
Slid Pairs of the Fruit-80 Stream Cipher

1Kok-An Pang, 1Shekh Faisal Abdul-Latip and 2Hazlin Abdul Rani

1INSFORNET, Center of Advanced Computing Technology,
Fakulti Teknologi Maklumat dan Komunikasi,

Universiti Teknikal Malaysia Melaka.
pangkokan@gmail.com; shekhfaisal@utem.edu.my

2Cryptography Development Department,

CyberSecurity Malaysia.
hazlin@cybersecurity.my

Abstract. Fruit is a small-state stream cipher designed
for securing communications among resource-
constrained devices. The design of Fruit was first known
to the public in 2016. It was later improved as Fruit-80
in 2018 and becomes the latest and final version among
all versions of the Fruit stream ciphers. In this paper, we
analyze the Fruit-80 stream cipher. We found that Fruit-
80 generates identical keystreams from certain two
distinct pairs of key and IV. Such pair of key and IV pairs
is known as a slid pair. Moreover, we discover that when
two pairs of key and IV fulfill specific characteristics,
they will generate identical keystreams. This shows that
slid pairs do not always exist arbitrarily in Fruit-80. We
define specific rules which are equivalent to the
characteristics. Using the defined rules, we are able to
automate the searching process using an MILP solver,
which makes searching of the slid pairs trivial.

1. Introduction

Stream ciphers play a prominent role in protecting digital
communications. While there is a myriad of stream
ciphers available in the literature, considerations of these
ciphers for real-world applications are hindered by
"security" concerns. This problem can be witnessed from
several practical applications such as RC4 [24], A5/1 [8]
and E0 [26]. The RC4 stream cipher, which is a well-
known primitive for protecting wireless networks, has
been used as the underlying algorithm for Wired
Equivalent Privacy (WEP) protocol. The aim of this
protocol is to provide confidentiality comparable to
wired networks. Nowadays, RC4 can no longer provide
a sufficient level of security as it is vulnerable to attacks
such as in [13, 21]. A5/1, which is another example of
stream cipher, adopted in the Global System for Mobile
Communications (GSM) protocol, is a well-known
primitive for securing telecommunications.
Unfortunately, the A5/1 stream cipher can be broken [4,
5, 7, 11] as well, which has become one of the factors
that renders GSM insecure. The E0 stream cipher, which
had been implemented in Bluetooth networks, has also
been practically broken [20]. Although stream ciphers
encrypt faster than block ciphers, their security margins
are unclear as the design principle of stream ciphers is

not well understood as in block ciphers. Thus, in order to
understand a “good” design principle for stream ciphers,
an extensive effort to analyze existing design structures
is required.

The design of stream ciphers often involves
internal states which are at least twice as large as their
key size [1, 6, 9, 10, 18, 19]. This design strategy is
adopted due to its resistance against the time-memory-
data tradeoff (TMDTO) attack, which can render the
effective key length into half of the original key size.
However, this does not stop cryptographers in designing
stream ciphers with small internal states. In FSE 2015,
Sprout [3], a new stream cipher has been proposed with
shorter internal state, allowing the construction to have a
smaller area size and lower power consumption than
ciphers with large internal state size. However, Sprout
was later proven to be insecure [12] against the time-
memory-data tradeoff attack, which breaks Sprout
practically. Nevertheless, studies on small-state stream
ciphers remain active, with the emergence of new design
proposals such as Fruit [2], Plantlet [22] and Lizard [16]
with similar design principle which are based on Grain
[18]. Among all these Grain-like ciphers, Fruit has
undergone several modifications [2, 15], until being
finalized in [14] and has been called Fruit-80.

The Fruit-80 stream cipher has a faster
initialization than Plantlet, Sprout and Lizard [14]. It is
the lightest stream cipher compared with other Grain-
like stream ciphers. Although small-state stream ciphers
may incur TMDTO distinguishing attacks, the designers
of Fruit-80 ruled out the possibility the cipher to be
susceptible to this attack depending on the application
scenario [14, 17]. Nevertheless, in order to avoid this
attack, one of the countermeasures proposed by the
designers is to limit the number of keystream bits to 2 .
Recently, Todo et al [30] discovered that Fruit-80 can be
broken in a time complexity of 2 . when 2
keystream bits is allowed to be generated per one key and
IV pair. Thus, by limiting the number of keystream bits
to 2 as suggested, the attack by Todo on Fruit-80 can
be avoided as well. In this paper, we show that the
initialization and keystream generation of Fruit-80 is

slidable, proving that there are more than one pair of key
and IV pairs that can produce the same keystream. Thus,
by limiting the number of keystream bits to 2 is not
sufficient to strengthen the cipher from its weaknesses.

