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Abstract. Fruit is a small-state stream cipher designed 
for securing communications among resource-
constrained devices. The design of Fruit was first known 
to the public in 2016. It was later improved as Fruit-80 
in 2018 and becomes the latest and final version among 
all versions of the Fruit stream ciphers. In this paper, we 
analyze the Fruit-80 stream cipher. We found that Fruit-
80 generates identical keystreams from certain two 
distinct pairs of key and IV. Such pair of key and IV pairs 
is known as a slid pair. Moreover, we discover that when 
two pairs of key and IV fulfill specific characteristics, 
they will generate identical keystreams. This shows that 
slid pairs do not always exist arbitrarily in Fruit-80. We 
define specific rules which are equivalent to the 
characteristics. Using the defined rules, we are able to 
automate the searching process using an MILP solver, 
which makes searching of the slid pairs trivial.  
 

1. Introduction 
 
Stream ciphers play a prominent role in protecting digital 
communications. While there is a myriad of stream 
ciphers available in the literature, considerations of these 
ciphers for real-world applications are hindered by 
"security" concerns. This problem can be witnessed from 
several practical applications such as RC4 [24], A5/1 [8] 
and E0 [26]. The RC4 stream cipher, which is a well-
known primitive for protecting wireless networks, has 
been used as the underlying algorithm for Wired 
Equivalent Privacy (WEP) protocol. The aim of this 
protocol is to provide confidentiality comparable to 
wired networks. Nowadays, RC4 can no longer provide 
a sufficient level of security as it is vulnerable to attacks 
such as in [13, 21]. A5/1, which is another example of 
stream cipher, adopted in the Global System for Mobile 
Communications (GSM) protocol, is a well-known 
primitive for securing telecommunications. 
Unfortunately, the A5/1 stream cipher can be broken [4, 
5, 7, 11] as well, which has become one of the factors 
that renders GSM insecure. The E0 stream cipher, which 
had been implemented in Bluetooth networks, has also 
been practically broken [20]. Although stream ciphers 
encrypt faster than block ciphers, their security margins 
are unclear as the design principle of stream ciphers is 

not well understood as in block ciphers. Thus, in order to 
understand a “good” design principle for stream ciphers, 
an extensive effort to analyze existing design structures 
is required. 
 

The design of stream ciphers often involves 
internal states which are at least twice as large as their 
key size [1, 6, 9, 10, 18, 19]. This design strategy is 
adopted due to its resistance against the time-memory-
data tradeoff (TMDTO) attack, which can render the 
effective key length into half of the original key size. 
However, this does not stop cryptographers in designing 
stream ciphers with small internal states. In FSE 2015, 
Sprout [3], a new stream cipher has been proposed with 
shorter internal state, allowing the construction to have a 
smaller area size and lower power consumption than 
ciphers with large internal state size. However, Sprout 
was later proven to be insecure [12] against the time-
memory-data tradeoff attack, which breaks Sprout 
practically. Nevertheless, studies on small-state stream 
ciphers remain active, with the emergence of new design 
proposals such as Fruit [2], Plantlet [22] and Lizard [16] 
with similar design principle which are based on Grain 
[18]. Among all these Grain-like ciphers, Fruit has 
undergone several modifications [2, 15], until being 
finalized in [14] and has been called Fruit-80. 
 

The Fruit-80 stream cipher has a faster 
initialization than Plantlet, Sprout and Lizard [14]. It is 
the lightest stream cipher compared with other Grain-
like stream ciphers. Although small-state stream ciphers 
may incur TMDTO distinguishing attacks, the designers 
of Fruit-80 ruled out the possibility the cipher to be 
susceptible to this attack depending on the application 
scenario [14, 17]. Nevertheless, in order to avoid this 
attack, one of the countermeasures proposed by the 
designers is to limit the number of keystream bits to 2 . 
Recently, Todo et al [30] discovered that Fruit-80 can be 
broken in a time complexity of 2 .  when 2  
keystream bits is allowed to be generated per one key and 
IV pair. Thus, by limiting the number of keystream bits 
to 2  as suggested, the attack by Todo on Fruit-80 can 
be avoided as well. In this paper, we show that the 
initialization and keystream generation of Fruit-80 is 



slidable, proving that there are more than one pair of key 
and IV pairs that can produce the same keystream. Thus, 
by limiting the number of keystream bits to 2  is not 
sufficient to strengthen the cipher from its weaknesses. 
 

