AUC: Accountable Universal Composability

Mike Graf,® Ralf Kiisters,® and Daniel Rausch
University of Stuttgart
Stuttgart, Germany
Email: {mike.graf,ralf kuesters,daniel.rausch} @sec.uni-stuttgart.de

Abstract

Accountability is a well-established and widely used security concept that allows for obtaining undeniable
cryptographic proof of misbehavior, thereby incentivizing honest behavior. There already exist several general
purpose accountability frameworks for formal game-based security analyses. Unfortunately, such game-based
frameworks do not support modular security analyses, which is an important tool to handle the complexity of
modern protocols.

Universal composability (UC) models provide native support for modular analyses, including re-use and
composition of security results. So far, accountability has mainly been modeled and analyzed in UC models
for the special case of MPC protocols, with a general purpose accountability framework for UC still missing.
That is, a framework that among others supports arbitrary protocols, a wide range of accountability properties,
handling and mixing of accountable and non-accountable security properties, and modular analysis of accountable
protocols.

To close this gap, we propose AUC, the first general purpose accountability framework for UC models, which
supports all of the above, based on several new concepts. We exemplify AUC in three case studies not covered
by existing works. In particular, AUC unifies existing UC accountability approaches within a single framework.

1. INTRODUCTION

Accountability is a prominent concept that is widely used in security. Many security properties and applications,
such as auctions [7,29,97], e-voting [1, 65, 67], non-repudiation [98—100], multi-party computation (MPC) [6,
8,13,54], public key infrastructures (PKIs) [61,73,76], distributed ledgers [15, 16,38,40,47,50, 59, 82, 88],
DRM [91, 93], power infrastructures [58, 75], content delivery networks [31], and distributed systems [52, 90, 94]
make use of and rely on accountability to provide security. In the formal security analysis literature, so-called
property-, policy-, or goal-based accountability is the standard and most commonly used interpretation of
accountability (e.g., [33,42-45,52,57,62,63,67,68,79]), which we therefore also consider in this work and
often just call accountability (see also Section 2.7). Property-based accountability intuitively states that, if
some intended security property of a protocol, such as correctness of the output, is violated, then we obtain a
cryptographic proof that one or more protocol participants have misbehaved. We call security properties ensured
via accountability in this way accountability(-based) properties. Parties which violated an accountability property
can be held accountable for their misbehavior, e. g., via contractual and financial penalties or by excluding them
from future protocol runs. This serves as a strong incentive for malicious parties to honestly follow the protocol
and to not break security goals.

Over the past decade, researchers have developed general tools and approaches to formally analyze account-
ability properties in game-based settings (e. g., [46,62,67]). These works cover many flavors of accountability,
such as (i) different accountability levels; a weak level might guarantee identification only of a (potentially large)
group such that at least one party in that group has misbehaved, where the strongest level, so-called individual
accountability [67], allows for identifying one or more parties such that all of them have misbehaved. (ii) Local
or public/universal accountability (w.r.t. some security goal/property) [41,49]; a public accountability property
allows everyone, including external observers, to identify misbehaving parties in case the security property is
broken. Local accountability allows only protocol participants to identify misbehaving parties.

Preventive vs. Accountability Properties. The counterpart to accountability properties are so-called preventive
security properties (cf. [45]), which includes many special cases such as proactive security [2, 12]. In preventive
security, one proves that the expected security property cannot be broken in the first place, typically based on
certain (strong) security assumptions. In contrast, accountability-based security accepts that security properties
might be broken by misbehaving parties but instead requires that one can identify and hence deter such
parties. In exchange for this weaker security guarantee, accountability provides several advantages, including:
(i) accountability might already be achievable with simpler, more efficient components. (ii) In order to ensure

https://orcid.org/0000-0003-3191-7711
https://orcid.org/0000-0002-9071-9312
https://orcid.org/0000-0002-1901-3659

accountability properties, one might need less security assumptions. (iii) Accountability properties might be
stronger in some aspects than preventive security notions. For example, Graf et al. [50] illustrate and leverage all
of these advantages of accountability by proposing a slight modification of the Hyperledger Fabric permissioned
blockchain that (i) uses only a very efficient crash-fault-tolerant instead of a more complex Byzantine-fault
tolerant consensus protocol, (ii) does not assume an honest (super)majority or any other set of honest parties
to achieve accountability of consistency, and (iii) can enforce consistency (in an accountable way) not only
for honest nodes but also for dishonest ones. So both concepts, preventive and accountability-based security,
come with their own merits and tradeoffs. They are orthogonal concepts in the sense that both types of security
can be used as stand-alone mechanisms to provide security for an intended property. But they can also be
combined for the same security goal, where accountability serves as a second layer of defense in case the
underlying assumptions of preventive security are broken. Such a combination is, for instance, used by the system
PeerReview [52] to strengthen the security property of consistency in Byzantine-fault tolerant (BFT) consensus
protocols (e. g., [28, 83,95]): as long as there is an honest supermajority in the BFT protocol, consistency cannot
be broken at all. If this assumption is no longer met, then PeerReview running on top of the BFT protocol still
provides accountability w.r.t. consistency, i.e., allows for identifying parties that cause the consensus protocol
to fail.

