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Abstract. ARIA is a block cipher proposed by Kwon et al. at ICISC
2003, and it is widely used as the national standard block cipher in the
Republic of Korea. In this study, we identify some flaws in the quantum
rebound attack on 7-round ARIA-DM proposed by Dou et al., and we
reveal that the limit of this attack is up to 5-round. Our revised attack
applies not only to ARIA-DM but also to ARIA-MMO and ARIA-MP among
the PGV models, and it is valid for all key lengths of ARIA. Moreover,
we present dedicated quantum rebound attacks on 7-round ARIA-Hirose

and ARIA-MJH for the first time. These attacks are only valid for the 256-
bit key length of ARIA because they are constructed using the degrees of
freedom in the key schedule. All our attacks are faster than the generic
quantum attack in the cost metric of time–space tradeoff.

Keywords: Symmetric key cryptography · Block cipher-based hash func-
tion · Quantum attack · Rebound attack · ARIA

1 Introduction

ARIA [22,21] is an iterative substitution permutation network (SPN) block ci-
pher similar to AES [7], that supports a 128-bit block size and 128-, 192-, and
256-bit key lengths. Depending on the key lengths, it uses 12, 14, or 16 rounds.
ARIA was presented by Kwon et al. at ICISC 2003 and was standardized by
the Korean Agency for Technology and Standards. ARIA is described by RFC
5794 [20] and has been supported by the Transport Layer Security protocol since
2011 [30]. Since ARIA was developed, its security has been scrutinized by several
cryptographers, and its full round security has not yet been broken, except by
the use of the biclique attack, which is slightly faster than brute force.

Post-quantum cryptography received considerable attention after Shor’s sem-
inal work [32], and NIST is in the process of selecting next-generation public-
key schemes [28]. Quantum computers have significantly influenced symmetric
key schemes and hash functions, mainly by using Simon and Grover’s algo-
rithms [11,33]. In particular, Grover’s algorithm allows quantum computers to
perform an exhaustive search on symmetric key schemes and hash functions
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with a quadratic speedup over the classical approach. Since 2015, the cryptog-
raphy community has conducted extensive groundbreaking research, both the-
oretical and practical, including the analysis of block ciphers [2,19,8,14], hash
functions [15,16,9,6], and permutations [12,26].

In a classical setting, the generic complexity required to find a collision of an
n-bit hash function is O(2n/2), according to the birthday paradox. In a quantum
setting, the generic complexity of finding collisions depends on the settings for
the resources available to the attacker. The BHT algorithm [4] finds collisions
with a query complexity of O(2n/3) when a quantum random access memory
(qRAM) of O(2n/3) is available. However, given the current state of development
of quantum computers, it is highly probable that large qRAM will not be realized
in the near future. A more realistic algorithm is the CNS algorithm proposed
in 2017 by Chailloux et al. [5], which uses a large classical memory rather than
a large qRAM. This CNS algorithm finds collisions with a classical memory of
O(2n/5), query complexity of O(22n/5), and quantum memory of only O(n). In
both settings, the parallel rho method [29] gives the tradeoff time complexity
T = 2n/2/S when finding collisions.

Related Works. Hosoyamada and Sasaki [15] proposed a novel approach at
Eurocrypt 2020. This approach showed that differential trails with a probability
that are too low to be used for a rebound attack on hash functions in a classi-
cal setting are available in a quantum setting. They proposed quantum collision
attacks on Matyas–Meyer–Oseas (MMO) and Miyaguchi–Preneel (MP) compres-
sion functions instantiated with AES that covered more rounds than those in a
classical setting. Later, Dong et al. [9] improved the attacks on AES-MMO by sig-
nificantly reducing the qRAM required for the attack. In ToSC 2021, quantum
collision attacks on HCF-AES-256 and Simpira v2 were also proposed [6,26].

Dou et al. [10] proposed the first quantum rebound attack on the Davies–
Meyer (DM) compression function when the underlying block cipher is instan-
tiated with ARIA. Their attack was carried out by exploiting the degrees of
freedom in states, and the probability of finding collisions was calculated consid-
ering the feed-forward operation. However, the complexity of finding collisions
was inferior to the cost metric in any quantum setting currently considered,
and the processes of constructing the attack using the degrees of freedom in the
states were incorrect. Motivated by the work published in [15], we revised the
above issues in detail and present attacks faster than the generic attacks in the
cost metric of time–space tradeoff. We also took a closer look at algorithms for
finding collisions with a quantum version of the rebound attack in several double
block length (DBL) hash functions.

Our Contributions. In this study, we describe quantum rebound attacks on
PGV, Hirose, and MJH instantiated with ARIA. For PGV models, DM, MMO, and
MP constructions are primarily analyzed. Considering the structure of each com-
pression function, our attack targets are divided into two categories: PGV (single
block length (SBL) hash functions) and Hirose and MJH (DBL hash functions).
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Table 1: Results of our attacks.

Target Construction Rounds Type Complexity Reference

ARIA-DM

SBL 5

Free-start collision

256.61/
√
S Sect. 3†ARIA-MMO Collision

ARIA-MP Collision

ARIA-Hirose
DBL 7

Free-start collision 2119.83/
√
S

Sect. 4
ARIA-MJH Semi-free-start collision 2119.67/

√
S

S denotes the size of the quantum computer in qubits.
† In [10], an attack on reduced-round ARIA-DM was proposed. However, there are some
flaws regarding the validity of the attack process and complexity, which we consider
in Section 3.

We refer to the PGV hash functions as ARIA-DM, ARIA-MMO, and ARIA-MP, and to
the Hirose/MJH hash functions as ARIA-Hirose, and ARIA-MJH.

We revised some issues of Dou et al.’s 7-round quantum rebound attack on
ARIA-DM and found that, in fact, the attack is possible up to 5-rounds with some
improved techniques. This attack can also be applied to ARIA-MMO and ARIA-MP,
with the same attack complexity as before. When S quantum computers are
available, the attack complexity is about 256.61/

√
S. Since the generic attack

complexity under the time–space metric is 264/S, our attack is faster than the
generic attack when S < 214.78.

We also extended the 5-round differential trail to 7-round. Our trail is con-
structed by exploiting 2128 degrees of freedom, which are only available in ARIA-
256, and is mounted to find collisions of DBL hash functions such as Hirose and
MJH. When S quantum computers are available, the attack complexity is about
2119.83/

√
S and 2119.67/

√
S where S < 216.34 and S < 216.66 for Hirose and MJH,

respectively.
Table 1 shows the details of the attack complexities on different targets.

