, upon receiving π from Pi−1, the functionality:

(1) Sends π to S to receive back ®∆.
(2) Computes ®y1 = π (®x1) + ®r1, ®y2 = π (®x2) + ®r2 and ®y3 =

π (®x3) + ®r3.

(3) Hands (®yi−1, ®yi ) to Pi−1 and (®yi+1 + ®∆, ®yi−1) to Pi+1.
• Case II: j = i+1: (In this case, Pi and Pi+1 permute their shares

and reshare them to Pi−1).
Then, upon receiving π from Pi+1, the functionality:

(1) Sends π to S to receive back ®∆.
(2) Computes ®y1 = π (®x1) + ®r1, ®y2 = π (®x2) + ®r2 and ®y3 =

π (®x3) + ®r3.

(3) Hands (®yi−1, ®yi + ®∆) to Pi−1 and (®yi+1, ®yi−1) to Pi+1.
• Case III: j = i − 1: (In this case, Pi−1 and Pi+1 permute their

shares and reshare them to Pi .)
Then, upon receiving π from Pi+1, the functionality:
(1) Computes ®y1 = π (®x1) + ®r1, ®y2 = π (®x2) + ®r2 and ®y3 =

π (®x3) + ®r3.
(2) Hands (®yi−1, ®yi ) to Pi−1, (®yi+1, ®yi−1) to Pi+1 and (®yi , ®yi+1)

to S.

Lemma 5.3. Each iteration i (i ∈ [3]) in our Shuffling protocol

(Protocol 3.2) securely computes F add

reshare-shuffle
in the presence of a

single malicious party.

Unshuffling.We remark that in the unshuffling protocol (Proto-

col 3.3), each iteration is also secure up to an additive error. This

can be showed via a proof that is identical to the proof above and

therefore we omit the details.

Insecurity of the revealing procedure. We proceed to the third

interactive procedure in our protocol - revealing a secret. Recall

that ensuring that the opened secret is indeed the secret that was

shared is easy: each share is known by two parties, and so sending

an incorrect share by a corrupted Pi will be detected by comparing

it to the message received from an honest party. However, this is

not enough. We need also to show that no information is leaked

when the secret is revealed. It turns out that in our semi-honest

revealing protocol, the adversary can carry out attacks that cannot

be described as additive attacks.

9
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To see this, consider the following protocol. The parties hold

shares [[ρ]] of a secret permutation ρ, and the parties wish to apply

a random permutation ⟨⟨π ⟩⟩ on ρ and then reveal the result. Recall

that we have such a step in Protocol 4.2. To apply the random

permutation π on ρ, the parties use our shuffling protocol. When

the parties run Shuffle(⟨⟨π ⟩⟩, [[ ®ρ]]), the adversary can introduce

an additive error to each one of the coordinates of the result π ( ®ρ).
Assume that the attacker is P1 and it guesses that ρ(3) = ρ(2)+1.

To check if this is correct, the attacker adds 1 to the second item and

−1 to the third item. Now, if the guess is correct, e.g., ρ = (3, 1, 2),
then the revealed output would be a permutation π of (3, 2, 1),

and therefore would be a permutation. On the other hand, say if

ρ = (3, 2, 1), then the revealed vector would be a permutation π of

(3, 3, 0), i.e., it would not be a permutation. The adversary sees the

revealed vector and can distinguish between the two cases.

Preventing the above attack. To prevent the attack, we essen-

tially apply the compiler of Chida et al. [13] that verifies whether

additive errors were introduced by the adversary. Only after the

parties ensure that cheating did not take place, they can proceed to

reveal secrets. This enforces honest behavior up to the revealing

phase, and thus it is safe to reveal. Note that the verification step

in Chida et al. [13] is deferred to the final step of the protocol just

before the parties reveal their outputs, whereas in our protocol we

have to apply the verification step several times in the computa-

tion, essentially before each call of the revealing procedure. This is

because Chida et al. [13] supports only multiplications and addi-

tions and there are no intermediate values that are being revealing

throughout the computation. In our protocol we do reveal (masked)

intermediate values, which allow us to perform more operations

locally and in the clear, thus process the task faster.

Verifying correctness in the presence of additive errors. We

next describe how the verification phase of Chida et al. [13] works

in our protocol. The main idea is that given many secrets z1, . . . , zn
that the parties wish to verify, the parties can take the MACs r ·
z1, . . . , r · zn and use them to verify correctness. Specifically, the

parties take a random linear combination u =
∑n
k=1 αk · zk and

v =
∑n
k=1 αk · (r · zk ) and check that r · u −v = 0.

Since the zk s and their MACs are shared across the parties, they

need to run a secure protocol for carrying-out this check. Thus,

the parties will compute the above linear combination over shared

values. This is where F add

ℓ−mult
becomes handy, as it allows the parties

to compute [[u]] =
∑n
k=1[[αk ]] · [[zk ]] and [[v]] =

∑n
k=1[[αk ]] · [[r ·

zk ]] efficiently. The verification protocol is formally described in

Protocol 5.4.

The communication cost of the verification protocol is constant:

the parties call F
rand

once, F add

ℓ−mult
three times (with ℓ = n) and

finally they run the reveal procedure. Since F
rand

can be realized

without any communication and the cost of F add

ℓ−mult
and reveal

is constant. Thus, the overall cost is a small constant, which is

independent of n (the number of shares to verify). This property

is highly important in our protocol, since we call the verification

protocol before every revealing of a permutation.

Protocol 5.4 (Secure Verification Protocol):

Notation: β ← Verify

(
[[r ]], {[[zk ]]}nk=1, {[[r · zk ]]}

n
k=1

)
.

Input: [[r ]], [[z1]], . . . , [[zn ]] and [[r · z1]], . . . , [[r · zn ]].
Output: β ∈ {accept, reject}
1: The parties call F

rand
to receive [[α1]], . . . , [[αn ]].

2: The parties call Fadd
ℓ−mult

with ℓ = n twice to compute [[u]] =∑n
k=1[[αk ]] · [[zk ]] and [[v]] =

∑n
k=1[[αk ]] · [[r · zk ]].

