
AUC: Accountable Universal Composability
Mike Graf, Ralf Küsters, and Daniel Rausch

University of Stuttgart
Stuttgart, Germany

Email: {mike.graf,ralf.kuesters,daniel.rausch}@sec.uni-stuttgart.de

Abstract

Accountability is a well-established and widely used security concept that allows for obtaining undeniable
cryptographic proof of misbehavior, thereby incentivizing honest behavior. There already exist several general
purpose accountability frameworks for formal game-based security analyses. Unfortunately, such game-based
frameworks do not support modular security analyses, which is an important tool to handle the complexity of
modern protocols.

Universal composability (UC) models provide native support for modular analyses, including re-use and
composition of security results. So far, accountability has mainly been modeled and analyzed in UC models
for the special case of MPC protocols, with a general purpose accountability framework for UC still missing.
That is, a framework that among others supports arbitrary protocols, a wide range of accountability properties,
handling and mixing of accountable and non-accountable security properties, and modular analysis of accountable
protocols.

To close this gap, we propose AUC, the first general purpose accountability framework for UC models, which
supports all of the above, based on several new concepts. We exemplify AUC in three case studies not covered
by existing works. In particular, AUC unifies existing UC accountability approaches within a single framework.

1. INTRODUCTION

Accountability is a prominent concept that is widely used in security. Many security properties and applications,
such as auctions [7, 29, 97], e-voting [1, 65, 67], non-repudiation [98–100], multi-party computation (MPC) [6,
8, 13, 54], public key infrastructures (PKIs) [61, 73, 76], distributed ledgers [15, 16, 38, 40, 47, 50, 59, 82, 88],
DRM [91, 93], power infrastructures [58, 75], content delivery networks [31], and distributed systems [52, 90, 94]
make use of and rely on accountability to provide security. In the formal security analysis literature, so-called
property-, policy-, or goal-based accountability is the standard and most commonly used interpretation of
accountability (e.g., [33, 42–45, 52, 57, 62, 63, 67, 68, 79]), which we therefore also consider in this work and
often just call accountability (see also Section 2.7). Property-based accountability intuitively states that, if
some intended security property of a protocol, such as correctness of the output, is violated, then we obtain a
cryptographic proof that one or more protocol participants have misbehaved. We call security properties ensured
via accountability in this way accountability(-based) properties. Parties which violated an accountability property
can be held accountable for their misbehavior, e. g., via contractual and financial penalties or by excluding them
from future protocol runs. This serves as a strong incentive for malicious parties to honestly follow the protocol
and to not break security goals.

Over the past decade, researchers have developed general tools and approaches to formally analyze account-
ability properties in game-based settings (e. g., [46, 62, 67]). These works cover many flavors of accountability,
such as (i) different accountability levels; a weak level might guarantee identification only of a (potentially large)
group such that at least one party in that group has misbehaved, where the strongest level, so-called individual
accountability [67], allows for identifying one or more parties such that all of them have misbehaved. (ii) Local
or public/universal accountability (w.r.t. some security goal/property) [41, 49]; a public accountability property
allows everyone, including external observers, to identify misbehaving parties in case the security property is
broken. Local accountability allows only protocol participants to identify misbehaving parties.

Preventive vs. Accountability Properties. The counterpart to accountability properties are so-called preventive
security properties (cf. [45]), which includes many special cases such as proactive security [2, 12]. In preventive
security, one proves that the expected security property cannot be broken in the first place, typically based on
certain (strong) security assumptions. In contrast, accountability-based security accepts that security properties
might be broken by misbehaving parties but instead requires that one can identify and hence deter such
parties. In exchange for this weaker security guarantee, accountability provides several advantages, including:
(i) accountability might already be achievable with simpler, more efficient components. (ii) In order to ensure

1

https://orcid.org/0000-0003-3191-7711
https://orcid.org/0000-0002-9071-9312
https://orcid.org/0000-0002-1901-3659

accountability properties, one might need less security assumptions. (iii) Accountability properties might be
stronger in some aspects than preventive security notions. For example, Graf et al. [50] illustrate and leverage all
of these advantages of accountability by proposing a slight modification of the Hyperledger Fabric permissioned
blockchain that (i) uses only a very efficient crash-fault-tolerant instead of a more complex Byzantine-fault
tolerant consensus protocol, (ii) does not assume an honest (super)majority or any other set of honest parties
to achieve accountability of consistency, and (iii) can enforce consistency (in an accountable way) not only
for honest nodes but also for dishonest ones. So both concepts, preventive and accountability-based security,
come with their own merits and tradeoffs. They are orthogonal concepts in the sense that both types of security
can be used as stand-alone mechanisms to provide security for an intended property. But they can also be
combined for the same security goal, where accountability serves as a second layer of defense in case the
underlying assumptions of preventive security are broken. Such a combination is, for instance, used by the system
PeerReview [52] to strengthen the security property of consistency in Byzantine-fault tolerant (BFT) consensus
protocols (e. g., [28, 83, 95]): as long as there is an honest supermajority in the BFT protocol, consistency cannot
be broken at all. If this assumption is no longer met, then PeerReview running on top of the BFT protocol still
provides accountability w.r.t. consistency, i. e., allows for identifying parties that cause the consensus protocol
to fail.

Universal Composability. Universal composability (UC) (e. g., [17, 18, 22, 23, 53, 64]) is a very popular ap-
proach for designing, modeling, and analyzing security protocols due to its strong security guarantees and its
inherent support for modular design and analysis. Roughly speaking, in UC one first specifies an ideal protocol
(or ideal functionality) F that specifies the intended behavior/security properties of a target protocol, abstracting
away implementation details. For a concrete realization – the real protocol – P , one then proves that “P behaves
just as F” in arbitrary contexts, where the network of F is controlled by a benign attacker called simulator.
One can then build other protocols P ′ on top of F and analyze their security. A so-called composition theorem
provided by the underlying UC model then implies that P ′ remains secure even if the subroutine F is replaced
by P .

Current State. Preventive security properties and their formalization via ideal functionalities in UC models
is a well-studied problem, with the vast majority of existing UC literature focusing on preventive properties.
In contrast, accountability properties have only been studied and formalized for special cases, mostly MPC
protocols (e. g., [13, 14, 24, 34, 35, 55, 74]). These works do not and were not intended to serve as general UC
accountability frameworks. In particular, these works (i) are tailored towards MPC protocols and accountability
properties thereof, such as identifiable abort (e. g., [14, 55], cf. Appendix G, where we capture identifiable
within our formalization approach), (ii) assume certain protocol structures, such as non-interactive protocols
or protocols without internal servers, (iii) typically focus on either local or public accountability, (iv) cannot
express arbitrary relationships of properties, including preventive properties with accountability as second layer
of defense, and/or (v) consider composition out of scope or focus on composition of certain protocol types.

Hence, a general framework for accountability in UC models is still missing. Such a general framework
would

1. Enable the design and analysis of arbitrary protocols and accountability properties within a UC model,
thereby allowing such protocols to benefit from strong security statements and modularity offered by UC
models,

2. Provide a common tool set that allows for easily formalizing accountability properties and reducing the
effort for protocol designers, and thus,

3. Help avoid mistakes and oversights that can otherwise easily occur when formalizing accountability for
every use case from scratch, as well as

4. Facilitate the comparison of different types of accountability properties and guarantees as they are defined
within the same overarching and unified framework.

Obtaining such a general framework for accountability in UC models is non-trivial as it has to support and
combine a number of different features to achieve the desired generality. Among others, it has to be able
to express many different flavors of accountability, including the following flavors from formal game-based
accountability security frameworks [62, 63, 67, 79]: (i) accountability for a wide range of security properties,
(ii) different levels of accountability, (iii) both local and public accountability properties, and (iv) relationships
of different properties, including combinations of accountability and preventive properties both as independent
concurrent properties but also as layered defense for the same security goal. Such a general framework further

2

must be able to express virtually arbitrary protocols. In particular, it must (v) be independent of a specific
protocol type and structure, thereby supporting, e. g., interactive protocols and protocols with purely internal
parties such as client-server protocols, and (vi) fully support the modular design, analysis, and composition of
protocols with accountability.

AUC – Accountable Universal Composability. To close this gap, we propose the Accountable Universal
Composability (AUC) framework, the first general framework for the modular UC analysis of accountability
properties. The AUC framework works within existing UC models, such as the UC [22, 23], including its
variants (e.g., SUC [24], GUC [18]), the GNUC [53], the CC [77], and the IITM [64] models. By this, AUC
inherits and can leverage features of the underlying UC model, such as the respective composition theorems
possibly including support for composition with joint, arbitrarily shared, and/or global state. This also allows
protocol designers to compose AUC protocols with existing (preventive security) protocols while remaining
within whatever model they are already familiar with.

A major component of AUC is a generic transformation that, given any ideal functionality, allows for
incorporating a wide range of accountability properties into the functionality. AUC further enables modeling and
analyzing accountability properties in the corresponding real protocols such that composition of the resulting
(accountability-based) protocols, also with preventive security protocols, is fully supported. To this end, AUC
generalizes several ideas from the literature, both in game-based and UC settings, but also adds novel concepts,
such as what we call judicial reports and supervisors. By combining these concepts, AUC achieves all the
previously mentioned goals and features of a general framework for property-based accountability.

To exemplify features, applications, and the generality of AUC, we present the first accountability analyses
of three different case studies in a UC model. These case studies are chosen to be relatively simple to better
illustrate AUC. Firstly, we show how an accountable consensus service can be scaled up, e. g., to support a larger
number of clients, by adding a scaling protocol layer on top while retaining accountability of the overall protocol.
Using composability, this result can be iterated arbitrarily often to obtain security of multiple scaling layers. The
case study introduces and illustrates general techniques that can be used for future analyses of accountability
of existing real-world protocols that follow a similar scaling approach, such as the prominent blockchain
Hyperledger Fabric [3, 50], the consensus service Hashgraph [11], and content delivery networks [39]. Secondly,
we model and analyze accountability of a public key infrastructure (PKI) based on certificate transparency logs
(CTLs). We then, thirdly, compose this result with an ISO 9798-3-based authenticated key exchange [17, 26,
56, 66], showing that the resulting protocol provides security based on an accountable PKI. To the best of our
knowledge, this analysis is the first UC analysis of that protocol without assuming pre-distributed public keys
or an idealized PKI where the adversary cannot create certificates for honest parties.

Contributions. In summary, the contributions of the paper are as follows:
• We propose AUC, the first general framework for accountability in UC models.
• AUC transfers and generalizes existing concepts from game-based approaches to the UC world, generalizes

existing UC approaches, and develops new concepts.
• AUC supports, among others, arbitrary ideal and real protocols, a wide range of accountability properties,

local and public accountability properties, concurrent consideration and combination of preventive and ac-
countability properties, accountability of protocol internal parties, and composition of accountable protocols.

• To exemplify AUC, we present three case studies, providing the first UC analysis of accountability properties
for the considered protocols.

• As a sanity check, in Appendix G we further show that AUC can capture accountability aspects of existing
UC MPC literature as a special case, thereby generalizing and unifying this line of work.

Structure of this paper. Section 2 presents AUC, including a discussion of its core concepts. Section 3 provides
our case studies. We discuss related work in Section 4. Further details are given in the appendix.

2. AUC – ACCOUNTABLE UNIVERSAL COMPOSABILITY

In this section, we introduce the accountable universal composability (AUC) framework. We first clarify notation
and terminology in Section 2.1. Section 2.2 discusses several high-level ideas of AUC before we formally specify
the AUC transformation for ideal functionalities in Section 2.3, with AUC’s modeling of real protocols covered
in Section 2.4. In Section 2.5, we discuss several aspects of AUC’s composability abilities. In Section 2.6, we
present a deterrence analysis to analyze the behavior of rational adversaries. Section 2.7 concludes this section
with a discussion on AUC.

3

2.1 Notation and Terminology

Computational Model. Formally, we define AUC within the iUC model [17], an easy to use but fully expressive
instantiation of the IITM model [64]. However, AUC and its concepts can also be used within arbitrary other
models for universal composability, e. g., [23, 53, 77]. We keep our presentation on a level such that readers
familiar with these UC models can understand and use AUC without requiring any prior knowledge of iUC.
For interested readers, we provide a brief introduction to the iUC model including an overview of its pseudo
code notation in Appendix A and in Appendix B, we provide an overview of the used pseudo code notation.

A party in iUC and hence also AUC is uniquely identified via its party ID pid , the session sid it runs in,
and the piece of code/role role it is executing. We call the triple (pid , sid , role) entity.1 In what follows, we
use the terms entity and party synonymously.

We call a party in a protocol main if it can directly receive inputs from and send outputs to the environment.
We call a party internal otherwise, i. e., if it is part of an internal subroutine. Whether a party is an internal
or a main party can be determined from its role. As in all UC models, an ideal functionality and a realization
share the same sets of main parties/roles. A realization might have additional internal parties/roles, such as an
internal server used by main clients, that are not present in the ideal protocol.

As is standard in UC models, the adversary A is allowed to corrupt parties by sending a special corrupt
command. If an entity is corrupted, the adversary generally gets full control over the (input and output interface
of the) entity. The environment can obtain the current corruption status of main parties in a protocol, which
allows for checking whether corruption of main parties is simulated correctly.

Classes of Security Properties. As mentioned in the introduction, the literature traditionally distinguishes
between preventive security properties and accountability properties. We denote the set of accountability
properties of a protocol by Secacc and divide preventive properties into two classes:
Absolute: A preventive security property is called absolute if all underlying assumptions used in the security
proof are assumed to always hold true. The analysis of the case where such assumptions might become broken
is out of scope. We denote the set of absolute security properties (of some protocol) by Secabs.
Assumption-based: We call a preventive security property assumption-based if it is shown to hold true under
certain assumptions but the security analysis also analyzes the case that these assumptions might become broken
at some point. We denote the set of assumption-based preventive security properties by Secassumption.

By this categorization, we have that absolute security properties can neither be assumption-based properties
nor accountability properties, i. e., we require Secabs ∩ (Secassumption ∪Secacc) = ∅. The set Secassumption ∩Secacc,
if non-empty, contains preventive security properties that offer accountability as a second layer of defense
whenever the underlying assumptions are broken. The set Secassumption \Secacc contains those assumption-based
security properties which are not additionally secured via accountability.

Verdicts. AUC defines verdicts to be positive boolean formulas consisting of propositions of the form dis(Ai)
where Ai is an entity and dis(Ai) expresses that the judge believes that Ai misbehaved/is dishonest. For example,
the verdict “dis(A1)∧ (dis(A2)∨ dis(A3))” captures the statement that party A1 and at least one of the parties
A2 and A3 have misbehaved. We can evaluate verdicts by setting dis(Ai) = true iff Ai is actually a corrupted
entity at the point where the verdict is stated, and false otherwise. We call a verdict fair if it evaluates to
true, and hence, does not mistakenly blame honest parties. In a secure protocol, all honestly computed verdicts
are required to be fair.

This definition of verdicts allows for capturing different levels of accountability. Verdicts such as dis(A1)
or dis(A1) ∧ dis(A2) imply that the specific party A1 (and potentially others) misbehaved. This captures the
strongest level of so-called individual accountability. In contrast, a verdict of the form dis(A1)∨dis(A2)∨dis(A3)
only identifies a group of three parties where at least one has misbehaved, therefore capturing a weaker level
of accountability.

2.2 Overview of AUC’s Central Concepts
The AUC framework serves as a general blueprint for modeling and analyzing a wide range of accountability

properties both in real and ideal protocols. Before delving into AUC, let us first give a high-level overview of
its main concepts and ideas:

1In those UC models that identify parties only via the pair (pid , sid), different roles can be modeled by adding them as a prefix to
pid , say, pid = (role, pid ′), where pid ′ is the actual party ID.

4

Breaking accountability properties in exchange for verdicts: In an (AUC) accountable ideal functionality, the
adversary A may, at any point in time, instruct the functionality to break/disable accountability properties. In
exchange for breaking an accountability property, the ideal functionality requires A to provide a verdict that
indicates parties who are blamed for the security breach. This verdict must be fair, i. e., it may not blame
parties who were honestly following the protocol. Verdicts are received and their fairness is checked by so-
called (ideal) judges. A judge is a new role added to the ideal functionality that models parties who are
responsible for determining misbehaving protocol participants. The environment and higher-level protocols,
including higher-level judges, can ask for a judge’s verdict.
In a realization of the ideal functionality, the corresponding (real) judges specify the exact judging procedures,
such as checking signatures, and the exact input data used as evidence to compute verdicts. For example, in
an e-voting protocol that is supposed to provide accountability w.r.t. counting votes (a strong form of so-called
end-to-end verifiability [33]), a real judge – run by an auditor or even a voter – might take as input all messages
from a bulletin board and then blame parties who produce output, e. g., the election result, but with invalid
accompanying zero-knowledge proofs.

Judge Types: AUC considers an a priori unbounded number of concurrent judges, which can be instantiated
by protocol designers to capture different numbers and types of judges executed by different parties modeling
various flavors of accountability. Most common are public and local judges, which capture public and local
accountability, respectively: (i) A single public judge implements public accountability, i. e., verdicts of the
(real) public judge are computed solely based on publicly available information. For example, in e-voting to
check that the tallying process went correctly, (cf. “accountability w.r.t. counting votes” above) a public judge
typically uses data, such as zero-knowledge proofs, from a public bulletin board. Since the data used is public,
everyone, including outside observers, can take the role of a public judge. It therefore typically makes sense
to model a public judge as an incorruptible entity. (ii) Several local judges, each of them belonging to and
typically representing the validation procedure executed by one protocol participant, model local accountability.
That is, verdicts of a (real) local judge are computed by a protocol participant, say Alice, and can therefore
be based not just on public information and whatever data other parties are willing to provide to Alice, but
verdicts can also be based on Alice’s own private data, possibly allowing for detecting a wider variety of
misbehavior. For example, in e-voting Alice, resp. her local judge, can tell that her ballot does not appear on
the bulletin board, even though she submitted it. Since a local judge is run by a (potentially malicious) protocol
participant who might lie about the verdict, a local judge is typically considered corrupted iff the corresponding
protocol participant is corrupted. (iii) Additionally, AUC also supports other types of judges, such as, mandated
judges. A mandated judge models a (potentially trusted) external auditor which (in the realization) computes
verdicts based on evidence that protocol participants provide. For instance, in some e-voting protocols aiming
for everlasting privacy [36] not all data needed for verifiability of the election can be published. Instead, only a
trusted auditor would obtain all necessary data, including potentially non-public data, to perform the verification
procedure.
We emphasize that in AUC protocol designers are free to define judges in whatever way suitable. In particular,
protocol designers can decide what kind of information judges use/require, whether the information is public
or private, what groups of parties they are responsible for, or whether judges are corruptible. Hence, AUC does
not dictate specific types of judges, and as mentioned, also does not bound the number of judges considered.

Judge dependent accountability properties: We take the view that a judge is responsible for one or more
security properties and one or more parties (not necessarily exclusively). That is, if a security properties is
broken from the point of view of a party, then a judge responsible for this security property and party is
supposed to output a verdict; conversely, without such a verdict the property should still hold true for this party.
For example, consider again accountability w.r.t. counting votes in e-voting. Here it makes sense to have a
public judge responsible for all parties and the correctness of the tallying process, who would output a verdict
when the tallying process was carried out incorrectly. To give another example, in Section 3.2 we consider a PKI
based on Certificate Transparency Logs (CTL). Here, a security property is that there should not be certificates
on the CTL containing a public key that does not belong to the alleged party, say Alice. This property may be
broken for Alice but not other parties, and only Alice can check this property. So here we would have a local
judge responsible for Alice carrying out the necessary checks; as long as this judge does not output a verdict,
all of Alice’s certificates on the CTL should be correct.
We formalize the above in AUC by allowing the adversary in the ideal protocol to mark an accountability

5

property p as broken for a specific set of judges, and require these judges to output verdicts. From then on,
the property p is no longer enforced by the ideal functionality for those parties that are protected by that set
of judges.

Judicial reports: Judges can provide arbitrary information, such as an aggregated view of collected evidence
to higher-level protocols via the novel concept of judicial reports. Judges in such higher-level protocols can
then in turn also use this information for computing their own verdicts. This is crucial to enable modular design
and analysis of a wide range of accountability-based protocols.

Assumption-based properties: Similarly to accountability properties, AUC formalizes assumption-based prop-
erties in ideal protocols by allowing the adversary to mark the underlying assumptions as broken. If that property
is not additionally protected by accountability, then the property itself is also considered broken. In general,
the assumptions and corresponding properties might hold true for some parties but not for others. For example,
Alice might achieve liveness since all of her messages were delivered within a bounded network delay but
Bob might no longer have liveness as some of his messages were dropped. Hence, just as for judge dependent
accountability properties, the ideal functionality allows the adversary to mark assumptions as broken for a
specific set of affected parties. Those parties then lose security guarantees, unless they are still protected by
accountability.

Supervisor: A new meta party called supervisor collects information about (i) corruption of internal protocol
participants (i. e., those that exist only within subroutines of the real protocol but not in the ideal protocol) and
(ii) broken security assumptions. This information is provided by the supervisor to the environment to guarantee
that the real and ideal worlds coincide in these aspects. In other words, a simulator cannot cheat but has to
keep these aspects consistent.

2.3 AUC Transformation for Ideal Functionalities
We now explain how AUC turns an arbitrary ideal functionality into an accountable one. Let F be an

arbitrary (non-accountable) ideal functionality that enforces a set of preventive security properties Sec, e. g.,
correctness, consistency, or liveness. AUC provides a general transformation T(·) for such ideal functionalities
F that creates an accountable ideal functionality F acc where arbitrary subsets of the properties from Sec are
changed to instead be assumption-based and/or accountability properties.2 That is, F acc ensures a combination
of absolute properties Secabs, assumption-based properties Secassumption, and accountability properties Secacc. The
transformation T(·) := T2(T1(·)) consists of two steps T1 and T2 that progressively modify F to obtain F acc =
T(F). The first step adds the necessary infrastructure to F to be able to express accountability properties, such
as code for the new judge and supervisor roles, but does not yet alter the actual behavior and security guarantees
of F . The second step T2(·) then changes the behavior of F to model the effects of broken security properties.
Next, we define each step.

Step 1: The transformation T1(F) =: F ′ takes as input the original ideal functionality to create an intermediate
functionality F ′. This step adds a fixed set of parameters, variables, and static code to F that defines the set
of accountability properties, judges, a supervisor, verdicts, as well as related operations for the adversary (cf.
Figures 1 to 3). The parameters are designed to be instantiated by a protocol designer to customize aspects
of F acc that depend on the specific real protocols at hand, e. g., the exact accountability level one wants to
analyze.

The full version of T1(·) builds the entire range of AUC features into F ′. This should be seen as a general
blueprint. Features not needed in the application at hand can be omitted.

Structural changes. Figure 1 specifies structural components, parameters, and state variables that are added
by T1 to F . More specifically, the roles of judge and supervisor are added to F , as well as their corruption
behavior: The supervisor is purely a modeling tool, hence incorruptible. As explained in Section 2.2, whether
judges are corruptible mainly depends on the types of judges that are modeled and is therefore not a priori
fixed by AUC. Protocol designers rather flexibly specify the corruption model for judges by instantiating the
newly added subroutine FjudgeParams (this new subroutine is also used to customize further aspects such as

2It is straightforward to also add entirely new assumption-based and/or accountability properties to F while applying the AUC
transformation. For simplicity of presentation we will leave this option implicit.

6

Additional roles: judge, supervisor
Additional protocol parameters: {They may be polynomially checkable predicates

– Secacc ⊂ {0, 1}∗ {Accountability properties
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)

– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Additional subroutines: FjudgeParams

Additional Corruption behavior:
– AllowCorruption(pid , sid , role):

Do not allow corruption of (pid, sid, supervisor).
if role = judge:

send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b
return b

– DetermineCorrStatusa(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m)

Do not allow sending messages to FjudgeParams. {A is not allowed to invoke FjudgeParams in the name of corrupted parties.
Additional internal state:

– brokenProps : (Secassumption∪Secacc)× (pidsjudge∪ idsassumption)→ {true, false}
{

Stores broken security properties per judge/id,
initially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

– brokenAssumptions : Secassumption × idsassumption → {true, false}
{

Stores broken security assumptions per id, initially
false ∀entries

– corruptedIntParties ⊂ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF b ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid, sid, role)

aDetermineCorrStatus allows protocol designers to specify whether an entity that is currently not directly controlled by the attacker should
nevertheless consider itself to be corrupted. E.g., a local judge will typically consider itself to be corrupted already if its corresponding party is
corrupted.

bRolesF is the set of (main) roles provided by F to the environment. For example, RolesF = {signer, verifier} for an ideal signature
functionality F := Fsig .

Fig. 1: Parameters and state added by the transformation T1(F) to an ideal functionality F .

accountability levels; we explain this later). For example, for local judges FjudgeParams would typically disallow
corruption if the corresponding protocol participant is honest, and conversely consider the local judge to be
corrupted as soon as the protocol participant is corrupted. As mentioned, the adversary gains full control over
corrupted judges. Further, AUC adds the parameters Secacc and Secassumption to F , which are instantiated by the
protocol designer to contain exactly those accountability and assumption-based properties (⊆ Sec) she wants
to consider.

The parameter pidsjudge specifies the considered (possibly infinite) set of party IDs of (different types of)
judges. For example, the most common types of judges mentioned in Section 2.2 can be model via PIDs
pid j ∈ pidsjudge of the following form: (i) pidj = public identifies a unique public judge, (ii) pid j =
(local, pid , role) models a local judge of protocol participant (pid , sid , role), and (iii) pid j = (mandated,
pid) highlights a mandated judge with PID pid .

In the state variable brokenProps we track for each combination of a security property ∈ Secacc and judge
∈ pidsjudge whether the property is broken for that judge (and hence, not guaranteed anymore for the parties this
judge is responsible for). Jumping slightly ahead, the second transformation step T2(·) will change the behavior
of the functionality depending on which properties are marked broken for which judges and their governed
parties. The map verdicts stores the current verdict of each judge.

The parameter idsassumption defines the (possibly infinite) set of IDs for which an assumption and the
corresponding assumption based property might become broken. For example, (i) id = public can be used
to model a global assumption and property that affects all parties, whereas (ii) id = (local, pid , role) can
model an assumption and corresponding property specific to a protocol participant (pid , sid , role). For each
combination of property ∈ Secassumption and ID ∈ idsassumption, we track whether underlying assumptions are
currently broken in the new variable brokenAssumptions. Once assumptions are broken, then the property itself
might also become broken for the affected ID (see below), which again is tracked in brokenProps.

Finally, we add the set corruptedIntParties which tracks corrupted internal parties in a realization in addition
to corrupted main parties that are already tracked by the functionality.

7

Additional code for the judge role:
recv (BreakAccProp, verdict, toBreak) from NETa to (pid, sid, judge)

s.t. toBreak ⊆ Secacc × pidsjudge ∧ verdict maps from pidsjudge → {0, 1}∗:
(successful, leakage)← breakAttempt(verdict, toBreak) {breakAttempt is defined below
reply (BreakAccProp, successful, leakage)

recv GetVerdict from I/O to (pidj , sid, judge): {The environment can query the verdicts of local and public judges
reply (GetVerdict, verdicts[pidj])

recv (GetJudicialReport,msg) from I/O to (pidj , sid, judge): {The environment may query for local or public judicial reports

send (GetJudicialReport,msg, internalState) to (pidj , sid,FjudgeParams : judgeParams)

{
Forward judicial report re-
quest to FjudgeParamswait for (GetJudicialReport, report)

reply (GetJudicialReport, report)

Helperfunctions:
procedure breakAttempt(verdict, toBreak) : {Process break attempt

Check for all non-ε verdicts in verdict , i.e., ∀pidj s.t. verdict[pidj] ̸= ε:
1. it holds true that verdict[pidj] is a positive boolean expression built from propositions of the form dis((pid , sid , role)),
2. it holds true that eval(verdict[pidj]) = true, b

Check that ∀(prop, pidj) ∈ toBreak :
3. verdict[pidj] ̸= ε,
4. brokenAssumptions[prop, pidj] = true, if prop ∈ Secassumption ∧ pidj ∈ Sec

assumption.
if any of the above check fails:

return(false, ε)

send (BreakAccProp, verdict, toBreak , internalState) to (, ,FjudgeParams : judgeParams)


FjudgeParams can impose
further conditions, e.g., on
verdicts or whether it is al-
lowed to violate breakable
security properties.

wait for (BreakAccProp, successful, leakage)
if successful:

for all ∀pidj s.t. verdict[pidj] ̸= ε do:
verdicts[pidj]← verdict[pidj] {Record accepted local and public verdict

for all (prop, pidj) ∈ toBreak do:
brokenProps[prop, pidj]← true

return(successful, leakage)

aNET denotes message from the network adversary. I/O denotes messages from the environment.
beval evaluates the bolean expression, where dis(pid, sid, role) evaluates to true if (pid, sid, role) ∈ CorruptionSet or (pid, sid, role) ∈

corruptedIntParties. CorruptionSet is a predefined variable of iUC that contains all corrupted main parties of this functionality. We set eval(ε) :=
true.

Fig. 2: Judge code added by the transformation T1(F) to an ideal functionality F .

Additional code for the supervisor role:
recv (BreakAssumption, toBreak) from NET to (, , supervisor) s.t. toBreak ⊆ Secassumption × idsassumption:

{A may break
these assump-
tionsfor all (prop, id) ∈ toBreak do:

brokenAssumptions[prop, id]← true {Record broken assumptions
if prop /∈ Secacc ∨ id /∈ pidsjudge:

brokenProps[prop, id]← true
{Record property as broken if not additionaly secured via accountability

send (BreakAssumption, toBreak , internalState)
to (pid, sid,FjudgeParams : judgeParams)

{FjudgeParams provides leakage
wait for (BreakAssumption, leakage)
reply (BreakAssumption, leakage)

recv (corruptInt, (pid , sid , role)) from NET to (, , supervisor)

s.t. role /∈ RolesF ∪ {judge, supervisor}:
{
A is allowed to corrupt internal protocol
parties

corruptedIntParties.add((pid , sid , role))
reply (corruptInt, ack)

recv (IsAssumptionBroken?, prop, id) from I/O
to (, , supervisor) s.t. id ∈ idsassumption:

{
The environment may ask whether proper-
ties are brokenif prop ∈ Secassumption:

reply (IsAssumptionBroken?, brokenAssumptions[prop, id])
else:

reply (IsAssumptionBroken?,⊥)
recv (corruptInt?, (pid , sid , role)) from I/O to (, , supervisor)

s.t. role /∈ RolesF ∪ {judge, supervisor}:
{The environment may ask for the corruption status of internal parties

if (pid , sid , role) ∈ corruptedIntParties:
reply (corruptInt, true)

else:
reply (corruptInt, false)

Fig. 3: Supervisor code added by the transformation T1(F) to an ideal functionality F .

8

Judges. Figure 2 specifies the code AUC adds to ideal functionalities to model judges. Each judge in AUC is
an entity of the form (pid j , sid , judge) where pid j is the judge’s PID running the fixed judge role.

The adversary can try to break accountability properties ∈ Secacc by sending a BreakAccProp message to the
ideal functionality, which contains a list of properties including the judges ⊂ pidsjudge for which these properties
shall be broken as well as a list of new verdicts for (some of the) judges. After receiving the message, the ideal
functionality first checks whether this attempt meets all minimal requirements for accountability, i. e., (i) all
(non-empty) verdicts are positive boolean formulas, (ii) all verdicts are fair based on the current corruption
status of main and internal parties, (iii) if a property is marked as broken for some judge, then that judge also
outputs a verdict, and (iv) accountability properties that are also assumption-based properties may not be broken
as long as the underlying assumptions still hold true. If the attempt passes these checks, F ′ forwards the attempt
(including its full internal state) to the subroutine FjudgeParams, which decides whether the attempt actually
succeeds and whether/which information is leaked to the attacker, say, because a privacy property was broken.
By instantiating FjudgeParams a protocol designer can therefore customize the exact level of accountability and
also relationships between properties. For example, an instance of FjudgeParams might require verdicts to have
the form “dis(A)”, i.e., identify exactly one misbehaving party, thereby providing individual accountability (cf.
Section 3 for examples with different accountability levels). It might also require that, if a property connected to
a party is broken, then the same property must also be broken concurrently for others, capturing the relationship
that several/all parties are affected and thus able to compute verdicts simultaneously (cf. Appendix G).

The environment can query judges of F ′ to obtain their current verdicts and their judicial reports. For verdicts,
F ′ returns the last accepted verdict. For reports, F ′ calls FjudgeParams which can compute the report based on
the entire internal state of F ′. This allows a protocol designer to customize which information is contained in
such reports by instantiating FjudgeParams appropriately (see Section 3.1 for an example).

Supervisor. Figure 3 presents the code added for the supervisor. The adversary can send a BreakAssumption

message to mark the assumptions as broken that underlie some properties p ∈ Secassumption for some set of
IDs ⊂ idsassumption. Assumption-based properties also protected by accountability, i.e., p ∈ Secacc and id ∈
pidsjudge∩ idsassumption, are not yet marked as broken; for these, the adversary still has to issue a BreakAccProp

message to id with a valid verdict. Otherwise, breaking the underlying assumption also breaks the property.
The adversary may further mark arbitrary internal parties as corrupted. These parties can then also be blamed
in verdicts.

As mentioned, the environment can ask the supervisor whether assumptions are marked as broken and whether
internal parties are marked as corrupted. Note that F ′ does not impose any limitations on when assumptions can
be marked as broken but only ensures – by providing this information to the environment – that this occurs if and
only if assumptions are broken in the realization. By this, the realization can specify the exact conditions and
limitations for broken assumptions without requiring any modifications to F ′ each time a different realization
is considered (cf. Sections 2.4 and 2.7).

Step 2: The second step of the transformation T2 specifies the effects of a broken property. Observe that the
exact implications in terms of behavior of F strongly depend on the individual security properties. Therefore,
T2, unlike T1, cannot simply be a fixed set of variables, code that need to be added to a functionality, or even a
black-box transformation of F ′. Instead, T2 rather constitutes a more abstract guideline on how the functionality
F ′ has to be modified. Importantly, such modifications must not alter the behavior when security guarantees
hold true since we want to retain the same security guarantees of F in those cases:

Definition 1. Let F ′ := T1(F). Let Facc := T2(F ′) be a functionality obtained by introducing additional
behavior for capturing broken security properties. We say that Facc is an accountable transformation of F if
the behavior of Facc and F ′ is identical in all runs until a security property is marked as broken.

Technically, modeling the effects of a broken security property p ∈ Secacc ∪ Secassumption affecting some
ID id ∈ pidsjudge ∪ idsassumption (specifying, e.g., an affected party), generally entails introducing (one or
more) conditional clauses of the form “if (p, id) is not marked as broken then <original behavior> else
<new behavior>”. As the name suggests, <original behavior> denotes the original unchanged behavior of
the functionality F , i.e., the code that enforces p. The code <new behavior> then defines what “breaking p”
actually means, typically by giving more power to the adversary.

For example, if F := Fsig is an ideal signature functionality and p = unforgeability (for, say, id =
public, modeling public unforgeability), then <original behavior> is a check during signature validation

9

P judgejudgejudgesupervisor

F1 F2 Fm
. . .

interface
to E

interface
to E

interface
to E

Fig. 4: Example of machines and connections in an accountable real protocol P with ideal (possibly
accountable) subroutines F1, . . . ,Fm. Blue components are added by AUC.

that, if it detects forgery of a signature, returns false irrespective of the actual result of signature validation.
Breaking this property would simply disable this forgery check, i.e., <new behavior> is empty. Thus, if a
signature is forged if unforgeability is broken, the transformed version of Fsig might actually return true.

More complex conditional statements can be used as well to capture advanced relationships of properties.
For example, consider privacy in MPC protocols. The statement “if there are at least t PIDs pid i of local
judges such that (privacy, pid i) is marked as broken then <leak secret information>” captures a threshold
relationship of local properties: in order to break privacy, the adversary has to mark privacy as broken for at
least t parties.

Observe that all transformations T2 following the form described above always satisfy Definition 1. That
is, the resulting ideal functionalities F acc := T2(T1(F)) are indeed accountable transformations of F as per
Definition 1.

2.4 AUC in Real Protocols
As illustrated in Figure 4, modeling accountability in a real protocol P using AUC mainly entails adding

and specifying a supervisor and several judges that correspond to the ones in the ideal protocol. Again, not
always all of these components are needed and can be omitted if not used.

Judges. The concrete definitions of judges in real protocols formalize (i) the judging algorithms used for
computing verdicts, (ii) inputs and hence evidence needed for obtaining the verdict, (iii) which parties are
supposed to provide which information as evidence, and (iv) to whom evidence is provided, namely, the party
that is running the judge. We exemplify modeling of real judges for the most common types of public, local,
and mandated judges: Intuitively, a public judge computes verdicts solely based on publicly available/verifiable
data such as information from a public bulletin board or data that individual parties are willing to provide and
therefore publish even to external observers. Since an honest party can always locally execute the public judge,
the public judge is modeled to be incorruptible. To make formally explicit in the security analysis that also
an attacker might run the public judge, public judges should generally publish all collected information via
their network interface to the environment. For the same reason, if a public judge is allowed to interact with
other parts of the protocol, e.g., to verify a signature in an ideal signature functionality Fsig, then typically the
judge should provide a network interface for the environment to be able to perform the same interactions.3 We
provide a concrete example of a public judge in Section 3.1. Local judges, typically one per (main) protocol
party, use public information and also (private) data that protocol participants are willing to share with the
party running the local judge but might not want to fully publish. In addition, since a local judge is run by
a party herself, it also takes as input the entire internal state and possibly history of that corresponding party,
including any private information, to compute a verdict. A local judge should be considered to be corrupted iff
its corresponding protocol participant is corrupted. We provide concrete examples of local judges in Sections 3.2
and 3.3. Mandated judges reflect the judging procedure of an external mandated auditor, which takes as input
publicly available data and also (private) data that protocol participants are willing to share with the auditor.
Whether (some of the) mandated judges are corruptible depends on the setting that shall be modeled.