Paper Organization. Section 2 describes ARIA, our attack target block cipher-
based hash functions, and basic quantum computation. Section 3 briefly de-
scribes the rebound attack, the previous quantum rebound attack on 7-round
ARIA-DM, and our revised quantum rebound attacks on 5-round ARIA-DM, ARIA-MMO,
and ARIA-MP. Section 4 provides a new differential trail for 7-round ARIA and
shows that it can be used to find collisions of DBL hash functions. Section 5
presents the conclusions.

2 Preliminaries

In this section, we briefly describe ARIA, our attack target block cipher-based
hash functions, and the basic quantum computation required for our attacks.
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2.1 ARIA

ARIA is a 128-bit block cipher with an SPN structure. The wide trail strategy
of AES is used throughout its algorithm. ARIA can be used with three different
key lengths: 128-, 192-, and 256-bit. Its number of rounds depends on the key
length, with 12, 14, and 16 rounds for ARIA-128, ARIA-192, and ARIA-256, re-
spectively. All states of the algorithm are treated as 4×4 matrices with elements
in GF (28) (Figure 1).
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Fig. 1: ARIA byte ordering

The round function of ARIA first applies a round key addition (RKA), fol-
lowed by a substitution layer (SL), and then a diffusion layer (DL). An R-round
ARIA repeats the round function R−1 times, and in the last round, the diffusion
layer is replaced with round key addition, which is the postwhitening key. The
round function operations of ARIA are as follows:

RKA. The internal state is XORed with a 128-bit round key. The round keys are
deduced from the master key via a key scheduling algorithm, which is described
later in this section.

SL. A nonlinear 8-bit to 8-bit S-box is applied to each byte of the state. ARIA
uses four S-boxes S1 and S2 and their inverses S−1

1 and S−1
2 , respectively, where

S1 is the same as that of AES. In odd rounds, the S-boxes are applied, column-
wise, in the order (S1, S2, S

−1
1 , S−1

2 ), whereas in even rounds, they are applied
in the order (S−1

1 , S−1
2 , S1, S2). Figure 2 describes the difference in SLs in odd

and even rounds.
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Fig. 2: The two types of SL
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DL. The internal state is multiplied by the involution binary matrix with a
branch number of eight, so difference propagation over DL has the minimum
branch number of eight. Given the input state xis, the output state yis of the
DL operation is computed as follows:



y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15



=



0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15



Key Schedule. The key schedule algorithm of ARIA takes the master key,MK,
as input and outputs 13, 15, or 17 128-bit round keys for ARIA-128, ARIA-192,
and ARIA-256, respectively. First, MK is divided into two 128-bit values: KL
and KR. KL is the leftmost 128-bits of MK, and KR is the remaining bits; if
necessary, all or part of KR is right-padded with zeros. Then, using a 3-round
256-bit Feistel structure,W0,W1,W2, andW3 are generated fromMK as follows:

W0 = KL, W1 = Fo(W0, CK1)⊕KR,

W2 = Fe(W1, CK2)⊕W0, W3 = Fo(W2, CK3)⊕W1,

where Fo and Fe, respectively, denote the odd and even round functions of ARIA,
replacing the RKA operation with predefined constants (CK1, CK2, and CK3)
addition. The key schedule algorithm is approximated by 16 × 3 = 48 S-box
computations. The 17 round keys are generated from W0,W1,W2, and W3 as
follows:
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k1 = (W0)⊕ (W1 >>> 19), k2 = (W1)⊕ (W2 >>> 19),

k3 = (W2)⊕ (W3 >>> 19), k4 = (W0 >>> 19)⊕ (W3),

k5 = (W0)⊕ (W1 >>> 31), k6 = (W1)⊕ (W2 >>> 31),

k7 = (W2)⊕ (W3 >>> 31), k8 = (W0 >>> 31)⊕ (W3),

k9 = (W0)⊕ (W1 >>> 61), k10 = (W1)⊕ (W2 <<< 61),

k11 = (W2)⊕ (W3 >>> 61), k12 = (W0 <<< 61)⊕ (W3),

k13 = (W0)⊕ (W1 <<< 31), k14 = (W1)⊕ (W2 <<< 31),

k15 = (W2)⊕ (W3 <<< 31), k16 = (W0 <<< 31)⊕ (W3),

k17 = (W0)⊕ (W1 <<< 19).

2.2 Selected Provably Secure Block Cipher-Based Hash Functions

We briefly describe the PGV [31] compression functions of the SBL hash func-
tions (DM, MMO, and MP) and the compression functions of the DBL hash functions
(Hirose [13] and MJH [24]). The PGV models, proposed by Preneel et al. in 1993,
are typical SBL hash functions. They originally considered 64 block cipher-based
hash functions. Subsequently, 12 of these models were demonstrated to be prov-
ably secure [1]. The Hirose compression function was proposed by Hirose, and
the MJH compression function was proposed by Lee and Stam; they are also
provably secure.

Let E : {0, 1}n×{0, 1}k → {0, 1}n be an n-bit keyed block cipher. SBL hash
functions call E once to generate the hash value of message Mi, and we denote
the chaining variables by Hi. DBL hash functions call E twice to generate the
hash value of message Mi, and we denote the chaining variables by (Gi, Hi).
Particularly, for MJH, we define the additionally used function θ as θ(x) := k · x,
where k is a nonzero constant and · indicates a multiplication in F2n , and we
divide Mi into M1

i and M2
i (Mi = M1

i ||M2
i ). The involution function σ that

is commonly used in the Hirose and MJH compression functions is defined as
σ(x) := x⊕ c, where c is a nonzero constant. σ is the nonfixed point involution
function. The ith compression functions of the SBL and DBL hash functions are
described in Figure 3.

2.3 Quantum Computation

We use the standard quantum circuit model as the quantum computation model,
and adopt {H,CNOT, T}(Clifford+T gates) as a basic set of quantum gates [27].
H is the single qubit Hadamard gate defined by H : |b⟩ 7→ 1√

2
(|0⟩ + (−1)b|1⟩),

CNOT is the two-qubit controlled NOT gate defined by CNOT : |a⟩|b⟩ 7→
|a⟩|b ⊕ a⟩, and T is the single qubit π/8 gate defined by T : |0⟩ 7→ |0⟩ and

T : |1⟩ 7→ e
iπ
4 |1⟩. We denote the identity operator on n-qubit states as In.
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Fig. 3: The ith compression functions of the SBL and DBL hash functions

Quantum Oracle. Consider a Boolean function f : {0, 1}n → {0, 1}. The
quantum oracle of f is modeled by the unitary operator Uf , which is defined
as Uf : |x⟩|q⟩ 7→ |x⟩|q ⊕ f(x)⟩, where x ∈ {0, 1}n and q ∈ {0, 1}. Uf works on
(n + 1)-qubits, and the oracle qubit |q⟩ is flipped when f(x) = 1; otherwise, it
is unchanged. If there is an efficient reversible classical circuit that computes f ,
Uf can also be efficiently implemented in a quantum circuit. To construct the
quantum oracle Uf , we first construct an efficient reversible classical circuit of
f and substitute it with quantum gates. This makes it possible to uncompute
temporary qubits after use.