3: The parties call Fadd
ℓ−mult

with ℓ = 1 to compute [[r ]] · [[u]].
4: The parties locally compute [[w ]] = [[r ]] · [[u]] − [[v]].
5: The parties securely check whether w = 0 or not. If w = 0, then

the parties set β = accept. Otherwise, they set β = reject.
6: return β

5.2 Secure Sorting with Malicious Security

We are now ready to present the protocol for secure sorting in the

presence of one malicious party. Essentially, we begin by generating

some shared random [[r ]] using F
rand

. Then, for each input key

[[ki ]] and its bit decomposition [[ki ]] = [[k
(1)

i ]], . . . , [[k
(ℓk )
i ]], we call

F add

ℓ−mult
with ℓ = 1 to obtain [[r ·k

(1)

i ]], . . . , [[r ·k
(ℓk )
i ]]. We then follow

the steps of protocol GenPerm while maintaining the invariant in

which for each shared value [[x]] we also compute [[rx]]. Moreover,

we use F add

ℓ−mult
with ℓ = 1 instead of F

mult
, and F add

reshare-shuffle
in

each iteration of Protocol 3.2 (Shuffle). Moreover, before revealing

each secret we perform a verification step. To elaborate further:

(1) Input randomization: Given an input [[®k]] = [[k1]], . . . , [[km ]]

and the bit decomposition [[ki ]] = [[k
(1)

i ]], . . . , [[k
(ℓk )
i ]] for each

i ∈ [m]:
(a) The parties call F

rand
to receive [[r ]].

(b) For each shared input [[k
(i)
j ]], the parties call F

add

ℓ−mult
with

ℓ = 1 on [[k
(i)
j ]] and [[r ]] to receive [[r · k

(i)
j ]]

Denote the output of this step by ([[®k]], [[r · ®k]]).
(2) Generating a stable sorting permutation: The parties runGenPerm

(Protocol 4.4) on [[®k]] and [[r · ®k]] with the following modifica-

tions:

(a) Replace each call to F
mult

with F add

ℓ−mult
with ℓ = 1.

Then, on input ([[a]], [[r · a]]), ([[b]], [[r · b]]), the parties:

(i) Call F add

ℓ−mult
(with ℓ = 1) on [[a]] and [[b]] to receive

[[a · b]].
(ii) Call F add

ℓ−mult
(with ℓ = 1) on [[r ·a]] and [[b]] to receive

[[r · (a · b)]].
(b) Whenever there is a call to Shuffle (Protocol 3.2): Then,

on input ⟨⟨π ⟩⟩, ([[®a]], [[r · ®a]]), the parties:

(i) Run Shuffle on ⟨⟨π ⟩⟩ and [[®a]] to receive [[®b]], while
calling F add

reshare-shuffle
in each iteration i .

(ii) Run Shuffle on ⟨⟨π ⟩⟩ and [[r · ®a]] to receive [[r · ®b]],
while calling F add

reshare-shuffle
in each iteration i .

(c) Whenever there is a call reveal([[®a]]), the parties first run
the verification protocol:

Let ([[z1]], [[r · z1]]), . . . , ([[zn ]], [[r · zn ]]) be all the outputs

of calls to F add

ℓ−mult
and F add

reshare-shuffle
since the last time

Verify was called.

Then:

10
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(i) The parties call Verify

(
[[r ]], {[[zk ]]}

n
k=1, {[[r · zk ]]}

n
k=1

)
(Protocol 5.4) to receive β .

(ii) If β = accept, the parties proceed to run reveal(®a).
If β = reject, the parties abort the protocol.

Cheating probability. We first show the success cheating proba-

bility of our protocol when working over a field F instead of a ring

R as in the semi-honest case. We prove Lemma 5.5 in App. B:

Lemma 5.5. If the corrupted party sends any ∆ , 0 in any of the

calls to F add

ℓ−mult
or F add

reshare-shuffle
before the verification step, then

β = accept in the verification (Prot. 5.4) with probability at most
2

|F |
.

Security.We are now ready to prove that our protocol computes

Fsort against malicious parties. We remark that for malicious se-

curity, we need that Fsort, as described in Functionality 4.5, will

also hand the ideal world adversary the corrupted party’s input

shares (these are anyway known to the adversary in a real world

execution) and also allow it to choose the corrupted party’s shares

of the output. We prove the following in Appendix B:

Theorem 5.6. Let s be a statistical security parameter, and let F be

a finite field such that
2

|F |
≤ 2
−s
. Then, our protocol (as described in

the text) securely computes Fsort with abort in the (F
rand
,F add

ℓ−mult
,

F add

reshare-shuffle
)-hybrid model, in the presence of one malicious party.

Communication cost. Compared to the semi-honest setting (See

analysis in Section 4.1), each shuffling or multiplication operation

is called twice to maintain the MAC.

Moreover, in the semi-honest protocol we used a ring with size at

least [m]. In the malicious, the size of the field affects the probability

of error. For ϵ error, we need a field of size ≈ 1/ϵ . Overall, the
communication cost per party is bounded by:

O

(
mℓk · (log

m

ϵ
) +m · (ℓp +

1

ϵ
)

)
Remark 5.7 (Small Field and Rings.). In [27] and [1], it was shown

how to extend the compiler of Chida et al. [13] to small fields and the

ring Z
2
ℓ respectively. Our compiler can be extended to small field or

rings in a similar way.

We note that when using the extensions of [27] or [1] for small

fields or rings, the MAC is set to be over a larger field/ring. This is

needed to achieve sufficiently small statistical error, and this further

increases costs.

6 COMPUTING HEAVY HITTERS

The setting for the heavy hitters problem includes many clients that

have private values/strings, and servers that wish to identify the

most frequent among these strings. Variants of this problem could

compute, for instance, the t most frequent values or, alternatively,

the values which are reported by at least a certain percentage of the

clients (say, 0.1%). The heavy hitters problem is relevant in many

data collection and telemetry scenarios, such as collecting popular

URLs, application usage patterns, or other performance data.

The recent work in [12] describes a system, Poplar, for securely

computing the items which are reported by at least a certain per-

centage of the clients. It uses two non-colluding servers, and a

technique based on incremental distributed point functions. For

values of length n, the servers run n communication rounds with

the clients, where the i’th round “zooms in” on strings which begin

with prefixes of length i−1 that were popular in the previous round.

We suggest using secure sorting for this task. Protocol 6.1 de-

scribes how to securely identify, using a sorting protocol, all values

which appear at least t times (where the threshold t can be set to

any fraction of the total number of values).

Protocol 6.1 uses one secure sort and one secure shuffle, as well as

computing simple operations that can be implemented as a circuit

of binary gates. The circuit depth is only logarithmic in the length

of the values, and is otherwise independent of the number of values.

This is vital for performance, since the number of rounds of the

secure three-party MPC protocol that we use is determined by the

depth of the circuit. The implementation and the performance of

this protocol are described in Section 7.3.

