
Sweep-UC: Swapping Coins Privately

Lucjan Hanzlik1, Julian Loss1, Sri AravindaKrishnan Thyagarajan2, and
Benedikt Wagner1,3

1 CISPA Helmholtz Center for Information Security
{hanzlik,loss,benedikt.wagner}@cispa.de

2 NTT Research
t.srikrishnan@gmail.com

3 Saarland University

Abstract. Fair exchange (also referred to as atomic swap) is a funda-
mental operation in any cryptocurrency, that allows users to atomically
exchange coins. While a large body of work has been devoted to this
problem, most solutions lack on-chain privacy. Thus, coins retain a public
transaction history which is known to degrade the fungibility of a currency.
This has led to a flourishing line of related research on fair exchange
with privacy guarantees. Existing protocols either rely on heavy scripting
(which also degrades fungibility), do not support atomic swaps across a
wide range currencies, or come with incomplete security proofs.
To overcome these limitations, we introduce Sweep-UC4, the first fair
exchange protocol that simultaneously is efficient, minimizes scripting,
and is compatible with a wide range of currencies (more than the state
of the art). We build Sweep-UC from modular subprotocols and give a
rigorous security analysis in the UC-framework. Many of our tools and
security definitions can be used in standalone fashion and may serve as
useful components for future constructions of fair exchange.
Keywords. Atomic Swap, Unlinkable exchange, Coin Mixing, Blind
Signatures

1 Introduction

One of the most fundamental financial operations is the exchange of one currency
for another. Suppose that Alice has one unit of currency A that she wants to
exchange for a unit of currency B. In the case of fiat currencies, she can rely on
a centralized authority such as a bank to fairly implement the exchange on her
behalf. Here, ‘fair’ means that Alice can be sure that the bank will pay her with
an equivalent amount of currency of type B. When dealing with decentralized
cryptocurrencies, however, things are not as simple. Clearly, one can no longer
rely on a bank to provide a fair exchange, as the main goal of such a system is to
avoid a single point of trust. Thus, rather than relying on a centralized service,
a large body of work has studied the problem of fair exchange between two
4 Read as Sweep Ur Coins.

mailto:mail here
mailto:mail here
mailto:mail here

2 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

parties Alice (holding a unit of currency A) and Bob (holding a unit of currency
B) [27,3,2,29,4,7,9,11]. The crucial security feature studied in these works is
atomicity (or fairness): at the end of the exchange, either Alice has a coin (i.e.,
a unit of currency) of type B and Bob has a coin of type A, or both Alice and
Bob keep their original coins. These proposals use the scripting languages of
the underlying blockchains to enforce specific spending behaviours which can
be leveraged to facilitate the exchange. Some of these solutions [3,2,29] use a
special type of script called Hash Timelock Contract (HTLC). Roughly speaking,
Alice can use an HTLC script with hash function H to freeze some amount of
her coins temporarily as follows. The HTLC specifies a value h such that if Bob
presents x with H(x) = h, Bob obtains Alice’s coins. On the other hand, the
HTLC also specifies some time T after which Alice is refunded her frozen coins
if Bob has not claimed them. Other solutions rely on trusted hardware [11], or
smart contracts [27,4,7,9] such as supported by Ethereum.

Unfortunately, it is well-known that using special scripts or contracts for
swapping coins has severe drawbacks:

1. The resulting protocol is incompatible with currencies that do not offer such
scripts or contracts, e.g., Monero [28].

2. The protocol results in expensive transactions for the users swapping their
coins as verifying special scripts or contracts on the blockchain incurs a higher
transaction fee.

3. It results in poor on-chain privacy or in other words, degrades the fungibility of
swapped coins. In line with the latin proverb pecunia non olet, money should
not be tainted by its origins. A currency is said to be fungible if all units/coins
in the currency have the same value, independent of their history. However,
the coins of transactions using special scripts are clearly distinguishable from
the coins of regular transactions that only use signature verification scripts. As
a result, these coins accumulate a so-called pseudo-value which may ultimately
lead to their censorship or being ransomed [8].

Existing Constructions. To overcome these issues, Thyagarajan, Malavolta
and Moreno-Sanchez proposed universal swaps [40]. Their protocol enables fair
exchange of coins across arbitrary currencies while only requiring the bare
minimum script from the underlying blockchain for verifying payments, namely,
the verification of digital signatures. Unfortunately, their protocols do not offer
an efficient solution for blockchains without support for adaptor signatures [21].
This strongly limits the applicability to important blockchain systems including
Monero or the Chia network [5]. In fact, due to the result of Erwig et al. [21],
Chia (and any other system based on unique signatures) provably lacks support
for adaptor signatures.

Tumblebit [25] and A2L [38] are two efficient atomic swap protocols that take
an alternate route. These protocols rely on an untrusted intermediate party, a
tumbler (in case of Tumblebit), or a hub (in case of A2L). While the intermediary
party can deny its service to Alice and Bob, it can not steal their coins or violate
fairness for either of these parties. Specifically, Alice can make a payment of

Sweep-UC 3

a coin in currency A to the intermediary, and in return is guaranteed to get
a payment of a coin in currency B from the intermediary. By relying on an
intermediary, these protocols also offer a privacy property called unlinkability.
Informally, unlinkability asserts that neither the intermediary nor any other
party can link the concrete coins of type A and B that it swaps, provided there
are many swaps happening simultaneously. In this manner, unlinkability can
be used to break the transaction history of coins and improve on-chain privacy.
Another benefit of the intermediary is that Alice no longer has to solve the
bootstrapping problem [3,2,29,27,4,7,9], which is to find another user Bob to
swap with. Instead, she can directly interact with the (permanently available)
intermediary. From another viewpoint, such intermediary-based protocols can
serve as coin mixers. Several academic and applied works [31,36,32,33,30] have
shown that mere pseudonyms do not guarantee privacy or anonymity for the users
and their coins. Many instances [6] have showcased the importance of privacy
and anonymity of coins and there has been considerable effort like CoinJoin [1],
CoinShuffle [34,35], among many others to improve coin privacy. Even new
currencies with enhanced privacy were developed from scratch [28,10]. To mix her
coins in an intermediary-based protocol, Alice, along with other users, can use
the intermediary to (fairly) shuffle their coins among each other. By unlinkability,
no one can link the users’ coins before and after the shuffle.

Unfortunately, Tumblebit critically relies on the support of HTLC scripts
from the underlying blockchains and hence also results in poor fungibility (see
above). While this issue is improved in A2L, it was found in a later work [23]
that there was a gap in their security model which allowed for key recovery
attacks on specific instantiations. The authors of [23] also proposed fixes to
A2L called A2L+, but only prove security in an idealized model (the linear-only
encryption model) [24] with game-based security guarantees. They also propose
a version called A2LUC in the Universal Composability (UC) framework [16],
that unfortunately requires heavy cryptographic tools like general-purpose two
party computation (2PC). This makes the protocol inefficient for immediate use.
Moreover, both A2L+ and A2LUC do not offer compatibility with systems lacking
adaptor signature support. We summarize existing solutions in Table 1.
Our Goal.With this state of affairs, achieving UC security without using general-
purpose 2PC, and extending the supported signature class beyond adaptor seems
to be challenging. We are interested in a protocol that overcomes these limitations.
Concretely, we ask the following question:

Is there a UC secure bootstrapped protocol for efficient and on-chain
privacy-preserving fair exchange across a wide range of currencies?

1.1 Our Contribution

We answer the above question positively by presenting Sweep-UC. Like Tumblebit
and A2L (series), Sweep-UC is bootstrapped with an intermediary called the

4 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Protocol Scripts Signature UC Comments
Tumblebit [25] HTLC ECDSA (3) Security only for parts

A2L [38] Signature verification1 Adaptor 7 Gap in security model
A2L+ [23] Signature verification1 Adaptor 7 Idealized model
A2LUC [23] Signature verification1 Adaptor 3 General-purpose 2PC
Sweep-UC Signature verification1 Adaptor or BLS 3

1 Requires additionally a timelock script but can be removed using tools from [39].
Table 1. Comparison of our protocol Sweep-UC with previous protocols. We compare
the required scripting functionality and the supported signature schemes, as well as
the security that is proven.

sweeper and can be used to swap (i.e. exchange) coins unlinkably and atomically.
We compare our protocol with existing solutions in Table 1. Below, we summarize
the properties of our protocol.
Efficiency and Security. Sweep-UC achieves the strong notion of UC security.
At the same time, in contrast to [40,23], it does not rely on any heavy cryp-
tographic machinery such as general-purpose 2PC. In particular, we thereby
solve the challenge raised in [23]. On the way, we introduce novel cut-and-choose
techniques so as to avoid inefficient and theoretically unsound computations
which treat random oracles as arithmetic circuits. We show the practicality of
this approach by evaluating a prototype. We implement the algorithms required
by the exchange and redeem protocols. In both cases, the sweeper’s part requires
less than a second on a standard laptop. The user’s part requires around five
seconds on the same platform to verify the cut-and-choose and around one second
to finalize the protocol.
Compatibility. To support swaps between currencies A and B, Sweep-UC
relies only on minimal scripting for verifying signatures5. As discussed, this
preserves on-chain privacy and fungibility of the currencies involved. In terms of
supported signature schemes, Sweep-UC is the first protocol that does not only
support adaptor signatures. Namely, our techniques support unique signatures
in currencies A and B. We give concrete instantiations for discrete-logarithm
adaptor signatures, e.g. Schnorr or ECDSA [21], and BLS [14]6. Our techniques
carry over to many other signature schemes of this kind.
Modularity. Sweep-UC is presented and analyzed in a modular way. That is,
we define two exchange-like primitives in a game-based way (one per currency
that is involved). Then, we show the UC security of Sweep-UC based on the
game-based security of these sub-protocols in a black-box fashion. We think the
definition of these sub-protocols is of great interest for two reasons. First, one
may use these definitions and our constructions in other protocols. Second, it
5 Similar to A2L and its variants, it also relies on timelocks, but this much weaker
scripting functionality can be eliminated using [39].

6 If we are willing to accept NIZK proofs about random oracles, we show that A can
use any adaptor or unique signature scheme, and B can use any signature scheme.

Sweep-UC 5

makes Sweep-UC easily extendable. For example, to support other currencies or
further improve the efficiency, one only has to focus on the construction of these
game-based sub-protocols, instead of doing an entire UC proof again.

2 Technical Overview

In this section, we give an overview of our construction and techniques. For
our explanation, we follow a top-down approach. We first describe the protocol
blueprint and how we model its security, and then show how to define and
instantiate necessary building blocks. We consider a setting where a user Alice
wants to swap coins with an intermediary, called the sweeper W7. This should
be done in an atomic and unlinkable way.
Blueprint. Similar to previous protocols [25,38,23,26], our protocol Sweep-UC
can be understood as implementing a form of Chaum’s E-Cash [17] on top
of the decentralized currency. Recall that we want to swap coins between a
user Alice and W. This swap contains two payments txa = pka → pkW and
txb = pkW → pkb. Here, Alice owns the addresses pka and pkb and the sweeper
owns pkW . In the E-Cash approach, Alice signs txa using her secret key ska
(associated to pka) and obtains some voucher in exchange. Then, Alice can use
that voucher to get a signature (valid with respect to pkW) for txb. Let us now
explain the steps of Sweep-UC in a bit more detail. An overview can be found
in Figure 1. We assume that the sweeper holds the secret key skBS for a blind
signature scheme BS, and the corresponding public key pkBS is known to every
user. In the first step (right-hand side), Alice registers a random nonce sn at the
sweeper, via a protocol that we call redeem protocol. Intuitively, this should make
sure that whenever Alice has a valid blind signature σBS for sn, she can learn a
signature for transaction txb. In the second step (left-hand side), Alice executes
a blind signature protocol for message sn with the sweeper as the blind signer.
This is done via an anonymous channel. In exchange, the signed payment txa is
published. This is done using a protocol that we call exchange protocol. Finally
(right-hand side), Alice uses the received blind signature on sn in the redeem
protocol to get a signature on payment txb, and publishes the signed payment.
One of the major design challenges to be overcome is to set up both the left
and the right-hand side in a compatible way. We will come back to the required
security guarantees for the exchange and redeem protocols later.

2.1 Challenge 1: UC Modeling

Before we start thinking about a UC proof, we need to define an appropriate
ideal functionality Fux. Our first attempt to do this is to have three interfaces,
covering the three phases as above. I.e. we have interfaces where the user can
(1) register, (2) add a payment, and (3) get the payment. Defining the details
appropriately, we can argue that this models an atomic and unlinkable swap
7 S is reserved for the simulator in the UC-proof.

6 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

W(skBS, skW)Pi(ska, pkBS) Pi(pkb, pkBS)

pkb, sn

Redeem Protocol
prom

Verify

AddPayment
Fig. 15

Register
Fig. 14

bsm1

Exchange Protocol
xm1

xm2bsm2 coinsbsm2 σBS

GetPayment
Fig. 16

σBS
coins

Fig. 1. Overview of the protocol Sweep-UC. The protocol is run between the sweeper
W and a party Pi. The gray area stands for an anonymous channel.

between a user and the sweeper. However, we run into a problem when we
want to prove security of our protocol. This problem, as discussed extensively in
[23], arises from the blindness of blind signatures. It is the reason why the UC
proof of A2L [38] is flawed. In a UC proof, a simulator that communicates with
a corrupted user Alice has to call the interface (2) appropriately. If blindness
of the blind signature scheme is unconditional, the simulator can not do that,
as it can not extract the matching registration call. On the other hand, if the
blindness is computational and there is a trapdoor, the simulator acts similar to
a CCA-oracle. This is because the simulator first “decrypts” blinded messages
using this trapdoor, and then behaves dependent on that decryption. We refer to
[23] for a detailed explanation. As the blinding in blind signatures is often linear,
there is little hope to get such CCA-style security. This is also discussed in [23],
and leads to security proofs in idealized models, which we want to avoid.

Solution: A new Interface. Let us now explain how we solve this fundamental
problem, which is our first technical contribution. We view the problem as a
commitment problem. Namely, when Alice interacts with the sweeper (or the
simulator), she does not commit to the registration call for which she gets a blind
signature. In other words, we cannot rule out that Alice changes the receiving
public key pkb after obtaining the blind signature on the left. At the same time,
there is no reason why we want to rule this out. Namely, even if Alice changes
pkb to pk′b afterwards, this does steal coins from the sweeper, as long as she can
not redeem coins (interface (3)) for both pkb and pk′b. With this in mind, we add
an additional interface ChangePayment, that allows the simulator to change pkb
to pk′b in case Alice is corrupted and both pkb, pk′b have been registered before.

Sweep-UC 7

Note that the number of coins that the sweeper spends in total stays the same,
and so this is still secure for the sweeper. Now, we can solve the commitment
problem in the proof. Namely, the simulator can just use an arbitrary pkb, and
call ChangePayment with the correct pk′b afterwards, once it learns sn in the
third phase of the protocol. Combined with what follows, this weakening of the
functionality allows us to get UC security without using heavy cryptographic
machinery or idealized models as in [23].

2.2 Challenge 2: Defining Appropriate Building Blocks

To build our protocol in a modular way, we want to define the syntax and game-
based security notions for the exchange on the left, and the redeem protocol on
the right. It turns out that finding security notions that are strong enough to be
used in the UC proof, but still possible to instantiate is non-trivial. We view the
precise definitions of the building blocks as our second technical contribution. For
this overview, it is instructive to consider the case of corrupted user Alice and
the case of a corrupted sweeper separately. For both cases, we want to motivate
the security notions for redeem and exchange protocols starting from the UC
proof and intuitive security guarantees of the overall protocol Sweep-UC.
Dealing with Corrupted Users. We start with the case of corrupted users
and an honest sweeper W. We want to avoid that W looses coins. Intuitively,
this should follow from one-more unforgeability of the blind signature scheme.
This is because W looses coins if it pays more on the right than it received on the
left. Hopefully, if the user learns a blind signature on the left, W receives a coin,
and if W pays on the right, then the user must have known a blind signature. To
make this intuition formal in the UC proof, we would need some hybrid step that
rules out the bad event that W looses money. The probability of this bad event
should the be bounded using a reduction from the one-more unforgeability. To
recall, such a reduction has access to the public key of the blind signature scheme,
as well as a signer oracle. If we consider this reduction, we may get information
about how to define security of exchange and redeem protocols appropriately.
For example, we have to make sure that (1) the number of queries to the signer
oracle is at most the number of coins that W receives, and (2) the number of
blind signatures that the reduction learns is at least the number of coins that
W spends. For (1), we have to remove all usages of the blind signature secret
key skBS from both redeem and exchange protocols, except for the case that W
receives coins in the exchange protocol. In particular, messages sent by W on
the right have to be simulated without using skBS. The same holds for messages
sent by W on the left before we are sure that it receives a coin. Further, note
that the reduction only has access to a signer oracle and not to skBS, so we have
to simulate the entire exchange on the left (even if W gets coins) just using a
signer oracle. For (2), note that in the real protocol, W may never learn the
blind signatures with which the user redeems its coins. Therefore, the redeem
protocol should give us some knowledge-style (online) extractor in the UC proof,
that extracts blind signatures whenever a user publishes a transaction signature.

8 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

These insights dictate how we have to define security for the redeem and exchange
protocols in case of a malicious user.
Dealing with a Corrupted Sweeper. Let us now consider the case of honest
users and a corrupted W. In this case, we want both unlinkability and security,
i.e. the user should not loose coins. For unlinkability, we want to use the blindness
guarantee of blind signatures in a hybrid step of the UC proof. To make this
work, we first need to make sure that the user in the exchange protocol can
be simulated using a user oracle of the blind signature scheme. Second, for an
honest user that adds a payment on the left, the UC simulator is only informed
that this user pays, but it does not learn the recipient public key pkb. Thus, it
also does not know which nonce sn to get signed blindly. To solve this issue,
we let the simulator use an arbitrary nonce sn′ instead. Although we can argue
indistinguishability using blindness, this introduced another problem: When the
environment tells us to redeem the coins for pkb on the right, we do not have a
blind signature for sn now. Our solution is to demand a knowledge-style (online)
extraction feature from the redeem protocol. Namely, we want that there is some
extractor that can extract the blind signature from the sweeper whenever the
promise is successfully set up on the right. As we will see, this is challenging
to achieve while simultaneously achieving the simulatability property that we
require for the reduction to one-more unforgeability discussed above. For security,
we intuitively want that (1) if the user pays on the left, then it gets a valid
blind signature, and (2) if the user has a valid blind signature, it can redeem
its coins on the right, even if W goes offline. During the UC proof, we rule out
two corresponding bad events in hybrid steps. Concretely, for (1) there should
be some algorithm that the user can run on the transaction signature, and with
which it can extract a blind signature. Security should now say that it is infeasible
for W to come up with a transaction signature for which the user can not extract
the blind signature. For (2), we require that it is infeasible for W to successfully
set up the promise in the redeem protocol on the right such that the user can not
extract a transaction signature using the blind signature. We note that working
out the details for the definition of redeem and exchange protocols is challenging,
due to the complex interplay of these building blocks caused by the UC proof.

2.3 Challenge 3: Efficient Instantiation

We are now ready to discuss the instantiation of exchange and redeem protocols,
which is our third technical contribution. For the rest of this overview, we
consider the case where both the transaction and blind signature scheme are
unique. Concretely, we consider the BLS blind signature scheme where the signing
interaction consists of two messages bsm1 ∈ G and bsm2 = bsmskBS

1 ∈ G in a
cyclic group G of prime order p. The other constructions use similar ideas, while
replacing the need of uniqueness with adaptor signature functionality.
A Non-Optimal First Solution. We start with the redeem protocol on the
right. Here, the user Alice should be able to get a transaction signature σ for
transaction txb once it knows the blind signature σBS. This should be possible

Sweep-UC 9

without further interaction with W, as W could go offline. A naive approach
would be to let W encrypt σ into a ciphertext ct using σBS as a symmetric key.
To convince Alice that she can really decrypt, i.e. ct is well-formed, W could
append a non-interactive zero-knowledge proof (NIZK) π. With this solution we
encounter a problem. Recall from our discussion about the security of building
blocks that we would have to simulate ct and π without having access to skBS or
σBS. The challenge here is that once the user knows σBS (e.g. because it behaves
honestly), the ciphertext ct should look consistent again. To implement this, we
define ct := H(σBS)⊕ σ, and use the programmability of the random oracle H.
Namely, we send a random ct, and program H(σBS) := ct⊕ σ once it is queried.
We can use a similar approach for the exchange on the left. Here, we first establish
that signing txa requires two signatures σW and σa byW and Alice, respectively8.
We encrypt the blind signature response bsm2 using transaction signature σW
for transaction txa in the same way, i.e. ct := H(σ)⊕ bsm2. When Alice receives
ct and a NIZK π, she sends her share σa if π verifies. Then, once W publishes
σW , σa, Alice derives bsm2 from ct. Recall from our discussion above that we
can only use a signer oracle in the one-more unforgeability reduction when we
already know that we get the payment, i.e. we already have σa. Therefore, we
have to simulate ct without knowing bsm2, and program H(σ) := ct⊕ bsm2 once
we know σa. The constructions sketched here have a significant shortcoming: We
use NIZKs to prove relations defined by random oracle H. This non-standard use
of the random oracle has unclear security implications.
Strawman’s Cut-and-Choose Solution. The challenge is that our current
strategy crucially relies on the observability and programmability of the random
oracle. We have to find a way to exploit these features of the random oracle,
while avoiding generic NIZKs about random oracle relations. In the following, we
explain our solution for the redeem protocol only. The exchange protocol can be
constructed by suitable modifications and switching roles as in our naive attempt.
We also omit some minor details for readability.

At a high level, our idea is to use a cut-and-choose technique to implement the
proof π. In such a technique, W would repeat the naive attempt in 2λ instances
independently, and has to open λ randomly chosen instances to convince Alice of
consistency. Clearly, this does not work, because any opened instance already
allows Alice to obtain money without knowing σBS. Let us try to solve this
problem using secret sharing. Namely, W now sends a ciphertext ct0 = hf

′(0) · σ,
and ciphertexts ctj = H(σBS, j) ⊕ hf

′(j), j ∈ [2λ], where h is a generator of G,
and f ′ is a random polynomial of degree λ over Zp. The sweeper also commits
to f ′ by sending its coefficients in the exponent of a generator. Additionally, W
opens ctk by sending and σBS and f ′(k) for λ randomly chosen k9. Then, the
user can verify consistency by recomputing ctk for all such k, and checking in
the exponent that f ′(k) indeed lies on the polynomial f ′. This approach allows
the user to check consistency without requiring the NIZK π. At the same time,
we can still use the observability and programmability of the random oracle as
8 This can be implemented using a multi-signature address.
9 These can be chosen non-interactively using the Fiat-Shamir heuristic.

10 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

in the naive attempt. However, note that this solution is heavily flawed: When
W opens ctk by sending σBS and f ′(k), the user learns σBS, and can therefore
redeem its coins without interacting on the left. In fact, simulating the promise
without knowing σBS will fail.
Our Cut-and-Choose Solution. To solve this, we introduce another layer of
secret sharing. Namely, we use the algebraic structure of BLS blind signatures to
share σBS = H(sn)skBS into σj , j ∈ [2λ] using a random polynomial f of degree λ
such that

f(0) = skBS, pkBS = gskBS , pkBS,j := gf(j), σj = H(sn)f(j).

Then, each ciphertext has the form ctj = H(σj) ⊕ hf
′(j), and can be opened

by sending σj and hf
′(j). Again, we publish coefficients of f in the exponent,

which allows to publicly compute pkBS,j . Now, the user can check consistency
of σj using pkBS,j and BLS verification. Also, note that Alice (computationally)
only learns λ points of f in the exponent of basis H(sn). Once Alice bought
the blind signature σBS on the left, this serves as the (λ + 1)st share, and she
can reconstruct f in the exponent of basis H(sn), i.e. she learns all σj . Then,
soundness of the cut-and-choose guarantees that there is at least one unopened j
for which ctj is consistent. With that, Alice can compute hf ′(j). In combination
with the λ already opened shares of f ′, she can now compute hf ′(0) and therefore
σ from ct0. We can easily ensure consistency of ct0 using an efficient NIZK, as
the statement that we have to prove is purely algebraic10. It turns out that,
implemented carefully, our random oracle-based simulation strategy still works
out: Our simulator can know which indices are opened in advance. Then, without
knowing skBS and σBS, it can define the polynomial f such that f(0) = skBS
implicitly in the exponent, while still knowing λ points of f over Zp. These can
be used to open consistently, and the unopened ctj are sampled at random as in
the naive attempt. Then, once Alice queries H(σj) for some unopened σj , the
simulator can compute f entirely in the exponent of basis H(tx), and program
H(σj) = ctj ⊕ hf

′(j) for all unopened j.

3 Preliminaries

The security parameter λ ∈ N is given in unary to all algorithms implicitly as
input. We write x←$S if x is sampled uniformly at random from a finite set S.
We write x ← D if x is sampled according to a distribution D. An algorithm
is said to be PPT if its running time is bounded by a polynomial in its input
size. For an algorithm A, we write y ← A(x), if y is output from A on input x
with random coins sampled uniformly at random. We write y := A(x; ρ) to make
the random coins ρ explicit. The notation y ∈ A(x) means that y is a possible
output of A(x). A function f : N→ R+ is said to be negligible in its input λ, if
f ∈ λ−ω(1). The first K natural numbers are denoted by [K] := {1, . . . ,K}.
10 The relation is defined by h, the first committed coefficients of f ′, and pkW .

Sweep-UC 11

Next, we introduce the cryptographic primitives we use. For formal defini-
tions of the primitives and computational assumptions we refer the reader to
Supplementary Material A.
Digital Signatures. A signature scheme SIG = (Gen,Sig,Ver) consists of three
PPT algorithms. The key generation algorithm Gen(1λ) generates a key pair
(pk, sk). We require the public keys pk generated by Gen to have high entropy.
The signing algorithm Sig(sk,m) generates a signature σ on the message m. The
verification algorithm Ver(pk,m, σ) validates the signature σ with respect to
message m and public key pk and returns either 1 for valid, or 0 for invalid.
A signature scheme is said to be unique if for any public key pk and message
m, there exists exactly one σ with Ver(pk,m, σ) = 1. The security property of
interest is that of unforgeability. Here, an adversary without access to the secret
key sk, should not be able to forge a fresh valid signature on a message even given
access to signatures on any arbitrary messages of its choice. Such an unforgeable
signature scheme is referred to as being EUF-CMA secure. Finally, we may require
the signature scheme to be smooth, meaning that a random string in the signature
space is a valid signature only with negligible probability.
Blind Signatures. In a blind signature scheme [17] a user can obtain a signature
on a message from a signer in such a way that the signer does not learn the
message itself. Formally, a blind signature scheme is a tuple BS = (Gen, S,U,Ver),
where Gen and Ver are as before. Signatures are generated in an interactive
protocol between a user U(pk,m) and a signer S(sk). We only consider two-move
blind signature schemes, for which the interaction is as follows: (bsm1, St) ←
U1(pk,m), bsm2 ← S(sk, bsm1), σ ← U2(St, bsm2). A unique blind signature
scheme is defined exactly as in the case of standard digital signatures. In terms of
security, two notions are considered. Blindness states that it should be infeasible
for an adversarial signer to link the signing interaction to the message m and
the resulting signature σ. For this work, we only need a relaxed version of this
property referred to as weak blindness where the adversary is not given σ, but
only if σ was a valid signature or not. The second notion is that of one-more
unforgeability, which guarantees that it is infeasible for an adversarial user to
return `+ 1 valid signatures, after completing at most ` interactions with the
signer.
NP-Relations. We recall the notion of a family of hard relations R = (Rλ)λ
where Rλ ⊆ {0, 1}∗ × {0, 1}∗. We denote by Lλ the language of yes-instances
defined as

Lλ :=
{

stmt ∈ {0, 1}∗
∣∣ ∃witn ∈ {0, 1}∗ : (stmt,witn) ∈ Rλ

}
.

The relation R is called a hard relation‚ if the following holds: (i) There exists an
efficient sampling algorithm that outputs a statement/witness pair (stmt,witn) ∈
Rλ; (ii) The relation Rλ is poly-time decidable; (iii) For all efficient adversaries
A the probability of A on input stmt outputting a witness witn is negligible. The
NP-relation is said to be a unique if for every stmt ∈ Lλ there is exactly one
witn such that (stmt,witn) ∈ Rλ.

12 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Non-Interactive Zero-Knowledge Proofs. A non-interactive zero-knowledge
proof (NIZK) [18] system PS for the relation R allows a prover algorithm
PProve(stmt,witn) to show validity of a statement stmt ∈ Lλ using the corre-
sponding witness witn by returning a proof π. The verifier algorithm PVer(stmt, π)
validates the proof π and returns 1 for valid and 0 for invalid. We require a NIZK
system to be (1) zero-knowledge, where the verifier does not learn more than the
validity of the statement stmt, and (2) sound, where it is hard for any prover to
convince a verifier of an invalid statement.
Threshold Secret Sharing. We make use of Shamir secret sharing [37] and
Lagrange interpolation over fields and in the exponent of a cyclic group. To
this end, let p be a prime, and G be a cyclic group of order p, generated by
g ∈ G. Let z ∈ Zp be fixed. We define algorithms reconstp((x0, y0), . . . , (xλ, yλ))
and reconstg,z((x0, h0), . . . , (xλ, hλ)) that take as input pairs (xi, yi) ∈ Z2

p and
(xi, hi) ∈ Zp × G, respectively, as follows: Both define polynomials `j(X) :=∏

m∈{0,...,λ},m 6=j (X − xm)/(xj − xm) ∈ Zp[X]. Algorithm reconstp outputs L(X)
:=
∑λ
j=0 yj · `j(X) ∈ Zp[X], and reconstg,z outputs

∏λ
j=0 h

`j(z)
j . Further, given λ

indices (kj)j∈[λ] for kj ∈ [2λ], we define algorithm polyGeng,p(λ, coeff0, (kj)j∈[λ])
that internally generates a polynomial f(X) ∈ Zp[X] of degree λ and outputs λ
evaluations ((kj , skj := f(kj))j∈[λ] and λ coefficients (coeffj)j∈[λ]. For the outputs
we have gf(kj) =

∏λ
i=0(coeffi)(kj)i for all j ∈ [λ] and gf(0) = coeff0.