An ideal stream cipher should produce 
keystreams which are indistinguishable from truly-
random sequence. In this paper we would like to point 
out that, there exists slid key-IV pairs (alternatively “slid 
pairs”) in Fruit-80. To begin, denote 𝑓  and 𝑓  as 𝑟-clock 
and 𝑠 -clock variants of the same cipher respectively 
which only differ in the number of clocks. Given a key-
IV pair, (𝑥, 𝑣)  and (𝑥 , 𝑣 ) , if both 𝑓 (𝑥, 𝑣)  and 
𝑓 (𝑥 , 𝑣 )  can produce the same keystream for any 
clock 𝑡 > 0, such key-IV pair is known as a slid pair. 
 

The existence of slid pairs in a stream cipher 
clearly shows that there are more than one key-IV pair 
that can produce the same keystream. In principle, each 
keystream should only be used once. By having different 
messages being encrypted using the same keystream will 
cause a catastrophic failure to the cipher system in 
preserving the confidentiality of the messages. To be 
more precise, let 𝑐  and 𝑐′ be two different ciphertexts 
obtained by encrypting two different plaintexts 𝑚 and 
𝑚′ using the same keystream 𝑘, such that, 𝑐 = 𝑚 ⊕
𝑘   and 𝑐 = 𝑚 ⊕ 𝑘 . Thus, by XORing 𝑐  and 𝑐 , we 
have 𝑐 ⊕ 𝑐 = 𝑚 ⊕ 𝑚  which simplifies the recovery 
of both 𝑚  and 𝑚 . 
 
OUR CONTRIBUTION. In this paper, we investigate Fruit-
80 of such behavior. We found that, by setting specific 
distinct key and IV pairs, Fruit-80 will generate identical 
keystreams with clock-shifts. Moreover, finding slid 
pairs in Fruit-80 is trivial. We propose specific rules for 
key and IV pairs to become a slid pair in Fruit-80. These 
rules can be translated into MILP inequalities to be 
solved automatically by an MILP solver. By the aid of 
an MILP solver, slid pairs can be generated easily. The 
result of our work shows that slid pairs in Fruit-80 is easy 
to be generated, which implies the weakness of the 
cipher in generating random keystreams. Moreover, by 
observing the slid pairs, we found that both combination 
of key and IV pairs in most slid pairs do not have a 
definite pattern, suggesting that slid pairs can also occur 
even if keys and IVs are randomly generated. 
 
ORGANIZATION OF THE PAPER. In Section 2, we review 
the design of the Fruit-80 stream cipher. Section 3 
describes the construction of MILP inequalities for 
MILP solver to find slid pairs. Section 4, shows how to 
find slid pairs in Fruit-80 and describes the result of our 
work. Section 5 concludes the paper. 
 
2. A Brief Description of the Fruit-80 Stream Cipher 
 
Fruit-80 [14] is a GRAIN-like stream cipher. It has a 37-
bit non-linear feedback shift register (NFSR) 𝒏 and a 43-
bit linear feedback shift register (LFSR) 𝒍. It receives a 
80-bit secret key 𝒌 and a 70-bit initialization vector 𝒗 

where 𝒌 = (𝑘 , 𝑘 , . . . , 𝑘 )  and 𝒗 = (𝑣 , 𝑣 , . . . , 𝑣 ) . 
The feedback function of NFSR is as follows. 
 