An ideal stream cipher should produce
keystreams which are indistinguishable from truly-
random sequence. In this paper we would like to point
out that, there exists slid key-IV pairs (alternatively “slid
pairs”) in Fruit-80. To begin, denote 𝑓 and 𝑓 as 𝑟-clock
and 𝑠 -clock variants of the same cipher respectively
which only differ in the number of clocks. Given a key-
IV pair, (𝑥, 𝑣) and (𝑥 , 𝑣) , if both 𝑓 (𝑥, 𝑣) and
𝑓 (𝑥 , 𝑣) can produce the same keystream for any
clock 𝑡 > 0, such key-IV pair is known as a slid pair.

The existence of slid pairs in a stream cipher
clearly shows that there are more than one key-IV pair
that can produce the same keystream. In principle, each
keystream should only be used once. By having different
messages being encrypted using the same keystream will
cause a catastrophic failure to the cipher system in
preserving the confidentiality of the messages. To be
more precise, let 𝑐 and 𝑐′ be two different ciphertexts
obtained by encrypting two different plaintexts 𝑚 and
𝑚′ using the same keystream 𝑘, such that, 𝑐 = 𝑚 ⊕
𝑘 and 𝑐 = 𝑚 ⊕ 𝑘 . Thus, by XORing 𝑐 and 𝑐 , we
have 𝑐 ⊕ 𝑐 = 𝑚 ⊕ 𝑚 which simplifies the recovery
of both 𝑚 and 𝑚 .

OUR CONTRIBUTION. In this paper, we investigate Fruit-
80 of such behavior. We found that, by setting specific
distinct key and IV pairs, Fruit-80 will generate identical
keystreams with clock-shifts. Moreover, finding slid
pairs in Fruit-80 is trivial. We propose specific rules for
key and IV pairs to become a slid pair in Fruit-80. These
rules can be translated into MILP inequalities to be
solved automatically by an MILP solver. By the aid of
an MILP solver, slid pairs can be generated easily. The
result of our work shows that slid pairs in Fruit-80 is easy
to be generated, which implies the weakness of the
cipher in generating random keystreams. Moreover, by
observing the slid pairs, we found that both combination
of key and IV pairs in most slid pairs do not have a
definite pattern, suggesting that slid pairs can also occur
even if keys and IVs are randomly generated.

ORGANIZATION OF THE PAPER. In Section 2, we review
the design of the Fruit-80 stream cipher. Section 3
describes the construction of MILP inequalities for
MILP solver to find slid pairs. Section 4, shows how to
find slid pairs in Fruit-80 and describes the result of our
work. Section 5 concludes the paper.

2. A Brief Description of the Fruit-80 Stream Cipher

Fruit-80 [14] is a GRAIN-like stream cipher. It has a 37-
bit non-linear feedback shift register (NFSR) 𝒏 and a 43-
bit linear feedback shift register (LFSR) 𝒍. It receives a
80-bit secret key 𝒌 and a 70-bit initialization vector 𝒗

where 𝒌 = (𝑘 , 𝑘 , . . . , 𝑘) and 𝒗 = (𝑣 , 𝑣 , . . . , 𝑣) .
The feedback function of NFSR is as follows.

𝑛 = 𝑘 ⊕ 𝑙 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛
 ⋅ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⋅ 𝑛 ⋅ 𝑛
 ⊕ 𝑛 ⋅ 𝑛 ⊕ 𝑛 ⋅ 𝑛 ⋅ 𝑛
 ⋅ 𝑛

while the feedback function of LFSR is

𝑙 = 𝑙 ⊕ 𝑙 ⊕ 𝑙 ⊕ 𝑙 ⊕ 𝑙 ⊕ 𝑙

where 𝑛 ∈ 𝒏 and 𝑙 ∈ 𝒍.

The output function produces an output bit 𝑧 in
every clock. However, 𝑧 is discarded when 0 ≤ 𝑡 <
 160 . Therefore 𝑧 is the first output bit in the
keystream. The output function is as follows.

𝑧 = ℎ ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛 ⊕ 𝑛
 ⊕ 𝑙

The output function involves 𝒉 function and round keys.
The 𝒉 function is as follows.

