
Secret-Shared Joins with Multiplicity from Aggregation Trees

Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella,
Srinivasan Raghuramam and Peter Rindal

Abstract

We present novel protocols to compute SQL-like join operations on secret shared database
tables with non-unique join keys. Previous approaches to the problem had the restriction that
the join keys of both the input tables must be unique or had quadratic overhead. Our work
lifts this restriction, allowing one or both of the secret shared input tables to have an unknown
and unbounded number of repeating join keys while achieving efficient O(n log n) asymptotic
communication/computation and O(log n) rounds of interaction, independent of the multiplicity
of the keys.

We present two join protocols, ΠJoin-OM and ΠJoin-MM. The first, ΠJoin-OM is optimized for
the case where one table has a unique primary key while the second, ΠJoin-MM is for the more
general setting where both tables contain duplicate keys. Both protocols require O(n log n) time
and O(log n) rounds to join two tables of size n. Our framework for computing joins requires an
efficient sorting protocol and generic secure computation for circuits. We concretely instantiate
our protocols in the honest majority three-party setting.

Our join protocols are built around an efficient method to compute structured aggregations
over a secret shared input vector V ∈ Dn. If the parties have another secret-shared vector of
control bits B ∈ {0, 1}n to partition V into sub-vectors (that semantically relates to the join
operations). A structured aggregation computes a secret shared vector V ′ ∈ Dn where every sub-
vector (Vb, ...,Ve) (defined by the control bits) is aggregated as V ′

i = Vb ? ... ? Vi for i ∈ {b, ..., e}
according to some user-defined operator ?. Critically, the b, e indices that partition the vector
are secret. It’s trivial to compute aggregations by sequentially processing the input vector and
control bits. This would require O(n) rounds and would be very slow due to network latency.
We introduce Aggregation Trees as a general technique to compute aggregations in O(log n)
rounds. For our purpose of computing joins, we instantiate ? ∈ {copy previous value, add}, but
we believe that this technique is quite powerful and can find applications in other useful settings.

1 Introduction

We advance the state of art for performing composable SQL-style join operations on secret shared
input databases. Given two secret shared database tables, our protocols constructs a secret shared
table containing a join of the two tables. Our protocol lifts all restrictions on the join columns
to efficiently compute the join on key columns which have an unbounded and unknown number
of duplicates. Previous protocols [MRR20, LTW13a] for this problem with efficient asymptotic
communication have required the join keys to be unique. Our protocols require O(log n) rounds
and has computation and communication that is O(n log n), where n is the size of the input/output
tables. Our protocol can handle/perform the full suite of join operations including inner, union, left
and full joins(see Appendix A for definitions). Our protocol is highly robust and can be instantiated
in any semi-honest setting with an efficient secret-shared sorting and generic secure computation

1

protocol. We concretely implement our protocol in the semi-honest, three party setting with an
honest-majority.

In recent years, we have seen a lot of exciting work towards privately computing [PSZ14a,
PSSZ15a, PSZ16, KKRT16, PSWW18, CLR17, CHLR18, IKN+17a, RA18, KLS+17, OOS17, KMP+17,
MRR20, RS21, RR22] set intersection, union, inner join, secret-shares of set intersection and re-
lated functionalities, which have shown great promise for practical deployment. A vast majority of
these works target the special-case of private set intersection (PSI), which is analogous to revealing
the entire result of an inner join. However, real-world applications require more general and robust
properties. First, we would like to compute any type of join/functionality without revealing the re-
sult (to enable performing further joins, filtering, or computing some aggregate information). This
will also require the inputs to be secret-shared since the input might be the output of a previous
MPC computation. Finally, most existing works assume that inputs (join-keys) are unique which
is not the case with real-world data. Designing efficient protocols for this general task of compos-
able SQL with secret-shared inputs, outputs and non-unique join keys is significantly harder, and
techniques from traditional setting of PSI do not automatically translate.

The first important property of our protocols is that the inputs/outputs are secret shared and
therefore can be composed together, where the output of a join can be the input to another. Allowing
this composability greatly increases the ability to perform highly complex queries and enables
additional computation to be performed after the join. For example, most privacy preserving
machine learning publications [MR18a, Fac20, DPDea20, WGC19, RSC+19] assume that the data
being trained on has already been joined together. Without our line of work, it is unclear how
real-world data can be filtered and joined for these machine learning tasks.

Prior privacy preserving join techniques with good practical performance assume unique join
keys [MRR20] or were too computationally expensive [LTW13a] to be used at scale in practice.
Moreover, many practical application require the ability to efficiently handle duplicates or mul-
tiplicity over the join keys. Sometimes, inputs inherently have one-to-many or many-to-many
relationships. For example, one party has a set of users with associated data, while the other party
has input data with respect to a set of groups. In this case we want to join the group data with the
user data. This is precisely a one-to-many join. Now, for whatever reason, if we need to construct
a table for all pairs of users within each group, we can express this as a many-to-many join between
the two tables. Until now, being able to efficiently run join queries over such relations on large
inputs has been all but impossible in the secret shared setting.

Queries of this type often come up in practice. One recent example has been the push to develop
privacy preserving ads [Wil19, Met22, IKN+17b]. This application aims to, in aggregate, attribute
someone buying an advertised product (possibly offline) to them clicking on an ad on an online
platform without revealing information about individual users. This process involves linking data
between several entities and, when done at scale, requires both one-to-many and many-to-many
joins between distrusting parties, which are ideally performed using MPC. Another application is
financial fraud detection. Companies are legally mandated to implement methods for identifying
and preventing fraud. However, the necessary information for determining this is often spread
across several institution which necessitates some form of data sharing [SvHA+19]. Moreover, the
types of data analysis involved often require a series of joins on non-unique attributes. For example,
joining merchant data with issuer data for each transaction and then forwarding the join into a
machine learning classifier [CTB+18]. Even this simple use case would involve both a one-to-many
and many-to-many join.

2

Computing joins efficiently with one-to-many or many-to-many relations has many challenges.
The first is identifying a mechanism to match up the records. Traditionally, this has been done
using a hash table where the row with join key k is (obliviously) mapped to the hash table position
h(k). Then it is a simpler task of comparing the items mapped to the same position. However, it is
unclear how such a strategy would work in the case of duplicate keys. In the worst case, all n rows
of a table might have the same key k, all of them would be mapped to the same position leaking
the fact that all items have the same key. Therefore, an approach that does not use a hash table
appears necessary.

One could construct the join by comparing all n2 pairs of input rows. However this would
be impractical for large n. Alternatively, one could imagine there where exists a circuit that
more cleverly compares the tables. However, as we discuss later, many of the natural approaches
to compute joins without performing n2 work requires a circuit of depth O(n), i.e. a circuit with
linear multiplicative depth. Then if a non-constant round MPC protocol is used (for computational
efficiency), the overall round complexity would be linear. To understand the impact of this, consider
the case where sending a message has a relatively fast 10 milliseconds latency, then joining two
tables with n = 1, 000, 000 rows would at least requires 2.8 hours. This is in contrast with our
protocols which require O(log n) rounds, e.g. about 0.2 seconds.

In this work, our main contribution is novel and efficient techniques to resolve queries over
one-to-many or many-to-many relations. We present two join protocols - ΠJoin-OM is optimized for
the setting where only one of the input tables contains duplicate join keys. In this situation the
output table has a maximum possible size of n where n is the size of the input tables. ΠJoin-OM

will always produce such an output table by adding dummy rows until it is of size n. The dummy
rows can be removed if leaking the size is OK.

For the case with both input table might contain duplicates we present the more general pro-
tocol, ΠJoin-MM. In this setting the maximum possible output table size is n2, i.e. when both input
tables have n rows with all the same key. In this situation we optionally allow for an upper bound
D ≤ n2 on the size of the output table to be revealed to the parties. In this case the running time
of the protocol is O((D+n) log(D+n)). We note that D need not be known ahead of time, instead
it can be computed by the protocol as a function of the input tables.

Our Contributions

• First we introduce aggregation trees, a very versatile and powerful technique for updating
values in a vector based on its neighbors. In particular, the technique allows the parties to
break an input vector V into subvectors and then for each to effectively perform a linear
pass over it to update each value based on the sum of all of the predecessors (prefix) and/or
successors (suffix). Most importantly, this can all be achieved in O(log n) rounds, O(n) time.

• An innovative and efficient protocol ΠJoin-OM for joining two tables that have one-to-many
relation, i.e. one table is known to have unique keys. The protocol runs in time O(n log n)
where n is the number of input rows in the tables and requires O(log n) rounds. It makes
use of oblivious sorting, permutations and aggregation trees. For n = 1, 000, 000, the running
time is 21 seconds, just 1.7× slower than the state of art one-to-one join relation protocol of
[MRR20].

3

• Using similar but more advanced techniques, we then present the generalized protocol ΠJoin-MM

that can join tables with a many-to-many relation, i.e. both tables can have duplicate keys.

• We introduce the Aggregate-Sort-Compute pattern, a general technique for efficient data
processing. In particular, we observe that this pattern enables many computations that
traditionally would have required expensive techniques such as oblivious RAM.

• Composable protocols where the input and output tables are secret shared, enabling additional
secret shared computation.

• Our techniques are generic and can be applied to many settings, e.g. two party, many party,
malicious, etc.

• We implement our protocol in the honest majority three party framework of [MR18a]. We
observe very competitive running times compared to prior protocols while offering more func-
tionality.

2 Our Setting and Related Work

Database Joins. We want to obliviously compute database joins which have a one-to-many or
many-to-many relations. We specifically, instantiate the protocol in the three-party honest majority
setting. Let’s look at works that are closely related to ours.

Ion et al. presented a private set intersection sum protocol [IKN+17a] that is used by Google
Adwords to correlate online advertising with offline sales in a privacy preserving manner. In par-
ticular, a sum over the sales in the inner join is revealed. Pinkas et al. [PSWW18] also presented
a protocol that allows the output of the join to be in a secret shared format such that the output
can further be used for additional secret shared computation. These protocols can be framed in
terms of SQL queries consisting of an inner join followed by an aggregation on the resulting table,
e.g. summing a column. Neither of these protocols (and almost no prior related results) support
secret-shared inputs, but rather require the source tables to be held in the clear by each party.

Blanton et al. [BA11] is one of the first works to propose composable protocols (with secret-
shared inputs and outputs) for a comprehensive suite of set operations in the honest majority
setting. Their protocols require asymptotic O(n log n) communication and computation complexity
where n is the total number of items in both the input sets. The core of their approach is to combine
all the inputs and obliviously sort this combined list. Next, they employ generic MPC techniques
to compute set operations. This is very close to our approach, except that we extend beyond set
operations and look at the challenges of computing database joins in a round efficient manner.

Laur et al. in [LTW13b] present a protocol for database joins/unions in the honest majority set-
ting with secret-shared input databases. The protocol requires an oblivious shuffle and mechanism
for oblivious PRF (pseudo-random function) evaluation of secret shared inputs with secret-shared
keys. The main drawback of this approach is that it leaks the size of the intersection and the result
of the where clause of the join for each row to every party. As a result, this protocol is not com-
posable, i.e., the output cannot be used as the input the next join without significant leakage. In
particular, if there are non-unique join or repeating keys, the protocol leaks the size of the output
join table and the frequency of occurrence of each key while hiding the true identity of the key. In
comparison, our work only leaks the size of the output join table. Concretely, [MRR20] estimates

4

that their protocol requires around an hour to compute the join of a million records while ours is
much more efficient.

[MRR20] showed the first practical approach for computing database joins with linear overhead
in communication and computation requiring only constant rounds of communication. Their join
computations are composable; the output of a join can serve as the input for the next join operation
enabling a sequence of SQL join computations, all while hiding the size of the each intermediate
joins output. In terms of technique, this approach shows how to combine the binary-secret sharing
scheme of [MR18b] with cuckoo hashing (a common feature of most efficient and state of the art
approaches for PSI [PSZ14b, PSSZ15b, KKRT16, PSTY19a]). To compute an oblivious shuffle
they design a custom protocol for evaluating the oblivious switching network in the three party
setting. The main drawback of their approach is that they require the primary keys of the both
the input tables to be unique. This assumption limits the protocol from being truly composable
for real world datasets. In this work, we are able to overcome this limitation provided it is safe to
leak the size of the output table.