Secure computation of other variants of the heavy hitters prob-

lem, outputting the number of appearances of each heavy hitter,

or outputting the s most popular items regardless of their individ-

ual counts, can be constructed in a similar way. We will give a

description of those in Appendix C. The overhead of these variants

is similar to that of Protocol 6.1.

Protocol 6.1 (Computing heavy hitters):

Input: A secret-shared vector [[ ®v]] of the values of the clients. A thresh-

old t .
Output: All values which appear at least t times.

1: Sort the elements of [[ ®v]]. (As a result, all identical values are moved

to be adjacent to each other.)

2: Compute a shared vector of bits [[ ®u]], where ui = 1 iff vi = vi−t+1.
(ui is 1 iff there are at least t occurrences of vi up to location i .)

3: Compute a shared vector of bits [[ ®f ]], where fi = 1 iff vi , vi+1.
(fi is 1 iff vi is the last in a sequence of identical values.)

4: Compute a secret-shared vector [[ ®w ]], where wi = ui · fi · vi . (If a
value vi occurs at least t times, then there is exactly one location

in ®w where vi appears. Otherwise, vi does not appear in ®w .)

5: Shuffle the vector [[ ®w ]] and open it.

Client communication and security: Protocols for computing heavy

hitters receive inputs from many clients and must therefore be

secure against malicious clients that might want to disrupt the com-

putation. The mechanism for ensuring this in the Poplar system is

quite intricate, since that system uses distributed point functions

and multiple interactions with each client. In our construction each

client simply shares a single value with the servers. Corrupt clients

can be identified and eliminated by verifying that this sharing is

correct (namely, that it is a replicated sharing where each pair of

servers receives two copies of the same share.)

Security against malicious servers: Our construction can be imple-

mented using existing protocols, to have security against malicious

servers. Moreover, even though we only describe in this work the

implementation for the case of three servers with an honest major-

ity, the template of Protocol 6.1 can be used with any number of

servers, using appropriate protocols for sorting and for computing

circuits. This is in contrast to solutions based on distributed point

functions which are only supported in a setting with two servers.
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7 IMPLEMENTATION AND EXPERIMENTS

We describe in this section the experimental measurements of our

implementations of the sorting and heavy hitters protocols.

7.1 Settings

Hardware. Our experiments run all three servers onAWS c5.18xlarge

machines. in the same region. Each server has 72 vCPUs and 144

GB of memory. All servers are connected over a 25Gb network, but

in the experiment we limit the communication bandwidth to 10Gb

for comparison
3
.

Implementation. We implemented the protocols in C++11, on Cen-

tOS 7.2.1511, using GCC 4.8.5. Our implementation utilized asyn-

chronous processing, multi-threading, pipelining of CPU and net-

work, and fast implementation of low-level cryptographic opera-

tions such as a pseudorandom function. We utilized the extended in-

structions of AES-NI, RdRand, and SSE4. Especially, pseudorandom

secret sharing (PRSS) with AES was used as a PRF for F
rand

.

Domain of input/output shares. The input and output of our proto-

cols are shares in Zp , wherep = 2
61−1 (a Mersenne prime, enabling

efficient computation). Since our sorting protocol requires that the

keys are shared bit-wise, we first bit-decompose the key shares,

using a technique from [28].

Statistical security parameter. The protocols with full security against
malicious behavior were implemented with the security parameter

λ. Here, λ represents the size of the field F
2
λ used in the MAC for a

small field. We set λ to values of 8, 32, and 64, limiting the cheating

probability to 2/28 = 2
−7, 2/(231−1) ≈ 2

−30
and 2/(2−61−1) ≈ 2

−60
,

respectively
4
.

7.2 Sorting Experiments

We present in Table 7.1 the run times of applying our sorting pro-

tocol to sort records based on 8-bit and 32-bit keys. The records

have value (payloads) of length 32 bits. We measure the average run

time of the three servers after the clients complete the sharing of

their values. The measurements include the time it takes to decom-

pose the client shares into shares of bits, the time of computing the

permutation that sorts the records, and the time of applying this

permutation to the records. We also present the total time of com-

puting the permutation and applying it (it would be appropreate if

the input is bitwise shared to begin with), and (in the last column)

the total time of the protocol including bit decomposition.

The first thing to note is that the run time of the protocol is quite

fast. For example, sorting one million records with keys of length

8 or 32 bits takes 0.86 or 2.26 seconds with semi-honest security,

and only 1.84 or 5.89 seconds with full security when the cheating

probability is limited to 2
−30

(λ = 32).

The run time of the protocol with semi-honest security is de-

scribed in the first part of the table (“security bits = 0”). The fol-

lowing parts of the table set the statistical security parameter to

λ = 8, 32 and 64 bits. The run times with λ = 8 are only 1.72-2.05

times larger than with semi-honest security. The run times with

3
We used c5.18xlarge instances for supporting the memory requirements, but we

confirmed that runtimes were comparable when running on c5.9xlarge instances.

4
We store an element of ®σ in Fp , where p = 2

61 − 1 when λ = 64 and p = 2
31 − 1

otherwise. The cheating probability is then max(2/2λ, 2/p).

sec. key rec- Bit De- Gen Apply Gen + TOTAL

bits len ords comp Perm Perm Apply BD+G+A

0 8 1M 67 685 105 790 857

5M 131 3,455 622 4,078 4,209

10M 375 8,264 1,402 9,666 10,041

32 1M 90 2,084 87 2,171 2,261

5M 367 13,947 650 14,597 14,964

10M 804 34,922 1,434 36,355 37,159

8 8 1M 337 1,020 193 1,212 1,549

5M 1,131 6,356 1,155 7,512 8,643

10M 2,388 14,321 2,683 17,004 19,392

32 1M 552 3,575 166 3,742 4,294

5M 2,833 23,639 1,134 24,773 27,605

10M 6,291 54,947 2,688 57,636 63,926

32 8 1M 710 969 161 1,130 1,840

5M 3,480 6,330 1,240 7,570 11,050

10M 7,146 14,046 2,693 16,740 23,886

32 1M 1,825 3,563 197 3,760 5,585

5M 10,846 24,587 1,236 25,822 36,668

10M 24,731 58,273 2,697 60,971 85,702

64 8 1M 1,071 1,880 137 2,017 3,088

5M 6,574 12,461 1,209 13,670 20,244

10M 15,290 28,944 2,822 31,766 47,056

32 1M 3,418 7,073 153 7,225 10,644

5M 23,241 51,684 1,297 52,981 76,222

10M 51,834 114,604 2,905 117,509 169,343

Table 7.1: Run times in milliseconds for the different parts of the

protocol. Columns include the security parameter λ for full security (0

is semi-honest), the length of key used for sorting, # of records, and the

times for bit decomposition, computing the permutation that sorts the

records, applying the permutation, and different totals.