ℎ = 𝑘 ⋅ (𝑛 ⊕ 𝑙) ⊕ 𝑙 ⋅ 𝑙 ⊕ 𝑙
 ⋅ 𝑙 ⊕ 𝑛 ⋅ 𝑙 ⊕ 𝑛 ⋅ 𝑛
 ⊕ 𝑛 ⋅ 𝑛 ⋅ 𝑙

There are two round keys, 𝑘 and 𝑘∗ used in the round
function. The generation of 𝑘 and 𝑘∗ is based on three
selected key bits 𝑘 , 𝑘 and 𝑘 .

𝑘 = 𝑘 ⋅ 𝑘 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘 ⊕ 𝑘
 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘 ⊕ 𝑘

𝑘∗ = 𝑘 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘 ⊕ 𝑘 ⋅ 𝑘
 ⊕ 𝑘 ⊕ 𝑘 ⊕ 𝑘

The indices of the selected key bits are based on the value
of a counter 𝐶𝑟 which consists of 7 bits 𝐶𝑟 =
(𝑐 𝑐 𝑐 𝑐 𝑐 𝑐 𝑐) , where 𝑟 = (𝑐 𝑐 𝑐 𝑐) , 𝑝 =
(𝑐 𝑐 𝑐 𝑐 𝑐) and 𝑞 = (𝑐 𝑐 𝑐 𝑐 𝑐).

The initialization phase is divided into three steps. The
first step of the initialization starts from the first clock
until the 80-th clock. Both NFSR and LFSR are first
initialized with 𝑘, such that, 𝑛 = 𝑘 and 𝑙 = 𝑘 for
0 ≤ 𝑖 < 37. The second step of initialization involves
overwriting the counter 𝐶𝑟 and the last step of
initialization starts from the 81-th clock to the end of
initialization.

During the first initialization phase, the counter is
initialized such that 𝑐 = 0 for 0 ≤ 𝑖 ≤ 6 . It is then
overwritten in the second step of initialization where
𝑐 = 𝑛 for 0 ≤ 𝑖 ≤ 5 and 𝑐 = 𝑙 . The value of
𝑙 is then set to 1. The overwritten counter will then be
used in the third step of the initialization.

During the first step of initialization, 𝑧 ⊕ 𝑣 is XORed
with both 𝑛 and 𝑙 respectively before entering
as a new bit into NFSR and LFSR. The bit 𝑧 ⊕ 𝑣 is
then disconnected from NFSR and LFSR during the third
step of initialization. Figure 1 illustrates the structure of
the Fruit-80 stream cipher.

Figure 1: Structure of Fruit-80

3. The Notion of Mixed-Integer Linear
Programming (MILP)

Mixed-Integer Linear Programming (MILP) [23] is a
constraint programming used to determine the minimum
or maximum objective of a set of linear equalitions and
inequalities. In this paper, we use Gurobi Optimizer [34],
which is an MILP solver, to find the key and IV pairs
which can fulfill the sliding property. Gurobi Optimizer
is also used in [27–29, 32, 33]. The MILP inequalities
which are equivalent to AND, XOR and OR are shown
in Lemma 1, 2 and 3 respectively. Note that the MILP
inequalities presented in [29, 31, 33] describes the MILP
inequalities for propagation of the division property of
copy, xor and and. However, in this paper, we show
MILP inequalities which are equivalent to the bitwise
AND, XOR and OR.

Lemma 1. Let 𝑐 = ∏ 𝑎 be an AND operation. The
equivalent inequalities for the AND operation is as
follows.

𝑐 − 𝑎 ≤ 0 where 1 ≤ 𝑖 ≤ 𝑗
𝑐 − 𝑎 − 𝑎 −. . . −𝑎 ≥ 1 − 𝑗

Proof. By limiting 𝑐 and 𝑎 for all 1 ≤ 𝑖 ≤ 𝑗 such that
𝑐 − 𝑎 ≤ 0, the possibility that 𝑐 = 1 while 𝑎 = 0 for
any 𝑖 is eliminated. The constraint 𝑐 − 𝑎 −
𝑎 −. . . −𝑎 ≥ 1 − 𝑗 eliminates the possibility that 𝑐 = 0
when 𝑎 = 1 for all 1 ≤ 𝑖 ≤ 𝑗. All other possibilities are
true in bitwise AND operations. ◻

Lemma 2. Let 𝑐 = 𝑎 ⊕ 𝑎 be an XOR operation. The
equivalent inequalities for the XOR operation are as
follows.