Secrecy. Liagouris et al. in [LKFV21] proposed a generic MPC-based framework to handle
the whole suite of SQL query operations. They have secret-shared inputs anddd outputs and can
handle non-unique join keys. To compute an inner join of two input tables of size n, they require
O(n2) communication and constant rounds. They achieve constant round by doing a comparison
between all pairs of join keys in parallel. Since, they assume the worst case upper bound on the
output table, they are able to hide the intermediate output table size. In comparison, our work
takes an oblivious sorting and the novel aggregation trees based approach to reduce the asymptotic
communication to O((n+D) log n) in O(log n) rounds, where D is the output table size. As such,
our protocols significantly outperform Secrecy when one table has unique keys or if D � n2/ log n.
As the output table size approaches n2, the additional complexity of our protocol will result in worse
performance. The exact trade-off point is unclear but certainly for most practical applications with
large n and moderate D, e.g. n ≈ D ≈ 220, our protocol is orders of magnitude faster.

In terms of setting, Secrecy can be easily generalized to any semi-honest setting as long as
we can efficiently instantiate the MPC ideal functionality; our work can also be generalized to any
semi-honest setting by instantiating the MPC ideal functionality and oblivious sorting in the chosen
setting.

Privately computing set operations has been widely studied in recent years, with much focus
on the computing the intersection of sets [PSZ14b, PSSZ15a, PSZ16, KKRT16, CLR17, CHLR18,
IKN+17a, RA18, PRTY19, PRTY20]. Most of these works are in the two party setting and not
amenable secret-shared inputs. Some works in the two party setting [PSSZ15a, PSWW18, CO18,
PSTY19b, GPR+21, RS21, RR22] look at revealing secret-shares of the output to enable computing
over the intersection.

3 Preliminaries

Notation. We use x := y to [re]define the variable x with the value of y. x = y denotes
mathematical equality or the bit b which is 1 iff x, y hold the same value. Let [m,n] denote the
“inclusive” range {m,m+1, 2, ..., n} and [n] as shorthand for [1, n]. We also define (m,n] as the “left-
exclusive” range {m+ 1, 2, ..., n}, [m,n) as the “right-exclusive” {m,m+ 1, 2, ..., n− 1} and (n], [n)
as the shorthands for (1, n], [1, n), respectively. Let V be a vector with elements V = (V1, ..., Vn).
A subvector can be indexed using V[m,n] to denote (Vm, ..., Vn). For a matrix M we denote the ith

5

row as Mi and the jth column as M∗,j . The element in row i and column j is indexed as Mi,j .
We also denote a submatrix by sub-scripting it with the row/column set. Let || and // denote the
horizontal and vertical concatenation of two matrices, respectively.

Typically X,Y will refer to the input tables that are being joined. We use n to represent the
number of rows a table has, which for simplicity will assume to be the same for X,Y .

We define a permutation of size m as an bijective function π : [m] → [m]. We extend this
definition such that when π is applied to a vector V of m elements, then π(V) = (Vπ(1), ..., Vπ(m)).
Parties are referred to as P0, P1, P2. We use κ to denote the computational security parameter, e.g.
κ = 128, and λ as the statistical security parameters, e.g. λ = 40.

Let [[x]] refer to a binary secret sharing of x. For example, x ∈ {0, 1}m could be a bit string while
[[x]] is a binary secret sharing between the parties. We extend this notation to vectors and other
structured objects in the natural way, e.g. [[V]] is the sharing of vector V ∈ Gn for G = {0, 1}m.
The share held by party Pi is denoted as [[x]]i. We use the notation [[x]] ∈ G to denote that x is an
element of G and [[x]] is a sharing of it. We also make use of arithmetic (over an appropriate field)
secret shares 〈[x]〉 and secret shares ([π]) of a permutation π.

3.1 Secure Computation Framework

Our protocols are general and can be instantiated in any setting that implements our ideal MPC
functionality Fmpc. For ease of presentation we will assume two basic types of secret shares: binary
shares denoted as [[x]], and arithmetic sharing scheme denoted as 〈[x]〉. For 〈[x]〉, we will require the
domain to be large enough to hold an index of size O(n), e.g. 32-bit shares should suffice. We leave
the exact specification of these share types as an implementation detail. We will however assume
binary and arithmetic shares can be XOR’ed and added non-interactively, respectively. Addition-
ally, we require the distribution of the corrupt parties shares to be simulatable, i.e., independent
of the under laying value.

We define Fmpc in Figure 1 which takes a circuit C and secret shares [[x]]i as inputs, and
outputs new shares [[y]]i, where y is the output of the circuit C applied to the reconstructed input
x.We assume the functionality can take any type of secret share input. Moreover, let Fconv be
the functionality that can convert between the [[x]],〈[x]〉 share representation, see [MR18a] for an
example in the three party setting.

When discussing security, we assume a simplified UC model. Conceptually, the functionalities
are performed by an idealized trusted third party that faithfully performed the desired computation
and returns the result to each of the parties. All parties have a secure and private channel with
the ideal functionalities. In the semi-honest setting, we say a protocol is secure if the protocol is
correct and messages received by the corrupt parties could have be simulated from just their final
output. We refer to [Lin16] for a more detailed description.

3.2 Secret-shared Sorting

In our protocols we need a sorting functionality in the secret-shared setting that implements the
ideal sorting functionality Fsort illustrated in Figure 2. The sorting functionality outputs a secret
shared permutation ([π]) that can be applied to a secret shared vector to permute the vector using
Fperm functionality as presented in Figure 3. One could implement FSort,FPerm using FMPC but
often there are more efficient protocols, e.g. [CHI+19a].

6

Parameters: Participating parties P1, ..., Pm−1. Circuit C encodes the functionality to be
computed.

Functionality: Upon command (C, [[x]]i) from each Pi

• Reconstruct inputs x := reconstruct([[x]])

• Compute [[y]] := share(C(x))

• Send [[y]]i to Pi

Figure 1: Secure Computation ideal functionality Fmpc

Upon command (Sort, [[K]]i) from Pi ∈ {P0, · · · , Pm−1}

• Reconstruct K := reconstruct([[K]]).

• Let π : [n] → [n] be the unique permutation such that (Kπ(i), π(i)) < (Kπ(i′), π(i′)) for
all i, i′ ∈ [n] where i < i′, i.e. π is the stable sort permutation.

• Output ([π])i to the party Pi where ([π]) := PermShare(π).

Figure 2: Secret-shared Sorting ideal functionality Fsort

3.3 Implementation

When we implement our protocols we realize FMPC with the honest majority three party protocol
of [MR18a]. Binary and arithmetic shares are implemented using replicated shares, i.e. [[x]] is split
into three random values x1, x2, x3 s.t. x = x1 ⊕ x2 ⊕ x3 and each of the three parties hold a differ
set two of the xi values. 〈[x]〉 is defined similarly.

For FSort and FPerm we make use of the recent efficient construction for secret-shared sorting
protocol from [CHI+19a]. Other setting, e.g. two party, could also be considered. However, we
chose to implement the three party honest majority setting due to the concrete efficiencies it offers.
We note that [CHI+19a] could be implemented in the two party setting with the same asymptotics,
i.e. O(log n) rounds and O(n log n) time.

Upon command (t, ([π])i, [[V]]i) from Pi ∈ {P0, · · · , Pm−1}

• Reconstruct V := reconstruct([[V]]), π := permReconstruct(([π])).

• If t = Perm, output [[V ′]]i to the party Pi where [[V ′]] := share(π(V)).

• If t = InvPerm, output [[V ′]]i to the party Pi where [[V ′]] := share(π−1(V)).

Figure 3: Secret-shared permutation ideal functionality FPerm

7

4 Technical Overview

Aggregation Tree. To build our join protocols, we introduce our novel aggregation trees con-
struction. We present three variants, prefix, suffix and full aggregation. The construction is pa-
rameterized by a binary operator ? : D2 → D, an input vector [[V]] ∈ Dn and a vector of control
bits [[B]] ∈ {0, 1}n. For example, ? can be thought of as integer addition. The control bits logically
define divisions of V into sub-vectors, or blocks. Bi = 0 indicates that index i is the start of a block.

For prefix aggregation, the output [[V ′]] can then be defined as a left to right pass over each
block where V ′i := V ′i if i is the start of a block and V ′i := Vj ? ... ? Vi−1 ? Vi otherwise, where j is
the start of the block containing i. Suffix aggregation is defined in the same way except in a right
to left manner, i.e. Vi = Vi ? ... ? Vj where j is the end of a block. Note that the definition of a
block has not changed. Finally, full aggregation can be defined as Vi = Vj ? ... ? Vi ? ... ? Vj′ where
j, j′ is the start and end of the block containing i.

A naive method for implementing the aggregation functionality would be to perform a left
and/or right linear pass over V to compute V ′. However, this would be impractical due to it
requiring O(n) rounds. Instead we propose a protocol framework that allows the aggregation to be
computed in O(log n) rounds and O(n) time. Intuitively, this improvement is achieved by changing
the order in which the ? operator is applied. To facilitate this, we will require ? to be associative,
i.e., (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ D. We aggregate using a binary tree structure and
assign the vector V to the leaves of the binary tree. We have an upstream phase, where values at
the leaves are propagated up to the root node followed by a downstream phase where values are
propagate back to the leaves to obtain V ′. Critically, all values computed in this process require
only the current parent and two children nodes and as such can be performed in O(log n) rounds
in a level by level manner in our binary tree. We apply this aggregating technique for different
tasks in our join protocols. For each, we instantiate the tree by defining the ? operator and then
performing prefix, suffix or full aggregation.

Secure Join. In [MRR20], the authors presented an O(n) computation and communication pro-
tocol ΠJoin-OO in constant-rounds to compute joins over secret-shared input database tables. The
major drawback of their approach is that the join required unique primary keys, i.e., each row is
join in a one-to-one manner. As discussed earlier, it is non-trivial to bypass this requirement with
existing approaches that are competitive. We introduce a novel approach that allows one or both
of the two inputs tables to have non-unique primary keys with unbounded repeats. We present two
join protocols ΠJoin-OM and ΠJoin-MM; with the first being optimized for the case where one table
has unique keys, i.e., each row in the unique table has a one-to-many relation with rows in the other
table. This protocol requires O(n log n) computation and O(log n) rounds. The ΠJoin-MM protocol
is more complicated due to the possibility for having an output size of m = n2 in the case that
both tables consists of n copies of a single key. To get practical efficiency we provide a mechanism
to reveal an upper bound D on the size of the output table m, e.g. D as the next power of two
of m or a differentially private upper bound of m. The ΠJoin-MM protocol then has running time
O((n+D) log n) and takes O(log n) rounds. The protocols are very general and can be modified to
compute a variety of related functionalities. For example, it is a simple task to extend our protocol
to compute full joins or unions.

Our protocols make use of the ability to sort a secret shared list. While sorting certainly makes
the task simpler by bring matching records next to each other, it remains non-trivial to match up

8

the correct records in an oblivious manner. For example, a records might be matched one-to-one,
one-to-many or many-to-many. The protocol must be oblivious to all of these possibilities.

One-to-Many Joins ΠJoin-OM. Let us assume X is the table with unique primary keys. First
we will combine the two tables as

Z :=

[
key(X) X 0
key(Y) 0 Y

]
where key(X), key(Y) is the join key columns of X and Y respectively, see Appendix A for details.
The first step of our protocol is to sort the rows of Z by the join key. We will stable sort so that the
row Xi to appear before any matching rows from Y . In particular, if Xi matches rows Yj1 , ..., Yjt
then they will be some index ` s.t. Z` = [key(Xi), Xi, 0] and Z`+k = [key(Yjk), 0, Yjk] for
k ∈ [t]. It is then the task to populate a row of the output table for each pair [Xi, Yj1], ..., [Xi, Yjt].
Conceptually this can be done by simply copying Xi into the next t rows.

The first challenge in achieving this is to obliviously decide when an Xi should be copied onto
the next row. This can be done by comparing the key for the current row Z` with the join key for
the next row Z`+1. If they are equal then the Z` row’s X record should be copied into Z`+1.

Continuing the example above, key(Xi) will match key(Yj1) and therefore Xi contained in row
Z` should be copied into row Z`+1. We will also have the key for row Z`+1, i.e. key(Yj1), match with
the key of row Z`+2, i.e. key(Yj2), and as such X record in row Z`+1 will be copied into row Z`+2.
After the copies are performed, we will have Z` = [key(Xi), Xi, 0] and Z`+k = [key(Yjk), Xi, Yjk].
All unmatched rows and the Z` = [key(Xi), Xi, 0] rows are marked as null.

At first glance it would appear that this strategy would require the computation to perform a
“left to right linear” pass over the rows of Z where each Z` row’s X record is copied into Z`+1 if
they have matching keys. Naively this would require O(n) rounds of interaction. However, based
on our introduction of aggregation trees it should not be too difficult to see we can apply them
here and perform the copying in O(log n) rounds as opposed to linear. In particular, we can define

the control bits as B`+1 := (key(Z`)
?
= key(Z`+1)). Then we will define ? as ?(x0, x1) := x0. This

logically results in the desired behavior, a left to right linear pass where the previous value is copied
if the keys are equal.