λ = 32 are 2.15-2.63 times larger than with semi-honest security,

and the run times with λ = 64 are 3.60-5.09 times larger.

The time of computing the permutation that sorts the records is

expected to be linear in the key length. Therefore, theoretically the

run time for computing the permutation with 32 bit keys should

be 4 larger than this time when using 8 bit keys (with all other

parameters being the same). In the experiments, this ratio is in the

range 2.66-3.77. As expected, the time of applying the permuta-

tion is independent of the key length, and is almost the same for

measurements with key length of length 8 or 32.

Table 7.2 compares our results with the reported run times of the

secure quicksort protocol of [4], for the case of 32 bit sorting keys

and 32 bit payloads. The protocols were measured in comparable

settings. Our protocol performs substantially faster, except for the

case of 10M records and semi-honest security. The gain in perfor-

mance in the case of full security against malicious adversaries is

higher than the gain in the semi-honest case.

7.3 Private Heavy Hitter

We implemented Protocol 6.1 for finding heavy hitters and mea-

sured it in our test environment; see the results in Table 7.3. We

compare its performance to that of the Poplar system [12]. Both our
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Size Our protocol [4] Ratio

Semi-honest

1M 2.261 5.016 0.45

5M 14.964 15.689 0.95

10M 37.159 29.157 1.27

Malicious

1M 5.585 33.337 0.17

5M 36.668 96.771 0.38

10M 85.702 202.724 0.42

Table 7.2: Run times in seconds for sorting records with 32-bit keys

and 32-bit values. Data size is in multiples of 2
20

records. The run times

of our protocol are compared to the run time of [4].

Size

Server time

(semi-honest)

Server time

(malicious)

Ratio: malicious

/ semi-honest

100,000 1.556 6.286 4.04

200,000 2.629 8.843 3.36

400,000 5.189 14.896 2.87

Table 7.3: Run times in seconds for the finding heavy hitters among

256-bit strings. The columns show the run times for the semi-honest

and malicious protocol, and the ratio between the two run times

experiments and Poplar’s experiments worked with 256-bit strings

and searched for values appearing at least 0.1% of the time. The run

time is measured starting after our servers receive the shares of

the clients, and after the Poplar servers receive the last incremental

distributed point function keys from the clients.

The Poplar systemwas implemented in Rust, and its experiments

were done using two AWS c4.8xlarge servers (32 virtual cores)

whichwere located in the east andwest coast regions, with 61.8msec

latency. Our servers were located in the same data center, with a

latency of 1-2msec.

The run times of Poplar for input sizes of 100,000, 200,000 and

400,000 items, were 828.1, 1,633 and 3,226 seconds, respectively.

These times are about 500-600 times slower than the our semi-

honest implementation, and about 130-200 times slower than our

malicious implementation. (Poplar provides partial security against

a malicious server, and therefore we compare it to the two security

levels of our implementation.) The differences in latency between

the Poplar testbed and ours should account for only a small fraction

of the difference in the run times.

8 CONCLUSION

We proposed a novel three-party sorting protocol secure against

passive adversaries in the honest majority setting. The new sorting

protocol is based on radix sort and therefore it is stable. It is asymp-

totically better compared to previous sorting protocols since it does

not need to shuffle the entire length of the elements after each com-

parison step. We also proposed novel protocols and optimizations

that reduce about 85% of communication.

We implemented our protocol with those optimizations. Our ex-

periments show that the resulting sorting protocol is considerably

faster than the currently most efficient sorting protocol [4]. Fur-

thermore, efficient sorting enables new data analysis applications

on large datasets. We demonstrate this by showing an extremely

efficient solution to the heavy hitters problem.
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A IMPROVING CONCRETE EFFICIENCY

In this section, we introduce several optimization techniques to

improve concrete efficiency of our basic sorting protocol described

in Section 4. The techniques in Appendix A.1 are applicable to our

protocols with both semi-honest security and malicious security

while those in Appendix A.2 are applicable to only our protocol

with semi-honest security.

A.1 An Optimized Sorting Protocol

A.1.1 Extended Multiplication Protocol. The multiplication pro-

tocol can be extended to an inner-product protocol that on input

([a1], . . . , [aℓ]) and ([b1], . . . , [bℓ]) outputs [c], where c =
∑ℓ
j=1 aibi

[13]. We present the extended functionality Fℓ-mult
in Functional-

ity A.1. We can obtain the protocol for Fℓ-mult
by extending the

efficient three party semi-honest multiplication protocol of [3]. The

communication and round complexities are the same as the multi-

plication protocol. We use Fℓ-mult
in our optimized protocol.

Functionality A.1 (Fℓ-mult
– Extended Multiplication):

Let Pi be the corrupted party. Upon receiving from the honest

parties their shares of ®a = (a1, . . . ,aℓ) and ®b = (b1, . . . ,bℓ), and

an input (ci , ci+1) from Pi , Fℓ-mult
reconstructs (®a, ®b), computes

c =
∑ℓ
i = 1aibi , computes ci−1 = c − (ci + ci+1) and send the

honest parties their shares.

A.1.2 Batch Processing of Multiple Bits. Our first optimization is to

improve both communication and round complexities of GenPerm

(Protocol 4.4) by processing multiple bits of keys at a time. In Proto-

col 4.4, recall that we iteratively compute a secret-shared permuta-

tion at step 4 to 7, where the permutation ®σj obtained after the j-th
iteration represents the stable sort by the lower j bits of the key.
Roughly speaking, the number of the iterations of computing the

permutation can be reduced to 1/L by processing L bits at a time.

We extend Protocol 4.1, which can handle only single bit keys, to

an algorithm that can handle L-bit keys as shown in Protocol A.2. In

the algorithm description, ®1 denotesm-dimensional vector with all

elements being 1, and

⊙
denotes element-wise multiplication. The

number of calls of F
mult

to compute [[ ®f (j)]] for 0 ≤ j ≤ 2
L−1 can be

m(2L−L−1) by precomputing all terms appearing in
®f (j).5 Since the

Fℓ-mult
requires the same communication cost as F

mult
, the total

communication complexity is the same asm(2L − L) invocations of
multiplications.

Although the round complexity gets better for larger L, too
large L causes worse communication complexity. We evaluate the

communication complexity and show that L = 3 was reasonable in

Section A.3.

A.1.3 Reusing permutation in shuffling. In each iteration of step

5 to 7 in Protocol 4.4, the parties first generate a random permu-

tation π and apply it to ®σj−1 in both ApplyPerm and Compose.