4 Security Model

In this section, we first discuss the security properties that we want to achieve.
Then, we introduce our formal security model.
Informal Security Properties. We aim for three security properties that our
protocol should satisfy. These are security for users, security for the sweeper, and
unlinkability. Let us describe what these goals mean informally. Our protocol
should achieve security for users, in a sense that the sweeper should not be able
to steal users coins. In other words, whenever an honest user pays to the sweeper,
it is guaranteed that it will be payed back by the sweeper, even if for example the
sweeper goes offline. On the other hand, our protocol should achieve security for
the sweeper. This means that colluding users should only be able to get coins from
the sweeper, if they payed before. Finally, we aim for unlinkability. This property
means that if a lot of users interact with the sweeper at the same time, then the
neither the sweeper nor any outsider can link the interaction and payment in
which the user payed to the sweeper to the interaction and payment in which the
sweeper payed to the user. More concretely, let us denote an interaction between
a user Pi and the sweeper in our protocol by two vertices ai, bi in a graph. Vertex
ai corresponds to the payment from Pi to the sweeper, and bi corresponds to
the payment from the sweeper to Pi. Given a set of such users, consider the
complete bipartite graph G on partitions A = {ai} and B = {bi}. The actual
payments induce a matching M∗ = {(ai, bi)}. Our unlinkability definition now
roughly states that both sweeper and outsiders obtain no information about M∗,

Sweep-UC 13

except for what is already revealed by G. Note that we did not yet specify which
users we consider in this model, i.e. the anonymity set. This will be made clear
once we discuss the functionality.
UC Framework. We model the security of our protocol in the universal compos-
abililty (UC) framework [16] with static corruptions. In terms of communication,
our protocol makes use of secure channels and anonymous channels. Also, similar
to other works in this area, e.g. [20,40], we consider a synchronous model of
communication. This means that we implicitly assume a global clock functionality,
and protocols are executed in rounds. Every party knows the current round. Thus,
the parties and functionalities can expect messages to be received at a certain
time.
Ledger Functionality. As in previous works [20,40], we model the blockchain
as a global ledger functionality LSIG parameterized by a signature scheme SIG.
We postpone the formal presentation of LSIG to Figure 10. The functionality
holds the current balances bal[pk] ∈ N0 of public keys pk. Parties can call
LSIG.Pay(pks, pkr, c, sks) to pay c coins from address pks to address pkr using se-
cret key sks. Further, we allow functionalities to call interfaces LSIG.Freeze(pk, c)
and LSIG.Unfreeze(pk′, c) to freeze c coins of an address pk or to unfreeze them
into an address pk′. Also, our protocol makes use of a functionality Fs, formally
specified in Figure 11. Via interface Fs.OpenSh(T, pkin,Pb, c, skin) this functional-
ity allows a party Pa to open a shared address (pka, pkb) with party Pb by paying c
coins from pkin into it. As a result, Pa gets secret key share ska and Pb gets secret
key share skb. Later, it can be closed using Fs.CloseSh(pka, pkb, pkout, c, σa, σb),
where σa, σb are valid signatures on a closing transaction tx with respect to
pka, pkb, respectively. In this case, the c coins are transferred to pkout. If the
shared address is not closed after timeout T , the coins go back to pkin. For
simplicity, we make use of the component-wise multi-signature here. It should be
noted that everything easily carries over to more efficient and scriptless multi-
signature schemes, the shared address consists of a single public key. We note that
in the description of our protocol, the interfaces LSIG.Freeze and LSIG.Unfreeze
are only called by Fs, and it is well known [40] how to instantiate such a shared
address functionality without scripts in existing cryptocurrencies like Bitcoin.
Therefore, these two interfaces only serve for modeling purposes and do not
introduce special scripts.
Unlinkable Exchange Functionality. We model the properties that our
protocol should achieve as an ideal functionality Fux for unlinkable exchanges.
The functionality is formally given in Figure 2 and interacts with LSIG. It is
parameterized by a timeout parameter T and an amount amt. All payments
will have this fixed amount, which is important to maximize the anonymity
set. When a user P wants to use Fux to exchange coins with the sweeper W,
it first calls interface Fux.Register(pkb), which freezes amt coins of some fixed
public key pkW of W. Here, the adversary learns P, pkb. Next, party P calls
Fux.AddPayment(pka, ska, pkb), which leads to amt coins of pka being transferred
to pkW . Here, the adversary only learns pka, and not P, pkb. Finally, party P calls
Fux.GetPayment(pkb). If the corresponding calls to Register and AddPayment

14 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Functionality Fux

The functionality interacts with parties P1, . . . ,Pn,W, ideal adversary S and func-
tionality LSIG. It is parameterized by a digital signature scheme SIG = (Gen, Sig,Ver)
A key pkW for party W is given. It is parameterized by amt ∈ N, T ∈ N. It holds
lists Reg,Pay.

Interface Register(pkb), called by Pi:
01 Send (“register”,Pi, pkb) to S. If W is corrupted, receive message m1 from S.
02 If m1 = “abort”, send “fail” and return.
03 If (Pi, pkb) is already in Reg, send “failDoubleRegister” and return.
04 Call LSIG.Freeze(pkW , amt) and receive m in return. If m =
(“nofunds”, pkW , amt), send “failNoFunds” and return.
05 Append (Pi, pkb) to Reg.
06 Send (“registered”,Pi, pkb) to S. If W is corrupted, obtain m2 in return. If
m2 = “abort”, remove (Pi, pkb) from Reg, send “fail” and return.
07 After T clock cycles: If the entry (Pi, pkb) is still in Reg, then call
LSIG.Unfreeze(pkW , amt) and delete the entry from Reg.
Interface AddPayment(pka, ska, pkb), called by Pi:
01 If Pi is not corrupted, and (Pi, pkb) is not in Reg, send “failNotRegistered”
and return.
02 If (pka, ska) /∈ SIG.Gen(1λ), send “failInvalidKey” and return.
03 Send (“addPayment”, pka) to S.
04 Call LSIG.Freeze(pka, amt) and receive m in return.
05 If m = (“nofunds”, pka, amt), send “failNoFunds” and return.
06 Send (“addPaymentFreeze”, pka) to S and receive m1 in return.
07 If m1 = “abort”, send “fail” and return.
08 If the message m1 is not yet received after T clock cycles, call
LSIG.Unfreeze(pka, amt), send “fail” and return.
09 Call LSIG.Unfreeze(pkW , amt).
10 Append (Pi, pka, pkb) to Pay.
Interface ChangePayment(pka, pkb, pkc), called by S:
01 Search for entry (Pi, pka, pkb) in Pay. If no such entry is found, send “fail” and
return.
02 If party Pi is not corrupted, send “fail” and return.
03 Replace the entry (Pi, pka, pkb) in Pay with (Pi, pka, pkc).
Interface GetPayment(pkb), called by Pi:
01 Send (“getPayment”,Pi, pkb) to S.
02 If (Pi, pkb) is not in Reg, send “failNotRegistered” and return.
03 If there is no entry of the form (Pj , pka, pkb) in Pay, send “failNoPayment”
and return.
04 Remove the first entry of this form (Pj , pka, pkb) from Pay and (Pi, pkb) from
Reg.
05 Send (“gotPayment”,Pi, pkb) to S.
06 Call LSIG.Unfreeze(pkb, amt).

Fig. 2. Ideal functionality Fux that interacts with LSIG.

Sweep-UC 15

were issued correctly, this leads to unfreezing the amt coins that were frozen in
Register into address pkb. In this way, P payed amt coins from address pka to
W and received amt coins to pkb from W. In addition to the natural interfaces
above, we also introduce an interface ChangePayment, that allows the simulator to
change receiving public keys pkb if the party that called AddPayment is corrupted.
The reason for this is discussed in the technical overview. We emphasize that the
number of coins that pkW stays the same when calling the interface, and it does
not violate the security of W.

Let us argue how the informal security properties discussed above are captured
by Fux. A malicious W is always allowed to make the calls to Register and
AddPayment abort. However, whenever Register and AddPayment were issued
without such an abort, there is no way to stop the coin transfer to pkb in
GetPayment. Thus, the functionality provides security for users. On the other
hand, a call to GetPayment will only lead to coins being transferred to pkb, if
AddPayment has been called before. This implies that the functionality provides
security for the sweeper. Finally, note that the adversary can not link the calls to
AddPayment to the calls to Register, GetPayment using the outputs of Fux. The
only way he can link these calls is by their order in comparison with calls from
other parties. Before, we described this unlinkability guarantee using a graph G
and a matchingM∗. What remains is to define under what condition two users Pi
and Pj that call the interfaces Register, AddPayment, and GetPayment belong to
the same graph or anonymity set. For x ∈ {r = Register, a = AddPayment, g =
GetPayment} and k ∈ {i, j} let tx,k be the time when user k calls interface x.
Then, Pi and Pj belong to the same graph, if and only if

tr,i, tr,j < ta,i, ta,j < tg,i, tg,j .

Simplifications. Let us now discuss the simplifications that we make and explain
how one would have to deal with them when using our protocol in practice. It
is easy to see that these simplifications do not change the security guarantees
that we give. First, we do not include any fee for the sweeper in our model.
In practice, a fee is necessary to incentivize the sweeper as a service. Also, in
a practical application, it may be useful to introduce some common phases in
which the users run the sub-protocols for Register, AddPayment, GetPayment.
This would have a positive effect on the size of the anonymity set. Finally, to
avoid clutter, we modeled our protocol for one ledger functionality, and thus one
currency. However, the reader should notice that both our functionality and our
construction can be trivially adapted to the setting of two different currencies.
This is because the calls to LSIG in Register and GetPayment are completely
independent from the calls to LSIG in AddPayment.

5 Building Blocks for Sweep-UC

In this section, we focus on the building blocks for our protocol. First, we define
an exchange protocol and give different instantiations of it. Then, we define a

16 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

redeem protocol and present constructions. At a high level, using an exchange
protocol, a user will buy a blind signature from the sweeper. Then, using the
redeem protocol, it can turn it in to get a signed transaction from the sweeper.
Throughout, we use the terminology “on the left/right” following Figure 1.

5.1 Exchange Protocol

We define the syntax and security of the exchange protocol on the left. Later, we
give instantiations of it. Consider the following scenario for a signature scheme
SIG and a blind signature scheme BS. A buyer and a seller opened a shared
address (pkb, pks) for SIG, where the buyer knows the secret key skb corresponding
to pkb, and the seller knows the secret key sks corresponding to pks. Both parties
are aware of a public key pkBS for BS, and the seller knows the corresponding
secret key skBS. Assume that the signing protocol of BS consists of two messages,
bsm1 and bsm2. Then, the buyers has some nonce sn that should be signed (with
respect to BS) by the seller. However, to get the signature, it should pay with a
signature for a transaction tx under the shared address (pkb, pks).

More precisely, first, the buyer sends the first message bsm1 of the blind
signature interaction. Then, both parties run an exchange protocol to fairly
exchange the message bsm2 for a signature (σb, σs) on transaction tx.

In our syntax of this exchange, we assume that the overall parameters xpar :=
(pkBS, bsm1, pkb, pks, tx) are known to the seller and the buyer. Then, the seller
first sends a message xm1 to the buyer, which is computed using the first message
bsm1 and the secret key skBS, and may already encapsulate the second message
bsm2 in some sense. Then, the buyer responds with a message xm2. Now, the
seller can derive the signature σb from xm2. Whenever the seller publishes (σb, σs),
the buyer can derive a valid second message bsm2 from the transcript xm1, xm2
and (σb, σs). An overview of this can be found in Figure 12.

Definition 1 (Exchange Protocol). Let SIG = (SIG.Gen,SIG.Sig,SIG.Ver) be
a digital signature scheme. Further, let BS = (BS.Gen,BS.S,BS.U,BS.Ver) be a
two-move blind signature scheme. An exchange protocol for SIG and BS is a tuple
of PPT algorithms EXC = (Setup,Buy,Sell,Get) with the following syntax:

– Setup(xpar, skBS, sks)→ (xm1, St) takes as input exchange parameters xpar, a
secret key skBS, and a secret key sks, and outputs a message xm1 and a state
St.

– Buy(xpar, skb, xm1)→ xm2 takes as input exchange parameters xpar, a secret
key skb, and a message xm1, and outputs a message xm2.

– Sell(St, xm2)→ σb is deterministic, takes as input a state St and a message
xm2, and outputs a signature σb.

– Get(xpar, xm1, xm2, σb, σs) → bsm2 is deterministic, takes as input exchange
parameters xpar, messages xm1 and xm2, and signatures σb and σs, and outputs
a message bsm2.

It is required that the following completeness property holds: For all transactions
tx, messages sn, keys (pkBS, skBS) ∈ BS.Gen(1λ), and all (pkb, skb) ∈ SIG.Gen(1λ),

Sweep-UC 17

(pks, sks) ∈ SIG.Gen(1λ), we have

Pr


b1 = 1
∧ b2 = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(bsm1, St)← U1(pkBS, sn),
xpar := (pkBS, bsm1, pkb, pks, tx),
(xm1, St)← Setup(xpar, skBS, sks),
xm2 ← Buy(xpar, skb, xm1),
σb := Sell(St, xm2), σs ← Sig(sks, tx)
bsm2 := Get(xpar, xm1, xm2, σb, σs), σBS ← U2(St, bsm2),
b1 := SIG.Ver(pkb, tx, σb), b2 := BS.Ver(pkBS, sn, σBS)


= 1.

We require that an exchange protocol has well distributed signatures. That is,
the signatures on a transaction tx obtained from the exchange protocol should
be distributed identically to freshly computed signature. We postpone the formal
definition of this property to Supplementary Material B. Next, we define security
of such an exchange in a game-based fashion. Informally, security should ensure
that the following two properties hold:

1. Security Against Malicious Sellers: Without learning xm2, the seller should
not be able to derive a signature on tx. The seller should only be able to derive
a signature for the given transaction tx. Finally, the seller should not be able
to derive a signature from which the buyer can not derive a blind signature.

2. Security Against Malicious Buyers: The buyer should only be able to learn
blind signatures if the seller derived a valid signature σb. We formalize this
via simulators that do not get skBS as input. At a high level, our definition
captures the intuition that the only information about skBS that is revealed is
bsm2, and this is only revealed once the signatures σb, σs are published.

Intuitively, the blindness of scheme BS is preserved, even when running BS in
composition with such an exchange. The reason is that the algorithms Buy,Get
that are executed by the buyer do not take the secret state St of the user U as
input.

Definition 2 (Security Against Malicious Sellers). Let EXC = (Setup,Buy,
Sell,Get) be an exchange for SIG and BS as in Definition 1. For any algorithm
A, consider the following game:

1. Run A and obtain a public key pkBS and a message sn for BS.
2. Run (bsm1, St)← U1(pkBS, sn).
3. Sample keys (pkb, skb)← SIG.Gen(1λ).
4. Run A on input pkb and bsm1. Obtain pks, tx, and a message xm1 from A.

Set xpar := (pkBS, bsm1, pkb, pks, tx).
5. If xm1 6= ⊥, run xm2 ← Buy(xpar, skb, xm1) and give xm2 to A. Otherwise,

give xm2 := ⊥ to A.
6. Obtain tx′ and σb, σs from A and run bsm2 := Get(xpar, xm1, xm2, σb, σs) and

σBS ← U2(St, bsm2).
7. If SIG.Ver(pkb, tx′, σb) = 0 or SIG.Ver(pks, tx′, σs) = 0, output 0.
8. Output 1 if one of the following holds, otherwise output 0:

18 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

(a) tx 6= tx′.
(b) tx = tx′ and xm2 = ⊥.
(c) tx = tx′, xm2 6= ⊥, and BS.Ver(pkBS, sn, σBS) = 0.

We say that EXC is secure against malicious sellers, if for all PPT algorithms A,
the probability that the above game outputs 1 is negligible.

Definition 3 (Security Against Malicious Buyers). Let EXC = (Setup,Buy,
Sell,Get) be an exchange for SIG and BS as in Definition 1. For any algorithm A,
algorithms Sim1,SimRO,Sim2,Sim3, which may share state, observe and program
random oracles, and bit b ∈ {0, 1}, consider the following game:

1. Sample a key pair (pkBS, skBS)← BS.Gen(1λ).
2. Let O be an oracle that takes as input bsm1 and returns bsm2 ← BS.S(skBS,

bsm1).
3. Run A on input pkBS with access to oracle O and an interactive oracle O∗,

which is defined as follows:
(a) Upon receiving a call, run (pks, sks)← SIG.Gen(1λ) and return pks.
(b) Upon receiving a key pkb, a transaction tx, and a message bsm1, set

xpar := (pkBS, bsm1, pkb, pks, tx). If b = 0, run (xm1, St) ← Setup(xpar,
skBS, sks). If b = 1, run xm1 ← Sim1(xpar, sks). Return xm1.

(c) Upon receiving xm2, run σs ← SIG.Sig(sks, tx). If b = 0, run σb :=
Sell(St, xm2), and abort if SIG.Ver(pkb, tx, σb) = 0. If b = 1, abort if
Sim2(xm2) = 0. Otherwise, run bsm2 ← BS.S(skBS, bsm1) and σb ←
Sim3(xm2, bsm2). Return σb, σs.

4. Obtain a bit b′ from A. Output b′.

Note that algorithms Sim1,SimRO,Sim2,Sim3 do not have access to oracle O.
We say that EXC is secure against malicious buyers, if there are PPT algo-

rithms Sim1,SimRO,Sim2,Sim3 as above, such that for all PPT algorithms A the
probability that the game with b = 0 outputs 1 and the probability that the game
with b = 1 outputs 1 are negligibly close.

Generic Construction for Unique Signatures. Let SIG = (SIG.Gen,SIG.Sig,
SIG.Ver) be a signature scheme and BS = (BS.Gen,BS.S,BS.U,BS.Ver) be a two-
move blind signature scheme. We assume that SIG has unique signatures, and
give a generic construction of an exchange protocol EXCu[SIG,BS,PS] = (Setup,
Buy,Sell,Get) for SIG and BS. The drawback of this scheme is that we have to
treat a random oracle as a circuit. To this end, let `1 = `1(λ) denote an upper
bound on the bit length of messages bsm2 sent in signing interactions of BS.
Further, let `2 = `2(λ) denote an upper bound on the number of random bits
that algorithm S uses. We make use of a random oracle H : {0, 1}∗ → {0, 1}`1
and a NIZK PS = (PProve,PVer) with zero-knowledge simulator PS.Sim for the
relation

R :=

(stmt,witn)

∣∣∣∣∣∣
stmt = (pkBS, pks, tx, bsm1, ct), witn = (σs, skBS, ρ),
(pkBS, skBS) ∈ BS.Gen(1λ) ∧ SIG.Ver(pks, tx, σs) = 1
∧ ct = H(σs)⊕ BS.S(skBS, bsm1; ρ)

 .

Sweep-UC 19

The scheme EXCu[SIG,BS,PS] is formally presented in Figure 3. Completeness
follows by inspection. As SIG has unique signatures, EXCu[SIG,BS,PS] has well
distributed signatures. Security proofs are given in Supplementary Material D.

Setup(xpar, skBS, sks)
01 ρ←$ {0, 1}`2
02 bsm2 := S(skBS, bsm1; ρ)
03 σs ← SIG.Sig(sks, tx)
04 ct := H(σs)⊕ bsm2
05 stmt := (pkBS, pks, tx, bsm1, ct)
06 witn := (σs, skBS, ρ)
07 π ← PProve(stmt,witn)
08 xm1 := (ct, π)
09 return (xm1, St := xpar)

Buy(xpar, skb, xm1 = (ct, π))
10 stmt := (pkBS, pks, tx, bsm1, ct)
11 if PVer(stmt, π) = 0 : return ⊥
12 return xm2 := σb ← SIG.Sig(skb, tx)

Sell(St, xm2 = σb)
13 if SIG.Ver(pkb, tx, σb) = 0 : return ⊥
14 return σb

Get(xpar, xm1, xm2, σb, σs)
15 return bsm2 := ct⊕ H(σs)

Fig. 3. The exchange protocol EXCu[SIG,BS,PS] = (Setup,Buy, Sell,Get) for a unique
signature scheme SIG and a blind signature scheme BS, where PS = (PProve,PVer) is a
NIZK for R, and H : {0, 1}∗ → {0, 1}`1 is a random oracle.

Lemma 1. If SIG has unique signatures, SIG is EUF-CMA secure, and PS is
sound, then EXCu[SIG,BS,PS] is secure against malicious sellers.

Lemma 2. If SIG has unique signatures, SIG is EUF-CMA secure, and PS is
zero-knowledge, then EXCu[SIG,BS,PS] is secure against malicious buyers.

Generic Construction for Adaptor Signatures. We give a construction of
an exchange protocol for a signature scheme supporting adaptor signatures. The
drawback of this scheme is that we have to treat a random oracle as a circuit. Due
to space limitation, we postpone the construction to Supplementary Material C.1.
Constructions using Cut-and-Choose. We give two concrete constructions
of an exchange protocol using a cut-and-choose technique, avoiding the need
to treat a random oracle as a circuit. In the first construction, the signature
scheme SIG = (SIG.Gen,SIG.Sig,SIG.Ver) is the BLS signature scheme [14]. The
second construction uses adaptor signatures for a discrete logarithm relation.
Due to space limitations, it is given in Supplementary Material C.2. In both
cases, the blind signature scheme BS is the BLS blind signature scheme (see
Supplementary Material H). It is defined over cyclic groups G1,G2,GT of prime
order p with respective generators g1 ∈ G1, g2 ∈ G2, and e(g1, g2) ∈ GT , where
e : G1 × G2 → GT is a pairing. Let ` = `(λ) denote an upper bound on the
bit length of messages bsm2 sent in signing interactions of BS. We make use of
random oracles H : {0, 1}∗ → {0, 1}` and Hc : {0, 1}∗ → {0, 1}λ. The schemes
are called EXCcc

BLS[SIG,BS] and EXCcc
a [SIG, aSIG,BS], respectively, and given in

Figure 4 for BLS and Figure 7 for adaptor signatures. The security proofs are
given in Supplementary Material D.

20 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Lemma 3. Assume that the BLS signature scheme SIG is EUF-CMA secure.
Then the exchange protocol EXCcc

BLS[SIG,BS] is secure against malicious sellers.

Lemma 4. Assume that the BLS signature scheme SIG is EUF-CMA secure.
Then the exchange protocol EXCcc

BLS[SIG,BS] is secure against malicious buyers.

5.2 Redeem Protocol
We define the syntax and security of the redeem protocol on the right. Later, we
give concrete instantiations of it. Informally, we consider the following scenario.
Assume that a service and a user are aware of a public key pkBS for a blind
signature scheme BS. The service holds the corresponding secret key skBS. Further,
the service published a public key pks for signature scheme SIG, for which it
knows a secret key sks. Additionally, both parties agreed on a transaction tx
and a message sn. Then, the goal of both parties is to move towards a state,
in which the user can use a blind signature σBS that is valid for message sn
and key pkBS, to obtain a signature σs which is valid for tx under key pks. This
transformation of σBS into σs should be possible without any further interaction
with the service. Moreover, the service wants to ensure that without knowing the
blind signature σBS, it should not be possible to obtain σs. In other words, both
parties want to run a protocol such that afterwards, the user is able to turn in
σBS non-interactively and get a signature σs on the transaction tx for it.

In our syntax, we first assume that the parameters rpar := (pkBS, pks, tx,
sn) are known to both parties. Then, the service first sends a promise message
prom. This message can be verified by the user without knowing σBS, only using
the public key pkBS. Intuitively, this verification step should guarantee that the
user can be sure to obtain a valid signature σs from prom as soon as it knows
σBS. Finally, the user can use σBS and prom to derive the signature σs on the
transaction tx. An overview of this can be found in Figure 13.
Definition 4 (Redeem Protocol). Let SIG = (SIG.Gen,SIG.Sig,SIG.Ver) be
a digital signature scheme and BS = (BS.Gen,BS.S,BS.U,BS.Ver) be a two-
move blind signature scheme. A redeem protocol for SIG and BS is a tuple
RP = (Promise,VerPromise,Redeem) of PPT algorithms with the following syntax:
– Promise(rpar, skBS, sks)→ prom takes as input redeem parameters rpar, a secret

key skBS, a secret key sks, and outputs a promise message prom.
– VerPromise(rpar, prom)→ b is deterministic, takes as input redeem parameters

rpar, and a promise message prom, and outputs a bit b ∈ {0, 1}.
– Redeem(rpar, prom, σBS)→ σs takes as input redeem parameters rpar, a promise
message prom, and a signature σBS, and outputs a signature σs.

Further, it is required that the following completeness property holds: For all trans-
actions tx, all messages sn, all keys (pkBS, skBS) ∈ BS.Gen(1λ), all (pks, sks) ∈
SIG.Gen(1λ), we have

Pr

 b1 = 1
∧ b2 = 1

∣∣∣∣∣∣
rpar := (pkBS, pks, tx, sn), prom← Promise(rpar, skBS, sks),
σBS ← BS.Sig(skBS, sn), σs ← Redeem(rpar, prom, σBS),
b1 := VerPromise(rpar, prom), b2 := SIG.Ver(pks, tx, σs)

 = 1.

Sweep-UC 21

Setup(xpar = (pkBS, bsm1, pkb, pks, tx), skBS, sks)
// Share bsm2 = bsmskBS

1 and σs
01 r1, . . . , rλ←$ Zp, r′1, . . . , r′λ←$ Zp
02 f(X) = skBS +

∑λ

j=1 rj ·X
j ∈ Zp[X], f ′(X) = sks +

∑λ

j=1 r
′
j ·Xj ∈ Zp[X]

03 for j ∈ [2λ] : skBS,j := f(j), bsm2,j ← S(skBS,j , bsm1)
04 for j ∈ [2λ] : sks,j := f ′(j), , σj ← SIG.Sig(sks,j , tx)
05 for j ∈ [λ] : coeffj := g

rj
2 , coeff′j := g

r′j
2

// Encrypt bsm2,j with σj
06 for j ∈ [2λ] : ctj := H(σj)⊕ bsm2,j

// Cut-and-choose
07 xm1,1 := ((ctj)j∈[2λ], (coeffj , coeff′j)j∈[λ])
08 b0 . . . bλ−1 := Hc(xm1,1), for j ∈ [λ] : kj := 2j − bj−1
09 return (xm1 := (xm1,1, xm1,2 := (σkj)j∈[λ]), St := ⊥)

Buy(xpar = (pkBS, bsm1, pkb, pks, tx), skb, xm1 = (xm1,1, xm1,2))
// Verify cut-and-choose
10 b0 . . . bλ−1 := Hc(xm1,1)
11 for j ∈ [λ] :
12 kj := 2j−bj−1, pkBS,kj := pkBS·

∏λ

i=1(coeffi)k
i
j , pks,kj := pks·

∏λ

i=1(coeff′i)k
i
j

13 bsm2,kj := ctkj ⊕ H(σkj)
14 if e(bsm1, pkBS,kj) 6= e(bsm2,kj , g2) ∨ SIG.Ver(pks,kj , tx, σkj) = 0 : return ⊥
// Return a signature
15 return xm2 := σb ← SIG.Sig(skb, tx)

Sell(St, xm2 = σb)
16 if SIG.Ver(pkb, tx, σb) = 0 : return ⊥
17 return σb

Get(xpar = (pkBS, bsm1, pkb, pks, tx), xm1, xm2, σb, σs)
18 b0 . . . bλ−1 := Hc(xm1,1)
// Reconstruct all shares
19 for j ∈ [λ] : kj := 2j − bj−1, k̄j := 2j − (1− bj−1), bsm2,kj := ctkj ⊕ H(σkj)
// Find a valid share
20 w := 0
21 for j ∈ [λ] :
22 σk̄j := reconstg1,k̄j ((0, σs), (ki, σki)i∈[λ]), bsm2,k̄j := ctk̄j ⊕ H(σk̄j)

23 pkBS,k̄j := pkBS ·
∏
i∈[λ](coeffi)k̄

i
j

24 if e(bsm1, pkBS,k̄j) = e(bsm2,k̄j , g2) : w := k̄j
25 if w = 0 : return ⊥
// Reconstruct bsm2
26 return bsm2 := reconstg1,0((w, bsm2,w), (kj , bsm2,kj)j∈[λ])

Fig. 4. The exchange protocol EXCcc
BLS[SIG,BS] = (Setup,Buy, Sell,Get) for BLS signa-

ture scheme SIG, and blind BLS signature scheme BS. Here, H : {0, 1}∗ → {0, 1}` and
Hc : {0, 1}∗ → {0, 1}λ are random oracles and e : G1 ×G2 → GT is a pairing.

22 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Next, we define security of such a redeem protocol in a game-based fashion.
Informally, security should ensure that the following two properties hold:

1. Security Against Malicious Users: If a user can turn prom into a valid signature
σs, then it must have known a valid blind signature σBS. Further, the message
prom should not reveal anything about skBS.

2. Security Against Malicious Services: If the user gets message prom and the
verification of it outputs 1, it can be sure that it can also derive a valid
signature σs from it, using a valid blind signature σBS.

Definition 5 (Security Against Malicious Users). Suppose that RP =
(Promise,VerPromise,Redeem) is a redeem protocol for SIG and BS as in Defini-
tion 4.
Simulatability. For any algorithm A, and algorithms Sim,SimRO, which may
share state, and bit b ∈ {0, 1}, consider the following game:

1. Sample keys (pkBS, skBS)← BS.Gen(1λ) and initialize an empty list DSpend.
2. Let O be an oracle that on input sn does the following:

(a) If sn ∈ DSpend, abort. Otherwise, insert sn into DSpend.
(b) Sample keys (pks, sks)← SIG.Gen(1λ) and output pks.
(c) Receive tx and set rpar := (pkBS, pks, tx, sn).
(d) If b = 0, run prom ← Promise(rpar, skBS, sks). If b = 1, run prom ←

Sim(rpar, sks).
(e) Return prom.

3. Run A on input pkBS, skBS with access to oracle O and obtain a bit b′. During
A’s execution, if b = 0, provide a random oracle to A honestly via lazy
sampling. If b = 1, use algorithm SimRO to provide the random oracle.

4. Output b′.

We say that (Sim,SimRO) is a simulator against malicious users for RP, if for
all PPT algorithms Athe probability that the game with b = 0 outputs 1 and the
probability that the game with b = 1 outputs 1 are negligibly close.
Extractability. Further, for any algorithm A, and algorithms Sim,SimRO,Ext,
which may share state, consider the following game:

1. Sample keys (pkBS, skBS)← BS.Gen(1λ) and initialize an empty list DSpend
and set bad := 0.

2. Let O be an interactive oracle that on input sn does the following:
(a) If sn ∈ DSpend, abort. Otherwise, add sn to DSpend.
(b) Sample keys (pks, sks)← SIG.Gen(1λ) and output pks.
(c) Receive tx and set rpar := (pkBS, pks, tx, sn).
(d) Run prom← Sim(rpar, sks) and output prom.
(e) Get σs as input and run σBS ← Ext(rpar, sks, σs).
(f) If BS.Ver(pkBS, sn, σBS) = 0 and SIG.Ver(pks, tx, σs) = 1, set bad := 1.

3. Run A on input pkBS, skBS with access to oracle O. During A’s execution, use
algorithm SimRO to provide the random oracle.

Sweep-UC 23

4. Output bad.

We say that Ext is a an extractor against malicious users for RP and (Sim,SimRO),
if for all PPT algorithms A, the probability that the game outputs 1 is negligible.
Security. Finally, we say that RP is secure against malicious users, if there
are algorithms Sim,SimRO,Ext as above, such that (Sim,SimRO) is a simulator
against malicious users for RP and Ext is a an extractor against malicious users
for RP and (Sim,SimRO).

Definition 6 (Security Against Malicious Services). Let RP = (Promise,
VerPromise,Redeem) be a redeem protocol for SIG and BS as in Definition 4. For
any algorithm A and any algorithm Ext, consider the following game:

1. Run A and obtain pks, tx, sn, pkBS and a message prom in return. Set rpar :=
(pkBS, pks, tx, sn).

2. If VerPromise(rpar, prom) = 0, return 0.
3. Run σBS ← Ext(rpar, prom,Q), where Q is the list of random oracle queries

that A made.
4. If BS.Ver(pkBS, sn, σBS) = 0, return 1.
5. Compute σs ← Redeem(rpar, prom, σBS).
6. If SIG.Ver(pks, tx, σs) = 0, return 1. Otherwise, return 0

We say that RP is secure against malicious services, if there is a PPT algorithm
Ext as above, such that for all PPT algorithms A, the probability that the game
outputs 1 is negligible.

Generic Construction. We generically construct a redeem protocol for any
signature scheme and any unique blind signature scheme. The drawback of this
scheme is that it uses proofs about relations defined by random oracles. We
postpone the details to Supplementary Material E.1.
Constructions using Cut-and-Choose. We give two constructions of a
redeem protocol without relying on proof systems that argue about the random
oracle. For the first construction we assume that the signature scheme associated
with pks is the BLS signature scheme SIG defined over cyclic groups G1,G2,GT
of prime order p with respective generators g1 ∈ G1, g2 ∈ G2, and e(g1, g2) ∈ GT .
The second construction works with a Schnorr signature SIG and is postponed to
Supplementary Material E.2. In both cases we use the BLS blind signature scheme.
Both signature schemes use the random oracle H : {0, 1}∗ → G1, as the oracle
for the BLS and blind BLS signature. Moreover, we let Hc : {0, 1}∗ → {0, 1}λ,
Ĥ : {0, 1}∗ → G1, and Hp : {0, 1}∗ → Z∗p be random oracles. The resulting
schemes RPcc

BLS[SIG,BS] and RPcc
Schn[SIG,BS] are given in Figure 5 and Figure 9,

respectively. The security proofs are given in Supplementary Material F.