𝑛 = 𝑘 ⊕ 𝑙 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛  
 ⋅ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⋅ 𝑛 ⋅ 𝑛  
 ⊕ 𝑛 ⋅ 𝑛 ⊕ 𝑛 ⋅ 𝑛 ⋅ 𝑛  
 ⋅ 𝑛  

 
while the feedback function of LFSR is 
 

𝑙 =  𝑙 ⊕ 𝑙 ⊕ 𝑙 ⊕ 𝑙 ⊕ 𝑙 ⊕ 𝑙  
 
where 𝑛 ∈ 𝒏 and 𝑙 ∈ 𝒍. 
 

The output function produces an output bit 𝑧  in 
every clock. However, 𝑧  is discarded when 0 ≤ 𝑡 <
 160 . Therefore 𝑧  is the first output bit in the 
keystream. The output function is as follows. 
 

𝑧 = ℎ ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛  
 ⊕ 𝑙  

 
The output function involves 𝒉 function and round keys. 
The 𝒉 function is as follows.   
 

ℎ = 𝑘 ⋅ (𝑛 ⊕ 𝑙 ) ⊕ 𝑙 ⋅ 𝑙 ⊕ 𝑙  
 ⋅ 𝑙 ⊕ 𝑛 ⋅ 𝑙 ⊕ 𝑛 ⋅ 𝑛  
 ⊕ 𝑛 ⋅ 𝑛 ⋅ 𝑙  

 
There are two round keys, 𝑘  and 𝑘∗ used in the round 
function. The generation of 𝑘  and 𝑘∗ is based on three 
selected key bits 𝑘 , 𝑘  and 𝑘 . 
 

𝑘 = 𝑘 ⋅ 𝑘 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘 ⊕ 𝑘  
 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘 ⊕ 𝑘  
  

𝑘∗ = 𝑘 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘  
 ⊕ 𝑘 ⊕ 𝑘 ⊕ 𝑘  

 
The indices of the selected key bits are based on the value 
of a counter 𝐶𝑟  which consists of 7 bits 𝐶𝑟 =
(𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 ) , where 𝑟 = (𝑐 𝑐 𝑐 𝑐 ) , 𝑝 =
(𝑐 𝑐 𝑐 𝑐 𝑐 ) and 𝑞 = (𝑐 𝑐 𝑐 𝑐 𝑐 ). 
 
The initialization phase is divided into three steps. The 
first step of the initialization starts from the first clock 
until the 80-th clock. Both NFSR and LFSR are first 
initialized with 𝑘, such that, 𝑛 = 𝑘  and 𝑙 = 𝑘  for 
0 ≤ 𝑖 < 37. The second step of initialization involves 
overwriting the counter 𝐶𝑟  and the last step of 
initialization starts from the 81-th clock to the end of 
initialization. 
 
During the first initialization phase, the counter is 
initialized such that 𝑐 = 0  for 0 ≤ 𝑖 ≤ 6 . It is then 
overwritten in the second step of initialization where 
𝑐 = 𝑛  for 0 ≤ 𝑖 ≤ 5 and 𝑐 = 𝑙 . The value of 
𝑙  is then set to 1. The overwritten counter will then be 
used in the third step of the initialization. 



 
During the first step of initialization, 𝑧 ⊕ 𝑣  is XORed 
with both 𝑛  and 𝑙  respectively before entering 
as a new bit into NFSR and LFSR. The bit 𝑧 ⊕ 𝑣  is 
then disconnected from NFSR and LFSR during the third 
step of initialization. Figure 1 illustrates the structure of 
the Fruit-80 stream cipher. 
 