Our observation is that we can use the same random permuta-

tion π in ApplyPerm and Compose for each iteration. Then, we

can skip Steps 1 to 2 in Protocol 4.3. To use this optimization,

we modify these algorithms as OptApplyPerm (Protocol A.3) and

OptCompose (Protocol A.4).

A.1.4 Permuting Small Shares. Finally, recall that the reason we

use a large ring R in Protocol 4.4 to secret-share a bit string
®k(i)

is to compute a ring element s in GenBitPerm (Protocol 4.1). On

the other hand, observe that ApplyPerm works even if the input

secret shares of
®k(i) are generated in Z2. Hence, we can reduce

the communication complexity of ApplyPerm by applying it to

shares in Z2. This changes the communication complexity of the

corresponding shuffling protocol in ApplyPerm from 2m | |R | | to
2m bits. After that, we can convert the shares in Z2 to those in R
before running GenMultiBitSort. This optimization is reflected

in Protocol A.3. In the description, we denote secret shares of a in

Z2 by ⟨a⟩ and use a modulus conversion protocol [28] as an ideal

5
Concretely, the parties prepare all the terms with degree greater than 1 that appear

in
®f (j ) . This can be done bym(2L − L − 1) multiplications since all terms that appear

in
®f (j ) can be obtained by

⊙
k′∈S

®k (k
′)
for some S ⊆ {1, ..., L }. Then, the parties

can compute
®f (j ) from a linear combination of the prepared terms.
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Protocol A.4 (Optimized composition of two permutations):

Notation: [[ ®σ ′]] ← OptCompose([[ ®σ ]], [[ ®ρ]], ⟨⟨ π ⟩⟩, σ ′′).
Input: Secret-shared two permutations ([[ ®σ ]], [[ ®ρ]]).
Output: The secret-shared permutation [[ ®σ ′]], where σ ′−1 = σ−1◦ρ−1.

1: The parties apply σ ′′ to [[ ®ρ]] and obtain [[ ®ρ′]].
2: [[ ®σ ′]] ← Unshuffle(⟨⟨ π ⟩⟩; [[ ®ρ′]]).
3: return [[ ®σ ′]].

Protocol A.5 (Optimized permutation generation of stable sort):

Notation: [[ ®σ ]] ← OptGenPerm(⟨®k ⟩).
Input: Secret-shared keys ⟨®k ⟩ = (⟨k1 ⟩, . . . , ⟨km ⟩) where ⟨ki ⟩ =
(⟨k (1)i ⟩, . . . , ⟨k

(ℓk )
i ⟩) and ⟨®k (j ) ⟩ = (⟨k (j )

1
⟩, . . . , ⟨k (j )m ⟩).

Output: The secret-shared permutation [[ ®σ ]] such that σ is the stable

sorting of
®k .

1: The parties send (⟨®k (1) ⟩, . . . , ⟨®k (L) ⟩) to F
modconv

, and receive

([[®k (1)]], . . . , [[®k (L)]]).
2: [[ ®ρ1]] ← GenMultiBitSort([[®k (1)]], . . . , [[®k (L)]]).
3: [[ ®σ1]] := [[ ®ρ1]].
4: for j = 2 to ℓ̂ do

5:

(
[[®k ′((j−1)L+1)]], . . . , [[®k ′(jL)]], ⟨⟨ π ⟩⟩, σ ′′j−1

)
←

OptApplyPerm

(
[[ ®σj−1]]; ⟨®k ((j−1)L+1) ⟩, . . . , ⟨®k (jL) ⟩

)
6: [[ ®ρ j ]] ← GenMultiBitSort([[®k ′((j−1)L+1)]], . . . , [[®k ′(jL)]]).
7: [[ ®σj ]] ← OptCompose([[ ®σj−1]], [[ ®ρ j ]], ⟨⟨ π ⟩⟩, σ ′′j−1).
8: return [[ ®σ

ℓ̂
]].

Protocol A.2 (Generating permutation of stable sort for multiple

bits):

Notation: [[ ®ρ]] ← GenMultiBitSort([[®k (1)]], . . . , [[®k (L)]]).
Input: Secret-shared L vectors of keys [[®k (1)]], . . . , [[®k (L)]].
Output: Shares of the permutation [[ ®ρ]] of the stable sorting by

(®k (1), . . . , ®k (L))
1: for j = 0 to 2

L − 1 do

2: Regard j as an L-bit element j = b (L) | | · · · | |b (1).
3: for k ′ = 1 to L do

4: The parties locally compute [[ ®dk′ ]] := [[b (k
′) ®k (k

′) + (1 −

b (k
′))(®1 − ®k (k

′))]].

5: The parties compute [[ ®f (j )]] := [[
⊙L

i=1
®di ]] by using F

mult
.

6: [[s]] := [[0]]
7: for j = 0 to 2

L − 1 do

8: for i = 1 tom do

9: [[s]] := [[s]] + [[f (j )i ]].

10: [[s (j )i ]] := [[s]].
11: for 1 ≤ i ≤ m do in parallel

12: Compute [[ρ(i)]] by sending ([[f (0)i ]], . . . , [[f
(2L−1)
i ]]) and

([[s (0)i ]], . . . , [[s
(2L−1)
i ]]) to Fℓ-mult

with ℓ = 2
L
.

13: return [[ ®ρ]] = ([[ρ(1)]], . . . , [[ρ(m)]]).

functionality that change secret shares in Z2 to those in R. We

denote the functionality by F
modconv

.

A.1.5 Putting it All Together. Applying these optimizations de-

scribed above to GenPerm (Protocol 4.4), we obtain our optimized

sorting protocol (OptGenPerm) as described in Protocol A.5, which

uses Protocols A.2 to A.4 as a subroutine. Note that ℓ̂ := ⌈
ℓk
L ⌉ in

the description of OptGenPerm.

Protocol A.3 (Optimized application of a permutation):

Notation:

(
[[®k ′(1)]], . . . , [[®k ′(L)]], ⟨⟨ π ⟩⟩, σ ′′

)
←

OptApplyPerm

(
[[ ®σ ]]; ⟨®k (1) ⟩, . . . , ⟨®k (L) ⟩

)
.

Input: A secret-shared permutation [[ ®σ ]] and a secret-shared vector

⟨®k (1) ⟩, . . . , ⟨®k (L) ⟩.
Output: The secret-shared vector [[®k ′(1)]], . . . , [[®k ′(L)]] such that

®k ′(i ) = σ (®k (i )) for 1 ≤ i ≤ L, a shared permutation ⟨⟨ π ⟩⟩, and a

permutation σ ′′ such that π ◦ σ .
1: The parties call F

rand
and receive ⟨⟨ π ⟩⟩.