3This modeling of public judges is similar in spirit to modeling random oracles. A random oracle represents a public function, which
is captured by being incorruptible but providing outputs via an additional network interface to the environment.

10

When evaluating evidence, real judges often obtain or compute additional information that might be useful
for and can even be required by higher-level protocols. Such information can be shared via judicial reports (we
discuss the need for this novel concept, including example use cases, in Section 2.7).

Supervisor. A supervisor in a real protocol forwards the corruption status of internal protocol participants and
specifies when exactly the assumptions underlying an assumption-based property for some party/ID must be
considered broken.

This generally involves gathering data from other parts of the protocol. For example, consider a property
p ∈ Secassumption that relies on an honest majority assumption and thus affects everyone (i.e., id = public),
e. g., consistency in Bitcoin [48]. That is, a protocol only ensures p if more than half of the protocol participants
are honest. To determine whether the protocol still ensures p, the supervisor would check whether a majority of
the protocol participants is still honest. If the majority is lost, the supervisor would indicate that the assumptions
for p are no longer met and thus the protocol might no longer guarantee p.

As we discuss in Section 2.7, our novel concept of a supervisor is necessary to be able to capture a wide
range of assumption-based properties as well as real protocols with arbitrary internal structures, such as client-
server protocols (e. g., [14, 55]). Our case studies in Sections 3.1 and 3.2 provide concrete examples and indeed
require a supervisor.

2.5 Composable Security Analysis in AUC
A security analysis in AUC consists of a realization proof where one shows that the protocol Pacc at hand

indeed realizes (in the UC sense) the accountable ideal functionality F acc. Among others, this formally proves
that Pacc enjoys the desired security properties, including accountability properties. Since AUC works within
existing UC models and uses the standard realization notion, one can now, as usual, build an (accountable
or traditional) higher-level protocol Qacc using F acc as a subroutine (written (Qacc | F acc)) and prove that it
is secure, i.e., realizes some F ′acc. The composition theorem of the underlying UC model then immediately
implies that also the composed protocol (Qacc | Pacc) using Pacc instead of F acc still realizes F ′acc, i.e., achieves
all desired strict, assumption-based, and/or accountability properties.

In an accountable higher-level protocol Qacc, the judges can and typically will obtain verdicts and judicial
reports from the subroutine judges in F acc resp. Pacc. This information can then be used by higher-level judges to
compute their own verdicts and reports (cf. the BFT example in Section 2.7 and our case studies in Sections 3.1
and 3.3 for higher-level judges that rely on lower level judges). We note that we do not impose any restrictions
on which lower-level judges a higher-level judge may access. For example, often a higher-level local judge
of some party will only use local subroutine judges belonging to the same party. This models that the party
executes all of its judges from all protocol layers iteratively and can re-use the results of previous computations,
such as verdicts identifying misbehavior in subroutines, in the following computations. However, a higher-level
local judge can also, e.g., obtain the verdicts of lower level judges of different parties, modeling that one party
uses the (claimed) results of other parties. While these results might not necessarily be trustworthy, a higher-
level judge might, e.g., be able to aggregate and perform majority voting to obtain a fair result, or achieve a
weaker level of accountability that considers the possibility of the subroutine judge lying in their verdict.

2.6 Deterrence Analysis
In addition to the UC security analysis, protocol designers should perform a cost-benefit/deterrence analysis

of the (possibly composed) real protocol to determine whether honest parties are willing to take part in the
protocol and whether accountability indeed deters rational adversaries from misbehavior. This analysis can
be performed using any standard approach from the literature. As a simple example, based on the approach
by Asharov et al. [6] we describe one possible concrete mechanism for this purpose. For a rational acting
honest party pi, one considers the utility/profit U i

hP for running the protocol, the cost U i
hE for disclosing

private data as evidence to judges, and the loss due to (falsely) accusation U i
hL (by a corrupted judge). For a

rational but maliciously acting party pi, U i
mP is the potential utility/profit from misbehaving, U i

mL is the cost
for misbehaving (e.g., reputation loss or contractual penalties after being detected), and U i

mE is the cost for

11

providing (possibly maliciously crafted) evidence to judges. Now, accountability provides a suitable security
mechanism in a practical deployment if

U i
hP − U i

hE − U i
hL ≥ 0 and (1)

U i
hP − U i

hE − U i
hL ≥ U i

mP − U i
mE − U i

mL, (2)

i.e., honest parties benefit from and hence are willing to take part in the protocol (Eq. (1)) and malicious parties
are deterred from misbehaving as they stand to gain more when honestly following the protocol (Eq. (2)).

Often, the result of such an analysis will be obvious. For example, if CAs in a PKI are detected misbehaving,
they typically have to close business [92], i.e., U i

mL will be much higher than U i
mP . We also note that

utilities/costs might depend on the context/higher-level protocol that a subroutine will be deployed in. For
example, the potential profit U i

mP for tempering with an accountable bulletin board is very large if it is used
as subroutine in an e-voting protocol for a major political election. But U i

mP might be negligible if the bulletin
board is just one out of several redundant backups in a distributed cloud storage protocol. In such cases a
deterrence analysis cannot be performed for individual components but should rather be performed after fully
composing the entire real protocol.

2.7 Discussion
AUC is the first general purpose accountability framework for UC models. It builds on and extends existing

concepts but also introduces entirely new concepts that are required to construct such a general framework.
Here we discuss these concepts and relate them to existing literature.
Accountability properties: AUC formalizes a property-based interpretation of accountability, i. e., security
properties might be broken as long as misbehaving parties can be identified and blamed. This is a standard
interpretation that is widely established and used in the area of formal protocol security analyses [33, 42–
45, 52, 57, 62, 63, 67, 68, 79]. There are other (often informal) interpretations of accountability, also outside of the
field security (cf. [46]). A relatively close one in the domain of security requires that any object/message/action
can be connected to its originator, e. g., by requiring all parties to sign (cf., e. g., [25, 27]). This interpretation
is orthogonal to the property-based interpretation. For example, in e-voting it is important that one cannot trace
back ballots to individual voters but one can still achieve property-based accountability for such protocols,
namely correctness/verifiability of the election result (see, e. g., [69]). Conversely, even if the election servers
sign all their messages, it might not be possible to verify from those messages whether all votes were counted
correctly. That is, the protocol might not provide accountability for correctness of the election result.

Verdicts: The game-based model of Küsters et al. [67] defines verdicts as boolean formulas to be able to express
different levels of accountability. We transfer this concept to the setting of universal composability. This allows
AUC to capture a wide range of common accountability levels, from strong individual accountability to very
weak levels where, say, a verdict only says that someone misbehaved but gives no further information on who
exactly is at fault.

Judges, Relationships, and Judge Dependent Properties: Judges are an integral part of the specification of
protocols since they define the routines, including inputs, that are used by that protocol to detect misbehavior. A
formal analysis can then verify for a given detection routine whether it provides (property-based) accountability.
Hence, judges are used (at least implicitly) by all works that formally analyze (property-based) accountability
(e. g., [6, 13, 34, 37, 54, 62, 63, 67, 79, 87]).
There is a division in the existing literature concerning relationships of security properties: On the one hand,
prior general frameworks for accountability such as [62, 63, 67, 79] consider only a single (public/local) judge
running at the same time. Hence, these general frameworks cannot actually capture relationships of properties
where different parties and/or different types of judges are affected at the same time. This includes, e.g.,
all local judges obtaining the same verdict or a security property holding true until at least a threshold of t
judges (possibly a mixture of local, mandated, and/or a public one) detect misbehavior. On the other hand,
there are works that have already considered and analyzed such relationships by proposing specialized security
models that hard code a certain relationship for a specific property and setting. This includes, for example,
[6, 8, 14, 55, 85] which require for identifiable abort in MPC protocols that honest parties agree on the culprit,
i.e., their local judges compute the same verdict.

12

AUC is the first general accountability framework that can capture such relations. At its core, this is enabled
by considering multiple concurrent judges and judge types as well as judge dependent properties. Appendix G
illustrates this feature.

Judicial reports: This novel concept introduced by AUC allows judges from different protocol layers to
exchange information, which is often required to perform a modular analysis.
For example, consider a publicly accountable BFT consensus algorithm used as a subroutine by a higher-level
protocol Pacc. As long as the (lower-level) public judge JBFT in the BFT algorithm does not detect misbehavior,
she will typically be able to compute the consensus established among the parties from the available evidence. In
Pacc, misbehaving parties might be able to break security properties by deviating from the consensus established
in the BFT subroutine. Hence, for a higher-level public judge JPacc to detect who deviated from the consensus
he must first learn the correct consensus. But JPacc cannot compute this on his own since, by UC composition,
he does not see the internals of the BFT subroutine but only gets restricted access via a limited interface. AUC
solves this issue and enables a modular analysis by extending this interface via judicial reports: JBFT, who has
full access within the BFT subroutine and who can thus compute the unique consensus if it exists, can provide
this information as part of a report to JPacc . See also our case study in Section 3.1 for a composed protocol
whose modular analysis requires judicial reports.

Supervisor: AUC is the first framework that allows for modeling and analyzing the combination of assumption-
based and accountability-based security for the same properties in a UC model. It is also the first framework
that supports modeling and analyzing accountability of real protocols with arbitrary internal parties without
assuming any specific internal structure. Both of these features are enabled by, among others, the novel concept
of a supervisor.
To formalize the guarantees of assumption-based properties the behavior of the ideal functionality has to change
depending on whether the assumption currently holds true. Note that for many assumptions an ideal functionality
cannot actually determine whether they are still met as they often depend on internals that only exist in the
realization. For example, liveness properties of blockchains typically assume that an internal network subroutine
in the real protocol has a bounded message delivery delay; such a network subroutine does not necessarily exist
in the ideal functionality. The supervisor solves this issue: firstly, the realization of the supervisor can specify
the exact conditions under which an assumption holds true while having full access to all information of the
real protocol. By allowing the environment to query whether assumptions are currently broken, the supervisor
then further ensures that the assumption will be marked as broken in the ideal functionality if and only if the
conditions specified in the real world are no longer met. Hence, e. g., an ideal blockchain functionality would
enforce liveness iff the real blockchain supervisor determines that the real network still has a bounded message
delay. Our case study in Section 3.1 underlines the need for this aspect of supervisors.
Verdicts in (possibly composed) real protocols might have to blame internal protocol parties, e. g., servers in
client-server protocols [50, 85], where clients are main parties that are available to higher-level protocols while
servers are purely internal subroutines. Since only main parties but not any of the internal parties of the real
protocol also exist in the corresponding ideal protocol, we use the supervisor to ensure that the simulator can
mark internal parties as corrupted in the ideal functionality iff they are corrupted in the real protocol (the same
property is already guaranteed for the main parties by the underlying model). This mechanism is necessary to
ensure that verdicts which are fair in the ideal functionality are also fair in the realization. Our case studies in
Sections 3.1 to 3.3 rely on this use of the supervisor.

Composition: The combination of the above concepts is what allows AUC, for the first time, to capture
UC compositions of arbitrary accountability-based protocols. This is further illustrated by our case studies in
Sections 3.1 and 3.3, which are the first modular accountability analyzes for these settings and protocols.
Since AUC works within an arbitrary UC model, AUC inherits and preserves all features of the underlying
composition theorems. In particular, if the underlying model supports composition with global state (e. g., [9,
17, 18, 71]), then it is possible to make some or all of the subroutine judges within a composed protocol globally
available to the environment and arbitrary other concurrent protocols.4 Whether it is sensible to consider globally
available or rather private subroutine judges depends, as with most other global functionalities, on the protocol
and the context that is modeled. For example, local judges within composed MPC protocols (cf. Appendix G)

4We note that, as observed by [9, 17, 71], the same UC security proof of the subroutine already implies composition with and without
globally available subroutine judges.

13

CS

scd1

ccd1

scd2

ccd2

scdm

ccdm

. . .

cl1,2cl1,1 cl1,n1
. . . cl2,2cl2,1 cl2,n2

. . . clm,2clm,1 clm,nm
. . .

Consensus
Protocol

Scaling
Protocol

CD1 CD2 CDm

Fig. 5: Consensus scaling: a central service CS establishes consensus. Consensus is distributed via distributors
CD1, . . . ,CDm. The CD connect to CS via their CS-clients ccd1, . . . , ccdm. The CDs distribute consensus

via server components scd1, . . . , scdm to their clients cl1,1, cl1,2, . . .

should typically be modeled as private: the subroutine is supposed to be used only within a single context,
namely the MPC protocol, and there is no reason for Alice to share the verdicts and judicial reports of her
internal subroutines with arbitrary other parties, protocols, and the environment. In contrast, one might consider
modeling judges belonging to a PKI subroutine (cf. Section 3.2) to be globally available within a composed
protocol if the same PKI is supposed to be shared by multiple different protocols.
We note that the main difference between global and private subroutine judges is whether only one or multiple
higher-level protocols can be composed with the same subroutine. Hence, when only a single specific higher-
level protocol has to be considered, then an analysis with a private subroutine is generally already sufficient.

3. CASE STUDIES

In this section, we exemplify the usage and features of AUC via three case studies: an accountable scaling
protocol, a simplified version of the Web PKI including CTLs, and a key exchange protocol based on an
accountable PKI. We provide for each case study a brief deterrence analysis in the appendix. Additionally
– as a sanity check – we cast existing accountability definitions from the UC MPC literature into AUC in
Appendix G.

3.1 Scaling Accountable Consensus
In this case study, we analyze a common situation from practice, namely, a scaling protocol built on top

of a consensus service (CS), cf. Figure 5. The purpose of this scaling protocol is to increase throughput and
hence support a larger number of clients. This is achieved by introducing an additional layer of intermediate
servers (called CD in Figure 5) that regularly obtain the established ordered sequence of messages/the consensus
from the underlying CS, cache the result, and then use this cache to answer incoming requests from clients.
This scaling approach is commonly used, e.g., by the prominent Hyperledger Fabric blockchain [3, 50], the
Hashgraph consensus service [11], and content delivery networks [39].

More specifically, in this case study our goal is to scale a consensus service that provides public and individual
accountability, takes inputs from clients, appends them to a globally unique ordered list/state, and gives all
clients access to this global state. In particular, if a client does not obtain a prefix of the (same) global state,
then a judge, based on public evidence, can blame a misbehaving party. We want to show that the composition
of a suitable scaling protocol on top of this service retains all properties of the underlying consensus service,
most notably public individual accountability. Note that consensus might fail due to misbehavior of parties in
CS but could also be introduced by the scaling layer.

This case study exemplifies several features and aspects of the AUC framework, including (i) accountability
and assumption-based security properties, (ii) public accountability, (iii) individual accountability, (iv) compo-
sition using judicial reports, which are required to express this case study, and (v) complex protocol structures,
namely a client-server protocol with internal, potentially malicious parties/servers. Full details, including formal
specifications of all UC machines, functionalities, and a full security proof are available in Appendix D.

14

The scaling protocol. We consider a scaling protocol that has the structure depicted in Figure 5 and works
as described in what follows. While this scaling protocol is a custom one that we chose to illustrate AUC, the
general construction is similar to Hyperledger Fabric and Hashgraph. Hence, this case study can serve as a
basis for the first UC accountability analysis of these protocols in future work.

Transaction submission: When a client, say cl1,1, submits a transaction (after receiving that transaction from
some higher-level protocol), she adds her identity, signs the resulting transaction, and then sends (via an
unprotected network) the signed transaction to her consensus distributor (CD), here CD1. The CD is divided
into two components: a server part called SCD which interacts with higher-level clients and a client part CCD
which interacts with the CS. An SCD verifies the signature of incoming transactions from higher-level clients
and then starts acting as a client CCD towards the CS to add the signed transaction to the globally ordered
state. This involves running the code of a client, e.g. ccd1, as specified by the underlying consensus protocol.
Depending on the consensus protocol, this client code might, e. g., also add its own signature to the signed
transaction.

Accessing the global state: A SCD, say scd1, regularly calls the client code ccd1 to obtain a current copy
of the global state from the CS. scd1 then signs (with the key of CD1) and caches this global state. Whenever
a client, such as cl1,1, queries its SCD for the global state, the SCD, here scd1, responds by returning the most
recent signed cached copy of the global state, hence, reducing the load of the CS. cl1,1 accepts and outputs the
message to a higher-level protocol if the signature by CD1 on the whole state is valid.

Security properties. We consider two security properties for both the underlying and the scaled consensus
protocols, formalized by an ideal functionality (see below):

Public individual accountability w.r.t. consistency: Clients (both of the scaling protocol and the CS) obtain
a prefix of the same global state or can identify an individual misbehaving party. This definition follows the
game-based accountability property formalized for Hyperledger Fabric in [50] but using AUC takes it to the
composable UC setting. As mentioned, we want to show this property for the composition of the scaling protocol
and the consensus protocol.

(Assumption-based) liveness: Liveness states that transactions submitted by honest clients (of the scaling
protocol and CS) will be part of the global state after at most δ time units assuming a network with bounded
message delay (cf., e. g., [48, 50, 78, 80, 89]). To illustrate assumption-based properties, our analysis extends to
the case that, at some point in the run, the underlying assumption of a network with bounded message delay
might no longer hold true.

The ideal accountable consensus functionality Facc
cp . To define Facc

cp , we start by considering a (non-
accountable) ideal consensus service functionality Fcp that is essentially a simplified version of established ideal
ledger functionalities, e. g., [10, 51], tailored towards the special case of consensus establishment. Fcp enforces
consistency and liveness as preventive security properties. We then apply AUC to obtain an accountable version
Facc
cp (cf., Figure 9 and 10 in Appendix D) that captures the above security properties. More specifically, we

set Secacc = {consistency} and Secassumption = {liveness}. Note that liveness /∈ Secacc, and hence, Facc
cp

will not require judges to blame anybody (e.g., the network) if liveness fails.
We start by explaining Fcp and then the AUC transformation to derive Facc

cp . Fcp itself consists of an
unbounded number of clients who offer a read and write interface to higher-level protocols. These clients can
write transactions to and read from a single globally ordered list/state in Fcp. Upon writing a new transaction,
Fcp models network traffic by allowing the simulator to determine when and in which order these transactions are
appended to the global state. Fcp guarantees that all incoming transactions by honest clients will be appended
to the global state after at most δ time units. More formally, Fcp models (absolute) preventive liveness by
disallowing the attacker from advancing time as long as there are pending transactions that have not been
added to the state since δ time units. Whenever Fcp receives a read request from an honest client from a
higher-level protocol, Fcp allows A to determine the prefix of the global state that will then be returned to the
client. For read requests received by corrupted/malicious clients, i. e., clients that are under full control of the
adversary, Fcp always allows A to freely determine the output of Fcp.

To derive Facc
cp from Fcp, we implement the AUC transformation step T2 as follows. (i) Facc

cp includes one
incorruptible public judge (in a protocol session), i.e., pidsjudge = {public}, and considers only assumptions
that affect all parties (in a session), i.e., idsassumption = {public}. (ii) As soon as liveness is marked broken
(for id = public), Facc

cp no longer enforces that messages are added to the global state within δ time units.
(iii) If (public) consistency is broken, Facc

cp allows A to freely determine the output of Facc
cp in turn for a fair

15

client judge

scd

supervisor

FcertFnet

Facc
cp

≤ Facc
cp

Scaling Protocol Pacc
cp

Consensus ProtocolSubroutines

interface
to E

interface
to E

interface
to E

interface
to E

Fig. 6: Illustration of Theorem 1. All machines are also connected to A.

verdict matching the customization in Facc-cp
judgeParams. The subroutine Facc-cp

judgeParams forces A to provide a verdict
which implies individual accountability, i. e., all parties in the verdict can rightfully be blamed for misbehavior.
As long as there is no verdict reached yet in Facc

cp , Facc-cp
judgeParams’s public judicial report returns a view on the

global state which contains at least the longest prefix that was read by an honest client so far (everything else
after this prefix can be chosen freely by A). If there has been a verdict, the report is empty.

By this construction, Facc
cp indeed models the desired security properties (individual public) accountability

w.r.t consistency and assumption-based liveness.

Protocol Model. We model the scaling protocol from Figure 5 via a hybrid protocol as depicted in Figure 6.
Specifically, the client machine models the code run by the clients cli,j and the internal machine scd models
code of the SCD. The ideal subroutine Facc

cp models an ideal accountable consensus protocol used by the scaling
protocol, i. e., it abstracts the code of the CCD and the code of the consensus service CS, all of which are
specified in a realization of Facc

cp (we discuss a possible realization at the end of this section). In a run of the
protocol, there can be an unbounded number of instances of client and scd, each modeling one party in one
protocol session. These parties additionally have access to an ideal signature functionality Fcert (which includes
a PKI) and an ideal network functionality Fnet with bounded message delay δ′. The adversary is allowed to
break the assumption of a bounded network delay in Fnet by sending a special message.

Observe that the CD consists of two components, SCD and CCD, modeled via separate machines, i. e., the
server component scd and the client component in Facc

cp , but should be considered corrupted as soon as just
one of those machines misbehaves. We capture this expected property by considering a party running scd to
be corrupted also if the corresponding client in Facc

cp is corrupted, i. e., we use the corruption state of scd to
represent the corruption status of the combined CD. This idea allows for capturing individual accountability also
in a composed protocol, where the same party takes part in multiple parts of a protocol and hence needs to be
split into multiple machines. Without this mechanism the judge would be required, by individual accountability
and fairness, to identify whether SCD or CCD has misbehaved. In addition to the above, since we identify a
party (running client or scd) with its signature key, we also consider parties to be corrupted if their signature
key is corrupted.

Two important aspects of the protocol model are the specifications of the public judge and the supervisor.
The judge collects the evidence from clients and from the lower-level judge. That is, clients provide all
sequences of messages/states that they received from SCDs (include SCD’s signature over the state) to the
judge as evidence. This judge also queries the public judge of the subroutine Facc

cp to get the most recent
verdicts and judicial report from Facc

cp . If the subroutine judge returns a non-empty verdict, then the judge

outputs the same verdict since a misbehaving party was already found in the subroutine and hence consensus
might no longer hold true. Otherwise, the judge verifies that evidence provided by clients is (i) correctly signed
by a CD/SCD and (ii) the provided state is a prefix of the current judicial report, i. e., the correct consensus
as determined by the public judge in the subroutine consensus protocol. If the first check fails, the client’s
evidence is not valid and is discarded. If the second check fails, the SCD violated consistency as it signed and
forwarded a sequence of messages that differs from the established consensus. Hence, in this case the judge

16

blames an individual SCD. In all other cases no misbehavior was detected and the verdict remains empty.
For judicial reports, judge simply forwards the judicial report from the consensus protocol. The public judge
follows the modeling as explained in Section 2.4 and, e. g., she reveals all gathered evidence to the network
adversary.

The supervisor determines whether the assumptions needed for liveness still hold true by querying (i) Fnet

to check whether the bounded network delay is guaranteed and (ii) the supervisor of Facc
cp to check whether

liveness assumptions for the subroutine are still met (via IsAssumptionBroken?). If any of these checks fail,
the supervisor returns that liveness assumptions no longer hold true. Hence, only in this case is the simulator
in the ideal world allowed to actually break liveness.

UC Security Result. Our security result (cf., Figure 6) states that the scaling protocol Pacc
cp using an ideal

accountable consensus service subroutine Facc
cp is still an accountable consensus service, i. e., all security

guarantees are retained and hence the scaled protocol is also a realization of Facc
cp :

Theorem 1. Let Pacc
cp and Facc

cp be as described above. Then,

(Pacc
cp | Facc

cp) ≤ Facc
cp .

We provide the formal proof for Theorem 1 in Appendix D.

Discussion. Using the iUC composition theorem, the ideal subroutine Facc
cp of Pacc

cp can be replaced with an
arbitrary realization while retaining security results. The perhaps simplest realization consists of clients with
access to a consensus service run by a single party, analogous to what is shown in Figure 5 (if CS were
considered one party), where the consensus party signs its outputs to provide accountability. By Theorem 1,
one can also realize the subroutine Facc

cp via another copy of Pacc
cp , i. e., one can iterate the above scaling

approach to add additional scaling layers. Security of such a protocol with multiple scaling layers is then
directly implied by Theorem 1 and the composition theorem. This nicely demonstrates one of the advantages
of composition for accountability properties.

These kinds of composition results are enabled by several features offered by the AUC framework, most
notably our novel concept of judicial reports. Indeed, if the public judge in the subroutine Facc

cp had been
unable to share his knowledge (i. e., a consistent view on the global state of the subroutine) via a judicial report
with the higher-level judge in the scaling protocol, then the judge would be unable to decide, given two
inconsistent views, whether CS or CD (CDs in the case of multiple layers) have provided inconsistent views.
Without judicial reports, it would thus be impossible to prove individual accountability modularly.

As mentioned at the begin of this section, this case study illustrates the possibilities of AUC. Most notably,
composability of accountability-based protocols enabled by judicial reports, the supervisor concept, handling
of assumption-based and accountability properties concurrently, and blaming of internal parties (CD).

3.2 An Accountable PKI for the Web Based on CTLs
In our second case study, we analyze accountability of a Web PKI based on Certificate Transparency Logs

(CTLs) [32, 72]. For the sake of presentation, we consider a slightly simplified version that does not include
certificate revocation. We show that such a PKI with CTLs indeed achieves the expected property of certificate
transparency [72], i. e., accountability w.r.t. certificate correctness. That is, if someone obtains a certified public
key for Alice from the PKI, then either this key was indeed registered by Alice or Alice can identify and blame
a misbehaving CA for issuing a wrong certificate based on the information provided by CTLs. In Section 3.3,
we analyze and prove the security of a standard key exchange (KE) protocol composed with this accountable
PKI protocol.

This case study along with the KE protocol uses several features of AUC, including some that were not
yet illustrated in Section 3.1, such as (i) local accountability, (ii) individual and group-based accountability
levels, and (iii) composition, including the case where higher-level judges use verdicts from lower level judges
belonging to different parties. Altogether, using AUC, we are able to perform the first UC analysis of a CTL-
based PKI and protocols based thereupon.

In what follows, we present our case study with full formal specifications available in Appendix E.

Protocol Description. As depicted in Figure 7, the roles in a CTL-based PKI protocol are (i) clients, (ii) CAs,
and (iii) CTLs. Clients request CAs to issue a certificate for them and query CAs for certificates of other clients.

17

CAs CTLs

registerregister

pre-certpre-cert

certificatecertificate

retrieve certretrieve cert

deliver certdeliver cert

monitormonitor

monitor responsemonitor response

client ca1 cal ctl1ctlm

if cert in
local state
if cert in
local state

client ca1 cal ctl1ctlm

Fig. 7: CTL-based PKI protocol

Here we consider clients that certify at most one key.5 More specifically, to certify a new key a client sends a
registration request, containing its pid and the public key via an authenticated channel to a CA. When a CA
receives a registration request, it checks that it did not issue a certificate for pid so far. If the request passes
the check, the CA generates a pre-certificate containing the original request and a signature of the CA. The CA
forwards the pre-certificate to potentially several CTLs. When a CTL receives a pre-certificate, it verifies the
CA’s signature. If the signature is valid, the CTL finalizes the certificate and also signs the certificate. CTLs
store the certificates they signed/issued and allow clients to monitor these certificates. The underlying idea is
that clients can detect identity theft by retrieving certificate lists from CTLs regularly and checking whether
there are any certificates in their name that they did not request; we call these maliciously created certificates
in what follows. Finally, a client pid can ask to obtain the certificate for another client pid ′ from a CA if such
a certificate was issued by that CA.

Security Goal. Informally, a CTL-based PKI protocol such as the one presented here is supposed to achieve
the security goal of accountability w.r.t. certificate correctness (typically called certificate transparency): honest
parties detect maliciously generated certificates for their own identity after some bounded time delay. We denote
this local accountability property in what follows by “correctCert”. As long as correctCert holds true for a
dedicated client, this means that the client actually requested the available certificate and there is no maliciously
generated certificate available in the PKI.

The ideal PKI functionality Facc
PKI. We formalize the property just sketched starting with a non-accountable

ideal PKI functionality FPKI that is analogous to Canetti et al.’s ideal functionality GBB [27] and the ideal
CA FPKI from [17]. We then apply AUC to obtain an accountable version Facc

PKI that captures accountability
w.r.t. certificate correctness.

Clients are the main roles of FPKI; CTLs and CAs are internal parties of potential realizations of FPKI.
FPKI allows (honest) clients to register one certificate for their own identity at some CA. The adversary A
decides when and whether a registration is successful. If it succeeds, FPKI issues the certificate (consisting of
the party’s pid , a string, meant to be the party’s public key, and the name of the issuing CA) and adds the
certificate to its state. When parties query FPKI for a certificate of an honest pid ′ issued by a certain CA, A is
free to choose when and whether FPKI answers the request. If A instructs FPKI to respond, FPKI provides the
unique certificate for pid ′ (as stored in FPKI’s state) or it outputs ⊥ if there is no certificate recorded at that
CA. For corrupted clients pid′, FPKI does not provide any guarantees but lets A freely determine the response.

5This is not an actual restriction. Higher-level protocols can certify multiple keys for a single identity pid ′ by setting, e. g., pid =
(pid ′, keyid).

18

We now apply AUC to FPKI to derive Facc
PKI which additionally captures local accountability w.r.t. certificate

correctness. We include a local judge ((local, pid , client), sid , judge) for every client (pid , sid , client)
in FPKI, i. e., pidsjudge ⊂ {local} × {0, 1}∗ × {client}. We set Secacc = {correctCert}. This allows the
adversary to indicate that certificate correctness is broken for some client pid as long as the adversary provides
a verdict to the corresponding local judge. We require that these verdicts blame individual CAs, i. e., the affected
client pid can identify those CAs that misissued a certificate in their name. This is enforced by instantiating
Facc- PKI

judgeParams to check that verdicts are of the form
∧n

i=1 dis(CAi), where CAi are parties with the (internal)
ca role. If correctCert is broken for a pid , then Facc

PKI treats pid in the same way as corrupted parties for
the purpose of retrieving certificates, i. e., the adversary can return arbitrary certificates issued for pid .

Security model. We model the CTL-based PKI as a real protocol Pacc
PKI which implements the previously

mentioned roles and operations. We model dynamic sets of clients, CAs, and CTLs. Clients and CAs can be
dynamically corrupted, whereas CTLs act as trust anchor and are hence incorruptible.6 Pacc

PKI uses an ideal
signature functionality Fsig for signatures. It further uses three ideal functionalities FCA

init, Fpsync - net, Fauth to
capture setup assumptions: FCA

init distributes public keys of CAs and CTLs, which are assumed to be known to
all parties. Fpsync - net models a network with bounded message delay, i. e., messages are delivered within δ time
units. This functionality is used by clients during certificate monitoring to guarantee that a response from the
CTL is received in a timely fashion, thereby ensuring that clients can detect maliciously created certificates after
some bounded time. Fpsync - net further provides a clock to all parties, capturing that parties are aware of the
current time. Finally, Fauth models an ideal authenticated channel which is used during certificate registration,
modeling that a CA has some means to identify a client.

We model that a client pid regularly monitors CTL certificate lists, namely after at most δ time units (any
other publicly known bound can be used as well). Hence, by the bounded message delay enforced by Fpsync - net,
we have that pid will detect a maliciously created certificate registered at some CTL after at most 3 · δ. If the
client pid detects such a certificate, then, from its point of view, the CA is at fault for signing a certificate
that was not requested by her.7 Hence, the local judge of pid blames such CAs via the verdict

∧n
i=1 dis(CAi),

where CAi are exactly those CAs that signed maliciously generated certificates for pid . Since a maliciously
created certificate is detected by pid only after at most 3 · δ time units, any other party pid ′ that retrieves the
certificate before that point in time cannot be sure whether a certificate is genuine or whether pid did not yet
see and hence did not have the opportunity to complain about the certificate. We therefore model that clients,
during certificate retrieval from some CA, accept certificates only with an age of at least 3 · δ time units. Such
a certificate is either correct or pid ′ has already noticed and complained about the malicious certificate, as
required by accountability w.r.t. certificate correctness.

Since we consider only local accountability, there is no public judge in Pacc
PKI. We also do not use judicial

reports in this protocol. As we do not consider assumption-based security properties, we set idsassumption = ∅.
The supervisor in Pacc

PKI is responsible only for forwarding the corruption status of the internal CAs. This ensures
that a simulator in the ideal world can blame a CA in a verdict only if the CA is corrupted in the real world.

UC Security Result. We obtain the following result.

Theorem 2. Let Pacc
PKI be the real PKI protocol and Facc

PKI be the ideal accountable PKI functionality as
described above. Then,

Pacc
PKI ≤ Facc

PKI.

We provide a formal proof of Theorem 2 in Appendix E.

3.3 A Key Exchange Based on an Accountable PKI
We now analyze a standard authenticated key exchange protocol, the so-called “ISO protocol”, an authen-

ticated version of the Diffie-Hellman key exchange with digital signatures based on the ISO/IEC 9798-3

6Trusting a CTL is indeed necessary as a malicious CTL can simply hide certificates during monitoring. This trust can be distributed
among several CTLs by requiring t ∈ N CTLs to validate and sign new certificates. In this case, one can obtain a security result if at most
t− 1 CTLs are malicious. Our analysis carries over to this setting.

7Observe that only pid itself can be sure that the CA is at fault. A third party cannot determine whether the CA or pid has misbehaved
(e. g., by requesting a certificate but then blaming an honest CA). This observation becomes important in the composed protocol analyzed
in Section 3.3.

19

A B

A, gx

B, gy, SIGB(g
x, gy, A)

SIGA(g
y, gx, B)

Fig. 8: The ISO protocol for mutually authenticated Diffie-Hellman key exchange between two parties A and
B.

standard [56] (see Figure 8). UC security of this protocol has already been studied in various settings [17,
19, 20, 26, 27, 66] but always based on the assumption that the underlying PKI is perfect, i. e., the adversary
cannot register certificates for honest parties. In contrast, we base our analysis on Facc

PKI which can then be
realized by Pacc

PKI (Section 3.2) using the composition theorem. We thus provide the first analysis of the ISO
protocol based on a PKI that may fail, but provides accountability when it does. This not only illustrates
the features of AUC highlighted at the beginning of Section 3.2. This also shows that even protocols which
traditionally consider only preventive security, such as key exchanges, can benefit from AUC. In the main body,
we explain the main aspects of this case study; full details, including formal specifications and proofs, are
provided in Appendix F.

Ideal accountable key exchange. A signature-based authenticated key exchange can only provide security as
long as the underlying public signature key/certificate is trustworthy. We capture this intuition with AUC: We
start with a standard ideal key exchange functionality FKE [17, 20] and apply AUC to obtain an accountable
version Facc

KE . In Facc
KE we consider the local accountability property authenticity ∈ Secacc which determines

if a party, say Alice, can still expect to authenticate her intended session partner, say Bob, or whether the
certificate for Bob might be incorrect due to a fault in the PKI. If authenticity is marked as broken for
Alice by the adversary A (in exchange for a verdict), then Facc

KE acts just as FKE does in case one of the parties
in the session is corrupted and hence no authentication can be guaranteed, i. e., it leaks the session key, if any,
and allows A to determine the output for parties that have not yet finished the KE. We require verdicts to be of
the form dis(pmain)∨ v, where pmain is a main party, i. e., initiator or responder in this key exchange session,
and v is a verdict containing only internal parties. This is a group based accountability level which captures that
Alice in the real protocol, if Bob complains about a maliciously generated certificate, cannot decide whether
Bob is lying or the PKI has actually misbehaved (cf. Footnote 7).

Protocol model. Pacc
iso is a straightforward model of the ISO protocol shown in Figure 8 derived from [17]

consisting of the KE protocol part Pacc
pke and the ideal subroutine Facc

PKI which is used for public key distribution.
As required by AUC, Pacc

iso contains local judges and a supervisor. As in Section 3.2, the supervisor only forwards
the corruption status of internal parties including those that are part of Facc

PKI, namely Facc
PKI’s clients, CAs and

CTLs. The main idea of the local judge of Alice is to request the verdict of Bobs local judge in Facc
PKI. If this

judge does not complain, then, by definition of Facc
PKI, any certificate of Bob that Alice retrieves must have

been registered by Bob. If Bobs subroutine judge complains and returns a verdict v to Alice, then Alice’s
judge returns the overall verdict dis(pBob) ∨ v (and vice versa for Bob’s judge), capturing the aforementioned
insecurity that Alice cannot decide whether Bob is lying or whether v is actually a fair verdict identifying a
misbehaving PKI.

UC Security results. We can show the following:

Theorem 3. Let Pacc
KE , Facc

PKI, and Facc
KE be as described above and assume that the DDH assumption holds

true. Then,
(Pacc

KE |Facc
PKI) ≤ Facc

KE .