 
Figure 1: Structure of Fruit-80 

 
 

3. The Notion of Mixed-Integer Linear 
Programming (MILP) 

 
Mixed-Integer Linear Programming (MILP) [23] is a 
constraint programming used to determine the minimum 
or maximum objective of a set of linear equalitions and 
inequalities. In this paper, we use Gurobi Optimizer [34], 
which is an MILP solver, to find the key and IV pairs 
which can fulfill the sliding property. Gurobi Optimizer 
is also used in [27–29, 32, 33]. The MILP inequalities 
which are equivalent to AND, XOR and OR are shown 
in Lemma 1, 2 and 3 respectively. Note that the MILP 
inequalities presented in [29, 31, 33] describes the MILP 
inequalities for propagation of the division property of 
copy, xor and and. However, in this paper, we show 
MILP inequalities which are equivalent to the bitwise 
AND, XOR and OR. 
 

Lemma 1. Let 𝑐 = ∏ 𝑎  be an AND operation. The 
equivalent inequalities for the AND operation is as 
follows. 
 

𝑐 − 𝑎 ≤ 0 where 1 ≤ 𝑖 ≤ 𝑗 
𝑐 − 𝑎 − 𝑎 −. . . −𝑎 ≥ 1 − 𝑗 

 
Proof. By limiting 𝑐  and 𝑎  for all 1 ≤ 𝑖 ≤ 𝑗 such that 
𝑐 − 𝑎 ≤ 0, the possibility that 𝑐 = 1 while 𝑎 = 0 for 
any 𝑖  is eliminated. The constraint 𝑐 − 𝑎 −
𝑎 −. . . −𝑎 ≥ 1 − 𝑗 eliminates the possibility that 𝑐 = 0 
when 𝑎 = 1 for all 1 ≤ 𝑖 ≤ 𝑗. All other possibilities are 
true in bitwise AND operations.            ◻ 

 
Lemma 2. Let 𝑐 = 𝑎 ⊕ 𝑎  be an XOR operation. The 
equivalent inequalities for the XOR operation are as 
follows. 
 

𝑐 − 𝑎 − 𝑎 ≤ 0 
   

𝑐 − 𝑎 + 𝑎 ≥ 0 
   

𝑐 + 𝑎 − 𝑎 ≥ 0 
   

𝑐 + 𝑎 + 𝑎 ≤ 2 
 
Proof. The inequality 𝑐 − 𝑎 − 𝑎 ≤ 0  eliminates the 
possibility that 𝑐 = 1, 𝑎 = 0 and 𝑎 = 0, which is not 
in accordance with a bitwise XOR operation. The second 
inequality 𝑐 − 𝑎 + 𝑎 ≥ 0  eliminates the possibility 
that 𝑐 = 0, 𝑎 = 1 and 𝑎 = 0. The third inequality 𝑐 +
𝑎 − 𝑎 ≥ 0 eliminates the possibility that 𝑐 = 0, 𝑎 =
0 and 𝑎 = 1 while the fourth inequality 𝑐 + 𝑎 + 𝑎 ≤
2  eliminates the possibility where 𝑐 = 1 , 𝑎 = 1  and 
𝑎 = 1. The remaining possibilities are in accordance 
with bitwise XOR operations.            ◻ 
 

Lemma 3. Let 𝑐 = ⋁ 𝑎  be an OR operation. The 
equivalent inequalities for the OR operation are as 
follows. 
 

𝑐 − 𝑎 ≥ 0 where 1 ≤ 𝑖 ≤ 𝑗 
𝑐 − 𝑎 − 𝑎 −. . . −𝑎 ≤ 0 

 
Proof. By limiting 𝑐 and 𝑎  for all 1 ≤ 𝑖 ≤ 𝑗 such that 
𝑐 − 𝑎 ≥ 0, the possibility that 𝑐 = 0 while 𝑎 = 1 for 
any 𝑖  is eliminated. The constraint 𝑐 − 𝑎 −
𝑎 −. . . −𝑎 ≥ 1 − 𝑗 eliminates the possibility that 𝑐 = 1 
when 𝑎 = 0 for all 1 ≤ 𝑖 ≤ 𝑗. All other possibilities are 
true in a bitwise OR operation.            ◻ 
 
Lemma 3 is equivalent to Proposition 2 in [33]. Note that 
Todo et al [29] claim that 𝑐 − 𝑎 − 𝑎 −. . . −𝑎 ≤ 0 is 
redundant and does not affect their result even if the 
inequality is not included. However, we found that there 

is a possibility for 𝑐 = 1 and ∑ 𝑎 = 0, which does 
not correspond to a bitwise OR operation. Therefore, we 
adopt the MILP inequalities introduced in [33] to avoid 
this possibility. 
 