Lemma 5. If BS has unique signatures, then RPcc
BLS[SIG,BS] is secure against

malicious services.

Lemma 6. If BLS signature scheme SIG is EUF-CMA secure, the DDH assump-
tion holds in G1, then RPcc

BLS[SIG,BS] is secure against malicious users.

24 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Promise(rpar, skBS, sks)
01 σs := H(tx)sks , h := Ĥ(sn), s0←$ Zp, ct0 := hs0 · σs
// Share σBS and hs0
02 r1, . . . , rλ←$ Zp, r′0, . . . , r′λ←$ Zp, coeff′0 := gs01
03 f(X) := skBS +

∑λ

j=1 rj ·X
j , f ′(X) := s0 +

∑λ

j=1 r
′
j ·Xj ∈ Zp[X]

04 for j ∈ [2λ] : skj := f(j), sj := f ′(j), σj := H(sn)skj

05 for j ∈ [λ] : coeffj := g
rj
2 , coeff′j := g

r′j
1

// Encrypt hsj with σj
06 for j ∈ [2λ] : ctj := Ĥ(sn, σj) · hsj

// Prove that ct0 is well-formed
07 t0, t1←$ Z∗p, T0 := ht0 · H(tx)t1 , T1 := gt01 , T2 := gt12
08 e := Hp(T0, T1, T2, h,H(tx), ct0, coeff′0, pks), π0 := t0 + e · s0, π1 := t1 + e · sks
// Cut-and-choose
09 prom1 := (ct0, (ctj)j∈[2λ], (π0, π1, e), coeff′0, (coeffj , coeff′j)j∈[λ])
10 b0 . . . bλ−1 := Hc(prom1), for j ∈ [λ] : kj := 2j − bj−1
11 return prom := (prom1, prom2 := (σkj , skj)j∈[λ])

VerPromise(rpar, prom = (prom1, prom2 = (σBS,kj , skj)j∈[λ]))
12 h := Ĥ(sn), b0 . . . bλ−1 := Hc(prom1)
// Verify cut-and-choose
13 for j ∈ [λ] :
14 kj := 2j − bj−1, pkBS,kj := pkBS ·

∏λ

i=1(coeffj)k
i
j

15 if ctkj 6= Ĥ(sn, σkj) · h
skj ∨ g

skj
1 6=

∏λ

i=0(coeff′j)k
i
j : return 0

16 if BS.Ver(pkBS,kj , sn, σkj) = 0 : return 0
// Verify that ct0 is well-formed
17 T̂0 := hπ0 · H(tx)π1 · ct−e0 , T̂1 := gπ0

1 · (coeff′0)−e, T̂2 := gπ1
2 · (pks)−e

18 if e 6= Hp(T̂0, T̂1, T̂2, h,H(tx)ct0, coeff′0, pks) : return 0
19 return 1

Redeem(rpar, prom = (prom1, prom2), σBS)
20 h := Ĥ(sn), b0 . . . bλ−1 := Hc(prom1)
// Reconstruct all shares
21 for j ∈ [λ] :
22 kj := 2j − bj−1, k̄j := 2j − (1− bj−1), hkj := h

skj

23 σk̄j := reconstg1,k̄j ((0, σBS), (kj , σki)i∈[λ]), hk̄j := ctk̄j/Ĥ(sn, σk̄j)
// Try to decrypt ct0
24 for j ∈ [λ] :
25 h0 := reconstg1,0((k̄j , hk̄j), (ki, hki)i∈[λ]), σs := ct0/h0

26 if SIG.Ver(pks, tx, σs) = 1 : return σs
27 return ⊥

Fig. 5. The cut-and-choose redeem protocol RPcc
BLS[SIG,BS] = (Promise,VerPromise,

Redeem) for the BLS signature scheme SIG and the blind BLS signature scheme BS.
Here, H : {0, 1}∗ → G1, Hc : {0, 1}∗ → {0, 1}λ, Hp : {0, 1}∗ → Z∗p and Ĥ : {0, 1}∗ → G1
are random oracles.

Sweep-UC 25

6 Sweep-UC: The Complete Protocol

Here, we formally present our protocol Sweep-UC that realizes Fux for a ledger
functionality LSIG for signature scheme SIG = (SIG.Gen,SIG.Sig,SIG.Ver). The
protocol is parameterized by amt ∈ N and T ∈ N.
Setup. Assume that BS = (BS.Gen,BS.S,BS.U,BS.Ver) is a two-move11 blind
signature scheme. Let EXC = (Setup,Buy,Sell,Get) be an exchange protocol and
RP = (Promise,VerPromise,Redeem) be a a redeem protocol for SIG and BS.
Our protocol makes use of the functionality Fs. Accordingly, we describe our
protocol in the (LSIG,Fs)-hybrid model. At setup time, a key pair (pkBS, skBS)←
BS.Gen(1λ) is generated. The sweeper W is initialized with skBS. All parties are
initialized with the corresponding public key pkBS. Further, W holds a secret key
skW for public key pkW for signature scheme SIG, and lists Reg,DSpend, which
are initially empty.
Protocol. We now verbally describe the protocol Sweep-UC. An overview of
our protocol can be found in Figure 1. The sub-protocols are given in Figures
14,15, and 16. We assume that the three parts of the protocol are executed in
the correct order, i.e. first a party P registers, then a payment is added and
then P gets the payment. If the parts of the protocol are called in any different
order, then the execution aborts. Also, if any party expects to receive a certain
message and does not receive it, the execution aborts. Finally, we assume that
communication between W and P is done via a secure channel. Furthermore, we
assume that EXC and RP make use of different random oracles. This can easily
be achieved using proper prefixing for domain separation.
Register(pkb): We describe the sub-protocol as an interaction between a party
P and the sweeper W.

1. Sampling a Random Nonce: Party P samples a random nonce sn←$ {0, 1}λ
and sends sn, pkb to W.

2. Opening a Shared Address: Then, W aborts if sn ∈ DSpend or pkb ∈ Reg. Oth-
erwise, it adds these entries to the respective lists. Then, it calls Fs.OpenSh(T,
pkW ,P, amt, skW). As a result, W obtains (p̄kr,W , p̄kr,P , s̄kr,W) from Fs and
P obtains (p̄kr,W , p̄kr,P , s̄kr,P) from Fs.

3. Making a Promise: Both parties P and W set txr := (p̄kr,W , p̄kr,P , pkb, amt).
Also, both set the redeem parameters rpar := (pkBS, p̄kr,W , txr, sn). Then, W
computes a promise message prom ← Promise(rpar, skBS, s̄kr,W) and sends
prom to P.

4. Verifying the Promise: P runs b := VerPromise(rpar, prom). If b = 0, it aborts
the entire execution.

AddPayment(pka, ska, pkb): We describe the sub-protocol as an interaction between
a party P and the sweeper W . In this sub-protocol, P uses an anonymous secure
channel to communicate with W.
11 We only assume two moves for simplicity of exposition. The construction can naturally

be generalized to more moves.

26 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

1. Challenge: Party P runs (bsm1, St)← BS.U1(pkBS, sn). It sends bsm1 to W.
2. Opening a Shared Address: Then, P calls Fs.OpenSh(T, pka,W, amt, ska). As

a result, W obtains (p̄kl,P , p̄kl,W , s̄kl,W) and P obtains (p̄kl,P , p̄kl,W , s̄kl,P).
3. Running the Exchange: Both parties define a transaction txl := (p̄kl,P , p̄kl,W ,

pkW , amt) and exchange parameters xpar := (pkBS, bsm1, p̄kl,P , p̄kl,W , txl).
Then, the sweeper runs (xm1, St)← Setup(xpar, skBS, s̄kl,W). It sends xm1 to P .
Then, P runs xm2 ← Buy(xpar, s̄kl,P , xm1) and sends xm2 toW . Then,W runs
σl,P := Sell(St, xm2). Additionally, W computes σl,W ← SIG.Sig(s̄kl,W , txl).

4. Closing the Shared Address: Then,W calls Fs.CloseSh(p̄kl,P , p̄kl,W , pkW , amt,
σl,P , σl,W). As a result, P receives (“closedSharedAddress”, p̄kl,P , p̄kl,W , pkW ,
amt, σl,P , σl,W) from Fs. Finally, it computes message bsm2 := Get(xpar, xm1,
xm2, σl,P , σl,W) and the blind signature σBS ← BS.U2(St, bsm2).

GetPayment(pkb): With the variable names from Register(pkb), party P runs
σr,W ← Redeem(rpar, prom, σBS), where σBS was computed in AddPayment(pka,
ska, pkb). It also computes σr,P ← SIG.Sig(s̄kr,P , txr). Then, it closes the shared
address by calling the interface Fs.CloseSh(p̄kr,W , p̄kr,P , pkb, amt, σr,W , σr,P). As
a result, W receives (“closedSharedAddress”, p̄kr,W , p̄kr,P , pkb, amt, σr,W , σr,P)
from Fs. It removes pkb from Reg.
Security. We give informal arguments why our protocol is secure, in a sense
that it satisfies security for users, security for the sweeper, and user unlinkability.
A formal statement and proof in the UC model can be found in Supplementary
Material G. Security for users follows directly from the security of the exchange
protocol and the security of the redeem protocol. Namely, there are two ways the
user can loose coins when interacting with the sweeper. First, consider the case
where the user does not obtain a valid blind signature from the interaction in
the exchange protocol, although the sweeper is able to close the shared address.
This means that the sweeper broke the security of the exchange protocol. Second,
assume that the user did obtain a valid blind signature using the exchange
protocol, but can not derive a valid signature to close the shared address related
to the redeem protocol from it. In this case, the sweeper broke the security of the
redeem protocol, which guarantees that if the promise message is verified, then
one can derive a closing signature from it. Security for the sweeper can be broken
if users close more shared addresses related to the redeem protocol than the
sweeper closes shared addresses related to the exchange protocol. The security of
the exchange protocol guarantees that users only learn a blind signature if the
sweeper closes the shared address. Similarly, the security of the redeem protocol
guarantees that users need a blind signature to close the shared address. Therefore,
in a case where users steal coins from the sweeper, they would have learned more
blind signatures than they obtained. Due to the usage of the list DSpend, all of
these are valid for different messages. Thus, the users must have broken one-more
unforgeability of the blind signature scheme. Finally, unlinkability follows from
the blindness of the blind signature scheme and the usage of an anonymous
channel. Both imply that the sweeper can not link the interaction in the redeem
protocol with the interaction in the exchange protocol.

Sweep-UC 27

7 Discussion

In this section we discuss the efficiency, practicality, and potential extensions of
our results.
Efficiency. Both the communication and computational complexity of our pro-
tocol is dominated by the exchange and redeem protocols. For the generic
constructions without cut-and-choose, the cost is clearly dominated by the costs
of the NIZK that is used. Thus, we only go into detail for the constructions
based on cut-and-choose for BLS and Schnorr/ECDSA signatures. In terms of
computation, naively looking at the pseudocode results in O(λ) hash evaluations
and pairings, but O(λ3) group operations in the worst-case. These are caused by
λ evaluations of algorithm reconst (see Figure 5, Line 25). We can significantly
reduce this to O(λ2) operations using preprocessing techniques as explained in
Supplementary Material I. We are confident that there are other optimizations
to further reduce the concrete number of operations. For communication, it is
easy to see that O(λ) group elements are sent over the network.
Experimental Evaluation. In the previous paragraph, we discussed the ef-
ficiency of the proposed algorithms from an asymptotic perspective. To show
efficiency in practice, we implemented a simple prototype. We focused on the
Schnorr variant of our cut-and-choose approach in combination with the BLS
blind signature scheme. Other cut-and-choose variants of our algorithms should
be equally practical. We based our prototype on the Chia-Network open source
implementation of the BLS12-381 pairing friendly curve12 with slight modifi-
cations to allow lower-level EC operations. Using this library allows to easily
implement the blind signature part. To simplify the implementation, we reused
the group G1 for the Schnorr signature since it is a standard elliptic curve. The
Chia-Network BLS12-381 library uses C++-based shared libraries and Python
binding. Additionally, we implemented the prototype to execute certain algorithm
parts in parallel. We used the Python multiprocessing module for this. Clearly,
the cut-and-choose verifcation is highly parallelizable. We applied parallelism only
to implement EXC.Buy and RP.VerPromise algorithms. Others can potentially
only benefit from this, but the goal of our prototype implementation was just to
show practically, and we leave an optimized implementation as future work.

We evaluated our implementation on a MacbookPro with Intel i7@2.3 GHz
and 16 GB RAM. The Intel i7 has four physical cores, so we used 16 workers at a
time for the parallel execution. The Benchmark of the prototype given in Table 2
is an average of over 100 tests. The results clearly show that our solution is
practical. In particular, the sweeper can setup and exchange and create a promise
in less than a second. In practice, the code of the sweeper will be executed on a
server with more power and physical cores, significantly reducing this time. We
did not include EXC.Sell in Table 2 since it consists just of on-chain signature
verification, which is already considered practical and used in practice.

The most time-consuming operation for the exchange and redeem protocol are
the buying process and the promise verification. In both cases, the user verifies
12 See https://github.com/Chia-Network/bls-signatures

https://github.com/Chia-Network/bls-signatures

28 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

the cut-and-choose proof (algorithms EXC.Buy and RP.VerPromise) created by
the sweeper. Fortunately, as shown in Table 2, both take around 5 seconds on
a standard laptop. It is worth noting that despite this check, the sweeper’s
undisclosed values are not necessarily correct, and it is ensured that among the
λ undisclosed values, there is at least one correctly created one. If the sweeper is
honest, all values of the cut-and-choose will be correct. For example, the check
in Figure 5, Line 26 will pass in the first iteration. Thus, for an honest sweeper,
algorithms EXC.Get and RP.Redeem terminate early and take less time (less than
a second). Moreover, we also show that even if the sweeper is malicious, users
can still finalize the exchange/redeeming in less than half a minute.

EXC.Setup EXC.Buy EXC.Get RP.Promise RP.VerPromise RP.Redeem
0.82 5.3 0.35/13.51 0.53 5.16 0.21/25.51

1 Worst case scenario for a malicious sweeper.
Table 2. Execution time in seconds averaged over 100 tests for BLS12-381 curve.

Redeem Cut-and-Choose for Arbitrary Signature Scheme. In Section 5.2
we presented two redeem protocols based on a cut-and-choose technique, where
the signature scheme SIG was instantiated respectively using BLS and Schnorr.
On the other hand, our generic redeem protocol supports any signature scheme.
We will briefly discuss how to achieve the same for cut-and-choose. The idea is
similar to hybrid encryption. In this regard, we will use the BLS-based redeem
protocol. Recall, that at the end of the protocol one gets a BLS signature for
tx that is valid with respect to public key pks. We will now treat this signature
as a secret key for an identity-based encryption (IBE) scheme [13] and add IBE
ciphertexts to the promise. This particular construction for BLS was recently
proposed by Döttling et al. [19] and called signature witness encryption (SWE).
The primitive they propose allows encrypting an arbitrary message, proving any
statement about the message using Bulletproofs [15], and using a BLS signature
as the secret witness that can be used to decrypt. Equipped with SWE we can
encrypt a signature for SIG, prove that the ciphertext is consistent, and then use
the BLS-based redeem protocol to redeem the witness used to decrypt the SWE.
Future Work. As our framework is modular, one can extend our results by
providing new constructions of exchange and redeem protocols. This includes
efficiency improvements, or supporting other transaction signature scheme, e.g.
post-quantum schemes. Another direction for future work is to practically imple-
ment and further optimize the concrete efficiency of our protocol.

References

1. CoinJoin - Bitcoin Forum. https://bitcointalk.org/?topic=279249 (2013)

Sweep-UC 29

2. Submarine swap in lightning network (2018), https://wiki.ion.radar.tech/
tech/research/submarine-swap

3. What is atomic swap and how to implement it (2019), https://www.axiomadev.
com/blog/what-is-atomic-swap-and-how-to-implement-it/

4. Uniswap (2020), https://uniswap.org/whitepaper.pdf
5. Chia network faq (2022), https://www.chia.net/faq/
6. Digital currency donations for freedom convoy evading seizure

by authorities (2022), https://www.cbc.ca/news/canada/ottawa/
freedom-convoy-cryptocurrency-asset-seizure-1.6389601

7. Raiden network (2022), https://raiden.network/
8. Understanding bitcoin fungibility (2022), https://river.com/learn/

bitcoin-fungibility/
9. Baum, C., David, B., Frederiksen, T.K.: P2DEX: Privacy-preserving decentralized

cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 21, Part I.
LNCS, vol. 12726, pp. 163–194. Springer, Heidelberg (Jun 2021)

10. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014)

11. Bentov, I., Ji, Y., Zhang, F., Breidenbach, L., Daian, P., Juels, A.: Tesseract: Real-
time cryptocurrency exchange using trusted hardware. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 1521–1538. ACM Press (Nov 2019)

12. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003)

13. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(Aug 2001)

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(Dec 2001)

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018)

16. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal
of Cryptology 13(1), 143–202 (Jan 2000)

17. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L.,
Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York, USA
(1982)

18. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems.
In: Conference on the Theory and Application of Cryptographic Techniques. pp.
52–72. Springer (1987)

19. Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: McFly: Verifiable encryption to
the future made practical. Cryptology ePrint Archive, Report 2022/433 (2022),
https://eprint.iacr.org/2022/433

20. Dziembowski, S., Eckey, L., Faust, S.: FairSwap: How to fairly exchange digital
goods. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp.
967–984. ACM Press (Oct 2018)

21. Erwig, A., Faust, S., Hostáková, K., Maitra, M., Riahi, S.: Two-party adaptor
signatures from identification schemes. In: Garay, J. (ed.) PKC 2021, Part I. LNCS,
vol. 12710, pp. 451–480. Springer, Heidelberg (May 2021)

https://wiki.ion.radar.tech/tech/research/submarine-swap
https://wiki.ion.radar.tech/tech/research/submarine-swap
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://www.axiomadev.com/blog/what-is-atomic-swap-and-how-to-implement-it/
https://uniswap.org/whitepaper.pdf
https://www.chia.net/faq/
https://www.cbc.ca/news/canada/ottawa/freedom-convoy-cryptocurrency-asset-seizure-1.6389601
https://www.cbc.ca/news/canada/ottawa/freedom-convoy-cryptocurrency-asset-seizure-1.6389601
https://raiden.network/
https://river.com/learn/bitcoin-fungibility/
https://river.com/learn/bitcoin-fungibility/
https://eprint.iacr.org/2022/433

30 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

22. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (May / Jun 2010)

23. Glaeser, N., Maffei, M., Malavolta, G., Moreno-Sanchez, P., Tairi, E., Thyagarajan,
S.A.: Foundations of coin mixing services. In: ACM CCS 2022 (to appear) (2022)

24. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170. Springer,
Heidelberg (Feb 2004)

25. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
An untrusted bitcoin-compatible anonymous payment hub. In: NDSS 2017. The
Internet Society (Feb / Mar 2017)

26. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D.S., Brenner, M., Rohloff, K. (eds.) FC 2016 Workshops.
LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (Feb 2016)

27. Herlihy, M.: Atomic cross-chain swaps (2018)
28. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang,

J.: Omniring: Scaling private payments without trusted setup. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 31–48. ACM Press (Nov
2019)

29. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency
and privacy with payment-channel networks. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 455–471. ACM Press (Oct / Nov
2017)

30. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K.,
Hennessey, J., Miller, A., Narayanan, A., et al.: An empirical analysis of traceability
in the monero blockchain. arXiv preprint arXiv:1704.04299 (2017)

31. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin
transaction graph. Future internet 5(2), 237–250 (2013)

32. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security
and privacy in social networks, pp. 197–223. Springer (2013)

33. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:
International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

34. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: Practical decentralized coin
mixing for bitcoin. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II.
LNCS, vol. 8713, pp. 345–364. Springer, Heidelberg (Sep 2014)

35. Ruffing, T., Moreno-Sanchez, P., Kate, A.: P2P mixing and unlinkable bitcoin
transactions. In: NDSS 2017. The Internet Society (Feb / Mar 2017)

36. Santamaria Ortega, M.: The bitcoin transaction graph anonymity (2013)
37. Shamir, A.: How to share a secret. Communications of the Association for Computing

Machinery 22(11), 612–613 (Nov 1979)
38. Tairi, E., Moreno-Sanchez, P., Maffei, M.: A2L: Anonymous atomic locks for

scalability in payment channel hubs. In: 2021 IEEE Symposium on Security and
Privacy. pp. 1834–1851. IEEE Computer Society Press (May 2021)

39. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder, D.:
Verifiable timed signatures made practical. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020. pp. 1733–1750. ACM Press (Nov 2020)

40. Thyagarajan, S.A., Malavolta, G., Moreno-Sanchez, P.: Universal atomic swaps:
Secure exchange of coins across all blockchains (2021), https://ia.cr/2021/1612

https://ia.cr/2021/1612

Sweep-UC 31

Supplementary Material

A Detailed Preliminaries

A.1 Digital Signatures

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple SIG =
(Gen,Sig,Ver) of PPT algorithms with the following syntax:

– Gen(1λ) → (pk, sk) takes as input the security parameter 1λ and outputs a
public key pk and a secret key sk.

– Sig(sk,m)→ σ takes as input a secret key sk and a message m, and outputs a
signature σ.

– Ver(pk,m, σ)→ b is deterministic, takes as input a public key pk, a message
m, and a signature σ and outputs a bit b ∈ {0, 1}.

We require that SIG is complete in the following sense: For all keys (pk, sk) ∈
Gen(1λ) and all messages m, we have

Pr [Ver(pk,m, σ) = 1 | σ ← Sig(sk,m)] = 1.

Definition 8 (Unique Signatures). Let SIG = (Gen,Sig,Ver) be a signature
scheme. We say that SIG has unique signatures, if for every public key pk (not
necessarily output by Gen) and every message m, there is exactly one signature σ
such that Ver(pk,m, σ) = 1.

Definition 9 (Smoothness). Let SIG = (Gen,Sig,Ver) be a signature scheme.
Assume that signatures have length ` = `(λ) bits. We say that SIG is smooth, if
for every public key pk (not necessarily output by Gen) and every message m, the
following probability is negligible:

Pr
[
Ver(pk,m, σ) = 1 | σ←$ {0, 1}`

]
.

Definition 10 (Public Key Entropy). Let SIG = (Gen,Sig,Ver) be a signature
scheme and f : N→ R be a function. We say that SIG is has public key entropy
f , if for all public keys pk0 the following holds

Pr
[
pk = pk0 | (pk, sk)← Gen(1λ)

]
≤ 2−f(λ).

Definition 11 (Unforgeability). Consider a signature scheme SIG = (Gen,
Sig,Ver). For any algorithm A, consider the following game:

1. Generate a key pair (pk, sk)← Gen(1λ) and initialize Q := ∅.
2. Let Sig be an oracle that on input m sets Q := Q∪{m} and returns Sig(sk,m).
3. Run A with access to oracle Sig and on input pk. Obtain a pair (m∗, σ∗) in

return.
4. If m∗ ∈ Q or Ver(pk,m∗, σ∗) = 0, return 0. Otherwise, return 1.

32 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

We say that SIG is EUF-CMA secure, if for all PPT algorithms A, the probability
that the above game outputs 1 is negligible.

Definition 12 (Strong Unforgeability). Let SIG = (Gen,Sig,Ver) be a signa-
ture scheme. For any algorithm A, consider the following game:

1. Generate a key pair (pk, sk)← Gen(1λ) and initialize Q := ∅.
2. Let Sig be an oracle that takes as input a message m, computes σ ← Sig(sk,m),

sets Q := Q∪ {(m, σ)} and returns σ.
3. Run A with access to oracle Sig and on input pk. Obtain a pair (m∗, σ∗) in

return.
4. If (m∗, σ∗) ∈ Q or Ver(pk,m∗, σ∗) = 0, return 0. Otherwise, return 1.

We say that SIG is sEUF-CMA secure, if for all PPT algorithms A, the probability
that the above game outputs 1 is negligible.

A.2 Blind Signatures

Definition 13 (Blind Signature Scheme). A (two-move) blind signature
scheme BS = (Gen, S,U,Ver) is a quadruple of PPT algorithms with the following
syntax:

– Gen(1λ) → (pk, sk) takes as input the security parameter 1λ and outputs a
public key pk and a secret key sk.

– U = (U1,U2) is split into two algorithms: U1(pk,m) → (bsm1, St) takes as
input a public key pk and a message m and outputs a message bsm1 and a
state St; U2(St, bsm2)→ σ takes as input a state St and a message bsm2, and
outputs a signature σ.

– S(sk, bsm1) → bsm2 takes as input a secret key sk and a message bsm1, and
outputs a message bsm2.

– Ver(pk,m, σ)→ b is deterministic, takes as input a public key pk, a message
m, and a signature σ, and returns b ∈ {0, 1}.

Given BS, we define algorithm BS.Sig(sk,m) for (pk, sk) ∈ Gen(1λ) and a messages
m as running the following steps and outputting σ:

(bsm1, St)← U1(pk,m), bsm2 ← S(sk, bsm1), σ ← U2(St, bsm2).

We require that BS is complete in the following sense: For all (pk, sk) ∈ Gen(1λ)
and all messages m, we have

Pr [Ver(pk,m, σ) = 1 | σ ← BS.Sig(sk,m)] = 1.

In this work, we only consider signature schemes and blind signature schemes
for which one can efficiently decide if (pk, sk) ∈ Gen(1λ) for given (pk, sk). This
holds true for all schemes used in practice.
Definition 14 (Unique Blind Signatures). Let BS = (Gen,S,U,Ver) be a
blind signature scheme. We say that BS has unique signatures, if for every public
key pk (not necessarily output by Gen) and every message m, there is exactly one
signature σ such that Ver(pk,m, σ) = 1.

Sweep-UC 33

We define a weak form of blindness against malicious signers, where the signer
does not get signatures in the end. If a scheme has so called signature-derivation
checks [22], this is implied by the standard notion of blindness. It is sufficient for
our purposes13.

Definition 15 (Weak Blindness). Let BS = (Gen,S,U,Ver) be a blind sig-
nature scheme. For any algorithm A and bit b ∈ {0, 1}, consider the following
game:

1. Run A and get a key pk and messages m0,m1.
2. Run (bsm1, St)← U1(pk,mb) and give bsm1 to A.
3. Get bsm2 from A and run σ ← U2(St, bsm2).
4. Give Ver(pk,mb, σ) to A and obtain a bit b′ in return.
5. Output b′.

We say that BS is weakly blind, if for all PPT algorithms A the probability that
the game with b = 0 outputs 1 and the probability that the game with b = 1 outputs
1 are negligibly close.

Definition 16 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme. For any algorithm A, consider the following game:

1. Generate keys (pk, sk)← Gen(1λ).
2. Let O be an oracle that on input bsm1 returns bsm2 ← BS.S(sk, bsm1).
3. Run A on input pk with access to oracle O and obtain (m1, σ1), . . . , (mk, σk).
4. Let ` denote the number of queries that A made to O. Output 1 if the following

three conditions hold. Otherwise, output 0:
(a) We have k > `.
(b) For all i, j ∈ [k] with i 6= j we have mi 6= mj.
(c) For all i ∈ [k] we have Ver(pk,mi, σi) = 1.

We say that BS satisfies one-more unforgeability, if for all PPT algorithms A,
the probability that the above game outputs 1 is negligible.

A.3 NP-Relations

Definition 17 (NP-Relation). Let R = (Rλ)λ be a family of binary relations
Rλ ⊆ {0, 1}∗ × {0, 1}∗. We define the language of yes-instances Lλ via

Lλ :=
{

stmt ∈ {0, 1}∗
∣∣ ∃witn ∈ {0, 1}∗ : (stmt,witn) ∈ Rλ

}
.

We say that R is an NP-relation, if the following properties hold:

– There exists a polynomial poly, such that for any stmt ∈ Lλ, we have |stmt| ≤
poly(λ).

13 We require unique blind signatures for our construction. For unique blind signatures
with signature-derivation checks this notion and the standard blindness notion are
equivalent.

34 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

– Membership in Rλ is efficiently decidable, i.e. there exists a deterministic
polynomial time algorithm that decides Rλ.

– There is a polynomial poly′ such that for all (stmt,witn) ∈ Rλ we have |witn| ≤
poly′(|stmt|).

Definition 18 (Hard NP-Relation). Let R = (Rλ)λ be an NP-relation.
Assume that there is a PPT algorithm R.Gen that on input 1λ outputs tuples
(stmt,witn) ∈ Rλ. We say that R is hard relative to R.Gen if for any PPT
algorithm A the following probability is negligible:

Pr
[
(stmt,witn′) ∈ Rλ

∣∣∣∣ (stmt,witn)← R.Gen(1λ),
witn′ ← A(stmt)

]
.

Definition 19 (Unique NP-Relation). Let R = (Rλ)λ be an NP-relation.
We say that R is unique if for any stmt ∈ Lλ there is exactly one witn such that
(stmt,witn) ∈ Rλ.

A.4 Adaptor Signatures

Definition 20 (Adaptor Signature). Let SIG be a signature scheme and
R an NP-relation. An adaptor signature scheme for SIG and R is a tuple
aSIG = (PreSig,Adapt,PreVer,Ext) of PPT algorithms with the following syntax:

– PreSig(sk,m, stmt) → σ̃ takes as input a secret key sk, a message m, and a
statement stmt, and outputs a pre-signature σ̃.

– Adapt(pk, σ̃,witn) → σ is deterministic, takes as input a public key pk, a
pre-signature σ̃, and a witness witn, and outputs a signature σ.

– PreVer(pk,m, stmt, σ̃)→ b is deterministic, takes as input a public key pk, a
message m, a statement stmt, and a pre-signature σ̃, and returns b ∈ {0, 1}.

– Ext(σ̃, σ)→ witn is deterministic, takes as input a pre-signature σ̃, a signature
σ, and outputs a witness witn.

We require that aSIG is complete in the following sense: For all (pk, sk) ∈ Gen(1λ),
all messages m, and all (stmt,witn) ∈ Rλ, we have

Pr

Ver(pk,m, σ) = 1 ∧
(stmt,witn′) ∈ Rλ ∧
PreVer(pk,m, stmt, σ̃) = 1

∣∣∣∣∣∣
σ̃ ← PreSig(sk,m, stmt),
σ := Adapt(pk, σ̃,witn),
witn′ := Ext(σ̃, σ)

 = 1.

Definition 21 (Adaptability). Let SIG be a signature scheme, R an NP-
relation, and aSIG = (PreSig,Adapt,PreVer,Ext) be an adaptor signature scheme
for SIG and R. We say that aSIG satisfies adaptability, if for all messages m,
pairs (stmt,witn) ∈ Rλ, keys pk and pre-signatures σ̃ the following implication
holds:

PreVer(pk,m, stmt, σ̃) = 1⇒ Ver(pk,m,Adapt(pk, σ̃,witn)) = 1.

Definition 22 (Witness Extractability). Let SIG be a signature scheme, R
an NP-relation, and aSIG = (PreSig,Adapt,PreVer,Ext) be an adaptor signature
scheme for SIG and R. For any algorithm A consider the following game:

Sweep-UC 35

1. Sample keys (pk, sk)← Gen(1λ) and initialize Q := ∅.
2. Let Sig,PreSig be oracles, defined as follows:

– Sig(m): Set Q := Q∪ {m} and return Sig(sk,m).
– PreSig(m, stmt): Set Q := Q∪ {m}. Then, return PreSig(sk,m, stmt).

3. Run A on input pk with access to Sig,PreSig. Obtain (m∗, stmt∗) in return.
4. Compute σ̃ ← PreSig(sk,m∗, stmt∗) and give σ̃ to A. Obtain σ∗ in return.
5. Run witn := Ext(σ̃, σ∗).
6. Output 1 if Ver(pk,m∗, σ∗), m∗ /∈ Q, and (stmt∗,witn) /∈ Rλ. Otherwise,

output 0.