𝑐 − 𝑎 − 𝑎 ≤ 0

𝑐 − 𝑎 + 𝑎 ≥ 0

𝑐 + 𝑎 − 𝑎 ≥ 0

𝑐 + 𝑎 + 𝑎 ≤ 2

Proof. The inequality 𝑐 − 𝑎 − 𝑎 ≤ 0 eliminates the
possibility that 𝑐 = 1, 𝑎 = 0 and 𝑎 = 0, which is not
in accordance with a bitwise XOR operation. The second
inequality 𝑐 − 𝑎 + 𝑎 ≥ 0 eliminates the possibility
that 𝑐 = 0, 𝑎 = 1 and 𝑎 = 0. The third inequality 𝑐 +
𝑎 − 𝑎 ≥ 0 eliminates the possibility that 𝑐 = 0, 𝑎 =
0 and 𝑎 = 1 while the fourth inequality 𝑐 + 𝑎 + 𝑎 ≤
2 eliminates the possibility where 𝑐 = 1 , 𝑎 = 1 and
𝑎 = 1. The remaining possibilities are in accordance
with bitwise XOR operations. ◻

Lemma 3. Let 𝑐 = ⋁ 𝑎 be an OR operation. The
equivalent inequalities for the OR operation are as
follows.

𝑐 − 𝑎 ≥ 0 where 1 ≤ 𝑖 ≤ 𝑗
𝑐 − 𝑎 − 𝑎 −. . . −𝑎 ≤ 0

Proof. By limiting 𝑐 and 𝑎 for all 1 ≤ 𝑖 ≤ 𝑗 such that
𝑐 − 𝑎 ≥ 0, the possibility that 𝑐 = 0 while 𝑎 = 1 for
any 𝑖 is eliminated. The constraint 𝑐 − 𝑎 −
𝑎 −. . . −𝑎 ≥ 1 − 𝑗 eliminates the possibility that 𝑐 = 1
when 𝑎 = 0 for all 1 ≤ 𝑖 ≤ 𝑗. All other possibilities are
true in a bitwise OR operation. ◻

Lemma 3 is equivalent to Proposition 2 in [33]. Note that
Todo et al [29] claim that 𝑐 − 𝑎 − 𝑎 −. . . −𝑎 ≤ 0 is
redundant and does not affect their result even if the
inequality is not included. However, we found that there

is a possibility for 𝑐 = 1 and ∑ 𝑎 = 0, which does
not correspond to a bitwise OR operation. Therefore, we
adopt the MILP inequalities introduced in [33] to avoid
this possibility.

Both 𝑘 and 𝑘∗ are determined by three secret key bits
𝑘 , 𝑘 and 𝑘 . We show the equations for
determining the value of 𝑘 , 𝑘 and 𝑘 in Lemma
4.

Lemma 4. Let ℓ be the length of subkey; 𝛾 as the
starting index of key bits for 𝑘 , 𝑘 and 𝑘
respectively. Next, let 𝛼 be the starting index of the
respective counter bits used by either 𝑟, 𝑝 or 𝑞; while 𝛽
representing the last index of the respective counter bits.
Then, the value of 𝑘 , 𝑘 and 𝑘 can be

determined by assigning the respective values of ℓ, 𝛼, 𝛽
and 𝛾 to the following expression.

⎝

⎜
⎛

𝑘 ⋅ 1 − 𝑐 ⊕
𝑖 − 𝛾

2
 𝑚𝑜𝑑 2

⎠

⎟
⎞

ℓ

Proof. From the round key function of Fruit-80 (cf.
Section 2), we know that 𝑘 ∈ {𝑘 , 𝑘 , . . . , 𝑘 } .
Therefore, we consider 𝑘 = ∑ (𝑘 ⋅ 𝜔), where 𝜔 ∈
𝔽 takes a value of 1 if and only if 𝑖 = (𝑐 𝑐 𝑐 𝑐). The
index 𝑖 can be viewed as a vector 𝑖 = (𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖), in

which 𝑖 = mod 2. Since 𝑟 = (𝑐 𝑐 𝑐 𝑐) , we

focus on obtaining (𝑖 𝑖 𝑖 𝑖) with 𝑖 = . Note that

(𝑐 𝑐 𝑐 𝑐) ⊕ (𝑖 𝑖 𝑖 𝑖) = 0 if and only if (𝑖 𝑖 𝑖 𝑖) =
(𝑐 𝑐 𝑐 𝑐) . In this case, the bitwise OR operation