Many-to-Many Joins ΠJoin-MM. Now we overview our construction for joining tables that both
have unbounded multiplicity. At first glance this task appears significantly more challenging than
the one-to-many joins due to the need to effectively “multiply” sets of rows together. In particular,
let S(X, k) := {Xi | key(Xi) = k} denote the set of rows in X that have key k. Then the task of a
many-to-many join is to multiply the sets S(X, k) · S(Y, k) = {x||y | x ∈ S(X, k), y ∈ S(Y, k)} for
all k in the two table. For example, if |S(X, k)| = 4 and |S(Y, k)| = 3, then |S(X, k) ·S(Y, k)| = 12.
In total the output table will have size D :=

∑
k∈K |S(X, k) · S(Y, k)| where K is the set of keys

contained in the two tables. While achieving this in an oblivious manner is non-trivial, we in fact
already have the necessary building blocks.

At a high level the protocol proceeds by sorting X,Y together. If some row Xi is matched with
m = |S(Y, key(Xi))| rows from Y , then the Xi row is duplicated m times. Similarly, rows from Y
are duplicated the number of times that they have matching rows in X. Finally, we reorder the
combined X,Y table such that each copy of a row from X is paired with a matching copy of a row
from Y .

9

In more detail, the protocol begins by combining X,Y into Z :=

[
key(X) X 0
key(Y) 0 Y

]
and stable

sorting the rows based on the keys. The next task is to determine for each Z` how many rows
from X and, separately, Y have key key(Zi). This is used to determine how many copies of Z`
to make. In particular, each row Z` will have an associated pair (mX

` ,m
Y
`) = (|S(X, k)|, |S(Y, k)|)

where k = key(Z`). We show how to compute (mX
` ,m

Y
`) using a full aggregation tree in Section 7.

The next task is to duplicate each row Z` the necessary number of times. If row Z` is from the
X table, i.e. Z` = [key(Xi), , Xi, 0], then it must be duplicated m∗` := mY

` times. Otherwise, Z`
is from Y and needs to be duplicated m∗` := mX

` times. The protocol proceeds by arranging for m∗`
dummy/unused rows to be after row Z`. This is achieved by computing an index q` ∈ [D] for each
row Z` so that if Z` was moved to row index q`, it would be followed by the m∗` unused dummy
rows. The necessary dummy rows are added to the Z tables and sorted by the q` indices. The Z`
rows are then duplicated m∗` times using an aggregation tree. In particular, each Z` row from X
with key k is now copied mY

` = |S(Y, k)| times and each from Y with key k is copied mX
` = |S(X, k)|

times.
The final step in the protocol is to reorder the Z` rows to bring together the matching copies of

the X,Y rows. In particular, we will reorder the “Y ” columns of Z such that if Xi matches with
Yj , then one of the Z` rows containing Yj is permuted to one of the Z`′ rows containing Xi. This
is achieved by computing another index d` ∈ [D] for each row Z` which encodes this mapping. In
the example above, d` = `′.

The protocol then permutes the rows of the “Y ” columns of Z based on the d` indices. The
result is that Z will now contain all of the joined rows with the correct multiplicities. Finally, any
rows not corresponding to the joined result are marked as null.

We note that the full protocol is somewhat more complicated due to various details being
simplified for exposition, e.g. how exactly are the indices computed. In addition, this overview can
be optimized in various ways.

The Aggregate-Sort-Compute pattern We make the observation that our protocols follow
a general pattern where first an aggregation is applied to compute some ordering in the form of a
index value. Then we apply sorting to get the rows in the desired order. This is then followed by
updating each row as a function of its immediate neighbors. By repeatedly applying this pattern,
we observe that highly complex operations can be performed that traditionally would have required
expensive techniques such as oblivious RAM. We argue that the generality of this pattern will make
it useful in a wide variety of applications.

5 Parallel Aggregation using Trees

Consider an array of n values V =
[
v1, v2, . . . , vn

]
where each vi belongs to some domain D. Let

? : D2 → D be an in-fixed operator defined on the domain D that is closed and associative. We define
three forms of aggregation over the array V with respect to the control bits B =

[
b1 = 0, b2, . . . , bn

]
,

where bi is a bit, as follows:

Definition 5.1. Prefix Aggregation. The prefix aggregation V ′ of V with respect to B is defined
as V ′ =

[
v′1, v

′
2, . . . , v

′
n

]
, where

v′i = Fi
j=pre-ind(i)vj

10

and pre-ind(i) ∈ [n] is defined to be the unique index ≤ i such that bpre-ind(i) = 0 and bj = 1 for all
j ∈ (pre-ind(i), i].

For example, if n = 5 and B =
[
0, 0, 1, 1, 0

]
, then V ′ =

[
v1, v2, v2 ? v3, v2 ? v3 ? v4, v5

]
.

Definition 5.2. Suffix Aggregation. The suffix aggregation V ′ of V with respect to B is defined
as V ′ =

[
v′1, v

′
2, . . . , v

′
n

]
, where

v′i = Fsuf-ind(i)
j=i vj

and suf-ind(i) ∈ [n] is defined to be the unique index ≥ i such that bsuf-ind(i)+1 = 01 and bj = 1 for
all j ∈ (i, suf-ind(i)].

For example, if B =
[
0, 0, 1, 1, 0

]
, then V ′ =

[
v1, v2 ? v3 ? v4, v3 ? v4, v4, v5

]
.

Definition 5.3. Aggregation. The aggregation V ′ of V with respect to B is defined as V ′ =[
v′1, v

′
2, . . . , v

′
n

]
, where

v′i = Fsuf-ind(i)
j=pre-ind(i)vj

and pre-ind(i) and suf-ind(i) are as defined above.

For example, if B =
[
0, 0, 1, 1, 0

]
, then V ′ =

[
v1, v2 ? v3 ? v4, v2 ? v3 ? v4, v2 ? v3 ? v4, v5

]
.

All three aggregations described above can be computed with a single forward and/or single
backward linear pass on the arrays but this requires O(n) rounds of computation. We describe a
method for “parallel aggregation” using a binary tree structure which significantly improves the
round complexity of the computation. In our binary tree, we associate each leaf with an entry of V
(for ease of exposition, we assume that the array size n is a power of 2). The idea is to use internal
nodes of the tree to move the necessary aggregated information through the array. We do this in
two phases – an upstream phase where necessary aggregated information is pumped upwards from
the leaves to the root, followed by a downstream phase where the necessary aggregated information
is pushed to the leaves. All the internal nodes at a given level or height in the tree can perform their
operations in parallel. As a result, each phase of the aggregation can be performed in log n steps
and the entire aggregation can be performed in O(| ? | log n) rounds where | ? | is the multiplicative
depth of ?.

5.1 Prefix Aggregation – A First Solution

In Figure 4, we present the steps of our algorithm and justify the correctness of our method.

Theorem 5.4. Given input array V =
[
v1, v2, . . . , vn

]
with associated control bits B =

[
b1 =

0, b2, . . . , bn
]
, protocol Figure 4 correctly computes the prefix aggregation V ′ =

[
v′1, v

′
2, . . . , v

′
n

]
where

v′i = Fi
j=pre-ind(i)vj according to definition 5.1.

Proof. Let’s assign semantics for the entries in the 5-tuple (α, β, prefix, `, p) used to represent every
node in the binary tree.

1For consistency, we assume bi = 0 for i 6∈ [n].

11

Parameters:

• Input: array V =
[
v1, v2, . . . , vn

]
, each vi belongs to some domain D.

• Input: array B =
[
b1 = 0, b2, . . . , bn

]
, where bi is a bit.

• Operator: ? : D2 → D is closed and associative on D. D has identity element e? with respect to ?.

• Binary tree T where each node is represented by a 5-tuple (α, β, prefix, `, p).

Protocol: Upon input (t = Prefix Aggregation, ? , V, B)

• Initialization. Each leaf is assigned (e?, vi, e?, bi, bi).

• Upstream For every internal node we assign (α, β, prefix, `, p) as

α := β0

β :=

{
β1 p1 = 0

β0 ? β1 p1 = 1

prefix := e?, ` := `0, p := p0p1

where (α0, β0, prefix0, `0, p0) is left child and (α1, β1, prefix1, `1, p1) is right child of internal node.

• Downstream We calculate prefix values of left child prefix0 and right child prefix1 as

prefix0 = prefix

prefix1 =


e? `1 = 0

α `1 = 1, p0 = 0

prefix ? α `1 = 1, p0 = 1

of every internal node (α, β, prefix, `, p).

• Output : Aggregation array Vpre =
[
v′1, v

′
2, . . . , v

′
n

]
where v′i = prefixi ? vi and prefixi is the prefix value of leaf vi

during downstream.

Protocol: Upon input (t = Suffix Aggregation, ? , V, B)

• Initialization. Each leaf is assigned (e?, δi, e?, bi, bi) where δi =

{
e? bi = 0

vi bi = 1

• Upstream For every internal node we assign
γ = δ1

δ =

{
δ0 p0 = 0

δ0 ? δ1 p0 = 1

suffix = e?, ` = `0, p = p0p1

where (γ0, δ0, suffix0, `0, p0) is left child and (γ1, δ1, suffix1, `1, p1) is right child of internal node.

• Downstream We calculate suffix values of left child suffix0 and right child suffix1 as

suffix0 =

{
γ p1 = 0

γ ? suffix p1 = 1

suffix1 = suffix

of every internal node (γ, δ, suffix, `, p).

• Output : Aggregation array Vsuf =
[
v′1, v

′
2, . . . , v

′
n

]
where v′i = vi ? suffixi and suffixi is the suffix value of the leaf

vi at the end of downstream.

Figure 4: Aggregation Algorithms using Binary Tree.

12

• β is the sum of the leaves of the sub-tree rooted at the internal node, starting from the right
until and including the first value whose corresponding control bit is 0 (if it exists). More
formally,

β = F
iright
j=max{ileft,pre-ind(iright)}vj

where ileft and iright are the indices of the left-most and right-most leaves of the sub-tree
rooted at the internal node respectively.

• α is the β value of the left sub-tree of the sub-tree rooted at the internal node.

• prefix is the prefix aggregation value of the left-most leaf of the sub-tree rooted at the internal
node, excluding the value of the left-most leaf. More formally,

prefix = Fileft−1
j=pre-ind(ileft)

vj

where ileft is the index of the left-most leaf of the sub-tree rooted at the internal node.

• ` is the control bit of the left-most leaf in the sub-tree rooted at the internal node.

• p is the product (logical conjunction) of the control bits of all the leaves of the sub-tree rooted
at the internal node.

Initialization. By definition, the β values at the leaves are the values in V. Since leaves have
empty left sub-trees, the α value of a leaf is e?. By definition, the ` and p values at the leaves
are the control bits B. The prefix values are only calculated during the downstream phase and
throughout the upstream phase, we simply set prefix = e?. Therefore, the 5-tuples at the leaves are
consistent with the above semantics.

Upstream. During the upstream, the update to α as α = β0 is consistent by definition. Since
the prefix is only calculated during the downstream phase we simply set prefix = e?. The left-most
leaf of the left sub-tree rooted at a node is the same as the left-most leaf of the sub-tree rooted
at the same node, the update ` = `0 is consistent. It is also easy to see that the product of the
control bits of all the leaves of the sub-tree rooted at a node is the product of control bits from
the sub-trees rooted at the left and right child, the update p = p0p1 is consistent. Now, we look
at the update to β. Recall that β is the sum of the leaves of the sub-tree rooted at the internal
node, starting from the right until and including the first value whose corresponding control bit is
0 (if it exists). It is helpful to think of β as the “trailing sum” (sum of values associated with the
right-most sequence of control bits of the form (0)1111 . . . 1) of the sub-tree rooted at the internal
node. If the right sub-tree of an internal node contains a leaf with the control bit 0, then the
trailing sum of the sub-tree rooted at the internal node is the same as the trailing sum of the right
sub-tree of the node. So, if p1 = 0 (the product of the control bits in the right sub-tree is 0 if and
only if one of the control bits is 0), then β = β1. In the other case, when p1 = 1 (the right sub-tree
has leaves all with control bits 1), β1 the trailing sum would be the aggregate of β1 and the trailing
sum of the left sub-tree. So if p1 = 1, then β = β0 ? β1. Thus, in the upstream, we update the
5-tuples in a way that is consistent with our semantics.