2: [[ ®σ ′′]] ← Shuffle(⟨⟨ π ⟩⟩; [[ ®σ ]]).
3: The parties reveal [[ ®σ ′′]] and obtain ®σ ′′.
4: for 1 ≤ i ≤ L (in parallel) do

5: ⟨®k ′′(i ) ⟩ ← Shuffle(⟨⟨ π ⟩⟩; ⟨®k (i ) ⟩).
6: The parties send ⟨®k ′′(i ) ⟩ to F

modconv
, and receive [[®k (i )]].

7: The parties apply σ ′′ with [[®k ′′(i )]] and obtain [[®k ′(i )]].

8: return

(
[[®k ′(1)]], . . . , [[®k ′(L)]], ⟨⟨ π ⟩⟩, σ ′′

)
.

A.2 Further Optimization for Sorting with

Semi-honest Security

In the semi-honest security model, we can further optimize shuf-

fling protocols. The shuffling protocol (Protocol 3.2) invokes the

resharing protocol three times, i.e., the communication complexity

is 6m | |R | | in total. We show the optimized shuffling protocol in

Protocol A.6 whose communication complexity is 4m | |R | | bits in
total.

Recall that the shuffling protocol repeatedly permutes shares by

πi three times. The idea is that P1 knows π2 and π1 that used for

the first and second shuffling steps, and the randomness used in

resharing also can be obtained via F
rand

beforehand. Therefore, P1
can permute ®a using π2 and π1 at once.

Protocol A.6 (Optimized shuffling protocol):

Notation: [[ ®a′]] ← OptShuffle(⟨⟨ π ⟩⟩; [[ ®a]])
Input: A secret-shared vector [[ ®a]] and a permutation ⟨⟨ π ⟩⟩.
Output: The secret-shared shuffled vector [[ ®a′]] = [[π ®a]].
1: Let ⟨⟨ π ⟩⟩i = (πi , πi+1) and [[ ®a]]i = ( ®ai , ®ai+1).
2: The parties call F

rand
m times and obtain ( ®αi , ®αi+1) for Pi .

3: P3 computes ®γ := π1( ®a3) + ®α1 and sends it to P2.
4: P1 computes

®δ := π2(π1( ®a1 + ®a2) − ®α1) − ®α2 and sends it to P3.
5: P2 computes ®a′′

2
:= π3(π2(®γ ) + ®α2).

6: P3 computes ®a′′
1
:= π3( ®δ ).

7: Let ®a′′
3
:= ®0 and [[ ®a′]] ← reshare([[ ®a′′]], 1).

8: return [[ ®a′]]

First, let us confirm completeness. Observe that

®a′′
2
= π3 ◦ π2 ◦ π1(®a3) + π3 ◦ π2( ®α1) + π3( ®α2)

®a′′
1
= π3 ◦ π2 ◦ π1(®a1 + ®a2) − π3 ◦ π2( ®α1) − π3( ®α2).

Therefore,

®a′′
1
+ ®a′′

2
+ ®a′′

3
= π (®a).

and [[®a′]] is correct shares of π (®a).
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Theorem A.7. Protocol A.6 securely computes F
shuffle

in the F
rand

-

hybrid model against a single corruption by a passive adversary.

Proof: All the values that P2 and P3 receive in the protocol are

masked by ®α1 and ®α2, respectively. All the values that P1 receives
in the protocol are pseudorandom shares of [[®a′]] for P1. Therefore,
the simulator can simulate all values by random elements. □

Note that we can obtain optimized unshuffling protocol similarly

with the same complexity as OptShuffle. We call the protocol

OptUnshuffle.

A.2.1 Shuffling with reveal. We observe that in the step 2-3 of

OptApplyPerm (Protocol A.3), the output of shuffling is imme-

diately revealed. The communication complexity of a sequential

invocation of the (optimized) shuffling and reveal protocols is

4m | |R | | + 3m | |R | | bits in total. We can reduce it to 4m | |R | | bits
by contriving a new protocol that directly computes the shuffling

secret shares and then reveals them. The shuffling with reveal pro-

tocol appears in Protocol A.8.

Protocol A.8 (Combining shuffling and Reveal):

Notation: ®a′ ← ShuffleReveal(⟨⟨ π ⟩⟩; [[ ®a]])
Input: A secret-shared vector [[ ®a]] and a permutation ⟨⟨ π ⟩⟩.
Output: The shuffled vector ®a′ = π ®a.
1: Let ⟨⟨ π ⟩⟩i = (πi , πi+1) and [[ ®a]]i = ( ®ai , ®ai+1).
2: The parties call F

rand
m times and obtain ( ®αi , ®αi+1) for Pi .

3: P3 computes ®γ := π1( ®a3) + ®α1 and sends it to P2.
4: P1 computes

®δ := π1( ®a1 + ®a2) − ®α1 and sends it to P2.
5: P2 computes ®a′ = π3 ◦ π2(®γ + ®δ ) and send it to P1 and P3.
6: return ®a′

We can confirm completeness as

®a′ = π3 ◦ π2 ◦ π1(®a1 + ®a2 + ®a3) = π (®a).

Theorem A.9. Protocol A.6 securely compute F
ShuffleReveal

in the

F
rand

-hybrid model against a single corruption by a passive adversary.

Proof: The simulator can simulate the view of P2 by choosing

random vector ®̃γ and
®̃δ such that ®̃γ + ®̃δ = π−1

2
◦ π−1

3
(®a′). □

A.3 Communication Complexity

In this section, we evaluate the communication complexity of the

optimized sorting protocol with semi-honest security described in

Sections A.1 and A.2.

• GenMultiBitSort: This protocol includesm(2L − L − 1) calls
to F

mult
andm calls to Fℓ-mult

, both involve sending one ring

element. Thus, each party sendsm(2L − L)| |R | | bits.
• OptApplyPerm: This protocol includes 1 call to ShuffleReveal

in R, L calls to OptShuffle in Z2 and Fmodconv
overm secrets.

F
modconv

takes (1 + | |R | |)m-bit communication per party [28].

Hence, OptApplyPerm requires sending
4m
3
| |R | | + 4mL

3
+ L(1+

| |R | |)m = ( 7L
3
+ 4+3L

3
| |R | |)m bits per party.

• OptCompose: This protocol includes 1 call to OptUnshuffle,

which takes
4m
3
| |R | |-bit communication per party.