⋁ 𝑐 ⊕ 𝑚𝑜𝑑 2 can help in distinguishing

whether (𝑖 𝑖 𝑖 𝑖) = (𝑐 𝑐 𝑐 𝑐) by returning value 0
when it is true or value 1 if otherwise. However, 𝜔

works the opposite of ⋁ 𝑐 ⊕ 𝑚𝑜𝑑 2 , thus

𝜔 = 1 − ⋁ 𝑐 ⊕ 𝑚𝑜𝑑2 . Therefore, 𝑘 =

∑ 𝑘 ⋅ 1 − ⋁ 𝑐 ⊕ 𝑚𝑜𝑑 2 . We

apply the same procedure for 𝑘 and 𝑘 . Since

𝑘 ∈ {𝑘 , 𝑘 , . . . , 𝑘 } , then 𝑘 = ∑ 𝑘 ⋅

1 − ⋁ 𝑐 ⊕ 𝑚𝑜𝑑 2 ; and since

𝑘 ∈ {𝑘 , 𝑘 , . . . , 𝑘 } , then 𝑘 = ∑ 𝑘 ⋅

1 − ⋁ 𝑐 ⊕ 𝑚𝑜𝑑 2 . The expressions

for finding 𝑘 , 𝑘 and 𝑘 can then be generalized

to ∑ 𝑘 ⋅ 1 − ⋁ 𝑐 ⊕ 𝑚𝑜𝑑 2
ℓ .

Hence, we require to give the respective value of 𝛼, 𝛽, 𝛾
and ℓ to the expression, such that, 𝛼 = 0, 𝛽 = 3, 𝛾 = 0
and ℓ = 16 (for finding 𝑘); 𝛼 = 0, 𝛽 = 3, 𝛾 = 0 and
ℓ = 16 (for finding 𝑘); and, 𝛼 = 2, 𝛽 = 6, 𝛾 = 48

and ℓ = 32 (for finding 𝑘). ◻

Lemma 4 can be converted into MILP equations by
making use of the MILP inequalities shown in Lemma 1,
Lemma 2 and Lemma 3 accordingly.

4. Finding Slid Pairs on Fruit-80

A general rule for a slid pair to exist in a stream cipher is
to have the first starting state initialized with (𝒌, 𝒗) to
produce the second starting state which can be initialized
with (𝒌 , 𝒗) at different clock-shifts [25]. The key factor
for two key and IV pairs to generate identical keystreams

is due to the symmetrical structure between round
functions after the first starting state, and round functions
after the second starting state. To be more precise, the
round function at clock 𝑡 must be symmetrical to the
round function at clock 𝑡 + 𝑢 in order to produce
keystreams with 𝑢 clock-shifts. There are several
components in Fruit-80 that may remove the symmetry.
However, when certain variables (as explained later in
Rule 1, 2, 3 and 4) hold specific values, every round
function at clock 𝑡 behaves similarly to the round
function at clock 𝑡 + 𝑢 , thus allowing slidable
keystreams to be generated. Moreover, we notice that
slid pairs does not always exist arbitrarily. We have
found specific rules in which, when all rules being
fulfilled by two pairs of key and IV, Fruit-80 generates
identical keystreams. We define the rules as follows:

Rule 1. 𝑘 and 𝑘∗ must be the same for all clocks in the
first and third steps of the initialization.

For each clock, 𝑘 and 𝑘∗ are generated based on the
counter 𝐶𝑟 (cf. Section 2). The counter is initially set to
0. It is then overwritten after the first step of the
initialization based on the value of 𝒌. Thus, the variables
𝑘 and 𝑘∗ may provide assymetry between the first step
and the third step of the initialization. Since 𝑘 and 𝑘∗
are not hardcoded, there are possibilities for the value of
𝑘 and 𝑘∗ are not changed during the third step of the
initialization, even if the counter is updated with
different values. Thus, it is not possible for a slid pair to
occur when the values of 𝑘 and 𝑘∗ during the first step
of the initialization is different from the values during the
third step of the initialization. Therefore, it is required
for 𝑘 and 𝑘∗ to be the same for all clocks in both steps.