We say that aSIG satisfies witness extractability, if for all PPT algorithms A, the
probability that the above game outputs 1 is negligible.

Our definition of aEUF-CMA is weaker than the standard notion (e.g. in [21]) in
a sense that we do not give the adversary a pre-signature on the message m∗.

Definition 23 (Adaptor Unforgeability). Let SIG be a signature scheme, R
an NP-relation, and aSIG = (PreSig,Adapt,PreVer,Ext) be an adaptor signature
scheme for SIG and R. For any algorithm A consider the following game:

1. Sample keys (pk, sk)← Gen(1λ) and initialize Q := ∅.
2. Let Sig,PreSig be oracles, defined as follows:

– Sig(m): Set Q := Q∪ {m} and return Sig(sk,m).
– PreSig(m, stmt): Set Q := Q∪ {m}. Then, return PreSig(sk,m, stmt).

3. Run A on input pk with access to oracles Sig,PreSig. Obtain a pair (m∗, σ∗)
in return.

4. Output 1 if m∗ /∈ Q and Ver(pk,m∗, σ∗) = 1. Otherwise, output 0.

We say that aSIG is aEUF-CMA secure, if for all PPT algorithms A, the probability
that the above game outputs 1is negligible.

We also define a notion capturing that adapted signatures look like standard
signatures. It is easy to see that this notion is satisfied by known constructions,
e.g. in [21].

Definition 24 (Well Adapted Signatures). Let SIG be a signature scheme, R
an NP-relation, and aSIG = (PreSig,Adapt,PreVer,Ext) be an adaptor signature
scheme for SIG and R. We say that aSIG has well adapted signatures, if for all
keys (pk, sk) ∈ Gen(1λ), all messages m, and all pairs (stmt,witn) ∈ Rλ, the
following distributions D1 and D2 are the same:

D1 :=
{

(pk, sk,m, σ)
∣∣ σ̃ ← PreSig(sk,m, stmt), σ := Adapt(pk, σ̃,witn)

}
,

D2 :=
{

(pk, sk,m, σ)
∣∣ σ ← Sig(sk,m)

}
.

36 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

A.5 Non-Interactive Proofs

We define non-interactive zero-knowledge proofs. For simplicity, we define proofs
in the random oracle model. However, other formalizations, e.g. in the common
reference string model, would also be applicable for our purposes. Without loss
of generality, we assume that inputs to random oracles that are used in proof
systems are prefixed with the statement. This domain separation allows to use
the simulator PSim multiple times without introducing conflicts due to random
oracle programming.

Definition 25 (Non-Interactive Proof System). Let R be an NP-relation.
A non-interactive proof system for R is a tuple PS = (PProve,PVer) of PPT
algorithms with the following syntax:

– PProve(stmt,witn) → π takes as input a statement stmt and a witness witn,
and outputs a proof π.

– PVer(stmt, π)→ b is deterministic, takes as input a statement stmt, a proof π,
and outputs a bit b ∈ {0, 1}.

We require that PS is complete in the following sense: For all (stmt,witn) ∈ Rλ,
we have

Pr [PVer(stmt, π) = 1 | π ← PProve(stmt,witn)] = 1.

Definition 26 (Soundness). Let R be an NP-relation and PS = (PProve,
PVer) be a non-interactive proof system for R. We say that PS is sound, if for
any algorithm A, the following probability is negligible:

Pr
[
PVer(stmt, π) = 1 ∧ stmt /∈ Lλ | (stmt, π)← A(1λ)

]
.

Definition 27 (Zero-Knowledge). Consider an NP-relation R and a non-
interactive proof system PS = (PProve,PVer) for R. We say that PS is zero-
knowledge, if there exists a PPT algorithm PSim, that is allowed to program
random oracles, such that for any (stmt,witn) ∈ Rλ, the following distributions
D1 and D2 are statistically close:

D1 := {π ← PProve(stmt,witn)} , D2 := {π ← PSim(stmt)}

If a non-interactive proof system PS for an NP-relation R is both sound and
zero-knowledge, we also refer to it as a NIZK.

A.6 Computational Assumptions

Definition 28 (DLOG Assumption). Let G be a (family of) cyclic group(s)
of prime order p > 2λ with generator g ∈ G. We say that the DLOG assumption
holds in G if for all PPT algorithms A the following is negligible:

Pr [A(g, gx) = x | x←$ Zp] .

Sweep-UC 37

Definition 29 (DDH Assumption). Let G1,G2,GT be (families of) cyclic
groups of prime order p > 2λ with generators g1 ∈ G1, g2 ∈ G2 and gT :=
e(g1, g2) ∈ GT , where e : G1 × G2 is a pairing. For i ∈ {1, 2}, we say that
the DDH assumption holds in Gi if for all PPT algorithms A the following is
negligible:

|Pr
[
A(g1, g2, e,X, Y, Z) = 1

∣∣ x, y←$ Zp, X := gxi , Y := gyi , Z := gxyi
]

−Pr
[
A(g1, g2, e,X, Y, Z) = 1

∣∣ x, y, z←$ Zp, X := gxi , Y := gyi , Z := gzi
]
|.

A.7 Universal Composability Framework

In the universal composability (UC) framework [16], all parties are modelled as
interactive Turing machines. For an environment Z, an adversary A, a protocol
π, and a functionality G, we write HybridGZ,A,π to denote the output distribution
of Z in the execution with protocol π and adversary A. Here, π is given access to
ideal functionality G. In the execution, the environment communicates with all
parties that interact in the protocol via the interfaces of the protocol. At setup
time, A is allowed to corrupt a number of parties. For an ideal functionality F ,
we write IdealZ,S,F to denote the output distribution of Z when it interacts
with functionality F via dummy parties that forward messages between Z and
F , and a simulator S.

Definition 30 (UC Security). A protocol π realizes functionality F in the
G-hybrid model, if for all PPT adversaries A, there is a simulator S, such
that for any environment Z, the distributions HybridGZ,A,π and IdealZ,S,F are
computationally indistinguishable.

B Omitted Definitions for Exchange Protocols

Definition 31 (Well Distributed Signatures). Let EXC = (Setup,Buy,Sell,
Get) be an exchange for SIG and BS as in Definition 1. We say that EXC
has well distributed signatures, if for all transactions tx, all messages sn, all
keys (pkBS, skBS) ∈ BS.Gen(1λ), all (pkb, skb) ∈ SIG.Gen(1λ), all (pks, sks) ∈
SIG.Gen(1λ), we have, the following distributions D1 and D2 are the same:

D1 :=


pkBS, skBS,

pkb, pks,
tx, sn, σb


∣∣∣∣∣∣∣∣

(bsm1, St)← U1(pkBS, sn),
xpar := (pkBS, bsm1, pkb, pks, tx),
(xm1, St)← Setup(xpar, skBS, sks),
xm2 ← Buy(xpar, skb, xm1), σb := Sell(St, xm2)

 ,

D2 :=


pkBS, skBS,

pkb, pks,
tx, sn, σb

 ∣∣∣∣∣∣ σb ← Sig(skb, tx)

 .

38 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

C Omitted Constructions of Exchange Protocols

C.1 Generic Construction for Adaptor Signatures

We give a construction of an exchange protocol EXCa[SIG, aSIG,BS,PS] for a signa-
ture scheme SIG supporting adaptor signatures. Concretely, letR′ be a unique NP-
relation that is hard relative to R′.Gen. Let aSIG = (PreSig,Adapt,PreVer,Ext)
be an adaptor signature for SIG and R′. Let `1 = `1(λ) denote an upper bound
on the bit length of messages bsm2 sent in signing interactions of BS. Further, let
`2 = `2(λ) denote an upper bound on the number of random bits that algorithm
S uses. We make use of a random oracle H : {0, 1}∗ → {0, 1}`1 and a NIZK
PS = (PProve,PVer) with zero-knowledge simulator PS.Sim for the relation

R :=

(stmt,witn)

∣∣∣∣∣∣
stmt = (pkBS, bsm1, stmt′, ct), witn = (skBS,witn′, ρ),
(stmt′,witn′) ∈ R′ ∧ (pkBS, skBS) ∈ BS.Gen(1λ)
∧ ct⊕ H(witn′) = BS.S(skBS, bsm1; ρ)

 .

The scheme EXCa[SIG, aSIG,BS,PS] is presented formally in Figure 6. Complete-
ness follows by the uniqueness of R′. The scheme has well distributed signatures
if aSIG has well adapted signatures. We give the security proofs in Supplementary
Material D.

Lemma 7. If aSIG is witness extractable and aEUF-CMA secure, R′ is unique,
and PS is sound, then EXCa[SIG, aSIG,BS,PS] is secure against malicious sellers.

Lemma 8. If aSIG satisfies adaptability, R′ is hard relative to R′.Gen, and PS is
zero-knowledge, then EXCa[SIG, aSIG,BS,PS] is secure against malicious buyers.

Setup(xpar, skBS, sks)
01 ρ←$ {0, 1}`2
02 bsm2 := S(skBS, bsm1; ρ)
03 (stmt′,witn′)← R′.Gen(1λ)
04 ct := H(witn′)⊕ bsm2
05 stmt := (pkBS, bsm1, stmt′, ct)
06 witn := (skBS,witn′, ρ)
07 π ← PProve(stmt,witn)
08 xm1 := (stmt′, ct, π)
09 St := witn′
10 return (xm1, St)

Buy(xpar, skb, xm1 = (stmt′, ct, π))
11 stmt := (pkBS, bsm1, stmt′, ct)
12 if PVer(stmt, π) = 0 : return ⊥
13 return xm2 := σ̃b ← PreSig(skb, tx, stmt′)

Sell(St = witn′, xm2 = σ̃b)
14 if PreVer(pkb, tx, stmt′, σ̃b) = 0 : return ⊥
15 return σb := Adapt(pkb, σ̃b,witn′)

Get(xpar, xm1, xm2, σb, σs)
16 let xm1 = (stmt′, ct, π), xm2 = σ̃b
17 witn′ := Ext(σ̃b, σb)
18 return bsm2 := ct⊕ H(witn′)

Fig. 6. The exchange protocol EXCa[SIG, aSIG,BS,PS] = (Setup,Buy, Sell,Get) for a
signature scheme SIG and an associated adaptor signature scheme aSIG, and a blind
signature scheme BS. Here, PS = (PProve,PVer) is a NIZK for R, and H : {0, 1}∗ →
{0, 1}`1 is a random oracle.

Sweep-UC 39

C.2 Construction for Adaptor Signatures using Cut-and-Choose

We give a construction of an exchange protocol using a cut-and-choose technique.
We assume that the signature scheme SIG has an associated adaptor signature
scheme aSIG = (PreSig,Adapt,PreVer,Ext) for relation {(gx, x) | x ∈ Zq}, where
g is the generator of a cyclic prime order group G of order q. The blind signature
scheme BS = (BS.Gen,BS.S,BS.U,BS.Ver) is the BLS blind signature scheme. It is
defined over cyclic groups G1,G2,GT of prime order p with respective generators
g1 ∈ G1, g2 ∈ G2, and e(g1, g2) ∈ GT , where e : G1 × G2 → GT is a pairing.
For completess, we recall BLS (blind) signatures in Supplementary Material H.
Let ` = `(λ) denote an upper bound on the bit length of messages bsm2 sent in
signing interactions of BS. We make use of random oracles H : {0, 1}∗ → {0, 1}`

and Hc : {0, 1}∗ → {0, 1}λ. The scheme is called EXCcc
a [SIG, aSIG,BS] and given

in Figure 7. The security proofs are given in Supplementary Material D.

Lemma 9. Assume that aSIG is witness extractable and aEUF-CMA secure. Then
the exchange protocol EXCcc

a [SIG, aSIG,BS] is secure against malicious sellers.

Lemma 10. Assume that aSIG satisfies adaptability and the DLOG assumption
holds in G. Then the exchange protocol EXCcc

a [SIG, aSIG,BS] is secure against
malicious buyers.

40 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Setup(xpar = (pkBS, bsm1, pkb, pks, tx), skBS, sks)
01 y←$ Zq, Y := gy

// Share bsm2 and y
02 r1, . . . , rλ←$ Zp, r′1, . . . , r′λ←$ Zq
03 f(X) := skBS +

∑λ

j=1 rj ·X
j ∈ Zp[X], f ′(X) := y +

∑λ

j=1 r
′
j ·Xj ∈ Zq[X]

04 for j ∈ [2λ] : skj := f(j), yj := f ′(j), bsm2,j ← S(skj , bsm1)
05 for j ∈ [λ] : coeffj := g

rj
2 , coeff′j := gr

′
j

// Encrypt bsm2,j with yj
06 for j ∈ [2λ] : ctj := H(yj)⊕ bsm2,j

// Cut-and-choose
07 xm1,1 := (Y, (ctj)j∈[2λ], (coeffj , coeff′j)j∈[λ])
08 b0 . . . bλ−1 := Hc(xm1,1), for j ∈ [λ] : kj := 2j − bj−1
09 return (xm1 := (xm1,1, xm1,2 := (ykj)j∈[λ]), St := y)

Buy(xpar = (pkBS, bsm1, pkb, pks, tx), skb, xm1 = (xm1,1, xm1,2))
// Verify cut-and-choose
10 b0 . . . bλ−1 := Hc(xm1,1)
11 for j ∈ [λ] :
12 kj := 2j − bj−1, pkBS,kj := pkBS ·

∏λ

i=1(coeffi)k
i
j , Ykj := Y ·

∏λ

i=1(coeff′i)k
i
j

13 bsm2,kj := ctkj ⊕ H(ykj)
14 if e(bsm1, pkBS,kj) 6= e(bsm2,kj , g2) ∨ Ykj 6= g

ykj : return ⊥
// Return a pre-signature for Y
15 return xm2 := σ̃b ← PreSig(skb, tx, Y)

Sell(St = y, xm2 = σ̃b)
16 if PreVer(pkb, tx, gy, σ̃b) = 0 : return ⊥
17 return σb := Adapt(pkb, σ̃b, y)

Get(xpar = (pkBS, bsm1, pkb, pks, tx), xm1, xm2 = σ̃b, σb, σs)
18 y := Ext(σ̃b, σb), b0 . . . bλ−1 := Hc(xm1,1)
// Reconstruct all shares
19 for j ∈ [λ] : kj := 2j − bj−1, k̄j := 2j − (1− bj−1), bsm2,kj := ctkj ⊕ H(ykj)
20 f ′(X) := reconstq((0, y), (kj , ykj)j∈[λ])
// Find a valid share
21 w := 0
22 for j ∈ [λ] :
23 yk̄j := f ′(k̄j), bsm2,k̄j := ctk̄j ⊕ H(yk̄j)

24 pkBS,k̄j := pkBS ·
∏
i∈[λ](coeffi)k̄

i
j

25 if e(bsm1, pkBS,k̄j) = e(bsm2,k̄j , g2) : w := k̄j
26 if w = 0 : return ⊥
// Reconstruct bsm2
27 return bsm2 := reconstg1,0((w, bsm2,w), (kj , bsm2,kj)j∈[λ])

Fig. 7. The exchange protocol EXCcc
a [SIG, aSIG,BS] = (Setup,Buy, Sell,Get) for a sig-

nature scheme SIG and an associated adaptor signature scheme aSIG, and blind BLS
signature scheme BS. Here, H : {0, 1}∗ → {0, 1}` and Hc : {0, 1}∗ → {0, 1}λ are random
oracles and e : G1 ×G2 → GT is a pairing.

Sweep-UC 41

D Security Proofs of Exchange Protocols

Remark. The key ideas and many steps of our proofs for exchange protocols
are very similar, which is why we reuse parts verbatim in different proofs. It is
recommended to understand the proofs for the generic constructions first, before
reading the proofs for the cut-and-choose construction.

D.1 Proofs for the Construction for Unique Signatures

Proof (of Lemma 1 (Mal. Seller - Unique Signature)). We consider an adversary
A against the security of EXCu[SIG,BS,PS] against malicious sellers. We define
three events in the security game, following the three possible ways A can win.

– win1: This occurs if the security game outputs 1 and tx 6= tx′.
– win2: This occurs if the security game outputs 1, tx = tx′ and xm2 =⊥.
– win3: This occurs if the security game outputs 1, tx = tx′, xm2 6=⊥, and

BS.Ver(pkBS, sn, σBS) = 0.

First, we bound the probability of win1 ∨ win2. Intuitively, this follows from
EUF-CMA security of SIG, because if one of the events occurs, the adversary
came up with a valid signature σb for a message tx′, for which the game did
not compute a signature before. Formally, we give a reduction that runs in the
EUF-CMA security game. The reduction gets as input a public key pk, and it
gets access to a signing oracle Sig. Then, the reduction runs A as in the security
game for EXCu[SIG,BS,PS] against malicious sellers. Precisely, it runs A, obtains
a public key pkBS and a nonce sn. Then, it runs (bsm1, St) ← U1(pkBS, sn). It
sets pkb := pk, and passes bsm1, pkb to A. The adversary outputs pks, tx, and a
message xm1. If xm1 = ⊥ or xm1 = (ct, π) and PVer(stmt, π) = 0 for stmt as
in algorithm Buy, the reduction sends xm2 := ⊥ to A. Otherwise, it queries a
signature σ′b ← Sig(tx) from the signing oracle and sets xm2 := σ′b. The reduction
passes xm2 to A and obtains tx′, σb, σs in return. If win1 ∨win2 occurs, it returns
(tx′, σb) to its game. Otherwise, it aborts.

It is clear that the reduction perfectly simulates the game for A. Also,
note that the pair (tx′, σb) that the reduction outputs in the end is valid, i.e.
SIG.Ver(pk, tx′, σb) = 1, by definition of win1 ∨ win2. Further, note that if win1
occurs, the reduction did only query oracle Sig on input tx 6= tx′, and not on input
tx′. Similarly, if win2 occurs, the reduction did not query Sig at all. Therefore,
the probability of win1 ∨ win2 can be upper bounded by the probability that the
reduction wins the EUF-CMA game. This is negligible by assumption.

It remains to bound the probability of event win3. Intuitively, this should
follow from the soundness of PS. Recall that win3 occurs, if tx = tx′, xm2 6=⊥,
and BS.Ver(pkBS, sn, σBS) = 0. In particular, if xm2 6=⊥, we know that for
stmt = (pkBS, pks, tx, bsm1, ct) and xm1 = (ct, π) we have PVer(stmt, π) = 1.
We assume towards contradiction that there exists a witness witn such that
(stmt,witn) ∈ R, i.e. stmt is a yes-instance. Then, by definition of R and unique

42 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

signatures, we know that the first component of witn is σb. and that there is a
string ρ such that ct = H(σs)⊕ BS.S(skBS, bsm1; ρ). In combination, we get

BS.S(skBS, bsm1; ρ) = ct⊕ H(σs)
= Get(xpar, xm1, xm2, σb, σs),

by definition of algorithm Get. Recall that

σBS ← BS.U2(St,Get(xpar, xm1, xm2, σb, σs))
= BS.U2(St,BS.S(skBS, bsm1; ρ)).

Using completeness of BS, we see that BS.Ver(pkBS, sn, σBS) = 1. A contradiction.
In summary, we showed that stmt is not a yes-instance, violating soundness

of PS. Therefore, the probability of win3 is negligible. ut

Proof (of Lemma 2 (Mal. Buyer - Unique Signature)). We define algorithms
Sim1,SimRO,Sim2,Sim3, and then we show indistinguishability. The algorithms
keep a list L containing tuples of the form (tx, pks, ct). Algorithm Sim1(xpar, sks)
is as follows:

1. Compute σs ← SIG.Sig(sks, tx), abort if H(σs) is already defined.
2. Sample ct←$ {0, 1}`1 .
3. Set stmt := (pkBS, pks, tx, bsm1, ct) and compute π ← PSim(stmt).
4. Insert (tx, pks, ct) into L.
5. Return xm1 := (ct, π).

Algorithm SimRO simulates the random oracle honestly. However, on a random
oracle query H(x), it aborts if there is an entry (tx, pks, ct) in L such that
SIG.Ver(pks, tx, x) = 1. Algorithm Sim2(xm2) parses xm2 = σb and returns
SIG.Ver(pkb, tx, σb). Algorithm Sim3(xm2, bsm2) removes the entry (tx, pks, ct)
from L and defines H(σs) := bsm2 ⊕ ct.

Next, we present a sequence of games to show that algorithms Sim1,SimRO,
Sim2,Sim3 satisfy the indistinguishability that is required by the security defini-
tion.
Game G0: This is the security game against malicious buyers with b = 0. Recall
that in this game, a key pair (pkBS, skBS) is sampled. Then, the adversary A
gets access to a signer oracle O and an oracle O∗. When called by A, oracle O∗
samples a key pair (pks, sks) ← SIG.Gen(1λ), gives pks to A and obtains a key
pkb, a transaction tx, and a message bsm1 in return. Then, it runs algorithm
Setup. Concretely, it computes bsm2 and σs, defines ciphertext ct and computes
a proof π as in the scheme. Then, it sets xm1 := (ct, π) and sends xm1 to A. The
adversary responds with a message xm2. If xm2 is a valid signature σb for tx with
respect to pkb, the game outputs σb, σs. Otherwise, it aborts. Finally, the game
outputs whatever A outputs.
Game G1: This game is as G0, but we change how the proof π contained
in message xm1 is computed by oracle O∗. Before, it was computed via π ←
PProve(stmt,witn), where stmt and witn are as in algorithm Setup. In game G1,

Sweep-UC 43

we compute it using the zero-knowledge simulator PS.PSim via π ← PSim(stmt).
By the zero-knowledge property of PS, games G0 and G1 are indistinguishable.
Game G2: In this game, we define bad events bad1 and bad2, and abort if
one of the two occurs. To do so, we introduce a list L that contains tuples
(tx, pks, ct). Whenever oracle O∗ computes the signature σs as part of algorithm
Setup, and H(σs) is already defined, we say that event bad1 occurs and the game
aborts. Otherwise, the game continues the execution of algorithm Setup and
inserts the entry (tx, pks, ct) into L. Later, as soon as the oracle O∗ returns
the signatures σb, σs, it removes this entry (tx, pks, ct) from L. Furthermore, we
introduce an event bad2 that occurs if in a random oracle query H(x) there is an
entry (tx, pks, ct) in L such that SIG.Ver(pks, tx, x) = 1. If this event occurs, the
game aborts. To show indistinguishability of G1 and G2, it is sufficient to bound
the probability of event bad1 ∨ bad2. To do this, we write

bad1 ∨ bad2 =
∨
i∈[Q]

bad1,i ∨ bad2,i,

where Q is the number of queries to oracle O∗, and bad1,i (resp. bad2,i) denotes
the event that bad2 (resp. bad2) occurs for the entry in L that is inserted in the
ith query to O∗. As Q is polynomial, it is sufficient to bound bad1,i ∨ bad2,i for
all i. To this end, we sketch a reduction from the EUF-CMA security of SIG. The
reduction gets as input a public key pk and it gets access to a signing oracle Sig.
It will not make use of Sig. The reduction simulates G1 as it is, except for the
ith call to oracle O∗, and the random oracle simulation of H:

– In the ith call to oracle O∗, the reduction sets pks := pk, instead of sampling
the pair (pks, sks) on its own. Also, it does not compute σs as in the game.
Instead, if for one of the previous random oracle queries H(x) it holds that x is
a valid signature for tx with respect to pks, it outputs (tx, x) to the EUF-CMA
game and stops (cf. bad1,i). Otherwise, it samples ct←$ {0, 1}`1 at random.

– To simulate random oracle queries H(x) after the ith call to oracle O∗, the
reduction checks if BS.Ver(pk, tx, x) = 1. If this holds, it returns (tx, x) to its
game and stops (cf. bad2,i).

To argue that the reduction perfectly simulates game G1 until it stops, it is
sufficient to consider the distribution of ct. First, if event bad1,i occurs, the
simulation is clearly perfect until the reduction terminates. Also, if event bad1,i
does not occur, in G1, the value ct is distributed uniformly. Note that due to
uniqueness of signatures, the reduction can efficiently check if bad1,i occurs.
Finally, we see that if event bad1,i ∨ bad2,i occurs, then the reduction outputs a
valid forgery (tx, x). As the reduction never used its signing oracle, we obtain
that the probability of bad1,i ∨ bad2,i is upper bounded by the advantage of the
reduction against the EUF-CMA security of SIG, which is negligible by assumption.
Game G3: This game is as game G2, but we change how ciphertexts ct are
simulated in executions of oracle O∗. Namely, we sample ct←$ {0, 1}`1 . Later,
before the oracle returns signatures σb, σs, it defines H(σs) := ct⊕ bsm2, where
bsm2 is computed using algorithm BS.U2 as in algorithm Setup. Due to the bad

44 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

events and aborts that we introduced in previous games, we see that this change
does not change the view of the adversary. Finally, note that the security game
with b = 1, using algorithms Sim1,SimRO,Sim2,Sim3, is exactly the same as G3,
finishing the proof. ut

D.2 Proofs for the Construction for Adaptor Signatures

Proof (of Lemma 7 (Mal. Seller - Adaptor Signature)). The proof is very similar
to the proof of Lemma 1. Consider an adversary A against the security of
EXCa[SIG, aSIG,BS,PS] against malicious sellers. We define three events in the
security game, following the three possible ways A can win.

– win1: This occurs if the security game outputs 1 and tx 6= tx′.
– win2: This occurs if the security game outputs 1, tx = tx′ and xm2 =⊥.
– win3: This occurs if the security game outputs 1, tx = tx′, xm2 6=⊥, and

BS.Ver(pkBS, sn, σBS) = 0.

First, we bound the probability of win1 ∨ win2. Intuitively if one of the events
occurs, the adversary came up with a valid signature σb for a message tx′, for
which the game did not compute a signature or pre-signature before. Formally,
we give a reduction that runs in the aEUF-CMA security game of aSIG. The
reduction gets pk as input and access to a signing oracle Sig and a pre-signing
oracle PreSig. It runs A and obtains a public key pkBS and a message sn
from A. Then, it runs (bsm1, St) ← U1(pkBS, sn). It sets pkb := pk. Next, it
gives pkb and bsm1 to A, which outputs a key pks, a transaction tx and a
message xm1. If xm1 = ⊥ or xm1 = (stmt′, ct, π) but PVer(stmt, π) = 0 for
stmt := (pkBS, bsm1, stmt′, ct), the reduction sets xm2 := ⊥. Otherwise, it uses
the oracle PreSig as σ̃b ← PreSig(tx, stmt′) and sets xm2 := σ̃b. The reduction
gives xm2 to A and obtains tx′, σb, and σs in return. If win1 ∨ win2 occurs, it
returns (tx′, σb) to its game. Otherwise, it aborts. It is clear that the reduction
perfectly simulates the game for A. Also, note that the pair (tx′, σb) that the
reduction outputs in the end is valid, i.e. SIG.Ver(pk, tx′, σb) = 1, by definition
of win1 ∨ win2. Further, note that if win1 occurs, the reduction did only query
oracle PreSig on input tx 6= tx′, and not on input tx′. Similarly, if win2 occurs,
the reduction did not query PreSig at all. In both cases, the reduction did
never query oracle Sig. Therefore, the probability of win1 ∨ win2 can be upper
bounded by the probability that the reduction wins the aEUF-CMA game. This
is negligible by assumption.

It remains to bound the probability of event win3. To do so, we partition win3
into two events. Let xm1 = (stmt′, ct, π) and xm2 = σ̃b be as in the security game
against malicious sellers.

– win3,1: This event occurs, if win3 occurs and for witn′ := Ext(σ̃b, σb) we have
(stmt′,witn′) /∈ R′.

– win3,2: This event occurs, if win3 occurs and for witn′ := Ext(σ̃b, σb) we have
(stmt′,witn′) ∈ R′.

Sweep-UC 45

Clearly, it is sufficient to bound the probability of both win3,1 and win3,2.
We start with event win3,1. Intuitively, if this event occurs, then the adversary

managed to turn the pre-signature σ̃b into a valid signature, but we can not
extract a witness, contradicting the witness extractability of aSIG. Formally, we
give a reduction against the witness extractability of aSIG. The reduction gets pk
as input and access to oracles Sig and PreSig. It runs A and obtains a public
key pkBS and a message sn from A. Next, it runs (bsm1, St)← U1(pkBS, sn), sets
pkb := pk, and gives pkb and bsm1 to A, which outputs a key pks, a transaction
tx and a message xm1. If xm1 = ⊥ or π does not verify, the reduction aborts.
Otherwise, it parses xm1 = (stmt′, ct, π) and outputs (tx, stmt′) to its game. It
obtains a pre-signature σ̃ in return and sets xm2 := σ̃b := σ̃. Then, the reduction
passes xm2 to A and obtains tx′, σb, and σs in return. If win3,1 occurs, it outputs
σb to its game. It is easy to see that the witness extractability game outputs 1
if event win3,1 occurs. Especially, the reduction did not use the oracles Sig and
PreSig at all.

Finally, we bound the probability of event win3,2. This follows from soundness
of PS and uniqueness of R′. Namely, assume towards contradiction that win3,2
occurs and the statement stmt = (pkBS, bsm1, stmt′, ct) is a yes-instance, i.e. there
is some witn = (skBS,witn′′, ρ) such that (stmt,witn) ∈ R. Then, by definition of
R, we have (stmt′,witn′′) ∈ R′ and

ct⊕ H(witn′′) = BS.S(skBS, bsm1; ρ).

Uniqueness of R′ implies that witn′ = witn′′, where witn′ is as in the definition of
event win3,2. This implies that

Get(xpar, xm1, xm2, σb, σs) = BS.S(skBS, bsm1; ρ).

Completeness of BS implies that σBS, as computed in the security game, is a valid
blind signature, i.e. BS.Ver(pkBS, sn, σBS) = 1, contradicting the assumption that
win3,2 occurs. In summary, we showed that stmt is not a yes-instance, violating
the soundness of PS. ut

Proof (of Lemma 8 (Mal. Buyer - Adaptor Signature)). We give algorithms Sim1,
SimRO,Sim2,Sim3, and then we show indistinguishability. The algorithms keep
a list L that holds tuples (tx, stmt′,witn′, pks, ct). Algorithm Sim1(xpar, sks) is as
follows:

1. Sample (stmt′,witn′)← R′.Gen(1λ) and ct←$ {0, 1}`1 .
2. Abort if H(witn′) already defined.
3. Set stmt := (pkBS, bsm1, stmt′, ct) and compute π ← PSim(stmt).
4. Insert (tx, stmt′,witn′, pks, ct) into L.
5. Return xm1 := (stmt′, ct, π).

Algorithm SimRO simulates the random oracle honestly. However, on a random
oracle query H(Z), it aborts if there is an entry (tx, stmt′,witn′, pks, ct) in L
such that Z = witn′, i.e. (stmt′, Z) ∈ R′. Algorithm Sim2(xm2) first parses
xm2 = σ̃b, and then returns the result of aSIG.PreVer(pkb, tx, stmt′, σ̃b). Algorithm

46 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Sim3(xm2 = σ̃b, bsm2) removes entry (tx, stmt′,witn′, pks, ct) from L, defines
H(witn′) := bsm2 ⊕ ct, and returns σb := Adapt(pkb, σ̃b,witn′).