Downstream. Next, we show how the prefix values are updated correctly during the down-
stream phase. At the root, the prefix value is the prefix aggregation value of the left-most leaf of

13

the entire tree, excluding its own value. This amounts to any empty set of leaves and prefix =
F0−1
j=pre-ind(0)=0vj = e?. For some internal node, let’s verify if the prefix values of the left and right

child are updated correctly. Since the left-most leaf of the left sub-tree of a node is the same as
the left-most leaf of the sub-tree rooted at the same node prefix0 = prefix. For the right sub-tree, if
l1 = 0 (the left-most leaf of the right sub-tree has control bit 0), then the prefix aggregation value is
e? by definition. If the left-most leaf of the right sub-tree of the node had the control bit 1, then the
prefix aggregation value will depend on the left sub-tree of the node. If the left sub-tree has atleast
one leaf with the control bit 0, then the prefix aggregation value of the left-most leaf of the right
sub-tree of the node would simply be the trailing sum of the left sub-tree of the node. Formally,
this means that if `1 = 1 and p0 = 0 (the product of the control bits in the left sub-tree is 0 if and
only if one of the control bits is 0), then prefix1 = α. If the left sub-tree had no leaf with the control
bit 0, then the prefix aggregation value of the left-most leaf of the right sub-tree of the node would
be the aggregation of the leaves of the left sub-tree of the node as well as the prefix-aggregation
value of the left-most leaf of the left sub-tree of the node. Formally, this means that if `1 = 1 and
p0 = 1, then prefix1 = prefix ? α. Thus, we have shown inductively that the prefix values are up-
dated correctly during the downstream phase and are consistent with the semantics described above.

Output. Finally, we show that Vpre is calculated correctly. Indeed, by our previous arguments,

prefixi = Fi−1
j=pre-ind(i)vj

Hence
v′i = prefixi ? vi = Fi

j=pre-ind(i)vj

as required.

5.2 Suffix Aggregation – A First Solution

Again, in Figure 4, we present the steps of our algorithm and justify the correctness of our method.

Theorem 5.5. Given input array V =
[
v1, v2, . . . , vn

]
with associated control bits B =

[
b1 =

0, b2, . . . , bn
]
, protocol Figure 4 correctly computes the suffix aggregation V ′ =

[
v′1, v

′
2, . . . , v

′
n

]
where

v′i = Fsuf-ind(i)
j=i vj according to definition 5.2.

Proof. We defer the proof to Section B since it is similar to our reasoning for prefix aggregation.

5.3 Full Aggregation – A First Solution

Our algorithm simply runs the prefix and suffix aggregation algorithms in parallel and com-
bines the results from the two at the very end. For each node in the tree, we define an 8-tuple
(α, β, γ, δ, prefix, suffix, `, p). We follow the steps of Figure 4 to run both prefix and suffix aggregation
simultaneously and update the 8-tuple.

Theorem 5.6. Given input array V =
[
v1, v2, . . . , vn

]
with associated control bits B =

[
b1 =

0, b2, . . . , bn
]
, protocol Figure 4 correctly computes the suffix aggregation V ′ =

[
v′1, v

′
2, . . . , v

′
n

]
where

v′i = Fsuf-ind(i)
j=pre-ind(i)vj according to definition 5.3.

Proof. It is straightforward to see that combining the arguments from before demonstrates the
correctness of the algorithm above.

14

Parameters: Participating parties {P0, · · · , Pm−1} Input vector [[V]] ∈ Dn and control bits
[[B]] ∈ {0, 1}n. An aggregation type of t ∈ {Prefix, Suffix, Full}. A user defined circuit
? : D2 → D that is associative.

Functionality: Upon input (t, ?, [[V]], [[B]]) from the parties, defined pre-ind(i) ∈ [i] to be the
maximum value such that Bpre-ind(i) = 0. Define suf-ind(i) ∈ [i, n] to be the minimum value
such that suf-ind(i) = n or Bsuf-ind(i)+1 = 0.

1. If t = Prefix, output [[V ′]]← share(V ′) where V ′i := Fi
j=pre-ind(i)Vj

2. If t = Suffix, output [[V ′]]← share(V ′) where V ′i := Fsuf-ind(i)
j=i Vj

3. If t = Full, output [[V ′]]← share(V ′) where V ′i := Fsuf-ind(i)
j=pre-ind(i)Vj

Figure 5: Functionality FAgg for secret shared aggregation.

5.4 Optimizations and Improvements

Let us look at our first solution to the prefix aggregation problem. Notice that β is only used in
the upstream phase and prefix is only used in the downstream phase. So, we can in fact use the
same variable for the two of them, only that they would have different semantics in the two phases.
Furthermore, since α is always set to be β0, it is possible to combine the two of these as well since
this means that the values that really matter are the βs. Using these optimizations, we present
the following improved algorithm for prefix aggregation. For each node in the tree, we we define a
2-tuple (β, p).

Initialization. We initialize the 2-tuples for the leaves as (vi, bi).

Upstream. Consider an internal node with left and right children having the associated 2-tuples
(β0, p0) and (β1, p1) respectively. Then, we calculate the 2-tuple of the internal node as

β =

{
β1 p1 = 0

β0 ? β1 p1 = 1

p = p0p1

Downstream. Consider an internal node with an associated 2-tuple (β, p). Then, we update the
β values for its left and right children as

β1 =

{
β0 p0 = 0

β ? β0 p0 = 1

β0 = β

Notice that the updates must be performed in the order mentioned above as the update to β1 uses
the value of β0 (prior to its own update).

15

Output. We calculate the prefix aggregation of V as Vpre =
[
v′1, v

′
2, . . . , v

′
n

]
, where

v′i =

{
vi bi = 0

βi ? vi bi = 1

and βi is the β value in the 2-tuple associated with the leaf with value vi and control bit bi at the
end of the downstream phase.

Proof of correctness. To see that the above algorithm indeed performs prefix aggregation, we
set up the following semantics for each of the entries in the 5-tuple. For an internal node with an
associated 2-tuple (β, p),

• β has different semantics during the upstream and downstream phases. During the upstream
phase, β is the sum of the leaves of the sub-tree rooted at the internal node, starting from
the right until and including the first value whose corresponding control bit is 0 (if it exists).
More formally,

β = F
iright
j=max{ileft,pre-ind(iright)}vj

where ileft and iright are the indices of the left-most and right-most leaves of the sub-tree
rooted at the internal node respectively.

During the downstream phase, β is the prefix aggregation value of the leaf preceding the left-
most leaf of the sub-tree rooted at the internal node, including the value of the leaf preceding
the left-most leaf. More formally,

β = Fileft−1
j=pre-ind(ileft−1)vj

where ileft is the index of the left-most leaf of the sub-tree rooted at the internal node. A
caveat is that the above semantic holds as long as ileft > 1.

• p is the product (logical conjunction) of the control bits of all the leaves of the sub-tree rooted
at the internal node.

Initialization. It is easy to see that by definition, during the upstream phase, the β values at
the leaves are the values in V. By definition, the p values at the leaves are the control bits B. This
shows that the 2-tuples at the leaves are consistent with the above semantics.

Upstream. We now inductively show that the 2-tuples are updated correctly during the up-
stream phase. It is easy to see that the product of the control bits of all the leaves of the sub-tree
rooted at a node is the product of those in the left sub-tree rooted at the same node multiplied by
the product of those in the right sub-tree rooted at the same node, and hence the update p = p0p1

is consistent. Now, we look at the update to β. Recall that during the upstream phase, β is the sum
of the leaves of the sub-tree rooted at the internal node, starting from the right until and including
the first value whose corresponding control bit is 0 (if it exists). As before, it is helpful to think of
β during the upstream phase as the “trailing sum” (sum of values associated with the right-most
sequence of control bits of the form (0)1111 . . . 1) of the sub-tree rooted at the internal node. It is
easy to see that if the right sub-tree of an internal node contains a leaf with the control bit 0, then
the trailing sum of the sub-tree rooted at the internal node is the same as the trailing sum of the

16

right sub-tree of the node. Formally, this means that if p1 = 0 (the product of the control bits in
the right sub-tree is 0 if and only if one of the control bits is 0), then β = β1. In the other case,
where the right sub-tree has leaves all of whose control bits are 1, β1, the trailing sum of the right
sub-tree, would be the sum of the values of all the leaves in the right sub-tree, and the trailing sum
of the entire sub-tree rooted at the internal node would be the aggregate of β1 and the trailing sum
of the left sub-tree. Formally, this means that if p1 = 1, then β = β0 ? β1. Thus, we have shown
inductively that the 2-tuples are updated correctly during the upstream phase and are consistent
with the semantics described above.

Downstream. What remains to be shown is that inductively the β values are updated correctly
during the downstream phase. At the root, however, ileft = 1 and hence the semantic for β that we
described may not hold. Hence, our inductive hypothesis begins at the right child of the root (notice
that the left child of the root also has ileft = 1). At the right child of the root, by our semantic, β
must be updated to be the prefix aggregation value of the leaf preceding the left-most leaf of the
sub-tree rooted at the internal node, including the value of the leaf preceding the left-most leaf.
Plugging in for the variables, at the right child of the root,

β = Fileft−1
j=pre-ind(ileft−1)vj

where ileft is the index of the left-most leaf of the sub-tree rooted at the right child of the root. But
notice that ileft − 1 of the right child of the root is iright of the left child of the root. Hence,

Fileft−1
j=pre-ind(ileft−1)vj = F

iright
j=pre-ind(iright)

vj

where iright is the index of the right-most leaf of the sub-tree rooted at the left child of the root.
Futhermore, since ileft of the left child of the root is 1, and max{1, pre-ind(iright)} = pre-ind(iright),
what we have is that β of the right child of the root must be updated to the value β0 of the left
child of the root that was computed during the upstream phase. Indeed, as per our update rules,
β of the right child of the root has been correctly set, establishing the base case of our induction.
We now proceed with the inductive claim. Suppose we have the 2-tuple at an internal node. We
would like to update the β values of the left and right children of this node and proceed inductively.
Proceeding in order, let us first consider the right sub-tree of the node. The prefix aggregation value
of the leaf preceding the left-most leaf of this right sub-tree (which is the right-most leaf of the left
sub-tree of the node), including its own value, would include the trailing sum of the left sub-tree of
the node. If the left sub-tree had a leaf with the control bit 0, then the prefix aggregation value of
the leaf preceding the left-most leaf of the right sub-tree of the node would simply be the trailing
sum of the left sub-tree of the node. Formally, this means that if p0 = 0 (the product of the control
bits in the left sub-tree is 0 if and only if one of the control bits is 0), then β1 = β0. If the left
sub-tree had no leaf with the control bit 0, then the prefix aggregation value of the leaf preceding
the left-most leaf of the right sub-tree of the node would be the aggregation of the leaves of the
left sub-tree of the node as well as the prefix-aggregation value of the leaf preceding the left-most
leaf of the left sub-tree of the node. Formally, this means that if p0 = 1, then β1 = β ? β0. If
the left-most leaf of the left sub-tree of the node has index 1, then β would not have the right
semantics, however, in this case note that p0 = 0 (since b1 = 0) and hence β would not be used to
update β1. In all other cases, β would have the right semantics and by our inductive hypothesis,
the update to β1 is consistent. Now that we are done with the right sub-tree of the node, since the

17

left-most leaf of the left sub-tree of a node is the same as the left-most leaf of the sub-tree rooted
at the same node, the update β0 = β is consistent. Furthermore, if that left-most leaf had index 1,
we are not concerned with the semantics of β anyways. Thus, we have shown inductively that the
β values are updated correctly during the downstream phase and are consistent with the semantics
described above.

Output. We now finally show that Vpre is calculated correctly. Indeed, by our previous argu-
ments,

βi = Fi−1
j=pre-ind(i−1)vj

as long as i > 1. Clearly, if bi = 0, then v′i = vi by definition and by our output procedure. If
bi = 1, note that pre-ind(i− 1) = pre-ind(i). Hence

v′i = βi ? vi = Fi−1
j=pre-ind(i)vj ? vi = Fi

j=pre-ind(i)vj

as required.

The final algorithms we use can be found (implicitly) in the protocols described in Figure 6 and
7.

6 One to Many Join - ΠJoin-OM

We define the secret shared join functionality FJoin-OM/MM in Figure 8. It takes as input the X,Y
tables in secret shared form along with two user defined functions, key,Combine. The key function
combines the join columns of both tables (domain K). The Combine function is used to generate
a row in the output table given a matching row from X and Y . The output table Z starts with a
row corresponding to each row in Y . If some row Yi does not have a matching row in X, then Zi
will be set to null. Otherwise Zi is set to Combine(Xj , Yi) where Xj is the unique row of X that
matches Yi, i.e. key(Xj) = key(Yi).