Rule 2. 𝑙 𝑎𝑛𝑑 𝑙 must be set to 1.

After the overwriting of 𝐶𝑟, the value of 𝑙 is set to 1 to
prevent the LFSR from being all zeros throughout the
third initialization step. By default, the value of 𝑙 will
be set to 1 during the 81-st clock. However, the value of
𝑙 may differ from 𝑙 . If this happens, it will prevent
the symmetry between the round function on the 81-st
clock and the round function at the (81 + 𝑢)-th clock.
Thus, to ensure the symmetry between these two clocks,
we set 𝑙 to 1 as well.

Rule 3. 𝑧 ⊕ 𝑣 = 0, for all clocks in the first and third
steps of the initialization.

During the first step of the initialization, the feedback
functions for both NFSR and LFSR are XORed with
𝑧 ⊕ 𝑣 . After the first step of initialization, 𝑧 ⊕ 𝑣 are
disconnected from the feedback functions, results in
𝑧 ⊕ 𝑣 = 0. Thus, the disconnection of 𝑧 ⊕ 𝑣 may
provide assymetry between the first step and the third
step of the initialization. It is not possible for a slid pair
to occur when 𝑧 ⊕ 𝑣 = 1during the first step of the
initialization. Therefore, it is required that 𝑧 ⊕ 𝑣 = 0
for all clocks in the first step of the initialization.

Rule 4. 𝒗 = 𝒗 , for all 0 ≤ 𝑡 < 10

During the key and IV loading, the 70-bit 𝑣 will be
padded with 10 constant bits to form an 80-bit 𝒗. The 10
padded bits are used in clock 0 ≤ 𝑡 < 10. The constant
values may induce asymmetry between the first 10
clocks after the starting state and the first 10 clocks after
the second starting state. To remove the asymmetry, we
set 𝒗 = 𝒗 for all 0 ≤ 𝑡 < 10.

Table 1: The number of slid pairs in Fruit-80 based on
the number of clock-shifts

Number of clock-shifts Number of Slid Pairs
20 2 .
40 2 .
60 2 .
80 2 .

With these predefined rules, we can automate the process
of finding these slid pairs using an MILP solver. We run
our experiment for several weeks using a single PC to
find slid pairs applying our predefined rules. From our
experiment we have been able to find 2 . slid pairs
considering a 20-clock shift. We continue our
experiment considering other number of clock-shifts, i.e.
40, 60, and 80 clocks and have been able to find 2 . ,
2 . and 2 . slid pairs respectively. We summarize
our findings in Table 1. Examples of slid pairs obtained
through several clock-shifts are listed in Appendix A.

5. Conclusions

We investigated the existence of slid pair in the Fruit-80
stream cipher that can generate an identical keystream.
We employed an MILP solver to help us finding these
pairs by applying our predefined rules. Our result shows
that slid pairs in Fruit-80 can be found with deterministic
rules. This proves that it is possible for Fruit-80 to
generate the same keystream after resynchronization if
the key and IV are not properly selected. Our result
should provide insights to designs of more secure and
random stream ciphers for constrained environments.

References

1. Ågren M, Hell M, Johansson T, Meier W (2011)

Grain-128a: a new version of Grain-128 with
optional authentication. Int J Wirel Mob Comput
5:48. doi: 10.1504/IJWMC.2011.044106

2. Amin Ghafari V, Hu H (2016) Fruit: ultra-
lightweight stream cipher with shorter internal
state. IACR Cryptol. ePrint Arch. 2016:1–15

3. Armknecht F, Mikhalev V (2015) On
Lightweight Stream Ciphers with Shorter
Internal States. In: Leander G (ed) International
Workshop on Fast Software Encryption.
Springer, Berlin, Heidelberg, Istanbul, Turkey,

pp 451–470
4. Barkan E, Biham E (2005) Conditional

Estimators: An Effective Attack on A5/1. In:
Preneel B, Tavares S (eds) International
Workshop on Selected Areas in Cryptography.
Springer, Berlin, Heidelberg, Kingston, ON,
Canada, pp 1–19

5. Barkan E, Biham E, Keller N (2003) Instant
Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication. In: Boneh D (ed)
Annual International Cryptology Conference.
Springer, Berlin, Heidelberg, Santa Barbara, CA,
USA, pp 600–616

6. Bernstein DJ (2008) The Salsa20 Family of
Stream Ciphers. In: Robshaw M, Billet O (eds)
New Stream Cipher Designs. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 84–97