Grover’s Algorithm. Grover’s algorithm [11] is a quantum search algorithm
that can provide a quadratic speedup over brute force when finding desired data
from an unstructured database. Consider the following problem:

Problem 1. Let f : {0, 1}n → {0, 1} be a Boolean function such that v :=
|f−1(1)| > 0, and let f be a black-box. Find x such that f(x) = 1.

We define the probability of obtaining the solution x as p := v/2n. In a
classical setting, we have to make O(1/p) classical queries to find an x that
satisfies f(x) = 1. In a quantum setting, we apply Grover’s algorithm to find
the solution x by making only O(

√
1/p) quantum queries. That is, Grover’s

algorithm used on quantum computers achieves a quadratic speedup, unlike
classical algorithms.

To explain in more detail, assume that there is a quantum circuit that per-
forms the quantum oracle Uf in time TUf

. Then, Grover’s algorithm finds x in

time TUf
· (π/4) ·

√
1/p. Grover’s algorithm on a function f runs the following

procedure:
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1. Using the Hadamard gates, prepare the following initial state.

|ψinit⟩ := H⊗(n+1)|0n⟩|1⟩.

2. Set θ to a value that satisfies sin2θ = p and 0 ≤ θ ≤ π/2. After setting
i := ⌊π/4θ⌋, define Df := (H⊗n ⊗ I1)(O0 ⊗ I1)(H

⊗n ⊗ I1) as the diffusion
operator. Here, O0|0⟩ = (−1)∆x,0n |x⟩ holds, where ∆x,y is the Kronecker
delta satisfying ∆x,y = 1 if x = y; otherwise, ∆x,y = 0. Then, perform the
unitary operator Of := −DfUf iteratively i times for |ψinit⟩. We define Of

as the Grover operator of f .

3. Measure the resulting state of (Of )
i|ψinit⟩ and output the most significant

n bits.

In Step 2, if the Grover operator Of is repeatedly applied to |ψinit⟩, the
amplitude of the solution x is increased. To measure the exact complexity of
Grover’s algorithm, we need to accurately measure the complexity of Uf . We
elaborate on this analysis later.

The authors of [3] found that when the number of iterations of Grover’s
algorithm, i, is set to ⌊π/4θ⌋, the probability of finding x such that f(x) = 1
is at least 1 − p. In addition, we could consider the parallelization of Grover’s
algorithm. When the size of Uf is Sf , and S(≥ Sf ) quantum computers are
available, each computer can execute Grover’s algorithm in parallel, where the
number of iterations of Grover’s algorithm is ⌊π/4θ

√
S/Sf⌋. Then, we can find

the solution in time TUf
· (π/4) ·

√
Sf/(p · S) with a probability of at least

1− 1/e ≈ 0.63 [16].

2.4 Dedicated Quantum Collision Attacks

Following Hosoyamada and Sasaki’s dedicated quantum collision attacks on
AES hashing modes [15], further dedicated quantum attacks on AES hashing
modes [9], Hirose [6], Gimli [12], SHA-2 [16], and Simpira v2 [26] were pro-
posed. These attacks showed that an attacker with access to quantum computers
can break more rounds of hash functions than one using only classical comput-
ers. In a classical setting, the generic attack complexity of finding collisions of
an n-bit ideal hash function is O(2n/2) by the birthday paradox. In a quantum
setting, the generic attack complexity of finding collisions depends on the re-
sources that the attacker can access, and the cryptology community is currently
considering the following three quantum settings:

– The attacker can use a polynomially small quantum computer and an expo-
nentially large qRAM.

– The attacker can use a polynomially small quantum computer and an expo-
nentially large classical memory.

– The efficiency of the attacker’s quantum algorithms is evaluated by their
time–space tradeoff.
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In the first setting, the best quantum collision finding algorithm is the BHT
algorithm proposed by Brassard, Høyer, and Tapp [4]. This algorithm finds colli-
sions in time O(2n/3) when a qRAM of O(2n/3) is available. In the second setting,
the best quantum collision finding algorithm is the CNS algorithm proposed by
Chailloux, Naya-Plasencia, and Schrottenloher [5]. This algorithm finds collisions
in time O(22n/5) when a quantum computer of O(n) and a classical memory of
O(2n/5) are available. Our attacks focus on the third quantum setting, and we
do not consider qubit communication costs and quantum error corrections.

Time–Space Tradeoff as a Cost Metric. This setting measures attack effi-
ciency as a tradeoff between T and S, where T is the attack time complexity and
S is the size of the hardware required for the attack. For a quantum attack, S
is the size of the quantum computers. Roughly speaking, when a classical com-
puter of size S is available, we can find collisions of a random function in time
T = O(2n/2/S) using the parallel rho method [29]. This algorithm was initially
proposed for classical computers, but it contains no logical flaws when it is ap-
plied to quantum computers. Thus, we can also consider the time–space tradeoff
metric as the threshold for quantum attacks. If we can construct a quantum
attack that satisfies T · S < 2n/2, then the attack is valid in the time–space
tradeoff metric.

3 Quantum Rebound Attacks on ARIA-Based SBL Hash
Functions

In this section, we discuss the core of the rebound attack, review the quantum
rebound attack on ARIA-DM in [10], and present our revised quantum rebound
attack on ARIA-DM, which can also be applied to ARIA-MMO and ARIA-MP.

3.1 Rebound Attack

The rebound attack is a hash function analysis technique that was first proposed
by Mendel et al. [25] to attack reduced-round Whirlpool and Grøstl. The core
of this technique is to exploit the available degrees of freedom in an internal state
and the truncated differential to fulfill the low probability part of a differential
trail. This part is called the inbound phase and is usually located in the middle
of the trail, and it is followed by a probabilistic outbound phase. Generally, the
differential propagation in a rebound attack is designed to be dense and sparse
in the inbound and outbound phases, respectively. Figure 4 shows an overview
of this attack. Here, F is an internal block cipher or permutation that is divided
into three parts: Fbw, Fin, and Ffw.