Our ΠJoin-OM join protocol assumes table X w.l.o.g. has unique joining keys in the join column,
while table Y w.l.o.g. has joining keys with an unbounded number of repeats in the join col-
umn. All other columns are unrestricted. The protocol is described in Figure 9 and requires four
functionalities: secret shared sorting, permutations, aggregation and a generic MPC. When these
are instantiated with our suggested protocols the overall running time is O(n log n) and requires
O(log n) rounds of interaction. The protocol begins by sorting the join keys together into a single
list. We use stable sort to ensure that in the case of matching keys, the key instance from table
X will appear before the key instances from table Y . As a result, for every Xi with a matching
rows Yj1 , ..., Yjt , the Xi key is immediately followed by the set of keys Yj1 , ..., Yjt . Conceptually,
this simplifies the task of computing the join to obliviously appending row Xi onto the next t rows.

To improve efficiency, we further refine our method. Instead of actually sorting the combined
keys, we generate a secret shared permutation ([π]) that if applied to the combined 2n rows of X
followed Y would stable sort them by their keys. We then actually apply the shared permutation
([π]) to the table of combined keys K and a newly created table X ′ := X//0n which is the rows of
X followed by n appended null rows. Let K ′′, X ′′ be the result respectively, i.e. K ′′ = π(K), X ′′ =
π(X ′). Note that for each i such that key K ′′i was from Y , we have X ′′i = 0 while for all other K ′′i
(which are from X) we have X ′′i = Xj for some j ∈ [n].

18

Parameters: Participating parties {P0, · · · , Pm−1} Input vector [[V]] ∈ Dn and control bits
[[B]] ∈ {0, 1}n. An aggregation type of t ∈ {Prefix, Suffix, Full}. A user defined circuit
? : D2 → D that is associative.

Protocol: Upon input (t, ?, [[V]]i, [[B]]i) from party Pi ∈ {P0, · · · , Pm−1}, each party does the
following:

1. [Set Leaves] If t ∈ {Prefix, Full}, assign ρi+n−1 := Vi, ρ∗i+n−1 := Bi for i ∈ [n]. If
t ∈ {Suffix, Full}, assign σi+n−1 := Vi, σ∗i+n−1 := Bi+1 for i ∈ [n].

2. [Upstream] For d ∈ {log2(n), ..., 0}, in parallel for i ∈ [2d−1, 2d),

(a) If t ∈ {Prefix, Full}, the parties invoke FMPC on (C, ([[ρ2i]], [[ρ2i+1]], [[ρ∗2i]], [[ρ
∗
2i+1]])) to

obtain ([[ρi]], [[ρ
∗
i]]) where C : D2 × {0, 1}2 → D× {0, 1} is defined as

C(ρ0, ρ1, ρ
∗
0, ρ
∗
1) :=

{
ρ1, ρ∗1 = 0

ρ0 ? ρ1, ρ∗1 = 1
, ρ∗0ρ

∗
1

(b) If t ∈ {Suffix, Full}, the parties invoke FMPC on (C, ([[σ2i]], [[σ2i+1]], [[σ∗2i]], [[σ
∗
2i+1]])) to

obtain ([[σi]], [[σ
∗
i]]) where C : D2 × {0, 1}2 → D× {0, 1} is defined as

C(σ0, σ1, σ
∗
0, σ
∗
1) :=

{
σ0, σ∗0 = 0

σ0 ? σ1, σ∗0 = 1
, σ∗0σ

∗
1

3. [Downstream] For d ∈ {0, ..., log2(n)}, in parallel for i ∈ [2d−1, 2d),

(a) If t ∈ {Prefix, Full}, the parties invoke FMPC on (C, ([[ρi]], [[ρ2i]], [[ρ
∗
2i]])) to obtain

([[ρ2i]], [[ρ2i+1]]) where C : D2 × {0, 1} → D2 is defined as

C(ρ, ρ0, ρ
∗
0) := ρ,

{
ρ0, ρ∗0 = 0

ρ ? ρ0, ρ∗0 = 1

(b) If t ∈ {Suffix, Full}, the parties invoke FMPC on (C, ([[σ2i+1]], [[σi]], [[σ
∗
2i+1]])) to obtain

([[σ2i]], [[σ2i+1]]) where C : D2 × {0, 1} → D2 is defined as

C(σ1, σ, σ
∗
1) :=

{
σ1, σ∗1 = 0

σ1 ? σ, σ∗1 = 1
, σ

Figure 6: Protocol ΠAgg for secret shared aggregation with no identity element (part 1 of 2).

19

4. [Finalize] Parallel for i ∈ [n],

(a) If t = Prefix, the parties invoke FMPC on (C, [[Vi]], [[ρi+n−1]], [[ρ∗i+n−1]]) to obtain [[V ′i]]
where C : D2 × {0, 1} → D is defined as

C(v, ρ, ρ∗) :=

{
v, ρ∗ = 0

ρ ? v, ρ∗ = 1

(b) If t = Suffix, the parties invoke FMPC on (C, [[Vi]], [[σi+n−1]], [[σ∗i+n−1]]) to obtain [[V ′i]]
where C : D2 × {0, 1} → D is defined as

C(v, σ, σ∗) :=

{
v, σ∗ = 0

v ? σ, σ∗ = 1

(c) If t = Full, the parties invoke FMPC on (C, [[Vi]], [[ρi+n−1]], [[σi+n−1]], [[ρ∗i+n−1]], [[σ∗i+n−1]])
to obtain [[V ′i]] where C : D3 × {0, 1}2 → D is defined as

C(v, ρ, σ, ρ∗, σ∗) :=


Vi, ρ∗ = 0, σ∗ = 0

Vi ? σ, ρ∗ = 0, σ∗ = 1

ρ ? Vi, ρ∗ = 1, σ∗ = 0

ρ ? Vi ? σ, ρ∗ = 1, σ∗ = 1

Figure 7: Protocol ΠAgg for secret shared aggregation with no identity element (part 2 of 2).

20

Parameters: Participating parties P0, · · · , Pm−1. Database input tables [[X]], [[Y]] with n
rows. Let key be a local function that returns the join key column for [[X]], [[Y]]. Let combine
be a circuit that computes an output row given matching rows from X,Y . Let pad be the
function that determines how to pad the output table.

Functionality: Upon receiving [[X]], [[Y]] from the parties,

1. Let X := reconstruct([[X]]), Y := reconstruct([[Y]]). Let d = 0.

2. For i ∈ [n], and each j ∈ [n] such that key(Xj) = key(Yi) ∧ isNull(Yi) = False ∧
isNull(Xj) = False, set Zd := Combine(Yi, Xj) and then d = d+ 1.

3. Add dummy/null rows to Z until it has D = pad(d) rows.

4. Output [[Z]]i to Pi where [[Z]]← share(Z).

Figure 8: Functionality FJoin-OM/MM for secret shared Join for tables X and Y .

Importantly, for some row X ′′i that originated in X with m matching rows in Y , X ′′i will be
followed by m null rows, with each corresponding to one of the matching rows from Y . As such,
our goal will be to copy each such X ′′i into the next m positions. In particular, for i ∈ [n − 1], if
key K ′′i = K ′′i+1, then we want to copy X ′′i into the next row X ′′i+1. There are two interesting cases
when analysing this step. If the current key K ′′i is in the intersection and from X, then X ′′i will
not be null while X ′′i+1 will be null. The copy will overwrite the row X ′′i+1 with the desired result,
i.e. X ′′i+1 = Xj for some j. If K ′′i is in the intersection and from Y then the same logic applies, we
will copy X ′′i (which was just copied in the previous iteration) into X ′′i+1.

The second case is when the keys match but it is not in the intersection. Here, both of the keys
must be from Y and corresponding rows in X ′′ must be null. As such, copying X ′′i into X ′′i+1 will
result in X ′′i+1 remaining null.

Instead of iteratively performing the copies of X ′′i into X ′′i+1, which would take O(n) rounds,
we will use an aggregation tree, which will only require O(log n) rounds. We apply our prefix
aggregation by setting the control bit condition Bi to 1 iff K ′′i−1 = K ′′i , using X ′′ as our input vector
and defining our aggregation operator as x0 ? x1 := x0. The complexity of prefix aggregation is
O(n log n) time and requires O(log n) rounds. The final task is to map the copied X ′′ rows back to
the Y table. By applying the inverse permutation of ([π]) to X ′′ we get table X∗. The first n rows
of X∗ will still contain the same value as the first n rows of X ′′. However, the last n rows of X∗

are now either the rows from X what matched with Y or null. We can easily associate the ith row
of Y and (n+ i)-th row of X∗ to get the ith output row.

To instantiate our protocol we observe that secret-shared sorting in the three party honest
majority setting is an essential building block. Further, our join protocols have a nice feature that
any new efficient construction for sorting can easily be plugged in for improved performance. In
this work, the employ the state-of-the-art sorting protocol proposed by Chida et al. [CHI+19b].

Theorem 6.1. If m computing parties that hold secret shares of two input database tables [[X]], [[Y]],
each with n rows and unique join keys in table X. Let pad(d) = n. In the semi-honest FSort, FPerm,
FAgg, FMPC hybrid model, protocol Figure 9 securely realizes functionality Figure 8.

Proof. The protocol in Figure 9 securely realizes Figure 8 in the FSort, FPerm, FAgg, FMPC hybrid

21

Parameters: Participating parties P0, · · · , Pm−1. Database input tables [[X]], [[Y]] with n
rows where X is required to have unique join keys. Let key be a local function that returns
the join key column for [[X]], [[Y]]. Let combine be a circuit that computes an output row given
matching rows from X,Y .

Protocol: Each party Pi ∈ {P0, P1, · · · , Pm−1} does the following:

1. [Get keys] The parties locally construct the list [[K]] ∈ K2n as the concatenation of the
join keys key([[X]]) followed by key([[Y]]).

2. [Sort keys] The parties invoke FSort on (Sort, [[K]]) and obtain the secret shared permu-
tation ([π]).

3. [Dummy rows] Locally, the parties prepend n Null rows to [[X]] to obtain [[X ′]].

4. [Permute X] The parties invoke FPerm on (Perm, ([π]), [[X ′]]), (Perm, ([π]), [[K]]) to obtain
[[X ′′]], [[K ′′]], respectively.

5. [Control bits] For i ∈ [2n − 1] the parties invoke FMPC on (C, ([[K ′′i]], [[K ′′i+1]])) to obtain
[[βi+1]] where the circuit C : K2 → {0, 1} outputs 1 iff the two K elements are equal. The
parties locally define [[β1]] := [[0]].

6. [Duplicate] The parties invoke FAgg on (Prefix, dup, [[X ′′]], [[β]]) to obtain [[X ′′′]] where
dup(x0, x1) := x0.

7. [Unpermute X] The parties invoke FPerm on (InvPerm, ([π]), [[X ′′′]]) to obtain [[X∗]].

8. [Combine] Parallel for i ∈ [n], the parties invoke FMPC on (C, [[Yi]], [[X∗i]]) and obtain [[Zi]]
where C is defined as

C(x, y) :=

{
(Combine(x, y),False), ¬isNull(x) ∧ ¬isNull(y)

(0,True), isNull(x) ∨ isNull(y)

The parties output [[Z]].

Figure 9: Protocol ΠJoin-OM for secret shared Join for one table X with unique join keys.

22

model. Each party P ′i s view consists of their input shares [[X]]i, [[Y]]i (according to a scheme secure
in the honest/dishonest semi-honest setting) and output received from the ideal functionalities
FSort, FPerm, FAgg, FMPC. By the simulatability of the secret sharing scheme, the shared returned
to the corrupt parties from these functionalities can be simulated without the output. As such,
the simulator will do exactly this, instead of forwarding the inputs to the ideal functionalities, the
simulator will instead simply sample uniformly random output shares for each functionality and
return these. This change is identically distributed. For the final shares generated in step 8, the
simulator returns the shares output by FJoin-OM/MM instead of calling FMPC. Correctness of the
protocol can be verified by inspection. This completes the simulation.

Remark. Our protocol can be extended to work in the malicious setting. We can write a
simulator for the malicious setting given the ideal functionalities. However, given some subtleties
about making generic statements in the malicious setting (input extraction) we defer formal proofs
to future work.

7 Many to Many Join - ΠJoin-MM

We present our many to many join protocol in Figure 11 & 12. As an overview, we first sort the
tables together by the join key. For each row we count the multiplicity of the key in table X and Y .
This is done using an aggregation tree. With this information we can compute how many copies
of each row are needed. We then re-order/sort the rows so that each row has the d dummy rows
after it where d is the number of copies that are required. We then copy each such row into the
next d rows. Finally, for table Y we re-order/sort it again to match the ordering of X.

For each of these reorderings, only the columns/attributes that are required are reordered. In
the end we permute the actual X,Y tables by a “composed reordering.” This allows the protocol
to permute less data.