7. Biham E, Dunkelman O (2000) Cryptanalysis of
the A5/1 GSM Stream Cipher. In: Roy B,
Okamoto E (eds) International Conference on
Cryptology in India. Springer, Berlin,
Heidelberg, Calcutta, India, pp 43–51

8. Biryukov A, Shamir A, Wagner D (2000) Real
Time Cryptanalysis of A5/1 on a PC. In: Goos G,
Hartmanis J, Leeuwen J van, Schneier B (eds)
International Workshop on Fast Software
Encryption. Springer, Berlin, Heidelberg, New
York, NY, USA, pp 1–18

9. Boesgaard M, Vesterager M, Pedersen T,
Christiansen J, Scavenius O (2003) Rabbit: A
New High-Performance Stream Cipher. In:
Johansson T (ed) International Workshop on Fast
Software Encryption. Springer, Berlin,
Heidelberg, Lund, Sweden, pp 307–329

10. Cannière C De (2006) Trivium A Stream Cipher
Construction Inspired by Block Cipher Design
Principles. In: Katsikas SK, López J, Backes M,
Gritzalis S, Preneel B (eds) International
Conference on Information Security. Springer,
Berlin, Heidelberg, Samos, Greece, pp 171–186

11. Ekdahl P, Johansson T (2003) Another attack on
A5/1. IEEE Trans Inf Theory 49:284–289. doi:
10.1109/TIT.2002.806129

12. Esgin MF, Kara O (2015) Practical Cryptanalysis
of Full Sprout with TMD Tradeoff Attacks. In:
Dunkelman O, Keliher L (eds) International
Conference on Selected Areas in Cryptography.
Springer, Cham, Sackville, Canada, pp 67–85

13. Fluhrer S, Mantin I, Shamir A (2001)
Weaknesses in the Key Scheduling Algorithm of
RC4. In: Vaudenay S, Youssef AM (eds)
International Workshop on Selected Areas in
Cryptography. Springer, Berlin, Heidelberg,
Toronto, ON, Canada, pp 1–24

14. Ghafari VA, Hu H (2018) Fruit-80: A Secure
Ultra-Lightweight Stream Cipher for Constrained
Environments. Entropy 20:180. doi:
10.3390/e20030180

15. Ghafari VA, Hu H, Alizadeh M (2017) Necessary
conditions for designing secure stream ciphers

with the minimal internal states. 1:1–16
16. Hamann M, Krause M, Meier W (2017) LIZARD

– A Lightweight Stream Cipher for Power-
constrained Devices. IACR Trans Symmetric
Cryptol 2017:45–79. doi:
https://doi.org/10.13154/tosc.v2017.i1.45-79

17. Hamann M, Krause M, Meier W, Zhang B (2018)
Design and analysis of small-state grain-like
stream ciphers. Cryptogr Commun 10:803–834.
doi: 10.1007/s12095-017-0261-6

18. Hell M, Johansson T, Maximov A, Meier W
(2006) A Stream Cipher Proposal: Grain-128. In:
2006 IEEE International Symposium on
Information Theory. IEEE, Seattle, WA

19. Lee Y, Jeong K, Sung J, Hong S (2008) Related-
key chosen IV attacks on grain-v1 and grain-128.
In: Mu Y, Susilo W, Seberry J (eds) Australasian
Conference on Information Security and Privacy.
Springer, Berlin, Heidelberg, Wollongong,
NSW, Australia, pp 321–335

20. Lu Y, Meier W, Vaudenay S (2005) The
Conditional Correlation Attack: A Practical
Attack on Bluetooth Encryption. In: Shoup V
(ed) Annual International Cryptology
Conference. Springer, Berlin, Heidelberg, Santa
Barbara, CA, USA, pp 97–117

21. Mantin I, Shamir A (2001) A Practical Attack on
Broadcast RC4. In: Matsui M (ed) International
Workshop on Fast Software Encryption.
Springer, Berlin, Heidelberg, Yokohama, Japan,
pp 152–164

22. Mikhalev V, Armknecht F, Müller C (2017) On
Ciphers that Continuously Access the Non-
Volatile Key. IACR Trans Symmetric Cryptol
2016:52–79. doi:
https://doi.org/10.13154/tosc.v2016.i2.52-79