Therefore, the complexity of OptGenPerm for each party can be

bounded by T (L) = ℓ̂m( 7L
3
+ (2L + 8

3
)| |R | |) bits where ℓ̂ = ⌈

ℓk
L ⌉.

Similar to Eq. (1), the total communication complexity per party

can be bounded by

T (L) + 3m | |R | | + 2m | |R ′ | |.

We can observe that T (1) > T (2) < T (3) < T (4) < · · · . However,
we found that L = 3 is experimentally the best setting since the

difference betweenT (2) andT (3) is small, and the round complexity

decreases as L increases. Hence, we use L = 3 for the evaluation.

Note that T (3) ≈ mℓk (
7

3
+ 32

9
| |R | |), and the communication com-

plexity of the optimized protocol is about a third of that of the basic

protocol presented in Section 4 (by assuming that 1 ≪ ||R|| ≈ | |R ′ | |

and 1 ≪ ℓk ).

B OMITTED PROOFS

B.1 Proof of Theorem 4.6

TheoremB.1 (Theorem 4.6, restated). Protocol (GenPerm,ApplyPerm)

securely computes Fsort in the (Frand,Fmult
)-hybrid model in the pres-

ence of semi-honest adversaries controlling a single party.

Proof: In our protocol, there are two sources of interaction that

needs to be simulated by the simulatorS: revealing and resharing of

secrets. Revealing takes place after shuffling using a random permu-

tation π . In this case, the data seen by the adversary is completely

random and uniformly distributed, and therefore the simulator S

can simply send a random element to the adversary as its incoming

message when running reveal. Resharing takes place inside the

shuffling protocol, when two parties permute the data and then

reshare it to the third party. When the corrupted party is the third

party, the simulator needs to simulate the two shares sent to him

by the honest parties. Recall that in the shuffling protocol, each

pair of parties Pi and Pi+1 choose a random permutation πi+1 and
a random sharing of 0. Denote the vector of data by ®a and denote

the random sharing of 0 by ((ri , ri+1))
3

i=1 such that r1 + r2 + r3 = 0.

Then, for item k in the vector, Pi sends a
′
k,i + ri to Pi−1, whereas

Pi+1 sends him a′k,i−1 + ri−1, where a
′
is the vector after applying

the random permutation πi . Since both πi and (ri−1, ri ) are random
and independent of the input vector, it follows that the messages

sent to Pi−1 are completely random. Therefore, S can simulate

these messages by choosing random messages for the corrupted

party’s view. The simulation is therefore perfect. This concludes

the proof. □

B.2 Proof of Lemma 5.3

Lemma B.2 (Lemma 5.3, restated). Each iteration i (i ∈ [3]) in our

Shuffling protocol (Protocol 3.2) securely computes F add

reshare-shuffle
in

the presence of a single malicious party.

Proof: Let S be the ideal-world simulator and let Pi be the cor-
rupted party. S receives the input shares of the Pi from the func-

tionality. Then, we have two cases:

• Pi is one the resharing parties. In this case, S receives also π
and the random ®r1, ®r2 and ®r3 from the functionality. Thus, it can

compute Pi ’s message and therefore extract the additive error

®∆, by taking the difference between the actual message and the

expected message.

• Pi is the receiving party. In this case, S receives the output shares

of Pi from the ideal functionality, and so it can perfectly simulate

the honest parties sending their messages to Pi
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Observe that in both cases the simulation is perfect and the

output is identical to a real execution. This concludes the proof.

□

B.3 Proof of Lemma 5.5

Lemma B.3 (Lemma 5.5, restated). If the corrupted party sends

any ∆ , 0 in any of the calls to F add

ℓ−mult
or F add

reshare-shuffle
before the

verification step, then β = accept in the verification (Protocol 5.4)

with probability at most
2

|F |
.

Proof: For each output of F add

ℓ−mult
and F add

reshare-shuffle
, let zk be the

actual value and z′k be the MAC (i.e., if the parties acted honestly

then z′k = r · zk ). Thus, we have

w = r · u −v = r ·
n∑

k=1

αk · zk −
n∑

k=1

αk · z
′
k

LetMult and reshare be the set of outputs of multiplications and

resharing operations in our protocol, respectively. Then, we can

write

wMult = r ·
∑

k ∈Mult

αk · zk −
∑

k ∈Mult

αk · z
′
k (2)

and so

w = r ·
∑

k ∈reshare

αk · zk −
∑

k ∈reshare

αk · z
′
k +wMult

Next, assuming that cheating took place and errors were added

to the outputs, we have

w = r ·

( ∑
k ∈reshare

(αk · zk ) + ϵ1

)
+ϵ2−

∑
k ∈reshare

αk ·(r ·zk+δk )+ϵ3+w
′
Mult

(3)

where:

• ϵ1, ϵ2 and ϵ3 are the errors added in the verification protocol

itself, when calling F add

ℓ−mult
to compute u, r ·u andv respectively.

• w ′Mult is the value in Eq. (2) after introducing the additive errors

from the calls to F add

ℓ−mult
intowMult.

• δk is the accumulated error in the calls to F add

reshare-shuffle
. Specifi-

cally, assume that zk and z′k were obtainedwhen shuffling the vec-

tor ®x and ®x ′ with the permutation π . Thus, zk = xπ −1(k)+∆k and

z′k = x ′π −1(k )+∆
′
k where∆k and∆′k are the errors that were added

by the corrupted party. Now, observe that x ′π −1(k ) = r ·xπ −1(k )+εk ,

where εk comes from errors in previous operations. Therefore,

we have

δk = z′k − r · zk = r · xπ −1(k ) + εk + ∆
′
k − r · (xπ −1(k ) + ∆k )

= εk + ∆
′
k − r · ∆k (4)

Next, we compute the probability β = accept at the end of the

protocol, i.e., the probability thatw = 0. Observe that

w = r · ϵ1 + ϵ2 −
∑

k ∈reshare

αk · δk + ϵ3 +w
′
Mult. (5)

We have the following cases:

• Case 1: Cheating took place in some call to F add

ℓ−mult
. In this case, if

all δk = 0, thenw = r ·ϵ1+ϵ2+ϵ2+w ‘Mult. By Theorem 5.2 in [13],

we have that w = 0 with probability of at most
2

|F |
. Otherwise,

there exists δk , 0, say δk0 . Then,w = 0 if and only if

αk0 = (r · ϵ1 + ϵ2 −
∑

k ∈reshare,k,k0

αk · δk + ϵ3 +w
′
Mult) · (δk0 )

−1

which happens with probability
1

|F |
.