This immediately implies by UC composition that the key exchange remains secure when based on the real
accountable CTL-based PKI Pacc

PKI:

Corollary 4. Let Pacc
KE , Pacc

PKI, and Facc
KE be as described above. Then,

(Pacc
KE |Pacc

PKI) ≤ Facc
KE .

20

Proof. Follows from Theorem 2, Theorem 3, and the composition theorem of the underlying UC model.

4. RELATED WORK AND CONCLUSION

As already discussed in Section 2.7, AUC focuses on property-based accountability, it generalizes and extends
concepts from the literature and also introduces new concepts, such as judicial reports and supervisors to provide
a general accountability framework.

Property-based Accountability in UC. To the best of our knowledge, the only other works that formalize
and use the concept of property-based accountability in a UC model are those on MPC protocols, e.g., [13,
14, 24, 34, 35, 55, 74, 81]. As discussed in the introduction and in Appendix G, these works are specialized to
the case of MPC and hence do not serve as general accountability frameworks. Most of these works consider
composition of accountability properties with higher-level protocols to be out of scope. A notable exception is
the very recent work of Baum et al. [14]. However, Baum et al. focus on the composability of verifiability in
MPC protocols adhering to a specific structure. Baum et al. do not provide a general purpose accountability
framework which can be used for arbitrary protocols.

Other simulation-based approaches. There are also a number of non-UC simulation-based formalizations
of accountability properties, e.g., [5, 6, 8, 34, 37, 54, 86, 96]. Just as for the UC approaches mentioned above,
these works analyze and are tailored towards MPC protocols and thus do not serve as general accountability
frameworks. Furthermore, since they are not based on a UC model, they provide only weaker compositional
properties, if any.

The covert adversaries model [6, 8] is perhaps the most prominent line of work in this category. The covert
adversaries model formalizes accountability w.r.t. correctness (in the sense of identifiable abort) and w.r.t. privacy.
AUC, even when restricted to the special case of MPC, and covert adversaries are incomparable due to different
simulation paradigms. Both approaches can formalize accountability w.r.t. to correctness and privacy of MPC
protocols (cf. Appendix G). On the one hand, AUC offers stronger composability that, unlike covert adversaries,
also includes parallel composition. On the other hand, covert adversaries provide the additional concept of a
deterrence factor ε to also model cases where a malicious party breaking security might remain undetected
by a judge with (potentially non-negligible) probability ε. AUC models only the case that this probability is
negligible. While it would be straightforward to add the same concept to AUC, we did not do so as it does
not appear to offer any benefit within UC models. Indeed, it seems that all covert adversaries protocols that
have been analyzed for a non-negligible ε use protocol rewinding within their simulators. This technique is
not available to UC simulators since it prevents parallel composition, i.e., such protocols are not UC secure
anyway. We leave further exploration of this aspect for future work.

Game-based accountability. There are many works that formalize accountability within a game-based setting,
e.g., [42–46, 62, 63, 67, 79]. Some of these works are closely related to AUC in that they also consider highly
general frameworks for accountability, e.g., [42, 45, 62, 67]. The main difference between AUC and these works
is that AUC is the first general accountability framework for UC models, thereby providing particularly strong
security statements while also offering the benefit of modular protocol analysis and composition. We, however,
note that there are aspects in existing game-based accountability frameworks that AUC does not handle yet,
such as causality [62]. It is an interesting challenge for future work to investigate whether and how these aspects
can also be captured in a general accountability framework for UC.

Altogether, AUC lifts some of the work on game-based accountability frameworks to the UC setting, generalizes
and unifies existing work on UC accountability, and also introduces several new concepts to make it a general
purpose framework for accountability in UC.

5. ACKNOWLEDGMENTS

This research was partially funded by the Ministry of Science of Baden-Württemberg, Germany, for the Doctoral
Program “Services Computing”.8 This work was also supported by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) through grant KU 1434/13-1.

8http://www.services-computing.de/

21

http://www.services-computing.de/

REFERENCES

[1] B. Adida, “Helios: Web-based Open-Audit Voting,” in Proceedings of the 17th USENIX Security Symposium, P. C. van Oorschot,
Ed. USENIX Association, 2008, pp. 335–348.

[2] J. F. Almansa, I. Damgård, and J. B. Nielsen, “Simplified Threshold RSA with Adaptive and Proactive Security,” in Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, ser. Lecture Notes in Computer Science, vol. 4004. Springer, 2006,
pp. 593–611.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco,
and J. Yellick, “Hyperledger fabric: a distributed operating system for permissioned blockchains,” in Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018. ACM, 2018, pp. 30:1–30:15.

[4] Apache Software Foundation, “Apache Kafka,” https://kafka.apache.org/, 2017, (Accessed on 04/01/2019).
[5] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient Oblivious Transfer Extensions,” J. Cryptol., vol. 30, no. 3,

pp. 805–858, 2017.
[6] G. Asharov and C. Orlandi, “Calling Out Cheaters: Covert Security with Public Verifiability,” in Advances in Cryptology - ASIACRYPT

2012 - 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, ser. Lecture Notes in Computer Science, vol. 7658. Springer, 2012, pp. 681–698.

[7] N. Asokan, V. Shoup, and M. Waidner, “Asynchronous protocols for optimistic fair exchange,” in Proceedings of the IEEE Symposium
on Research in Security and Privacy. IEEE Computer Society, 1998, pp. 86–99.

[8] Y. Aumann and Y. Lindell, “Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries,” in Proceedings of
the 4th Theory of Cryptography Conference,(TCC 2007), ser. Lecture Notes in Computer Science, S. P. Vadhan, Ed., vol. 4392.
Springer, 2007, pp. 137–156.

[9] C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V. Zikas, “Universal Composition with Global Subroutines: Capturing Global
Setup Within Plain UC,” in Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part III, ser. Lecture Notes in Computer Science, vol. 12552. Springer, 2020, pp. 1–30.

[10] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas, “Bitcoin as a Transaction Ledger: A Composable Treatment,” in Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 10401. Springer, 2017, pp. 324–356.

[11] L. Baird and A. Luykx, “The Hashgraph Protocol: Efficient Asynchronous BFT for High-Throughput Distributed Ledgers,” in 2020
International Conference on Omni-layer Intelligent Systems, COINS 2020, Barcelona, Spain, August 31 - September 2, 2020. IEEE,
2020, pp. 1–7.

[12] J. Baron, K. E. Defrawy, J. Lampkins, and R. Ostrovsky, “Communication-Optimal Proactive Secret Sharing for Dynamic Groups,”
in Applied Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015,
Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 9092. Springer, 2015, pp. 23–41.

[13] C. Baum, I. Damgård, and C. Orlandi, “Publicly Auditable Secure Multi-Party Computation,” in Security and Cryptography for
Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, ser. Lecture Notes in Computer
Science, vol. 8642. Springer, 2014, pp. 175–196.

[14] C. Baum, E. Orsini, P. Scholl, and E. Soria-Vazquez, “Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability,”
in Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 12171. Springer, 2020, pp. 562–592.

[15] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel, A. Roger, and R. Sirdey, “Towards Better Availability and
Accountability for IoT Updates by Means of a Blockchain,” in 2017 IEEE European Symposium on Security and Privacy Workshops,
EuroS&P Workshops 2017, Paris, France, April 26-28, 2017. IEEE, 2017, pp. 50–58.

[16] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” CoRR, vol. abs/1710.09437, 2017.
[17] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch, “iUC: Flexible Universal Composability Made Simple,” in Advances in

Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III, ser. Lecture Notes in Computer Science, vol. 11923. Springer,
2019, pp. 191–221, the full version is available at http://eprint.iacr.org/2019/1073.

[18] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally Composable Security with Global Setup,” in Theory of Cryptography,
Proceedings of TCC 2007, ser. Lecture Notes in Computer Science, S. P. Vadhan, Ed., vol. 4392. Springer, 2007, pp. 61–85.

[19] R. Canetti and J. Herzog, “Universally Composable Symbolic Analysis of Mutual Authentication and Key-Exchange Protocols,” in
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, ser. Lecture Notes in Computer Science, S. Halevi
and T. Rabin, Eds., vol. 3876. Springer, 2006, pp. 380–403.

[20] R. Canetti and H. Krawczyk, “Universally Composable Notions of Key Exchange and Secure Channels,” in Advances in Cryptology
- EUROCRYPT 2002, International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, ser.
Lecture Notes in Computer Science, vol. 2332. Springer, 2002, pp. 337–351.

[21] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally composable two-party and multi-party secure computation,” in
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002). ACM Press, 2002, pp. 494–503.

[22] R. Canetti, “Universally Composable Security: A New Paradigm for Cryptographic Protocols,” in Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS 2001). IEEE Computer Society, 2001, pp. 136–145.

[23] ——, “Universally Composable Security,” J. ACM, vol. 67, no. 5, pp. 28:1–28:94, 2020.
[24] R. Canetti, A. Cohen, and Y. Lindell, “A Simpler Variant of Universally Composable Security for Standard Multiparty Computation,”

in Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9216. Springer, 2015, pp. 3–22.

[25] R. Canetti, K. Hogan, A. Malhotra, and M. Varia, “A Universally Composable Treatment of Network Time,” in 30th IEEE Computer
Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer Society, 2017, pp.
360–375.

[26] R. Canetti and H. Krawczyk, “Security Analysis of IKE’s Signature-Based Key-Exchange Protocol,” in Advances in Cryptology
- CRYPTO 2002, 22nd Annual International Cryptology Conference, ser. Lecture Notes in Computer Science, M. Yung, Ed., vol.
2442. Springer, 2002, pp. 143–161.

22

https://kafka.apache.org/
http://eprint.iacr.org/2019/1073

[27] R. Canetti, D. Shahaf, and M. Vald, “Universally Composable Authentication and Key-Exchange with Global PKI,” in Public-Key
Cryptography - PKC 2016 - 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei,
Taiwan, March 6-9, 2016, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9615. Springer, 2016, pp. 265–296.

[28] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4,
pp. 398–461, 2002.

[29] C. Chang and Y. Chang, “Efficient anonymous auction protocols with freewheeling bids,” Comput. Secur., vol. 22, no. 8, pp. 728–734,
2003.

[30] M. Ciampi, Y. Lu, and V. Zikas, “Collusion-Preserving Computation without a Mediator,” Cryptology ePrint Archive, Tech. Rep.
2020/497, 2020.

[31] D. Ó. Coileáin and D. O’Mahony, “Accounting and Accountability in Content Distribution Architectures: A Survey,” ACM Comput.
Surv., vol. 47, no. 4, pp. 59:1–59:35, 2015.

[32] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,” RFC 5280, Internet Engineering Task Force, may 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5280.txt

[33] V. Cortier, D. Galindo, R. Küsters, J. Müller, and T. Truderung, “SoK: Verifiability Notions for E-Voting Protocols,” in IEEE 37th
Symposium on Security and Privacy (S&P 2016). IEEE Computer Society, 2016, pp. 779–798.

[34] R. K. Cunningham, B. Fuller, and S. Yakoubov, “Catching MPC Cheaters: Identification and Openability,” in Information Theoretic
Security - 10th International Conference, ICITS 2017, Hong Kong, China, November 29 - December 2, 2017, Proceedings, ser.
Lecture Notes in Computer Science, vol. 10681. Springer, 2017, pp. 110–134.

[35] E. Cuvelier and O. Pereira, “Verifiable Multi-party Computation with Perfectly Private Audit Trail,” in Applied Cryptography and
Network Security - 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, ser. Lecture Notes
in Computer Science, vol. 9696. Springer, 2016, pp. 367–385.

[36] E. Cuvelier, O. Pereira, and T. Peters, “Election Verifiability or Ballot Privacy: Do We Need to Choose?” in Computer Security -
ESORICS 2013 - 18th European Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings,
ser. Lecture Notes in Computer Science, vol. 8134. Springer, 2013, pp. 481–498.

[37] I. Damgård, C. Orlandi, and M. Simkin, “Black-Box Transformations from Passive to Covert Security with Public Verifiability,” in
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 12171. Springer, 2020, pp. 647–676.

[38] G. D’Angelo, S. Ferretti, and M. Marzolla, “A Blockchain-based Flight Data Recorder for Cloud Accountability,” in Proceedings
of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, CRYBLOCK@MobiSys 2018, Munich, Germany,
June 15, 2018. ACM, 2018, pp. 93–98.

[39] J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitaraman, and W. E. Weihl, “Globally Distributed Content Delivery,” IEEE
Internet Comput., vol. 6, no. 5, pp. 50–58, 2002.

[40] Ethereum Foundation, “Ethereum enterprise,” https://www.ethereum.org/enterprise/, 2019, (Accessed on 11/13/2019).
[41] C. Farkas, G. Ziegler, A. Meretei, and A. Lörincz, “Anonymity and accountability in self-organizing electronic communities,” in

Proceedings of the 2002 ACM Workshop on Privacy in the Electronic Society, WPES 2002, Washington, DC, USA, November 21,
2002. ACM, 2002, pp. 81–90.

[42] J. Feigenbaum, “Privacy, Anonymity, and Accountability in Ad-Supported Services,” in Proceedings of the 27th Annual IEEE
Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society, 2012, pp.
9–10.

[43] J. Feigenbaum, J. A. Hendler, A. D. Jaggard, D. J. Weitzner, and R. N. Wright, “Accountability and deterrence in online life,” in
Web Science 2011, WebSci ’11, Koblenz, Germany - June 15 - 17, 2011. ACM, 2011, pp. 7:1–7:7.

[44] J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a formal model of accountability,” in 2011 New Security Paradigms
Workshop, NSPW ’11, Marin County, CA, USA, September 12-15, 2011. ACM, 2011, pp. 45–56.

[45] ——, “Open vs. closed systems for accountability,” in Proceedings of the 2014 Symposium and Bootcamp on the Science of Security,
HotSoS 2014, Raleigh, NC, USA, April 08 - 09, 2014. ACM, 2014, p. 4.

[46] ——, “Accountability in Computing: Concepts and Mechanisms,” Found. Trends Priv. Secur., vol. 2, no. 4, pp. 247–399, 2020.
[47] E. Funk, J. Riddell, F. Ankel, and D. Cabrera, “Blockchain technology: a data framework to improve validity, trust, and accountability

of information exchange in health professions education,” Academic Medicine, vol. 93, no. 12, pp. 1791–1794, 2018.
[48] J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone Protocol: Analysis and Applications,” in Advances in Cryptology

- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9057. Springer, 2015, pp. 281–310.

[49] S. Goldwasser and S. Park, “Public Accountability vs. Secret Laws: Can They Coexist?: A Cryptographic Proposal,” in Proceedings
of the 2017 on Workshop on Privacy in the Electronic Society, Dallas, TX, USA, October 30 - November 3, 2017. ACM, 2017,
pp. 99–110.

[50] M. Graf, R. Küsters, and D. Rausch, “Accountability in a Permissioned Blockchain: Formal Analysis of Hyperledger Fabric,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. Los Alamitos, CA,
USA: IEEE, 2020, pp. 236–255.

[51] M. Graf, D. Rausch, V. Ronge, C. Egger, R. Küsters, and D. Schröder, “A Security Framework for Distributed Ledgers,” in CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021. New York City, USA: ACM, 2021, pp. 1043–1064.

[52] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: practical accountability for distributed systems,” in Proceedings of the
21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, T. C. Bressoud and M. F. Kaashoek, Eds. ACM, 2007,
pp. 175–188.

[53] D. Hofheinz and V. Shoup, “GNUC: A New Universal Composability Framework,” J. Cryptology, vol. 28, no. 3, pp. 423–508, 2015.
[54] C. Hong, J. Katz, V. Kolesnikov, W. Lu, and X. Wang, “Covert Security with Public Verifiability: Faster, Leaner, and Simpler,”

in Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, ser. Lecture Notes in Computer Science,
vol. 11478. Springer, 2019, pp. 97–121.

23

http://www.ietf.org/rfc/rfc5280.txt
https://www.ethereum.org/enterprise/

[55] Y. Ishai, R. Ostrovsky, and V. Zikas, “Secure Multi-Party Computation with Identifiable Abort,” in Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, ser. Lecture Notes
in Computer Science, vol. 8617. Springer, 2014, pp. 369–386.

[56] “ISO/IEC IS 9798-3, Entity authentication mechanisms — Part 3: Entity authentication using assymetric techniques,” 1993.
[57] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a theory of accountability and audit,” in ESORICS. Springer, 2009.
[58] J. Kamto, L. Qian, J. Fuller, J. Attia, and Y. Qian, “Key Distribution and management for power aggregation and accountability in

Advance Metering Infrastructure,” in IEEE Third International Conference on Smart Grid Communications, SmartGridComm 2012,
Tainan, Taiwan, November 5-8, 2012. IEEE, 2012, pp. 360–365.

[59] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun, “Misbehavior in Bitcoin: A Study of Double-Spending
and Accountability,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, pp. 2:1–2:32, 2015.

[60] A. Kiayias, H. Zhou, and V. Zikas, “Fair and Robust Multi-party Computation Using a Global Transaction Ledger,” in Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9666. Springer,
2016, pp. 705–734.

[61] T. H. Kim, L. Huang, A. Perrig, C. Jackson, and V. D. Gligor, “Accountable key infrastructure (AKI): a proposal for a public-key
validation infrastructure,” in 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013.
International World Wide Web Conferences Steering Committee / ACM, 2013, pp. 679–690.

[62] R. Künnemann, I. Esiyok, and M. Backes, “Automated Verification of Accountability in Security Protocols,” in 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE, 2019, pp. 397–413.

[63] R. Künnemann, D. Garg, and M. Backes, “Accountability in the Decentralised-Adversary Setting,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021,. IEEE, 2021.

[64] R. Küsters, “Simulation-Based Security with Inexhaustible Interactive Turing Machines,” in Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW-19 2006). IEEE Computer Society, 2006, pp. 309–320, see [71] for a full and revised
version.

[65] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt, “Ordinos: A Verifiable Tally-Hiding E-Voting System,” in IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. IEEE, 2020, pp. 216–235.

[66] R. Küsters and D. Rausch, “A Framework for Universally Composable Diffie-Hellman Key Exchange,” in IEEE 38th Symposium
on Security and Privacy (S&P 2017). IEEE Computer Society, 2017, pp. 881–900.

[67] R. Küsters, T. Truderung, and A. Vogt, “Accountability: Definition and Relationship to Verifiability,” in Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS 2010). ACM, 2010, pp. 526–535, the full version is available
at http://eprint.iacr.org/2010/236.

[68] R. Küsters, T. Truderung, and A. Vogt, “Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study,” in 32nd
IEEE Symposium on Security and Privacy (S&P 2011). IEEE Computer Society, 2011, pp. 538–553.

[69] ——, “Clash Attacks on the Verifiability of E-Voting Systems,” in 33rd IEEE Symposium on Security and Privacy (S&P 2012).
IEEE Computer Society, 2012, pp. 395–409.

[70] R. Küsters and M. Tuengerthal, “Composition Theorems Without Pre-Established Session Identifiers,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS 2011), Y. Chen, G. Danezis, and V. Shmatikov, Eds. ACM,
2011, pp. 41–50.

[71] R. Küsters, M. Tuengerthal, and D. Rausch, “The IITM model: a simple and expressive model for universal composability,” Journal
of Cryptology, vol. 33, no. 4, pp. 1461–1584, 2020.

[72] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC 6962, jun 2013. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc6962.txt

[73] H. Leibowitz, A. Herzberg, and E. Syta, “Provable Security for PKI Schemes,” Cryptology ePrint Archive, Tech. Rep. 2019/807,
2019.

[74] Y. Lindell and B. Pinkas, “Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer,” J. Cryptol., vol. 25, no. 4, pp.
680–722, 2012.

[75] J. Liu, Y. Xiao, and J. Gao, “Achieving Accountability in Smart Grid,” IEEE Syst. J., vol. 8, no. 2, pp. 493–508, 2014.
[76] S. Matsumoto and R. M. Reischuk, “Certificates-as-an-insurance: Incentivizing accountability in ssl/tls,” in Proceedings of the NDSS

Workshop on Security of Emerging Network Technologies (SENT’15), 2015.
[77] U. Maurer, “Constructive Cryptography - A New Paradigm for Security Definitions and Proofs,” in Theory of Security and

Applications - Joint Workshop, TOSCA 2011, Saarbrücken, Germany, March 31 - April 1, 2011, Revised Selected Papers, ser.
Lecture Notes in Computer Science, vol. 6993. Springer, 2011, pp. 33–56.

[78] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger of BFT Protocols,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016. ACM, 2016, pp. 31–42.

[79] K. Morio and R. Künnemann, “Verifying Accountability for Unbounded Sets of Participants,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021,. IEEE, 2021.

[80] R. Pass, L. Seeman, and A. Shelat, “Analysis of the Blockchain Protocol in Asynchronous Networks,” in Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 10211, 2017, pp. 643–673.

[81] A. Patra and D. Ravi, “Beyond Honest Majority: The Round Complexity of Fair and Robust Multi-party Computation,” in Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 11921. Springer,
2019, pp. 456–487.

[82] R3, “R3 Corda master documentation,” https://docs.corda.net/docs/corda-os/4.4.html, 2020, (Accessed on 04/24/2020).
[83] H. V. Ramasamy, A. Agbaria, and W. H. Sanders, “A Parsimonious Approach for Obtaining Resource-Efficient and Trustworthy

Execution,” IEEE Trans. Dependable Secur. Comput., vol. 4, no. 1, pp. 1–17, 2007.
[84] K. Ramchen, C. Culnane, O. Pereira, and V. Teague, “Universally Verifiable MPC and IRV Ballot Counting,” in Financial

Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22,
2019, Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 11598. Springer, 2019, pp. 301–319.

[85] M. Rivinius, P. Reisert, D. Rausch, and R. Küsters, “Publicly accountable robust multi-party computation,” in S&P ’22. IEEE,
2022.

24

http://eprint.iacr.org/2010/236
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.rfc-editor.org/rfc/rfc6962.txt
https://docs.corda.net/docs/corda-os/4.4.html

[86] B. Schoenmakers and M. Veeningen, “Universally Verifiable Multiparty Computation from Threshold Homomorphic Cryptosystems,”
in Applied Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015,
Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 9092. Springer, 2015, pp. 3–22.

[87] P. Scholl, M. Simkin, and L. Siniscalchi, “Multiparty Computation with Covert Security and Public Verifiability,” Cryptology ePrint
Archive, Tech. Rep. 2021/366, 2021.

[88] A. Shamis, P. Pietzuch, B. Canakci, M. Castro, C. Fournet, E. Ashton, A. Chamayou, S. Clebsch, A. Delignat-Lavaud, M. Kerner
et al., “IA-CCF: Individual accountability for permissioned ledgers,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 467–491.

[89] C. Stathakopoulou, T. David, and M. Vukolic, “Mir-BFT: High-Throughput BFT for Blockchains,” CoRR, vol. abs/1906.05552,
2019.

[90] Y. S. Tan, R. K. L. Ko, and G. Holmes, “Security and Data Accountability in Distributed Systems: A Provenance Survey,” in 10th
IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China, November 13-15, 2013. IEEE, 2013, pp. 1571–1578.

[91] The Guardian, “Steve jobs suggests: get rid of the drm on online music,” https://www.theguardian.com/technology/blog/2007/feb/
06/stevejobssugg, 2007, (Accessed on 07/09/2021).

[92] VASCO Data Security International, Inc., “news: Vasco announces bankruptcy filing by diginotar b.v.” https://web.archive.org/web/
20110923180445/http://www.vasco.com/company/press room/news archive/2011/news vasco announces bankruptcy filing by
diginotar bv.aspx, 09 2011, (Accessed on 06/13/2022).

[93] WIRED, “Shocker: Apple’s drm-free music not so easily stolen,” https://www.wired.com/2007/06/apples-drmfree-/, 2007, (Accessed
on 07/09/2021).

[94] Z. Xiao, N. Kathiresshan, and Y. Xiao, “A survey of accountability in computer networks and distributed systems,” Secur. Commun.
Networks, vol. 9, no. 4, pp. 290–315, 2016.

[95] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Separating agreement from execution for byzantine fault tolerant
services,” in Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY,
USA, October 19-22, 2003. ACM, 2003, pp. 253–267.

[96] B. Zeng, C. Tartary, P. Xu, J. Jing, and X. Tang, “A Practical Framework for t-Out-of-n Oblivious Transfer With Security Against
Covert Adversaries,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 2, pp. 465–479, 2012.

[97] Z. Zhao, M. Naseri, and Y. Zheng, “Secure quantum sealed-bid auction with post-confirmation,” Optics Communications, vol. 283,
no. 16, pp. 3194–3197, 2010.

[98] J. Zhou and D. Gollmann, “A fair non-repudiation protocol,” in Proceedings of the IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society, 1996, pp. 55–61.

[99] ——, “An Efficient Non-repudiation Protocol,” in 10th Computer Security Foundations Workshop (CSFW ’97), June 10-12, 1997,
Rockport, Massachusetts, USA. IEEE Computer Society, 1997, pp. 126–132.

[100] ——, “Evidence and non-repudiation,” Journal of Network and Computer Applications, vol. 20, no. 3, pp. 267–281, 1997.

APPENDIX

A. A Brief Introduction to the iUC Framework
This section provides a brief introduction to the iUC framework, which underlies all results in this paper.

The iUC framework [17] is a highly expressive and user-friendly model for universal composability. It allows
for the modular analysis of different types of protocols in various security settings.

The iUC framework uses interactive Turing machines as its underlying computational model. Such interactive
Turing machines can be connected to each other to be able to exchange messages. A set of machines Q = {M1,
. . .,Mk} is called a system. In a run of Q, there can be one or more instances (copies) of each machine in Q.
One instance can send messages to another instance. At any point in a run, only a single instance is active,
namely, the one to receive the last message; all other instances wait for input. The active instance becomes
inactive once it has sent a message; then the instance that receives the message becomes active instead and can
perform arbitrary computations. The first machine to run is the so-called master. The master is also triggered
if the last active machine did not output a message. In iUC, the environment (see next) takes the role of the
master. In the iUC framework a special user-specified CheckID algorithm is used to determine which instance
of a protocol machine receives a message and whether a new instance is to be created (see below).

To define the universal composability security experiment (cf. [17]), one distinguishes between three types
of systems: protocols, environments, and adversaries. As is standard in universal composability models, all
of these types of systems have to meet a polynomial runtime notion. Intuitively, the security experiment in
any universal composability model compares a protocol P with another protocol F , where F is typically an
ideal specification of some task, called ideal protocol or ideal functionality. The idea is that if one cannot
distinguish P from F , then P must be “as good as” F . More specifically, the protocol P is considered secure
(written P ≤ F) if for all adversaries A controlling the network of P there exists an (ideal) adversary S, called
simulator, controlling the network of F such that {A,P} and {S,F} are indistinguishable for all environments
E . Indistinguishability means that the probability of the environment outputting 1 in runs of the system {E ,
A,P} is negligibly close to the probability of outputting 1 in runs of the system {E ,S,F} (written {E ,A,
P} ≡ {E ,S,F}). The environment can also subsume the role of the network attacker A, which yields an

25

https://www.theguardian.com/technology/blog/2007/feb/06/stevejobssugg
https://www.theguardian.com/technology/blog/2007/feb/06/stevejobssugg
https://web.archive.org/web/20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_diginotar_bv.aspx
https://web.archive.org/web/20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_diginotar_bv.aspx
https://web.archive.org/web/20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_diginotar_bv.aspx
https://www.wired.com/2007/06/apples-drmfree-/

equivalent definition in the iUC framework. We usually show this equivalent but simpler statement in our
proofs, i.e., that there exists a simulator S such that {E ,P} ≡ {E ,S,F} for all environments.

A protocol P in the iUC framework is specified via a system of machines {M1, . . .,Ml}; the framework
offers a convenient template for the specification of such systems. Each machine Mi implements one or more
roles of the protocol, where a role describes a piece of code that performs a specific task. For example, a (real)
protocol Psig for digital signatures might contain a signer role for signing messages and a verifier role
for verifying signatures. In a run of a protocol, there can be several instances of every machine, interacting
with each other (and the environment) via I/O interfaces and interacting with the adversary (and possibly the
environment subsuming a network attacker) via network interfaces. An instance of a machine Mi manages one
or more so-called entities. An entity is identified by a tuple (pid , sid , role) and describes a specific party with
party ID (PID) pid running in a session with session ID (SID) sid and executing some code defined by the
role role where this role has to be (one of) the role(s) of Mi according to the specification of Mi. Entities
can send messages to and receive messages from other entities and the adversary using the I/O and network
interfaces of their respective machine instances. More specifically, the I/O interfaces of both machines need to
be connected to each other (because one machine specifies the other as a subroutine) to enable communication
between entities of those machines.

Roles of a protocol can be either public or private. The I/O interfaces of private roles are only accessible
by other (entities belonging to) roles of the same protocol, whereas I/O interfaces of public roles can also be
accessed by other (potentially unknown) protocols/the environment. Hence, a private role models some internal
subroutine that is protected from access outside of the protocol, whereas a public role models some publicly
accessible operation that can be used by other protocols. One uses the syntax “(pubrole1, . . . , pubrolen |
privrole1, . . . , privrolen)” to uniquely determine public and private roles of a protocol. Two protocols P
and Q can be combined to form a new more complex protocol as long as their I/O interfaces connect only
via their public roles. In the context of the new combined protocol, previously private roles remain private
while previously public roles may either remain public or be considered private, as determined by the protocol
designer. The set of all possible combinations of P and Q, which differ only in the set of public roles, is
denoted by Comb(Q,P).

An entity in a protocol might become corrupted by the adversary, in which case it acts as a pure message
forwarder between the adversary and any connected higher-level protocols as well as subroutines. In addition,
an entity might also consider itself (implicitly) corrupted while still following its own protocol because, e.g.,
a subroutine has been corrupted. Corruption of entities in the iUC framework is highly customizable; one can,
for example, prevent corruption of certain entities during a protected setup phase.

The iUC framework supports the modular analysis of protocols via a so-called composition theorem:

Corollary 5 (Concurrent composition in iUC; informal). Let P and F be two protocols such that P ≤ F . Let
Q be another protocol such that Q and F can be connected. Let R ∈ Comb(Q,P) and let I ∈ Comb(Q,F)
such that R and I agree on their public roles. Then R ≤ I.

By this theorem, one can first analyze and prove the security of a subroutine P independently of how it is
used later on in the context of a more complex protocol. Once we have shown that P ≤ F (for some other,
typically ideal protocol F), we can then analyze the security of a higher-level protocol Q based on F . Note
that this is simpler than analyzing Q based on P directly as ideal protocols provide absolute security guarantees
while typically also being less complex, reducing the potential for errors in proofs. Once we have shown that the
combined protocol, say, (Q | F) realizes some other protocol, say, F ′, the composition theorem and transitivity
of the ≤ relation then directly implies that this also holds true if we run Q with an implementation P of
F . That is, (Q | P) is also a secure realization of F ′. Please note that the composition theorem does not
impose any restrictions on how the protocols P , F , and Q look like internally. For example, they might have
disjoint sessions, but they could also freely share some state between sessions, or they might be a mixture of
both. They can also freely share some of their subroutines with the environment, modeling so-called globally
available state. This is unlike most other models for universal composability, such as the UC model, which
impose several conditions on the structure of protocols for their composition theorem.

26

B. Notation in Pseudo Code
ITMs in our paper are specified in pseudo code. Most of our pseudo code notation follows the notation

introduced by Camenisch et al. [17]. To ease readability of our figures, we provide a brief overview over the
used notation here.

The description in the main part of the ITMs consists of blocks of the form recv ⟨msg⟩ from ⟨sender⟩ to
⟨receiver⟩ s.t. ⟨condition⟩:⟨code⟩ where ⟨msg⟩ is an input pattern, ⟨sender⟩ is the receiving interface (I/O or
NET), ⟨receiver⟩ is the dedicated receiver of the message and ⟨condition⟩ is a condition on the input. ⟨code⟩
is the (pseudo) code of this block. The block is executed if an incoming message matches the pattern and the
condition is satisfied. More specifically, ⟨msg⟩ defines the format of the message m that invokes this code block.
Messages contain local variables, state variables, strings, and maybe special characters. To compare a message
m to a message pattern msg, the values of all global and local variables (if defined) are inserted into the pattern.
The resulting pattern p is then compared to m, where uninitialized local variables match with arbitrary parts
of the message. If the message matches the pattern p and meets ⟨condition⟩ of that block, then uninitialized
local variables are initialized with the part of the message that they matched to and ⟨code⟩ is executed in the
context of ⟨receiver⟩; no other blocks are executed in this case. If m does not match p or ⟨condition⟩ is not
met, then m is compared with the next block. Usually a recv from block ends with a send to clause of
form send ⟨msg⟩ to ⟨sender⟩ where msg is a message that is send via output interface sender.

If an ITM invokes another ITM, e. g., as a subroutine, ITMs may expect an immediate response. In this case,
in a recv from block, a send to statement is directly followed by a wait for statement. We write wait for
⟨msg⟩ from ⟨sender⟩ s.t. ⟨condition⟩ to denote that the ITM stays in its current state and discards all incoming
messages until it receives a message m matching the pattern msg and fulfilling the wait for condition. Then
the ITM continues the run where it left of, including all values of local variables.

To clarify the presentation and distinguish different types of variables, constants, strings, etc. we follow the
naming conventions of Camenisch et al. [17]:

1. (Internal) state variables are denoted by sans-serif fonts.
2. Local (i.e., ephemeral) variables are denoted in italic font.
3. Keywords are written in bold font (e. g., for operations such as sending or receiving).
4. Commands, procedure, function names, strings and constants are written in teletype.

To increase readability, we use the following notation:
• For a set of tuples K, K.add() adds the tuple to K.
• For a string S, S.add() concatenates the given string to S.
• For a verdicts v1 and v2, we define v1.add(v2) := v1 ∧ v2.
• K.remove() removes always the first appearance of the given element/string from the list/tuple/set/string
K.

We use the following additional nomenclature from [17]:
• (pidcur, sidcur, rolecur) denotes the currently active entity and (pidcall, sidcall, rolecall) denotes the entity which

called the currently active ITM.
• The macro corr(pid , sid , role) is simply a shortcut to invoke the ITM of (pid , sid , role) and query it for

its corruption status.
• The macro init(pid , sid , role) triggers the initialization of (pid , sid , role) and returns the activation to the

calling ITM.

C. Reusing Existing Security Results with AUC
In this section, we briefly discuss how existing security results can be reused when transforming an ideal

functionality with AUC. Therefore, we consider an ideal functionality F which ensures some security properties
Sec and its accountable transformation F acc (cf. Definition 1) which may replace some of F’s security properties
with the corresponding assumption-based and/or accountability properties, i. e., Secabs ∪Secassumption ∪Secacc =
Sec. According to Definition 1, F and F acc behave identical as long as no security property is marked as broken.
Thus, an existing security proof remains valid until this case occurs. Thus, one often can reuse the existing
security proof as is (up to the point where some property breaks). As AUC is a non-back-box transformation,
one needs to enhance proofs in order to capture the behavior when transforming F to F acc.

27

We further note that accountability/assumption-based and preventive security properties can be heavily
intertwined. Therefore one may also need to adjust the existing simulator to correctly handle broken properties
of F acc.

We essentially illustrate this approach in our case study in Section 3.3.

D. Scaling Accountable Consensus (Full Details)
In this section, we provide full details regarding the scalable accountable consensus case study presented

in Section 3.1. In particular, we provide (i) a full specification of Facc
cp , (ii) a full specification of the scaling

protocol, and (iii) provide a formal proof for Theorem 1.

D.1 The Accountable Consensus Functionality Facc
cp : In this section, we present a full specification of the

ideal accountable consensus service Facc
cp in Figure 9 and 10 including its subroutine Facc-cp

judgeParams in Figure 11.
For technical details and notation specific to the iUC framework, see the brief summary of the iUC framework
in Section A.
Facc
cp models one instance of a consensus protocol per sid . Facc

cp ’s duty is to allow clients to write to a stream of
messages (also called the state of Facc

cp) and read from this stream. For write operations, Facc
cp expects messages

of the form (Submit,msg) where msg denotes some arbitrary bit string. Submitted transactions/messages do
not enter the state of Facc

cp immediately. Firstly, they get an unambiguous temporary ID and are then stored
in a buffer buffer for later processing - this is necessary to capture network artifacts. Besides the submitted
message, the buffer also contains the round, resp. point in time (provided by Facc

cp internal clock, see below),
when the message was added to the buffer. This will later be used to enforce liveness. The submitted message
as well as its temporary ID are leaked to A. Note that the Submit interface is accessible via I/O and NET. The
adversary A is allowed to read the buffer via the getBuffer command. Further, A is allowed to permutate
the content of the buffer, i.e., A may interchange the order/IDs in the buffer. To add the first element from
buffer to Facc

cp ’s state, A can use the Update command. When an entry from buffer is moved to state, Facc
cp

assigns an incremental counter as ID to the message and removes the message from the buffer. That is, Facc
cp

establishes a total order over the transactions in state.
When a party (pid , sid , role) wants to read Facc

cp ’s current state, it sends Read via I/O to Facc
cp . Analogously

to submit requests, Facc
cp buffers the request in bufferread including an unambiguous ID id and the current time.