The protocol proceeds in a few steps starting with sorting the combined set of keys from both X
and Y as done in Step 2. The keys K themselves are sorted along with flag vectors t,N indicating
which table each rows is from and whether that row is null.

Next is Step 3 where the number of times (multiplicity) each key appears in X and Y is
computed. We will store these counts in the matrix M ∈ Z2n×2 where the first column stores the
number of times the current key appears in X and the second column Y .

During this step we compute two sets of control bits B,B′. The first defines blocks where each
block contains only equal keys. These will be used for this step. The second further refines this to
have equal keys and be from the same table. We will make use of B′ later on.

For rows from X, the corresponding row in M is initialized as (1,0) while this is reversed for
rows from Y . We can then perform a full aggregation with addition on control bits B. This results
in each row of M counting the multiplicity of the key for table X and separately for table Y .

Step 4 then splits the tables back apart except that they are now in sorted order. This is done by
sorting by t. In particular, the first n rows of M,B′, N correspond to table X while the remaining
correspond to Y . Note, we could also sort the tables by similarly applying the permutation π′ ◦ π
to the combined table X//Y but don’t to reduce the amount of data being permuted.

Step 5 computes the index/position in the output table that the key corresponding to the
current row will first appear at. This computation is only needed for the rows in the Y table.
In more detail, each row i knows that it’s key appears Mi,1 times in X and Mi,2 times in Y and
therefore will appear pi := Mi,1 ·Mi,2 times in the output table. The idea is to then compute

23

< 0,0 >

< 1,1 >

< 1,1 >

< 1,0 >

< 1,1 >

< 0,0 >

< 1,0 >

< 0,0 >

< 1,1 >

< 0,0 >

< 0,0 >

< 0,0 >

< ℬ, ℬ′ >
1 0

1 0

1 0

0 1

0 1

1 0

0 1

0 1

0 1

0 1

1 0

1 0

&
3 2

3 2

3 2

3 2

3 2

1 1

1 1

0 2

0 2

0 1

1 0

1 0

ℱ())

&

Step (3)

< (3,2), 0,0 >

< (3,2), 1,0 >

< (3,2), 1,0 >

< (1,1), 0,0 >

< (1,0), 0,1 >

< (1,0), 0,1 >

< (3,2), 0,0 >

< (3,2), 1,0 >

< (1,1), 0,0 >

< (0,2), 0,0 >

< (0,2), 1,0 >

< (0,1), 0,0 >

< &, ℬ′, (>

Step (4)

0

6

1

0

0

0

)′
0

0

6

7

7

7

)

Step (5)

7 = ,

< .!, 0,0 >

< .", 0,0 >

< .!, 0,0 >

< .!, 0,0 >

<∗, 1,0 >

<∗∗, 1,0 >

< .!, 0,1 >

< .!, 0,1 >

< .#, 0,1 >

< .", 0,1 >

< .#, 0,1 >

< .$, 0,1 >

< -,(, . >

/

0

< .!, 0,0 >

< .!, 0,0 >

< .!, 0,0 >

< .!, 0,1 >

< .!, 0,1 >

< .", 0,0 >

< .", 0,1 >

< .#, 0,1 >

< .#, 0,1 >

< .$, 0,1 >

<∗, 1,0 >

<∗∗, 1,0 >

< -,(, . >

Step (1) Step (2)

0 0

2 3

4 6

6 7

7 7

7 7

0 0

1 1

2 2

3 3

4 4

5 5

6 6

1

Step (6)

du
m

m
ie

s

0

1

0

0

1

0

2
0

0

0

0

1

1

0

0

0

1

1

1

(

Step (7)

Step (8)

nu
ll

nu
ll

Bl
oc

ks
 o

f k
ey

s i
n
0

!!
!"
!!
!!
∗
∗∗
null

null

null

null

null

null

null

!!
!!
!#
!"
!#
!$
null

null

null

null

null

null

null

0 0
0 0
0 0
0 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

(
3

3 2
3 2
1 1
0 2
0 2
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0

&′

0
1
0
0
1
0
0
0
0
0
0
0
0

2 ℱ2345

!!
null

null

!!
null

null

!!
null

null

!"
null

∗
∗∗
!!
null

null

null

!!
null

null

null

!"
null

!#
!#
!$

0 0
1 1
1 1
0 1
1 0
1 1
0 1
1 1
1 0
0 1
1 1
1 1
1 1

(
3

3 2
0 0
0 0
0 0
3 2
0 0
0 0
0 0
1 1
0 0
0 0
0 0
0 0

&′

0
0
0
0
1
0
0
0
0
0
0
0
0

2

!! !!
null null

null null

!! null

null !!
null null

!! null

null null

null !"
!" null

null !#
∗ !#
∗∗ !$

3

Step (9)

0
0
6
7
7
7
0
0
0
0
0
0
0

)

0
0
0
0
0
0
0
0
6
0
7
7
7

)

0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1

(′
0 0
1 1
1 1
0 1
1 0
1 1
0 1
1 1
1 0
0 1
1 0
0 0
0 0

(′

0 0
1 1
0 1
0 0
1 0
0 1
0 1
1 0
0 0
0 0
0 0
0 0
0 0

(′′
!! !!
!! !!
null !!
!! null

!! !!
null !!
!! !!
!! null

null !"
!" null

null !#
∗ !#
∗∗ !$

3
0 0
0 0
1 0
0 1
0 0
1 0
0 0
0 1
1 0
0 1
1 1
1 1
1 1

(
3 2
3 2
3 2
0 0
3 2
3 2
3 2
0 0
1 1
0 0
0 0
0 0
0 0

&′
0
0
0
0
0
0
0
0
6
0
7
7
7

)
1
2
3
1
1
2
3
1
1
1
1
1
1

2′

Step (10)

!! !!
!! !!
!! !!
!! !!
!! !!
!! !!
!" !"
null null

null null

null null

null !#
∗ !#
∗∗ !$

3
3 2
3 2
3 2
3 2
3 2
3 2
1 1
0 0
0 0
0 0
0 0
0 0
0 0

&′
0
0
0
0
0
0
6
0
0
0
7
7
7

)
1
2
3
1
2
3
1
1
1
1
1
1
1

2′
0
0
0
0
1
1
1
0
0
0
0
0
0

2
0
0
0
1
1
1
0
0
0
0
0
0
0

2

nu
lls

Step (11)

1
2
3
4
5
6
7

)

Step (12)

!! !!
!! !!
!! !!
!! !!
!! !!
!! !!
!" !"

3

Step (13)

Figure 10: Illustration of protocol ΠJoin-MM. Set X has records with keys k1, k2, k1, k1 and set Y
has records with keys k1, k1, k3, k2, k3, k4, where k1 < k2 < k3 < k4. Note that n = 6 and X will be
padded with two null rows.

24

d′i := pi · ci where ci is a condition bit that is one iff this row is the last in the block of equal keys,
i.e., ci := ¬B′i+1 is the inverse of the next control bit which is zero iff row i+ 1 is the start of a new
block.

The result is that d′i for the last row of a block contains how much space that block requires. Each
row i can then compute the starting position of their block in the output table as di :=

∑
j∈[i) d

′
j

which for i > 1 is equal to di−1 + d′i−1. Later we will update these di values to be the exact row
that each Y row should be mapped to as opposed to the start of the block.

Additionally, in this step we compute the size of the output table as D := dn+1. If desired, a
possibly randomized upper bound of this value can also be computed with the maximum possible
being n2. However, our default is to reveal the exact value.

Step 6 performs a similar computation as Step 5 except we compute the index that this row
should be at such that there are m dummy rows after it where m is the multiplicity of this row in
the other table, i.e. m := Mi,2 for X rows and m := Mi,1 for Y rows. We then compute the overall
index Qi of this row as the sum of all previous m values. Finally, we append D null rows to each
table where the Q index of these rows are 1, 2, ..., D.

The idea is then to sort the tables by their Q index. Row i will then be followed by dummy
rows with Q indices Qi, Qi + 1, ..., Qi +m− 1.

Sorting is performed Step 9 but before that, in Step 8 the null flags for each row are updated
so that unmatched rows are marked as null. These rows will removed later.

Step 10 will then duplicate the rows into the following rows as required. In particular, if a row
needs m duplicates, it will be followed by m dummy rows. However, if we copied the row into all
of these there would be m+ 1 copies of it. As such we copy the row m− 1 times. This is controlled
by the N ′′ control bits. Step 11 then removes the excess dummy rows. It is helpful to think of N
as the indicator for the null rows, N ′ as the indicator for the dummy rows, and N ′′ as the indicator
for the excess dummy rows that are to be treated as null and removed.

Finally, in Step 12 we compute the local indices that each Y row should be mapped to. Recall
that we previously computed the location di in the output where the key Ki will start appearing.
We now need to compute the offset from this location that the current row will reside at. During
Step 3 we computed the multiplicity of the key in the X table, M∗,1. In Step 7 we computed which
offset indicies that tell each row of Y that it is the Fi’th row with that key. Finally, in Step 10, we
additionally compute which duplicate that each row is. Putting this all together, we can compute
where each Y row should be mapped to as

di + FiMi,1 + F ′i

It is then a simple matter of sorting the Y rows by these indices and outputting the concatenation
of the X rows with the result.

Modeling D as Leakage. The many-to-many protocol reveals the output table size D to all
parties. As discussed in the introduction, D does not need to be the true output table size, as done
in ΠJoin-MM, step 5. Revealing D exactly has the advantage of being the most computationally
efficient method but also leaks some information about the input tables. Depending on application
this leakage could be non-trivial and be considered a privacy violation. However, in most of the
our motivating application this does not lead to a significant harm to privacy. On the other hand,
revealing no information at all is possible by always setting D = n2, the largest value possible. In
this case the protocol is designed to add the necessary number dummy rows such that the output

25

Parameters: Participating parties P0, · · · , Pm−1. Database input tables [[X]], [[Y]] with n rows and possibly duplicate
join keys. Let key be a local function that returns the join key column for [[X]], [[Y]]. Let combine be a circuit that computes
an output row given matching rows from X,Y .

Protocol: Each party does the following:

1. [Extract] The parties locally construct the lists

[[K]] := key([[X]])//key([[Y]])

[[N]] := isNull([[X]])//isNull([[Y]])

[[t]] := [[0n×1]]//[[1n×1]]

2. [Sort by key] The parties invoke FSort on (Sort, [[K]]) and obtain the secret shared permutation ([π]). They invoke
FPerm on

(Perm, ([π]), ([[K]], [[t]], [[N]]))

and store the result as ([[K]], [[t]], [[N]]).

3. [Multiplicity] The parties invoke FMPC to compute [[B]], [[B′]] ∈ {0, 1}2n as B1 := 0,B′1 := 0 and

[[Bi]] := ([[Ki]] = [[Ki−1]]) ∧ ¬[[Ni]],

[[B′i]] := (¬[[ti]]⊕ [[ti−1]]) ∧ [[Bi]]

The parties invoke FConvt on (Z, [[t]]) to obtain 〈[t]〉 and then store 〈[M]〉 := (12n×1 − 〈[t]〉)||〈[t]〉 ∈ Z2n×2.

The parties invoke FAgg on inputs
(Full,+, 〈[M]〉, [[B]])

and store the results as 〈[M]〉.

4. [Partition tables] The parties invoke FSort on input [[t]] and obtains ([π′]) as the result. The parties invoke FPerm on
inputs

(Perm, ([π′]), (〈[M]〉, [[B′]], [[N]]))

and store the results as (〈[M]〉, [[B′]], [[N]]).

5. [Destination index] The parties invoke FMPC to compute

〈[d′]〉 := 〈[M(n,2n),1]〉 · 〈[M(n,2n),2]〉 · ¬[[B′(n+1,2n]]]

〈[d′n]〉 := 〈[Mn,1]〉 · 〈[M(n,2]〉,

〈[d1]〉 := 0,

〈[di+1]〉 := 〈[di]〉+ 〈[d′i]〉 for i ∈ [n]

The parties reveal D := reconstruct(pad(〈[dn+1]〉)) and update 〈[d]〉 = 〈[d[n]]〉.

6. [Dummy index] The parties locally compute 〈[Q]〉 ∈ Z(n+D)×2 as Q1,1 := 0, Q1,2 := 0 and for i ∈ [n),

〈[Qi+1,1]〉 := 〈[Mi,2]〉+ 〈[Qi,1]〉
〈[Qi+1,2]〉 := 〈[Mi+n,1]〉+ 〈[Qi,2]〉

and Qi+n−1,1 := i, Qi+n−1,2 := i− 1 for i ∈ [D].

Figure 11: Protocol ΠJoin-MM for secret shared many to many Join where both tables can have
duplicate join keys (part 1 of 2).