It remains to show that algorithms Sim1,SimRO,Sim2,Sim3 satisfy the indis-
tinguishability that is required by the security definition. We show this via a
sequence of games.
Game G0: This game is the security game against malicious buyers with b = 0.
Recall that in this game, a key pair (pkBS, skBS) is sampled. Then, the adversary
A gets access to a signer oracle O and an oracle O∗. When A queries oracle O∗,
it samples a key pair (pks, sks)← SIG.Gen(1λ), gives pks to A and obtains a key
pkb, a transaction tx, and a message bsm1 in return. Then, it runs algorithm
Setup. Concretely, it computes bsm2, samples witn′ and stmt′, defines ciphertext
ct, and computes a proof π as in the scheme. Then, it sets xm1 := (stmt′, ct, π)
and sends xm1 to A. The adversary responds with a message xm2. If xm2 = σ̃b
satisfies PreVer(pkb, tx, stmt′, σ̃b) = 1, the game computes σs using sks and σb
via σb := Adapt(pkb, σ̃b,witn′). Otherwise, it aborts. Finally, the game outputs
whatever A outputs.
Game G1: This game is as G0, but we change how the proof π in message
xm1 is computed by oracle O∗. Recall that before, it was computed via π ←
PProve(stmt,witn), where stmt and witn are as in algorithm Setup. In game G1,
we simulate it using the zero-knowledge simulator PS.PSim via π ← PSim(stmt).
Games G0 and G1 are indistinguishable by the zero-knowledge property of PS.
Game G2: In this game, we introduce two bad events bad1 and bad2 and let the
game abort if one of these occurs. Further, we introduce a list L that contains
tuples (tx, stmt′,witn′, pks, ct). Whenever the values (stmt′,witn′) are sampled
using R′.Gen by oracle O∗ as part of algorithm Setup, the game sets bad1 := 1
and aborts if H(witn′) is already defined. Otherwise, it continues the execution
of Setup and inserts (tx, stmt′, pks, ct) into L. Later, as soon as the oracle O∗
returns the signatures σb, σs, it removes this entry (tx, stmt′,witn′, pks, ct) from
L. Further, we introduce an event bad2 that occurs if in a random oracle query
H(Z) there is an entry (tx, stmt′,witn′, pks, ct) in L such that (stmt′, Z) ∈ R′. If
this event occurs, the game aborts. To show indistinguishability of G2 and G3,
it is sufficient to bound the probability of event bad1 ∨ bad2. To do this, we write

bad1 ∨ bad2 =
∨
i∈[Q]

bad1,i ∨ bad2,i.

Here, Q denotes the number of queries to oracles O∗, and bad1,i (resp. bad2,i)
denotes the event that bad1 (resp. bad2) occurs for the entry in L that is inserted
in the ith query to O∗. As Q is polynomially bounded, it is sufficient to bound the
probability of event bad1,i ∨ bad2,i for all i ∈ [Q]. To do so, we give a reduction
from the hardness of R′ relative to R′.Gen.

The reduction gets as input a statement stmt′∗. It simulates G1 as it is, except
for the ith call to oracle O∗, and the random oracle H:

– In the ith call to oracle O∗, the reduction sets stmt′ := stmt∗, instead of
sampling (stmt′,witn′)← R′.Gen(1λ). Then, if for one of the previous random
oracle queries H(Z) it holds that (stmt∗, Z) ∈ R′, it outputs witn∗ := Z and

Sweep-UC 47

stops (cf. event bad1,i). Otherwise, it samples ct←$ {0, 1}`1 . Note that it never
needs the witness witn′.

– For random oracle queries H(Z) after the ith call to oracle O∗, the reduction
checks if (stmt∗, Z) ∈ R′. If this holds, it outputs witn∗ := Z and stops (cf.
event bad2,i).

First, if bad1,i occurs, it is clear that the reduction simulates G1 perfectly until
it stops. Also, if bad1,i, it outputs a valid witness witn∗ for stmt∗. Similarly, we
see that if event bad2,i occurs, then the reduction simulates G1 perfectly until it
stops and outputs a valid witness witn∗ for stmt∗. We obtain that the probability
of bad1,i ∨ bad2,i is upper bounded by the advantage of the reduction against the
hardness of R′ relative to R′.Gen, which is negligible by assumption.
Game G3: This game is as game G2, but we change how values ct contained in
messages xm1 are computed in executions of O∗. Namely, we sample ct←$ {0, 1}`1 .
Later, before returning signatures σb, σs, we define H(witn′) := ct⊕ bsm2, where
bsm2 is computed using algorithm BS.U2 as in algorithm Setup. The bad events
that we ruled out in our sequence of games imply that this does not change the
view of A. Finally, we note that the only difference between G3 and the security
game against malicious buyers with b = 1, using algorithms Sim1,SimRO,Sim2,
Sim3, is the following: In gameG3, the oracle O∗ aborts if SIG.Ver(pkb, tx, σb) = 0
for σb := Sell(St, xm2). This check is not given in the security game with b = 1.
However, one can observe that by adaptability of aSIG, this check is redundant.

ut

D.3 Proofs for the BLS Cut-and-Choose Construction

Proof (of Lemma 3 (Mal. Seller - BLS)). Consider an adversary A against the
security of EXCcc

BLS[SIG,BS] against malicious sellers. We define three events in
the security game, following the three possible ways A can win.

– win1: This occurs if the security game outputs 1 and tx 6= tx′.
– win2: This occurs if the security game outputs 1, tx = tx′ and xm2 =⊥.
– win3: This occurs if the security game outputs 1, tx = tx′, xm2 6=⊥, and

BS.Ver(pkBS, sn, σBS) = 0.

First, we bound the probability of win1 ∨ win2. Intuitively, this follows from
EUF-CMA security of SIG, because if one of the events occurs, the adversary
came up with a valid signature σb for a message tx′, for which the game did
not compute a signature before. Formally, we give a reduction that runs in the
EUF-CMA security game. The reduction gets as input a public key pk, and it
gets access to a signing oracle Sig. Then, the reduction runs A as in the security
game for EXCcc

BLS[SIG,BS] against malicious sellers. Precisely, it runs A, obtains
a public key pkBS and a nonce sn. Then, it runs (bsm1, St) ← U1(pkBS, sn). It
sets pkb := pk, and passes bsm1, pkb to A. The adversary outputs pks, tx, and
a message xm1. If xm1 = ⊥ the reduction sets xm2 := ⊥. Otherwise, if
xm1 = (xm1,1, xm1,2), the reduction starts running algorithm Buy(xpar, skb, xm1).
Concretely, if this algorithm would return xm2 6= ⊥, it uses its signing oracle

48 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Sig on input tx to compute xm2. Otherwise, it continues with xm2 = ⊥. The
reduction passes xm2 to A and obtains tx′, σb, σs in return. If win1 ∨win2 occurs,
it returns (tx′, σb) to its game. Otherwise, it aborts. It is clear that the reduction
perfectly simulates the game for A. Also, note that the pair (tx′, σb) that the
reduction outputs in the end is valid, i.e. SIG.Ver(pk, tx′, σb) = 1, by definition
of win1 ∨ win2. Further, note that if win1 occurs, the reduction did only query
oracle Sig on input tx 6= tx′, and not on input tx′. Similarly, if win2 occurs, the
reduction did not query Sig at all. Therefore, the probability of win1 ∨ win2 can
be upper bounded by the probability that the reduction wins the EUF-CMA game.
This is negligible by assumption.

It remains to bound the probability of event win3. Intuitively, this follows
via a statistical argument based on the cut-and-choose technique. Recall that
win3 occurs, if tx = tx′, xm2 6=⊥, and BS.Ver(pkBS, sn, σBS) = 0. We make the
following observations.

1. If win3 occurs, then algorithm Get must have output ⊥. This is because due
xm2 6=⊥ we know that e(bsm1, pkBS,kj) = e(bsm2,kj , g2) for all j ∈ [λ], for
notation as in algorithm Buy. Also, assuming Get does not output ⊥, we know
that e(bsm1, pkBS,k̄j) = e(bsm2,k̄j , g2) for some j ∈ [λ], with notation as in
Get. Correctness of algorthm reconstg1,0 now implies that bsm2 as computed
by Get is a valid second message for the first message bsm1, which has to lead
to a valid blind signature σBS via algorithm U2.

2. If algorithm Get outputs ⊥, then all bsm2,k̄j for j ∈ [λ] as computed in Get
are invalid, i.e. e(bsm1, pkBS,k̄j) 6= e(bsm2,k̄j , g2). This is by definition of Get.

3. If win3 occurs, then all σk̄j for j ∈ [λ] (as computed in Get) are valid, i.e. for
all j ∈ [λ], σk̄j is the unique value satisfying SIG.Ver(pks,k̄j , tx, σk̄j) = 1 for
pks,k̄j := pks ·

∏λ
i=1(coeff′i)k̄

i
j . This is because all σkj are valid in the same

sense (due to xm2 6= ⊥) and due to the correctness of algorithm reconstg1,k̄j
.

Using these three observations, we now finish the statistical argument. For that,
consider the moment of the first query of the form Hc(xm1,1). It is clear that
xm1,1 = ((ctj)j∈[2λ], (coeffj , coeff′j)j∈[λ]) information theoretically determines the
polynomials f, f ′ and therefore all σj and pkBS,j for j ∈ [2λ]. Therefore, xm1,1
also determines the values bsm2,j := ctj ⊕H(σj) for all j ∈ [2λ]. Due to the third
observation, these correspond to the values computed in Buy and Get. Due to
the first and second observation, and the fact that Buy output xm2 6= ⊥ if win3
occurs, we therefore have

e(bsm1, pkBS,kj) = e(bsm2,kj , g2) for all j ∈ [λ],
e(bsm1, pkBS,k̄j) 6= e(bsm2,k̄j , g2) for all j ∈ [λ].

Thus, conditioned on win3, the value xm1,1 fully determines b0, . . . , bλ−1. This
means that win3 can only occur if for some query of the form Hc(xm1,1), the hash
value coincides with the bits b0, . . . , bλ−1 that are determined by xm1,1, which
happens with probability 1/2λ. As there are at most polynomially many queries
of this form, the probability of win3 is negligible, which ends the proof. ut

Sweep-UC 49

Proof (of Lemma 4 (Mal. Buyer - BLS)). Before we provide algorithms Sim1,
SimRO,Sim2,Sim3, we give a sequence of hybrid games, starting from the security
game against malicious buyers with bit b = 0 (i.e. computing xm1 and σb honestly
via algorithms Setup and Sell). The final game will be equivalent to the security
game against malicious buyers game with bit b = 1 for the simulators we define
then.
Game G0: We start with game G0, which is the security game against malicious
buyers with bit b = 0. To recall, in this game a key pair (pkBS, skBS) is sampled.
Then, pkBS is given to the adversary. The adversary also gets access to a signer
oracle O for BS simulating BS.S(skBS, ·), and an oracle O∗ which is as follows.
When called, it first samples a key pair (pks = gsks

2 , sks) and outputs pks. Then,
it gets a key pkb, a transaction tx, and a message bsm1 ∈ G1 from the adversary.
It sets xpar := (pkBS, bsm1, pkb, pks, tx) and runs (xm1, St) ← Setup(xpar, skBS,
sks). In this scheme, xm1 has the form xm1 = (xm1,1, xm1,2) with xm1,1 =
((ctj)j∈[2λ], (coeffj , coeff′j)j∈[λ]) and xm1,2 = (σkj)j∈[λ]). Then, the oracle gives
xm1 to the adversary, obtains xm2 = σb, runs Sell (which does not do anything for
this scheme), and aborts if σb is not valid, i.e. SIG.Ver(pkb, tx, σb) = 0. Otherwise,
it returns σb, σs to the adversary, where σs ← SIG.Sig(sks, tx). In the end, the
game outputs whatever the adversary outputs.

Overall, our goal is to move towards an indistinguishable game, in which
xm1 can be provided without access to skBS, and σs can be provided only by
knowing bsm2 ← BS.S(skBS, bsm1). We will only make changes to oracle O∗ and
the random oracles involved.
Game G1: In this game, we change the execution of algorithm Setup in oracle
O∗. Namely, in the beginning of the algorithms execution, we now sample
uniformly random bits b0, . . . , bλ−1. Then, we compute xm1,1 as before, and abort
if Hc(xm1,1) is already defined. Otherwise, we program Hc(xm1,1) := b0, . . . , bλ−1,
and continue as before. The probability of such an abort is negligible, due to the
entropy of coeff′1. Thus,G0 andG1 are indistinguishable. Observe the effect of this
change: We can now define the values kj := 2j−bj−1 and k̄j := k̄j := 2j−(1−bj−1)
before we compute xm1,1.
Game G2: In this game we introduce a bad event bad and let the game abort
if it occurs. The event occurs if in some interaction between the adversary and
oracle O∗, one of the following happens.

– bad1: When the game computes the values (ctj)j∈[2λ] during the execution of
Setup, the hash value H(σk̄j) is already defined for some j ∈ [λ].

– bad2: After the game computes the values (ctj)j∈[2λ] during the execution of
Setup, but before the game gives σs to the adversary in the same interaction,
a query H(σk̄j) is made for some j ∈ [λ].

We have
bad = bad1 ∨ bad2 =

∨
i∈[Q]

bad1,i ∨ bad2,i,

where Q is the number of queries to oracle O∗, and the event bad1,i (resp. bad2,i)
occurs if bad1 (resp. bad2) occurs in the ith interaction between the adversary

50 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

and O∗. As Q is polynomial, it is sufficient to bound bad1,i ∨ bad2,i for all i. To
this end, we sketch a reduction from the EUF-CMA security of SIG. The reduction
gets as input a public key pk and it gets access to a signing oracle Sig. It will
not make use of Sig. The reduction simulates G1 as it is, except for the ith call
to oracle O∗, and the random oracle simulation of H:

– In the ith call to oracle O∗, the reduction sets pks := pk, instead of sampling
the pair (pks, sks) on its own.

– This means that it can not define the polynomial f ′ as in the game explic-
itly. Instead, the reduction runs ((sks,kj)j∈[λ], (coeff′j)j∈[λ])← polyGeng2,p(λ,
pks, (kj)j∈[λ]).

– The reduction checks checks if event bad1,i occurs, by checking for each previous
random oracle query H(x) if SIG.Ver(pks,k̄j , tx, x) = 1 for some j ∈ [λ], where
pks,k̄j := pks ·

∏λ
i=1(coeff′i)k̄

i
j . Note that this check is correct due to the

uniqueness of SIG. If bad1,i occurs, say for j∗ ∈ [λ], the reduction computes a
signature σ for tx via σ := reconstg,0((j∗, x), (ki, σs,ki)i∈[λ]). Then, it outputs
(tx, σ) as a forgery to the EUF-CMA game. If bad1,i does not occur, it continues
by sampling all ctk̄j at random.

– The reduction can check if event bad2,i occurs similar to event bad1,i using
algorithm SIG.Ver whenever the adversary queries H. If bad2,i occurs, the
reduction computes a signature σ in a similar way as above and outputs (tx, σ)
as a forgery to the EUF-CMA game.

– If the reduction has to output σs to the adversary in the ith interaction, the
reduction aborts.

It is easy to see that until the reduction aborts, it perfectly simulates G1 for
the adversary. This is due to the correctness of algorithm polyGeng2,p. Also, if
bad1,i ∨ bad2,i occurs, the reduction does not abort and returns a valid forgery,
following from the correctness of algorithm reconstg,0. Also, the reduction never
uses its signing oracle. This implies that the probability of bad1,i ∨ bad2,i is
negligible, by the EUF-CMA security of SIG.
Game G3: In game G3, we change how the values ctk̄j for j ∈ [λ] are computed
in executions of algorithm Setup in oracle O∗. Concretely, while they were
computed as ctk̄j = H(σk̄j)⊕ bsm2,k̄j before, we now sample them at random as
ctk̄j←$ {0, 1}`. Later, before giving σs to the adversary in the same interaction,
we let the game program H(σk̄j) := ctk̄j ⊕ bsm2,k̄j . Clearly, this does not change
the view of the adversary due to the bad event and abort that we introduced in
the previous game.
Game G4: In game G4, we change the oracle O∗ again. Namely, note that due
to the previous change, we do not need the values bsm2,k̄j to compute xm1, but
only once we output σs. This will allow us to compute xm1 without access to skBS.
Namely, we will now compute the values coeffj used during the computation of
xm1 as

((skBS,kj)j∈[λ], (coeffj)j∈[λ])← polyGeng2,p(λ, pkBS, (kj)j∈[λ]).

Sweep-UC 51

Later, before outputting σs to the adversary, we compute the values bsm2,k̄j via
by first computing bsm2 ← BS.S(skBS, bsm1), and then computing

bsm2,k̄j := reconstg1,k̄j
((0, bsm2), (ki, bsmki)i∈[λ]) for all j ∈ [λ].

Then, we continue as in G3.
Summarizing the implications of these changes, we now compute the messages

xm1 without access to skBS. Further, after we obtain xm2 = σb and before we out-
put σs, we do not need direct access to skBS, but only to bsm2 ← BS.S(skBS, bsm1).
This can easily be captured by algorithms Sim1,SimRO,Sim2,Sim3 as desired.
Then, G3 is identical to the security game against malicious buyers with bit
b = 1, showing the claim. ut

D.4 Proofs for the Adaptor Cut-and-Choose Construction

Proof (of Lemma 9 (Mal. Seller - Adaptor CC)). We consider an adversary A
against the security of EXCcc

a [SIG, aSIG,BS] against malicious sellers. We define
three events in the security game, following the three possible ways A can win.

– win1: This occurs if the security game outputs 1 and tx 6= tx′.
– win2: This occurs if the security game outputs 1, tx = tx′ and xm2 =⊥.
– win3: This occurs if the security game outputs 1, tx = tx′, xm2 6=⊥, and

BS.Ver(pkBS, sn, σBS) = 0.

First, we bound the probability of win1 ∨ win2. Intuitively if one of the events
occurs, the adversary came up with a valid signature σb for a message tx′, for
which the game did not compute a signature or pre-signature before. Formally, we
give a reduction that runs in the aEUF-CMA security game of aSIG. The reduction
gets pk as input and access to oracles Sig and PreSig. It runs A and obtains a
public key pkBS and a message sn from A. Then, it runs (bsm1, St)← U1(pkBS, sn).
It sets pkb := pk. Next, it gives pkb and bsm1 to A, which outputs a key pks, a
transaction tx and a message xm1. If xm1 = ⊥ the reduction sets xm2 := ⊥.
Else if xm1 = (xm1,1, xm1,2), the reduction checks the validity of xm1 similar to
what is done in algorithm Buy(xpar, skb, xm1). Note that the unknown secret key
skb is only used by Buy if it does not output ⊥. In this case, the reduction uses
oracle PreSig via σ̃b ← PreSig(tx, stmt′) and sets xm2 := σ̃b. Otherwise, it sets
xm2 := ⊥. The reduction passes xm2 to A and obtains tx′, σb, σs in return. If
win1 ∨win2 occurs, it returns (tx′, σb) to its game. Otherwise, it aborts. It is clear
that the reduction perfectly simulates the game for A. Also, note that the pair
(tx′, σb) that the reduction outputs in the end is valid, i.e. SIG.Ver(pk, tx′, σb) = 1,
by definition of win1 ∨ win2. Further, note that if win1 occurs, the reduction did
only query oracle PreSig on input tx 6= tx′, and not on input tx′. Similarly,
if win2 occurs, the reduction did not query PreSig at all. In both cases, the
reduction did never query oracle Sig. Therefore, the probability of win1 ∨ win2
can be upper bounded by the probability that the reduction wins the aEUF-CMA
game. This is negligible by assumption.

52 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

It remains to bound the probability of event win3. Recall that win3 occurs,
if tx = tx′, xm2 6=⊥, and BS.Ver(pkBS, sn, σBS) = 0. We bound the probability of
event win3 by partitioning it into two sub-events.

– win3,1: This event occurs, if win3 occurs, and for y := Ext(σ̃b, σb) computed in
Get, we have gy 6= Y .

– win3,2: This event occurs, if win3 occurs, and for y := Ext(σ̃b, σb) computed in
Get, we have gy = Y .

Clearly, it is sufficient to bound the probability of win3,1 and win3,2 separately.
We start with event win3,1. Intuitively, in this case, the adversary managed to
turn the pre-signature xm2 = σ̃b into a valid signature, but we can not extract
a witness, contradicting the witness extractability of aSIG. Formally, we give a
reduction against the witness extractability of aSIG. The reduction gets pk as
input and access to oracles Sig and PreSig. It runs A and obtains a public
key pkBS and a message sn from A. Next, it runs (bsm1, St)← U1(pkBS, sn), sets
pkb := pk, and gives pkb and bsm1 to A, which outputs a key pks, a transaction
tx and a message xm1. If xm1 = ⊥ or π does not verify, the reduction aborts.
Otherwise, it parses xm1 = (xm1,1, xm1,2), and xm1,1 = (Y, (ctj)j∈[2λ], (coeffj ,
coeff′j)j∈[λ]) and outputs (tx, Y) to its game. It obtains a pre-signature σ̃ in
return and sets xm2 := σ̃b := σ̃. Then, the reduction passes xm2 to A and obtains
tx′, σb, and σs in return. If the event win3,1 occurs, it outputs σb to its game.
Note that the reduction did not use the oracles Sig and PreSig at all. This
shows that the probability of win3,1 is negligible, assuming witness extractability
of aSIG.

Finally, we bound the probability of win3,2 using a statistical argument. To
this end, we make the following observations.

1. If win3,2 occurs, then algorithm Get must have output ⊥. This is because due
xm2 6=⊥ we know that e(bsm1, pkBS,kj) = e(bsm2,kj , g2) for all j ∈ [λ], for
notation as in algorithm Buy. Also, assuming Get does not output ⊥, we know
that e(bsm1, pkBS,k̄j) = e(bsm2,k̄j , g2) for some j ∈ [λ], with notation as in
Get. Correctness of algorthm reconstg1,0 now implies that bsm2 as computed
by Get is a valid second message for the first message bsm1, which has to lead
to a valid blind signature σBS via algorithm U2.

2. If algorithm Get outputs ⊥, then all bsm2,k̄j for j ∈ [λ] as computed in Get
are invalid, i.e. e(bsm1, pkBS,k̄j) 6= e(bsm2,k̄j , g2). This is by definition of Get.

3. If win3,2 occurs, then the polynomial f ′ computed by Get is exactly the same
polynomial as defined by the values coeff′j . This is because in this event we
assume gy = Y , and as xm2 6= ⊥ we know that gykj = Ykj for all j ∈ [λ].
Therefore, correctness of algorithm reconstq shows the claim.

Using these three observations, we now finish the statistical argument. For that,
consider the moment of the first query of the form Hc(xm1,1). It is clear that
xm1,1 = (Y, (ctj)j∈[2λ], (coeffj , coeff′j)j∈[λ]) information theoretically determines
the polynomials f, f ′ and therefore all yj = f ′(j) and pkBS,j for j ∈ [2λ]. Therefore,
xm1,1 also determines the values bsm2,j := ctj ⊕ H(yj) for all j ∈ [2λ]. By the

Sweep-UC 53

third observation, we know that these correspond to the values computed in Buy
and Get. Due to the first and second observation, and the fact that Buy output
xm2 6= ⊥ if win3,2 occurs, we therefore have

e(bsm1, pkBS,kj) = e(bsm2,kj , g2) for all j ∈ [λ],
e(bsm1, pkBS,k̄j) 6= e(bsm2,k̄j , g2) for all j ∈ [λ].

Thus, conditioned on win3,2, the value xm1,1 fully determines b0, . . . , bλ−1. This
means that win3,2 can only occur if for some query of the form Hc(xm1,1), the hash
value coincides with the bits b0, . . . , bλ−1 that are determined by xm1,1, which
happens with probability 1/2λ. As there are at most polynomially many queries
of this form, the probability of win3,2 is negligible, which ends the proof. ut

Proof (of Lemma 10 (Mal. Buyer - Adaptor CC)). Before we provide algorithms
Sim1,SimRO,Sim2,Sim3, we give a sequence of hybrid games, starting from the
security game against malicious buyers with bit b = 0 (i.e. computing xm1 and σb
honestly via algorithms Setup and Sell). The final game will be equivalent to the
security game against malicious buyers game with bit b = 1 for the simulators
we define then.
Game G0: We start with game G0, which is the security game against malicious
buyers with bit b = 0. To recall, in this game a key pair (pkBS, skBS) is sampled.
Then, pkBS is given to the adversary. The adversary also gets access to a signer
oracle O for BS simulating BS.S(skBS, ·), and an oracle O∗ which is as follows.
When called, it first samples a key pair (pks, sks) ← SIG.Gen(1λ) and outputs
pks. Then, it gets a key pkb, a transaction tx, and a message bsm1 ∈ G1 from
the adversary. It sets xpar := (pkBS, bsm1, pkb, pks, tx) and runs (xm1, St) ←
Setup(xpar, skBS, sks). In this scheme, xm1 has the form xm1 = (xm1,1, xm1,2)
with xm1,1 = (Y = gy, (ctj)j∈[2λ], (coeffj , coeff′j)j∈[λ]) and xm1,2 = (ykj)j∈[λ]).
Then, the oracle gives xm1 to the adversary, obtains xm2 = σ̃b, and runs Sell,
which aborts if PreVer(pkb, tx, gy, σ̃b) = 0 and computes σb := Adapt(pkb, σ̃b, y).
Further, the oracle aborts if σb is not valid, i.e. SIG.Ver(pkb, tx, σb) = 0. From now
on, we omit this check, which is redundant due to adaptability of SIG. In case there
is no abort, the oracle returns σb, σs to the adversary, where σs ← SIG.Sig(sks, tx).
In the end, the game outputs whatever the adversary outputs.

Overall, our goal is to move towards an indistinguishable game, in which
xm1 can be provided without access to skBS, and σs can be provided only by
knowing bsm2 ← BS.S(skBS, bsm1). We will only make changes to oracle O∗ and
the random oracles involved.
Game G1: In this game, we change the execution of algorithm Setup in oracle
O∗. Namely, in the beginning of the algorithms execution, we now sample
uniformly random bits b0, . . . , bλ−1. Then, we compute xm1,1 as before, and abort
if Hc(xm1,1) is already defined. Otherwise, we program Hc(xm1,1) := b0, . . . , bλ−1,
and continue as before. The probability of such an abort is negligible, due to the
entropy of Y . Thus, G0 and G1 are indistinguishable. Observe the effect of this
change: We can now define the values kj := 2j−bj−1 and k̄j := k̄j := 2j−(1−bj−1)
before we compute xm1,1.

54 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Game G2: In this game we introduce a bad event bad and let the game abort
if it occurs. The event occurs if in some interaction between the adversary and
oracle O∗, one of the following happens.

– bad1: When the game computes the values (ctj)j∈[2λ] during the execution of
Setup, the hash value H(yk̄j) is already defined for some j ∈ [λ].

– bad2: After the game computes the values (ctj)j∈[2λ] during the execution of
Setup, but before the game gives σs to the adversary in the same interaction,
a query H(yk̄j) is made for some j ∈ [λ].

We have
bad = bad1 ∨ bad2 =

∨
i∈[Q]

bad1,i ∨ bad2,i,

where Q is the number of queries to oracle O∗, and the event bad1,i (resp. bad2,i)
occurs if bad1 (resp. bad2) occurs in the ith interaction between the adversary
and O∗. As Q is polynomial, it is sufficient to bound bad1,i ∨ bad2,i for all i. To
this end, we sketch a reduction from the DLOG assumption in G. The reduction
gets as input a group element Y ∗. The reduction simulates G1 as it is, except
for the ith call to oracle O∗, and the random oracle simulation of H:

– In the ith call to oracle O∗, the reduction sets Y := Y ∗, instead of sampling
y←$ Zq and setting Y := gy.

– This means that it can not define the polynomial f ′ as in the game ex-
plicitly. Instead, the reduction runs ((ykj)j∈[λ], (coeff′j)j∈[λ])← polyGeng,q(λ,
Y, (kj)j∈[λ]).

– The reduction checks checks if event bad1,i occurs, by checking for each previous
random oracle query H(x) if gx = Yk̄j for some j ∈ [λ], where Yk̄j := Y ·∏λ
i=1(coeff′i)k̄

i
j . If bad1,i occurs, say for j∗ ∈ [λ], the reduction computes

the discrete logarithm y of Y via f ′(X) := reconstq((j∗, x), (ki, ykj)i∈[λ])and
y = f ′(0). Then, it outputs y as a DLOG solution. If bad1,i does not occur, it
continues by sampling all ctk̄j at random.

– The reduction can check if event bad2,i occurs similar to event bad1,i using the
check gx = Yk̄j for all j ∈ [λ] whenever the adversary queries H(x). If bad2,i
occurs, the reduction computes y in a similar way as above and outputs y as a
DLOG solution.

– If the reduction has to output σs to the adversary in the ith interaction, the
reduction aborts.

It is easy to see that until the reduction aborts, it perfectly simulates G1 for the
adversary. This is due to the correctness of algorithm polyGeng,q. Also, if bad1,i ∨
bad2,i occurs, the reduction does not abort and returns a valid forgery, following
from the correctness of algorithm reconstq. This implies that the probability of
bad1,i ∨ bad2,i is negligible, by the DLOG assumption in G.
Game G3: In game G3, we change how the values ctk̄j for j ∈ [λ] are computed
in executions of algorithm Setup in oracle O∗. Concretely, while they were
computed as ctk̄j = H(yk̄j)⊕ bsm2,k̄j before, we now sample them at random as

Sweep-UC 55

ctk̄j←$ {0, 1}`. Later, before giving σs to the adversary in the same interaction,
we let the game program H(yk̄j) := ctk̄j ⊕ bsm2,k̄j . Clearly, this does not change
the view of the adversary due to the bad event and abort that we introduced in
the previous game.
Game G4: In game G4, we change the oracle O∗ again. Namely, note that due
to the previous change, we do not need the values bsm2,k̄j to compute xm1, but
only once we output σs. This will allow us to compute xm1 without access to skBS.
Namely, we will now compute the values coeffj used during the computation of
xm1 as

((skBS,kj)j∈[λ], (coeffj)j∈[λ])← polyGeng2,p(λ, pkBS, (kj)j∈[λ]).

Later, before outputting σs to the adversary, we compute the values bsm2,k̄j via
by first computing bsm2 ← BS.S(skBS, bsm1), and then computing

bsm2,k̄j := reconstg2,k̄j
((0, bsm2), (ki, bsmki)i∈[λ]) for all j ∈ [λ].

Then, we continue as in G3.
Summarizing the implications of these changes, we now compute the messages

xm1 without access to skBS. Further, after we obtain xm2 = σb and before we out-
put σs, we do not need direct access to skBS, but only to bsm2 ← BS.S(skBS, bsm1).
This can easily be captured by algorithms Sim1,SimRO,Sim2,Sim3 as desired.
Then, G3 is identical to the security game against malicious buyers with bit
b = 1, showing the claim. ut

56 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

E Omitted Constructions of Redeem Protocols

E.1 Generic Construction.

We consider an arbitrary signature scheme SIG = (SIG.Gen,SIG.Sig,SIG.Ver) and
a blind signature scheme BS = (BS.Gen,BS.S,BS.U,BS.Ver) with unique signa-
tures. From that, we construct a redeem protocol RP[SIG,BS,PS] = (Promise,
VerPromise,Redeem) for SIG and BS. To this end, assume that signatures of
SIG are elements of {0, 1}` for some ` = `(λ). Let H : {0, 1}∗ → {0, 1}` be a
random oracle. We make use of a NIZK PS = (PProve,PVer) with zero-knowledge
simulator PS.Sim for the relation

R :=

(stmt,witn)

∣∣∣∣∣∣
stmt = (pkBS, pks, tx, sn, ct), witn = σBS,
BS.Ver(pkBS, sn, σBS) = 1
∧ SIG.Ver(pks, tx, ct⊕ H(sn, σBS)) = 1

 .

The protocol is presented in Figure 8. Completeness follows from the uniqueness
of BS. Security proofs are given in Supplementary Material F.

Lemma 11. If BS has unique signatures, SIG is smooth and PS is sound, then
RP[SIG,BS,PS] is secure against malicious services.

Lemma 12. Assume that PS is zero-knowledge and SIG is EUF-CMA secure.
Then RP[SIG,BS,PS] is secure against malicious users.