In a quantum setting, to perform a rebound attack on a target primitive
with quantum computers, we run Grover’s algorithm on a Boolean function
f(∆in, ∆out), defined as f(∆in, ∆out) = 1, if and only if we get message pairs
that satisfy the following conditions:
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Fbw Fin Ffw

Inbound

OutboundOutbound

Fig. 4: Rebound attack framework [18]

1. For a given differential trail ∆in → ∆out, obtain an input (M I
1 ,M

I
2 ) and

output pair (MO
1 ,M

O
2 ) that conform to the trail, where (M I

1 ,M
I
2 ) and

(MO
1 ,M

O
2 ) are called starting points.

2. By propagating (M I
1 ,M

I
2 ) and (MO

1 ,M
O
2 ) to the beginning (Fbw) and end

(Ffw) of the cipher, respectively, check whether the differential transforma-
tions of the given differential trail are satisfied.

If the probability of a differential trail that excludes the probability of the
inbound phase is p, we must produce 1/p starting points, so that at least one
pair follows the differential trail for the outbound phase. For this approach to
work, the available degrees of freedom should be larger than 1/p.

3.2 The Quantum Rebound Attack of Dou et al. on ARIA-DM

Dou et al. proposed a quantum rebound attack on ARIA-DM that covers 7 rounds.
They used the degrees of freedom in the states for the attack and calculated
the probability of finding collisions considering the feed-forward operation. The
algorithm of the quantum rebound attack, as described in [10], is as follows
(Figure 5):

1. For each of the 256 values of ∆Y3 and ∆Z4, find the actual pairs of Y3 and
Z4 by applying Grover’s algorithm.

2. For the desired differences∆X3 and∆Y5, check whether SL
−1(Y3)⊕SL−1(Y3⊕

∆Y3) = ∆X3 holds for Y3 and ∆Y3, and whether SL(Z4 ⊕ k5) ⊕ SL(Z4 ⊕
∆Z4 ⊕ k5) = ∆Y5 holds for Z4 and ∆Z4.

3. After propagating (X3, X3⊕∆X3) and (Y5, Y5⊕∆Y5) to the beginning (Fbw)
and end (Ffw) of the cipher, check whether the difference cancellation occurs
in the feed-forward operation.

On the Implausibility of Dou et al.’s Attack. There are three issues that
arise in Dou et al.’s attack. First, the complexity of finding collisions is inferior to
the cost metric of any quantum setting that is currently considered. According
to [10], the probabilities of satisfying Steps 2 and 3 are about 2−112 and 2−56,
respectively. Thus, even if the complexity of the inbound phase is not considered,



Quantum Rebound Attacks on Reduced-Round ARIA-Based Hash Functions 11

X0

RKA

k1 X1

SL

Y1

DL

Z1

Round 1

RKA

k2 X2

SL

Y2

DL

Z2

Round 2

RKA

k3 X3

SL

Y3

DL

Z3

Round 3

RKA

k4

SL

X4

DL

Y4

Round 4

Z4

RKA

k5

SL

X5

DL

Y5

Round 5

Z5

RKA

k6

SL

X6

DL

Y6

Round 6

Z6

RKA

k7

SL

X7 Y7

Round 7

RKA

k8 X8

Inbound Phase

Fig. 5: The quantum rebound attack on 7-round ARIA-DM by Dou et al.

The white and gray boxes denote zero and nonzero differences, respectively.
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the complexity of finding collisions is about 284(=
√
2112×56), which is inferior

to the generic attack complexity of the three quantum settings in Section 2. In
particular, the probability of 2−112 in Step 2 can be improved to 2−96, but this
improvement does not make their attack faster than generic attacks in quan-
tum settings. Second, the calculation of the available degrees of freedom they
performed was incorrect. The degrees of freedom in the states that would be
required to perform their attack are greater than 2168, although they insisted
that 2168 degrees of freedom could be obtained from the triple (∆Y3, ∆Z4, ∆X5).
However, considering the differential trail, if ∆Z4 is determined, ∆X5 is deter-
mined accordingly. Therefore, there are only 2112 degrees of freedom that could
be obtained from the triple (∆Y3, ∆Z4, ∆X5), and in fact, the attack is invalid.
Third, the calculation of the inbound phase was not accurately described. The
authors argued that by applying Grover’s algorithm in Step 1, they could find
compatible starting points Y3 and Z4 for ∆Y3 and ∆Z4, respectively. However,
they did not describe the detailed process of finding the starting points using
Grover’s algorithm and calculating the required complexity. For a more accurate
and improved complexity estimation, we could apply Grover’s algorithm to each
S-box to find a matching starting point, but this approach that is not considered
in this study. For a precise cryptanalysis, all of these issues should be resolved.

3.3 Our Revised Attack on 5-Round ARIA-DM, ARIA-MMO, and ARIA-MP

In this section, we describe our revised quantum rebound attacks on 5-round
ARIA-DM, ARIA-MMO, and ARIA-MP, which are valid for all key lengths of ARIA.
We performed a thorough analysis and found that a quantum attack that is supe-
rior to the generic attack complexity of a quantum setting could be constructed
up to 5 rounds, but not 7 rounds. Our attacks are faster than the generic attack
in the cost metric of time–space tradeoff and slower than the generic attacks in
other quantum settings. For ARIA-DM, our quantum rebound attack is used to
find free-start collisions, whereas for ARIA-MMO and ARIA-MP, it finds collisions.
Since all attack processes are equally applied to the three structures, we focus
on ARIA-DM.

Implementation of f . The core of our attack is to force the element of interest
in our search space to stand out among the other entries by applying Grover’s
algorithm. We denote the input–output difference pair of the inbound phase
(Figure 6) by (∆in, ∆out), where ∆in = ∆Y2 and ∆out = ∆Z3. Since the attack
requires 2104 degrees of freedom, we consider ∆out as an element of F48

2 . First,
we define a Boolean function:

f : F56
2 × F48

2 → F2 (1)

where f(∆in, ∆out) = 1 holds if and only if the starting point computed with
(∆in, ∆out) satisfies the following conditions:

1. The starting point (X3, X3 ⊕∆X3) satisfies the differential transformations
of part Fbw.



Quantum Rebound Attacks on Reduced-Round ARIA-Based Hash Functions 13

X0

RKA

k1 X1

SL

Y1

DL

Z1

Round 1

RKA

k2 X2

SL

2−48

Y2

DL

Z2

Round 2

RKA

k3

SL

X3

DL

Y3

Round 3

Z3

RKA

k4

SL

X4

2−48

DL

Y4

Round 4

Z4

RKA

k5

SL

X5 Y5

Round 5

RKA

k6 X6

Inbound Phase

Fig. 6: Our quantum rebound attack on 5-round ARIA-DM

2. The starting point (X3, X3 ⊕∆X3) satisfies the differential transformations
of part Ffw.

If f(∆in, ∆out) = 1 holds, we can compute an input pair (H0, H
′
0) that produces

collisions. We only use a fraction of the degrees of freedom that ∆out has and,
on average, expect that there is one starting point (X3, X3 ⊕ ∆X3) for each
(∆in, ∆out).
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For a given (∆in, ∆out), the function f(∆in, ∆out) can be computed using a
classical computer as follows:

1. Compute the differences (∆Xi
3, ∆Y

i
3 ) (0 ≤ i < 16) from (∆Y2, ∆Z3) in round

3, where ∆Y2 = ∆in and ∆Z3 = ∆out.
2. Given the obtained differences, solve the following equation and find one Xi

3

on average for each active S-box Si
3 (0 ≤ i < 16):

Si
3(X

i
3)⊕ Si

3(X
i
3 ⊕∆Xi

3) = ∆Y i
3 . (2)

Then, set X0
3 = min{X0

3 , X
0
3 ⊕ ∆X0

3}, and similarly set X1
3 , X

2
3 , . . . , X

15
3 .

With this process, the starting point X3 = (X0
3 , X

1
3 , . . . , X

15
3 ) is constructed.

If there are no admissible values for the pair (∆X3, ∆Y3), then return to
Step 1.

3. Propagate the starting point (X3, X3 ⊕ ∆X3) obtained in Step 2 to the
beginning and end of the cipher, and check whether the differential trans-
formations of the differential trail are satisfied. If so, f(∆in, ∆out) returns 1;
otherwise, it returns 0.

In the Fbw process of Step 3, for Y1 to be active only in the 0th byte, the
differences of all active bytes of X2(= SL−1(Y2)) must be the same. In [10], this
probability is calculated as 2−56, but it should be corrected to 2(−8)·7 × (28 −
1) ≈ 2−48 because there are 28 − 1 differences that can be equal. This point is
equally applied in the Ffw, and the probability of the outbound phase is 2−104

considering the feed-forward operation. This is why we set the degrees of freedom
to 2104 in this attack. By applying Grover’s algorithm to the quantum oracle Uf ,
which maps |∆in, ∆out⟩|q⟩ to |∆in, ∆out⟩|q⊕f(∆in, ∆out)⟩, we can find collisions

with about TUf
· (π/4) ·

√
2104 queries, where TUf

is the time required to run the
quantum oracle Uf . To estimate the overall complexity, we need to clarify the
complexity at which Uf runs.

Implementation of the Quantum Oracle Uf . Below, we describe how to
implement f on quantum computers, or equivalently, how to implement the uni-
tary operator Uf , defined as Uf : |∆in, ∆out⟩|q⟩ 7→ |∆in, ∆out⟩|q⊕f(∆in, ∆out)⟩.
As in the studies [15,26,9,6], we need to define an additional function Gi to
implement Uf . Gi finds, on average, one actual input value that satisfies the
input–output difference pair of each S-box Si (0 ≤ i < 16). Specifically, Gi out-
puts Xi

3 = min{Xi
3, X

i
3 ⊕∆Xi

3} that satisfies Si
3(X

i
3) ⊕ Si

3(X
i
3 ⊕∆Xi

3) = ∆Y i
3

concerning the input–output difference pair (∆Xi
3, ∆Y

i
3 ) in round 3. We elimi-

nate the requirement of qRAM to implement a differential distribution table by
applying Grover’s algorithm to Gi. The implementation of the quantum oracle
UGi is presented in Algorithm 1. Finally, the implementation of the quantum
oracle Uf is presented in Algorithm 2.

Complexity Analysis. To analyze the complexity of finding collisions, the
following should be considered:
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Algorithm 1: Implementation of UGi

Input : |∆Xi
3,∆Y i

3 ;X
i
3⟩|q⟩

Output: |∆Xi
3,∆Y i

3 ;X
i
3⟩|q ⊕ Gi(∆Xi

3,∆Y i
3 ;X

i
3)⟩

1 Set Xi
3 ← min(Xi

3, X
i
3 ⊕∆Xi

3).

2 if Si
3(X

i
3)⊕ Si

3(X
i
3 ⊕∆Xi

3) = ∆Y i
3 then

3 return |∆Xi
3,∆Y i

3 ;X
i
3⟩|q ⊕ 1⟩

4 else
5 return |∆Xi

3,∆Y i
3 ;X

i
3⟩|q⟩

6 end

Algorithm 2: Implementation of Uf

Input : |∆in,∆out⟩|q⟩
Output: |∆in,∆out⟩|q ⊕ f(∆in,∆out)⟩

1 /* inbound phase */

2 for i ∈ {0, 1, . . . , 15} do
3 Compute the differences (∆Xi

3,∆Y i
3 ) from (∆Y2,∆Z3), where ∆Y2 = ∆in

and ∆Z3 = ∆out.
4 Run Gi(∆Xi

3,∆Y i
3 ;X

i
3). Let (X

i
3, X

i
3 ⊕∆Xi

3) be the output.

5 end
6 Set X3 ← (X0

3 , . . . , X
15
3 ) and X ′

3 ← (X0
3 ⊕∆X0

3 , . . . , X
15
3 ⊕∆X15

3 ).
7 /* outbound phase */

8 if (X3, X
′
3) fulfills the differential transformations of the outbound phase then

9 return |∆in,∆out⟩|q ⊕ 1⟩
10 else
11 return |∆in,∆out⟩|q⟩
12 end

– The complexity of the computation of 5-round ARIA is approximated by
16× (5 + 3) = 128 S-box computations.

– One computation of an inverse S-box is almost the same as the computation
of two S-boxes [17].

– Uncomputations are considered to free up the wires of the quantum circuit
after performing Uf .

The study presented in [17] was originally performed on the S-box of AES.
However, S1, the S-box used in ARIA, is the same as that of AES, and S2 is
defined similarly to S1 to be an affine transformation of the inversion function
over GF (28). Thus, we expect the complexity of S−1

2 to be almost twice that of
S2.