26

7. [Offset index] The parties invoke FAgg on

(Prefix,+, 〈[1n×1]〉, [[B′(n,2n]]])

and stores the result as 〈[F]〉. Set 〈[F]〉 := 〈[F]〉 − 1n×1.

8. [Null flag] The parties invoke FMPC to compute

[[N[n]]] := [[N[n]]] ∨ (〈[M[n],2]〉 = 0n)

[[N(n,2n]]] := [[N(n,2n]]] ∨ (〈[M[n],1]〉 = 0n)

9. [Sort dummies] The parties set

[[Z]] := [[X]]//[[nullD]]//[[Y]]//[[nullD]]

[[N]] := ([[N[n]]]//[[1
D×1]])||([[N(n,2n]]]//[[1

D×1]])

[[N ′]] := ([[0n×1]]//[[1D×1]])||([[0n×1]]//[[1D×1]])

[[M ′]] := 〈[M(n,2n]]〉//〈[0D×2]〉

[[F]] := 〈[F]〉//〈[0D×1]〉, 〈[d]〉 := 〈[d]〉//〈[0D×1]〉

The parties invoke FSort on 〈[Q∗,1]〉, 〈[Q∗,2]〉 and receive ([πQ,1]), ([πQ,2]). The parties define ([π∗]) := (([πQ,1])||([πQ,2]))◦((([π′])◦
([π]))[n]||ID||(([π′]) ◦ ([π]))(n,2n]||ID) and invoke FPerm on

(Perm,([π∗]), [[Z]]),

(Perm,([πQ,1]), ([[N∗,1]], [[N ′∗,1]])),

(Perm,([πQ,2]), ([[N∗,2]], [[N ′∗,2]], 〈[d]〉, 〈[F]〉, [[M ′]]))

and store the results as [[Z]], ([[N∗,1]], [[N ′∗,1]]), ([[N∗,2]], [[N ′∗,2]], 〈[d]〉, 〈[F]〉, 〈[M ′]〉). Set [[Z]] := [[Z[n+D]]]||[[Z(n+D,2n+2D]]].

10. [Duplicate] Invoke FMPC to compute [[N ′′]] := [[N ′
[n+D)

]] · [[N ′
(n+D]

]]//[[01×2]]. Invoke FAgg on

(Prefix, dup,([[Z∗,1]], [[N∗,1]]), [[N ′′∗,1]]),

(Prefix, dup,([[Z∗,2]], [[N∗,2]], 〈[M ′]〉, 〈[d]〉, 〈[F]〉), [[N ′′∗,2]]),

(Prefix,+,〈[1(n+D)×1]〉, [[N ′′∗,2]])

where dup(x0, x1) = x0 and store the result as ([[Z∗,1]], [[N∗,1]]), ([[Z∗,2]], [[N∗,2]], 〈[M ′]〉, 〈[d]〉, 〈[F]〉), 〈[F ′]〉.

11. [Partition nulls] The parties invoke FSort on inputs [[N∗,1]], [[N∗,2]] and store the results as ([πN,1]), ([πN,2]). The parties invoke
FPerm on inputs

(Perm, ([πN,1]), [[Z∗,1]])

(Perm, ([πN,2]), ([[Z∗,2]], 〈[M ′]〉, 〈[d]〉, 〈[F]〉, 〈[F ′]〉))

and store the results as [[Z∗,1]], ([[Z∗,2]], 〈[M ′]〉, 〈[d]〉, 〈[F]〉, 〈[F ′]〉). The parties drop the last n rows by setting [[Z]] :=
[[Z[D]]], 〈[M ′]〉 := 〈[M ′

[D]
]〉, 〈[d]〉 := 〈[d[D]]〉, 〈[F]〉 := 〈[F[D]]〉, 〈[F ′]〉 := 〈[F ′

[D]
]〉.

12. [Destination index] The parties invoke FMPC to compute 〈[d]〉 := 〈[d]〉+ 〈[F]〉 · 〈[M ′∗,1]〉+ 〈[F ′]〉.

13. [Sort by destination] The parties invoke FSort on 〈[d]〉 and stores the result as ([πd]). The parties invoke FPerm on
(Perm, ([πd]), [[Z∗,2]]) and store the result as [[Z∗,2]]. The parties output [[Z]].

Figure 12: Protocol ΠJoin-MM for secret shared many to many Join where both tables can have
duplicate join keys (part 2 of 2).

27

LAN Time (sec.) Total Communication (MB)

Operation Protocol
n n

28 212 216 220 28 212 216 220

One-to-One Joins
[MRR20] 0.02 0.05 0.5 12.3 0.3 4.9 78 1,249
[LTW13a]∗ 2.0 8.0 128.0 ∗2,048.0 – – – –

One-to-Many Joins This 0.09 0.21 1.3 21.6 1.5 22.8 364 5,560

Many-to-Many Joins This 0.27 0.81 7.3 129.2 8.0 129.5 2,110 32,910

Figure 13: The running time in seconds and communication overhead in MB for various join
operations and application. The input and output tables are of size n. * denotes that the running
times were linearly extrapolated from the values of n provided by the publication.

table has D rows. Unfortunately this approach is impractical when n is sufficiently large, e.g.
n = 220. Therefore some information leakage is unavoidable if the protocol is to be practical.

To reduce leaking a little, one could round D up to the next power of two. This would not
significantly impact performance while limiting the amount of information revealed. Another [com-
plementary] approach would be to use differential privacy, where a random noisy upper bound on
D is revealed [GMRW13]. We leave the optimal way of choosing D to future work and simply
suggest that D is either revealed exactly or rounded up to a power of 2, depending on application
specific considerations.

Theorem 7.1. Given m computing parties that hold secret shares of two input database tables
[[X]], [[Y]], each with n rows. Let pad(d) = d. In the semi-honest FSort, FPerm, FAgg, FMPC hybrid
model, protocol Figure 11, Figure 12 securely realizes Figure 8.

Proof. Similar to proof of Theorem 6.1.

8 Extensions

We note that a variety of extensions can be applied to our core protocols. For example, our core
protocols are designed to compute inner joins between the two tables. However, it is a relatively
simple task to extend our techniques to left, right and full joins along with unions. We define the
different kinds of joins in appendix Appendix A. Additionally, it is a simple extension to apply
some additional computation to the output table. For example, a where clause in the output table
can filter the results as required. We refer the reader to [MRR20] for a detailed description of
these extensions.

9 Evaluation

We implement our protocols in the honest majority three party framework of [MR18a]. All experi-
ments for us and [MRR20] were performed on a consumer grade laptop with a Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz processor and 16GB of RAM. Networking was performed using TCP
via localhost with sub millisecond latency. A single thread per party was used. All cryptographic
operations are performed with computational security parameter κ = 128 and statistical security
λ = 40. We consider set/table sizes of n ∈ {28, 212, 216, 220}. For ΠJoin-MM we set D = n. In

28

general ΠJoin-MM scales with the maximum of n,D. The input join columns sizes are 32 bits for our
protocols.

In Figure 13 we report our performance numbers and comparison to two other protocols [MRR20,
LTW13a]. The first is [MRR20] which aims to offer a similar functionality to ours with the major
restriction that the input tables to their protocol must have unique keys while our protocols allow
duplicates in one or both tables.

The main advantage of their approach is that their running time is linear in the inputs sets
while ours is O(n log n). However, this difference is somewhat deceiving due to their protocol
having linear dependency on the security parameter, i.e., a running time of O(nκ), due to the need
to evaluate the LowMC block cipher [ARS+15] within the MPC. Regardless, their protocol is mildly
faster, requiring 12.3 seconds to join two tables of a million items compared to 21.6 seconds for our
One-to-Many protocol ΠJoin-OM. We argue that such a minor increase in running time is well worth
the added functionality when it is required. Similarly, their protocol requires less communication,
with a total of 1.2GB of data sent compared to ΠJoin-OM sending 5.6GB when joining tables of a
million items.

We also compare to [LTW13a] which has the same restriction as [MRR20] but is overall much
slower and requires more communication. We were not able to obtain concrete communication
numbers for them and the running times are taken from their publication.

We also observe that our ΠJoin-OM protocol is approximately 6 times faster than our more
general ΠJoin-MM protocol. In particular, this is due to the added support for allowing duplicates in
both tables as opposed to just one of them. In more detail, ΠJoin-OM sorts the two tables together
just once and then can perform efficient, linear time operations for the remaining of the protocol.
Unfortunately, ΠJoin-MM requires sorting several times. The first is sorting the input join columns
which scales linearly in O(n`) = O(n log n) where ` is the bit length of the input join column.
Both ΠJoin-OM and ΠJoin-MM require this computation. However, after that, ΠJoin-MM requires two
additional sorts with overhead O((n+D) logD) where D is the upper bound on the output table
size. In particular, our Step 9 must sort two lists of length n + D with keys of size log(D). This
is the most expensive operation in the protocol and takes up about 80% of the running time. The
last sort operation is to rearrange the order of the duplicated Y table which requires O(D logD)
overhead.

Due to the need to sort the join column and this being the main overhead for ΠJoin-OM, this
protocol scales almost linearly in the column bit length. For example, increasing it from 32 to
64 in our experiments should roughly double the overhead. However, this is not strictly the case
for ΠJoin-MM where the main overhead is sorting in step Step 9 which scales as O((n + D) logD).
Moreover, if the key length gets too long then they can be compressed using a randomized encoding
technique as described in [MRR20]. This effectively ensures that the bit length of the join column
can never be larger than λ+ 2 log n.

References

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia,

29

Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 430–454. Springer, 2015.

[BA11] Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset opera-
tions. Cryptology ePrint Archive, Report 2011/464, 2011. https://ia.cr/2011/464.

[CHI+19a] Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi, and Benny
Pinkas. An efficient secure three-party sorting protocol with an honest majority. IACR
Cryptol. ePrint Arch., page 695, 2019.

[CHI+19b] Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi, and Benny
Pinkas. An efficient secure three-party sorting protocol with an honest majority. Cryp-
tology ePrint Archive, Report 2019/695, 2019. https://ia.cr/2019/695.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled psi from fully
homomorphic encryption with malicious security. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
Canada, October 14 - 16, 2018. ACM, 2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomor-
phic encryption. In CCS, 2017.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure
two-party computation. Cryptology ePrint Archive, Report 2018/105, 2018. https:

//ia.cr/2018/105.

[CTB+18] Rémi Canillas, Rania Talbi, Sara Bouchenak, Omar Hasan, Lionel Brunie, and Laurent
Sarrat. Exploratory study of privacy preserving fraud detection. In Proceedings of the
19th International Middleware Conference Industry, Middleware ’18, page 25–31, New
York, NY, USA, 2018. Association for Computing Machinery.

[DPDea20] Morten Dahl, Justin Patriquin, Yann Dupis, and et. al. Tf encrypted: Encrypted deep
learning in tensorflow. 2020.

[Fac20] Facebook. Crypten: A research tool for secure machine learning in pytorch. 2020.

[GMRW13] S. Dov Gordon, Tal Malkin, Mike Rosulek, and Hoeteck Wee. Multi-party computation
of polynomials and branching programs without simultaneous interaction. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of
Lecture Notes in Computer Science, pages 575–591. Springer, 2013.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual Inter-
national Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021,
Proceedings, Part II, volume 12826 of Lecture Notes in Computer Science, pages 395–
425. Springer, 2021.

30

https://ia.cr/2011/464
https://ia.cr/2019/695
https://ia.cr/2018/105
https://ia.cr/2018/105

[IKN+17a] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. Private intersection-sum protocol with applications
to attributing aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738,
2017. https://eprint.iacr.org/2017/738.

[IKN+17b] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, and Moti Yung. Private intersection-sum protocol with applications
to attributing aggregate ad conversions. IACR Cryptology ePrint Archive, 2017:738,
2017.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In CCS, 2016.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set
intersection for unequal set sizes with mobile applications. Proc. Priv. Enhancing
Technol., 2017(4):177–197, 2017.

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. In CCS, 2017.

[Lin16] Yehuda Lindell. How to simulate it - a tutorial on the simulation proof technique.
Cryptology ePrint Archive, Paper 2016/046, 2016. https://eprint.iacr.org/2016/
046.

[LKFV21] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. Secrecy: Se-
cure collaborative analytics on secret-shared data. CoRR, abs/2102.01048, 2021.

[LTW13a] Sven Laur, Riivo Talviste, and Jan Willemson. From oblivious aes to efficient and
secure database join in the multiparty setting. In Proceedings of the 11th International
Conference on Applied Cryptography and Network Security, ACNS’13, pages 84–101,
Berlin, Heidelberg, 2013. Springer-Verlag.