Both 𝑘  and 𝑘∗ are determined by three secret key bits 
𝑘 , 𝑘  and 𝑘 . We show the equations for 
determining the value of 𝑘 , 𝑘  and 𝑘  in Lemma 
4. 
 
Lemma 4. Let  ℓ  be the length of subkey; 𝛾  as the 
starting index of key bits for 𝑘 , 𝑘  and 𝑘  
respectively. Next, let 𝛼  be the starting index of the 
respective counter bits used by either 𝑟, 𝑝 or 𝑞; while 𝛽 
representing the last index of the respective counter bits. 
Then, the value of 𝑘 , 𝑘  and 𝑘  can be 



determined by assigning the respective values of ℓ, 𝛼, 𝛽 
and 𝛾 to the following expression.  
  

⎝

⎜
⎛

𝑘 ⋅ 1 − 𝑐 ⊕
𝑖 − 𝛾

2
 𝑚𝑜𝑑 2

⎠

⎟
⎞

ℓ

 

  
Proof. From the round key function of Fruit-80 (cf. 
Section 2), we know that 𝑘 ∈ {𝑘 , 𝑘 , . . . , 𝑘 } . 
Therefore, we consider 𝑘 = ∑ (𝑘 ⋅ 𝜔), where 𝜔 ∈
𝔽  takes a value of 1 if and only if 𝑖 = (𝑐 𝑐 𝑐 𝑐 ). The 
index 𝑖 can be viewed as a vector 𝑖 = (𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 ), in 

which 𝑖 =  mod 2. Since 𝑟 = (𝑐 𝑐 𝑐 𝑐 ) , we 

focus on obtaining (𝑖 𝑖 𝑖 𝑖 ) with  𝑖 = . Note that 

(𝑐 𝑐 𝑐 𝑐 ) ⊕ (𝑖 𝑖 𝑖 𝑖 ) = 0 if and only if (𝑖 𝑖 𝑖 𝑖 ) =
(𝑐 𝑐 𝑐 𝑐 ) . In this case, the bitwise OR operation 

⋁ 𝑐 ⊕  𝑚𝑜𝑑 2  can help in distinguishing 

whether (𝑖 𝑖 𝑖 𝑖 ) = (𝑐 𝑐 𝑐 𝑐 )  by returning value 0 
when it is true or value 1  if otherwise. However, 𝜔 

works the opposite of ⋁ 𝑐 ⊕  𝑚𝑜𝑑 2 , thus 

𝜔 = 1 − ⋁ 𝑐 ⊕  𝑚𝑜𝑑2 . Therefore, 𝑘 =

∑ 𝑘 ⋅ 1 − ⋁ 𝑐 ⊕  𝑚𝑜𝑑 2 . We 

apply the same procedure for 𝑘  and 𝑘 . Since 

𝑘 ∈ {𝑘 , 𝑘 , . . . , 𝑘 } , then 𝑘 = ∑ 𝑘 ⋅

1 − ⋁ 𝑐 ⊕  𝑚𝑜𝑑 2 ; and since 

𝑘 ∈ {𝑘 , 𝑘 , . . . , 𝑘 } , then 𝑘 = ∑ 𝑘 ⋅

1 − ⋁ 𝑐 ⊕  𝑚𝑜𝑑 2 . The expressions 

for finding 𝑘 , 𝑘  and 𝑘  can then be generalized 

to ∑ 𝑘 ⋅ 1 − ⋁ 𝑐 ⊕  𝑚𝑜𝑑 2
ℓ . 