Complexity of Gi. For a given (∆Xi
3, ∆Y

i
3 ), to find Xi

3 by applying Grover’s algo-
rithm to Gi, we need to query UGi . For odd rounds, the complexity of Gi depends
on i, since SL consists of the first two rows as S1 and S2, and the other two rows
as inverses of each S-box. Since the number of queries required by Grover’s algo-
rithm is (π/4)×

√
28 ≈ 23.65, when i = 0, 1, 4, 5, 8, 9, 12, 13(corresponds to the 1st
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and 2nd rows), the complexity of Gi is equivalent to 2× (π/4)×
√
28× (1/128) ≈

2−2.35 5-round ARIA computations, where 128 is the number of S-boxes to which
the 5-round ARIA is approximated. If i = 2, 3, 6, 7, 10, 11, 14, 15(corresponds to
the 3rd and 4th rows), then the complexity of Gi is equivalent to 2×2× (π/4)×√
28 × (1/128) ≈ 2−1.35 5-round ARIA computations. Therefore, the total com-

plexity of Gi is 8× 2−2.35 + 8× 2−1.35 ≈ 22.23.

Complexity of Uf . The implementation of Uf includes 16 calls of Gi in Steps
2–5, which require 8× 2−2.35 + 8× 2−1.35 ≈ 22.23 5-round ARIA computations.
We need to perform S-box computations from the starting point X3 to both
ends of the cipher. Since there are half inverse S-boxes in the S-box layer of each
round, we need (8+8×2)×5×2× (1/128) ≈ 20.9 5-round ARIA computations.
Hence, the overall complexity of Uf is 2 × (22.23 + 20.9) ≈ 23.71 5-round ARIA
computations.

Overall Complexity of Finding Collisions. First, the number of qubits (or, the
unit of size) required to implement DM instantiated with ARIA-128 is 256. For
ARIA-192 and ARIA-256, 320 and 384 qubits are required, respectively. This is
the only part that depends on the key length. To estimate Sf , we need 2× 128
qubits to store (∆in, ∆out) and a single qubit for q. Steps 3 and 4 require an
additional (16× 8× 2+ 8× 2) = 272 qubits to run Gi as well as to compute and
store the values of input–output difference pairs. Step 6 requires an additional
2× 128 qubits to store X3 and X ′

3. Step 8 requires an additional 128× 5 = 640
qubits. Thus, to store all values shown in the above implementation, 1425 qubits
are used in total. Hence, we have

Sf ≤ 1425/256 ≤ 22.48.

If we consider the parallelization of Grover’s algorithm when S(≥ 22.48) quan-
tum computers are available, our rebound attacks run in time (π/4) × 23.71 ×√
22.48/(2−104 · S) ≤ 256.61/

√
S. Our attacks are faster than the generic at-

tack complexity 264/S in the cost metric of time–space tradeoff, as long as
22.48 ≤ S < 214.78. Sf is 22.15 and 21.89 in the case of ARIA-192 and ARIA-
256, respectively, so even if the key size increases, the attack complexity does
not differ by more than a factor of 20.5.

Remark 1. Considering the structure of the compression function, this attack is
mounted as a free-start collision attack for ARIA-DM and as a collision attack for
ARIA-MMO and ARIA-MP.

4 Quantum Rebound Attacks on ARIA-Based DBL Hash
Functions

In this section, we provide a new differential trail for 7-round ARIA and mount
it on ARIA-Hirose and ARIA-MJH to perform our quantum rebound attacks. We
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adopt the strategy of finding collisions that satisfy condition ∆G0 = G0⊕G′
0 = c

in the entire compression function, where c has one nonzero byte at the 0th
position. Since all attack processes are equally applied to the two structures, we
focus on ARIA-Hirose.

4.1 New Differential Trail for 7-Round ARIA

As in [23], we propose a differential trail for 7-round ARIA with a probability of
2−112 using the degrees of freedom from the key schedule.

New Differential Trail Using Two Inbound Phases. We construct a trail
by setting up two inbound phases and connecting them using the connection
phase (Figure 7). The two inbound phases are performed using the same process
as presented in Section 3, and the core of our attack is to thoroughly analyze the
connection phase. First, we set inbound phases 1 and 2 to be placed on rounds
2.5–3 and 4.5–5, respectively, and we compute the starting points of X3 and X5.
Due to the nature of hash functions as keyless primitives, an attacker can choose
a message pair that satisfies a given differential trail. From this perspective,
the degrees of freedom obtainable from the key schedule are used to connect
the starting points of X3 and X5. Finally, ∆X0 and ∆X8 can be computed by
propagating the starting points (X3, X3 ⊕ ∆X3) and (X5, X5 ⊕ ∆X5) to the
beginning and end of the cipher, respectively. Since the probability of canceling
one byte for the feed-forward operation is 2−8 and ∆G0 = c must hold, the
overall time complexity of the attack is 296 × 28 × 28 = 2112.

Connecting Two Inbound Phases. Our overall connection process is shown
in Figure 8. To connect the results of two inbound phases, we perform an ex-
haustive search on W0(= KL) in the key schedule, which is a search that has
the highest complexity in this attack. Recall that K4 = (W0 >>> 19) ⊕ (W3)
and K5 = (W0) ⊕ (W1 >>> 31) hold. In the key schedule, Y4 and X5 can be
connected by appropriately adjusting W1(= Fo(W0) ⊕ KR) according to the
fixed W0. Since k4 is determined according to k5, the connection between X3

and Z3 must be approached probabilistically. The detailed calculation process is
as follows:

1. Compute Z3 and DL(X5) from starting points X3 and X5.
2. For the input–output difference pair (∆X4, ∆Y4), obtain X4 that is compat-

ible with the pair.
3. Fix the value of W0, and determine W1 so that the given values Y4 and

DL(X5) can be connected. Here, because k5 is determined, k4 is also deter-
mined.

4. Given the value of k4, check whether Z3⊕k4 = X4 holds. If not, repeat from
Step 2.

By performing this process, we can find round keys k4 and k5 that connect X3

and X5. Notably, ∆X4 = ∆Z3 and ∆Y4 = ∆DL(X5) hold, and the ∆X4 and
∆Y4 differences are well connected.
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Fig. 7: Our quantum rebound attack on 7-round ARIA-Hirose
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Fig. 8: The connection phase of our collision attack on 7-round ARIA-Hirose

4.2 Quantum Collision Attacks on 7-Round ARIA-Hirose and
ARIA-MJH

In this section, we describe our quantum rebound attacks on 7-round ARIA-Hirose
and ARIA-MJH; these attacks are valid for the 256-bit key length of ARIA.

Implementation of f . The core of our attack is the same as in Section 3. For
two inbound phases, we denote the input–output difference pair by (∆in, ∆out) =
(∆1

in, ∆
2
in, ∆

1
out, ∆

2
out), where (∆1

in, ∆
1
out) is the input–output difference pair of

the first inbound phase and (∆2
in, ∆

2
out) is that of the second inbound phase.