23. Mouha N, Wang Q, Gu D, Preneel B (2011)
Differential and Linear Cryptanalysis using
Mixed-Integer Linear Programming ⋆. In:
Chuan-Kun W, Moti Y, Dongdai L (eds)
International Conference on Information Security
and Cryptology. Springer, Berlin, Heidelberg,
Beijing, China, pp 57–76

24. Paul G, Maitra S (2011) RC4 Stream Cipher and
Its Variants, 1st ed. CRC Press

25. Priemuth-Schmid D, Biryukov A (2008) Slid
Pairs in Salsa20 and Trivium. In: Chowdhury
DR, Rijmen V, Das A (eds) International
Conference on Cryptology in India. Springer,
Berlin, Heidelberg, Kharagpur, India, pp 1–14

26. Shaked Y, Wool A (2006) Cryptanalysis of the
Bluetooth E0 Cipher Using OBDD’s. In:
Katsikas SK, López J, Backes M, Gritzalis S,
Preneel B (eds) International Conference on
Information Security. Springer, Berlin,
Heidelberg, Samos, Greece, pp 187–202

27. Sun L, Wang W, Liu R, Wang M (2016) MILP-
Aided Bit-Based Division Property for ARX-
Based Block Cipher. 1–31

28. Sun L, Wang W, Wang M (2016) MILP-Aided

Bit-Based Division Property for Primitives with
Non-Bit-Permutation Linear Layers. 1–37

29. Todo Y, Isobe T, Hao Y, Meier W (2018) Cube
Attacks on Non-Blackbox Polynomials Based on
Division Property. IEEE Trans Comput 67:1720–
1736. doi: 10.1109/TC.2018.2835480

30. Todo Y, Meier W, Aoki K (2019) On the Data
Limitation of Small-State Stream Ciphers :
Correlation Attacks on Fruit-80 and Plantlet. 1–
29

31. Todo Y, Morii M (2016) Bit-Based Division
Property and Application to Simon Family. In:
Peyrin T (ed) International Conference on Fast
Software Encryption. Springer, Berlin,
Heidelberg, Bochum, Germany, pp 357–377

32. Wang Q, Hao Y, Todo Y, Li C, Isobe T, Meier W
(2018) Improved Division Property Based Cube
Attacks Exploiting Algebraic Properties of
Superpoly. In: Shacham H, Boldyreva A (eds)
Annual International Cryptology Conference.
Springer, Cham, Santa Barbara, CA, USA, pp
275–305

33. Xiang Z, Zhang W, Bao Z, Lin D (2016)
Applying MILP Method to Searching Integral
Distinguishers Based on Division Property for 6
Lightweight Block Ciphers. In: Hee Cheon J,
Takagi T (eds) International Conference on the
Theory and Application of Cryptology and
Information Security. Springer, Berlin,
Heidelberg, Hanoi, Vietnam, pp 648–678

34. Gurobi - The fastest solver.
https://www.gurobi.com/

A. Results on Selected Slid Pairs

A.1. A Slid Pair with a 20 clock-shifts

Key : C67BFFED58E7F743695F
IV : 310800001289621C08
Keystream : AA2E4
 94FEB25422A1914CA6ADA49…

Key : FED5B6F3FC3695FD79D6
IV : 0001289621C08AD1A1
Keystream : 94FEB25422A1914CA6ADA49…

A.2. A Slid Pair with a 40 clock-shifts

Key : C625020054820218AE54
IV : 2D369DF8800010A874
Keystream : 444C31ADDA
 498B156E08324F36FC2F4F9…

Key : 58BB9FF1E406BCBE1C0F
IV : 0010A874677CD5BBFA
Keystream : 498B156E08324F36FC2F4F9…

A.3. A Slid Pair with a 60 clock-shifts

Key : 1012932001519735626A
IV : 1A9E5A63999BDA0117
Keystream : 9D6747794A93E12
 06F37DEC94E5A5024C41009…

Key : 7BB65D5F3E7FA3DFFAAB
IV : 11723DDA7AA63C3C4C
Keystream : 06F37DEC94E5A5024C41009…

A.4. A Slid Pair with a 80 clock-shifts

Key : 874F13DB769E49B609F6
IV : 22611AFA9CAE02E3FF
Keystream : 3B13EF3DFF53D34E3F8F
 9E208C2C18F431D2F415…

Key : 520AC8AB352ABAFF97AA
IV : 13A93C3727FFA229C3
Keystream : 9E208C2C18F431D2F415…