Hence, we require to give the respective value of 𝛼, 𝛽, 𝛾 
and ℓ to the expression, such that, 𝛼 = 0, 𝛽 = 3, 𝛾 = 0 
and ℓ = 16 (for finding 𝑘 ); 𝛼 = 0, 𝛽 = 3, 𝛾 = 0 and 
ℓ = 16 (for finding 𝑘 ); and, 𝛼 = 2, 𝛽 = 6, 𝛾 = 48 

and ℓ = 32  (for finding 𝑘 ).           ◻ 
 
Lemma 4 can be converted into MILP equations by 
making use of the MILP inequalities shown in Lemma 1, 
Lemma 2 and Lemma 3 accordingly. 
 

4. Finding Slid Pairs on Fruit-80 
 
A general rule for a slid pair to exist in a stream cipher is 
to have the first starting state initialized with (𝒌, 𝒗) to 
produce the second starting state which can be initialized 
with (𝒌 , 𝒗 ) at different clock-shifts [25]. The key factor 
for two key and IV pairs to generate identical keystreams 

is due to the symmetrical structure between round 
functions after the first starting state, and round functions 
after the second starting state. To be more precise, the 
round function at clock 𝑡  must be symmetrical to the 
round function at clock 𝑡 + 𝑢  in order to produce 
keystreams with 𝑢  clock-shifts. There are several 
components in Fruit-80 that may remove the symmetry. 
However, when certain variables (as explained later in 
Rule 1, 2, 3 and 4) hold specific values, every round 
function at clock 𝑡  behaves similarly to the round 
function at clock 𝑡 + 𝑢 , thus allowing slidable 
keystreams to be generated. Moreover, we notice that 
slid pairs does not always exist arbitrarily. We have 
found specific rules in which, when all rules being 
fulfilled by two pairs of key and IV, Fruit-80 generates 
identical keystreams. We define the rules as follows: 
 
Rule 1. 𝑘  and 𝑘∗ must be the same for all clocks in the 
first and third steps of the initialization. 
 
For each clock, 𝑘  and 𝑘∗  are generated based on the 
counter 𝐶𝑟 (cf. Section 2). The counter is initially set to 
0. It is then overwritten after the first step of the 
initialization based on the value of 𝒌. Thus, the variables 
𝑘  and 𝑘∗ may provide assymetry between the first step 
and the third step of the initialization. Since 𝑘  and 𝑘∗ 
are not hardcoded, there are possibilities for the value of 
𝑘  and 𝑘∗ are not changed during the third step of the 
initialization, even if the counter is updated with 
different values. Thus, it is not possible for a slid pair to 
occur when the values of 𝑘  and 𝑘∗ during the first step 
of the initialization is different from the values during the 
third step of the initialization. Therefore, it is required 
for 𝑘  and 𝑘∗ to be the same for all clocks in both steps. 
 
Rule 2. 𝑙  𝑎𝑛𝑑 𝑙  must be set to 1.  
 
After the overwriting of 𝐶𝑟, the value of 𝑙  is set to 1 to 
prevent the LFSR from being all zeros throughout the 
third initialization step. By default, the value of 𝑙  will 
be set to 1 during the 81-st clock. However, the value of 
𝑙  may differ from 𝑙 . If this happens, it will prevent 
the symmetry between the round function on the 81-st 
clock and the round function at the (81 + 𝑢)-th clock. 
Thus, to ensure the symmetry between these two clocks, 
we set 𝑙  to 1 as well.   
 
Rule 3. 𝑧 ⊕ 𝑣 = 0, for all clocks in the first and third 
steps of the initialization.  
 