Promise(rpar, skBS, sks)
01 σBS ← BS.Sig(skBS, sn)
02 σs ← SIG.Sig(sks, tx)
03 ct := H(sn, σBS)⊕ σs
04 stmt := (pkBS, pks, tx, sn, ct)
05 π ← PProve(stmt, σBS)
06 return prom := (ct, π)

VerPromise(rpar, prom = (ct, π))
07 stmt := (pkBS, pks, tx, sn, ct)
08 return PVer(stmt, π)

Redeem(rpar, prom = (ct, π), σBS)
09 return σs := ct⊕ H(sn, σBS)

Fig. 8. The redeem protocol RP[SIG,BS,PS] = (Promise,VerPromise,Redeem) for a
signature scheme SIG and a blind signature scheme BS, where PS = (PProve,PVer) is a
NIZK for R and H : {0, 1}∗ → {0, 1}` and is a random oracle.

E.2 Construction for Schnorr Signatures using Cut-and-Choose

We give a construction of a redeem protocol for a Schnorr signature SIG defined
over cyclic group G with generator g of prime order q. We use the BLS blind
signature scheme. The random oracle H : {0, 1}∗ → G1 is the oracle for the blind
BLS signature. Moreover, we let Hc : {0, 1}∗ → {0, 1}λ, Hq : {0, 1}∗ → Z∗q and
Ĥq : {0, 1}∗ → Zq be random oracles. The resulting scheme RPcc

Schn[SIG,BS] is
given in Figure 9. The security proofs are given in Supplementary Material F.

Sweep-UC 57

Lemma 13. If BS has unique signatures, then RPcc
Schn[SIG,BS] is secure against

malicious services.

Lemma 14. If the Schnorr signature scheme SIG is sEUF-CMA secure, and the
DLOG assumption holds in G, then RPcc

Schn[SIG,BS] is secure against malicious
users.

58 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Promise(rpar, skBS, sks)
// Compute Schnorr signature
01 k←$ Z∗q , T := gk, e := Hq(T, tx), s := k − e · sks
// Share σBS and s
02 r1, . . . , rλ←$ Zp, r′1, . . . , r′λ←$ Zq, coeff′0 := gs

03 f(X) = skBS +
∑λ

j=1 rj ·X
j ∈ Zp[X], f ′(X) = s+

∑λ

j=1 r
′
j ·Xj ∈ Zq[X]

04 for j ∈ [2λ] : skj := f(j), sj := f ′(j), σj := H(sn)skj

05 for j ∈ [λ] : coeffj := g
rj
2 , coeff′j := gr

′
j

// Encrypt sj with σj
06 for j ∈ [2λ] : ctj := Ĥq(sn, σj)⊕ sj
// Cut-and-choose
07 prom1 := ((ctj)j∈[2λ], (coeff′0, e), (coeffj , coeff′j)j∈[λ])
08 b0 . . . bλ−1 := Hc(prom1)
09 for j ∈ [λ] : kj := 2j − bj−1
10 return prom := (prom1, prom2 := (σkj , skj)j∈[λ])

VerPromise(rpar, prom = (prom1, prom2 = (σBS,kj , skj)j∈[λ]))
// Verify cut-and-choose
11 b0 . . . bλ−1 := Hc(prom1)
12 for j ∈ [λ] :
13 kj := 2j − bj−1, pkBS,kj := pkBS ·

∏λ

i=1(coeffj)k
i
j

14 if ctkj 6= Ĥq(sn, σkj)⊕ skj ∨ g
skj 6=

∏λ

i=0(coeff′j)k
i
j : return 0

15 if BS.Ver(pkBS,kj , sn, σkj) = 0 : return 0
// Verify Schnorr signature in the exponent
16 T := coeff′0 · (pks)e
17 if e 6= Hq(T, tx) : return 0
18 return 1

Redeem(rpar, prom = (prom1, prom2), σBS)
19 b0 . . . bλ−1 := Hc(prom1)
// Reconstruct all shares
20 for j ∈ [λ] :
21 kj := 2j − bj−1, k̄j := 2j − (1− bj−1)
22 σk̄j := reconstg1,k̄j ((0, σBS), (ki, σki)i∈[λ])
23 sk̄j := ctk̄j ⊕ Ĥq(sn, σk̄j)
// Try to find correct s
24 for j ∈ [λ] :
25 s := reconstq((k̄j , sk̄j), (ki, ski)i∈[λ])
26 if coeff′0 = gs : return σs := (s, e)
27 return ⊥

Fig. 9. The cut-and-choose redeem protocol RPcc
Schn[SIG,BS] = (Promise,VerPromise,

Redeem) for Schnorr signature SIG and the blind BLS signature scheme BS. Here,
H : {0, 1}∗ → G1, Hc : {0, 1}∗ → {0, 1}λ, Hq : {0, 1}∗ → Z∗q and Ĥq : {0, 1}∗ → Zq are
random oracles.

Sweep-UC 59

F Security Proofs of Redeem Protocols

Remark. The key ideas and many steps of our proofs for redeem protocols are
very similar, which is why we reuse parts verbatim in different proofs. It is
recommended to understand the proofs for the generic construction first, before
reading the proofs for the cut-and-choose construction.

F.1 Proofs for the Generic Construction

Proof (of Lemma 11 (Mal. Service - Generic)). To prove the claim, we present
an algorithm Ext that takes as input parameters rpar, a promise message prom =
(ct, π), and a list Q of random oracle queries and outputs a blind signature σBS.
Algorithm Ext(rpar, prom,Q) is as follows:

1. Parse rpar = (pkBS, pks, tx, sn).
2. Find an entry ((sn, σBS),H(sn, σBS)) in Q, such that BS.Ver(pkBS, sn, σBS) = 1.
3. If such an entry is found, return σBS. Otherwise, return ⊥.

It remains to prove that for this algorithm Ext, the probability that the security
game outputs 1 is negligible. In the security game, we define the event win1
which occurs if VerPromise(rpar, prom) = 1 and Ext outputs ⊥. We also define
the event win2 which occurs if VerPromise(rpar, prom) = 1, algorithm Ext out-
puts a valid blind signature σBS, but for σs ← Redeem(rpar, prom, σBS) we have
SIG.Ver(pks, tx, σs) = 0. Note that whenever algorithm Ext does not output ⊥, it
outputs a valid blind signature for sn. Therefore, the game outputs 1 if and only
if win1 or win2 occurs.

First, we upper bound the probability of win1. If win1 occurs, we have
PVer(stmt, π) = 1 for stmt = (pkBS, pks, tx, sn, ct). Further, if Ext outputs ⊥,
then H(sn, σBS) is not yet defined, where σBS is the unique signature that satisfies
BS.Ver(pkBS, sn, σBS) = 1. Therefore, the value H(sn, σBS)⊕ ct is uniformly ran-
dom at this point. By smoothness of SIG, we therefore know that the probability
that SIG.Ver(pks, tx, ct⊕H(sn, σBS)) = 1 is negligible. Thus, assuming win1 occurs,
we have stmt /∈ Lλ with overwhelming probability, violating soundness of PS.
Therefore, the probability of win1 is negligible.

Next, we upper bound the probability of win2. Note that by definition of
algorithm Redeem, if win2 occurs, we have that

SIG.Ver(pks, tx, ct⊕ H(sn, σBS)) = 0,

where σBS is output by Ext and satisfies BS.Ver(pkBS, sn, σBS) = 1. Due to
uniqueness of BS, this implies that stmt /∈ Lλ, violating the soundness of PS.
Therefore, the probability of win2 is also negligible. ut

Proof (of Lemma 12 (Mal. User - Generic)). In order to prove the statement,
we provide algorithms Sim,SimRO and Ext that share state.

Simulatability. Algorithms Sim,SimRO simulate promise messages prom =
(ct, π) and the random oracle H. The algorithms share a list L, that stores tuples
(sn, ct, σs). The list is initially empty. Algorithm Sim(rpar, sks) is as follows:

60 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

1. Parse rpar = (pkBS, pks, tx, sn).
2. If there is an x such that H(sn, x) is already defined and BS.Ver(pkBS, sn, x) = 1,

then run σs ← SIG.Sig(sks, tx), and set ct := H(sn, x)⊕ σs. Otherwise, sample
ct←$ {0, 1}`.

3. Set stmt := (pkBS, pks, tx, sn, ct) and run π ← PSim(stmt).
4. Insert (sn, ct, σs) into L.
5. Output (ct, π).

Note that algorithm Sim needs to simulate the proof π via zero-knowledge here,
as it does not have the secret key skBS and therefore it may not know the witness
σBS to compute the proof honestly.

On a query (sn, x) for which H(sn, x) is not yet defined, algorithm SimRO

first checks if BS.Ver(pkBS, sn, x) = 1 and there is an entry of the form (sn, ct, σs)
in L. Note that there can be at most one such entry by the definition of the
security game in which Sim and SimRO run. If these two conditions hold, it sets
H(sn, x) := ct⊕ σs. Otherwise, it samples H(sn, x) at random.

It follows directly from the definition of zero-knowledge that (Sim,SimRO)
is a simulator against malicious users for RP[SIG,BS,PS], i.e. the security game
with b = 0 is indistinguishable from the security game with b = 1.

Extractability. We provide algorithm Ext that shares state with algorithms Sim
and SimRO as above, and extracts blind signatures σBS from signatures σs that
are computed from a (simulated) promise message. Algorithm Ext(rpar, sks, σs)
searches for a query (sn, σBS) for which H(sn, σBS) is defined and it holds that
BS.Ver(pkBS, sn, σBS) = 1. If it finds such a query, it returns σBS. Otherwise, it
returns ⊥.

We have to show that the probability that the security game for extractability
outputs 1 is negligible. Note that to do this, we only have to bound the probability
of the bad event bad defined in the security game. Recall that this bad event
occurs, if after getting message prom, the adversary A sends σs to oracle O
such that BS.Ver(pkBS, sn, σBS) = 0 and SIG.Ver(pks, tx, σs) = 1, where σBS ←
Ext(rpar, sks, σs). Due to the definition of algorithm Ext this means that the
hash value H(sn, σBS) is not defined, where σBS is the unique signature satisfying
BS.Ver(pkBS, sn, σBS) = 1. The probability that this bad event occurs in the i-th
interaction with oracle O can be bounded using a reduction from the EUF-CMA
security of SIG.

We sketch the reduction. The reduction gets as input a public key pk∗s. It
simulates the security game honestly, except for the i-th interaction. In this
interaction, it uses pks := pk∗s instead of sampling a fresh key pair (pks, sks).
Note that the corresponding secret key and a signature σs is never needed to
compute prom or to answer random oracle queries, assuming that the bad event
occurs. This is because sks is only used by algorithm Sim if H(sn, σBS) is defined.
Also, if the bad event occurs, the reduction can return (tx, σs), which is valid
if the bad event occurs. Note that the reduction never uses its signing oracle.
Therefore, the forgery (tx, σs) is fresh. ut

Sweep-UC 61

F.2 Proofs for the Schnorr Cut-and-Choose Construction

Proof (of Lemma 13 (Mal. Service - Schnorr)). To prove the claim, we present
an algorithm Ext. It takes as input parameters rpar, a promise message prom, and
a list Q of random oracle queries and outputs a blind signature σBS. Algorithm
Ext(rpar, prom,Q) is as follows:

1. Parse rpar = (pkBS, pks, tx, sn) and prom = (prom1, prom2).
2. Parse prom1 = ((ctj)j∈[2λ], (coeff′0, e), (coeffj , coeff′j)j∈[λ]).
3. Compute b0 . . . bλ−1 := Hc(prom1) and for j ∈ [λ] compute k̄j := 2j−(1−bj−1).
4. For each j ∈ [λ] compute pkBS,k̄j := pkBS ·

∏λ
i=1(coeffj)k̄

i
j .

5. Find an index j∗ ∈ [λ] and an entry ((sn, σk̄j∗), Ĥq(sn, σk̄j∗)) in the list Q,
such that BS.Ver(pkBS,k̄j∗ , sn, σk̄j∗) = 1.

6. If such a σk̄j∗ is found for j∗ ∈ [λ], return

reconstg1,0((k̄j∗ , σk̄j∗), (kj , σkj)j∈[λ]).

Otherwise, return ⊥.

It remains to prove that for this algorithm Ext, the probability that the security
game outputs 1 is negligible. In the security game, we define the event win1
which occurs if VerPromise(rpar, prom) = 1 and Ext outputs ⊥. We also define
the event win2 which occurs if VerPromise(rpar, prom) = 1, algorithm Ext outputs
a valid blind signature σBS for sn, but for σs ← Redeem(rpar, prom, σBS) we have
SIG.Ver(pks, tx, σs) = 0. Note that whenever algorithm Ext does not output ⊥, it
outputs a valid blind signature for sn. Therefore, the game outputs 1 if and only
if win1 or win2 occurs.

First, we upper bound the probability of win1. To this end, consider the
following two events partitioning win1:

– win1,1: win1 occurs and there is some ĵ ∈ [λ] such that the adversary never
queried Ĥq(sn, σkĵ) before querying Hc(prom1).

– win1,2: win1 occurs and win1,1 does not occurs, i.e. win1 occurs, and for all
j ∈ [λ], the adversary queried Ĥq(sn, σkj) before querying Hc(prom1).

Clearly, we can bound the probability of win1 by bounding the probability
of win1,1 and win1,2 separately. We start with event win1,1. We can assume
that VerPromise(rpar, prom) = 1 and therefore gskj =

∏λ
i=0(coeff′j)k

i
j for all

j ∈ [λ]. Note that when the adversary queries Hc(prom1), the values skĵ and
pkBS,kj are information theoretically fixed by the values coeff′0, (coeff′j)j and
pkBS, (coeffj)j , respectively. Therefore, the query Hc(prom1) also fixes the value
of ∆ := ctkĵ ⊕ skĵ . If VerPromise(rpar, prom) = 1, this value must be equal to
Ĥq(sn, σkĵ). The probability that after ∆ is fixed, any of the polynomial many
queries to Ĥq evaluates to ∆ is negligible. Thus, the probability of win1,1 is
negligible. Next, we bound the probability of event win1,2. If this event occurs, we
know that at the moment where the adversary queries Hc(prom1), it holds that

62 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

for all j ∈ [λ], Ĥq(sn, σkj) has been queried, and Ĥq(sn, σk̄ĵ) has not been queried
(due to the definition of algorithm Ext and win1). Thus, the bits b0, . . . , bλ−1 are
fixed before Hc(prom1) is queried, and Hc(prom1) = b0, . . . , bλ−1. This happens
with negligible probability 1/2λ.

Next, we bound the probability of event win2. By definition of algorithm
VerPromise we know that Hq(coeff′0 · (pks)e, tx) = e. Thus, if win2 occurs, we
know that Redeem did not return (s, e) such that gs = coeff′0. This can only
happen if for all j ∈ [λ], we have sk̄j 6= f ′(k̄j), where f ′ is the polynomial that
is defined by the values coeff′0, (coeff′j)j . As σBS is output by Ext and satisfies
BS.Ver(pkBS, sn, σBS) = 1, we know that the values σk̄j computed in Redeem are
the unique values satisfying BS.Ver(pkBS,k̄j , sn, σk̄j) = 1. This means that both
the values skj = ctkj ⊕ Ĥq(sn, σkj) and sk̄j = ctk̄j ⊕ Ĥq(sn, σk̄j) are information
theoretically fixed at the first time Hc(prom1) is queried. At the same time, we
have sk̄j 6= f ′(k̄j) and skj = f ′(kj) for all j ∈ [λ], uniquely defining the bits
b0, . . . bλ−1. Thus, the probability that win2,1 occurs is at most the probability
that Hc(prom1) = b0, . . . bλ−1, which is negligible. ut

Proof (of Lemma 14 (Mal. User - Schnorr)). To prove the claim, we need provide
algorithms Sim,SimRO and Ext that share state.

Simulatability. Before we provide algorithms Sim,SimRO, we give a sequence
of hybrid games, starting from the simulatability game with bit b = 0 (i.e.
computing prom via algorithm Promise). The final game will be equivalent to the
simulatability game with bit b = 1 for the simulators we define then.
Game G0: We start with game G0, which is the simulatability game with
b = 0. To recall, in this game, a pair of blind signature keys (pkBS = gskBS

2 , skBS)
is sampled and given to the adversary. Then, the adversary gets access to an
oracle O that on input sn aborts if sn has already been submitted. Other-
wise, it samples Schnorr signing keys (pks = gsks , sks) and gives pks to the
adversary, receiving tx in return. It then defines rpar := (pkBS, pks, tx, sn) and
outputs prom ← Promise(rpar, skBS, sks). For this scheme, prom has the form
prom := (prom1, prom2 := (σkj , skj)j∈[λ]) with prom1 := ((ctj)j∈[2λ], (coeff′0, e),
(coeffj , coeff′j)j∈[λ]). Additionally, the adversary gets access to random oracles
Ĥq,H,Hc,Hq provided in the standard lazy manner.
Game G1: We add a change to the computation of prom. Namely, in the begin-
ning of algorithm Promise, the game samples random bits b0, . . . , bλ1←$ {0, 1}.
Then, it computes prom1 as before. If Hc(prom1) is already defined, the game
aborts. Otherwise, it sets Hc(prom1) := b0, . . . , bλ1 and continues the computation
of prom as before. Note that the probability of such an abort is negligible, due
to the entropy of coeff′0 = gk · pk−es . Thus, G0 and G1 are indistinguishable.
Observe the effect of this change: We can now define the values kj := 2j − bj−1
and k̄j := k̄j := 2j − (1− bj−1) before we compute prom1.
Game G2:We change how the values ctk̄j for j ∈ [λ] are computed. Namely, note
that they were defined as ctk̄j := Ĥq(sn, σk̄j)⊕ sk̄j before, where sk̄j := f ′(k̄j),
and σk̄j is the unique value satisfying BS.Ver(pkBS,k̄j , sn, σk̄j) = 1. From now on,

Sweep-UC 63

the game first checks if Ĥq(sn, σk̄j) is already defined. Note that the game can do
that without knowing skBS or σk̄j , just by iterating over all queries and running
BS.Ver. If it is already defined, the game sets ctk̄j := Ĥq(sn, σk̄j)⊕sk̄j . Otherwise,
it samples a random ctk̄j←$ Zp, and for any subsequent random oracle query
Ĥq(sn, σk̄j) with BS.Ver(pkBS,k̄j , sn, σk̄j) = 1, it sets Ĥq(sn, σk̄j) := ctk̄j ⊕ sk̄j . It
is easy to see that this does not change the view of the adversary. Note that from
now on, the values skBS, (skk̄j)j are no longer needed, except for the computation
of coeffj .
Game G3: We change the computation of prom again. The effect of this change
will be that the key skBS is no longer needed. Namely, we change how the values
coeffj are computed. They are now computed as

((skkj , coeffj)j∈[λ])← polyGeng2,p(λ, pkBS, (kj)j∈[λ])

It is clear that game G2 and G3 are indistinguishable.
It is easy to see that in G3, the oracle O can be run without using skBS. In

other words, there are simulators Sim,SimRO that share state, such that SimRO

controls the random oracles as in G3, and Sim(rpar, sks) computes the values
prom in oracle O as in G3. This shows simulatability.

Extractability. Next, we show extractability. To this end, we provide algorithm
Ext that shares state with algorithms Sim and SimRO as above, and extracts
blind signatures σBS from signatures σs that are computed from a (simulated)
promise message. Algorithm Ext(rpar, sks, σs) for rpar = (pkBS, pks, tx, sn) works
as follows:

1. Let sn, prom1, prom2, b0 . . . bλ−1 be as in the execution of Sim that took place
in the same oracle call.

2. For j ∈ [λ] compute k̄j := 2j − (1− bj−1).
3. For each j ∈ [λ] compute pkBS,k̄j := pkBS ·

∏λ
i=1(coeffj)k̄

i
j

4. Find an index j∗ ∈ [λ] and an entry (sn, σk̄j∗) in the list of queries to Ĥq such
that BS.Ver(pkBS,k̄j∗ , sn, σBS,k̄j∗) = 1.

5. If such a σBS,k̄j∗ is found for some j∗ ∈ [λ], return

reconstg1,0((k̄j∗ , σk̄j∗), (kj , σkj)j∈[λ]).

Otherwise, return ⊥.

We have to show that the probability that the security game for extractability
outputs 1 is negligible. Note that this game is as G3, but now after outputting
prom, oracle O gets σs in return. The game outputs 1 if in any of these inter-
actions, the event bad occurs, i.e. it holds that BS.Ver(pkBS, sn, σBS) = 0 and
SIG.Ver(pks, tx, σs) = 1, where σBS ← Ext(rpar, sks, σs). We distinguish two cases.
In the first case, the adversary reuses the exact signature (s, e) that the game
computes during the generation of prom. In this case, the adversary implicitly
breaks the DLOG assumption by extracting s from coeff′0 = gs. In the second

64 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

case, the adversary comes up with a different signature (s, e), thereby breaking
strong unforgeability of Schnorr signatures.

More precisely, we partition the bad event bad into the following two sub-
events:
– bad1: bad occurs and σs is sent to O by A, initiated with sn and there exists

an entry such that σs = (s, e).
– bad2: bad occurs and the returned signature σs is fresh, i.e. σs 6= (s, e).
We first bound the the probability that event bad2 occurs in the ith interaction
with oracle O. This is done using a reduction from the sEUF-CMA security of SIG.
We sketch the reduction. The reduction gets as input a public key pk∗s and access
to a signing oracle. It simulates the security game honestly, except for the ith
interaction. In this interaction, it uses pks := pk∗s instead of sampling a fresh key
pair (pks, sks). It also gets the Schnorr signature (s, e) using the signing oracle.
Finally, if event bad2 occurs, the reduction can return (tx, σs), which is a valid
forgery. Note that in such a case we have σs 6= (s, e). Therefore, the reduction
breaks sEUF-CMA security of SIG.

Next, we want to bound the probability of event bad1. To do that, we first
need to eliminate the dependency on s. This is done using two more hybrids.
Game G4: This is as the extractability game, but assuming the are at most qO
queries to the oracle O, the game picks an index i←$ [qO] and aborts in case the
event bad1 does not occur in the ith query to O. As qO is polynomial and the
view of the adversary is independent of i, it is sufficient to bound the probability
of bad1 in game G4.
Game G5: This is as G4, but we change how prom is computed in the ith
query to O. Namely, the game first samples coeff′0←$ G, then samples e←$ Z∗q ,
and aborts if Hq(coeff′0 · (pks)e, tx) is already defined. Otherwise, it programs
Hq(coeff′0 · (pks)e, tx) := e and continues the computation of prom as before. If the
game ever has to access sk̄j for some j ∈ [λ] (recall that this happens if Ĥq(sn, σk̄j)
with BS.Ver(pkBS,k̄j , sn, σk̄j) = 1 is ever queried), then it aborts. Observe that
the probability of the first abort is negligible due to the entropy of coeff′0, and
the second abort only occurs if bad does not occur in the ith interaction.

We show that the probability of event bad1 occurring in game G5 is negligible,
using a reduction to the DLOG assumption. We sketch the reduction. It gets
as input the instance Y = gα. It simulates game G5 honestly, except for the
ith interaction of A with the oracle O. In this interaction, it sets coeff′0 := Y
and continues the simulation as in game G5. Note that the polynomial f ′ and
the discrete logarithm of coeff′0 is never needed for that, due to the previous
change. In the end, the adversary returns a signature σs for which we know that
SIG.Ver(pks, tx, σs) = 1 and because of event bad1 we know that σs = (α, e). The
reduction can return α as the solution. ut

F.3 Proofs for the BLS Cut-and-Choose Construction

Lemma 15. Let G1,G2 be cyclic groups of prime order p > 2λ with respective
generators g1 ∈ G1, g2 ∈ G2. For any two elements h, h̄ ∈ G1 consider the

Sweep-UC 65

function

Fh,h̄ : Z2
p → G2

1 ×G2, (s0, sks) 7→ (hs0 · h̄sks , gs01 , g
sks
2).

For any algorithm A consider the following game:

1. Sample h, h̄←$ G1 and run A on input h, h̄.
2. Obtain (ct0, coeff′0, pks) ∈ G2

1 ×G2 and (T1, T2, T3) ∈ G2
1 ×G2 from A.

3. If (ct0, coeff′0, pks) ∈ Fh,h̄(Z2
p), return 0.

4. Sample e←$ Zp and give e to A.
5. Obtain (π0, π1) ∈ Z2

p from A.
6. Return 1 if T0 = hπ0 · h̄π1 · ct−e0 , T1 = gπ0

1 · (coeff′0)−e, and T2 = gπ1
2 · (pks)−e.

Otherwise, return 0.

Then, for any algorithm A, the probability that the above game outputs 1 is
negligible.

Proof. Note that if the game outputs 1, we know that A returned a tuple
(ct0, coeff′0, pks) which is not in the image of Fh,h̄. We consider two cases. In the
first case, assume that for each tuple (T1, T2, T3) ∈∈ G2

1 ×G2, there is at most
one e ∈ Zp such that there exists a response (π0, π1) ∈ Z2

p that lets the game
output 1. In this case, it is clear that the probability of A is at most 1/|Zp|,
which is negligible.

In the second case, assume that there is a tuple (T1, T2, T3) ∈∈ G2
1×G2, such

that there are at least two distinct e 6= e′ in Zp, such that there exist responses
(π0, π1), (π′0, π′1) ∈ Z2

p that let the game output 1. We show that this case can
not occur by deriving that in this case, (ct0, coeff′0, pks) is in the image of Fh,h̄.
Namely, from the existence of such responses for the same tuple (T1, T2, T3), we
obtain

hπ0 · h̄π1 · ct−e0 = T0 = hπ
′
0 · h̄π′1 · ct−e

′

0

gπ0
1 · (coeff′0)−e = T1 = g

π′0
1 · (coeff′0)−e′

gπ1
2 · (pks)−e = T2 = g

π′1
2 · (pks)−e

′
.

Rearranging terms, we get that(
π0 − π′0
e− e′

,
π1 − π′1
e− e′

)
is a pre-image of (ct0, coeff′0, pks) under Fh,h̄. ut

Proof (of Lemma 5 (Mal. Service - BLS)). The proof is almost identical to the
proof of Lemma 13, and we take it partially verbatim. To prove the claim, we
present an algorithm Ext that takes as input parameters rpar, a promise message
prom, and a list Q of random oracle queries and outputs a blind signature σBS.
The algorithm is as follows:

1. Parse rpar = (pkBS, pks, tx, sn) and prom = (prom1, prom2).
2. Let prom1 = (ct0, (ctj)j∈[2λ], (π0, π1, e), coeff′0, (coeffj , coeff′j)j∈[λ]).

66 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

3. Compute b0 . . . bλ−1 := Hc(prom1) and for all j ∈ [λ] compute k̄j := 2j − (1−
bj−1).

4. For each j ∈ [λ] compute pkBS,k̄j := pkBS ·
∏λ
i=1(coeffj)k̄

i
j .

5. Find an index j∗ ∈ [λ] and an entry ((sn, σk̄j∗), Ĥ(sn, σk̄j∗)) in the list Q, such
that BS.Ver(pkBS,k̄j∗ , sn, σk̄j∗) = 1.

6. If such a σk̄j∗ is found for some j∗ ∈ [λ], return

reconstg1,0((k̄j∗ , σk̄j∗), (kj , σkj)j∈[λ]).

Otherwise, return ⊥.

It remains to prove that for this algorithm Ext, the probability that the security
game outputs 1 is negligible. In the security game, we define the event win1
which occurs if VerPromise(rpar, prom) = 1 and Ext outputs ⊥. We also define
the event win2 which occurs if VerPromise(rpar, prom) = 1, algorithm Ext outputs
a valid blind signature σBS for sn, but for σs ← Redeem(rpar, prom, σBS) we have
SIG.Ver(pks, tx, σs) = 0. Note that whenever algorithm Ext does not output ⊥, it
outputs a valid blind signature for sn. Therefore, the game outputs 1 if and only
if win1 or win2 occurs.

First, we upper bound the probability of win1. To this end, consider the
following two events partitioning win1:

– win1,1: win1 occurs and there is some ĵ ∈ [λ] such that the adversary never
queried Ĥ(sn, σkĵ) before querying Hc(prom1).

– win1,2: win1 occurs and win1,1 does not occurs, i.e. win1 occurs, and for all
j ∈ [λ], the adversary queried Ĥ(sn, σkj) before querying Hc(prom1).

Clearly, we can bound the probability of win1 by bounding the probability
of win1,1 and win1,2 separately. We start with event win1,1. We can assume
that VerPromise(rpar, prom) = 1 and therefore g

skj
1 =

∏λ
i=0(coeff′j)k

i
j for all

j ∈ [λ]. Note that when the adversary queries Hc(prom1), the values skĵ and
pkBS,kj are information theoretically fixed by the values coeff′0, (coeff′j)j and
pkBS, (coeffj)j , respectively. Therefore, the query Hc(prom1) also fixes the value
of ∆ := ctkĵ · h

−sk
ĵ . If VerPromise(rpar, prom) = 1, this value must be equal to

Ĥ(sn, σkĵ). The probability that after ∆ is fixed, any of the polynomial many
queries to Ĥ evaluates to ∆ is negligible. Thus, the probability of win1,1 is
negligible. Next, we bound the probability of event win1,2. If this event occurs, we
know that at the moment where the adversary queries Hc(prom1), it holds that
for all j ∈ [λ], Ĥ(sn, σkj) has been queried, and Ĥ(sn, σk̄ĵ) has not been queried
(due to the definition of algorithm Ext and win1). Thus, the bits b0, . . . , bλ−1 are
fixed before Hc(prom1) is queried, and Hc(prom1) = b0, . . . , bλ−1. This happens
with negligible probability 1/2λ.

Next, we bound the probability of event win2. Consider the values hkj , hk̄j
for j ∈ [λ] as in the definition of algorithm Redeem. We partition win2 into the
following sub-events:

Sweep-UC 67

– win2,1: win2 occurs and ct0 = hf
′(0) · H(tx)sks .

– win2,2: win2 occurs and ct0 6= hf
′(0) · H(tx)sks .

First, assume that win2,1 occurs. In this case, we know that hk̄j 6= hf
′(k̄j) for

all j ∈ [λ], where f ′ is the polynomial that is defined by the values coeff′j that
are contained in prom. We know that σBS is a valid blind signature for sn, and
therefore the values σk̄j computed in Redeem are the unique valid blind signatures
for sn with respect to pkBS,kj . Note that this means that both the values hkj =
ctkj/Ĥ(sn, σkj) and hk̄j = ctk̄j/Ĥ(sn, σk̄j) are information theoretically fixed at
the first time Hc(prom1) is queried. At the same time, we have hkj = hf

′(kj)

and hk̄j 6= hf
′(k̄j) for all j ∈ [λ], uniquely defining the bits b0, . . . bλ−1. Thus,

the probability that win2,1 occurs is at most the probability that Hc(prom1) =
b0, . . . bλ−1, which is negligible. Finally, we can bound the probability of win2,2
by Lemma 15. ut
Proof (of Lemma 6 (Mal. User - BLS)). To prove the claim, we need provide
algorithms Sim,SimRO and Ext that share state.