Since the attack requires 2112 degrees of freedom, we consider ∆1
in, ∆

2
in, ∆

1
out,

and ∆2
out as elements of F28

2 , respectively. First, we define a Boolean function:

f : F28
2 × F28

2 × F28
2 × F28

2 → F2 (3)

where f(∆1
in, ∆

2
in, ∆

1
out, ∆

2
out) = 1 holds if and only if the starting points com-

puted with (∆1
in, ∆

2
in, ∆

1
out, ∆

2
out) satisfy the following conditions:

1. The starting point (X3, X3 ⊕∆X3) satisfies the differential transformations
of part Fbw.

2. The starting point (X5, X5 ⊕∆X5) satisfies the differential transformations
of part Ffw.

If f(∆1
in, ∆

2
in, ∆

1
out, ∆

2
out) = 1 holds, we can compute the input values that make

collisions. We use only a fraction of the degrees of freedom that (∆1
in, ∆

2
in, ∆

1
out, ∆

2
out)

has and, on average, expect that there is one pair of starting points (X3, X3 ⊕
∆X3) and (X5, X5 ⊕∆X5) for each (∆1

in, ∆
2
in, ∆

1
out, ∆

2
out).

For a given (∆1
in, ∆

2
in, ∆

1
out, ∆

2
out), the function f(∆1

in, ∆
2
in, ∆

1
out, ∆

2
out) can

be computed using a classical computer as follows:

1. Choose nine random values in {0, 1}8 for the state to be constructed later.
2. Compute the differences (∆Xi

3, ∆Y
i
3 ) (0 ≤ i < 16) from (∆Y2, ∆Z3) in round

3, where ∆Y2 = ∆1
in and ∆Z3 = ∆1

out.
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3. Given the obtained differences, solve the following equation and find one Xi
3

on average for each active S-box Si
3 (0 ≤ i < 16):

Si
3(X

i
3)⊕ Si

3(X
i
3 ⊕∆Xi

3) = ∆Y i
3 . (4)

Then, set X0
3 = min{X0

3 , X
0
3 ⊕ ∆X0

3}, and similarly set X1
3 , X

2
3 , . . . , X

15
3 .

With this process, the starting point X3 = (X0
3 , X

1
3 , . . . , X

15
3 ) is constructed.

If there are no admissible values for the pair (∆X3, ∆Y3), then return to
Step 2.

4. Compute the differences (∆Xi
5, ∆Y

i
5 ) (0 ≤ i < 16) from (∆Y4, ∆Z5) in round

5, where ∆Y4 = ∆2
in and ∆Z5 = ∆2

out.

5. Given the obtained differences, solve the following equation and find one Xi
5

on average for each active S-box Si
5 (0 ≤ i < 16):

Si
5(X

i
5)⊕ Si

5(X
i
5 ⊕∆Xi

5) = ∆Y i
5 . (5)

Then, set X0
5 = min{X0

5 , X
0
5 ⊕ ∆X0

5}, and similarly set X1
5 , X

2
5 , . . . , X

15
5 .

With this process, the starting point X5 = (X0
5 , X

1
5 , . . . , X

15
5 ) is constructed.

If there are no admissible values for the pair (∆X5, ∆Y5), then return to
Step 4.

6. Given the difference pair (∆Xi
4, ∆Y

i
4 ), solve the following equation and find

one Xi
4 on average for each active S-box Si

4 (i = 3, 4, 6, 8, 9, 13, 14):

Si
4(X

i
4)⊕ Si

4(X
i
4 ⊕∆Xi

4) = ∆Y i
4 . (6)

The seven corresponding values of Y i
4 are determined by the above solution.

Compute Z4 after setting the remaining nine bytes of Y4 to the random
values chosen in Step 1.

7. Do the following for each W0:

(a) Compute k5 that is compatible with Z4 and starting point X5.

(b) Compute k4 from k5 and check whether Z3 ⊕ k4 = X4 holds.

If there is no admissible value for W0, then repeat the process in Step 5.
Notably, the starting points X3 and X5 are now connected correctly.

8. Propagate starting points (X3, X3⊕∆X3) and (X5, X5⊕∆X5) to the begin-
ning and end of the cipher, respectively. If the differential transformations
of the differential trail are satisfied, f(∆1

in, ∆
2
in, ∆

1
out, ∆

2
out) returns 1; oth-

erwise it returns 0.

Since we need to consider that the feed-forward operation and ∆G0 and c
must be equal, the degrees of freedom we need in this attack are greater than
2112. By applying Grover’s algorithm to the quantum oracle Uf , which maps
|∆1

in, ∆
2
in, ∆

1
out, ∆

2
out⟩|q⟩ to |∆1

in, ∆
2
in, ∆

1
out, ∆

2
out⟩|q ⊕ f(∆1

in, ∆
2
in, ∆

1
out, ∆

2
out)⟩,

we can find collisions with about TUf
· (π/4) ·

√
2112 queries, where TUf

is the
time required to run the quantum oracle Uf . To estimate the overall complexity,
we need to clarify the complexity at which Uf runs.
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Algorithm 3: Implementation of UK

Input : |X4, X5, Z3, Z4;W0⟩|q⟩
Output: |X4, X5, Z3, Z4;W0⟩|q ⊕K(X4, X5, Z3, Z4;W0)⟩

1 Compute W1 from Z4, X5, and W0.
2 Compute k4 from W0 and W1.
3 if Z3 ⊕ k4 = X4 then
4 return |X4, X5, Z3, Z4;W0⟩|q ⊕ 1⟩
5 else
6 return |X4, X5, Z3, Z4;W0⟩|q⟩
7 end

Implementation of the Quantum Oracle Uf . Below, we describe how to im-
plement f on quantum computers, or equivalently, how to implement the unitary
operator Uf , defined as Uf : |∆1

in, ∆
2
in, ∆

1
out, ∆

2
out⟩|q⟩ 7→ |∆1

in, ∆
2
in, ∆

1
out, ∆

2
out⟩|q⊕

f(∆1
in, ∆

2
in, ∆

1
out, ∆

2
out)⟩. As in the studies [15,26,9,6], we need two additional

functions to implement Uf : Gi, as was needed in Section 3, and K. Gi is used
to find X3 in Section 3, but it is used here to find X3, X4, and X5. Next, we
define the function K, which connects the two starting points X3 and X5. That
is, K outputs W0 connecting starting points X3 and X5, from which k5 can be
computed. The implementation of the quantum oracle UK is presented in Algo-
rithm 3. Finally, the implementation of the quantum oracle Uf is presented in
Algorithm 4. Note that the preselected values used in Step 16 are chosen in a
classical way before running the quantum algorithm.