• Case 2: No cheating took place in any call to F add

ℓ−mult
. In this case,

w ′Mult = 0 (note that all calls to F add

ℓ−mult
are done in GenBitPerm

before any shuffling and so there are no previous errors to take

into account here). Thus, we have

w = r · ϵ1 + ϵ2 −
∑

k ∈Shuffle

αk · δk + ϵ3 (6)

Now, if there exists δk , 0, then as in the previous case, w = 0

with probability
1

|F |
. However, it might happen that errors were

added when calling F add

reshare-shuffle
and still δk = 0 for all ks. Let

k0 be the first call to F
add

reshare-shuffle
for which an attack took place.

This implies that in Eq. (4) εk0 = 0, and so δk0 = ∆′k − r · ∆k .
However, since r is uniformly chosen from F, it follows that

δk0 = 0 with probability
1

|F |
. It follows that the probability that

w = 0 in Eq. (6) is
1

|F |
+

(
1 − 1

|F |

)
· 1

|F |
≤ 2

|F |
.

□

B.4 Proof of Theorem 5.6

Theorem B.4 (Theorem 5.6, restated). Let s be a statistical security
parameter, and let F be a finite field such that

2

|F |
≤ 2
−s
. Then, our

protocol (as described in the text) securely computes Fsort with abort

in the (F
rand
,F add

ℓ−mult
,F add

reshare-shuffle
)-hybrid model, in the presence

of one malicious party.

Proof: Let S be the ideal world simulator and let Pi be the cor-

rupted party. In the simulation, S plays the role of F
rand

, F add

ℓ−mult
,

F add

reshare-shuffle
and the honest parties interacting with Pi . Playing

the role of these three functionalities, the simulator receives from

Pi its shares of the output of each generation of a random secret,

multiplication and shuffling, as well as the additive attacks. Note

that S knows the corrupted party Pi ’s share throughout the execu-
tion. It remains to show how to simulate the verification protocol

and the revealing that take place after each verification.

Simulating the verification protocol. The simulator S re-

ceives the Pi ’s shares for the output of the invocations of F
add

ℓ−mult

when computing u, v and r · u and the additive errors ϵ1, ϵ2 and ϵ3.
To simulate the opening ofw , there are several cases:

• Case 1: No Additive attacks were sent. In this case, everyone acted

honestly and sow = 0.

• Case 2: For each multiplication or resharing operation it holds that

∆′k − r · ∆k = 0. Recall that ∆′k is the error when computing the

MAC and∆k is the error when computing the actal output of each

operation (see Eq. (4)). In this case, all the errors cancel each other,

and therefore there are no accumulated errors that propagates

to the next layer of operations in the protocol. Therefore, both

∆k and w ′Mult in Eq. (5) are 0, and so the simulator S sets: w =
r · ϵ1 + ϵ2 + ϵ3.
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• Case 3: there exists k such that ∆′k − r · ∆k = 0. In this case, we

have that ∆k orw ′mult in Eq. (5) are not 0. Now, since the random

coefficients are secret and distributed uniformly, this implies that

w is distributed randomly over F. Thus, S setsw to be a random

element in F.

Now, in the above last two cases, if despite an additive attack was

carried-out before the verification protocol w = 0, the simulator

outputs fail and halts. Otherwise, given the corrupted party’s shares
wi andwi+1, the simulator setswi−1 = w −wi −wi+1 and simulates

the honest parties sendingwi−1 to Pi in the procedure reveal([[w]]).
If the corrupted party Pi sent inconsistent shares or ifw , 0, the

simulator S sends abort to the trusted party computing Fsort and

simulates the honest parties aborting the protocol.

Simulating the revealing procedure. The simulation pro-

ceed to this procedure, only after a verification protocol has ended

successfully, with the honest parties outputting accept. In this case,

S can work as in the semi-honest setting, i.e., for each opened value

a, the simulator S, who knows the corrupted party’s shares ai and
ai+1, simply chooses a random a and sets ai−1 = a − ai − ai+1. As
before, if Pi sends inconsistent shares in the reveal procedure, then

S sends abort to the trusted party computing Fsort and simulates

the honest parties aborting the protocol.

The simulation above is distributed identically to a real execution,

except for the case thatS outputs fail. However, note that this event
happens when the corrupted party added errors and yet w = 0,

which corresponds to event where errors are not detected by the

honest parties in the real execution. Thus, by Lemma 5.5, it follows

that Pr[S outputs fail] ≤ 2

|F |
, which is exactly the statistical error

allowed by the theorem. This concludes the proof. □

C COMPUTING VARIANTS OF THE

HEAVY-HITTERS PROBLEM

Protocol C.1 describes another method for securely computing

heavy hitters using a sorting protocol. The protocol uses two sorting

operations, one using the values as a key, and one using a single

bit as the key. Crucially, the second sorting operation must be

implemented as a stable sort. In addition to sorting, the protocol

computes simple operations that can implemented as a logarithmic

depth circuit of binary gates.

Protocol C.1 (Computing heavy hitters):

Input: A secret-shared vector [[ ®v]] of the values of the clients. A thresh-

old t .
Output: All values which appear more than t times.

1: Sort the elements of [[ ®v]]. (As a result, all identical values are adja-
cent to each other.)

2: Compute a shared vector of bits [[ ®f ]], where fi = 1 iff vi , vi+1.
(fi is 1 iff vi is the last in a sequence of identical values.)

3: Generate a secret-shared vector [[®t ]], where ti = i .
4: For each index i consider the concatenation fi | |ti | |vi as a single

element. Sort these elements based on the single-bit key fi . (As a
result, the element with fi = 1 appear first. Since the sorting is

stable, they are ordered by their location in the previous order, ti .)
5: For each i , if fi = fi−1 = 1, and ti−ti−1 ≥ t , outputvi and ti−ti−1.

(Identify elements which appear at least t times and output them

together with their count.)

As described, Protocol C.1 outputs the identities of values ap-

pearing at least t times, as well as the counts of appearances of

each item (Protocol 6.1 does not compute these counts). Of course,

Protocol C.1 can be slightly changed to not output the counts, or to

output noisy counts in order to ensure differential privacy. Proto-

col C.1 can also be easily changed to support the computation of

other variants of the heavy hitters problem. The overhead of these

variants is similar to that of the original protocol:

• If it is only required to output a histogram of all values, the

protocol can end after the first sort operation (Step 1).

• If it is required to output the top s heavy hitters, instead

of outputting all values which appear more than t times,

then instead of checking in Step 5 whether ti − ti−1 ≥ t ,
the protocol should sort the items according to ti − ti−1 and
output the top s results.
• Of course, the protocol can easily be adapted to output the

top s values which appear more than t times.
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