Simulatability. Before we provide algorithms Sim,SimRO, we give a sequence
of hybrid games, starting from the simulatability game with bit b = 0 (i.e.
computing prom via algorithm Promise). The final game will be equivalent to the
simulatability game with bit b = 1 for the simulators we define then.
Game G0: We start with game G0, which is the simulatability game with
b = 0. To recall, in this game, a pair of blind signature keys (pkBS = gskBS

2 , skBS)
is sampled and given to the adversary. Then, the adversary gets access to an
oracle O that on input sn aborts if sn has already been submitted. Other-
wise, it samples signing keys (pks = gsks

2 , sks) and gives pks to the adversary,
receiving tx in return. It then defines rpar := (pkBS, pks, tx, sn) and outputs
prom ← Promise(rpar, skBS, sks). For this scheme, prom has the form prom :=
(prom1, prom2 := (σkj , skj)j∈[λ]) with prom1 := (ct0, (ctj)j∈[2λ], (π0, π1, e), coeff′0,
(coeffj , coeff′j)j∈[λ]). Additionally, the adversary gets access to random oracles
Ĥ,H,Hc,Hp provided in the standard lazy manner.
Game G1: In this game, we change how the proofs π0, π1, e are computed.
Namely, they are from now on simulated by sampling π0, π1, e←$ Z∗p, setting
T0 := hπ0 ·H(tx)π1 · ct−e0 , T1 := gπ0

1 · (coeff′0)−e, and T2 := gπ1
2 · (pks)−e, and then

aborting if Hp(T0, T1, T2, h,H(tx), ct0, coeff′0, pks) is already defined, and setting
Hp(T0, T1, T2, h,H(tx), ct0, coeff′0, pks) := e otherwise. Due to the entropy of T1,
the probability of a potential abort is negligible. This implies that G0 and G1
are indistinguishable.
Game G2: We change how queries of the form Ĥ(sn) are answered. Namely,
from now on, whenever the hash value is not yet defined, the game first samples
a random hsn←$ Zp, and then sets Ĥ(sn) := ghsn

1 . Clearly, this does not change
the view of the adversary.
Game G3: We change how the component ct0 of prom is computed. Namely,
note that ct0 has been computed via

ct0 = hs0 · σs = Ĥ(sn)s0 · σs = ghsns0 · σs = coeff′hsn
0 · σs.

68 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

before. From now on, we compute ct0 directly as ct0 := coeff′hsn
0 · σs. Clearly, this

is only a conceptual change.
Game G4: We add another change to the computation of prom. Namely, we now
sample bits b0, . . . , bλ−1←$ {0, 1} in the beginning of algorithm Promise. Then,
we compute prom1 as before and abort if Hc(prom1) is already defined. Otherwise,
we set Hc(prom1) := b0, . . . , bλ−1 and continue. Note that the probability of
such an abort is negligible, due to the entropy of π0. Thus, G3 and G4 are
indistinguishable. Observe the effect of this change: We can now define the values
kj := 2j − bj−1 and k̄j := k̄j := 2j − (1− bj−1) before we compute prom1.
Game G5:We change how the values ctk̄j for j ∈ [λ] are computed. Namely, note
that they were defined as ctk̄j := Ĥ(sn, σk̄j) ·h

sk̄j before, where sk̄j := f ′(k̄j), and
σk̄j is the unique value satisfying BS.Ver(pkBS,k̄j , sn, σk̄j) = 1. From now on, the
game first checks if Ĥ(sn, σk̄j) is already defined. Note that the game can do that
without knowing skBS or σk̄j , just by iterating over all queries and running BS.Ver.
If it is already defined, the game sets ctk̄j := Ĥ(sn, σk̄j) · coeff′hsn

k̄j
. Otherwise,

it samples a random ctk̄j←$ G1, and for any subsequent random oracle query
Ĥ(sn, σk̄j) with BS.Ver(pkBS,k̄j , sn, σk̄j) = 1, it sets Ĥ(sn, σk̄j) := coeff′hsn

k̄j
/ctk̄j . It

is easy to see that this does not change the view of the adversary. Note that
from now on, the values skBS, (skk̄j , sk̄j)j are no longer needed, except for the
computation of coeffj , coeff′j .
Game G6: In this game, we eliminate the last dependency on value skBS, by
computing the values coeffj , coeff′j via

((skkj , coeffj)j∈[λ])← polyGeng2,p(λ, pkBS, (kj)j∈[λ]),
((skj , coeff′j)j∈[λ])← polyGeng1,p(λ, coeff′0, (kj)j∈[λ]).

Clearly, this does not change the view of the adversary.
It is easy to see that in G6, the oracle O can be run without using skBS. In

other words, there are simulators Sim,SimRO that share state, such that SimRO

controls the random oracles as in G6, and Sim(rpar, sks) computes the values
prom in oracle O as in G6. This shows simulatability.

Extractability. For extractability, consider the following algorithm Ext that
shares state with algorithms Sim and SimRO as above, and extracts blind sig-
natures σBS from signatures σs that are computed from a (simulated) promise
message prom. Algorithm Ext(rpar, sks, σs) for rpar = (pkBS, pks, tx, sn) is defined
as follows:

1. Let sn, prom1, prom2, b0 . . . bλ−1 be as in the execution of Sim that took place
in the same oracle call.

2. For j ∈ [λ] compute k̄j := 2j − (1− bj−1).
3. For each j ∈ [λ] compute pkBS,k̄j := pkBS ·

∏λ
i=1(coeffj)k̄

i
j

4. Find an index j∗ ∈ [λ] and an entry (sn, σk̄j∗) in the list of queries to Ĥ such
that BS.Ver(pkBS,k̄j∗ , sn, σBS,k̄j∗) = 1.

Sweep-UC 69

5. If such a σBS,k̄j∗ is found for some j∗ ∈ [λ], return

reconstg1,0((k̄j∗ , σk̄j∗), (kj , σkj)j∈[λ]).

Otherwise, return ⊥.

We have to show that the probability that the security game for extractability
outputs 1 is negligible. To show this, we continue our sequence of hybrids. The
overall idea is to reduce to EUF-CMA security of SIG. To this end, our sequence
of hybrids eliminates the dependency on sks.
Game G7: Game G7 is the extractability security game with simulators Sim and
SimRO and algorithm Ext. Note that this means that G7 is as G6, but now after
outputting prom, oracle O gets σs in return. The game outputs 1 if in any of these
interactions, the event bad occurs, i.e. it holds that BS.Ver(pkBS, sn, σBS) = 0 and
SIG.Ver(pks, tx, σs) = 1, where σBS ← Ext(rpar, sks, σs).
Game G8: Assuming the are at most qO queries to the oracle O, the game picks
an index i←$ [qO] and aborts in case the event bad does not occur in the ith
query to O. As qO is polynomial and the view of the adversary is independent of
i, it is sufficient to bound the probability of bad in game G8.
Game G9: Assuming the are at most qĤ queries to the oracle Ĥ, the game picks
an index ih←$ [qĤ] and aborts in case the ihth query is for a sn′ such that the
ith query to O used a different sn 6= sn′. As qĤ is polynomial and the view of the
adversary is independent of ih, it is sufficient to bound the probability of bad in
game G9.
Game G10: In this game, we change how the promise message prom for the ith
query with sn of the adversary to O. Precisely, we change the way we compute
ciphertext ct0 to ct0 := K, for a randomK←$ G1. This change is indistinguishable
under the DDH assumption in G1. For that we sketch a reduction. Let (gα1 , g

β
1 , g

γ
1)

be an instance of the DDH assumption. The reduction computes prom honestly
as defined in Game G9, but for the ith interaction it sets K := gγ1 · σs and
coeff′0 := gβ1 . Moreover, the reduction changes the way oracle Ĥ is simulated in
the ihth query. Namely, for this query, it sets h := gα1 . Note that the only place
where value hsn = α is used is in if the adversary makes query Ĥ(sn, σk̄j) with
BS.Ver(pkBS,k̄j , sn, σk̄j) = 1 for some j ∈ [λ]. However, if bad occurs, this will
never happen. If bad occurs, the reduction outputs 1, and 0 otherwise. It follows
that if (gα1 , g

β
1 , g

γ
1) is a DDH tuple then conditioned on event bad the reduction

simulates G9 and G10 otherwise.
Finally, it remains to bound the probability of event bad in game G10. The

intuition is now that the computation of prom in the ith query to oracle O in
G10 does not knowledge of a valid signature σs and we can bound the probability
of event bad using a reduction from the EUF-CMA security of SIG.

We sketch the reduction. The reduction gets as input a public key pk∗s. It
simulates the security game honestly as in G10. In the ith interaction, it uses
pks := pk∗s instead of sampling a fresh key pair (pks, sks). The corresponding
secret key and a signature σs is never needed as already mentioned. Now in case

70 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

event bad occurs, the reduction can return (tx, σs). Note that the reduction never
used its signing oracle. Therefore, the forgery (tx, σs) is fresh. ut

Sweep-UC 71

G Security Proof of Sweep-UC

Definition 32. Let EXC be an exchange for SIG and BS as in Definition 1. We
say that EXC is a secure exchange for SIG and BS if it is secure against malicious
buyers and it is secure against malicious sellers.

Definition 33. Let RP be an redeem protocol for SIG and BS as in Definition 4.
We say that RP is a secure redeem protocol for SIG and BS if it is secure against
malicious services and it is secure against malicious users.

Theorem 1. Let SIG be a signature scheme with public key entropy ω(log(λ)).
Let BS be a two-move blind signature scheme with unique signatures. Let EXC be
a secure exchange for SIG and BS with well distributed signatures. Let RP be a
secure redeem protocol for SIG and BS.

Then, the protocol Sweep-UC realizes the functionality Fux in the synchronous
(LSIG,Fs)-hybrid model with static corruptions.

Proof. To prove the statement, for any adversary A, we have to present a
simulator S, such that for any environment Z the real world execution and the
ideal world simulation is indistinguishable. We will consider two cases separately.
In the first case, the sweeper W is not corrupted, i.e. it is honest. In the second
one, it is corrupted. Also, we follow the standard methodology of assuming that
A is the dummy adversary, and thus we omit A from our description and talk
about corrupted parties instead.
Case 1: Honest Sweeper. Consider the case of an honest party W. We will
first describe the setting for which we have to give a simulator. Then, we present
the overall idea and detailed description of the simulator. Finally, we show
indistinguishability from the real world execution.

Setting. The environment can call interfaces Register, AddPayment, GetPayment
for honest parties. Precisely, it calls dummy parties which forward these calls
to the ideal functionality Fux. Especially, a dummy party corresponding to the
sweeper W forwards messages that are exchanged between Fux and W to the
environment. When honest parties communicate, they do that using the secure
channel by definition of the protocol. Therefore, we can assume that the messages
sent between honest parties do not have to be simulated. Corrupted parties P
are controlled by the environment. When a corrupted party wants to interact
with the sweeper W, the simulator S takes the role of W in this interaction, i.e.
it simulates the behavior ofW to the corrupted party. To make these interactions
consistent with the information that the environment obtains via the dummy
parties, the simulator can access the interface of such corrupted parties P at the
ideal functionality Fux. Additionally, the ideal functionality Fux communicates
with the global ledger functionality LSIG. Also, corrupted parties may call this
functionality LSIG. Finally, corrupted parties communicate with the functionality
Fs, which is provided by the simulator S. Thus, calls to Fs are answered by S,
and S has to send the messages that corrupted parties expect on behalf of Fs.

72 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Idea. We present an intuitive overview of our simulator. Note that at a high level,
what we want to show is that malicious users can not steal coins from the honest
sweeper. In other words, it should not happen that more shared addresses are
closed in sub-protocol GetPayment than in sub-protocol AddPayment. This is also
the main bad event that we have to rule out in our simulation. Intuitively, this
should follow from the one-more unforgeability of the blind signature scheme
BS. To capture this intuition formally, we need to give a reduction to one-more
unforgeability. This reduction should satisfy two properties: First, it should
query its signing oracle if and only if a shared address is closed in sub-protocol
AddPayment, i.e. if the sweeper gets coins from a party. Second, whenever a
shared address is closed in GetPayment, it should obtain a valid blind signature.
Then, if the above bad event occurs, the reduction can output a one-more forgery.

To ensure the first property, we have to avoid using the secret key skBS to
compute the promise message prom in the sub-protocol Register. This can be
established using the simulatability of the redeem protocol. Then, we also have
to avoid using the secret key skBS in the exchange protocol before the sweeper
obtains a valid signature to close the shared address. This is possible using the
security of the redeem protocol.

For the second property, we use the extraction that is guaranteed by the
security of the redeem protocol. This allows us to extract a blind signature
whenever a malicious user closes a shared address to get coins from the sweeper.

A second obstacle that we have to face is induced by the use of an anonymous
channel and the blindness of BS. Namely, when a corrupted party interacts with
the sweeper in AddPayment, the simulator should call the corresponding interface
at the ideal functionality. However, at this point we do not know which party
actually interacts and which key pkb it pays to. The solution is to just call the
interface on random values, and later change this payment using the interface
ChangePayment.

Beyond that, there are also some straight-forward things that the simulator
has to take care of. For example, when an honest party registers, in the real
world the functionality Fs would send a message about the opening of a shared
address to all parties. Therefore, in the ideal world simulation, the simulator has
to provide a similar message to the adversary.

Simulator Description. The simulator makes use of simulators and extractors
RP.Sim,RP.SimRO,RP.Ext for the redeem protocol RP and simulators EXC.Sim1,
EXC.SimRO,EXC.Sim2,EXC.Sim3 for the exchange protocol EXC. To give a more
formal description of the simulator S, we first describe the data structures that
it holds. All of these are initially empty.

– List DSpend: This list contains nonces sn that parties P submit in Register,
similar to the list with the same name in the actual protocol. Therefore, these
nonces can either come from corrupted P , or be sampled by S itself, to simulate
the behavior of an honest P.

– Map Shared: This maps tuples (P, pkb) to tuples (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P , sn).
It is used by S to store information about the Register(pkb) sub-protocol.

Sweep-UC 73

– List Open: This list contains tuples (pka, pkc). Whenever a corrupted party P
completes the AddPayment sub-protocol with S (in the role of W) for public
key pka, the simulator samples a random key pkc and inserts such an entry into
the list. Entries are removed from the list whenever a corrupted P successfully
closes a shared address in the GetPayment sub-protocol.

Next, we give an overview of the bad events, for which S will abort the entire
execution if they occur.

– bad1: This event occurs if a random nonce is used twice, i.e. an honest party P
(simulated by S) samples a nonce sn in sub-protocol Register that is already
in DSpend.

– bad2: Informally, this event occurs if the corrupted parties break security of
the redeem protocol RP. More precisely, it occurs if algorithm RP.Ext can not
extract a valid blind signature σBS on message sn for public key pkBS from the
signature σr,W . Here, σr,W is the signature that the adversary uses to close a
shared address in GetPayment, and sn is the nonce sent by the adversary in
the corresponding execution of sub-protocol Register.

– bad3: This event occurs if the simulator samples a key pkc randomly when a
corrupted party interacts in AddPayment with the sweeper, and after that the
environment calls GetPayment(pkc).

– bad4: Informally, this event occurs if the adversary breaks security of the
exchange protocol EXC. More precisely, when a corrupted party successfully
closes a shared address in GetPayment and the list Open is empty, we say that
event bad4 occurs.

Let us now describe the detailed behavior of S using these data structures and bad
events. We will adhere to the following convention: Whenever S answers calls to Fs
that are not related to protocol interactions, it answers them honestly, including
calls to LSIG. If on the other hand, these calls are related to protocol interactions,
the calls to LSIG are omitted. Here, calls are related to protocol interactions if
they are with respect to shared addresses that are used in interactions.

Register, Honest Party P:

1. When Z calls Fux on interface Register via a dummy party, S receives a
notification message (“register”,P, pkb) from Fux. Then, it samples a random
nonce sn←$ {0, 1}λ. If sn is already in list DSpend, it sets bad1 := 1 and aborts
the execution. Otherwise, it adds sn to list DSpend.

2. Then, S generates a shared address as follows: It generates keys by running
(p̄kr,W , s̄kr,W) ← SIG.Gen(1λ) and (p̄kr,P , s̄kr,P) ← SIG.Gen(1λ) on behalf of
functionality Fs. Once S receives (“registered”,P, pkb) from Fux, it sends the
message (“openedSharedAddress”, p̄kr,W , p̄kr,P , pkW , amt) on behalf of Fs to
all parties.

3. Finally, it sets Shared[P, pkb] := (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P , sn).

Register, Corrupted Party P:

74 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

1. Assume a corrupted P with S, which plays the role of W, and sends sn, pkb
to S. Then, S first checks if sn is already in list DSpend. If it is, it aborts
this interaction as the honest sweeper would do. Otherwise, it adds sn to
DSpend, and calls the ideal functionality Fux on interface Register(pkb).
The functionality Fux sends (“register”,P, pkb) to S, which responds with
“noabort”. Then, if Fux responds with “failDoubleRegister” or “failNoFunds”,
the simulator aborts the interaction.

2. Otherwise, it simulates opening a shared address for P. Concretely, it gen-
erates (p̄kr,W , s̄kr,W) ← SIG.Gen(1λ) and (p̄kr,P , s̄kr,P) ← SIG.Gen(1λ) on
behalf of functionality Fs. Then, it sends (p̄kr,W , p̄kr,P , s̄kr,P) to P and the
message (“openedSharedAddress”, p̄kr,W , p̄kr,P , pkW , amt) on behalf of Fs to
all parties.

3. Next, it simulates the promise message prom for P. To do so, it sets a
transaction txr := (p̄kr,W , p̄kr,P , pkb, amt) and redeem parameters rpar :=
(pkBS, p̄kr,W , txr, sn) as in the protocol. Then, it computes a promise prom via
prom ← RP.Sim(rpar, s̄kr,W). From now on, it uses algorithm RP.SimRO to
simulate the random oracle related to RP.

4. Finally, it sets Shared[P, pkb] := (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P , sn).

AddPayment, Honest Party P:

1. When the environment calls Fux on interface AddPayment via a dummy
party, S receives a message (“addPayment”, pka) from Fux. When S receives
(“addPaymentFreeze”, pka) from Fux, it responds with “noabort”.

2. Then, it generates a shared address as follows: It generates key (p̄kl,P ,
s̄kl,P) ← SIG.Gen(1λ) and (p̄kl,W , s̄kl,W) ← SIG.Gen(1λ). It sends message
(“openedSharedAddress”, p̄kl,P , p̄kl,W , pka, amt) on behalf of the functionality
Fs to all parties.

3. Next, S simulates the closing of the shared address as follows. It sets txl :=
(p̄kl,P , p̄kl,W , pkW , amt). Then, it executes σl,P ← SIG.Sig(s̄kl,P , txl) and σl,W
← SIG.Sig(s̄kl,W , txl). Finally, it sends a message (“closedSharedAddress”,
p̄kl,P , p̄kl,W , pkW , amt, σl,P , σl,W) on behalf of Fs to all parties.

AddPayment, Corrupted Party P:

1. Assume a corrupted party sends a message bsm1 via an anonymous chan-
nel to S (which plays the role of W) and opens a shared address using a
call Fs.OpenSh(T, pka,W, amt, ska). Then, S calls the ideal functionality Fux
via interface AddPayment(pka, ska, pkc) for an arbitrary corrupted party, for
some fresh key (pkc, skc) ← SIG.Gen(1λ). If the environment ever queries
GetPayment(pkc) via a dummy party afterwards, the simulator sets bad3 := 1
and aborts the entire execution.

2. If Fux sends “failInvalidKey”, S sends “failInvalidKey” on behalf of Fs. Sim-
ilarly, if Fux aborts with “failNoFunds”, S sends message “failNoFunds” on
behalf of Fs.

Sweep-UC 75

3. If Fux sends (“addPaymentFreeze”, pka) to S, then S computes message xm1
using the simulator EXC.Sim1, i.e. it runs xm1 ← EXC.Sim1(xpar, s̄kl,W) for
txl := (p̄kl,P , p̄kl,W , pkW , amt) and exchange parameters xpar := (pkBS, bsm1,

p̄kl,P , p̄kl,W , txl). It sends xm1 to the corrupted party.
4. When the corrupted party responds with xm2, the simulator S runs σl,W ←

SIG.Sig(s̄kl,W , txl) as in the protocol. If EXC.Sim2(xm2) = 0, it sends “abort” to
Fux. Otherwise, it runs bsm2 ← BS.S(skBS, bsm1) and σl,P ← EXC.Sim3(xm2,
bsm2), and sends “noabort” to Fux. It inserts (pka, pkc) into list Open and
sends (“closedSharedAddress”, p̄kl,P , p̄kl,W , pkW , amt, σl,P , σl,W) on behalf of
Fs to all parties.

GetPayment, Honest Party P:

1. When Z calls Fux on interface Register via a dummy party, S receives a
notification message (“getPayment”,P, pkb) from Fux.

2. Once S receives (“gotPayment”,P, pkb) from Fux, it computes the closing
signature (σr,W , σr,P) as follows: It first restores details from the corresponding
registration call, i.e. it sets (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P , sn) := Shared[P, pkb].
Then, it computes a blind signature σBS ← BS.Sig(skBS, sn). Next, it runs
σr,W ← Redeem(rpar, prom, σBS) and σr,P ← SIG.Sig(s̄kr,P , txr). Finally, it
sends (“closedSharedAddress”, p̄kr,W,P , pkb, amt, σr,W , σr,P) on behalf of Fs
to all parties.

GetPayment, Corrupted Party P:

1. Suppose a corrupted P calls interface Fs.CloseSh(p̄kr,W , p̄kr,P , pkb, amt, σr,W ,
σr,P). If the first two components of Shared[P, pkb] is not equal to p̄kr,W , p̄kr,P ,
then S processes this call as Fs would do, including the calls to LSIG.

2. Otherwise, it restores entry (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P , sn) := Shared[P, pkb].
Then, S sets txr := (p̄kr,W , p̄kr,P , pkb, amt) and rpar := (pkBS, p̄kr,W , txr, sn).
It extracts a blind signature via σBS ← RP.Ext(rpar, s̄kr,W , σr,W) from σr,W .
If BS.Ver(pkBS, sn, σBS) = 0, the simulator S sets bad2 := 1 and aborts the
entire execution.

3. Otherwise, if the list Open is empty, it sets bad3 := 1 and aborts the en-
tire execution. Otherwise, let (pka, pkc) be an arbitrary entry in Open (e.g.
the first). Then, S removes the entry (pka, pkc) from Open and calls the
interface ChangePayment(pka, pkc, pkb) of ideal functionality Fux. Note that
this interface will not abort, as the party for which the simulator called
AddPayment(pka, ·, pkc) must be corrupted.

4. Finally, it calls GetPayment(pkb). When it receives (“gotPayment”,P, pkb)
from Fux, it sends the message (“closedSharedAddress”, p̄kr,W , p̄kr,P , pkb, amt,
σr,W , σr,P) to every party.

Analysis. To show that the ideal world simulation using S is indistinguishable
from the real world execution, we present a sequence of hybrid executions. Then,
we show that two subsequent hybrid executions are indistinguishable.

76 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

– H0: This hybrid is the real world execution with environment Z. It keeps the
same data structures as the simulator S, but does not use them yet.

– H1: In this hybrid, we rule out bad event bad1. More precisely, the execution
aborts if an honest party P samples a nonce sn in sub-protocol Register,
which is already in list DSpend.

– H2: In this hybrid, we change how the honest sweeper W interacts with
corrupted parties P in sub-protocol Register. Precisely, when corrupted
P sends sn, pkb, instead of computing and sending the promise message
prom as in the protocol, the message prom is now computed as follows: A
transaction txr := (p̄kr,W , p̄kr,P , pkb, amt) and redeem parameters rpar :=
(pkBS, p̄kr,W , txr, sn) are set as in the protocol. Then, prom is computed as
prom ← RP.Sim(rpar, s̄kr,W), and to answer random oracle queries for the
redeem protocol, algorithm RP.SimRO is used. Also, we make the change that
details about the Register protocol are now stored in the map Shared, as in
the desciption of S.

– H3: In this hybrid, we change how sub-protocol GetPayment is executed for a
corrupted party P. More precisely, consider the case where a corrupted party
closes a shared address (p̄kr,W , p̄kr,P) that has been opened in an interaction
of the sub-protocol Register using signatures σr,W , σr,P . Note that we can
identify this case as in the description of the simulator S using the map Shared.
In this case, the execution runs σBS ← RP.Ext(rpar, s̄kr,W , σr,W), where rpar
and s̄kr,W are restored using Shared. Then, it runs b := BS.Ver(pkBS, sn, σBS).
If b = 0, we say that event bad2 occurs and the execution aborts.

– H4: We change how sub-protocol GetPayment is run between honest party P
and honest sweeperW . Recall that in this sub-protocol, the blind signature σBS
is used to derive the signature σr,W using algorithm Redeem from the promise
message prom. Here, prom has been sent fromW to P in sub-protocol Register
and σBS is generated during the sub-protocol AddPayment. We make the
following change. In this hybrid, we now no longer use σBS that was generated
in AddPayment, but instead generate σBS directly via σBS ← BS.Sig(skBS, sn),
where sn is the message sent by P to W in Register.

– H5: We change how honest parties P and W execute the AddPayment sub-
protocol. Namely, while the signature σl,P was derived using algorithm Sell
as a result of the exchange protocol, this signature is now computed di-
rectly using secret key s̄kl,P . More precisely, the execution first generates
the keys (p̄kl,P , p̄kl,W , s̄kl,P , s̄kl,W) as before. Then, it computes σl,P via
σl,P ← SIG.Sig(s̄kl,P , txl), where txl is as in the protocol. In particular, the par-
ties do not run the exchange protocol anymore (Note that signatures σl,P , σl,W
and the blind signature σBS is computed directly now).

– H6: We change the execution for the case where a corrupted party interacts
with W in AddPayment. Namely, consider the case where a corrupted party
sends a message bsm1 via an anonymous channel to W, and opens a shared
address using a call Fs.OpenSh(T, pka,W, amt, ska). Then, the sweeperW does
not compute xm1 using algorithm EXC.Setup anymore, but instead it uses the
algorithms EXC.Sim1,EXC.SimRO,EXC.Sim2,EXC.Sim3. Concretely, it runs

Sweep-UC 77

xm1 ← EXC.Sim1(xpar, s̄kl,W) for xpar as before. Then, it sends xm1 to the cor-
rupted party. When it receives xm2 in return, it runs σl,W ← SIG.Sig(s̄kl,W , txl)
as in the protocol. If EXC.Sim2(xm2) = 0, it aborts. Otherwise, it runs
bsm2 ← BS.S(skBS, bsm1) and σl,P ← EXC.Sim3(xm2, bsm2). Then, it con-
tinues as before.

– H7: We change the execution for the case where a corrupted party interacts in
AddPayment again. When the corrupted party sends a message bsm1 via an
anonymous channel toW and opens a shared address using a call Fs.OpenSh(T,
pka,W, amt, ska), the execution generates (pkc, skc)← SIG.Gen(1λ). When the
interaction betweenW and the corrupted party is completed (i.e. the party sent
the message xm2 of protocol AddPayment that allowed W to derive a signature
σl,P), an entry (pka, pkc) is inserted into list Open. Then, if the environment
ever calls GetPayment(pkc) afterwards, we say that event bad3 occurs and the
execution aborts.

– H8: We add another bad event to the execution. Consider the case where a
corrupted party calls the functionality Fs via Fs.CloseSh(p̄kr,W , p̄kr,P , pkb,
amt, σr,W , σr,P). If this call closes a shared address that was opened in an
interaction of a corrupted party with W in the Register sub-protocol, then
the execution tries to remove an arbitrary entry (pka, pkc) from list Open. If
this fails because the list is empty, we say that bad4 occurs and the execution
aborts.

– H9: This is the ideal world simulation using simulator S as described above.

Claim. H0 and H1 are indistinguishable.

Proof. Note that the distinguishing probability of these hybrids can be bounded
by the probability of event bad1. As nonces sn sampled by honest parties have λ
bits of entropy, event bad1 can only occur with negligible probability. ut

Claim. H1 and H2 are indistinguishable, if (RP.Sim,RP.SimRO) is a simulator
against malicious users for RP.

Proof. The statement can be proven using a reduction from the simulatability
game of RP. Precisely, the reduction gets pkBS, skBS as input and access to an
oracle O. It uses skBS to simulate interactions with honest users in Register and
interactions with arbitrary users in AddPayment, according to hybrid H1. When
a corrupted party P interacts with W (provided by the reduction) in Register,
the reduction uses oracle O to simulate message prom. Concretely, assume that
sn is not yet in DSpend. Then, to compute message prom, the reduction sends
sn to O and gets a key p̄kr,W in return. It generates p̄kr,P and sets txr as in the
protocol. Then, it sends txr to O and obtains prom from O. It continues the
execution as in H1. Finally, it outputs whatever Z outputs.

It is easy to see that the reduction perfectly simulates H1, if the internal bit
b of the simulation game of RP is b = 0, and H2 otherwise.

Finally, note that introducing the map Shared is only a conceptual change
that is not visible for Z. ut

78 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Claim. H2 and H3 are indistinguishable, if RP.Ext is a an extractor against
malicious users for RP and (RP.Sim,RP.SimRO).

Proof. To show the claim, we sketch a reduction from the extractablility game of
RP. The reduction gets pkBS, skBS as input and access to an oracle O. It simulates
the execution as in H2. However, when a corrupted party P interacts with W in
the Register sub-protocol, it does not simulate the execution as in H2. Instead,
it uses oracle O as follows. When P sends a nonce sn and a public key pkb, the
reduction passes sn to O. It obtains a key p̄kr,W in return, and generates p̄kr,P
and sets txr as in the protocol. It sends txr to O, and obtains message prom
in return. The reduction sends prom to P, as in the protocol. Later, when a
party closes the shared address (p̄kr,W , p̄kr,P) using signatures σr,W , σr,P , the
reduction passes σr,W to oracle O. The rest is simulated as in H2.

It is easy to see that the reduction perfectly simulates H2. Furthermore, note
that the variable bad defined in the extractability game of RP is set to 1 if and
only if event bad2 occurs. Thus, we can bound the probability of event bad2 by
the advantage of the above reduction. Clearly, the distinguishing advantage is
upper bounded by the probability of bad2. ut

Claim. H3 and H4 are indistinguishable, if BS has unique signatures.

Proof. As BS has unique signatures, the distribution of σBS computed directly
(as in H4) is the same as the distribution of σBS computed using the exchange
(as in H3). Therefore, the view of corrupted parties and the environment Z in
both hybrids is the same. ut

Claim. H4 and H5 are indistinguishable, if EXC has well distributed signatures.

Proof. This follows directly from the definition of well distributed signatures. ut

Claim. H5 and H6 are indistinguishable, if EXC is secure against malicious
buyers.

Proof. Note that due to the previous changes, the secret key skBS is only needed
in interactions of the sub-protocol AddPayment. Furthermore, in interactions
between honest parties it is only needed to compute a blind signature directly,
and not using the exchange protocol.

Thus, we can give a reduction against the security of EXC that interpolates
between H5 and H6. The reduction gets pkBS as input and access to an oracle
O∗ and a signing oracle O. It simulates H5, except for the following changes.
First, when an honest party P interacts with W in AddPayment, the final blind
signature σBS is computed using the signing oracle O. Second, when a corrupted
party interacts with W in AddPayment, the oracle O∗ is used to simulate the
exchange. Concretely, when the corrupted party sends bsm1 to W and opens a
shared address, the reduction calls oracle O∗ and obtains a key p̄kl,W . This key
is then used as part of the shared address (p̄kl,P , p̄kl,W). Then, the reduction
defines a transaction txl as in the protocol and sends p̄kl,P , txl and bsm1 to oracle

Sweep-UC 79

O∗. The oracle returns xm1, and the reduction sends xm1 to the corrupted party,
obtaining xm2 in return. The reduction passes xm2 to O∗ and obtains signatures
σl,P , σl,W in return. The rest of the simulation is as before, using these signatures.
Finally, the reduction forwards whatever the environment outputs. ut

Claim. H6 and H7 are indistinguishable, if SIG has public key entropy ω(log(λ)).

Proof. Clearly, the distinguishing advantage between the two hybrids can be
bounded by the probability of event bad3. Note that the environment obtains no
information about the key pkc. Therefore, the probability that the environment
queries GetPayment for that key is negligible, by the assumption about entropy
of public keys. ut

Claim. H7 and H8 are indistinguishable, if BS is one-more unforgeable.