A is then expected to trigger the delivery of the response to the request via (Deliver, id). If the accountability
property consistency is already broken, A can freely determine Facc

cp ’s responses to the read request. To do
so, Facc

cp queries A for the response and forwards the output to the requestor. If consistency still holds true,
Facc
cp requests A for the prefix of the state it should provide to the requestor. More specifically, A provides

a pointer N to the prefix of the state and a potential receiver (pidr, sidcur, role) to Facc
cp . If there exists an

entry in bufferread matching id , Facc
cp ignores the receiver provided by A and sends the prefix of the state to

the requesting party stored in buffermsg (for id) and deletes the read request from bufferread . If there is no
corresponding message to id in bufferread , Facc

cp pushes the prefix of the state to (pidr, sidcur, roler).
As already mentioned, Facc

cp also includes an (internal) clock which allows measuring time to capture liveness
properties. Parties and A can query the current time of Facc

cp via the GetCurRound command. Further, A is
allowed to increase the round, resp. current time, in Facc

cp by one via UpdateRound. In case that liveness
still holds true, Facc

cp checks that there does not exist an entry (id ,msg , r) in buffer such that it holds true
round− r > δ where round is the current round in Facc

cp and δ is the liveness parameter of Facc
cp . If liveness

is already broken, there are no restrictions on time updates.
In Facc

cp , we use the standard corruption behavior for dynamic corruption without secure erasures of iUC.
In particular, Facc

cp only acts as message forwarder for corrupted parties. Further, we model a dynamic set of
participants in Facc

cp .
Facc
cp also relies on the concepts of AUC in order to capture and handle accountability properties. We expect

Facc
cp to be used with the parameters Secacc = {consistency} and Secassumption = {liveness}. For the security

properties, Facc-cp
judgeParams enforces that A has to trade in a (public) verdict for pid j = public, i. e., we expect

the parameter pidsjudge to be {public}, which ensures individual accountability if he breaks consistency. To
capture that liveness may break for all participating parties, we expect idsassumption to be {public}. Facc-cp

judgeParams

does not provide additional leakage to A if he breaks liveness. As judicial report Facc-cp
judgeParams outputs a

prefix of Facc
cp ’s state including an extension provided by A. In particular, the prefix needs to contain at least

28

Description of the ideal and accountable consensus service Facc
cp = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: dynamic corruption without secure erasures
Protocol parameters:

– δ ∈ N {The expected liveness guarantee for in time units
– Secacc ⊂ {0, 1}∗ {Accountability properties
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of Macc
cp :

Implemented role(s): {client}
Subroutines: Facc-cp

judgeParams : judgeParams
Internal state:

– state ⊂ N× {0, 1}∗, state = ∅ {The set of totally ordered transactions/messages
– buffer ⊂ N× {0, 1}∗ × N, buffer = ε {The buffer ob submitted transactions including submission round
– bufferread ⊂ N2 × ({0, 1}∗)3, bufferread = ∅ {Buffer for handling Read requests, entries of form (id, round, (pid , sid , role))

– counter, counterB , counterR ∈ N, counter = 0, counterB = 0, counterR = 0

{
The counter for odered transactions, to order tx
in buffer, and read requests in bufferread

– round ∈ N, round = 0
{

The time in Facc
cp

– maxHonestOutput ∈ N,maxHonestOutput = 0 {The longest prefix of the state queried by an honest party

– corruptedIntParties ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid, sid, role)

– brokenAssumptions : Secassumption× idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}
{

Stores broken security prop-
erties per judge/id, initially
false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε
CheckID(pid , sid , role):

Accept all messages for the same sid . For messages to (pid, sid, judge) accept only if pid = public.
Corruption behavior:

– AllowCorruption(pid , sid , role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:

send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams)

{FjudgeParams decides
whether judges can be
corruptedwait for b; return b

– DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid, sid, judge), internalState) to (pid, sid,FjudgeParams : judgeParams)
wait for b; return b

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m)

Do not allow sending messages to FjudgeParams. {A is not allowed to invoke FjudgeParams in the name of corrupted parties.
Main:

recv (Submit,msg): {Transaction submission
counterB ← counterB + 1; buffer.add([counterB,msg, round])
send (Submit, counterB ,msg) to NET {Leak submitted data to A

recv Read from I/O: {Read request
counterR ← counterR + 1; bufferread .add(counterR, round, (pidcur, sidcur, rolecur)) {Record read request including current time
send (Read, counterR, round, (pidcur, sidcur, rolecur)) to NET {Leak information to A

recv (Deliver, id) from NET: {A triggers delivery of response to read request or injects a response without a read request
if brokenProps[consistency, public] = true:

{
Check whether Facc

cp still provides consistency
send responsively Read to NET {If consistency is “broken” A is allowed to determine the output of Facs
wait for (Read, state, (pid , sid , role))
if ∃(id, round, (pid , sid , role)) ∈ buffermsg : {Check that ID exists

maxHonestOutput← |state| {Record longest output of the state so far
bufferread .remove([id, round, (pid , sid , role)]); send (Read, state) to (pid , sid , role)

else: {If consistency holds, output the current state
send responsively Read to NET (⋆) {Allow A to determine the prefix of state as response

wait for (Read, N, (pidr, sidcur, roler))

{
A decides on the prefix of the state. If there is no read
request for id , A also determines the recipient.if |state| < N :

Go to (⋆)

if ∃(id, round, (pid , sid , role)) ∈ buffermsg : {Check that ID exists
bufferread .remove([id, round, (pid , sid , role)]); Let state be the prefix of state up to and including entry N .
send (Read, state) to (pid , sid , role) {Send state to requestor

else:
send (Read, state) to (pidr, sidcur, roler) {Send state the entity determined by A

recv Read from NET:
{
A is allowed to access the full state of Facc

cp .
reply (Read, state)

recv getBuffer from NET: {A is allowed to query the current buffer
reply (getBuffer, buffer)

recv (Permute, π) from NET: {A is allowed to change the order in the buffer
require: π is a permutation of the IDs in buffer.
for all (ctr ,msg) ∈ buffer do: buffer.remove([ctr ,msg]); buffer.add([π(ctr),msg])

reply ack

aRolesF = {client} here.

Fig. 9: The ideal and accountable consensus service Facc
cp including accountability (Part 1).

29

Description of Macc
cp (continued):

Main:
recv Update from NET: {A may trigger when buffer is included in state

Let (i,msg) ∈ buffer the first entry in buffer; counter ← counter + 1; state.add([counter,msg]); buffer.remove([i,msg])
{Remove entry from buffer

reply ack

recv UpdateRound from NET: {A triggers round update

if (∃(, , r,) ∈ buffer,
s.t. round− r > δ ∨ ∃(, r,) ∈ bufferread ,
s.t. round− r > δ)∧brokenProps[liveness, public] = false:

reply (UpdateRound, false, ϵ) {Reject round update if there are old messages in queue but liveness still holds
else:

round← round + 1
reply (UpdateRound, true, ϵ)

recv GetCurRound: {Allow access to the “global clock”
reply (GetCurRound, round)

Include static code from the AUC transformation T1(·) here, i.e., include additional code from Figure 2 and 3 here.

Fig. 10: The ideal and accountable consensus service Facc
cp including accountability (Part 2).

Description of Facc-cp
judgeParams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of Macc-aCS
judgeParams:

Implemented role(s): {judgeParams}
Internal state:

– ptr ∈ N, ptr = 0 {Pointer which stores the length of the prefix of the state reported as judicial report
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict, toBreak , internalState) from I/O:
if verdict[public] ensures individual accountability)∧

all other entries in verdict map to ε∧
toBreak = {(consistency, public}: {Handle violation of accountability w.r.t. consistency

reply (BreakAccProp, true, ε)
else:

reply (BreakAssumption, false, ε)

recv (BreakAssumption, toBreak , internalState) from I/O: {Do not generate leakage when breaking assumptions
reply (BreakAssumption, ε)

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report

send responsively (GetJudicialReport,msg, internalState) to NET (⋆)

{
Forward request to A an wait for a pointer to the
state including an extension of this statewait for (GetJudicialReport, ptr , ext)

if ptr < maxHonestOutput ∨ ptr > |state|∨
ext ̸⊂ N× {0, 1}∗∨
ext¬ start with index ptr + 1∨
further elements ¬ consecutive enumerated:

{
Require valid input from A, prefix must at
least contain honest output and extension
needs to be validgo to (⋆)

ptr ← ptr
Let stateptr the prefix of the state from the beginning including the ptr ’ component unite with ext .
reply (GetJudicialReport, stateptr) {Return state as report

recv (Corrupt, (public, sid, judge), internalState) from I/O:
{
Facc-cp

judgeParams declines corruption requests for the public judge
reply false {The public judge is incorruptible

recv (CorruptionStatus?(public, sid, judge), internalState) from I/O:
{Facc-cp

judgeParams asks for the public judge’s corruption
statusreply false {The public judge is incorruptible

Fig. 11: The judge parameter functionality Facc-cp
judgeParams for Facc

cp .

30

client

cp judgesupervisor

Fcert Fnet

cp ≤ Facc
cp

interface
to E

interface
to E

interface
to E

interface
to E

Fig. 12: Possible realization relation of the consensus service. The system E denotes the environment,
modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally connected to

the adversary.

the prefix of the state that was already outputted to honest parties. As we model a public judge here, the judge
is incorruptible. Thus, Facc-cp

judgeParams, answers false to Corrupt and CorruptionStatus? queries.
In what follows, we will assume that we already have a realization for Facc

cp which we scale via the scaling
protocol. Figure 12 gives an overview over a centralized consensus service CS (including relevant subroutines) in
the client-server model which can be used to realize Facc

cp and includes (public) accountability w.r.t. consistency
and assumption-based liveness. Importantly, the consensus service CS has to sign answers to read request from its
clients in this case. Thus, the (public) judge can gather undeniable evidence whether CS misbehaved according
based on CS signatures and can ensure accountability w.r.t. consistency. As already explained in Section 3.1,
communication via Fnet allows including breakable liveness guarantees. Of course, Facc

cp can also be realized
by a distributed system. For example, the accountable version of Apache Kafka [4] as presented in [50] is a
good candidate to realize Facc

cp .

D.2 The Scaling Protocol: In this section, we provide some additional details regarding the consensus scaling
protocol Pacc

cp we use in our example introduced in Section 3.1. We provide formal definitions for Pacc
cp in

Figures 13 to 18.
Remark: To simplify presentation in Section 3.1, we introduced Pacc

cp as (client, supervisor, judge |
scd,Fnet,Facc

cp ,Fcert). Formally, the scaling protocol is defined as:

Pacc
cp = (PCD

client : client,PCD
sv : supervisor,PCD

judge : judge | PCD : scd,Fnet : net,Facc
cp : client,Fcert).

Client PCD
client. Clients of the scaling protocol PCD

client (cf. Figure 13) are the connection point between higher-
level protocols/the environment and the scaling protocol. An instance of PCD

client models one party accessing the
scaling protocol. The environment may queue messages/transactions via PCD

client for consensus and read (from)
the established totally ordered sequence of transactions. If an instance (pidcur, sidcur, rolecur) of PCD

client receives
a Submit command, it firstly queries A which CD it should use to submit the transaction. Then, it assigns a
unique ID to the message and signs (id , tx , pidcur) via Fcert and sends the submit request (id , tx , pidcur, σ)
(where σ is the signature from above) via Fnet to the determined CD.

If the environment triggers a read request at an instance (pidcur, sidcur, rolecur) of PCD
client, (pidcur, sidcur, rolecur)

first queries A which CD to use to process the request. Then, it forwards the request via Fnet to the CD. PCD
client

also receives the response to the query via Fnet. To pull the response from the CD from Fnet, A triggers PCD
client

with the Pull command. PCD
client then queries Fnet for new messages and verifies that the state in the delivered

message is validly signed. In this case, PCD
client forwards the message to the judge PCD

judge, waits for its reactivation,
and then forwards the response to the environment.

The consensus distributors PCD. Though the CD are the core of the scaling protocol, they are internal/private
parties which use an internal/private consensus service to achieve consistency/consensus. Internal/private means
that the interfaces of PCD are not accessible to higher-level protocols. An instance of PCD (cf. Figure 14)
models one dedicated consensus distributor. Communication to/from the environment is always via PCD

client.

31

Messages from PCD
client to PCD are sent via Fnet and vice versa. If A triggers PCD via the Pull message,

PCD pulls for a new message at Fnet. (i) If the pulled message contains a Submit command, PCD verifies
the signature of the client submitting the transaction. If the signature verifies, it queues the submit request at
Facc
cp for consensus. In particular, PCD forwards the request to its client component of Facc

cp . (ii) If the pulled
message is a Read request, PCD creates a signature over state and replies with the state including the created
signature via Fnet to the requestor.

If A wants PCD to update its state, it sends Update to PCD. Thereupon, PCD sends a Read request to
Facc
cp . Facc

cp replies with a Read message including a state update. PCD verifies that the state update has a valid
format and that it is an extension of its current state. If both checks succeed, PCD overwrites its current state
with the provided update.

The public judge PCD
judge. The public judge PCD

judge (cf. Figure 15) collects information (i) from clients PCD
client

and (ii) from the lower-level consensus service Facc
cp . In contrast to clients which push evidence data to PCD

judge,
the judge pulls data from the lower-level public judge of Facc

cp on every activation during preprocessing. More
specifically, as long as verdicts = ε, PCD

judge queries Facc
cp ’s judge for the most recent verdicts and a judicial

report and overwrites its current (empty) verdicts and judicialReport with the received data. The judge only
processes evidence in the case that there is no verdict so far.

If PCD
judge receives evidence from PCD

client which contains some CD’s state (we assume that CD is identified with
(pid , sid , role)) including its pid and a signature over the data. PCD

judge checks that the signature verifies (which
implicitly includes a check that pid is indeed a CD). If the signature does not verify, the reported evidence is
ignored. Otherwise, PCD

judge checks that the reported state is a prefix of the most recent judicialReport. If this
check fails, this means that (pid , sid , role) violated consistency. Thus, PCD

judge will blame (pid , sid , role) for
its misbehavior.

On request GetVerdict, PCD
judge outputs the verdict stored in verdicts. If the environment invokes the

GetJudicialReport interface, PCD
judge outputs the judicial report it gathered from Facc

cp ’s judge which is stored
in judicialReport.

As PCD
judge models a public judge, it also provides the GetEvidence interface to A. PCD

judge provides all
collected evidence (W), the current judicial report, and its full transcript to A if A invokes this interface. This
models that all data used by PCD

judge is indeed public (as PCD
judge makes it public). PCD

judge’s VerResult interface
further allows A to verify signatures of the parties of Pacc

cp .

The public supervisor PCD
sv . The supervisor PCD

sv (cf. Figure 16) is responsible for determining whether the
assumption-based security property liveness still holds true and to make the corruption status of internal
parties/parties from lower-level protocols accessible to the environment. If the environment queries PCD

sv via
the (IsAssumptionBroken?, liveness, public), PCD

sv asks Fnet via getDeliveryStatus whether liveness
still holds true and also queries Facc

cp ’s public supervisor and asks whether liveness still holds true for Facc
cp .

If both checks succeed, PCD
sv responses that liveness still holds true for the scaling protocol. Otherwise, it

reports the property as broken.
If the environment queries for the corruption status of internal parties of the protocol via corruptInt?, PCD

sv

checks whether the matching instance of PCD is corrupted or whether the party at Facc
cp , resp. the internal party

at Facc
cp is corrupted and outputs the corruption status accordingly.

The network functionality Fnet. The ideal network functionality Fnet (cf. Figure 18) with breakable liveness
mainly provides a Send and a Pull interface to parties. There should be one instance of Fnet per sid modeling
one separated network for a protocol. In order to measure whether liveness is broken, Fnet includes an in-build
clock (see below). When an entity sends a message via Fnet to another entity, Fnet firstly buffers the message
including a unique ID, sender, receiver, and the round Fnet received the message in buffermsg . Additionally,
the message (including all metadata) is leaked to A.

In order to change the sequence of messages in buffermsg , A is allowed to permute the messages in buffermsg

via Permute analogously to the Permute command in Facc
cp .

If a party (pid , sid , role) wants to access its messages, it can query Fnet via Pull. In this case, Fnet looks
for the message with the smallest ID addressed to (pid , sid , role), deletes this message from buffermsg , and
forwards the message to (pid , sid , role).

To increase the current time stored in round, A can use the UpdateRound command. In the case that liveness
still holds true, i.e., inTime = true, Fnet checks whether the round received of all messages in buffermsg is

32

less than δ time units in the past (where δ is the liveness parameter of Fnet). If the check succeeds, Fnet

increases round by one. Otherwise, the round update is rejected. If liveness does not hold true anymore, Fnet

accepts all UpdateRound requests of A.
Via BreakLiveness, A can break the liveness guarantees of Fnet. The other subroutines can query for the

time of Fnet via GetCurRound and they can also query via getDeliveryStatus whether liveness holds true
or not. (Note that Fnet is private in the considered protocol, thus not accessible to the environment).

The ideal signature functionality Fcert with in-built CA. In the scaling protocol model, we use Fcert (cf.
Figure 17)– an adapted version of the standard ideal signature functionality Fsig (cf. Figure 31) as presented
in [17] (which we use later on as well). The major difference between Fcert and Fsig is that Fcert includes an
“in-build” CA. This simplifies the handling of signatures in this model.

This concludes the description of Pacc
cp . For a description of the corruption behavior, we point to Section 3.1.

D.3 UC Security Analysis: We now present the full proof of Theorem 1 in detail. To ease notation, we use
Facc
cp for the ideal consensus service subroutine on the real side/hybrid setting and call the instance of the ideal

consensus service we want to realize Facc
cp
′.

Theorem 6. Let δ ∈ N be the upper time boundary for message delivery and Σ = (gen(1η), sig, ver) be an EUF-
CMA secure signature scheme. Let Pacc

cp be as defined above. Let Facc
cp
′ as described above with Facc-cp

judgeParams

as subroutine with parameters Secacc = {consistency}, Secassumption = {liveness}, pidsjudge = {public},
and idsassumption = {public}. Then:

Pacc
cp ≤ (Facc

cp
′ | Facc-cp

judgeParams)

Proof. We firstly define a responsive simulator S such that the real world running the protocol R := Pacc
cp =

(PCD
client : client,PCD

sv : supervisor,PCD
judge : judge | PCD : scd,Fnet : net,Facc

cp : client,Fcert) is
indistinguishable from the ideal world running {S, I}, with the protocol I := (Facc

cp | Facc-cp
judgeParams), for every

ppt environment E .
The simulator S is defined as follows: as common, S is a single machine. It is connected to I and the

environment E via their network interfaces. In a run, there is only a single instance of the machine S that accepts
and processes all incoming messages. The simulator S internally simulates the realization R, including its
behavior on the network interface connected to the environment, and uses this simulation to compute responses
to incoming messages. For ease of presentation, we will refer to this internal simulation by R′. More precisely,
the simulation runs as follows:
Network communication from/to the environment
• Messages that S receives on the network connected to the environment (and which are hence meant for R)

are forwarded to the internal simulation R′.
• Any messages sent by R′ on its network interface (that are hence meant for the environment) are forwarded

to the environment E .

Corruption handling
• The simulator S keeps the corruption status of entities in R′ and I synchronized. That is, whenever an entity

of PCD
client,PCD, Facc

cp , or an internal entity of Facc
cp in R′ starts to consider itself corrupted, the simulator

first corrupts the corresponding (internal) entity of Facc
cp
′ in I before continuing its simulation. Note that

corruption of internal entities, i.e., of PCD, or (non-internal) parties of Facc
cp is mapped to a corruption of

an internal party in Facc
cp
′ in I.

• Incoming Messages from corrupted (non-internal) entities of Facc
cp
′ in I are forwarded on the network to

the environment in the name of the corresponding entity PCD
client in R′. Conversely, whenever a corrupted

entity of PCD
client wants to output a message to a higher-level protocol, S instructs the corresponding entity

of Facc
cp
′ to output the same message to the higher-level protocol.

• For indirectly corrupted parties:9 Note that these parties are (directly) corrupted in I. For these instances,
I forwards the inputs from S. An indirectly corrupted party in R′ produces an output on an I/O tape then
S instructs I to forward this message to the intended receiver.

9Indirectly corrupted parties are not directly corrupted parties, i. e., A did not send Corrupt to the party so far, but (in our case)
DetermineCorrStatus outputs true. That is, the party considers itself to be corrupted, e. g., due to a corrupted subrouting. For
example, an instance of PCD

client considers itself corrupted if its accompanied signer session at Fcert is corrupted.

33

Transaction submission
Whenever an honest entity entity = (pid , sid , role) of Facc

cp
′ receives a request (Submit,msg) to submit a

new transaction msg , Facc
cp
′ buffers the message for later adding it to the state and leaks the full message

including the ID of the message in Facc
cp
′’s buffer to S. S uses the leaked message to simulate the input of

msg to PCD
client in R′.

In the case that a corrupted party submits a message (which can be extracted from Fnet), S submits the
transaction via the Submit command to Facc

cp
′.

Read requests
Whenever an honest entity (pid , sid , role) receives a request Read to read from the global state, Facc

cp
′ buffers

this read request and leaks the request to S and waits for a trigger to process the read request. Upon receiving
this request, S uses the leaked message to simulate the input of this message to PCD

client in R′ and stores (i) the
ID provided by Facc

cp
′ for further processing and (ii) which entity triggered the read request.

If A triggers a simulated entity (pid , sid , role) of PCD
client to output the response to a read request via Pull,

S simulates the input of Pull in R′. If (pid , sid , role) wants to output a state via a (Read, state) message
on its I/O connection in R′, S extract the connected request ID id matching the request (see above) and
sends (Deliver, id) to Facc

cp
′. If brokenProps[consistency, public] = true in Facc

cp
′,10 S simply forwards

(Read, state, (pidr, sidcur, roler)) from R′ including the stored receiver as response to Facc
cp
′ Read request.

Otherwise, S compares state with state from Facc
cp
′11 and extracts the pointer N , such that state up to the N th

entry matches state . S then forwards (Read, N, (pidr, sidcur, roler)) to Facc
cp
′ where (pidr, sidcur, roler) is the

recorded requestor of read request.
State updates
If there occurs a state update in R′ in the simulation of Facc

cp , i.e., the variable state of Facc
cp is updated, S

triggers a state update at Facc
cp
′. Therefore, it firstly retrieves the buffer of submitted messages/transactions which

are not part of the state so far via getBuffer and the state′ from Facc
cp
′ via Read. It checks, which entries

of state from the simulation are missing in state′ in Facc
cp
′. It then derives a permutation over the received

buffer such that the entries missing in state′ have the same order as in state starting with the lowest ID in the
buffer. Then, S sends this permutation via Permute to Facc

cp
′. Facc

cp
′ activates S again with an ack message.

Thereupon, S sends Update to Facc
cp
′ and is activated again via ack. S repeats sending the Update message

until state and state′ are equal.
Public judge and supervisor
• If during the simulation of PCD

judge in R′, PCD
judge renders a verdict, i.e., verdicts ̸= ε, S extracts the verdict

and forwards it to Facc
cp
′. More specifically, S sends (BreakAccProp, verdict , {(consistency, public)})

to (public, sidcur,Facc
cp : judge) where verdict is a map from pidsjudge → {0, 1}∗ where only the entry

verdict [public] = verdicts (contains the verdict from PCD
judge) and all other entries are mapped to ε.

• If Facc
cp
′ is queried for a judicial report, it allows S to determine some details of the judicial report which is

derived from Facc
cp
′s state. If S receives (GetJudicialReport,msg , internalState) from Facc

cp
′, it extracts

the judicial report report (as currently produced) from Facc
cp . It extracts the necessary pointer ptr to map

report to state from Facc
cp and then sends (GetJudicialReport, ptr , ε) back to Facc

cp
′.

• If S receives GetEvidence or VerResult via NET, it forwards this input to its simulated version of PCD
judge

and sends the output of the simulated machine back via NET. For the transcript provided as response to
GetEvidence, S maps data such as if the simulated version of PCD

judge would be directly connected to NET,
etc.

• As soon as liveness breaks (i) in Fnet or (ii) in Facc
cp in R′, S breaks liveness at Facc

cp
′. In the case of (i), as

soon as inTime = false in Fnet, S sends (BreakAssumption, {(liveness, public)}) to (public, sidcur,
Facc
cp : supervisor). In Case (ii), if the brokenProps[liveness, public] = true at Facc

cp , S sends the
same message as above to Facc

cp
′.

Further details
• S keeps the clocks/rounds of R′ and Facc

cp
′ synchronous. That is, S sends UpdateRound to Facc

cp
′ whenever

a round update in the simulated Fnet is performed and before continuing the simulation.
This concludes the description of the simulator. It is easy to see that (i) {S, I} is environmentally bounded 12

10Note that S explicitly breaks this property. Thus, S knows the value of brokenProps[consistency, public] in Facc
cp

′.
11This is possible, as S determines the state via Update commands.
12This is the polynomial runtime notion employed by the iUC framework.

34

and (ii) S is a responsive simulator for I, i.e., restricting messages from I are answered immediately as long
as {S, I} runs with a responsive environment. We now argue that R and {S, I} are indeed indistinguishable
for any (responsive) environment E ∈ Env(R).

Let E ∈ Env(R) be an arbitrary but fixed environment. First, observe that Facc
cp
′ provides S with full

information about all submit and read requests performed by higher-level protocols. Hence, the simulated
protocol R′ within S obtains the same inputs and thus performs identical to the real world R. Therefore, the
network behavior simulated by S towards the environment is indistinguishable from the network behavior of
R. Note that state changes triggered via network interface are synchronized between R′ and I. Together with
the state synchronization during I/O interaction (see below), the simulator can keep the states of R′ and I in
synchronization. Moreover, we can also conclude that the corruption status of (internal) entities in the real and
ideal world is synchronized. Since the simulator has full control over corrupted entities, which are handled via
the internal simulation R′, this implies that the I/O behavior of corrupted entities of R/I towards higher-level
protocols/the environment is also identical in the real and ideal world. Note that purely internal (private) parties
have no interface to the environment. Thus, the only way to potentially distinguish the real and ideal world is
the I/O behavior of honest entities of R/I towards higher-level protocols.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by induction,
that all of those interactions result in identical behavior towards the environment, i.e., are also indistinguishable.
At the start of a run, there were no interactions on the I/O interface with honest parties yet. In the following,
assume that all I/O interactions so far have resulted in the same behavior visible towards the environment in
both the real and ideal world.

Submission requests: Submission requests do not directly result into an output to the environment. But, they
might affect the output of Facc

cp
′ at a later point in time as they have direct impact of the state of Facc

cp
′, resp.

R. Thus, we now show that submit requests behave “identical”, i.e., we have to argue that these changes are
“synchronized” between I and R′. In particular, the buffered set of transactions in Facc

cp
′ is a subset of the

buffered set of transactions in R′ (which are buffered (i) as Submit message in Fnet and (ii) in the buffer of
Facc
cp).
Observe that, upon receiving a submission request, Facc

cp
′ behaves similar to R: in Facc

cp
′, the submitted

transaction is directly stored into the buffer. In R′, the submit message is forwarded via Fnet to PCD. So, the
“buffers” of Facc

cp
′ and R′ stay synchronized when defining the buffer of R′ as the set of Submit messages in

Fnet’s buffer union the buffer of Facc
cp . Note that as soon as submit request of corrupted parties are visible to

S (as specified above), S also submits these transactions to Facc
cp
′. Thus, S is indeed able to keep the buffers

in I and R synchronized.

State updates: As buffers in R′ and Facc
cp
′ are synchronized, we can conclude that the states of Facc

cp
′ and R′

stay synchronized during updates as this boils down to mirror the state from Facc
cp to Facc

cp
′ (as S does). (i) The

buffer of Facc
cp is a subset of the buffer of Facc

cp
′. (ii) Submitted transaction which are not in the intersection of

the states of Facc
cp and Facc

cp
′ are currently in the buffer of Fnet. (iii) By construction, both provide the same

security guarantees. Thus, Facc
cp
′ provides at most less guarantees than Facc

cp (in case that properties are broken
at Facc

cp
′). Thus, Facc

cp
′ will accept every state update of S and both, I and R′ stay synchronized. Note that

Facc
cp
′ also provides S the possibility to forward answers to read requests which have not been requested. As

this is possible in real and ideal world, both worlds stay indistinguishable.

Read requests: Observe that, upon receiving a read request, Facc
cp
′ stores the read request in a buffer and leaks

the full request to the simulator including an ID and the receiver of the response. Note that the procedure is
analogously to a submission requests. A read request does not directly result into an output to the environment.
With the same argumentation as above follows that S is able to keep the “read buffers” of I and R′ synchronized.

Deliver response to read request: If S is triggered to output a response to a read request (via Pull), there
are two cases to consider: (i) brokenProps[consistency, public] = true or (ii) brokenProps[consistency,
public] = false. In the first case, Facc

cp
′ will simply forward the input from S to the requestor. As the output

is extracted from R′ we can conclude that R and I are indistinguishable. In the second case, S can extract
the response from R′. Honest clients in R′ receive a validly signed prefix of the state of Facc

cp (which is in
synchronization with Facc

cp
′s state). Thus, Facc

cp
′ will accept the Deliver command of S and the outputs in

both worlds is identical. Thus, both worlds are indistinguishable.

35

Verdicts: Firstly, note that S sends a BreakAccProp message to break public consistency when consistency in
R′ breaks, resp. when there is a new verdict available in R′s public judge.13 Secondly, note that this request
matches the rules in Facc-cp

judgeParams: the verdict S provides ensures individual accountability and S solely tries
to break public consistency. Thus, Facc

cp
′ accepts the verdict S provides. Further note that we assume the used

signature scheme to be EUF-CMA secure. Thus, the probability that an honest party receives and accepts a
state update that includes a forged signature (and forwards this to a judge) is negligible. Further, as verifier

is incorruptible, Thus, we can conclude that S can always keep the verdicts and whether consistency is broken
synchronized in I and R′ and the output on a GetVerdict request is equal in R and I. Thus, both worlds
are/stay indistinguishable.

Judicial Reports: Observe that the states of Facc
cp in R′ and Facc

cp
′ are synchronized (see above). As the judicial

report is derived as a prefix of the state, S always provides a pointer to the full state of both R′ and I to
determine the judicial report of Facc

cp
′. Thus, delivered judicial reports are equal in both worlds and R and I

stay indistinguishable.

GetEvidence and VerResult: We note that the environment cannot use the GetEvidence or the VerResult

interface of PCD
judge to distinguish between real and ideal world. The activation order of the simulated PCD

judge

matches the real world order and also messages to PCD
judge match in both worlds perfectly. As S maps the

transcript such that it matches the real world execution the transcript (and provided state) is indistinguishable
in both worlds. Similarly, S fully simulates all interaction with Fcert (in the same order in both worlds). Thus,
requests in both worlds will lead to the same output.

Supervisor: The same holds true for BreakAssumption requests to the supervisor. The message of S matches
the rules and thus will be accepted. This allows S to keep both worlds synchronized regarding the assumption-
based security property liveness. Thus, both worlds will answer requests to the supervisor identically, i. e., both
worlds remain indistinguishable.

Time requests: As the simulator updates the internal clock of Facc
cp
′ every time Fnet’s clock in R′ is increased,

both worlds always output the same value for the current time. Note that, even if Facc
cp
′ enforces liveness,

any round update requests of S will indeed be accepted: as S keeps the liveness guarantees of I and R′
synchronized, S will not ask for a time update that violates the liveness check in Facc

cp
′ as long as liveness still

holds true.
We also note that the (additional) public evidence A, resp. E , may gather at the PCD

judge (via GetEvidence)
does not enable E to distinguish between both worlds. As R′ gets the same input as I/R, the output of
GetEvidence in R′ is the same as in the real world R. We emphasize that the judicial report of PCD

judge

already includes most of the information E receives via GetEvidence. The transcript is the same in I and R
as the order of activations of and the inputs to PCD

judge, resp. its simulated version, are identically. Additionally,
GetEvidence provides signatures to E . However, as signatures do not contain private information and are
ideally generated in both worlds, it is not possible to distinguish between R and I based on the additional
signature data.

Altogether, R and {S, I} behave identical in terms of behavior visible to the environment E and thus are
indistinguishable.

D.4 Deterrence Analysis: Common consensus services, e. g., Hashgraph [11], charge fees for their service.
Clients also benefit from a consensus service as they do not have to establish a consensus service on their
own. Thus, we conclude U i

hP > 0 for all parties involved in the consensus service. As Pacc
cp provides public

accountability and verdicts are fair (by definition), we can conclude that the public judge will not falsely
accuse an honest party. Further, all data used in the judging procedure is public. Thus, we can assume that
U i
hE = U i

hL = 0. To deter parties from misbehavior, penalties for violating consistency need to be sufficiently
high. Thus, we assume that U i

mL ≫ 0. In particular, penalties need to negate potential profit due to malicious
behavior, i. e., it needs to hold true U i

mP − U i
mL < U i

hP . The exact value of U i
mP and hence the minimally

required fees depend on the context that uses the consensus protocol. As the judging procedure would identify
faked evidence, we assume U i

mE = 0. Thus, Equation 1 and 2 hold true.

13We remark that PCD
judge does not update her verdict.

36

Description of the client PCD
client = (client) of the consensus distributors:

Participating roles: {client}
Corruption model: Dynamic corruption without secure erasures

Description of Mclient:

Implemented role(s): {client}
Subroutines: Fcert : verifier,Fcert : signer,Fnet : net,PCD

judge : judge
Internal state:

– owner ∈ ({0, 1}∗)3
{

The entity (pid , sid , role) that has access to this instance of PCD
client

– serial ∈ N, serial = 0 {The serial for “agreed” transactions
CheckID(pid , sid , role):

Accept all messages for the same (pidcur, sidcur, rolecur).
Corruption behavior:

DetermineCorrStatus(pid , sid , role):
if corrupted = true: {Checks whether a party itself is corrupted.

return true
corrRes ← corr(pidcur, sidcur, signer) {Request corruption status at Fcert

return corrRes {Return whether Fcert instance is corrupted
Initialization:

owner← (pidcall, sidcall, rolecall)
{

Record that only (pidcall, sidcall, rolecall) has access to this instance of PCD
client

Main:
recv (Submit, tx) from I/O s.t. (pidcall, sidcall, rolecall) = owner: {Transaction submission with specified CD

send responsively (Submit, tx) to (NET) {A desides which CD (pidcur, sidcur, rolecur) will use
wait for (Submit, tx , pidCD)
serial← serial + 1
σ′ ← sign([serial, tx , pidcur])
send (Send, (pidcur, sidcur, rolecur), (pidCD, sidcur, scd), (Submit, serial, tx , pidcur, σ)) to (pidcur, sidcur,Fnet : net)

{Send transaction via Fnet to PCD

recv Read from I/O s.t. (pidcall, sidcall, rolecall) = owner: {Read request from IO
send responsively Read to (NET) {A desides which CD (pidcur, sidcur, rolecur) will use
wait for (Read, pidCD)
send (Send, (pidcur, sidcur, rolecur), (pidCD, sidcur, scd), (Read, pidcur)) to (pidcur, sidcur,Fnet : net)

{Forward request via
Fnet

recv Pull from NET: {A triggers pulling at Fnet

send Pull to (pidcur, sidcur,Fnet : net)
wait for (Pull,msg)
if msg = (Read, state, pidCD, σ):

b← verifySig(pidCD, state, σ)
if b ∧ state ⊂ state:

state← state
send (Evidence, pidCD, state, σ) to (pidcur, sidcur,PCD

judge : judge)
wait for ack
send (Read, state) to owner {Output response of read request to owner

Procedures and Functions:
function sign(msg) : {Sign message at Fcert

send (sign,msg) to (pidcur, (pidcur, sidcur),Fcert : signer)
wait for (sign, σ)
return σ

function verifySig(pid,msg, σ) : {Verify signature at Fcert

send (VerResult,msg, σ) to (pidcur, (pid, sidcur),Fcert : verifier)
wait for (VerResult, result)
return result

Fig. 13: The consensus distributors client PCD
client.

37

Description of the consensus distributors PCD = (scd):

Participating roles: {scd}
Corruption model: Dynamic corruption without secure erasures

Description of Mscd:

Implemented role(s): {scd}
Subroutines: Facc

cp : client,Fcert : verifier,Fcert : signer,Fnet : net,PCD
judge : judge

Internal state:
– state ⊂ N× {0, 1}∗, state = ∅ {The set of totally ordered transactions/messages

CheckID(pid , sid , role):
Accept all messages for the same sid .