During the first step of the initialization, the feedback 
functions for both NFSR and LFSR are XORed with 
𝑧 ⊕ 𝑣 . After the first step of initialization, 𝑧 ⊕ 𝑣  are 
disconnected from the feedback functions, results in 
𝑧 ⊕ 𝑣 = 0. Thus, the disconnection of 𝑧 ⊕ 𝑣  may 
provide assymetry between the first step and the third 
step of the initialization. It is not possible for a slid pair 
to occur when 𝑧 ⊕ 𝑣 = 1during the first step of the 
initialization. Therefore, it is required that 𝑧 ⊕ 𝑣 = 0 
for all clocks in the first step of the initialization. 



 
Rule 4. 𝒗 = 𝒗 , for all 0 ≤ 𝑡 < 10 
 
During the key and IV loading, the 70-bit 𝑣  will be 
padded with 10 constant bits to form an 80-bit 𝒗. The 10 
padded bits are used in clock 0 ≤ 𝑡 < 10. The constant 
values may induce asymmetry between the first 10 
clocks after the starting state and the first 10 clocks after 
the second starting state. To remove the asymmetry, we 
set 𝒗 = 𝒗  for all 0 ≤ 𝑡 < 10. 
 
Table 1: The number of slid pairs in Fruit-80 based on 
the number of clock-shifts 
 

Number of clock-shifts Number of Slid Pairs 
20 2 .  
40 2 .  
60 2 .  
80 2 .  

 
 
With these predefined rules, we can automate the process 
of finding these slid pairs using an MILP solver. We run 
our experiment for several weeks using a single PC to 
find slid pairs applying our predefined rules. From our 
experiment we have been able to find 2 .  slid pairs 
considering a 20-clock shift. We continue our 
experiment considering other number of clock-shifts, i.e. 
40, 60, and 80 clocks and have been able to find 2 . , 
2 .  and 2 .  slid pairs respectively. We summarize 
our findings in Table 1. Examples of slid pairs obtained 
through several clock-shifts are listed in Appendix A. 
 

5. Conclusions 
 
We investigated the existence of slid pair in the Fruit-80 
stream cipher that can generate an identical keystream. 
We employed an MILP solver to help us finding these 
pairs by applying our predefined rules. Our result shows 
that slid pairs in Fruit-80 can be found with deterministic 
rules. This proves that it is possible for Fruit-80 to 
generate the same keystream after resynchronization if 
the key and IV are not properly selected. Our result 
should provide insights to designs of more secure and 
random stream ciphers for constrained environments.  
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A. Results on Selected Slid Pairs 
 
 
A.1. A Slid Pair with a 20 clock-shifts 
 
Key : C67BFFED58E7F743695F 
IV : 310800001289621C08 
Keystream : AA2E4 
  94FEB25422A1914CA6ADA49… 

 
Key : FED5B6F3FC3695FD79D6 
IV : 0001289621C08AD1A1 
Keystream : 94FEB25422A1914CA6ADA49… 

 
 
A.2. A Slid Pair with a 40 clock-shifts 
 
Key : C625020054820218AE54 
IV : 2D369DF8800010A874 
Keystream : 444C31ADDA 
  498B156E08324F36FC2F4F9… 

 
Key : 58BB9FF1E406BCBE1C0F 
IV : 0010A874677CD5BBFA 
Keystream : 498B156E08324F36FC2F4F9… 

 



 
A.3. A Slid Pair with a 60 clock-shifts 
 
Key : 1012932001519735626A 
IV : 1A9E5A63999BDA0117 
Keystream : 9D6747794A93E12 
  06F37DEC94E5A5024C41009… 

 
Key : 7BB65D5F3E7FA3DFFAAB 
IV : 11723DDA7AA63C3C4C 
Keystream : 06F37DEC94E5A5024C41009… 

 
 
A.4. A Slid Pair with a 80 clock-shifts 
 
Key : 874F13DB769E49B609F6 
IV : 22611AFA9CAE02E3FF 
Keystream : 3B13EF3DFF53D34E3F8F 
  9E208C2C18F431D2F415… 

 
Key : 520AC8AB352ABAFF97AA 
IV : 13A93C3727FFA229C3 
Keystream : 9E208C2C18F431D2F415… 

 
 
 