Proof. Clearly, the distinguishing advantage between H7 and H8 can be upper
bounded by the probability of event bad4. We bound the probability of bad4
using a reduction against the one-more unforgeability of BS. The reduction gets
pkBS as input and access to a signer oracle O. It simulates H7, with the following
modifications: First, to compute the blind signature σBS in interactions between
honest parties, the reduction uses signer oracle O. We call these queries queries of
the first kind. Second, when a corrupted party interacts with W in AddPayment,
the reduction simulates everything as in H7, except for the computation of
signature σl,P . To compute σl,P , it first queries the signer oracle O on input
bsm1, obtaining bsm2 in return. We call these queries queries of the second kind.
Then, it runs σl,P ← EXC.Sim3(xm2, bsm2) as in H7. When event bad4 occurs,
let Σhon denote the list of pairs (sn, σBS) that are computed by honest parties.
Let Σcorr denote the list of pairs (sn, σBS), for which the execution extracted the
blind signature σBS for sn when a corrupted party closed a shared address that
has been opened in Register. The reduction outputs Σhon ∪Σcorr.

First, it is clear that the reduction perfectly simulates execution H7. Next,
we want to argue that the reduction outputs a valid one-more forgery if event
bad4 occurs. To see that, note that due to the usage of list DSpend and the event
bad1, we know that all sn in the reductions final output are distinct. Further, all
σBS are valid. This is because σBS in Σhon are computed honestly, and σBS in
Σcorr are valid by the definition of bad2. It remains to argue that the reduction
returned more pairs than the number of queries to the signer oracle O.

Let kadd denote the number of entries that are added to list Open, and krem
the number of times the reduction tried to remove an entry from list Open. If
bad4 occurs, we have

kadd < krem.

Further, note that queries of the second kind occur if and only if an entry is
added to list Open. Also, the number of queries of the first kind is exactly |Σhon|.
Therefore, the number of queries that the reduction made is

kadd + |Σhon|.

80 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Next, observe that whenever the reduction tries to remove an entry from list
Open, if extracted a blind signature σBS before, leading to one entry in Σcorr.
Therefore, we have |Σcorr| = krem. We conclude with

kadd + |Σhon| < krem + |Σhon| = |Σcorr|+ |Σhon|.

ut

Claim. H8 and H9 are indistinguishable.

Proof. We note that the execution in H8, including the simulation of functionality
Fs is exactly as in the ideal world simulation with simulator S. Note that whenever
S uses Fux to simulate Fs, this will lead to exactly the same calls to L. ut
Case 2: Corrupted Sweeper. Now, consider the case of a corrupted party W .
Again, we will first describe the overall setting and the idea of the proof. Then,
we give a description of our simulator and show indistinguishability from the real
world execution.

Setting. The setting is very similar to the setting for the case of an honest
W. The only difference is that the party W is corrupted now. Thus, the
simulator S can access the interfaces corresponding to W of the ideal func-
tionality Fux. In general, when the environment calls one of the interfaces
Register, AddPayment, GetPayment for an honest Pi via a dummy party, the sim-
ulator gets notified by Fux and has to simulate the interaction of the corresponding
sub-protocol to the corrupted parties. As W is part of every sub-protocol, S has
to provide the appropriate messages to W.

Idea. We describe the main challenges that we encounter and how we solve
them. On an intuitive level, we want to show two security claims. First, the
malicious sweeper should not be able to link Register, GetPayment interactions
to AddPayment interactions. Second, the malicious sweeper should not be able
to steal coins. This means that whenever a promise message prom sent by the
sweeper in Register gets verified, it should also lead to a valid signature once
the blind signature is input into Redeem. Furthermore, we have to make sure
that whenever the sweeper learns a signature to close the shared address in
AddPayment, the honest user should learn a blind signature.

Let us now see how these two parts come up on a technical level during the
simulation. The first part comes up when the environment calls AddPayment via
a dummy party. Note that in this case, the simulator only gets notified that some
public key pka pays, but it does not see which dummy party has been called and
which public key pkb receives the payment. Therefore, we have to simulate the
AddPayment interaction to the corrupted W, without knowing the actual nonce
sn that would be signed in the real world execution. To do this, we make use
of the anonymous channel and the blindness of BS, and let W blindly sign a
random nonce sn′ instead.

For the second part, we know that when honest parties register and add a
payment in the ideal world simulation, the resulting call to GetPayment will lead
to coins being transfered to pkb. Thus, we also have to make sure that this is

Sweep-UC 81

consistent with the interaction between the simulator and corrupted W. To do
this, we use the security of the redeem protocol and the exchange protocol.

In combination, these two parts lead to another obstacle. As we have pointed
out, we obtain blind signatures on random nonces in the simulation of AddPayment.
Then, when we get notified by Fux that an honest party got a payment, we have
to simulate the signature that closes the shared address. This signature has to
be distributed exactly as it would be in the real world, which is why we can not
just compute it from scratch. Instead, we should use the blind signature on sn to
derive the transaction signature, where sn is the nonce used in the corresponding
simulation of Register. Due to the way we simulate AddPayment, we do not
have a blind signature on sn. To solve this, we make use of the strong security
notion for the redeem protocol that allows us to extract this blind signature from
the promise message prom sent by W in GetPayment. Our assumption that blind
signatures are unique implies that the resulting transaction signature is exactly
distributed as it would be in the real world, where an honest user derives it using
the blind signature that it learned in AddPayment.

Simulator Description. We first describe the data structures that the simulator
S holds. All of these are initially empty.

– List DSpend: This list contains nonces sn that honest parties P submit in
Register. We emphasize that compared to the actual protocol, this list only
contains the nonces of honest parties.

– Map Shared: This maps tuples (P, pkb) to tuples (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P ,
sn, σr,W). It is used by S to store information about the Register(pkb) sub-
protocol. Note that compared to the case of an honest sweeper, we additionally
store signatures σr,W of transactions in this list.

Next, we give an overview of the bad events, for which S will abort the entire
execution if they occur.

– bad1: This event occurs if a random nonce is used twice by honest parties.
More precisely, it occurs if an honest party P (simulated by S) samples a
nonce sn in sub-protocol Register that is already in DSpend.

– bad2: This event occurs if the algorithm RP.Ext can not extract a valid blind
signature σBS from the promise message prom or it does not lead to a valid
transaction signature σr,W . Concretely, when an honest party interacts with
W in sub-protocol Register by sending sn, pkb, and W sends prom, let σBS
← RP.Ext(rpar, prom,Q) and σr,W ← Redeem(rpar, prom, σBS), where Q is the
list of random oracle queries that corrupted parties made. Then, the bad event
occurs, if we have BS.Ver(pkBS, sn, σBS) = 0 or SIG.Ver(p̄kr,W , txr, σr,W) = 0.
Here, p̄kr,W , txr, and rpar are as in the protocol.

– bad3,1: This event occurs when an honest user can not derive a valid blind
signature whenW closes the shared address in sub-protocol AddPayment. More
formally, consider the case where an honest user P runs the sub-protocol
AddPayment with W. Then, P first inputs sn into BS.U1 and sends the re-
sulting message bsm1 to W. Next, it opens a shared address (p̄kl,P , p̄kl,W)

82 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

using the functionality Fs. Assume that W sent message xm1 and received
xm2 from P in return. Further, assume that W closes the shared address
(p̄kl,P , p̄kl,W) using signatures (σl,P , σl,W). Honest party P runs bsm2 :=
Get(xpar, xm1, xm2, σl,P , σl,W) and computes σBS from bsm2 using algorithm
BS.U2. Then, the bad event occurs if BS.Ver(pkBS, sn, σBS) = 0.

– bad3,2: This event occurs if in the same situation as for bad3,1, W closes the
shared address (p̄kl,P , p̄kl,W) before seeing message xm2. This includes the
case where W did not send xm1, but closes the shared address.

Let us now describe the detailed behavior of S. As for the case of an honest
sweeper, we will adhere to the following convention: Whenever S answers calls
to Fs that are not related to protocol interactions that include honest parties, it
answers them honestly, including calls to LSIG. For instance, these calls may occur
when corruptedW and a corrupted P run the protocol. If on the other hand, these
calls are related to protocol interactions with honest parties, the calls to LSIG

are omitted (this is because in such a case these calls are issued by functionality
Fux). Calls are related to protocol interactions if they are with respect to shared
addresses that are used in interactions. For the following description, note that
the interaction between corrupted P and corrupted W does not have to be
simulated for our protocol.

Register, Honest Party P:

1. When Z calls Fux on interface Register via a dummy party, S receives a
notification message (“register”,P, pkb) from Fux. Then, it samples a random
nonce sn←$ {0, 1}λ. If sn is already in list DSpend, it sets bad1 := 1 and aborts
the execution. Otherwise, it adds sn to list DSpend and sends sn, pkb to the
corrupted W.

2. When W calls Fs.OpenSh(T, pkW ,P, amt, skW), the simulator S simulates
the interface OpenSh, except for the calls to LSIG. During this simulation,
it generates (p̄kr,W , s̄kr,W) ← SIG.Gen(1λ) and (p̄kr,P , s̄kr,P) ← SIG.Gen(1λ)
on behalf of Fs. Once S receives (“registered”,P, pkb) from Fux, it sends
(“openedSharedAddress”, p̄kr,W , p̄kr,P , pkW , amt) on behalf of Fs to all par-
ties.

3. The simulator S sets txr := (p̄kr,W , p̄kr,P , pkb, amt) and rpar := (pkBS, p̄kr,W ,
txr, sn) as an honest party would do in the protocol. Then, when W sends the
promise message prom, the simulator S checks if VerPromise(rpar, prom) = 1.
If this does not hold, it sends “abort” to Fux.

4. Otherwise, S runs σBS ← RP.Ext(rpar, prom,Q) and σr,W ← Redeem(rpar,
prom, σBS), where Q is the list of random oracle queries that corrupted parties
made so far. Then, if BS.Ver(pkBS, sn, σBS) = 0 or SIG.Ver(p̄kr,W , txr, σr,W) =
0, the simulator sets bad2 := 1 and aborts the execution.

5. The simulator S sets Shared[P, pkb] := (p̄kr,W , p̄kr,P , s̄kr,W , s̄kr,P , sn, σr,W).

AddPayment, Honest Party P:

1. When the environment calls Fux on interface AddPayment via a dummy party,
S receives a message (“addPayment”, pka) from Fux.

Sweep-UC 83

2. The simulator S samples sn′←$ {0, 1}λ, runs (bsm1, St) ← BS.U1(pkBS, sn′)
and sends bsm1 to W via the anonymous channel.

3. When S receives (“addPaymentFreeze”, pka) from Fux, it simulates the opening
of a shared address as follows: It generates keys (p̄kl,P , s̄kl,P)← SIG.Gen(1λ)
and (p̄kl,W , s̄kl,W) ← SIG.Gen(1λ). It sends (“openedSharedAddress”, p̄kl,P ,
p̄kl,W , pka, amt) on behalf of the functionality Fs to all parties.

4. If this shared address (p̄kl,P , p̄kl,W) is closed by a corrupted party before the
message xm2 (see below) is sent, S sets bad3,2 := 1 and aborts the entire
execution. If W does not send xm1, then S sends “abort” to Fux.

5. The simulator S sets txl := (p̄kl,P , p̄kl,W , pkW , amt) and xpar := (pkBS, bsm1,

p̄kl,P , p̄kl,W , txl) as in the protocol. When W sends xm1, the simulator runs
xm2 ← Buy(xpar, s̄kl,P , xm1) and sends xm2 to W.

6. WhenW closes the shared address (p̄kl,P , p̄kl,W) via Fs.CloseSh(p̄kl,P , p̄kl,W ,
pkW , amt, σl,P , σl,W), S simulates CloseSh except for calls to LSIG, and sends
“noabort” to Fux. During that, it also sends (“closedSharedAddress”, p̄kl,P ,
p̄kl,W , pkW , amt, σl,P , σl,W) on behalf of Fs to all parties. Then, it runs bsm2 :=
Get(xpar, xm1, xm2, σl,P , σl,W) and σBS ← BS.U2(St, bsm2). It sets bad3,1 := 1
and aborts the entire execution if BS.Ver(pkBS, sn, σBS) = 0.

GetPayment, Honest Party P:

1. When Z calls Fux on interface GetPayment via a dummy party, S receives a
notification message (“getPayment”,Pi, pkb) from Fux.

2. Once S receives (“gotPayment”,P, pkb) from Fux, it sets (p̄kr,W , p̄kr,P , s̄kr,W ,
s̄kr,P , sn, σr,W) := Shared[P, pkb]. It computes σr,P ← SIG.Sig(s̄kr,P , txr).

3. Finally, it sends (“closedSharedAddress”, p̄kr,W,P , pkb, amt, σr,W , σr,P) on be-
half of Fs to all parties.

Analysis. We show that the real world execution is indistinguishable from the
ideal world simulation by giving a sequence of hybrid executions and showing
that subsequent hybrid executions are indistinguishable.

– H0: This is the real world execution with environment Z. It keeps the same
data structures as the simulator S. Let DSpend denote the list of nonces sn
used by honest parties, as it is used by S.

– H1: In this hybrid, the execution aborts whenever event bad1 occurs. That is,
if an honest party samples a nonce sn that is already in list DSpend.

– H2: In this hybrid, we change how Register is executed for honest parties
P. Namely, when W sends the promise prom, the execution runs σBS ←
RP.Ext(rpar, prom,Q) and σr,W ← Redeem(rpar, prom, σBS), where Q is the list
of random oracle queries that corrupted parties made so far. If BS.Ver(pkBS,
sn, σBS) = 0 or SIG.Ver(p̄kr,W , txr, σr,W) = 0, we say that the event bad2
occurs and the execution aborts. Otherwise, we now store the details of this
sub-protocol in the map Shared as described for S.

84 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

– H3: In this hybrid, we add additional bad events for which the execution aborts
whenever they occur. Namely, the execution aborts if bad events bad3,1 or
bad3,2 occur. Concretely, in an execution of the sub-protocol AddPayment for
honest party P, the event bad3,1 occurs if no valid blind signature σBS can be
obtained from the signatures (σl,P , σl,W) using algorithms Get and BS.U2. The
event bad3,2 occurs if a corrupted party closes the shared address (p̄kl,P , p̄kl,W)
before the honest party P sends xm2.

– H4: In this hybrid, we change how GetPayment is executed for honest parties
P . Recall that in previous hybrids, the party uses the blind signature derived in
sub-protocol AddPayment and runs algorithm Redeem to obtain the signature
that is used to close the shared address. Now, honest parties instead use the
signature σr,W that is stored in Shared.

– H5: In this hybrid, we change which nonces sn are blindly signed in executions
of AddPayment for honest parties P. Recall that in previous hybrids, party
P runs (bsm1, St) ← BS.U1(pkBS, sn), sends bsm1 to W and interacts in the
exchange protocol with W. Here, sn is is the random nonce sampled by P in
the corresponding execution of Register. In this hybrid, P instead samples a
random sn′←$ {0, 1}λ and computes (bsm1, St)← BS.U1(pkBS, sn′). Later, to
check if event bad3,1 occurs, nonce sn′ is also used instead of sn.

– H6: This is the ideal world simulation using simulator S as described above.

Claim. H0 and H1 are indistinguishable.

Proof. The distinguishing advantage between H0 and H1 can be bound by the
probability of bad1. As nonces sn are sampled uniformly at random in {0, 1}λ,
the probability of bad1 is negligible. ut

Claim. H1 and H2 are indistinguishable, if RP is secure against malicious services.

Proof. We show the claim using intermediate hybrids H1,i for i ∈ {0, . . . , Q},
where Q is the number of interactions between honest parties and W in sub-
protocol Register. In hybrid H1,i, we apply the change described in H2 to
the first i of these Q interactions. By definition we have that H1 = H1,0 and
H1,Q = H2. Thus, it remains to show indistinguishability for H1,i−1 and H1,i for
i ∈ [Q]. Note that the distinguishing probability between H1,i−1 and H1,i can be
bounded by the probability that bad2 occurs in the i-th interaction.

To bound this probability, we present a reduction against the security of
RP against malicious services. The reduction simulates H1,i−1, except for the
i-th interaction between honest parties and W in sub-protocol Register. This
means that all except the i-th interaction are simulated honestly exactly as in
H1,i−1. The i-th interaction is simulated as in H1,i−1, until it receives the promise
message prom fromW . Then, it outputs p̄kr,W , txr, sn, pkBS and prom to its game.

It is clear that the reduction perfectly simulates H1,i−1. Also, the conditions
defining bad2 are exactly the winning conditions in the security game of RP. ut

Claim. H2 and H3 are indistinguishable, if EXC is secure against malicious sellers.

Sweep-UC 85

Proof. Again, we prove the claim using hybrids H2,i for i ∈ {0, . . . , Q}, where
Q is the number of interactions between honest parties and W in sub-protocol
AddPayment. In hybrid H2,i, we apply the change described in H3 to the first i
of these Q interactions. By definition we have that H2 = H2,0 and H2,Q = H3.
It remains to bound the distinguishing advantage between H2,i−1 and H2,i for
i ∈ [Q]. This advantage is upper bounded by the probability that bad3,1 or bad3,2
occurs in the i-th of these interactions.

We bound this probability by giving a reduction against the security of EXC
against malicious sellers. The reduction simulates H2,i−1, except for the i-th
interaction between honest parties and W in sub-protocol AddPayment. This
means that all except the i-th interaction are simulated honestly exactly as in
H2,i−1. For the i-th interaction, the reduction first passes pkBS and sn to the
security game. Then, it obtains a key p̄kl,P and a message bsm1 in return. It
simulates the opening of a shared address (p̄kl,P , p̄kl,W), using the key that it
got from the game. Then, it sends bsm1 to W as in the protocol. If the reduction
did not receive xm1 from W, it sets xm1 := ⊥. This includes the case where a
corrupted party already closed the shared address (cf. event bad3,2). Then, the
reduction sends p̄kl,W , txl, and xm1 to the game, where txl is as in the protocol. It
obtains xm2 in return. If xm2 6= ⊥, it sends xm2 to W. Once a corrupted party
(e.g. W) closes the shared address (p̄kl,P , p̄kl,W) using signatures (σl,P , σl,W),
the reduction returns txl and σl,P , σl,W to the game.

Clearly, the reduction perfectly simulates execution H2,i−1. Also, by the
definition of events bad3,1 and bad3,2, the security game of EXC outputs 1 if one
of these events occurs in the i-th interaction. ut

Claim. H3 and H4 are indistinguishable, if BS has unique signatures.

Proof. Note that the difference between both hybrids is how the blind signature
σBS that is input into algorithm Redeem is computed by honest parties. In both
hybrids, σBS is a valid blind signature for nonce sn with respect to public key
pkBS. By the assumption that blind signatures are unique, these are therefore
identical. Thus, the change is only conceptual, and the view of the corrupted
parties does not change. ut

Claim. H4 and H5 are indistinguishable, if BS is weakly blind.

Proof. We show that the two hybrids are indistinguishable by presenting a
sequence of hybrids H4,i for i ∈ {0, . . . , Q}, where Q denotes the number of
interactions between honest parties P and the corrupted sweeper W in sub-
protocol AddPayment. Concretely, hybrid H4,i is as hybrid H4, but the change
described in hybrid H5 is applied to the first i of such interactions.

To show that H4,i−1 and H4,i are indistinguishable for all i ∈ [Q], we give a
reduction against the weak blindness of BS. Note that due to the previous change,
we do not need the blind signature that is computed in AddPayment anymore. We
only need to know if it is valid or not (cf. event bad3,1). The reduction simulates
H4,i−1 as it is, except for the i-th interaction between honest parties and W
in sub-protocol AddPayment. In this interaction, it samples sn′←$ {0, 1}λ and

86 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

outputs pkBS,m0 := sn and m1 := sn′ to its game. Here, sn denotes the nonce
that is blindly signed in H4, which has been sent by the honest party to W in the
corresponding interaction of Register. The game gives bsm1 to the reduction.
Then, the reduction continues the simulation of the AddPayment interaction as in
H4, using this message bsm1. When a corrupted party closes the shared address
and event bad3,2 did not happen, the reduction extracts bsm2 using algorithm
Get. Then, the reduction outputs bsm2 to its game, which returns a bit v ∈ {0, 1},
indicating if a valid signature could be derived. If v = 1, the reduction sets
bad3,1 := 1 and aborts. Otherwise, it continues the execution. Finally, it outputs
whatever the environment outputs.

It is easy to see that the reduction perfectly simulates hybrid H4,i−1 if it runs
in the security game with b = 0, and it perfectly simulates hybrid H4,i if it runs
in the security game with b = 1. ut

Claim. H5 and H6 are indistinguishable.

Proof. Note that in the ideal world simulation, S simulates the execution in H5,
except for the calls of Fs to L. These calls are perfectly simulated by exactly
the same calls that functionality Fux issues. Further, S does not know the party
P that interacts with W in AddPayment. As the source of messages is the only
dependency on P that remains in H5 (due to previous changes), the security of
the anonymous channel implies indistinguishability. ut

ut

Sweep-UC 87

H BLS Signatures and Blind Signatures

For completeness, we recall the BLS signature scheme [14] and its blind version
[12]. We denote the signature scheme by SIG = (Gen,SIG.Sig,Ver) and the blind
signature scheme by BS = (Gen,BS.S,BS.U,Ver). Both schemes have the same key
generation and verification algorithm and work over cyclic groups G1,G2,GT of
prime order p with generators g1 ∈ G1, g2 ∈ G2 and gT := e(g1, g2) ∈ GT , where
e : G1 ×G2 is a pairing. Also, they require a random oracle H : {0, 1}∗ → G1.

Algorithm Gen(1λ) first generates such parameters, then it samples a secret
key sk←$ Zp, and defines the public key pk := gsk

2 . Then it returns (pk, sk).
Signatures are computed via

SIG.Sig(sk,m) = H(m)sk.

Algorithm Ver(pk,m, σ) returns the evaluation of the verification equation

e(σ, g2) = e(H(m), pk).

To blindly sign messages, algorithm BS.U1(pk,m) samples a random α←$ Z∗p
and returns St := α and bsm1 := H(m)α. Then, algorithm BS.S(sk, bsm1) returns
bsm2 := bsmsk

1 , and algorithm BS.U2(St, bsm2) returns σ := bsm1/α
2 .

88 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

I Interpolation with Preprocessing
We sketch how to improve computation costs of interpolation in the exponent (i.e.
algorithm reconstg,z), if multiple related instances have to be evaluated. First, we
consider multiple evaluations of the same polynomial, then we look at multiple
evaluations of the same position, but for different polynomials. For both scenarios,
we manage to reduce the total cost for O(λ) evaluations from O(λ3) operations
to O(λ2) operations by using preprocessing.
Multiple Evaluations. Suppose we know all shares (x0, h0), . . . , (xλ, hλ) and
we have to evaluate the polynomial in the exponent at multiple positions. In
other words, we have to evaluate the algorithm reconstg,z((x0, h0), . . . , (xλ, hλ))
for different z. In a preprocessing step independent of z we first compute a
coefficient representation aj,0, . . . , aj,λ ∈ Zp of the polynomials `j such that

`j(X) =
λ∑
i=0

aj,iX
i.

Then, for each i ∈ {0, . . . , secpar} we compute the group elements

Ci :=
λ∏
j=0

h
aj,i
j .

Now, once we know z ∈ Zp, we can obtain the result of reconstg,z by
λ∏
i=0

Cz
i

i .

Multiple Last Samples. Suppose we know λ shares, and we are allowed to do
some preprocessing. This preprocessing is allowed to do O(λ2) operations. Then,
once the (λ+ 1)-st share is known, it should be possible to compute the result of
reconstg,z using only O(λ) operations.

For shares (x0, h0), . . . , (xλ−1, hλ−1), the preprocessing is as follows: For each
j ∈ {0, . . . , λ− 1}, define the polynomial

`′j(X) :=
∏

m∈{0,...,λ−1},m6=j

X − xm
xj − xm

∈ Zp[X]

and compute the group element Zj := h
`′j(z)
j .

Then, assume that the last share is (xλ, hλ). The result can now be computed
as λ−1∏

j=0
Z

z−xλ
xj−xλ
j

 · h`λ(z)
λ ,

where the polynomial `λ is defined as

`′j(X) :=
∏

m∈{0,...,λ},m 6=j

X − xm
xλ − xm

∈ Zp[X].

Sweep-UC 89

Functionality LSIG

The global functionality interacts with parties P1, . . . ,Pn, the environment Z,
and ideal adversary S. It is parameterized by a digital signature scheme SIG =
(Gen,Sig,Ver). The functionality holds a list FrozenCoins, and a key value table
bal. The table bal is publicly accessible to every party.

Interface Update(pk, c), called by Z:

01 Set bal[pk] := c.
02 Send (“updatedFunds”, pk, c) to every entity.

Interface Pay(pks, pkr, c, sks), called by Pi:

01 If c > bal[pks], send “failNoFunds” and return.
02 If (pks, sks) /∈ SIG.Gen(1λ), send “failInvalidKey” and return.
03 Set bal[pks] := bal[pks]− c, bal[pkr] := bal[pkr] + c, and ctr := ctr + 1.
04 Send (“payed”, pks, pkr, c) to every party.

Interface Freeze(pk, c), called by an ideal functionality with identifier id:

01 If c > bal[pk], send “failNoFunds” and return.
02 Else set bal[pk] := bal[pk]− c and append (id, c) to FrozenCoins.
03 Send (“frozen”, id, pk, c) to every entity.

Interface Unfreeze(pk, c), called by an ideal functionality with identifier id:

01 If there is no entry (id, c′) such that c′ ≥ c in FrozenCoins, then send
“failNoFrozenFunds” and return.
02 Else replace (id, c′) in FrozenCoins with (id, c′ − c).
03 If c′ = c, remove the entry from FrozenCoins.
04 Set bal[pk] := bal[pk] + c.
05 Send (“unfrozen”, id, pk, c) to every entity.

Fig. 10. Global ideal functionality LSIG, modelling a ledger.

90 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

Functionality Fs

The functionality interacts with the functionality LSIG, parties P1, . . . ,Pn, the
environment Z, and ideal adversary S.

Interface OpenSh(T, pkin,Pb, c, skin), called by Pa:

01 If (pkin, skin) /∈ SIG.Gen(1λ), send “failInvalidKey” and return.
02 Generate keys (pka, ska)← SIG.Gen(1λ), (pkb, skb)← SIG.Gen(1λ).
03 Call the interface LSIG.Freeze(pkin, c). If it replies with “failNoFunds”, reply
with “failNoFunds” and return. Else, append (pka, pkb, T,Pa,Pb, c) to OpenShared.
04 After T clock cycles: If this entry (pka, pkb, T,Pa,Pb, c) is still in OpenShared,
then invoke the interface LSIG.Unfreeze(pkin, c) and delete the entry from
OpenShared.
05 Send (pka, pkb, ska) to Pa and (pka, pkb, skb) to Pb.
06 Send (“openedSharedAddress”, pka, pkb, pkin, c) to every party.

Interface CloseSh(pka, pkb, pkout, c, σa, σb), called by Pb:

01 If there is no entry of the form (pka, pkb, T,Pa,Pb, c) in the list OpenShared,
send “failNoOpenSharedAddress” and return.
02 Let tx := (pka, pkb, pkout, c).
03 Set ba := SIG.Ver(pka, tx, σa) and bb := SIG.Ver(pkb, tx, σb).
04 If ba = 0 or bb = 0, then reply with “failInvalidSignature” and return.
05 Call the interface LSIG.Unfreeze(pkout, c) and remove the entry
(pka, pkb, T,Pa,Pb, c) from OpenShared.
06 Send (“closedSharedAddress”, pka, pkb, pkout, c, σa, σb) to every party.

Fig. 11. Ideal functionality Fs, modelling a the opening and closing of a shared address
for a ledger functionality LSIG.

Sweep-UC 91

Buyer(pkBS, sn, pkb, pks, skb, tx) Seller(skBS, pkb, pks, sks, tx)

(bsm1, St)← BS.U1(pkBS, sn) bsm1

. Exchange .

xpar := (pkBS, bsm1, pkb, pks, tx) xpar := (pkBS, bsm1, pkb, pks, tx)

xm1 (xm1, St)← Setup(xpar, skBS, sks)

xm2 ← Buy(xpar, skb, xm1) xm2 σb := Sell(St, xm2)

σs ← SIG.Sig(sks, tx)
Learn (σb, σs) Publish (σb, σs)
bsm2 := Get(xpar, xm1, xm2, σb, σs)

. .End of Exchange .

σBS ← BS.U2(St, bsm2)

Fig. 12. Schematic Overview of an exchange protocol EXC = (Setup,Buy, Sell,Get)
for a signature scheme SIG = (SIG.Gen, SIG.Sig, SIG.Ver) and a blind signature scheme
BS = (BS.Gen,BS.S,BS.U,BS.Ver).

Service(skBS, sks, tx, sn) User(pkBS, pks, tx, sn)

rpar := (pkBS, pks, tx, sn) rpar := (pkBS, pks, tx, sn)

prom← Promise(rpar, skBS, sks) prom
b := VerPromise(rpar, prom)

if b = 0 : abort
Learn σBS

σs ← Redeem(rpar, prom, σBS)

Fig. 13. Schematic overview of a redeem protocol RP = (Promise,VerPromise,Redeem)
for a signature scheme SIG = (SIG.Gen, SIG.Sig, SIG.Ver) and a blind signature scheme
BS = (BS.Gen,BS.S,BS.U,BS.Ver).

92 L. Hanzlik, J. Loss, S. Thyagarajan, B. Wagner

W(skBS, skW) Pi(pkb, pkBS)

if sn ∈ DSpend : abort sn, pkb sn←$ {0, 1}λ

if pkb ∈ Reg : abort
DSpend := DSpend ∪ {sn}
Reg := Reg ∪ {pkb}
Fs.OpenSh(T, pkW ,P, amt, skW)

Receive (p̄kr,W , p̄kr,P , s̄kr,W) from Fs Receive (p̄kr,W , p̄kr,P , s̄kr,P) from Fs

txr := (p̄kr,W , p̄kr,P , pkb, amt) txr := (p̄kr,W , p̄kr,P , pkb, amt)

rpar := (pkBS, p̄kr,W , txr, sn) rpar := (pkBS, p̄kr,W , txr, sn)

prom← Promise(rpar, skBS, s̄kr,W) prom
b := VerPromise(rpar, prom)

if b = 0 : abort

Fig. 14. Overview of the sub-protocol Register of protocol Sweep-UC. The protocol is
run between the sweeper W and a party Pi.

Pi(ska, pkBS) W(skBS, pkBS)

(bsm1, St)← BS.U1(pkBS, sn) bsm1

Fs.OpenSh(T, pka,W, amt, ska)

Receive (p̄kl,P , p̄kl,W , s̄kl,P) from Fs Receive (p̄kl,P , p̄kl,W , s̄kl,W) from Fs

txl := (p̄kl,P , p̄kl,W , pkW , amt) txl := (p̄kl,P , p̄kl,W , pkW , amt)

xpar := (pkBS, bsm1, p̄kl,P , p̄kl,W , txl) xpar := (pkBS, bsm1, p̄kl,P , p̄kl,W , txl)

xm1 (xm1, St)← Setup(xpar, skBS, s̄kl,W)

xm2 ← Buy(xpar, s̄kl,P , xm1) xm2

σl,P := Sell(St, xm2)

σl,W ← SIG.Sig(s̄kl,W , txl)

Receive (σl,P , σl,W) from Fs Fs.CloseSh(p̄kl,P , p̄kl,W , pkW , amt, σl,P , σl,W)

bsm2 := Get(xpar, xm1, xm2, σl,P , σl,W)
σBS ← BS.U2(St, bsm2)

Fig. 15. Overview of the sub-protocol AddPayment of protocol Sweep-UC. The protocol
is run between the sweeper W and a party Pi.

Sweep-UC 93

W(skBS, pkBS) Pi(pkb, pkBS)

σr,W ← Redeem(rpar, prom, σBS)

σr,P ← SIG.Sig(s̄kr,P , txr)

Receive (σr,W , σr,P) from Fs Fs.CloseSh(p̄kr,W , p̄kr,P , pkb, amt, σr,W , σr,P)

Reg := Reg \ pkb

Fig. 16. Overview of the sub-protocol GetPayment of protocol Sweep-UC. The protocol
is run between the sweeper W and a party Pi.

	 Sweep-UC: Swapping Coins Privately