Corruption behavior:
DetermineCorrStatus(pid , sid , role):

if corrupted = true: {Checks whether a party itself is corrupted.
return true

corrRes1 ← corr(pidcur, sidcur,Fcert : signer) {Request corruption status at Fcert

corrRes2 ← corr(pidcur, sidcur,Facc
cp : client)

{
Request corruption status at Facc

cp

return corrRes1 ∨ corrRes2
{

Return whether Fcert or Facc
cp instance is corrupted

Main:
recv Pull from NET: {A triggers pidcur to query Fnet

send Pull to (pidcur, sidcur,Fnet : net)
wait for (Pull,msg)
if msg = (Submit, serial, tx , pid, σ): {Received message is a Submit

b← verifySig(pid, (serial, tx , pid), σ) {Check valid signature
if b: {If signature is valid, submit data to consensus service

send (Submit, (serial, tx , pid, σ)) to (pidcur, sidcur,Facc
cp : client) {Forward tx to consensus service

else if msg = (Read, pid): {In case of a Read request
σ ← sign(state) {Sign current state
send (Send, (pidcur, sidcur, rolecur), (pid, sidcur, client), (Read, state, pidcur, σ) to (pidcur, sidcur,Fnet : net)

{Reply with full state including signature
recv Update from NET: {Request update at consensus service

send Read to (pidcur, sidcur,Facc
cp : client) {Forward request to consensus service

recv (Read, state) from (pidcur, sidcur,Facc
cp : client): {State update from consensus service

require: state is a set with entries of form (ctr ,msg),
where ctr ∈ N,msg ∈ {0, 1}∗.

if state ⊂ state:
state← state

Procedures and Functions:
function sign(msg) : {Sign message at Fcert

send (sign,msg) to (pidcur, (pidcur, sidcur),Fcert : signer)
wait for (sign, σ)
return σ

function verifySig(pid,msg, σ) : {Verify signature at Fcert

send (VerResult,msg, σ) to (pidcur, (pid, sidcur),Fcert : verifier)
wait for (VerResult, result)
return result

Fig. 14: The consensus distributor ITM PCD which scales consensus.

E. Accountable Key Exchange based on an accountable PKI (Full Details)
In this section, we provide full details regarding the accountable PKI case study as presented in Section 3.2.

This section is structured as follows: we firstly present the details regarding the accountable PKI as introduced
in Section 3. In particular, we provide a detailed introduction to the ideal accountable PKI functionality Facc

PKI.
Afterwards, we explain the protocol Pacc

PKI and provide a formal specification of the model. We conclude this
part with a security analysis of the accountable PKI.

E.1 An Accountable Ideal PKI Functionality Facc
PKI: We now present the full specification of the ideal

accountable PKI functionality Facc
PKI including the formal specification of Facc

PKI in Figure 19 including its
subroutine Facc- PKI

judgeParams in Figure 20. Facc
PKI extends Canetti et al.’s GBB as presented in [27].

One session of Facc
PKI models one instance of a PKI including several different CAs and CTLs. From a

high-level perspective, Facc
PKI offers the possibility to register certificates for identities at a dedicated CA and to

retrieve certificates of identities from CAs. We model that parties use a local PKI client which is responsible
for the communication with the PKI, i. e., the client is connected via I/O to the environment modeling higher-
level protocols which access/use the PKI. To interact with the PKI, honest parties, resp. clients identified by
(pid , sid , client), can register a certificate for their own identity. To register a certificate, clients send a message
of the form (Register, pk , pidCA) (where pidCA is the PID of the CA that should attest the entities identity
and pk be a string, typically the public key of the client) to Facc

PKI. Facc
PKI does not immediately process the

38

Description of PCD
judge = (judge):

Participating roles: {judge}
Corruption model: incorruptible

Description of Mjudge:

Implemented role(s): {judge}
Subroutines: Fcert : verifier,Facc

cp : judge
Internal state:

– counter ∈ N, counter = 0 {Evidence counter
– W ⊂ N× ({0, 1}∗)2 {Reported evidence (enumerated) per party, entries of form (ctr , pid, state)
– judicialReport ∈ {0, 1}∗, judicialReport = ε

{
The judicial report from Facc

cp

– verdicts ∈ {0, 1}∗, verdicts = ε {Recorded verdict
CheckID(pid , sid , role):

Accept all messages with the same sid addressed to (public, sid, judge).
MessagePreprocessing:

if verdicts = ε:
send GetVerdict to (public, sidcur,Facc

cp : judge) {Query for verdicts regarding consensus service
wait for (GetVerdict, verdict)
verdicts← verdict

if verdicts = ε: {Update judicial report
send GetJudicialReport to (public, sidcur,Facc

cp : judge)
wait for (GetJudicialReport, judicialReport)
judicialReport← judicialReport

Main:
recv (Evidence, pidCD, state, σ) from I/O: {Evidence from clients

b← verifySig(pidCD, state, σ)
if b:

if state ̸⊂ judicialReport: {Honest CD will always forward state wich is a subset of a judicial report
verdicts.add(dis(pidCD, sidcur,PCD : scd))

reply ack

recv GetVerdict from I/O:
reply (GetVerdict, verdicts)

recv (GetJudicialReport,msg) from I/O:
reply (GetJudicialReport, judicialReport) {Return judicial report (from lower-level) to requestor

recv GetEvidence from NET:
{
A may query the public judge for the
evidence it gathered including all detailsreply (GetEvidence,W, judicialReport, transcripta)

recv VerResult(pid,msg, σ) from NET:
{
A verify signatures via PCD

judge’s interface to Fcert

result ← verifySig(pid,msg, σ
reply (VerResult, result)

Procedures and Functions:
function verifySig(pid,msg, σ) : {Verify signature at Fcert

send (VerResult,msg, σ) to (pidcur, (pid, sidcur),Fcert : verifier)
wait for (VerResult, result)
return result

atranscript is a special variable in iUC, which, informally speaking, contains a transcript of all messages sent and received by the current machine
instance.

Fig. 15: The judging functionality PCD
judge for Pacc

cp (the consensus scaling protocol).

request, it stores the register message including the pid of the party which requests the certificate in a buffer
bufferS for later processing. This allows to model asynchronous network. Also, Facc

PKI leaks the full request to
A. If an honest party (pidr, sid , client) wants to access a certificate of a party pid , the process is similar:
the party sends (Retrieve, pid , pidCA) to access the certificate of identity pid at CA pidCA. Retrieve requests
are also stored in a buffer bufferR including the requestor (pidr, sid , client) for processing later on. Facc

PKI

also leaks the full request to A.
As A has full control over the network, A needs to inform Facc

PKI when it should accept a certificate and add
it to its state. Therefore, Facc

PKI allows A: (i) to drop entries from bufferS and (ii) to add buffered certificates
to Facc

PKI’s state. In Case (i), A sends a (DropS , pid , pk , pidCA) message to Facc
PKI. If the entry (pid , pk , pidCA)

exists in bufferS, Facc
PKI removes the entry from bufferS and replies (DropS , ack) to A. Otherwise, Facc

PKI declines
the request and responds (DropS , nack) to A. In Case (ii), A sends the command (Update, buffer) to Facc

PKI,
where buffer is expected to be a subset of bufferS. If buffer ⊂ bufferS, Facc

PKI adds the elements from buffer
to the state and removes them from the bufferS. Facc

PKI then replies to A that it accepted the update.
Similarly, Facc

PKI handles retrieve requests. Facc
PKI allows the adversary A (i) to drop entries from bufferR and

39

Description of PCD
sv = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible

Description of Msupervisor:

Implemented role(s): {supervisor}
Subroutines: Facc

cp : supervisor,Fnet : net
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (IsAssumptionBroken?, prop, id):
if id = public ∧ prop = liveness: {The model includes public liveness as assumption-based security property

send getDeliveryStatus to (pidcur, sidcur,Fnet : net) {Query Fnet whether liveness still holds
wait for (getDeliveryStatus, inTime)
send (IsAssumptionBroken?, liveness, public) to (pidcur, sidcur,Facc

cp : supervisor)
{

Query Facc
cp ’s supervisor

whether liveness still holdswait for (IsAssumptionBroken?, b)
if inTime ∧ ¬b: {Liveness holds true

reply (IsAssumptionBroken?, false)
else:

reply (IsAssumptionBroken?, true)

else:
reply (IsAssumptionBroken?, false)

recv (corruptInt?, (pid , sid , role)) from I/O s.t. role /∈ {client, judge, supervisor}:
corrRes ← false; b← false {Check corruption depending on protocol layer
if role = scd:

{
Handle internal parties of Pacc

cp

corrRes ← corr((pid , sid , role)) {Check whether party is corrupted if directly accessible
else: {Handle internal parties from lower protocol levels

send (corruptInt, (pid , sid , role)) to (public, sidcur,Facc
cp : supervisor)

{
Check if internal party at Facc

cp is corrupted
wait for (corruptInt, b)

if corrRes ∨ b:
reply (corruptInt, true)

else:
reply (corruptInt, false)

recv (BreakAssumption, toBreak , internalState) from I/O: {Leakage request
reply (BreakAssumption, ε) {Provide empty leakage

Fig. 16: The supervisor PCD
sv for PCS.

(ii) to trigger the response to a retrieve request. Case (i) is analogously to Case (i) from the paragraph above.
Here, A sends a (DropR, pid , pidCA, pidr, roler) message to Facc

PKI. If the entry (pid , pidCA, pidr, roler) exists
in bufferR, Facc

PKI removes the entry from bufferR and replies (DropR, ack) to A. Otherwise, Facc
PKI declines

the request and responds (DropR, nack) to A. In Case (ii), A sends (Deliver, pid , pidCA, pidr, roler, pkA)
to Facc

PKI. There are now two cases to consider: (i) correctCert is broken for (pid , sid , client) or the party
is corrupted and (ii) correctCert is not broken for (pid , sid , client) and the party is not corrupted. In the
latter case, Facc

PKI removes the entry from bufferR and sends the requested output (extracted from its local state)
via (Retrieve, pid , pidCA, state[pid , pidCA]) to (pidr, sid , roler) (and ignores further data provided by A).
Otherwise, Facc

PKI allows A to determine pid ’s certificate. That is, Facc
PKI forwards the public key pkA provided

by A via (Retrieve, pid , pidCA, pkA) to (pidr, sid , roler).
To cover accountability properties, we expect Facc

PKI to be used with the parameters Secacc = {correctCert}
and Secassumption = ∅. For correctCert, we require verdicts which state that one or several CAs mis-
behaved. Facc

PKI includes local judges – one local judge ((local, pid , client), sid , judge) per client iden-
tity (pid , sid , client), i. e., pidsjudge is expected to be {local} × {0, 1}∗ × {client}. As judicial report
Facc- PKI

judgeParams outputs an empty report. Further, the functionality Facc- PKI
judgeParams specifies that verdicts need to be

of form
∧n

i=1 dis(pid
i
CA, sidcur, ca), n ∈ N, where (pid i

CA, sidcur, ca) are CA identities in Pacc
PKI. As the model

does not include assumption-based security properties, we expect idsassumption = ∅ and specify that Facc- PKI
judgeParams

always outputs ε as response to a BreakAssumption request. Note that (i) local judges act as pure message
forwarder for A if the associated party is corrupted and (ii) A may corrupt a local judge only if its accompanied
party, resp. client is already corrupted.

E.2 An Accountable PKI based on CTLs: In what follows, we provide the full specification of our PKI
protocol, resp. its model Pacc

PKI, as presented in Section 3. We also provide a formal description of all components

40

Description of the protocol Fcert = (signer, verifier):

Participating roles: {signer, verifier}
Corruption model: incorruptible {See text below
Protocol parameters:

– p ∈ Z[x]. {Polynomial that bounds the runtime of the algorithms provided by the adversary.

– η ∈ N {The security parameter.

– sig {Signing algorithm, outputs a signature σ on input (msg, sk). The generated signature has a length of η bits

– ver {Signature verifying algorithm, outputs verification result on input (msg, σ, pk)

– gen {Key generation algorithm, outputs (pk, sk) on input 1η

Description of Msigner,verifier:

Implemented role(s): {signer, verifier}
Internal state:

– (pk, sk) ∈ ({0, 1}∗ ∪ {⊥})2 = (⊥,⊥). {Key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊂ {0, 1}∗ = ∅. {Set of recorded messages.
– corrupted ∈ {true, false} = false. {Is signature key corrupted?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{A single instance manages all parties and roles in a
single session. A session models one signature key pair
belonging to party pid′.Corruption behavior:

– DetermineCorrStatus(pid , sid , role): Return corrupted.
Initialization:

(pk, sk)
$← Gen(1η) {Generate public/secret key pair

Parse sidcur as (pid, sid).
pidowner← pid .

Main:
recv (Sign,msg) from I/O to (pidowner, , signer):

σ ← sig(p)(msg, sk).
add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ) from I/O to (, , verifier):
b← ver(p)(msg, σ, pk). {Verify signature.
if b = true ∧msg /∈ msglist ∧ corrupted = false:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

recv corruptSigKey from NET: {Allow network attacker to corrupt signature keys.
corrupted← true.
reply (corruptSigKey, ok).

Fig. 17: The ideal signature functionality Fcert.

of the protocol in Figure 22 to 31. Figure 21 provides an overview over the different components of the PKI
protocol.
Remark: The full formal definition of Pacc

PKI as presented in Section 3.1 is Pacc
PKI = (PCA

client : client,PCA
sv :

supervisor,PCA
judge : judge | PCA : ca,PCTL : ctl,Fpsync - net : psync-net,Fsig,Fauth : auth).

We remark that one PKI consisting of clients, several CAs, and several CTLs is modeled as one instance (sid)
of Pacc

PKI.

CA clients PCA
client. The CA client PCA

client (cf. Figure 22 and 23) handles the connection between the PKI and the
environment. PCA

client’s main purpose is to request at most one certificate at the PKI and to query for certificates
of other parties. Additionally, PCA

client also monitors the PKI, resp. its CTLs and surveils whether there exists
solely certificates for its identity requested by itself.

If the environment instructs an instance of PCA
client, namely the instance for (pid , sid , client), to register a

string pk as its public key at a certain CA (pidCA, sidcur, ca), it sends (Register, pk , pidCA) via an authenticated
channel Fauth to PCA

client. An honest instance of PCA
client registers at most one certificate. If the environment calls

the register command once again, PCA
client does not process the request.

If the environment wants to retrieve a certificate of pid issued by pidCA, it instructs its instance of PCA
client

to do so via (Retrieve, pid , pidCA). PCA
client stores the request in requests and forwards the request via NET,

i. e., unprotected, to (pidCA, sid , ca) (with the same session ID). Note that there is neither a guarantee that
the request arrives at the CA nor that it arrives unchanged. When PCA

client receives the answer to the retrieve

41

Description of the protocol Fnet = (net):
Participating roles: {net}
Corruption model: incorruptible
Protocol parameters:

– δ ∈ N {The expected liveness guarantee for Fnet

Description of Mnet:

Implemented role(s): {net}
Internal state:

– buffermsg ⊂ N2 × ({0, 1}∗)7, buffermsg = ∅ {Buffer for messages consisting of tuples (ctr , round, sender , receiver , content)

– counter ∈ N, counter = 0 {Counter for messages

– round ∈ N, round = 0 {Current round/time unit

– inTime ∈ {true, false}, inTime = true {Indicator whether messages where within δ time units

CheckID(pid , sid , role):
Accept all messages with the same sid .

Main:
recv (Send, (pidcur, sidcur, rolecur), (pid, sidcur, role),msg) from I/O: {(pidcur, sidcur, rolecur) sends a message to (pid, sidcur, role)

counter← counter + 1
buffermsg .add([counter, round, (pidcur, sidcur, rolecur), (pid, sidcur, role),msg]) {Record message
send (Send, counter, (pidcur, sidcur, rolecur), (pid, sidcur, role),msg) to NET {Forward leakage and identifier to A

recv Pull from I/O: {Parties can pull messages
Let (counter , (pid, sidcur, role), (pidcur, sidcur, rolecur),msg) ∈ buffermsg , such that there exists no smaller counter
with recipient (pidcur, sidcur, rolecur).
if (counter , (pid, sidcur, role), (pidcur, sidcur, rolecur),msg) as above exists:

buffermsg .remove([counter , (pid, sidcur, role), (pidcur, sidcur, rolecur),msg]) {Remove message from delivery queue
reply (Pull,msg) {Deliver message to receiver

else:
reply (Pull,⊥)

recv (Permute, π) from NET: {A is allowed to change the order in the buffermsg

require: π is a permutation of the IDs in buffermsg .
for all (ctr ,msg) ∈ buffermsg where msg represents all other content of buffermsg besides ctr do:

buffermsg .remove([ctr ,msg])
buffermsg .add([π(ctr),msg])

recv UpdateRound from NET: {A triggers round update
if ∃(, round, ,) ∈ buffermsg , s.t. round− round > δ ∧ inTime = true:

reply (UpdateRound, false, ϵ)
else:

round← round + 1
reply (UpdateRound, true, ϵ)

reply (UpdateRound, true, ϵ)

recv (GetCurRound): {A and E are allowed to query the current round.
reply (GetCurRound, round)

recv BreakLiveness from NET: {A breaks liveness
inTime← false

recv getDeliveryStatus from I/O: {E may query whether messages where delivered “in time”
reply (getDeliveryStatus, inTime)

Fig. 18: The simplified network model Fnet with breakable δ-liveness.

request via the message (Retrieve, (ctr , (serial , pid , pk , pidCA), pidCTL, τ, σ)) on the NET interface, PCA
client

firstly request the current time τ ′ at Fpsync - net. Then, PCA
client updates its information regarding the CA

pidCA and queries FCA
init (see below) for the public key of pidCA and the CTLs that the CAs uses includ-

ing their public keys (this is done via the message (GetCaCtls, pidCA)). When PCA
client receives the answer

(GetCaCtls, pkCA, (pid1, . . . , pidn), (pk1, . . . , pkn)), it stores the CA’s public key pkCA in pkCA[pidCA]. Further,
it stores the CTLs connected to the CA in CTLs[pidCA] and their public keys in pkCTL[pidCTL]. After PCA

client

gathered the trusted information from FCA
init, it checks whether (i) PCA

client indeed requested the certificate for
pid at pidCA, (ii) the provided certificate is older than 3 · δ time units, (iii) pidCTL is a CTL for pidCA, (iv) the
certificate is validly signed by the CTL pidCTL, and (v) the certificate is also validly signed by the CA pidCA. If
the checks succeed, PCA

client removes the request from its request queue and sends the certificate to the requestor.
The adversary is responsible for starting the certificate monitoring process of PCA

client.
14 When A triggers the

monitoring process by sending Monitor, PCA
client updates the set of CTLs at FCA

init (by using the GetCTLs). Let
CTL be the set of all CTLs provided by FCA

init. PCA
client then queries all CTLs via (Monitor, pidcur,CTL) via

Fpsync - net. Note that PCA
client and Fpsync - net are connected via a (direct and thus secure) I/O interface. When

14We note that security guarantees are incorporated into Fpsync - net which we will discuss later on.

42

Description of the ideal and accountable PKI Facc
PKI = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: dynamic without secure erasures
Protocol parameters:

– Secacc ⊂ {0, 1}∗ {Accountability properties
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of Macc- PKI
client :

Implemented role(s): {client, judge, supervisor}
Subroutines: FjudgeParams : judgeParams
Internal state:

– state : {0, 1}∗ × {0, 1}∗ →, state = ∅ {The registered certificates, resp. identities (as mapping), initially ⊥ for all entries
– bufferS ⊂ ({0, 1}∗)3, bufferS = ε,bufferR ⊂ ({0, 1}∗)4, bufferR = ∅ {Requested certificates/buffer of form (pid, pidCA, pidr, roler)

– corruptedIntParties ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid, sid, role)

– brokenAssumptions : Secassumption× idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– brokenProps : (Secassumption∪Secacc)× (pidsjudge∪ idsassumption)→ {true, false}
{

Stores broken security properties per judge/id,
initially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε
CheckID(pid , sid , role):

Accept all messages for the same sid .
Corruption behavior:

– AllowCorruption(pid , sid , role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:

send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b; return b

– DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m)

Do not allow sending messages to FjudgeParams. {A is not allowed to invoke FjudgeParams in the name of corrupted parties.
MessagePreprocessing:

if message is addressed to ((local, pid, role), sid, judge) and (pid , sid , role) is corrupted:
Forward message to A {Forward request to corrupted local judges to A

if Receive (Fwd,msg, (pid′, sid′, role′)) to ((local, pid, role), sid, judge) via NET and (pid, sid, role) is corrupted:
send msg to (pid, sid, role) {A corrupted local judge acts as message forwarder for A

Main:
recv (Register, pk , pidCA) from I/O: {Register certificate.

bufferS.add([pidcur, pk , pidCA]) {Record registration attempt
send (Register, pk , pidcur, pidCA) to NET {Leak request to A

recv (Retrieve, pid, pidCA) from I/O: {Query for certificate
bufferR.add([pid, pidCA, pidcall, rolecall])
send (Retrieve, pid, pidCA, pidcall, rolecall) to NET {Leak request to A

recv (DropS , pid, pk , pidCA) from NET: {A is allowed to drop the register requests
if (pid, pk , pidCA) ∈ bufferS: bufferS.remove([pid, pk , pidCA])

reply (DropS , ack)
else:

reply (DropS , nack)

recv (Deliver, pid, pidCA, pidr, roler, pkA) from NET:

{A may trigger when retrieve requests are answered.
If correctCert is broken, A may inject malicious
certificates.require: (pid, pidCA, pidr, roler) ∈ bufferR

if brokenProps[correctCert, (pid, sidcur, client)] = false ∧ (pid, sidcur, client) /∈ CorruptionSet:
bufferR.remove([pid, pidCA, pid r, roler])
send (Retrieve, pid, pidCA, state[pid, pidCA]) to (pidr, sidcur, roler)

else:
bufferR.remove([pid, pidCA, pid r, roler])
send (Retrieve, pid, pidCA, pkA) to (pidr, sidcur, roler)

{
A determines the certificate if correctCert is broken
for pid or pid is corrupted

recv (DropR, pid, pidCA, pidr, roler) from NET: {A is allowed to drop the read requests
if (pid, pidCA, pidr, roler) ∈ bufferR:

bufferR.remove([pid, pidCA, pid r, roler])
reply (DropR, ack)

else:
reply (DropR, nack)

recv (Update, buffer) from NET s.t. buffer ⊂ bufferS: {A may trigger when bufferS is included in state
for all (pid, pk , pidCA) ∈ buffer do:

if state[pid, pidCA] = ⊥:
state[pid, pidCA]← pk

bufferS.remove[buffer] {Update buffer
reply (Update, ack)

Include static code from the AUC transformation T1(·) here, i.e., include additional code from Figure 2 and 3 here.
aRolesF = {client} here.

Fig. 19: An ideal and accountable PKI Facc
PKI derived from GBB [27].

43

Description of Facc- PKI
judgeParams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of Macc- PKI
judgeParams:

Implemented role(s): {judgeParams}
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict, toBreak , internalState) from I/O: {No restrictions on verdict
if All entries in verdict are of form

∧n
i=1 dis(pidi

CA, sidcur, ca), n ∈ N and all pidi
CA ∈ {0, 1}

∗:
if toBreak ⊂ {correctCert} × ({0, 1}∗)3:

reply (Cheat, true, ε)
else:

reply (Cheat, false, ε)

else:
reply (Cheat, false, ε)

recv (BreakAssumption, toBreak , internalState) from I/O: {Do not generate leakage when breaking assumptions
reply (BreakAssumption, ε)

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report
reply (GetJudicialReport, ε) {Return an empty report

recv (Corrupt, (id, sid, judge), internalState) from I/O:
{
Facc- PKI

judgeParams allows to corrupt a local judge iff the
accompanied client is corruptedif id = (local, pid, client) ∧ (pid, sid, client) ∈ CorruptionSet:

reply true
else:

reply false

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/O:
{
Facc- PKI

judgeParams interprets a local judge as corrupted iff
the accompanied client is corruptedif (id, sid, judge) ∈ CorruptionSet:

reply true
else if id = (local, pid, client) ∧ (pid, sid, client) ∈ CorruptionSet :

reply true
else:

reply false

Fig. 20: Facc- PKI
judgeParams for Facc

PKI.

client

ca judgesupervisor

ctl FauthFsig

psync-net

≤ Facc
PKI

interface
to E

interface
to E

interface
to E

interface
to E

Fig. 21: Realization relation of a CA/CTL example stated in Theorem 2. The system E denotes the
environment, modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally

connected to the network adversary who is responsible for delivering network messages.

Fpsync - net returns an answer of a CTL (containing all certificates issued for the requested pid recorded at that
CTL), PCA

client pulls updates public keys and data of CAs and CTLs at FCA
init (see above). Afterwards, it verifies

whether the received certificates are validly signed (by a CA and a CTL). If one of the certificates does not
match the public key pk stored in PCA

client, PCA
client reports the falsely issued certificate to its local judge PCA

judge.

Corruption: The adversary can dynamically corrupt every instance of PCA
client. In this case, A has full control

44

over the input and output interface of the instance of PCA
client and can act on its behalf. Further note that an

instance of PCA
client considers itself corrupted if its session at Fsig is corrupted or if the used authenticated

channel session at Fauth is corrupted.
Further note that:
• Every new instance of PCA

client registers itself automatically at Fpsync - net when activated for the first time.
• A is responsible to trigger an instance of PCA

client to register itself for the usage of authenticated channels
(via Fauth).

Remark: Note that we do not model that clients provide “self-signed certificates” as part of their certificate
requests to a CA, i. e., they do sign their public key in combination with their identity (and potentially some
metadata) and forward this certificate to the CA. We omit self-signed certificates in our model due to simplicity.
To incorporate this into our model, one can extend PCA

client with a parameter (which is intended to include the
signature scheme) for creating a self-signed certificate. Before requesting a certificate, PCA

client then needs to
invoke this parameter with the input data and has to enrich the certificate request with the output produced by
the parameter. To cover this case, one also needs to adapt PCA. It needs to be enhanced with a new parameter
to check the validity of the client’s self-signed certificate. PCA only process certificate request if the parameter
(on input of the certificate request) accepts the certificate request.

Certification authorities PCA. The main purpose of CAs, resp. PCA (cf. Figure 24), is to issue and to distribute
certificates. There exists one instance of PCA per CA. The issuance of certificates is divided into two steps:
(i) a CA generates a so-called pre-certificate and forwards the pre-certificate to a CTL. (ii) The CTL attests
the correct generation of the (pre-)certificate and provides a finalized certificate to the CA. More specifically,
PCA works as follows: On the first activation of an instance of PCA, it queries the FCA

init for initialization. FCA
init

initializes PCA’s instance at Fsig, i. e., PCA’s signing and public key, and provides its public key pk to PCA.
FCA

init also informs PCA which CTLs it will/has to use (including their public keys).
As clients send their certificate requests via an authenticated channel Fauth, A is responsible for triggering

PCA to pull certificate requests from Fauth. When PCA receives such request (of form (Register, pid , pk)), it
creates a pre-certificate: it adds an ID/serial number (an incremental counter) and its own identity to (pid , pk),
and signs (id , (pid , pk), pidcur). It then forwards the so-called pre-certificate (id , (pid , pk), σCA) for finalization
via NET to its connected CTLs. Note that Pacc

PKI does not enforce liveness properties here, i. e., we do not
enforce that these requests are actually delivered to a CTL.

As A has full control over the network, we model that A triggers PCA’s update process. If PCA receives a
(Read, pidCTL, state, σCTL) message via NET from one of its CTLs (as stored in CTLs), PCA checks whether
(i) the message is validly signed by a CTL pidCTL from CTLs, (ii) the provided state is an extension of the state
previously delivered by pidCTL (which is stored in certs[pidCTL]), and (iii) all certificates in state are validly
signed by pidCTL. If these checks succeed, PCA stores state (i. e., the certificates provided by pidCTL) as update
in certs[pidCTL].

When clients want to retrieve a certificate from PCS, they send (Retrieve, pid , pidCA) to the instance of
PCA, namely (pidCA, sid , ca). Note that these requests are delivered via A/NET and can thus be tampered.
When receiving such a request, PCA checks in its storage certs whether it issued a pre-certificate for pid . If it
issued a pre-certificate, PCA looks for the finalized certificate in the certificates provided by the CTLs. If PCA

can find a finalized certificate in certsCTL (for any CTL), it forwards the first certificate matching the search
criteria (via NET) to the requesting party.
Corruption: Analogously to PCA

client, A can dynamically corrupt every instance of PCA. In case of a corruption,
A gains full control over the input and output interface of the instance of PCA and can act on its behalf.
Further note that an instance of PCA considers itself corrupted if its session at Fsig is corrupted or if the used
authenticated channel session at Fauth is corrupted.

Moreover, A is responsible for triggering an instance of PCA to register itself for the usage of authenticated
channels (via Fauth).

Certificate Transaction Logs PCTL. CTLs validate and finalize (pre-)certificates. Further, they allow clients to
check whether there exist falsely/maliciously issued certificates for their identities. We provide the specification
of PCTL in Figure 25. One instance of PCTL models one CTL. Similarly to PCA, PCTL queries the initialization
functionality FCA

init for initialization on its first activation. FCA
init initializes PCTL instance at Fsig and provides its

public key pk to PCTL. FCA
init also informs PCTL for which CAs it will finalize pre-certificates.

45

If an instance of PCTL identified by (pidCTL, sid , ctl) receives a Submit request to finalize a pre-certificate
(via NET), PCTL checks whether the pre-certificate is of form (id , (pidr, pkr), pidCA, σCA). If the current instance
of PCTL finalizes pre-certificates of pidCA, i. e., pidCA is stored in CAs, and the signature σCA verifies, PCTL starts
the certificate finalization process. Therefore, it firstly queries Fpsync - net for the current time τ . Then, PCTL

adds an own ID (incremental counter), its own identity, and the current timestamp τ to the pre-certificate and
then signs (idCTL, (id , (pidr, pkr), pidCA, σCA), pidCTL, τ). Afterwards, it stores the finalized certificate ((idCTL,
(id , (pidr, pkr), pidCA, σCA), pidCTL), σCTL, τ) in its state.

If a party queries for PCTL’s state via Read, PCTL signs its state and replies to the request with (Read, pidcur,
state, σCTL).

To allow clients to monitor issued certificates, PCTL provides the Monitor interface/command. If PCTL receives
(Monitor, ctr , pid) from a client pid (via Fpsync - net), it extracts all certificates issued for pid from its state
and sends the certificates (including the used message identifier ctr) back to Fpsync - net.
Corruption: CTLs are trusted anchors in our model and thus, PCTL is incorruptible. Further note that signature
keys of CTLs, i. e., their signer instances at Fsig, as well as their signature verifying function, i. e., their
verifier instances at Fsig, cannot be corrupted. This is handled/ensured via FCA

init and our slightly adapted
variant of Fsig.
Remark: Note that one can enhance our model to a setting where only a threshold of CTLs per CA needs to
be honest. For the sake of presentation, we decided to present the simpler variant with incorruptible CTLs.

The initialization functionality FCA
init. The initialization functionality FCA

init (cf. Figure 26) models a trusted
setup/distribution of CAs/CTLs identities and their public keys. There is one instance of FCA

init per Pacc
PKI.

In particular, FCA
init includes (i) initialization of CAs, resp. PCA, (ii) initialization of CTLs, resp. PCTL, and

(iii) initialization of judges PCA
judge, It further provides a interface for all participants in Pacc

PKI to query for CA,
resp. CTL, data including their public keys and is used to ensure that clients and their accompanied local judges
are initialized simultaneously.

If an instance of PCA asks for initialization, FCA
init queries A for the CTLs PCA should use. If one of the

provided CTLs is not already registered, FCA
init initializes its session at Fsig. Note that FCA

init enforces that all used
signature keys for CTLs are not corrupted. When storing which CTLs “work” for a dedicated CA, FCA

init checks
that every CTLs session at Fsig/signature key is not corrupted. Otherwise, FCA

init declines the initialization of
PCA and queries A for a new set of CTLs for PCA. If the registration of the CTLs succeeds, FCA

init also initializes
PCA signature key at Fsig if necessary. All data is stored in FCA

init state: each CA’s pid , resp. CTL, is added
to pidCA, resp. pidCTL. The map pkCA, resp. pkCTL, stores the public key of each registered CA, resp. CTL. The
map CTLs, FCA

init stores for each CA which CTLs are assigned to it. Finally, FCA
init sends (i) the CA’s public

key, (ii) the CTLs the CA uses, and (iii) the CTLs’ public keys back to the instance of PCA which asked for
initialization.

Similarly, FCA
init initializes an instance of PCTL. This mainly includes to provide the CTL (i) its public key,

(ii) the CAs for which it finalizes pre-certificates, and (iii) the relevant CAs public keys (to the dedicated
instance of PCTL). The handling is similar to the initialization of a CA. If the CTL/CA is not registered at FCA

init

so far, FCA
init creates a signature key for it at Fsig. Note that FCA

init ensures that signature keys of CTLs are not
corrupted – if a newly registered CTL’s Fsig session is corrupted, FCA

init aborts the registration for this CTL.
When a judge (PCA

judge) queries FCA
init for initialization, FCA

init simply forwards all its information regarding the
PKI session to the judge. This includes, (i) the identities (PIDs) of the registered CAs, resp. CTLs, (ii) their
public keys, and (iii) the information which CA and CTLs work together.

Besides initializing parties, parties can also query FCA
init with (i) GetCaCtls, (ii) GetCAs, and (iii) GetCTLs.

If a party queries for (GetCaCtls, pidCA), FCA
init replies with the public key of the CA pidCA, the (PIDs of the)

CTLs of the CA, and the CTLs’ public keys. In Case (ii), FCA
init provides all registered (PIDs of) CAs and their

public keys to the requestor. In (iii), FCA
init provides all registered (PIDs of) CTLs and their public keys to the

requestor.
Further, we use the initialization functionality FCA

init to ensures that clients and their judges are initialized “at
the same time”. This simplifies the proof later on, as we do not have to take care of several edge cases in cases
of non-initialized parties.15

15Note that an ITM in iUC which is initialized via a corruption status request always responds that the ITM is not corrupted so far. We
want to avoid this edge case in our modeling.

46

The certificate monitoring enforcing Fpsync - net . The network functionality Fpsync - net (cf. Figure 27) ensures
that honest parties can check in “near-time” whether there are malicious certificates issued for their identities.
Especially for this purpose, Fpsync - net models partially synchronous network between clients and CTLs. There
is one instance of Fpsync - net per PKI session.

On every activation, Fpsync - net updates the list of available CTLs at FCA
init (via GetCTLs) and checks whether

all registered honest clients (stored in pidhclient) are still honest (via querying all clients in pidhclient for their
corruption status). If previously honest clients have been corrupted, Fpsync - net removes them from pidhclient
(and also from monitoring in monReg and requestQueue, see below).

When honest parties start a monitoring process, i. e., they query every registered CTL for the certificates
published for their identity, they send a Monitor message to Fpsync - net including their identity/pid and (the
PIDs of) the CTLs which they want to monitor. Fpsync - net stores this request in requestQueue. More specifically,
it stores one entry per CTL in requestQueue including (i) an unambiguous identifier for each entry and (ii) the
time τ (according to Fpsync - net’s internal clock) when Fpsync - net received the monitoring request. Additionally,
Fpsync - net stores in monReg that PCA

client started a monitoring process at time τ . Fpsync - net then leaks the
complete requestQueue to A.

Similar to the initialization of the monitoring process at PCA
client, A is expected to trigger further processing of

the monitoring at Fpsync - net, i. e., (i) forwarding a monitoring request to a CTL and (ii) deliver the response
of a CTL back to the monitoring party. If the adversary triggers Fpsync - net via (Deliver, ctr), Fpsync - net
firstly checks whether a request for the ctr exists in requestQueue and which of the two cases above needs to
be handled. If the request was not handled by the dedicated CTL so far, Fpsync - net adds in requestQueue a
(current) timestamp to entry ctr and forwards the monitor request (including the identifier ctr) to the CTL. In
Case (ii), the Deliver message of A triggers the delivery of the (stored) response of the CTL (see below) to
the monitoring party. Before Fpsync - net delivers the response, it updates the entry with ID ctr in requestQueue
and adds a (current) timestamp as delivery time.

When a CTL (immediately) responds to the request from Case (i) above, it sends (Monitor, ctr , resp)
to Fpsync - net. Fpsync - net records the response in the dedicated entry for ctr in requestQueue. Note that
(i) CTLs are modeled to be incorruptible and (ii) CTLs and Fpsync - net have a direct I/O connection for
handling monitoring request, i. e., responses from CTLs to Fpsync - net will be delivered “immediately” and
cannot be manipulated by A. Thus, A is not activated when a CTL generates a response to a monitoring
request and sends it to Fpsync - net. Therefore, we do not store an additional timestamp to determine when the
CTL replies to a response. This timestamp is always equal to the timestamp stored in Case (i) from above.

The adversary is allowed to update the internal clock of Fpsync - net via the UpdateRound command. Fpsync - net
accepts a time update (and increases the time by one) iff (i) there is no monitoring process initially triggered
more than δ time units ago but without response from a CTL, (ii) there is no response from a monitoring
process waiting for delivery for more then δ time units (both properties can be derived from requestQueue),
and (iii) every honest party started a monitoring process at least δ time units ago (stored in monReg). Fpsync - net
also allows parties to read from its in-build clock (via GetCurRound).

The network functionality Fpsync - net is incorruptible.

The local judge PCA
judge. The (local) judge PCA

judge (cf. Figure 28) handles when a client finds a maliciously
issued certificate for its identity.

On every activation, PCA
judge updates/pulls the list of CAs, resp. CTLs, which are currently available in the

PKI, including their public keys (via InitMejudge from FCA
init).

In case that a client finds a certificate during monitoring issued for her identify which she did not request, the
client forwards the certificate to her local judge. PCA

judge verifies that the certificate is valid, i. e., CA and CTL
signature verify. As this indicates that the issuing CA misbehaved (at least from the current clients perspective,
as clients requests certificates via an authenticated channel at CA), PCA

judge adds dis(pidCA, sidcur,PCA : ca)
(where (pidCA, sidcur,PCA : ca) denotes the CA that attested the reported maliciously generated certificate) to
her (local) verdict. Note that external observers or the environment cannot trust the verdict of PCA

judge. From a
higher-level perspective, one cannot be sure which of the two parties, the CA or the client, indeed misbehaved
in this case. A malicious client (in turn a malicious judge) could have requested the certificate at an honest CA
but then blames the CA that she did not request the certificate. Vice versa, CAs can simply generate certificates
for any client. PCA

judge also marks correctCert broken for its associated client.