Complexity Analysis. The complexity of the computation of 7-round ARIA
is approximated by 16 × (7 + 3) = 160 S-box computations, and the other
considerations are the same as those in Section 3.

Complexity of K. To find W0 and W1 connecting starting points X3 and X5

by applying Grover’s algorithm to K, we need to query to UK. The number of
queries required is (π/4)×

√
2128 ≈ 263.65, which is equivalent to (π/4)×

√
2128×

(48/160) ≈ 261.91 7-round ARIA computations.

Complexity of Uf . The complexity of Gi is evaluated as 2 × (π/4) ×
√
28 ×

(1/160) ≈ 2−2.67 7-round ARIA computations for i = 0, 1, 4, 5, 8, 9, 12, 13; other-

wise 2×2×(π/4)×
√
28×(1/160) ≈ 2−1.67. The implementation of Uf includes 39

calls of Gi in Steps 2–5, 7–10, and 12–14, which require 20×2−2.67+19×2−1.67 ≈
23.19 7-round ARIA computations. We need to perform S-box computations from
starting points X3 and X5 to both ends of the cipher. Since there are half inverse
S-boxes in the S-box layer of each round, we need (8+8×2)×5×2× (1/160) ≈
20.58 7-round ARIA computations. The implementation of K in Step 17 is also
included. Hence, the overall complexity of Uf is 2×(23.19+20.58+261.91) ≈ 262.91

7-round ARIA computations.
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Algorithm 4: Implementation of Uf

Input : |∆1
in,∆

2
in,∆

1
out,∆

2
out⟩|q⟩

Output: |∆1
in,∆

2
in,∆

1
out,∆

2
out⟩|q ⊕ f(∆1

in,∆
2
in,∆

1
out,∆

2
out)⟩

1 /* inbound phase 1 */

2 for i ∈ {0, 1, . . . , 15} do
3 Compute the differences (∆Xi

3,∆Y i
3 ) from (∆Y2,∆Z3), where ∆Y2 = ∆1

in

and ∆Z3 = ∆1
out.

4 Run Gi(∆Xi
3,∆Y i

3 ;X
i
3). Let (X

i
3, X

i
3 ⊕∆Xi

3) be the output.

5 end
6 /* inbound phase 2 */

7 for i ∈ {0, 1, . . . , 15} do
8 Compute the differences (∆Xi

5,∆Y i
5 ) from (∆Y4,∆Z5), where ∆Y4 = ∆2

in

and ∆Z5 = ∆2
out.

9 Run Gi(∆Xi
5,∆Y i

5 ;X
i
5). Let (X

i
5, X

i
5 ⊕∆Xi

5) be the output.

10 end
11 /* connection phase */

12 for i ∈ {3, 4, 6, 8, 9, 13, 14} do
13 Run Gi(∆Xi

4,∆Y i
4 ;X

i
4). Let (X

i
4, X

i
4 ⊕∆Xi

4) be the output.
14 end
15 Compute the seven corresponding bytes of Y4.
16 Set the remaining nine bytes of Y4 to preselected values and compute Z4.
17 Run K(X4, X5, Z3, Z4;W0) for the exhaustive search of W0.
18 Set X3 ← (X0

3 , . . . , X
15
3 ) and X ′

3 ← (X0
3 ⊕∆X0

3 , . . . , X
15
3 ⊕∆X15

3 ).
19 Set X5 ← (X0

5 , . . . , X
15
5 ) and X ′

5 ← (X0
5 ⊕∆X0

5 , . . . , X
15
5 ⊕∆X15

5 ).
20 /* outbound phase */

21 if (X3, X
′
3, X5, X

′
5) fulfills the differential transformations of the outbound

phase then
22 return |∆1

in,∆
2
in,∆

1
out,∆

2
out⟩|q ⊕ 1⟩

23 else
24 return |∆1

in,∆
2
in,∆

1
out,∆

2
out⟩|q⟩

25 end

Overall Complexity of Finding Collisions. First, the number of qubits (or, the
unit of size) required to implement Hirose instantiated with ARIA-256 is 512.
For the estimation of the Sf , we need 4×128 qubits to store (∆1

in, ∆
2
in, ∆

1
out, ∆

2
out)

and a single qubit for q. Steps 3 and 4 require an additional (16×8×2+8×2) =
272 qubits to run Gi as well as compute and store the values of input–output
difference pairs. Steps 8 and 9 also require 272 qubits in the same manner, and
since Step 13 runs Gi for only seven bytes, 128 qubits are required. Step 17 re-
quires an additional 128× 5 qubits, and Steps 18 and 19 require 4× 128 qubits
to store (X3, X

′
3, X5, X

′
5). Step 21 requires an additional 128 × 5 = 640 qubits.

Thus, to store all the values shown in the above implementation, 2977 qubits
are used in total. Hence, we have:

Sf ≤ 2977/512 ≤ 22.54.
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If we consider the parallelization of Grover’s algorithm when S(≥ 22.54) quan-
tum computers are available, our rebound attacks run in time (π/4) × 262.91 ×√
22.54/(2−112 · S) ≤ 2119.83/

√
S. Our attacks are faster than the generic at-

tack complexity 2128/S in the cost metric of time–space tradeoff as long as
22.54 ≤ S < 216.34.

For ARIA-MJH, the number of qubits required for implementation is 640. Thus,
Sf ≤ 22.22 holds for ARIA-MJH, and the attack runs in time (π/4) × 262.91 ×√
22.22/(2−112 · S) ≤ 2119.67/

√
S as long as 22.22 ≤ S < 216.66.

Remark 2. Considering the structure of the compression function, this attack is
mounted as a free-start collision attack for ARIA-Hirose and as a semi-free-start
collision attack for ARIA-MJH.

5 Conclusions

In this study, we revised the quantum rebound attacks on SBL hash functions
instantiated with ARIA proposed by Dou et al. [10], and we proposed new quan-
tum rebound attacks on several DBL hash functions instantiated with ARIA.
To find collisions of hash functions, a differential trail for 5-round ARIA was
mounted for SBL hash functions, including DM, MMO, and MP, and a differential
trail for 7-round ARIA-256 using two inbound phases and a connection phase was
mounted for DBL hash functions, including Hirose and MJH. In particular, the
7-round differential trail was newly constructed by exploiting the maximum 2128

degrees of freedom in the key schedule of ARIA-256. These results are expected
to inspire the analysis of hash functions instantiated with other byte-oriented
block ciphers. Extending our attacks to more rounds will be an interesting re-
search topic.
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