[LTW13b] Sven Laur, Riivo Talviste, and Jan Willemson. From oblivious aes to efficient and
secure database join in the multiparty setting. In International Conference on Applied
Cryptography and Network Security, pages 84–101. Springer, 2013.

[Met22] Meta. What are privacy-enhancing technologies (pets) and how will
they apply to ads?, 2022. https://about.fb.com/news/2021/08/

privacy-enhancing-technologies-and-ads/.

[MR18a] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine
learning. IACR Cryptology ePrint Archive, 2018:403, 2018.

[MR18b] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine
learning. Cryptology ePrint Archive, Report 2018/403, 2018. https://ia.cr/2018/

403.

[MRR20] Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast Database Joins and PSI for
Secret Shared Data, page 1271–1287. Association for Computing Machinery, New York,
NY, USA, 2020.

31

https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046
https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
https://ia.cr/2018/403
https://ia.cr/2018/403

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n ot exten-
sion with application to private set intersection. In Helena Handschuh, editor, Topics
in Cryptology – CT-RSA 2017: The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14–17, 2017, Proceedings, pages 381–396,
Cham, 2017. Springer International Publishing.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
private set intersection from sparse OT extension. In CRYPTO, 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast,
malicious private set intersection. In EUROCRYPT, 2020.

[PSSZ15a] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz,
editors, 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015., pages 515–530. USENIX Association, 2015.

[PSSZ15b] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In USENIX, 2015.

[PSTY19a] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In EUROCRYPT, 2019.

[PSTY19b] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Effi-
cient circuit-based psi with linear communication. Cryptology ePrint Archive, Report
2019/241, 2019. https://ia.cr/2019/241.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In EUROCRYPT, 2018.

[PSZ14a] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 797–812, San Diego, CA, 2014. USENIX Association.

[PSZ14b] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on ot extension. In USENIX, 2014.

[PSZ16] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection
based on OT extension. Cryptology ePrint Archive, Report 2016/930, 2016. http:

//eprint.iacr.org/2016/930.

[RA18] Amanda Cristina Davi Resende and Diego F. Aranha. Faster unbalanced private set
intersection. 2018.

[RR22] Peter Rindal and Srinivasan Raghuraman. Blazing fast psi from improved okvs and
subfield vole. Cryptology ePrint Archive, Report 2022/320, 2022. https://ia.cr/

2022/320.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from
vector-ole. In Anne Canteaut and François-Xavier Standaert, editors, Advances in

32

https://ia.cr/2019/241
http://eprint.iacr.org/2016/930
http://eprint.iacr.org/2016/930
https://ia.cr/2022/320
https://ia.cr/2022/320

Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II, volume 12697 of Lecture Notes in Computer Science, pages
901–930. Springer, 2021.

[RSC+19] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,
and Farinaz Koushanfar. XONN: xnor-based oblivious deep neural network inference.
In Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1501–1518.
USENIX Association, 2019.

[SvHA+19] Alex Sangers, Maran van Heesch, Thomas Attema, Thijs Veugen, Mark Wiggerman,
Jan Veldsink, Oscar Bloemen, and Daniël Worm. Secure multiparty pagerank algorithm
for collaborative fraud detection. In Ian Goldberg and Tyler Moore, editors, Financial
Cryptography and Data Security, pages 605–623, Cham, 2019. Springer International
Publishing.

[WGC19] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure com-
putation for neural network training. PoPETs, 2019(3):26–49, 2019.

[Wil19] John Wilander. Privacy preserving ad click attribution for the web., 2019. webkit.

org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/.

33

webkit.org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/
webkit.org/blog/8943/privacy-preserving-ad-click-attribution-for-the-web/

A SQL-like Join Operations

We can view a database X as a collection of rows X[i] with i ∈ {0, · · · , n}. A database join on
input databases X,Y is defined by identifying a join column Xk, Y k in both tables. Next, we
match values in both columns Xk, Y k to determine the rows of the output table. Below we list the
constraints for different types of joins -

1. Inner Join: Every pair (xi, yj) of matching values where xi = yj in the join columns (Xk, Y k)
corresponds to the a row in the output table. Each row in the output table is a concatenation
of the rows (X[i] ‖ Y [j]) corresponding to the matching keys from both tables.

2. Left/Right Join: If we assign X as left table and Y as right table, then left join is defined as
X inner join Y plus all the remaining rows of the left table X (all the rows of X that are not
in the inner join). A right join is defined symmetrically as X inner join Y along with all the
remaining rows of the right table Y (without the matching values in the join column). All
the columns with missing values are assigned NULL.

3. Union: We write X ∪Y = X left join (Y \X). The output table consists of all the rows of the
left table X and all the rows of table Y that are not in the inner join (all the rows without a
matching value in table X) with NULL in all the missing columns.

4. Full Join: This operation can be expressed as {X ∩Y }∪{Y \X}∪{X\Y } and can be written
as (X Left join Y) union Y or (Y left join X) union X.

Beyond joins, this framework allows for selecting rows in a table that meet a certain criterion or
computing the aggregation values (sum , count, max value) over a column in a single database In
this paper, we describe the protocol to obliviously compute the inner join. We refer the reader to
a previous work [MRR20] that describes the generic extension from inner join to the full suite of
join operations, aggregation and filtering using the where clause.

B Aggregation trees

B.1 Suffix Aggregation

Theorem B.1. Given input array V =
[
v1, v2, . . . , vn

]
with associated control bits B =

[
b1 =

0, b2, . . . , bn
]
, protocol Figure 4 correctly computes the suffix aggregation V ′ =

[
v′1, v

′
2, . . . , v

′
n

]
where

v′i = Fsuf-ind(i)
j=i vj.

Proof. To see that the above algorithm indeed performs suffix aggregation, we set up the following
semantics for each of the entries in the 5-tuple. For an internal node with an associated 5-tuple
(γ, δ, suffix, `, p),

• δ is the sum of the leaves of the sub-tree rooted at the internal node, starting from the left
until and excluding the first value whose corresponding control bit is 0 (if it exists). More
formally,

δ = F
min{suf-ind(ileft),iright}
j=ileft

vj

where ileft and iright are the indices of the left-most and right-most leaves of the sub-tree
rooted at the internal node respectively.

34

• γ is the δ value of the right sub-tree of the sub-tree rooted at the internal node.

• suffix is the suffix aggregation value of the right-most leaf of the sub-tree rooted at the internal
node, excluding the value of the right-most leaf. More formally,

suffix = F
suf-ind(iright)
j=iright+1 vj

where iright is the index of the right-most leaf of the sub-tree rooted at the internal node.

• ` is the control bit of the left-most leaf in the sub-tree rooted at the internal node.

• p is the product (logical conjunction) of the control bits of all the leaves of the sub-tree rooted
at the internal node.

Initialization. It is easy to see that by definition, the δ values at the leaves are the values in V
if the control bit is 1, and e? if the control bit it 0. Since leaves have empty right sub-trees, the
γ value of a leaf is e?. By definition, the ` and p values at the leaves are the control bits B. The
suffix values are only calculated during the downstream phase and throughout the upstream phase,
we simply set suffix = e?. This shows that the 5-tuples at the leaves are consistent with the above
semantics.

Upstream. We now inductively show that the 5-tuples are updated correctly during the upstream
phase. The update to γ as γ = δ1 is consistent by definition. The suffix values are only calculated
during the downstream phase and throughout the upstream phase, we simply set suffix = e?. Since
the left-most leaf of the left sub-tree rooted at a node is the same as the left-most leaf of the sub-tree
rooted at the same node, the update ` = `0 is consistent. It is also easy to see that the product of
the control bits of all the leaves of the sub-tree rooted at a node is the product of those in the left
sub-tree rooted at the same node multiplied by the product of those in the right sub-tree rooted
at the same node, and hence the update p = p0p1 is consistent. Finally, we look at the update to
δ. Recall that δ is the sum of the leaves of the sub-tree rooted at the internal node, starting from
the left until and excluding the first value whose corresponding control bit is 0 (if it exists). It is
helpful to think of δ as the “leading sum” (sum of values associated with the left-most sequence of
control bits of the form 1111 . . . 1) of the sub-tree rooted at the internal node. It is easy to see that
if the left sub-tree of an internal node contains a leaf with the control bit 0, then the leading sum
of the sub-tree rooted at the internal node is the same as the leading sum of the left sub-tree of the
node. Formally, this means that if p0 = 0 (the product of the control bits in the left sub-tree is 0 if
and only if one of the control bits is 0), then δ = δ0. In the other case, where the left sub-tree has
leaves all of whose control bits are 1, δ0, the leading sum of the left sub-tree, would be the sum of
the values of all the leaves in the left sub-tree, and the leading sum of the entire sub-tree rooted at
the internal node would be the aggregate of δ0 and the leading sum of the right sub-tree. Formally,
this means that if p0 = 1, then δ = δ0 ? δ1. Thus, we have shown inductively that the 5-tuples are
updated correctly during the upstream phase and are consistent with the semantics described above.

Downstream. What remains to be shown is that inductively the suffix values are updated cor-
rectly during the downstream phase. To begin, at the root, the suffix value is the suffix aggregation
value of the right-most leaf of the entire tree, excluding its own value. Plugging in for the variables,
at the root,

suffix = Fn
j=n+1vj = e?

35

which has been correctly set. We now proceed with the inductive claim. Suppose we have the
5-tuple at an internal node. We would like to update the suffix values of the left and right children
of this node and proceed inductively. Since the right-most leaf of the right sub-tree of a node is
the same as the right-most leaf of the sub-tree rooted at the same node, the update suffix1 = suffix
is consistent. Consider the left sub-tree of the node. The suffix aggregation value of the that
right-most leaf of the left sub-tree, excluding its own value, would include the leading sum of the
right sub-tree of the node. If the right sub-tree had a leaf with the control bit 0, then the suffix
aggregation value of the right-most leaf of the left sub-tree of the node would simply be the leading
sum of the right sub-tree of the node. Formally, this means that if p1 = 0 (the product of the control
bits in the right sub-tree is 0 if and only if one of the control bits is 0), then suffix0 = γ. If the right
sub-tree had no leaf with the control bit 0, then the suffix aggregation value of the right-most leaf
of the left sub-tree of the node would be the aggregation of the leaves of the right sub-tree of the
node as well as the suffix aggregation value of the right-most leaf of the right sub-tree of the node.
Formally, this means that if p1 = 1, then suffix0 = γ ? suffix. Thus, we have shown inductively that
the suffix values are updated correctly during the downstream phase and are consistent with the
semantics described above.

Output. We now finally show that Vsuf is calculated correctly. Indeed, by our previous argu-
ments,

suffixi = Fsuf-ind(i)
j=i+1 vj

Hence
v′i = vi ? suffixi = Fsuf-ind(i)

j=i vj

as required.

B.2 Full Aggregation

Initialization. We initialize the 8-tuples for the leaves as (e?, vi, e?, δi, e?, e?, bi, bi), where

δi =

{
e? bi = 0

vi bi = 1

Upstream. Consider an internal node with left and right children having the associated 8-tuples
(α0, β0, γ0, δ0, , suffix0, `0, p0) and (α1, β1, γ1, δ1, prefix1, suffix1, `1, p1) respectively. Then, we calcu-
late the 8-tuple of the internal node as

α = β0

β =

{
β1 p1 = 0

β0 ? β1 p1 = 1

γ = δ1

δ =

{
δ0 p0 = 0

δ0 ? δ1 p0 = 1

prefix = e?, suffix = e?, ` = `0, p = p0p1

36

Downstream. Consider an internal node with an associated 8-tuple (α, β, γ, δ, prefix, suffix, `, p).
Then, we calculate the prefix and suffix values for its left and right children as

prefix0 = prefix

prefix1 =


e? `1 = 0

α `1 = 1, p0 = 0

prefix ? α `1 = 1, p0 = 1

suffix0 =

{
γ p1 = 0

γ ? suffix p1 = 1

suffix1 = suffix

Output. We calculate the aggregation of V as Vagg =
[
v′1, v

′
2, . . . , v

′
n

]
, where

v′i = prefixi ? vi ? suffixi

and prefixi and suffixi are the prefix and suffix values in the 8-tuple associated with the leaf with
value vi at the end of the downstream phase.

37

	Introduction
	Our Setting and Related Work
	Preliminaries
	Secure Computation Framework
	Secret-shared Sorting
	Implementation

	Technical Overview
	Parallel Aggregation using Trees
	Prefix Aggregation – A First Solution
	Suffix Aggregation – A First Solution
	Full Aggregation – A First Solution
	Optimizations and Improvements

	One to Many Join - Join-OM
	Many to Many Join - Join-MM
	Extensions
	Evaluation
	SQL-like Join Operations
	Aggregation trees
	Suffix Aggregation
	Full Aggregation