47

PCA
judge implements the GetVerdict interface which simply outputs the stored local verdict and a interface to

access a judicial report. On receiving GetJudicialReport, PCA
judge does not provide information and outputs

ε.
Corrupting a local judge as long its accompanied client party is still honest is not allowed. This models

that a clients validation routine still works honestly/correctly as long as the accompanied client is honest/works
correctly. Note that PCA

judge is a pure message forwarder to/from A in case that the associated client is corrupted.

The public supervisor PCA
sv . As we do not model assumption-based security properties in this case study, the

purpose of the supervisor PCA
sv (cf. Figure 29) is to provide the environment access to the corruption status of

internal protocol participants (here: CAs). Thus, on request (corruptInt?, (pid , sid , role)) where role needs
to be ca, PCA

sv queries (pid , sid , role) for its corruption status and forwards the result to the requestor.
Note that we include a “dummy” interface for IsAssumptionBroken?. On every request, PCA

judge simply
replies “false”.

The ideal authenticated channel functionality Fauth. The authenticated channel functionality Fauth (cf.
Figure 30) is derived from Canetti’s message authentication functionality [22] in combination with the secure
channel functionality Fsec-channel from [70]. In our case study, we use Fauth to authenticate clients to CAs. Thus,
CAs can be sure that a client indeed registers a certificate for its identity.

One instance of Fauth is meant to handle all authenticated channels in an instance/session of Pacc
PKI. The

whole session of Fauth can be corrupted (as long as there are no channels initialized yet). Parties “register”
at Fauth via Establish. The adversary may trigger the finalization the party’s registration. Parties can send
messages to specified receivers via Fauth. Fauth buffers the messages and A may trigger the delivery of the
message. Note that A has full control over the messages send to/delivered from Fauth when Fauth is corrupted.
Furthermore, A may drop messages which are queued for delivery in Fauth.

The ideal signature functionality Fsig. The ideal signature functionality Fsig (cf. Figure 31) is mainly the
same as presented in [17] and matches common approaches for ideal signature functionalities.

As we need to ensure in Pacc
PKI that CTL signatures are incorruptible, Fsig is additionally connected to FCA

init

to determine whether a party is a CTL. Fsig declines corruption of CTLs.
In contrast to [17], we do not allow A to corrupt verifier instances of Fsig as one typically expects that

signature verification is a local process and not externalized and thus honest as long the considered party is
honest. Indeed, we need to ensure for the model that at least verifier instance of (local) judges need to be
honest as long as the accompanied judge is honest. Otherwise, the security proof would fail.

E.3 UC Security Analysis: We now present the formal variant of Theorem 2 and its security proof in detail.

Theorem 7. Let Pacc
PKI be as defined above and let δ ∈ N be the upper time boundary for message delivery in

Pacc
PKI, resp. Fpsync - net, and Σ = (gen(1η), sig, ver) be an EUF-CMA secure signature scheme.
Let Facc

PKI be as described above with Facc- PKI
judgeParams as subroutine with parameters Secacc = {correctCert},

Secassumption = ∅, pidsjudge = {local} × {0, 1}∗ × {client}, and idsassumption = ∅. Then:

(Pacc
PKI) ≤ (Facc

PKI | Facc- PKI
judgeParams)

We remark that the following proof repeats many general points/techniques from the proof of Theorem 6, e.g.,
regarding the simulator, in verbatim. This is mainly due to the fact that both protocols – the scaling protocol
and the PKI protocol – rely on some kind of global state. In the scaling protocol, the global state is a sequence
of totally ordered transactions. In the PKI protocol, the global state consists of a set of certificates.

Proof.
Firstly, we define a responsive simulator S such that the real world running the protocol R := Pacc

PKI = (PCA
client :

client,PCA
sv : supervisor,PCA

judge : judge | PCA : ca,PCTL : ctl,Fsig,Fpsync - net : psync-net,Fauth : auth)

is indistinguishable from the ideal world running {S, I}, with the protocol I := (Facc
PKI | Facc- PKI

judgeParams), for
every ppt environment E .

The simulator S is defined as follows: as common, S is a single machine. It is connected to I and the
environment E via their network interfaces. In a run, there is only a single instance of the machine S that accepts
and processes all incoming messages. The simulator S internally simulates the realization R, including its
behavior on the network interface connected to the environment, and uses this simulation to compute responses

48

Description of a CA client PCA
client = (client):

Participating roles: {client}
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:

– δ ∈ N {Network delay

Description of Mclient:

Implemented role(s): {client}
Subroutines: Fauth : auth,Fsig : signer,Fsig : verifier,PCA

judge : judge,Fpsync - net : psync-net,FCA
init : init

Internal state:
– pk ∈ {0, 1}∗, pk = ⊥ {Public key of the client

– certCA ∈ {0, 1}∗, certCA = ⊥ {The CA which should create pidcur’s certificate

– requests ⊂ {0, 1}∗ × ({0, 1}∗)3, requests = ∅ {The recorded requests of pidcur including requesting party.
– pkCA : {0, 1}∗ → {0, 1}∗ {The pubkeys of the CAs, initially ⊥
– CTLs : {0, 1}∗ → {0, 1}∗ {The CTLs of each CA, initially ⊥
– pkCTL : {0, 1}∗ → {0, 1}∗ {Pubkeys of CTLs, initially ⊥

CheckID(pid , sid , role):
Accept all messages for the same sid .

Corruption behavior:
DetermineCorrStatus(pid , sid , role):

if corrupted = true: {Checks whether party itself is corrupted.
return true

corrRes1 ← corr(pidcur, (pidcur, sidcur), signer) {Request corruption status at Fsig

send CorruptionStatus? to (, sidcur,Fauth : auth) {Query Fauth for its corruption status.
wait for (CorruptionStatus?, corrRes2)
return (corrRes1 ∨ corrRes2) {Return whether Fsig or Fauth instances are corrupted

EntityInitialization:
send Establish to (pidcur, sidcur,Fpsync - net : psync-net); wait for {Register party at Fpsync - net
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcur, sidcur,FCA
init : init)

wait for initPartner

Main:
recv (Register, pk , pidCA) from I/O: {Client should register certificate

if pk = ε: {Store public key.
pk← pk , certCA← pidCA

send (Send, (pidCA, sidcur, ca), (Register, pidcur, pk)) to (pidcur, sidcur,Fauth : auth)

recv (Retrieve, pid, pidCA) from I/O: {Query for certificate
requests.add([pid, pidCA], (pidcall, sidcall, rolecall))
send (Retrieve, pid, pidCA) to NET {Retrieve requests are dispatched via A, i.e., there are no delivery gura

recv (Retrieve, (ctr , (serial, pid, pk , pidCA, σCA), pidCTL, τ, σCTL)) from NET:
send (GetCaCtls, pidCA) to (pidcur, sidcur,FCA

init : init)
{

Query trusted CA/CTL information at FCA
init

wait for (GetCaCtls, pkCA, (pid1, . . . , pidn), (pk1, . . . , pkn))
pk[pidCA]← pkCA {Store trusted CA public key
CTLs[pidCA]← (pid1, . . . , pidn)
for i ∈ {1, . . . , n} do: {Store CTL information

pkCTL[pidi]← pki

send GetCurRound to (pidcur, sidcur, psync-net) {Get current time
wait for (GetCurRound, τ ′)
if ∃([pid, pidCA], (pidc, sidc, rolec)) ∈ requests ∧ pidCTL is in CTLs[pidCA] ∧ τ ′ > 3 · δ + τ :{

Handle answer only if there is a matching request and pidCTL is registered as CTL for pidCA and certificate is sufficient old
to be considered valid

b1 ← verifySig([ctr , (serial, pid, pk , pidCA, σCA), pidCTL, τ], σCTL, pkCTL[pidCTL], pidCTL) {Check CTL signature
b2 ← verifySig([serial, pid, pk , pidCA], σCA, pkCA[pidCA], pidCA) {Check CA signature
if b1 ∧ b2:

requests.remove[([pid, pidCA], [pidc, sidc, rolec])] {Remove request
send (Retrieve, pid, pidCA, pk) to (pidc, sidc, rolec)

recv Establish from NET: {A triggers the registration at Fauth

send (Establish, ε) to (pidcur, sidcur,Fauth : auth)

Fig. 22: The CA client PCA
client (Part 1).

49

Description of Mclient (continued):

Main:
recv Monitor from NET: {A triggers certificate monitoring

send GetCTLs to (pidcur, sidcur,FCA
init : init)

{
Request CTLs at FCA

init
wait for (GetCTLs,CTL, pidCTL)
send (Monitor, pidcur,CTL) to (pidcur, sidcur,Fpsync - net : psync-net) {Send request to Fpsync - net

recv (Monitor, ctr ,msg) from NET: {Check monitored certificates
send GetCAs to (pidcur, sidcur,FCA

init : init)
{

Request CAs at FCA
init

wait for (GetCAs,CA, pkCA)

send GetCTLs to (pidcur, sidcur,FCA
init : init)

{
Request CTLs at FCA

init
wait for (GetCTLs,CTL, pkCTL)
if msg = {(ctr ′, [serial, pidcur, pk , pid

′
CA, σCA], pid

′
CTL, τ, σCTL), . . .}: {Verify signatures

for all (ctr ′, [serial, pidcur, pk , pid
′
CA, σCA], pidCTL,

′ , τ, σCTL) from above set do:
b← verifySig([(ctr ′, [serial, pidcur, pk , pid

′
CA, σCA], pidCTL, τ], σCTL, pkCTL[pid

′
CTL], pid

′
CTL) {Check CTL signature

if pid′
CA ∈ CA:

c← verifySig([serial, pidcur, pk , pid
′
CA], σCA, pkCA[pid

′
CA], pid

′
CA) {Check CA signature

else:
c← false

if b ∧ c: {Certificate is validly signed
if pk ̸= pk:

send (EvidenceM , (ctr ′, [serial, pid, pk , pid′
CA, σCA], pid

′
CTL, τ, σCTL)) to ((local, pid, client), sidcur,PCA

judge :
judge) {

Forward evidence to PCA
judge

// In the model: stop processing after finding the first maliciously generated certificate //

Procedures and Functions:
function verifySig(msg, σ, pk , pid) : {Verify signature at Fsig

send (VerResult,msg, σ, pk) to ((pidcur, ctl), (pid, sidcur),Fsig : verifier); wait for (VerResult, result)
return result

Fig. 23: The CA client PCA
client (Part 2).

to incoming messages. For ease of presentation, we will refer to this internal simulation by R′. More precisely,
the simulation runs as follows:
Network communication from/to the environment
• Messages that S receives on the network interface (connected to the environment) and which are hence

meant for R are forwarded to the internal simulation R′.
• Any messages sent by R′ on its network interface (that are hence meant for the environment) are forwarded

to the environment E .

Corruption handling
• The simulator S keeps the corruption status of entities in R′ and I synchronized. That is, whenever an

entity of PCA
client or PCA in R′ starts to consider itself corrupted, the simulator corrupts the corresponding

(internal) entity of Facc
PKI in I before continuing its simulation. Note that corruption of internal entities, i. e.,

of PCA, is mapped to a corruption of an internal party in Facc
PKI in I.

• Incoming messages from corrupted (non-internal) entities of Facc
PKI in I are forwarded on the network

interface to the environment in the name of the corresponding entity/instance of PCA
client in R′. Conversely,

whenever a corrupted entity of PCA
client wants to output a message to a higher-level protocol, S instructs the

corresponding entity of Facc
PKI to output the same message to the higher-level protocol.

Certificate registration
Whenever an honest entity entity = (pid , sid , client) of Facc

PKI receives a request (Register, pk , pidCA) to
register a certificate, resp. a public key, for its own identity pid , Facc

PKI buffers the request in bufferS and leaks
the full message buffer to S. The simulator S uses the leaked message to simulate the registration of pk for
pid at pidCA in R′, i.e, it simulates the input of (Register, pk , pidCA) to the (pid , sid , client)’s instance of
PCA
client in R′.
We remark that S does not need to handle the registration of certificates from corrupted parties. Facc

PKI does
not provide guarantees for these certificates and allows A to freely determine the output in case that a party
requests the certificate of a corrupted party.
Retrieve requests
Whenever the environment instructs an honest entity (pid , sid , client) via (Retrieve, pidreq, pidCA) to request
a certificate of pidreq from pidCA, Facc

PKI buffers this request (in bufferR) and leaks the full request to S. Upon
receiving the leakage from Facc

PKI, S forwards this message to PCA
client in R′ and simulates its behavior.

50

Description of a CA PCA = (ca):

Participating roles: {ca}
Corruption model: Dynamic corruption without secure erasures

Description of Mca:

Implemented role(s): {ca}
Subroutines: FCA

init : init,Fsig : signer,Fsig : verifier,PCA
judge : judge

Internal state:
– pkCA ∈ {0, 1}

∗, pkCA = ε {The public key of CA (pidcur, sidcur, rolecur)

– CTLs ⊂ {0, 1}∗,CTLs = ∅ {The CA’s CTL’s pids

– pkCTL : CTLs→ {0, 1}∗ {CTLs’ pubkeys, initially ⊥
– serial ∈ N, serial = 0 {The serial number of certificates issued by entity is a counter

– certs ⊆ N× ({0, 1}∗)4, certs = ∅ {CAs issued certificates of form (serial, subject, pk , issuer , σ)

– certsCTL : CTLs→ {0, 1}∗ {The state of each CTL after reading initially ⊥
CheckID(pid , sid , role):

Accept all messages for (pid , sid , role) where sid = (pid, sid′) and role = ca.
Do not accept an entity (pid , sid , role) if pid can be parsed to (pid′, client) {Avoid local judges like PIDs

Corruption behavior:
DetermineCorrStatus(pid , sid , role):

if corrupted = true: {Checks whether party itself is corrupted.
return true

corrRes1 ← corr(pidcur, (pidcur, sidcur), signer) {Request corruption status at Fsig

send CorruptionStatus? to (pidcur, sidcur,Fauth : auth) {Query Fauth for its corruption status.
wait for (CorruptionStatus?, corrRes2)
corrRes3 ← false {Check that all used verifier instances are not corrupted

for all queries to (pidcur, (pid
′, sid′), verifier) at Fsig from transcript do:

corrRes3 = corrRes3 ∨ corr(pidcur, (pid
′, sid′), verifier)

return (corrRes1 ∨ corrRes2 ∨ corrRes3) {Return whether Fsig or Fauth instances are corrupted
Initialization:

send InitMeCA to (pidcur, sidcur,FCA
init : init)

{
Request CA setup at FCA

init
wait for (InitMeCA, pkCA, (pid1, . . . , pidn), (pk1, . . . , pkn), pkctl)
pkCA ← pkCA {Store (trusted) public keys and used CTLs
CTLs← {pid1, . . . , pidn}
for all i ∈ {1, . . . , n} do:

pkCTL[pidi]← pki

Main:
recv (Received, (pid, sidcur, role), (Register, pid, pk)) from I/O: {pid registers public key/certificate via Fauth

if b ∧ ∄(, pid, , ,) ∈ certs: {One certificate per party
serial← serial + 1
cert′ ← (serial, pid, pk , pidcur) {Simplified version of a certificate for pid w/o signature
σ′ ← sign(cert′) {Generate signature for certificate
certs.add([cert′, σ′]) {Record certificate
send (Submit, cert′, σ′,CTLs) to NET {Publish certificate at CTLs

recv (Read, pidCTL, state, σ) from NET s.t. pidCTL ∈ CTLs: {Current state of CTL pid
b← verifySig(state, σ, pkCTL[pidCTL], pidCTL) {Verify signature
if b ∧ certsCTL[pid] ⊂ state:

{
PCA only accepts valid states which extend the current state

check ← true
for all (ctr , cert, pid, σ) ∈ state do:

if pid ̸= pidCTL: {A CTL only has its “own” certificates
break

b← verifySig([ctr , cert], σ, pkCTL[pid], pid)
if ¬b:

check ← check ∨ b
if check : {CTL list is valid

certsCTL[pid]← state

recv (Retrieve, pid, pidcur) from NET: {Client queries for certificate
if ∃(serial, pid, pk , pidcur, σ) ∈ certs:

if ∃ certsCTL[pidCTL] of a CTL pidCTL, s.t. (ctr , (serial, pid, pk , pidcur, σ), pidCTL, τ, σCTL) ∈ certsCTL[pidCTL]:
{Let pidCTL be the first hit during search

reply (Retrieve, ((ctr , (serial, pid, pk , pidcur, σ), pidCTL, τ, σCTL)))

recv Establish from NET: {A triggers the registration at Fauth

send (Establish, ε) to (pidcur, sidcur,Fauth : auth)

Procedures and Functions:
function verifySig(msg, σ, pk , pid) : {Verify signature at Fsig

send (VerResult,msg, σ, pk) to ((pidcur, ctl), (pid, sidcur),Fsig : verifier)
wait for (VerResult, result)
return result

function sign(msg) : {Sign message at Fsig

send (sign,msg) to ((pidcur, ctl), (pidcur, sidcur),Fsig : signer)
wait for (sign, σ)
return σ

Fig. 24: The model of a CA PCA.

51

Description of the CTL PCTL = (ctl):

Participating roles: {ctl}
Corruption model: incorruptible

Description of Mctl:

Implemented role(s): {ctl}
Subroutines: Fsig : verifier,Fsig : signer,FCA

init : init
Internal state:

– state ⊂ N× {0, 1}∗ × {pidcur} × N× {0, 1}∗, state = ∅ {The set of certificates of form (ctr , cert, pidcur, τ, σCTL)

– CAs ⊂ {0, 1}∗,CAs = ∅ {The set of CAs, the CTL will finalize pre-certificates for
– pkCTL ∈ {0, 1}

∗ {The public key of the CTL

– pkCA : CAs→ {0, 1}∗ {The (trusted) public keys of the CA

– counter ∈ N, counter = 0 {Serial
CheckID(pid , sid , role):

Accept all messages for the same sid .
Initialization:

send InitMeCTL to (pidcur, sidcur,FCA
init : init)

{
Request initialization at FCA

init
wait for (InitMeCTL, pkCTL, (pid1, . . . , pidn), (pk1, . . . , pkn))
pkCTL ← pkCTL

CAs← {pid1, . . . , pidn} {Store (trusted) CAs and their public keys
for all i ∈ {1 . . . , n} do:

pkCA[pidi]← pki

Main:
recv (Submit, cert) from NET: {Certificate submission

require: cert = (serial, pidr, pkr, pidCA, σCA), s.t. pidCA ∈ CAs
b← verifySig((serial, pidr, pkr, pidCA,), σCA, pk[pidCA], pidCA) {Check valid signature
if b: {If signature is valid, record data in state

send GetCurRound to (pidcur, sidcur,Fpsync - net : psync-net) {Query current time at Fpsync - net
wait for (GetCurRound, τ)
counter← counter + 1
σCTL ← sign([counter, cert, pidcur, τ]) {Mark certificate as valid
state.add([counter, cert, pidcur, τ, σCTL])

recv Read: {Read request
σ ← sign(state) {Sign full state
reply (Read, pidcur, state, σ) {Reply with full state including signatures

recv (Monitor, pid, ctr) from I/O: {Monitor maliciously published certificates
resp ← ε
for all (ctr ′, [serial, pid, pk , pidCA, σCA], pidcur, τ, σCTL) in state do: {Collect certificates for pid

resp.add(ctr ′, [serial, pid, pk , pidCA, σCA], pidcur, τ, σCTL)

reply (Monitor, ctr , resp) {Return certificate for pid to requestor

Procedures and Functions:
function verifySig(msg, σ, pk , pid) : {Verify signature at Fsig

send (VerResult,msg, σ, pk) to ((pidcur, rolecur), (pid, sidcur),Fsig : verifier)
wait for (VerResult, result)
return result

function sign(msg) : {Sign message at Fsig

send (sign,msg) to ((pidcur, rolecur), (pidcur, sidcur),Fsig : signer)
wait for (sign, σ)
return σ

Fig. 25: The simplified CTL PCTL.

If A triggers a (simulated) entity (pid , sid , client) to respond on a retrieval request by sending (Retrieve,
cert) to the entity, S simulates the input the message in R′. If (pid , sid , client) (in R′) wants to output
cert , resp. parts of cert within a message of form (Retrieve, pid , pidCA, pk) to (pidc, sidc, rolec) at the end
of its activation, S sends (Deliver, pid , pidCA, pidc, rolec, pk) to Facc

PKI. This triggers Facc
PKI to deliver the

retrieval response. Note, that in case of brokenProps[(correctCert, (pid , sidcur, client))] = true, the output
is forwarded without further checks. If correctCert still holds true, Facc

PKI will only forward the output, if a
matching request in bufferR exists.
State updates
When a CTL finalizes an uncorrupted party’s certificate (for which correctCert still holds true) in R′, S
triggers an update at Facc

PKI to include the finalized certificate in Facc
PKI. Therefore, it firstly extracts the newly

generated certificate from the CTL’s state. In particular, S extracts the identity pid for which the certificate is
issued, the used public key pk as well as the used CA pidCA. S then sends (Update, {(pid , pk , pidCA)}) to
Facc

PKI.

52

Description of the initialization machine FCA
init = (init):

Participating roles: {init}
Corruption model: incorruptible

Description of Minit:

Implemented role(s): {init}
Subroutines: Fsig : signer
Internal state:

– pidCA ⊂ {0, 1}
∗, pidCA = ∅ {The pids of the CAs

– pkCA : pidCA → {0, 1}
∗ {The public keys of CAs, initially ⊥ for all entries

– pidCTL ⊂ {0, 1}
∗, pidCTL = ∅ {The pids of the CTLs

– pkCTL : pidCTL → {0, 1}
∗ {The public keys of CTLs, initially ⊥ for all entries

– CTLs : pidCA → (pidCTL ∪ {⊥})
∗ {A CAs trusted CTLs, intitally ⊥

– caller ∈ ({0, 1}∗)3 ∪ {⊥} = ⊥ {Stores the callers during client/judge initialization.

CheckID(pid , sid , role):
Accept all messages for the same sid .

Main:
recv InitMeCA from I/O: {CA request initialization

send responsively (InitMeCA) to NET (⋆) {Query A for initialization details of pidcur
wait for (InitMeCA, pid1, . . . , pidn)
if n < 1:

go to (⋆)
for all i ∈ {1, . . . , n} do:

corrRes ← corr(pidi, (pidi, sidcur),Fsig : signer) {Check whether CTL key is still uncorrupted
if corrRes:

go to (⋆)
if pkCTL[pidi] = ⊥:

send InitSign to (pidi, (pidi, sidcur),Fsig : signer) {Generate CTL’s signing keys
wait for (InitSign, success, pki)
pkCTL[pidi]← pki {Store public key

if pkCA[pidcur] ̸= ⊥: {Establish session at Fsig if it is not recorded
send InitSign to (pidcur, (pidcur, sidcur),Fsig : signer) {Generate CA’s signing keys
wait for (InitSign, success, pkCA)
pkCA[pidcur]← pkCA {Store generated public key

CTLs[pidCA]← (pid1, . . . , pidn) {Store CA’s CTLs
reply (InitMeCA, pkCA[pidcur], (pid1, . . . , pidn), (pkCTL[pid1], . . . , pkCTL[pidn]))

{Output CA’s and CTLs’ pubkeys to CA
recv InitMeCTL from I/O: {CTL request initialization

if corr(pidcall, (pidcall, sidcall),Fsig : signer):
reply (InitMeCTL,⊥) {CTL key is corrupted, thus this entity cannot act as (trusted) CTL

send responsively InitMeCTL to NET (⋆) {Query A for initialization details of pidcur
wait for (InitMeCTL, pid1, . . . , pidn)
if n < 1:

go to (⋆)
if pkCTL[pidcur] ̸= ⊥: {Establish session at Fsig if it is not recorded

send InitSign to (pidcur, (pidcur, sidcur),Fsig : signer) {Generate CTL’s signing keys
wait for (InitSign, success, pkCTL)
pkCTL[pidcur]← pkCTL {Store generated public key

for all i ∈ {1, . . . , n} do:
if pkCA[pidi] = ⊥:

send InitSign to (pidi, (pidi, sidcur),Fsig : signer) {Generate CA’s signing keys
wait for (InitSign, success, pki)
pkCA[pidi]← pki {Store public key

reply (InitMeCTL, pkCTL[pidcur], (pid1, . . . , pidn), (pkCA[pid1], . . . , pkCA[pidn]))
{Output CA’s and CTL’s pubkey to CA

recv InitMejudge from I/O:
{
PCA

judge requests initialization

reply (InitMejudgeCA , pidCA, pkCA, pidCTL, pkCTL,CTLs) {Output current state to Fjudge

recv (GetCaCtls, pidCA) from I/O: {Clients can query for CA/CTL pk ’s
require: pidCA ∈ pidCA ∧ pk[pidCA] ̸= ⊥
Let pid1, . . . , pidn be the pids from CTLs[pidCA]
reply (GetCaCtls, pkCA[pidCA], (pid1, . . . , pidn), (pkCTL[pid1], . . . , pkCTL[pidn]))

recv GetCAs from I/O: {Clients can query for CAs and their pk ’s
reply (GetCaCtls, pidCA, pkCA)

recv GetCTLs from I/O: {Clients can query for CTLs and their pk ’s
reply (GetCTLs, pidCTL, pkCTL)

recv initPartner from (pid , sid , role): {Request to initialize accompanied local judge or client
caller← (pid , sid , role)
if role = client:

init((local, pid, client), sid, judge) {Trigger initialization of the entities local judge
else if role = judge:

Parse pid as (local, pid′, client)
init(pid′, sid, client) {Trigger initialization of the accompanied client

recv InitEntityDone from (pid , sid , role): {Finish initialization of accompanied local judge or client
caller ← caller; caller← ⊥
send initPartner to caller

Fig. 26: The initialization ITM FCA
init.

53

Description of the certificate monitoring enforcing network functionality Fpsync - net = (psync-net):

Participating roles: {psync-net}
Corruption model: incorruptible
Protocol parameters:

– δ ∈ N {The upper bound for liveness

Description of Mm
psync-net:

Implemented role(s): {psync-net}
Subroutines: PCA

client : client,PCTL : ctl
Internal state:

– τ ∈ N, τ = 0 {Current time in the Fpsync - net

– counter ∈ N, counter = 0 {Request counter

– requestQueue ⊂ N× N× ({0, 1}∗)4 × N2, requestQueue = ∅
{

The set of messages to be delivered via Fpsync - net of
form (ctr , trec , pids, pidr,msg, resp, tdel , tout)

– monReg : {0, 1}∗ → N {Last recorded check request of party pid . Initially all set to 0.

– pidCTL ⊂ {0, 1}
∗, pidCTL = ∅ {The available CTLs

– pidhclient ⊂ {0, 1}
∗ {The set of honest clients

CheckID(pid , sid , role):
Accept all messages for the same sid .

MessagePreprocessing:
send GetCTLs to (pidcur, sidcur,FCA

init : init)
{

Request CTLs at FCA
init

wait for (GetCTLs,CTL, pidCTL)
pidCTL ← CTL {Update available CTLs
for all pid ∈ pidhclient do:

send CorruptionStatus? to (pid, sidcur,PCA
client : client)

wait for (CorruptionStatus?, b)
if b:

pidhclient.remove(pid) {Remove corrupted party
Remove entries for pid from requestQueue and monReg.

Main:
recv UpdateRound from NET: {Triggering a clock update increases the time

if ∃(ctr , trec , pids, pidr,msg, resp′, tdel , tout) ∈ requestQueue, s.t. tdel = ⊥ ∧ round− trec > δ:
reply (UpdateRound, nack) {Requests need to delivered in δ time units to a CTL

else if ∃(ctr , trec , pids, pidr,msg, resp′, tdel , tout) ∈ requestQueue, s.t. tdel ̸= ⊥∧trec ̸= ⊥∧tout = ⊥∧round−tdel > δ:
reply (UpdateRound, nack) {Requests need to delivered in δ time units to a CTL

else if ∃pid in monReg s.t.round− monReg[pid] > δ:
reply (UpdateRound, nack) {A needs to allow honest parties to frequently trigger monitoring

else:
τ ← τ + 1 {Clock update successful

recv GetCurRound: {Handling reads from the clock
reply (GetCurRound, τ)

recv (Monitor, pid, {pid1, . . . , pidl}) from I/O s.t. pidcall = pid, rolecall = client, {pid1, . . .∧pidl} ⊂ pidCTL: {Monitor CTLs

for all pid′ ∈ {pid1, . . . , pidl} do: {Record monitor requests
counter← counter + 1
requestQueue.add([counter, round, pid, pid′, (Monitor, counter, pid),⊥,⊥,⊥,⊥]) {Record requests to CTLs
monReg[pidcur]← round {Record last request of party

send (Monitor, requestQueue) to NET {Leak full information to A
recv (Deliver, ctr) from NET:

{
A triggers delivery of message with id ctr to FCTL or PCA

client

if ∃(ctr , trec , pids, pidr,msg, resp, tdel , tout) ∈ requestQueue, s.t. tdel = ⊥:
requestQueue.remove([ctr , trec , pid s, pid r,msg, resp, tdel , tout])
requestQueue.add([ctr , trec , pid s, pid r,msg, resp, round, tout]) {Record delivery to CTL
send (msg, ctr) to (pidr, sidcur,FCTL : ctl) {Deliver request to CTL

else if ∃(ctr , trec , pids, pidr,msg, resp, tdel , tout) ∈ requestQueue, s.t. tdel ̸= ⊥ ∧ tout = ⊥:
requestQueue.remove([ctr , trec , pid s, pid r,msg, resp, tdel , tout])
requestQueue.add([ctr , trec , pid s, pid r,msg, resp, tdel , round]) {Record delivery to client
send (resp) to (pids, sidcur,P

CA
client : client) {Deliver answer to client

recv (Monitor, ctr , resp) from I/O: {Response from CTL on monitor request
if ∃(ctr , trec , pids, pidr,msg, resp′, tdel , tout) ∈ requestQueue, s.t. tout = ⊥:

requestQueue.remove([ctr , trec , pid s, pid r,msg, resp′, tdel , tout])
requestQueue.add([ctr , trec , pid s, pid r,msg, resp, tdel , tout]) {Record reponse of CTL

send Monitor, requestQueue to NET {Leak full information to A
recv Establish from I/O: {Client registers at Fpsync - net

pidclient.add(pidcall)
monReg[pidcur]← round {Record registration round as starting point in monReg

Fig. 27: The certificate monitoring enforcing network functionality Fpsync - net for modeling a partially
synchronous network.

54

Description of PCA
judge = (judge):

Participating roles: {judge}
Corruption model: Dynamic corruption without secure erasures

Description of Mjudge:

Implemented role(s): {judge}
Subroutines: Fsig : verifier,FCA

init : init
Internal state:

– pidCA ⊂ {0, 1}
∗ {The pids of the CAs

– pkCA : pidCA → {0, 1}
∗ {The public keys of CAs, initially ⊥ for all entries

– pidCTL ⊂ {0, 1}
∗ {The pids of the CTLs

– pkCTL : pidCTL → {0, 1}
∗ {The public keys of CTLs, initially ⊥ for all entries

– CTLs : pidCA → (pidCTL ∪ {⊥})
∗ {A CAs trusted CTLs, intitally ⊥

– verdicts ∈ {0, 1}∗, verdicts = ε {Recorded verdict
CheckID(pid , sid , role):

Accept all messages with the same sid addressed to (pid, sid, judge) where pid can be parsed as (local, pid′, client).
Corruption behavior:

– AllowCorruption(pid , sid , role) :

Parse pidcur as (pid′, role′)
corrRes ← corr(pid′, sidcur, role

′)
return corrRes {Corruption is allowed if accompanied client is corrupted.

– DetermineCorrStatus(pid , sid , role) : {Consider local judge corrupted if associated client is corrupted.
Parse pid as (pid′, role′)
corr ← corr(pid′, sid, role′)
if corr :

return true
else:

return false

EntityInitialization:
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcur, sidcur,FCA
init : init)

wait for initPartner

MessagePreprocessing:
send InitMejudge to (pidcur, sidcur,FCA

init : init) {Update CA/CTL identities and pubkeys
wait for (InitMejudge, pidCA, pkCA, pidCTL, pkCTL,CTLs)
pidCA ← pidCA; pkCA ← pkCA; pidCTL ← pidCTL; pkCTL ← pkCTL;CTLs← CTLs

Main:
recv (EvidenceM , (ctr ′, [serial, pid, pk , pid′

CA, σCA], pid
′
CTL, τ, σCTL)) from I/O

s.t. pidcall = pidcur, sidcall = sidcur, rolecall = client:
{

Client complains that someone registered
a certificate for her identity

b← verifySig([(ctr ′, [serial, pidcur, pk , pid
′
CA, σCA], pidCTL, τ], σCTL, pidCTL[pid

′
CTL], pid

′
CTL) {Check CTL signature

if pid′
CA ∈ pidCA:

c← verifySig([serial, pidcur, pk , pid
′
CA], σCA, pidCA[pid

′
CA], pid

′
CA) {Check CA signature

else:
c← false

if b ∧ c: {Certificate is valid
verdicts.add(dis(pidCA, sidcur,P

CA : ca)) {The local judge blames the CA for misbehavior

recv GetVerdict: {Both I/O and NET may send this message.
reply (GetVerdict, verdicts)

recv (GetJudicialReport,msg) from I/O:
reply (GetJudicialReport, ε)

Procedures and Functions:
function verifySig(msg, σ, pk , pid) : {Verify signature at Fsig

send (VerResult,msg, σ, pk) to ((pidcur, ctl), (pid, sidcur),Fsig : verifier)
wait for (VerResult, result)
return result

Fig. 28: The judging functionality PCA
judge for a CA (Part 1).

55

Description of PCA
sv = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible
Protocol parameters:

– Secassumption = ∅ {The set of security properties that may break

Description of MCA
supervisor:

Implemented role(s): {supervisor}
Subroutines: PCA : ca,PCTL : ctl
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (IsAssumptionBroken?,msg):
reply (IsAssumptionBroken?, false)

recv (corruptInt?, (pid , sid , role)) s.t. role /∈ {client, judge, supervisor}:
if role ̸= ca:

reply (corruptInt, false)
else:

corrRes ← corr(pid, sidcur, ca)
{

Request corruption status at PCA

reply (corruptInt, corrRes)

Fig. 29: The supervisor PCA
sv for CA.

Local judges
When an uncorrupted instance ((pid , role), sid , judge) of PCA

judge in R′ renders a verdict, i. e., verdicts ̸= ε, or
its verdicts changes, S extracts the verdicts and forwards it to Facc

PKI. More specifically, S sends (BreakAccProp,
verdict , {(correctCert, (pid , sid , role))}) to ((local, pid , role), sid ,Facc

PKI : judge) where verdict is a map
from idsassumption → {0, 1}∗ where the entry verdict [id] = verdicts (contains the verdict from PCA

judge). All
other entries in verdict are mapped to ε.

If a judge’s associated client is corrupted, the local judge is also considered corrupted and serves as pure
message forwarder to/from A. Thus – as stated above – S forwards the messages from/to A to/from I in this
case.
This concludes the description of the simulator. It is easy to see that (i) {S, I} is environmentally bounded,
and (ii) S is a responsive simulator for I, i. e., restricting messages from I are answered immediately as long
as {S, I} runs with a responsive environment. We now argue that R and {S, I} are indeed indistinguishable
for any (responsive) environment E ∈ Env(R).

In the following part of the proof, let E ∈ Env(R) be an arbitrary but fixed environment. First, observe
that Facc

PKI provides S with full information about (i) all creations requests for certificate of uncorrupted clients
(for which also correctCert holds true) and (ii) retrieve requests performed by higher-level protocols/the
environment. Hence, S’s simulated protocol R′ obtains the same inputs as R (resp. I) and thus performs
identical to R. We remark that further I/O input, e. g., requests to judges, do not influence the state of Facc

PKI.
Thus, we can conclude that the network behavior simulated by S towards the environment is indistinguishable
from the network behavior of R. Moreover, we can also conclude that the corruption status of (internal) entities
in the real and ideal world is synchronized. Since the simulator has full control over corrupted entities, which
are handled via the internal simulation R′, this implies that the I/O behavior of corrupted entities of R/I
towards the environment is also identical in the real and ideal world. Note that purely internal (private) parties
have no interface to the environment. The only way to potentially distinguish the real and ideal world is the
I/O behavior of honest entities of R/I towards higher-level protocols.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by induction,
that all of those interactions result in identical behavior towards the environment, i. e., are also indistinguishable.
At the start of a run, there were no interactions on the I/O interface with honest parties yet. Thus, R and I
are indistinguishable. In the following, we assume that all I/O interactions so far have resulted in the same
behavior visible towards the environment in both the real and ideal world.

In what follows, we call the state which includes the certificates of uncorrupted parties for which correctCert

still holds true relevant state. The relevant state can be extracted from the union of all state variables of all PCTL

instances in a session of Pacc
PKI in R, resp. R′, by removing certificates from (i) corrupted parties and (ii) from

honest parties whose local judges already store a verdict ̸= ε. In I, the relevant state can be derived from Facc
PKI’s

56

Description of the ideal authenticated channel functionality Fauth = (auth):

Participating roles: {auth}
Corruption model: custom

Description of Mauth:

Implemented role(s): {auth}
Internal state:

– queue : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ {Queue of messages from entity e1 to entity e2, initially ⊥ for all entries

– status : ({0, 1}∗)3 → {inactive, active, established} {The status of (pid , sid , role), initially inactive for all entries

– corrStatus ∈ {0, 1} {The corription status of the Fauth

CheckID(pid , sid , role):
Accept all messages for the same sid .

Main:
recv corrupt from NET: {A (tries to) corrupts current instance of Fauth

if ∀ entries in status are not equal to established: {This models static corruption
corrStatus← true
reply (corrupt, ack)

else:
reply (corrupt, nack)

recv CorruptionStatus? from I/O: {Allows environment to check correct simulation of corrupted parties.
if corrStatus = true:

reply (CorruptionStatus?, true)
else:

reply (CorruptionStatus?, false)

recv (Establish,m) from I/O s.t. sidcall = sidcur, status [(pidcall, sidcall, rolecall)] = inactive: {Establish session
status[(pidcall, sidcall, rolecall)]← active
send (Establish,m, (pidcall, sidcall, rolecall)) to NET

recv (Establish, (pid, sidcur, role)) from NET s.t. status [(pid, sidcur, role)] = active: {Establish session
status[(pid, sidcur, role)]← established
send (Establish,m, (pid, sidcur, role)) to (pid, sidcur, role)

recv (Send, (pid, sidcur, role),msg) from I/O s.t. status [(pidcall, sidcall, rolecall)] = established∧pid ̸= pidcall :

{
Send message
via authenti-
cated channelif corrStatus = false:

queue[(pidcall, sidcall, rolecall), (pid, sidcur, role)].add(msg) {Add msg to the queue of pid
send (Send, (pidcall, sidcall, rolecall), (pid, sidcur, role),msg) to NET {Leak communication to NET

recv (Deliver, (pid1, sidcur, role1), (pid2, sidcur, role2),msg) from I/O
s.t. status [(pid2, sidcur, role2)] = established ∧ pid1 ̸= pid2 : {Deliver message via authenticated channel
if corrStatus = false:

if queue[, (pid1, sidcur, role1), (pid2, sidcur, role2)] = ⊥: {There are no queued messages
reply (Deliver,⊥) {Return error

else:
remove the first message from queue[(pid1, sidcur, role1), (pid2, sidcur, role2), let msg′ be this message

send (Received, (pid1, sidcur, role1),msg′) to (pid2, sidcur, role2) {Deliver first message from queue

else:
send (Received, (pid1, sidcur, role1),msg) to (pid2, sidcur, role2) {Deliver message from adversary if corrupted

recv (Drop, (pid1, sidcur, role1), (pid2, sidcur, role2)) from NET:
if queue[(pid1, sidcur, role1), (pid2, sidcur, role2)] ̸= ⊥:

remove the first message from queue[(pid1, sidcur, role1), (pid2, sidcur, role2)]. {Drop message
reply (Drop, ack)

Fig. 30: The ideal authenticated channel functionality Fauth (cf. [70].

state variable by excluding (i) certificates of corrupted parties and (ii) certificates where correctCert does
not hold true for the certificate owner.

Certificate creation/registration requests: Certificate creation/registration requests do not directly result in
an output to the environment. But, they might affect the output of Facc

PKI later on as they have direct impact
on the relevant state of I/R′, resp. R. Thus, we now show that registration requests behave “identical”, i. e.,
we have to argue that these changes in relevant state are “synchronized” between I and R′. In particular, the
buffered set of relevant certificates registrations, i. e., certificate requested by uncorrupted parties for which
correctCert still holds true, in Facc

PKI is equal to the buffered set of certificate registration from the same class
of clients in R′. We define buffered registration request in R′ as the following requests/messages: (i) certificate
requests stored in uncorrupted instances of PCA

client (in pk and certCA) for which correctCert still holds true
(ii) minus the set of finalized certificates from the different instances of PCTL. In what follows, we will call
these certificates the buffered relevant certificates for registration at R′.

Observe that, upon receiving a certificate registration, Facc
PKI behaves similar to R′: in Facc

PKI, the submitted
certificate registration is directly stored in bufferS. In R′, the submit message is stored in PCA

client and forwarded

57

Description of the protocol Fsig = (signer, verifier):

Participating roles: {signer, verifier}
Subroutines: FCA

init : init
Corruption model: dynamic with secure erasures
Protocol parameters:

– p ∈ Z[x].
{

Polynomial that bounds the runtime of the algorithms provided by the
adversary.

Description of Msigner,verifier:

Implemented role(s): {signer, verifier}
Internal state:

– (sig, ver, pk, sk) ∈ ({0, 1}∗ ∪ {⊥})4 = (⊥,⊥,⊥,⊥). {Algorithms and key pair.
– pidowner ∈ {0, 1}∗ ∪ {⊥} = ⊥. {Party ID of the key owner.
– msglist ⊂ {0, 1}∗ = ∅. {Set of recorded messages.
– KeysGenerated ∈ {ready,⊥} = ⊥. {Has signer initialized his key?

CheckID(pid , sid , role):
Check that sid = (pid′, sid′):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.

{
A single instance manages all parties
and roles in a single session.

Corruption behavior:
– AllowCorruption(pid , sid , role):

{
The highlighted part differs between a standard version
of Fsig and the version considered here

Parse pidcur to (pid′, role′)
send GetCTLs to (pidcur, sidcur,FCA

init : init)

{
Query for the list of CTLs of session sid , decline
corruption requests for CTL keyswait for (GetCaCtls, pidCTL, pkCTL)

if pid′ ∈ pidCTL ∧ role′ = ctl:
return false {Not allowed to corrupt CLT keys.

else if role = verifier: {Corruption of verifier instances not allowed
return false

else:
return true

– LeakedData(pid , sid , role): If (pid , sid , role) determines its initial corruption status, use the default behavior of LeakedData.
Otherwise, if role = signer and pid = pidowner, return KeysGenerated. In all other cases return ⊥.

Initialization:
send responsively InitMe to NET;
wait for (Init, (sig, ver , pk , sk)).
(sig, ver, pk, sk)← (sig, ver , pk , sk).
Parse sidcur as (pid, sid).
pidowner← pid .

Main:
recv InitSign from I/O to (pidowner, , signer):

KeysGenerated← ready.
{

Successful initialization. Note that signer can submit
InitSign multiple times, always with the same effect.reply (InitSign, success, pk).

recv (Sign,msg) from I/O to (pidowner, , signer) s.t. KeysGenerated = ready:
σ ← sig(p)(msg, sk).
b← ver(p)(msg, σ, pk). {Sign and check that verification succeeds.
if σ = ⊥ ∨ b ̸= true:

reply (Signature,⊥). {Signing or verification test failed.
else:

add msg to msglist.
reply (Signature, σ). {Record msg for verification and return signature.

recv (Verify,msg, σ, pk) from I/O to (, , verifier):
b← ver(p)(msg, σ, pk). {Verify signature.
if pk = pk ∧ b = true ∧msg /∈ msglist ∧ (pidowner, sidcur, signer) ̸∈ CorruptionSet:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

Fig. 31: The ideal signature functionality Fsig.

58

via Fauth to PCA. So, the buffered relevant certificates R′ also are in a buffer of Facc
PKI, i. e., the buffered relevant

certificates are synchronized between R′ and Facc
PKI (that is, the sets are equal in both worlds). Note that S does

not have to take care of certificates of corrupted parties as A/S fully determines the output of Facc
PKI for these

parties anyways. Thus, S is indeed able to keep the buffered relevant certificates in I and R′ synchronized.

State updates: Again, state updates do not lead to a direct output to the environment. However, state updates
may influence the output to the environment later on. Thus, we argue here that the relevant state (see above) is
synchronized between I and R′ (thus, it will allow for the same output in I and R). As the buffered relevant
certificates in R′ and I are synchronized (see above), we can conclude that the relevant states of Facc

PKI and
R′ stay synchronized during state updates. This boils down to mirroring the relevant state (see above for the
definition) from the CTLs to I (as S does). Thus, all relevant certificates which S would add to the state in
Facc

PKI are also buffered in Facc
PKI. Therefore, Facc

PKI will accept every state update of S and thus the relevant
state stay synchronized in I and R′.

Retrieve requests: Observe that, upon a retrieve request, Facc
PKI stores the read request in bufferR and leaks

the full request to the simulator including an ID and the receiver of the response. Note that the procedure is
analogously to a certificate registration. A retrieve request does not directly result in an output to the environment.
With the same argumentation as above follows that S is able to keep the “retrieve buffers”, i. e.the set of requested
certificates stored in honest instances of PCA

client, resp. Facc
PKI, for honest participants of I and R′ synchronized.

Deliver responses to retrieve requests: If S is triggered to output a response to a retrieve request, i. e., S
receives Retrieve via NET including the necessary data to output, S firstly simulates received input in R′ and
determines whether this input actually leads to an output on an I/O interface. In case of an output, S forwards
the output in a Deliver message to Facc

PKI. In this case, there are two cases to consider: (i) correctCert

is broken for the certificate owner pid or (ii) correctCert still hold true for pid . In the first case, Facc
PKI

will simply forward the input from S to the requestor as all checks at Facc
PKI are disabled. As the output is

extracted from R′, we can conclude that R and I are indistinguishable. In the second case, the output is
honestly generated in R′ and I. As argued above, the relevant states of both worlds are synchronized. Thus,
Facc

PKI will accept the Deliver command of S and the outputs in both worlds will be identical.
When a party queries for a certificate of corrupted party, Facc

PKI allows A/S to freely determine the certificate
delivered to the requesting party. We already discussed this case after the description of the simulator and
emphasize that in this case, Facc

PKI simply forwards the output provided by S (which matches R′).
Altogether, both worlds are also indistinguishable in the case of retrieve requests.

Monitoring Process: Note that the monitoring process only takes places in R′ and only its output, a verdict
if there is any, is mirrored to I (see below). Thus, the monitoring process will not cause a case where I and
R are distinguishable.

Verdicts: First note, that S sends a BreakAccProp message to break correctCert when an unambiguous or
an not requested certificate of an uncorrupted party in R′ appears. More specifically, S sends a BreakAccProp

when there is a new/updated verdict available in an uncorrupted instance of PCA
judge. We remark that these

requests match the rules in Facc- PKI
judgeParams and thus are always accepted by Facc

PKI. Further, we assume that the
used signature scheme is EUF-CMA secure. Thus, the probability that an honest party receives and accepts a
certificate created by A via forging signatures (without corrupting the party owning the key or corrupting the
key itself) only occurs with negligible probability. Also, the verifier instance of an honest local judge is
incorruptible. Thus, we can conclude that S can always keep the verdicts and whether consistency is broken
synchronized in I and R′. Thus, the output on a GetVerdict request is equal in R′ and I. Thus, ideal and
real world are indistinguishable.

We also remark that PCA
client only forwards certificates to the environment if they are older than 3 · δ time

units. In this case, the monitoring process for the particular certificate is already finished (in R/R′) and thus
the associated local judge will provide a verdict in case of a maliciously created certificate. This triggers S to
break correctCert (including providing a verdict) for the dedicated party and ensures that there is always a
verdict available/the status of correctCert correctly reflected/synchronized between R′ and I. Thus, also in
this special case, R and I are indistinguishable.

Judicial Reports: The judicial report (for uncorrupted instances of Facc- PKI
judgeParams) in both worlds is always ε.

Thus, R and I stay indistinguishable.

59

Supervisor: The same holds true for BreakAssumption requests to the supervisor. The message of S matches
the rules and thus will be accepted.

Altogether, R and {S, I} behave identical in terms of behavior visible to the environment E and thus are
indistinguishable.

E.4 Deterrence Analysis: As running CA business is profitable in practice and clients benefit from PKIs, we
should have that U i

hP ≫ 0. We assume U i
hL to be negligible as parties falsely accusing another cannot provide

undeniable evidence that the party indeed misbehaved. As all relevant data is public in the PKI setting, we
assume U i

hE = 0. In real world scenarios, CAs would typically lose their complete reputation when misbehaving
and thus often have to close business afterwards [92]. Thus, we estimate U c

l ≪ U i
hP . In order to deter CAs

from misbehavior, penalties need to be chosen significantly high such that U i
mL ≫ U i

mP − U i
hP . As it is not

possible to generate faked undeniable evidence, we assume U i
mE = 0. Thus, Equation 1 and 2 are met.

F. Key Exchange Based on Facc
PKI (Full Details)

Before we have a look at the security proof of Theorem 3, we present the ideal functionality Facc
KE and the

key exchange protocol specified in ISO 9798-3 [56] in detail. This case study relies on existing analysis of the
ISO protocol [20, 27, 66]. More specifically, we derive the considered ideal key exchange functionality FKE

from the functionality explained in [20] and use AUC to derive Facc
KE from FKE. In particular, we add the

accountability property authenticity to Facc
KE . Facc

KE ensures for “honest” key exchange sessions, that they
provide security guarantees as long as non of the parties was involved in a misconduct in Facc

PKI. In contrast
to existing works, which typically rely on an ideal/perfect PKI which does not allow maliciously generated
certificates, our model of the ISO protocol Pacc

iso uses the PKI Facc
PKI for accessing the public signature keys of

the involved parties for mutual authentication. Theorem 2 then allows us to replace Facc
PKI with its realization

Pacc
PKI, a realistic PKI with CTLs.
In this section, we will firstly provide the formal specification of the (accountable) ideal key exchange

functionality Facc
KE and the model of the ISO protocol Pacc

iso . Finally, we will provide a formal proof for
Theorem 3.

F.1 The Accountable Key Exchange Functionality Facc
KE : We also provide the full formal specification of

Facc
KE in Figure 32 and 33 including the specification of FKE

judgeParams in Figure 34. The highlighted parts in the
specification of Facc

KE mark the changes during the AUC transformation from FKE to Facc
KE . In what follows,

we firstly present FKE and then discuss the differences between FKE and Facc
KE .

The functionality FKE consists of two roles, initiator and responder. Both, initiator and responder,
are implemented via a single machine. One instance of this machine models a single key exchange. In FKE,
key exchange sessions are predefined via SIDs of form (sid ′, pid i, pidr) where sid ′ is a local session ID for
the key exchange, pid i is the PID of the initiator and pidr is the responder’s PID. If two honest entities finish
a key exchange, then Facc

KE ensures that they obtain an ideal session key which is unknown to the adversary.
FKE models a key exchange in three “phases” which are reflected in the available commands:
Public key registration (I/O): before parties can start a key exchange, they need to register their identities.

Initialization of key exchange (I/O): when parties have registered, they can start a key exchange.

Finish key exchange (Net): FKE allows the adversary/simulator to determine when a started key exchange
finished. The FinishKE message triggers the output of keys to higher-level protocols. In a session consisting
of honest initiator and responder, the session key is derived ideally, i. e., chosen uniformly at random from a
cyclic group (G,n, g). If one of the parties is corrupted, the adversary/the simulator may determine the session
key.
In a session without corrupted parties, FKE provides mutual authentication.

We add the following to FKE to derive Facc
KE : if one of the two parties involved in a key exchange does not

provide authenticity, i. e., the parties are not corrupted but brokenProps[authenticity, (local, pid , role)] =
true for one of both participants, A is allowed to determine the session key during key exchange. If Facc

KE

already established a session key, the key is leaked to A. Additionally, Facc
KE , resp. FKE

judgeParams, restricts
the local judges output to be a verdict blaming some internal protocol party and/or the intended key exchange

60

partner. Note that the local judge considers itself as corrupted if the accompanied initiator, resp. responder entity
is corrupted. Also, a local judge can only be (directly) corrupted if the accompanied initiator, resp. responder
entity is corrupted. If the local judge is directly corrupted, it acts (as common) as pure message forwarder for
A. Judicial reports do not contain content, i. e., the judicial report is always ε. We do not consider a supervisor
in this example/functionality. Formally, the supervisor does not accept break attempts and always outputs an
empty leakage.

F.2 The ISO 9798-3 Protocol as Accountable Key Exchange Protocol: The ISO protocol [56] or in short
the ISO Protocol as depicted in Figure 8 is a key exchange protocol which builds mutual authentication on top
of a Diffie-Hellman key exchange.

We model the ISO protocol in a modular way using several smaller protocols. The static structure of all
protocols, including their I/O connections for direct communication, is shown in Figure 35. In the following,
we give a high-level overview over each part of the protocol.

The (accountable) ISO protocol is modeled as a real protocol Pacc
iso . We derived Pacc

iso mainly from Piso [17].
However, as already stated above, we model the key exchange via an pre-established SID which predetermines
the session of the key exchange and initiator and responder in the particular session (cf., e. g., [20]). In what
follows, we firstly explain our variant of Piso. Then, we explain how to derive the accountable variant Pacc

iso
from Piso.

The real protocol Piso consists of three roles, initiator, responder, and setup. The setup role models
secure generation and distribution of a system parameter, namely, a description of a cyclic group (G,n, g).
As this parameter must be shared between all runs of a key exchange protocol, setup is implemented by a
single machine which spawns a single instance that manages all entities and always outputs the same parameter.
The roles initiator and responder implement parties A and B, respectively, from Figure 8. Each role is
implemented by a separate machine and every instance of those machines manages exactly one entity. Thus,
these instances directly correspond to an actual implementation where each run of a key exchange protocol
spawns a new program instance. Both, initiator and responder register their public keys at Facc

PKI before they
actually start the key exchange.

In Piso, we use a standard ideal signature functionality Fsig
16 for signing messages and verifying signatures.

As common, the ideal functionality Fsig consists of two roles, signer and verifier, that allows for the cor-
responding operations. Both roles are implemented by the same machine and instances of that machine manage
entities that share the same SID. The SID sid of an entity is structured as a tuple (pidowner, (sid

′, pid i, pidr)),
modeling a specific key pair of the party pidowner. More specifically, in protocol Piso, every party pid owns a
single key pair per key exchange session, represented by SID (pid , (sid ′, pid i, pidr)). We use the accountable
PKI functionality Facc

PKI as PKI. To simplify presentation, we use a fixed session of Facc
PKI (namely Facc

PKI runs in
the session with SID ε). This, however, can trivially be extended to the case where multiple PKIs are used by
different key exchanges. We use an initialization functionality F iso

init which ensures that initiator and responder
and their judges are initialized “at the same time”. This simplifies the proof later on, as we do not have to take
care of several edge cases in cases of non-initialized parties.

The corruption model of Piso allows A to corrupt users (pid , sid , role) (statically) before the key exchange
starts. We consider a party corrupted, if (i) a party is directly corrupted, (ii) the instance of the party at Fsig,
i. e., its “private signature key”, is corrupted, (iii) its verification instance at Fsig, used to verify the intended
partners signature, is corrupted, and (iv) its session at Facc

PKI is corrupted. This essentially models a party-wise
corruption.

Additionally to Piso, Pacc
iso adds local judges to Piso – one local judge per signer, resp. verifier instance of

Piso – and a dummy supervisor. For the local judges in Pacc
iso , we essentially pass-through the accountability

properties from Facc
PKI. The judge queries for verdicts at its own local judge (instance) at Facc

PKI and the judge
of the intended partner. In case that there is a verdict from Facc

PKI from the intended partners judge, P iso
judge adds

the intended partner as potentially misbehaving party to the verdict (i. e., adds ∨dis(intended partner)), if the
intended partner’s judge provides a verdict from the lower level. This captures that the judge cannot be certain
who behaved maliciously on the PKI level: the issuing CA or the intended partner.

16In contrast to Appendix E, where we use an adapted variant of Fsig. Additionally, we also allow A to corrupt the verifier instance
here.

61

Description of the protocol Facc
KE = (initiator, responder, supervisor, judge):

Participating roles: {initiator, responder, judge, supervisor}
Corruption model: dynamic with secure erasures
Protocol parameters:

– groupGen(1η). {Algorithm for generating tuples (G,n, g) describing cyclic groups G of size n with generator g.
– Secacc ⊂ {0, 1}∗ {Accountability properties, meant to be set to {authenticity}
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties, meant to be set to ∅
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of Minitiator,responder,supervisor,judge:

Implemented role(s): {initiator, responder, judge, supervisor}
Subroutines: FKE

judgeParams
Internal state:

– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
– state : ({0, 1}∗)3 → {⊥, registered, started, finished} {Stores the current state of entities in key exchange; initially ⊥.
– initiator : ({0, 1}∗)3 {The initiator of the key exchange
– responder : ({0, 1}∗)3 {The responder of the key exchange
– caller : {initiator, responder} → ({0, 1}∗)3 ∪ {⊥} {Stores the calling entity for both entities in key exchange; initially ⊥.
– sessionKey : {0, 1}∗ ∪ {⊥} {The session key; initially ⊥.

– corruptedIntParties ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid, sid, role)

– brokenAssumptions : Secassumption× idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}
{

Stores broken security properties per
judge/id, initially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

CheckID(pid , sid , role):
Accept all entities of form (pid, (sid′, pidi, pidr), role) where role ∈ {initiator, responder}
and pid ∈ {pidi, pidr} or ((local, pid′, role′), (sid′, pidi, pidr), judge) where role′ ∈
{initiator, responder} and also pid′ ∈ {pidi, pidr} or (, (sid′, pidi, pidr), supervisor).


One session of Facc

KE
manages a single in-
stance of a key ex-
change.

Corruption behavior:
– AllowCorruption(pid , sid , role):

Do not allow corruption of (pid, sid, supervisor).
if role = judge:

send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b; return b

– DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?(pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m)
{
A is not allowed to invoke Facc-cp

judgeParams.
Do not allow sending messages to FjudgeParams.

– LeakedData(pid , sid , role):
If called while (pid , sid , role) determines its initial corruption status, use the default behavior of LeakedData.
That is, output the initially received message and the sender of that message.
Otherwise, return (caller[pid, sid, role], sessionKey).

Initialization:
Parse sidcur as (sid′, pidi, pidr).
initiator← (pidi, (sid

′, pidi, pidr), initiator) {Store initiator and responder
responder← (pidr, (sid

′, pidi, pidr), responder)
(G, n, g)← groupGen(1η).
if sender = NET ∧m = InitGroup:

send (LeakGroup, (G, n, g)) to NET.
{

Allow adversary to start initialization and then return the
generated group. No other actions are performed in this case.

else:
send responsively (LeakGroup, (G, n, g)) to NET;

{Leak group parameters to the adversary. Note that this command forces
the adversary to respond before interacting with the protocol in any
other way, i.e., the run can continue as expected.wait for .

MessagePreprocessing:
if rolecur = initiator ∧ caller[initiator] = ⊥:

caller[initiator]← entitycall
else if rolecur = responder ∧ caller[responder] = ⊥:

caller[responder]← entitycall

Main:
recv RegisterPubKey from I/O to (, , initiator) ∨ (, , responder) s.t. state[(pidcur, sidcur, rolecur)] = ⊥:


Register that
initiator and
responder want
exchange keysstate[(pidcur, sidcur, rolecur)]← registered.

send RegisterPubKey to NET.

recv InitKE from I/O to (, , initiator) ∨ (, , responder) s.t. state[(pidcur, sidcur, rolecur)] = registered:
{

Start key ex-
change key

state[(pidcur, sidcur, rolecur)]← started.
send InitKE to NET.

aHere: RolesF := {initiator, responder}.

Fig. 32: The accountable ideal key exchange functionality Facc
KE (part 1).

62

Description of Minitiator,responder,supervisor,judge (continued):

Main:
{

Note that Main continues processing the message m that Initialization has
already parsed if Initialization does not end the run.

recv (FinishKE, k) from NET to (, , initiator) ∨ (, , responder) s.t. state[(pidcur, sidcur, rolecur)] = started:
if sessionKey = ⊥:

Choose sessionKey← G uniformly at random
state[entitycur]← finished.
if initiator ∈ CorruptionSet ∨ responder ∈ CorruptionSet∨
brokenProps[authenticity, (local, initiator, initiator)] = true ∨
brokenProps[authenticity, (local, responder, responder)] = true:

send (FinishKE, k) to caller[entitycur].
{
A may choose the key if he has corrupted the partner or
authenticity is broken for one of the involved parties.else:

send (FinishKE, sessionKey) to caller[entitycur].

Include static code from the AUC transformation T1(·) here, i.e., include additional code from Figure 2 and 3 here. Do not include the public
judge here.

Fig. 33: The accountable ideal key exchange functionality Facc
KE (part 2).

Description of FKE
judgeParams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of MjudgeParams:

Implemented role(s): {judgeParams}
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict, toBreak , internalState) from I/O:
Let initiator, responder be initiator and responder extracted from internalState.Further, let pid initiator , resp. pid responder be their PIDs.

if toBreak = {authenticity} ×
(
{local} × {(pid initiator, initiator), (pid responder, responder)}

)︸ ︷︷ ︸
=:ids

:

{s is defined to be the session ID of the considered session
for all id ∈ ids do:

if verdict for id does not match conjunction of verdicts of form
dis((pid′, sid′, role′)) ∨ V or V
where (pid′, sid′, role′) ∈ {initiator, responder} and
V is a verdict not blaming parties with roles from {initiator, responder, judge, supervisor}:

Let k be sessionKey extracted from Facc
KE ’s provided internal state.

reply (BreakAccProp, true, k) {Accept verdict/broken properties, leak session key
else:

reply (BreakAccProp, false, ε) {Decline verdict/broken properties

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report
reply (GetJudicialReport, ε) {We do not provide a judicial report here

recv (BreakAssumption, toBreak , internalState) from I/O: {Do not generate leakage when breaking assumptions
reply (BreakAssumption, ε)

recv (Corrupt, (id, sid, judge), internalState) from I/O:
{
FKE

judgeParams allows to corrupt a local judge iff the
accompanied initiator or responder is corruptedif id = (local, pid, role) ∧ (pid, sid, role) ∈ CorruptionSet:

reply true
else:

reply false

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/O:
{
FKE

judgeParams interprets a local judge as corrupted iff
the accompanied initiator or responder is corruptedif (id, sid, judge) ∈ CorruptionSet:

reply true
else if id = (local, pid, role) ∧ (pid, sid, role) ∈ CorruptionSet :

reply true
else:

reply false

Fig. 34: The judge parameter functionality FKE
judgeParams for Facc

KE .

63

initiator responder

judgesupervisor setup

Facc
PKI Fsig

≤ Facc
KE

interface
to E

interface
to E

interface
to E

interface
to E

interface
to E

Fig. 35: Realization relation of a key exchange example stated in Theorem 8. The system E denotes the
environment, modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally

connected to the network adversary.

As we do not consider assumption-based security properties in this case study, the supervisor P iso
sv always

responds with false if a party queries for the status of an assumption. Further, P iso
sv allows querying for the

corruption status of (internal) parties in Facc
PKI.

F.3 Security Analysis: We now provide the formal result that we can use the ISO protocol on top of an
accountable PKI to realize the (accountable) key exchange functionality Facc

KE .

Theorem 8. Let groupGen(1η) be an algorithm that outputs descriptions (G,n, g) of cyclic groups (i. e., G
is a group of size n with generator g) such that n grows exponentially in η and the DDH assumption holds
true. Let Pacc

iso be the (accountable) ISO protocol as described above, let Facc
PKI be the accountable ideal PKI

functionality and Facc- PKI
judgeParams the associated subroutine both with parameters Secacc = {correctCert} and

Secassumption = ∅, and let Fsig be the (standard) ideal signature functionality, and let Facc
KE be the (account-

able) ideal functionality for authenticated key exchange with Secacc = {authenticity}, Secassumption = ∅,
pidsjudge = {local} × ({0, 1}∗)2, and idsassumption = ∅. Then the following holds true:

(Pacc
iso ,P iso

sv ,P iso
judge | Facc

PKI,Facc- PKI
judgeParams,Fsig) ≤

(Facc
KE | FKE

judgeParams).

Proof. We show that the real key exchange R := (Pacc
iso ,P iso

sv ,P iso
judge | Facc

PKI,Facc- PKI
judgeParams,Fsig) realizes the

ideal key exchange I := (Facc
KE | FKE

judgeParams). As part of this, we define a responsive simulator S such that
the real world running R is indistinguishable from the ideal world running {S, I} for every ppt environment
E .

First note that it is easy to see that both R and I are environmentally bounded and complete. Now, the
simulator S is defined as follows: the simulator is a single machine that is connected to I and the environment
via their network interfaces. In a run, there is only a single instance of the machine S that accepts all incoming
messages. The simulator S internally simulates the full protocol R, including its behavior on the network
interface to the environment. To improve readability, we refer to S’s simulated version of the real protocol as
R′. More precisely, the simulation runs as follows:
• At the start of a run, S obtains the group parameters used by Facc

KE : if the simulator is activated for
the first time via the (LeakGroup, (G, n, g)) message, then he simply saves this message and returns ok.
Otherwise, S sends an InitGroup message to (an arbitrary entity of) Facc

KE to trigger Initialization and
obtain the group parameters. Note that the environment cannot observe whether the simulator has manually
triggered Initialization of Facc

KE . The group parameters are used by S as output of the internally simulated
Pacc

iso : setup role.
• Upon receiving RegisterPubKey from an honest party,17 S forwards this message to the dedicated machine

of R′. We note that S can derive all involved parties and their roles from the SID (which predefines initiator

17We consider an entity to be honest if it outputs false upon CorruptionStatus? requests. Conversely, we call an entity corrupted
if it outputs true, even if it was not explicitly corrupted.

64

and responder of the key exchange session including their local judges). In R′, the message then triggers the
initialization of the party’s signer instance at Fsig and registers the generated public key for the dedicated
party at Facc

PKI.
• Upon receiving a InitKE from an honest entity, S forwards this message – again – in the name of a

higher-level protocol to the simulated entity in R′. This triggers the start of a key exchange as defined in
the ISO protocol in R′.

• As soon as an honest initiator in R′ outputs (FinishKE, sessionKey), S sends the message (FinishKE,
sessionKey) to the initiator identity in Facc

KE .
• As soon as an honest responder in R′ outputs (FinishKE, sessionKey), S distinguishes three cases:

1. In the case that initiator is corrupted after its output of FinishKE, I leaks the initiator’s ideal key k′

to S. Then, S sends (FinishKE, k′) to I.
2. If authenticity is broken for (at least) one of both parties after initiator outputs the session key

via FinishKE. In this case, S learns the (ideal) session key k′ from Facc
KE when providing the verdict to

Facc
KE before outputting FinishKE. Then, S sends (FinishKE, k′) to I.

3. In all other cases, S sends the message (FinishKE, sessionKey) to the responder identity in Facc
KE .

• S forwards all network communication from the environment to corresponding entities in R′, and vice
versa.

• S keeps the (internal) corruption status of entities in roles of R′ and I synchronized. In particular, if an
entity of I asks for its initial corruption status, then the same entity in R′ is simulated to also do so.
Furthermore, as soon as a simulated entity of R′ considers itself to be corrupted (either explicitly or due
to a corrupted subroutine), S corrupts the same entity in I.

• If a corrupted entity entity in a public role of R outputs a message on its I/O interface to a higher-level
protocol, then S instructs the (explicitly) corrupted entity entity in I to forward the same message on its
I/O interface. The same is also done in the other direction. Note that this also includes corrupted local
judges.

• Always when an instance ((local, pid , role), sid , judge) of P iso
judge in R′ renders a verdict, S extracts this

verdict and sends (BreakAccProp, verdict , toBreak) where verdict maps (local, pid , role) to the verdict
extracted from the simulation (and all other entries to ε) and toBreak = {(authenticity, (local, pid ,
role)}) to ((local, pid , role), sid , judge) in I.

• As the supervisor does not have to handle assumption-based properties, there is no additional specification
for S necessary.

This concludes the description of the simulator. It is easy to see that {S, I} is environmentally bounded and
S is responsive for I. We note that the behavior of the supervisor is indistinguishable between R and I as he
always provides the same output in both worlds. Now, let E be an arbitrary but fixed responsive environment.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by
induction, that all of those interactions result in identical behavior towards the environment, i. e., I and R
are indistinguishable. At the start of a run, there were no interactions on the I/O interface with honest parties
yet, i. e., I and R are indistinguishable. In the following, the induction assumption is that all I/O interactions
to far have resulted in the same behavior visible towards the environment in both the real and ideal world.

We firstly have a look at the I/O output of initiator and responder. We then prove that the output of
local judges is also indistinguishable between the R and {S, I}.

Initiator and responder. We note that all I/O calls to honest initiator and responder do not directly
lead to an output to E in I and R′ (for the corrupted case, see below). Thus, I and R are indistinguishable.
However, note that the phases of the protocol are synchronized in I and R′. RegisterPubKey initializes the
signatures key at Fsig and also registers the public key at Facc

PKI in R′ which does not have an adequate in I.
InitKE starts the key exchange itself in both worlds.

Note that honest initiator or responder do not send FinishKE to E if their partners public key is
not registered at the PKI Facc

PKI or if the signatures provided via NET do not verify. Also note that a party
initialization leads to an initialization of both parties, initiator and responder and also their local judges. This
enforces that the corruption status of the machines is always correctly handled and that we do not have to take
care of edge cases due to uninitialized parties.

When the initiator in R′ wants to output the message (FinishKE, sessionKey) to E , S triggers I via
(FinishKE, sessionKey) also to output a session key. If initiator and responder are uncorrupted and the property

65

authenticity holds true for both, I outputs a randomly selected group element (potentially ̸= sessionKey)
from hinit on behalf of initiator. As E is not aware of the sessionKey (both parties are honest) and as the
DDH assumption holds true, E can only distinguish with negligible probability between I and R′.

If both parties are still uncorrupted but authenticity is broken for at least one of both parties, this leads
to the case that I directly outputs the sessionKey provided by S. As the session key is extracted from R′, this
case is also indistinguishable between R and I.

In case that initiator considers itself as corrupted in R′, responder outputs the sessionKey. Note that
this session key matches the one exchanged with initiator thus potentially leaked to A. Thus, E cannot
distinguish between I and R.

The same holds true for the case, responder is corrupted but initiator is not.
The two cases above also include the cases when authenticity is additionally broken for one party – as

this does not change the behavior of I in the case that already one of the parties is corrupted.
Note that we have to consider two special cases here:

1. initiator gets corrupted after it outputted the key. However, as Facc
KE leaks the key upon corruption to

S and S forwards this leaked key to the responder, E cannot distinguish between I and R.
2. initiator or responder are both honest but one of them/both lose/s authenticity after the initiator

already outputted FinishKE including an ideally generated session key to E . However, as Facc
KE leaks the

key upon breaking to S and S forwards this leaked key to the responder, E cannot distinguish between
I and R.

Judges. Note that S updates verdicts in I as soon as they occur in R′. Further note that GetVerdict and
GetJudicialReport do not influence any state in R and I. We also note that answers to GetJudicialReport

are indistinguishable in both worlds.
Further, P iso

judge always accepts the input of S as rendered verdicts in R′ are compliant with the restrictions
imposed in FKE

judgeParams. Thus, local judges output the same verdicts in I and R′ and we can conclude that
both worlds are indistinguishable.

As local judges act as pure message forwarder when their associated party is corrupted, we can also conclude
that I and R are indistinguishable in this case.

Supervisor. Supervisors is always the same in R and I. Thus, both worlds are indistinguishable regarding their
output.

We can also conclude that the corruption status of (internal) entities in the real and ideal world is synchronized.
Since the simulator has full control over corrupted entities, which are handled via the internal simulation R′,
this implies that the I/O behavior of corrupted entities of R/I towards the environment is also identical in the
real and ideal world.

Note that the behavior of Facc
PKI is only visible to I via its network interface. As S forwards these messages

to Facc
PKI in R′ and also provide the output of Facc

PKI to E via NET, E cannot use Facc
PKI to distinguish between

I and R.
Overall, we can conclude that I and R are indistinguishable.

F.4 Deterrence Analysis: Please note that we consider the fully composed protocol here, i. e., including the
used PKI. We emphasize that the meaning of a single established key exchange is negligible in contrast to a
working PKI. Therefore, being caught cheating in the PKI is the major deterrence to behave honestly in the
key exchange. In particular, we conclude that the utilities for PKI participants have the same relations as in
Appendix E.4, i. e., Equation 1 and 2 are met for these parties. For the parties involved in the key exchange,
we assume that U i

hP = U i
hE = U i

hL = U i
mP = U i

mL = U i
mE = 0 expressing that a party typically does not

have a big advantage from executing the key exchange honest or maliciously. Thus, Equation 1 and 2 holds
true for all involved parties.

G. Capturing MPC Accountability Properties via AUC
As already mentioned in the introduction, there are several works that capture accountability properties in
a UC model for the special case of MPC protocols (e.g., [13, 14, 24, 34, 35, 55, 74, 81]). These properties
include (publicly) identifiable abort [14, 34, 55]), (public/universal) verifiability [35, 84, 86], auditability [13],

66

Description of the protocol Pacc
iso = (initiator, responder | setup):

Participating roles: initiator, responder, setup
Corruption model: static
Protocol parameters:

– groupGen(1η). {Algorithm for generating tuples (G,n, g) describing cyclic groups G of size n with generator g.

Description of Minitiator:
Implemented role(s): initiator

Subroutines: setup, Fsig, Facc
PKI,F

iso
init : init

Internal state:
– pk ∈ {0, 1}∗, pk = ε, pidCA ∈ {0, 1}

∗, pidCA = ε {The public key of (pidcur, sidcur, rolecur) and the used CA
– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
– state ∈ {⊥, registered, started, finished} = ⊥ {Current state in key exchange.
– initiator : ({0, 1}∗)3 {The initiator of the key exchange
– responder : ({0, 1}∗)3 {The responder of the key exchange
– caller ∈ ({0, 1}∗)3 ∪ {⊥} = ⊥ {Stores the initial caller of this entity/instance.
– sessionKey ∈ {0, 1}∗ ∪ {⊥} = ⊥ {Stores the session key.
– einit ∈ Zn ∪ {⊥} = ⊥ {Secret DH exponent of initiator.
– hresp ∈ G ∪ {⊥} = ⊥ {Public DH key share of responder.

CheckID(pid , sid , role):
Accept all entities of form (pidi, (sid

′, pidi, pidr), initiator).

Corruption behavior:
– DetermineCorrStatus(pid , sid , role) :{Entity corrupted if one of its signature keys or the verification subroutine are corrupted.

out ← corr(pid, (pid, sid),Fsig : signer) ∨ corr(pid, (pid(responder), sid),Fsig : verifier)

{
pid(responder)
denotes responder’s
PIDout ← out ∨ corr((pid , sid , role), ε,Facc

PKI : client)
return out

– AllowAdvMessage(pid, sid, role, pid receiver, sid receiver, rolereceiver,m):
If rolereceiver = Fsig : signer, return false.a

Otherwise output true iff pid = pid receiver.
Initialization:

Parse sidcur as (sid′, pidi, pidr).
initiator← (pidi, (sid

′, pidi, pidr), initiator). {Store initiator and responder .
responder← (pidr, (sid

′, pidi, pidr), responder).
caller← (pidcall, sidcall, rolecall).
send GetParameters to (pidcur, sidcur, setup); {Get DH parameters
wait for (GetParameters, (G,n, g)).
(G, n, g)← (G,n, g).
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcur, sidcur,F iso
init : init)

wait for initPartner

Main:
See Figure 37.

aIn our modeling, the corruption status of signer entities indicates whether the adversary has access to the corresponding signature keys, i.e.,
whether he can sign his own messages (as in this case the signer entity should be considered compromised). Thus, the adversary is not allowed to
access uncorrupted signer entities. If the signer entity is corrupted, then the adversary already knows the secret key and can sign messages on his
own, so there is no need to give him access in this case.

Fig. 36: A real key exchange protocol Pacc
iso for realizing Facc

PKI (part 1). Note that each instance of Minitiator

and Mresponder corresponds to a single entity.

67

Description of Minitiator (continued):
Main:

recv RegisterPubKey from I/O s.t. state[(pidcur, sidcur, rolecur)] = ⊥: {Register initiator’s signature and certificate
state[(pidcur, sidcur, rolecur)]← registered.
send InitSign to (pidcur, (pidcur, sidcur), Fsig : signer);
wait for (InitSign, success, pk); pk← pk ;
send responsively (Register, pk) to NET;
wait for (Register, pk, pidCA) s.t. pidCA ∈ {0, 1}

∗;
pidCA ← pidCA;
send (Register, pk, pidCA) to ((pidcur, sidcur, rolecur), ε,Facc

PKI : client).a {Register identity at Facc
PKI

recv InitKE from I/O s.t. state = registered: {Start KE and send first message.
state← started.
Choose einit ← Zn uniformly at random, compute hinit = geinit .
send (Send, (pidcur, sidcur, rolecur), hinit) to NET.

recv (FinishKE, responder, hresp , (g
einit , hresp , responder), σ) from NET s.t. state = started:

{
Receive second mes-
sage and output key.

send responsively (RetrieveCA, responder) to NET {Query A for responder’s CA ;
wait for (RetrieveCA, responder, pidCA);
send (Retrieve, responder, pidCA) to ((pidcur, sidcur, rolecur), ε,Facc

PKI : client);
wait for (Retrieve, intendedPartner, pidCA, pk). {Get public verification key of intended partner.
if pk = ⊥:

abort.
send (Verify, (geinit , hresp , responder), σ, pk) to (pidcur, (pid(responder), sidcur), Fsig : verifier);

{
pid(responder)
denoted the PID
of responderwait for (VerResult, b).

if b = false:
abort.

hresp ← hresp ; sessionKey← hresp
einit ; state← finished.

send (FinishKE, sessionKey) to caller.

recv GetLastMessage from NET s.t. state = finished:
m = (hresp, g

einit , responder).
send (Sign,m) to (pidcur, (pidcur, sidcur), Fsig : signer);
wait for (Signature, σ).
send (send , σ) to NET.

aWe consider here one instance of the PKI, namely the one with SID ε.

Description of Msetup:

Implemented role(s): setup
Internal state:

– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.

CheckID(pid , sid , role): Accept all entities.
Corruption behavior:

– AllowCorruption(pid , sid , role) : return false.
{

The adversary may not corrupt the (honestly
generated) setup parameters.

Initialization:
(G, n, g)← groupGen(1η).

Main:
recv GetParameters from :

{
Everyone may retrieve the group parameters, including
the adversary on the network.reply (GetParameters, (G, n, g)).

Fig. 37: A real key exchange protocol Pacc
iso for realizing Facc

PKI (part 2).

openability [34], and privacy [8]. AUC can capture these accountability properties as special cases. This is not
only an important sanity check but also shows that AUC generalizes and unifies existing UC accountability
literature. Here we illustrate this for the most common property: identifiable abort. The other properties can be
dealt with analogously, see Appendix H for more details.

Identifiable abort. The standard definition of a basic ideal MPC functionality FMPC (cf., e.g., [6, 8, 21, 24]) is
based on three phases. In the first phase, it takes inputs from m parties, with inputs of corrupted parties being
chosen by the adversary. In the second phase, it acts as a trusted third party that computes some function f
on those inputs. In the final phase, each party receives an output of f but otherwise obtains no information.
Hence, FMPC provides preventive security for correctness of the outputs and for privacy/secrecy of the inputs.

Instead of preventive security for correctness, MPC protocols often rather consider the weaker property of
identifiable abort [6, 8, 14, 55, 85], which states that either all honest parties obtain a correct output or all honest
parties agree on the name of a malicious party who has caused the output to be incorrect and hence the protocol
to abort. In other words, identifiable abort is a type of (local) accountability w.r.t. correctness that additionally
requires individual accountability and certain relationships between local properties of different parties.

In the literature, identifiable abort has been formalized within ideal functionalities F id-ab
MPC by letting the

simulator, during the final output phase, decide whether all honest parties obtain their correct output or provide

68

Description of Mresponder:

Implemented role(s): responder

Subroutines: setup, Fsig, Facc
PKI,F

iso
init : init

Internal state:
– pk ∈ {0, 1}∗, pk = ε, pidCA ∈ {0, 1}

∗, pidCA = ε {The public key of (pidcur, sidcur, rolecur) and the used CA
– (G, n, g) ∈ ({0, 1}∗ ∪ {⊥})3 = (⊥,⊥,⊥) {Global group parameters.
– state ∈ {⊥, registered, started, inSession, finished} = ⊥ {Current state in key exchange.
– initiator : ({0, 1}∗)3 {The initiator of the key exchange
– responder : ({0, 1}∗)3 {The responder of the key exchange
– caller ∈ ({0, 1}∗)3 ∪ {⊥} = ⊥ {Stores the initial caller of this entity/instance.
– sessionKey ∈ {0, 1}∗ ∪ {⊥} = ⊥ {Stores the session key.
– eresp ∈ Zn ∪ {⊥} = ⊥ {Secret DH exponent of responder.
– hinit ∈ G ∪ {⊥} = ⊥ {Public DH key share of initiator.

CheckID(pid , sid , role):
Accept all entities of form (pidr, (sid

′, pidi, pidr), responder).
Corruption behavior:

– DetermineCorrStatus(pid , sid , role) :
{Consider entity corrupted if one of the signature keys or the verification subroutine is corrupted.

out ← corr(pid, (pid, sid),Fsig : signer) ∨ corr(pid, (pid(initiator), sid),Fsig : verifier)
out ← out ∨ corr((pid , sid , role), ε,Facc

PKI : client)
return out

– AllowAdvMessage(pid, sid, role, pid receiver, sid receiver, rolereceiver,m):
If rolereceiver = Fsig : signer, return false. {cf. explanation in Figure 36.
Otherwise output true iff pid = pid receiver.

Initialization:
Parse sidcur as (sid′, pidi, pidr).
initiator← (pidi, (sid

′, pidi, pidr), initiator). {Store initiator and responder .
responder← (pidr, (sid

′, pidi, pidr), responder).
caller← (pidcall, sidcall, rolecall).
send GetParameters to (pidcur, sidcur, setup); {Get DH parameters
wait for (GetParameters, (G,n, g)).
(G, n, g)← (G,n, g).
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcur, sidcur,F iso
init : init)

wait for initPartner

Main:
recv RegisterPubKey from I/O s.t. state[(pidcur, sidcur, rolecur)] = ⊥: {Register responder’s signature and certificate

state[(pidcur, sidcur, rolecur)]← registered.
send InitSign to (pidcur, (pidcur, sidcur), Fsig : signer);
wait for (InitSign, success, pk); pk← pk ;
send responsively (Register, pk) to NET;
wait for (Register, pk, pidCA) s.t. pidCA ∈ {0, 1}

∗;
pidCA ← pidCA;
send (Register, pk, pidCA) to ((pidcur, sidcur, rolecur), ε,Facc

PKI : client).a {Register identity at Facc
PKI

recv InitKE from I/O s.t. state = registered: {Start KE.
state← started.
send (InitKE, (pidcur, sidcur, rolecur)) to NET.

{
Notify network that the key exchange has started and the responder is
ready to receive the first message.

recv (Receive, initiator, hinit) from NET s.t. state = started: {Receive first message, send second message.
hinit ← hinit

Choose eresp ← Zn uniformly at random, compute hresp = geresp .
send (Sign, (hinit, g

eresp , initiator)) to (pidcur, (pidcur, sidcur), Fsig : signer);
wait for (Signature, σ).
state← inSession
send (Send, (pidcur, sidcur, rolecur), g

eresp , σ) to NET.

recv (Receive, σ) from NET s.t. state = inSession: {Receive third message, output key.
send responsively (RetrieveCA, initiator) to NET {Query A for initiator’s CA ;
wait for (RetrieveCA, initiator, pidCA);
send (Retrieve, initiator, pidCA) to ((pidcur, sidcur, rolecur), ε,Facc

PKI : client);
wait for (Retrieve, initiator, pidCA, pk). {Get public verification key of intended partner.
if pk = ⊥:

abort.
send (Verify, (geresp , hinit, (pidcur, sidcur, rolecur)), σ, pk) to (pidcur, (initiator, sidcur), Fsig : verifier);
wait for (VerResult, b).
if b = false:

abort.
sessionKey← hinit

eresp ; state← finished.
send (FinishKE, sessionKey) to caller.

aWe consider here one instance of the PKI, namely the one with SID ε.

Fig. 38: A real key exchange protocol Pacc
iso for realizing Facc

PKI (part 3).

69

Description of the initialization machine F iso
init = (init):

Participating roles: {init}
Corruption model: incorruptible

Description of Minit:

Implemented role(s): {init}
Subroutines: Pacc

iso : initiator,Pacc
iso : responder

Internal state:
– init : ({0, 1}∗)3 → {true, false} {Initialization status of the machine, initially false

– initiator : ({0, 1}∗)3 {The initiator of the key exchange
– responder : ({0, 1}∗)3 {The responder of the key exchange
– judgeinitiator : ({0, 1}

∗)3 {The initiator’s local judge
– judgeresponder : ({0, 1}

∗)3 {The responder’s local judge
– caller ∈ ({0, 1}∗)3 ∪ {⊥} = ⊥ {Stores the callers.

CheckID(pid , sid , role):
Accept all messages for the same sid .

Initialization:
Parse sidcur as (sid′, pidi, pidr).
initiator← (pidi, (sid

′, pidi, pidr), initiator). {Store initiator and responder
responder← (pidr, (sid

′, pidi, pidr), responder).
judgeinitiator ← ((local, pidi, initiator), (sid

′, pidi, pidr), judge).
judgeresponder ← ((local, pidr, responder), (sid

′, pidi, pidr), judge). {Also store their judges entities
caller← (pidcall, sidcall, rolecall)

MessagePreprocessing:
if (pidcall, sidcall, rolecall) = initiator:

init[initiator]← true
else if (pidcall, sidcall, rolecall) = responder:

init[responder]← true
else if (pidcall, sidcall, rolecall) = judgeinitiator:

init[judgeinitiator]← true
else if (pidcall, sidcall, rolecall) = judgeresponder:

init[judgeresponder]← true

Main:
recv initPartner from responder ∨ initiator: {Request to initialize

if init[initiator] = ⊥:
init(initiator) {Trigger initialization of initiator

else if init[responder] = ⊥:
init(responder) {Trigger initialization of responder

else if init[judgeinitiator] = ⊥:
init(judgeinitiator) {Trigger initialization of judgeinitiator

else if init[judgeresponder] = ⊥:
init(judgeresponder)

{
Trigger initialization of judgeresponder

else: {All parties are initialized
send initPartner to caller

recv InitEntityDone from initiator ∨ responder ∨ judgeinitiator ∨ judgeresponder:
if init[initiator] = ⊥:

init(initiator) {Trigger initialization of initiator
else if init[responder] = ⊥:

init(responder) {Trigger initialization of responder
else if init[judgeinitiator] = ⊥:

init(judgeinitiator) {Trigger initialization of judgeinitiator
else if init[judgeresponder] = ⊥:

init(judgeresponder)
{

Trigger initialization of judgeresponder
else: {All parties are initialized

send initPartner to caller

Fig. 39: The initialization ITM F iso
init.

70

Description of P iso
judge = (judge):

Participating roles: {judge}
Corruption model: incorruptible

Description of Mjudge:

Implemented role(s): {judge}
Subroutines: Facc

PKI : judge,Pacc
iso

Internal state:
– initiator : ({0, 1}∗)3 {The initiator of the key exchange

– responder : ({0, 1}∗)3 {The responder of the key exchange
CheckID(pid , sid , role):

Accept all entities of form ((local,pidi, initiator), (sid
′, pidi, pidr), judge) and ((local,pidr, responder),

(sid′, pidi, pidr), judge).
Initialization:

Parse sidcur as (sid′, pidi, pidr).
initiator← (pidi, (sid

′, pidi, pidr), initiator). {Store initiator and responder
responder← (pidr, (sid

′, pidi, pidr), responder).
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcur, sidcur,F iso
init : init)

wait for initPartner

Corruption behavior:
– AllowCorruption(pid , sid , role) :

Parse pid as (pid′, role′)
corr ← corr(pid′, sid, role′)
if corr :

return true
else:

return false

– DetermineCorrStatus(pid , sid , role) : {Consider local judge corrupted if associated client is corrupted.
Parse pid as (pid′, role′)
corr ← corr(pid′, sid, role′)
if corr :

return true
else:

return false

Main:
recv GetVerdict from I/O: {Forward local verdict from Facc

PKI
send InitMe to initiator
wait for
send InitMe to responder
wait for
Parse pidcur as (pid′, role′).
send GetVerdict to ((initiator, client), ε,Facc

PKI : judge) {Query for the initiator’s status at Facc
PKI

wait for (GetVerdict, v1)
send GetVerdict to ((responder, client), ε,Facc

PKI : judge) {Query for the responder’s status at Facc
PKI

wait for (GetVerdict, v2)
if v1 ̸= ε ∧ role′ = responder:

v1.add(dis(initiator)) {The judge cannot be shure whether the intended partners verdict is trustful
if v2 ̸= ε ∧ role′ = initiator:

v2.add(dis(responder)) {The judge cannot be shure whether the intended partners verdict is trustful
Let verdict be

1. v1, if role′ = responder
2. v2, if role′ = initiator

reply (GetVerdict, verdict)

recv (GetJudicialReport,msg) from I/O: {Forward judicial report from lower level.
reply (GetJudicialReport, ε)

Fig. 40: The judging functionality P iso
judge for Pacc

iso .

71

Description of P iso
sv = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible

Description of Msupervisor:

Implemented role(s): {supervisor}
Subroutines: Facc

PKI : supervisor
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (IsAssumptionBroken?,msg, id):
reply (IsAssumptionBroken?, false)

recv (corruptInt?, pid, sid, role) s.t. role /∈ {initiator, responder, judge, supervisor}:
if role = client:

corrRes ← corr(pid, sid,Facc
PKI : client) {Request corruption status at Facc

PKI
reply (corruptInt, corrRes)

else:
send (corruptInt?, pid, sid, role) to (pidcur, sidcur,Facc

PKI : supervisor)
wait for (corruptInt?, corrRes)
reply (corruptInt, corrRes)

Fig. 41: The supervisor P iso
sv for Pacc

iso .

the name pid of a malicious party that caused the protocol to abort (cf., [14, 34, 55]). Depending on this choice,
F id-ab

MPC either returns the outputs of f or a special message (abort, pid) to the honest parties.

Capturing identifiable abort using AUC. We can easily capture the same properties as F id-ab
MPC by applying

AUC to the basic functionality FMPC. We set Secacc = {correctness} and, as part of the transformation
T2, redefine the behavior of FMPC to output abort, instead of the actual function output, iff correctness

is broken for that party. To also capture the same relationships and exact accountability level required by
identifiable abort, we instantiate FjudgeParams to impose the following additional requirements whenever the
simulator tries to break correctness: (i) no honest party has already obtained an output, (ii) if correctness
is broken for one honest party, it must be broken for all others at the same time, and (iii) all verdicts for local
judges of honest parties are identical and of the form dis(A) for some party A.

The resulting functionality Facc
MPC models the exact same properties as F id-ab

MPC, with the only syntactical
difference being that F id-ab

MPC includes the verdict as part of the protocol output while in Facc
MPC the verdict is

obtained separately from a judge.

H. Further Details on MPC Accountability Properties via AUC
In this section, we detail our presentation from Appendix G and show that AUC can be seen as a generalization

of the existing accountability related MPC/UC literature. Therefore, we firstly illustrate in detail how the common
MPC property of (internal) identifiable abort translates to AUC. We use a standard MPC functionality FMPC

without in-build identifiable abort and depict how identifiable abort is typically captured and how one can
capture it with AUC. We then briefly discuss that this approach also works for other common properties, such
as verifiability.

The ideal MPC functionality FMPC. For common ideal MPC functionalities (cf., e.g., [8, 21, 24]) one assumes
that there are m parties involved in the computation, each party pi contributes some secret input xi, and the
parties want to distributedly compute the output of a function f . The ideal MPC functionality FMPC models
a trusted third party which executes the computation on behalf of the participating users. Within FMPC, the
adversary A is typically allowed to (statically) corrupt parties. The execution of the computation via FMPC is
separated in phases. All parties are expected/forced to be in the same phase of the protocol: (i) Input: Each honest
party inputs xi to FMPC. Parties controlled by the adversary could input tainted data x′i. (ii) Computation: FMPC

evaluates f given the inputs from the parties. (iii) Finalization: FMPC provides the output of the computation
to the parties. FMPC typically guarantees the correct computation of the function f . We present a formal
specification of FMPC in Figure 42 where the highlighted code denotes the differences between FMPC and
Facc

MPC.

Identifiable abort in UC literature. With identifiable abort (cf., e.g., [14, 34, 55]), one typically protects
correctness of a MPC protocol and in particular the correctness of the protocol’s output. This models that

72

parties abort the protocol and blame a misbehaving party if, e. g., (i) a party identifies a misbehaving party
which tries to distort the computation or (ii) a (corrupted) party aborts the protocol. We focus on internal/local
identifiable abort, i. e., we interpret identifiable abort as a local accountability property. This is often the case
in MPC protocols as verdicts often rely on information that is only accessible to protocol participants and thus
do not convince outsiders of the protocol.

An adapted ideal MPC functionality F ′MPC which covers identifiable abort typically differs from FMPC in
the following details: (i) Honest parties do not receive the output of the computation in case of an abort. (ii) To
abort, a corrupted party p inputs the string abort to F ′MPC, this informs F ′MPC that A, resp. party p, aborted
the execution of the protocol. (iii) FMPC then typically informs honest parties that p aborted the protocol. This
“individual verdict” on p allows the honest parties in the MPC protocol to exclude misbehaving parties from
the next computation attempt.

Identifiable Abort via AUC. In contrast to Appendix G, we do not consider the traditional interpretation of
MPC protocols which assumes that all parties do all phases of the MPC protocol synchronously – we call
this case synchronous MPC. We focus here on what we call the “asynchronous” case, where parties are not
forced to be in the same phase of the protocol. However, we provide a full specification of the synchronous
variant of FMPC which we call Facc

MPC in Figure 42 and 43 which include the properties of identifiable abort,
called non-aborting, verifiability, called correctness, and privacy. In what follows, we focus on the
asynchronous variant of Facc

MPC and include identifiable abort to the functionality. We call this functionality
Facc

async-MPC (cf. Figure 44 and 45). In FMPC, the following major adaptions are necessary to derive Facc
async-MPC

(besides mapping messages): (i) Apply the AUC transformation T1(·) to FMPC, (ii) add one local judge per
participant/node to FMPC, i. e., pidsjudge = {local} × {0, 1}∗ and every set member is meant to be of form
(local, pid , role) (idsassumption = ∅ as we do not consider assumption-based properties here), (iii) add the
property correctness to Secacc in Facc

async-MPC and Fasync-MPC
judgeParams.

18 (iv) Allow A to abort the computation
using the BreakAccProp command. A’s request needs to mark correctness broken for honest parties and
needs to include a (fair) individual verdict for each of the parties. (v) Facc

async-MPC outputs abort to a party if
correctness is broken for this party. Parties can query their judge to retrieve the verdict which includes who
aborted the protocol. (vi) We adapt Facc

async-MPC, resp. Fasync-MPC
judgeParams, such that they ensure that (a) aborting

is not possible after the first honest party received output from Facc
async-MPC and vice versa, (b) that no party

receives an output if one party received abort. (vii) Fasync-MPC
judgeParams enforces that (local) verdicts are available

via the internal local judges, and that (viii) all internal judges output the same verdict.
Clearly, the AUC formulation of identifiable abort can be mapped to the traditional definition of identifiable

abort: As soon as A signalizes that a corrupted party will abort the protocol, all honest parties will be informed
that the protocol aborted and which party caused the abort. This statement holds true for Facc

MPC as well as
for Facc

async-MPC. Of course one can enhance our approach above analogously to achieve public identifiable
abort (cf., e.g., [30, 60].

Verifiability. Verifiability in MPC is also a correctness property [35, 84, 86]: in the case of public or universal
verifiability, every party including protocol outsiders should be able to verify that the MPC’s output was
computed correctly or honestly. Due to the privacy guarantees of MPC protocols, public verifiability typically
only provides a weak level of accountability as one cannot identify misbehaving parties individually.

The common formalization of verifiability is analogous to the formalization of identifiable abort. For public
verifiability (cf. [6]), one sometimes expects some certificate of misbehavior created by a judge which allows
outsiders to verify that the blamed party indeed misbehaved.

To capture verifiability with AUC, one uses the same techniques as for identifiable abort. The major difference
between both approaches are (i) verifiability is a public property, thus restrictions are incorporated into a public
judge instead of local judges, (ii) Fasync-MPC

judgeParams does not impose restrictions on the verdict, and (iii) one may
use the judicial report defined at Fasync-MPC

judgeParams to output a certificate of misbehavior.
For other MPC accountability properties, such as auditability [13], openability [34] or privacy [8], A also

signalizes the ideal functionality that a property is broken and the ideal functionality then acts appropriately
which typically signalizes that a party or a group of parties misbehaved. The approach above works analogously
for other accountability properties from MPC. Thus, AUC can be seen as generalization of existing work
regarding accountability in MPC/UC literature.

18We note that correctness captures identifiable abort in Facc
async-MPC while it captures verifiability in Facc

MPC. For the sake of
presentation fot Facc

MPC we want to keep naming in Facc
MPC as close to literature as possible.

73

Description of the protocol Facc
MPC = (node, judge, supervisor)

Participating roles: {node, judge, supervisor}
Corruption model: static
Protocol parameters:

– n ∈ N {Input length for the MPC function
– f : ({0, 1}∗)|P| → ({0, 1}∗)|P|, s.t. f = (f1, . . . , f|P|) {the MPC function
– Secacc ⊂ {0, 1}∗ {Accountability properties, expected here: {privacy, correctness, non-aborting}
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties, expected here: ∅
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of Mnode:

Implemented role(s): {node}
Subroutines: FMPC

judgeParams : judgeParams
Internal state:

– P ⊂ {0, 1}∗,P ̸= ∅, |P| <∞ {Parties involved in the protocol
– inputs : P→ {0, 1}n {The inputs for the computation, initially always set to ⊥
– outputs : P→ {0, 1}∗ {The outputs of the computation, initially always set to ⊥
– state ∈ {uninitialized, computation, finalized}, state = uninitialized {State of the MPC computation

– corruptedIntParties ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid, sid, role)

– brokenAssumptions : Secassumption× idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}
{

Stores broken security properties per
judge/id, initially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε

CheckID(pid , sid , role):
Accept all messages if pid ∈ P and with same sid .

{
A single instance manages all parties in
a single session.

Corruption behavior:
– AllowCorruption(pid , sid , role):

Do not allow corruption of (pid, sid, supervisor).
if role = judge:

send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted

wait for b; return b

– DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?(pid, sid, judge), internalState)
to (pid, sid,FjudgeParams : judgeParams)

wait for b; return b

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m)
{
A is not allowed to invoke Facc-cp

judgeParams

Do not allow sending messages to FjudgeParams.
Initialization:

send responsively InitMe to NET {A determines the involved parties
wait for (Init, P) s.t. P ⊂ {0, 1}∗
P← P

MessagePreprocessing:
if state = uninitialized∧ number of inputs that are ̸= ⊥ is |P|∧ brokenProps is false for all entries.:

{Update state/computation phase
state← computation

Main:
recv (Compute, x) from I/O s.t. pidcur ∈ P ∧ state ∈ {uninitialized}: {Input from uncorrupted users

inputs[pidcur]← x {Record user input

recv (Compute, pid, x) from NET s.t. pid in CorruptionSet∧ pid ∈ P, state ∈ {uninitialized, computation}:
{A input for

corrupted
parties

inputs[pidcur]← x {Record user input

recv Finalize from NET:
if state = computation ∧ ∀pid ∈ P : inputs[pid] ̸= ⊥ ∧ state = uninitialized: {That is, there was no cheating/corrupting

Let wi s.t. (pidi, wi) ∈ inputs, i ∈ {1, . . . , |P|}
(y1, . . . , y|P|)← f(w1, . . . , w|P|)) {If there was no “interrupt” from A, f is computed as expected
for i = 1 to |P| do:

outputs[pidi]← yi

state← finalized
Let output contain every outputs[pid] where pid is in CorruptionSet.
reply (Finalize, output) {Send output of corrupted parties to A

recv GetResult from I/O s.t. pidcur ∈ P:
if brokenProps[non-aborting, (local, pidcur, rolecur)]: {We are in the identifiable abort case

reply (GetResult, abort, verdicts) {Output abort information and verdict
else if brokenProps[privacy, (local, pidcur, rolecur)]: {We are in the case that A broke privacy
reply (GetResult, corrupted, verdicts) {Output privacy break and verdict

else if brokenProps[correctness, (local, pidcur, rolecur)]: {We are in the case that A broke correctness of the calculation
reply (GetResult, correctness, verdicts) {Output correctness break and verdict

reply (GetResult, outputs[pidcur])

Include the missing static code from the AUC transformation T1(·) here, i.e., include additional code from Figure 2 and 3 here.

aHere: RolesF := {node}.

Fig. 42: The MPC functionality Facc
MPC.

74

Description of FMPC
judgeParams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of MjudgeParams:

Implemented role(s): {judgeParams}
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict, toBreak , internalState) from I/O:
if toBreak = {non-aborting} × ({local} × {0, 1}2∗) ∧ state ∈ {uninitialized, compute}: {A aborts computation

reply (BreakAccProp, true, ε)

if toBreak = {correctness} × ({local} × {0, 1}2∗) ∧ state = compute: {This models a cheat attempt
reply (BreakAccProp, true, ε)

if toBreak = {privacy} × ({local} × {0, 1}2∗) ∧ state = compute: {This models an attempt to break input privacy
Let ω̄ be the vector of all values from inputs.

if eval(verdict) = true: {Need to check whether verdict evaluates to true as leakage forwarded to A anyways
reply (BreakAccProp, true, ω̄)

else:
reply (BreakAccProp, false, ε)

else:
reply (BreakAccProp, false, ε)

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report
reply (GetJudicialReport, ε) {Return state variable as report

recv (Corrupt, (id, sid, judge), internalState) from I/O:
{
FKE

judgeParams allows to corrupt a local judge iff the
accompanied initiator or responder is corruptedif id = (local, pid, role) ∧ (pid, sid, role) ∈ CorruptionSet:

reply true
else:

reply false

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/O:
{
FKE

judgeParams interprets a local judge as corrupted iff
the accompanied initiator or responder is corruptedif (id, sid, judge) ∈ CorruptionSet:

reply true
else if id = (local, pid, role) ∧ (pid, sid, role) ∈ CorruptionSet :

reply true
else:

reply false

Fig. 43: The judge parameter functionality FMPC
judgeParams for Facc

MPC.

75

Description of the protocol Facc
async-MPC = (node, judge, supervisor)

Participating roles: {node, judge, supervisor}
Corruption model: static
Protocol parameters:

– n ∈ N, f : ({0, 1}∗)|P| → ({0, 1}∗)|P|, s.t. f = (f1, . . . , f|P|) {Input length for the MPC function and the function itself
– Secacc ⊂ {0, 1}∗ {Accountability properties
– Secassumption ⊂ {0, 1}∗ {Assumption-based security properties
– pidsjudge ⊂ {0, 1}∗ {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
– idsassumption ⊂ {0, 1}∗ {set of entities/IDs where properties are ensured via assumptions

Description of Mnode:

Implemented role(s): {node}
Subroutines: FMPC

judgeParams : judgeParams
Internal state:

– P ⊂ {0, 1}∗,P ̸= ∅, |P| <∞ {Parties involved in the protocol
– inputs : P→ {0, 1}n {The inputs for the computation, initially always set to ⊥
– outputs : P→ {0, 1}∗ {The outputs of the computation, initially always set to ⊥
– state : P→ {uninitialized, computation, finalized, finishedOutput}

{State of the MPC computation per party, initillay uninitialized

– corruptedIntParties ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ \ (RolesF a ∪ {judge, supervisor}), initially ∅
{

The set of corrupted internal
parties (pid, sid, role)

– brokenAssumptions : Secassumption× idsassumption → {true, false} {Stores broken security assumptions per id, initially false ∀entries

– brokenProps : (Secassumption ∪ Secacc)× (pidsjudge ∪ idsassumption)→ {true, false}
{

Stores broken security properties per
judge/id, initially false ∀entries

– verdicts : pidsjudge → {0, 1}∗ {Verdicts per p ∈ pidsjudge, initially ε
CheckID(pid , sid , role):

Accept all messages if pid ∈ P and with same sid .
{

A single instance manages all parties in
a single session.Additional Corruption behavior:

– AllowCorruption(pid , sid , role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:

send (Corrupt, (pid, sid, judge), internalState) to (pid, sid,FjudgeParams : judgeParams)

{FjudgeParams decides
whether judges can be
corruptedwait for b; return b

– DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status

send (CorruptionStatus?, (pid, sid, judge), internalState) to (pid, sid,FjudgeParams : judgeParams)
wait for b; return b

– AllowAdvMessage(pid, sid, role, pidreceiver, sidreceiver, rolereceiver,m)

Do not allow sending messages to FjudgeParams. {A is not allowed to invoke FjudgeParams in the name of corrupted parties.
Initialization:

send responsively InitMe to NET {A determines the involved parties
wait for (Init, P) s.t. P ⊂ {0, 1}∗
P← P

Main:
recv (Compute, x) from I/O s.t. pidcur ∈ P ∧ state ∈ {uninitialized}: {Input from uncorrupted users

state[pidcur]← computation; inputs[pidcur]← x {Update phase of pidcur and record user input

recv (Compute, pid, x) from NET s.t. pid in CorruptionSet∧pid ∈ P, state ∈ {uninitialized, computation}:
{
A input for cor-
rupted parties

state[pidcur]← computation {Update phase of pidcur
inputs[pidcur]← x {Record user input

recv Finalize from NET:
if ∀pid ∈ P : state[pid] = computation ∧ ∀pid ∈ P : inputs[pid] ̸= ⊥: {Trigger computation of f

Let wi s.t. (pidi, wi) ∈ inputs, i ∈ {1, . . . , |P|}
(y1, . . . , y|P|)← f(w1, . . . , w|P|)) {If there was no “interrupt” from A, f is computed as expected
for i = 1 to |P| do:

outputs[pidi]← yi

if There is a brokenProps of type correctness true:
output ← ε {The protocol aborted, no one receives output

else:
Let output contain every outputs[pid] where pid is in CorruptionSet.

reply (Finalize, output) {Send output of corrupted parties to A
recv (Finalize, P) from NET s.t. P ⊂ P: {A may advance participants from phase computation to finalized

for all p ∈ P do:
if state[p] = computation: state[p]← finalized

recv GetResult from I/O s.t. pidcur ∈ P: {Access only for “registered” parties
if brokenProps[(correctness, (local, pidcur, rolecur)]: {Handle identifiable abort

reply (GetResult, abort) {Output abort information
else if state[pidcur] ∈ {uninitialized, computation}: {Party did not finish computation so far

reply (GetResult,⊥)
else if There exists an entry brokenProps[(correctness, (local, pidcur, rolecur)] = true: {If abort is recorded at another party

reply (GetResult,⊥) {Supress output in case of an abort of another party
else if state[pidcur] = finalized:

state[pidcur]← finishedOutput
reply (GetResult, outputs[pidcur]) {If A did not abort, output result

Include the missing static code from the AUC transformation T1(·) here, i.e., include additional code from Figure 2 and 3 here.

aHere: RolesF := {node}.

Fig. 44: The asynchronous MPC functionality Facc
async-MPC.

76

Description of Fasync-MPC
judgeParams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of MjudgeParams:

Implemented role(s): {judgeParams}
CheckID(pid , sid , role):

Accept all messages with the same sid .
Main:

recv (BreakAccProp, verdict, toBreak , internalState) from I/O:
Let ids ⊂ {0, 1}∗ be the IDs part from toBreak .
if toBreak ⊂ {correctness× ids} ∧ ∄p ∈ P (P extracted from internalState) with state[p] = finishedOutput ∧
[∀id1, id2, such that id1 ̸= id2 where verdict[id1] ̸= ε, resp. verdict[id2] ̸= ε∧
it holds true that verdict[id1] = verdict[id2] ∧
all verdicts in verdict are individual verdicts: {A aborts computation, only allowed if restrictions are met

reply (BreakAccProp, true, ε) {Accept abort
else:

reply (BreakAccProp, false, ε) {Decline abort

recv (GetJudicialReport,msg, internalState) from I/O: {Generate judicial report
reply (GetJudicialReport, ε) {Return state variable as report

recv (Corrupt, (id, sid, judge), internalState) from I/O:
{
FKE

judgeParams allows to corrupt a local judge iff the
accompanied initiator or responder is corruptedif id = (local, pid, role) ∧ (pid, sid, role) ∈ CorruptionSet:

reply true
else:

reply false

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/O:
{
FKE

judgeParams interprets a local judge as corrupted iff
the accompanied initiator or responder is corruptedif (id, sid, judge) ∈ CorruptionSet:

reply true
else if id = (local, pid, role) ∧ (pid, sid, role) ∈ CorruptionSet :

reply true
else:

reply false

Fig. 45: The judge parameter functionality Fasync-MPC
judgeParams for Facc

async-MPC.

77

	Introduction
	AUC – Accountable Universal Composability
	Notation and Terminology
	Overview of AUC's Central Concepts
	AUC Transformation for Ideal Functionalities
	AUC in Real Protocols
	Composable Security Analysis in AUC
	Deterrence Analysis
	Discussion

	Case Studies
	Scaling Accountable Consensus
	An Accountable PKI for the Web Based on CTLs
	A Key Exchange Based on an Accountable PKI

	Related Work and Conclusion
	Acknowledgments
	References
	Appendix
	=A Brief Introduction to the iUC Framework
	=Notation in Pseudo Code
	=Reusing Existing Security Results with AUC
	=Scaling Accountable Consensus (Full Details)
	The Accountable Consensus Functionality
	The Scaling Protocol
	UC Security Analysis
	Deterrence Analysis

	=Accountable Key Exchange based on an accountable PKI (Full Details)
	An Accountable Ideal PKI Functionality
	An Accountable PKI based on CTLs
	UC Security Analysis
	Deterrence Analysis

	Key Exchange Based on (Full Details)
	The Accountable Key Exchange Functionality
	The ISO 9798-3 Protocol as Accountable Key Exchange Protocol
	Security Analysis
	Deterrence Analysis

	=Capturing MPC Accountability Properties via AUC
	Further Details on MPC Accountability Properties via AUC