Universal Composability. Universal composability (UC) (e.g., [17,18,22,23,53,64]) is a very popular ap-
proach for designing, modeling, and analyzing security protocols due to its strong security guarantees and its
inherent support for modular design and analysis. Roughly speaking, in UC one first specifies an ideal protocol
(or ideal functionality) F that specifies the intended behavior/security properties of a target protocol, abstracting
away implementation details. For a concrete realization — the real protocol — P, one then proves that ‘“P behaves
just as F” in arbitrary contexts, where the network of F is controlled by a benign attacker called simulator.
One can then build other protocols P’ on top of F and analyze their security. A so-called composition theorem
provided by the underlying UC model then implies that P’ remains secure even if the subroutine F is replaced
by P.

Current State. Preventive security properties and their formalization via ideal functionalities in UC models
is a well-studied problem, with the vast majority of existing UC literature focusing on preventive properties.
In contrast, accountability properties have only been studied and formalized for special cases, mostly MPC
protocols (e. g., [13, 14,24, 34,35,55,74]). These works do not and were not intended to serve as general UC
accountability frameworks. In particular, these works (i) are tailored towards MPC protocols and accountability
properties thereof, such as identifiable abort (e.g., [14,55], cf. Appendix G, where we capture identifiable
within our formalization approach), (ii) assume certain protocol structures, such as non-interactive protocols
or protocols without internal servers, (iii) typically focus on either local or public accountability, (iv) cannot
express arbitrary relationships of properties, including preventive properties with accountability as second layer
of defense, and/or (v) consider composition out of scope or focus on composition of certain protocol types.
Hence, a general framework for accountability in UC models is still missing. Such a general framework
would
1. Enable the design and analysis of arbitrary protocols and accountability properties within a UC model,
thereby allowing such protocols to benefit from strong security statements and modularity offered by UC
models,
2. Provide a common tool set that allows for easily formalizing accountability properties and reducing the
effort for protocol designers, and thus,
3. Help avoid mistakes and oversights that can otherwise easily occur when formalizing accountability for
every use case from scratch, as well as
4. Facilitate the comparison of different types of accountability properties and guarantees as they are defined
within the same overarching and unified framework.
Obtaining such a general framework for accountability in UC models is non-trivial as it has to support and
combine a number of different features to achieve the desired generality. Among others, it has to be able
to express many different flavors of accountability, including the following flavors from formal game-based
accountability security frameworks [62,63,67,79]: (i) accountability for a wide range of security properties,
(ii) different levels of accountability, (iii) both local and public accountability properties, and (iv) relationships
of different properties, including combinations of accountability and preventive properties both as independent
concurrent properties but also as layered defense for the same security goal. Such a general framework further

must be able to express virtually arbitrary protocols. In particular, it must (v) be independent of a specific
protocol type and structure, thereby supporting, e.g., interactive protocols and protocols with purely internal
parties such as client-server protocols, and (vi) fully support the modular design, analysis, and composition of
protocols with accountability.

AUC - Accountable Universal Composability. To close this gap, we propose the Accountable Universal
Composability (AUC) framework, the first general framework for the modular UC analysis of accountability
properties. The AUC framework works within existing UC models, such as the UC [22,23], including its
variants (e.g., SUC [24], GUC [18]), the GNUC [53], the CC [77], and the IITM [64] models. By this, AUC
inherits and can leverage features of the underlying UC model, such as the respective composition theorems
possibly including support for composition with joint, arbitrarily shared, and/or global state. This also allows
protocol designers to compose AUC protocols with existing (preventive security) protocols while remaining
within whatever model they are already familiar with.

A major component of AUC is a generic transformation that, given any ideal functionality, allows for
incorporating a wide range of accountability properties into the functionality. AUC further enables modeling and
analyzing accountability properties in the corresponding real protocols such that composition of the resulting
(accountability-based) protocols, also with preventive security protocols, is fully supported. To this end, AUC
generalizes several ideas from the literature, both in game-based and UC settings, but also adds novel concepts,
such as what we call judicial reports and supervisors. By combining these concepts, AUC achieves all the
previously mentioned goals and features of a general framework for property-based accountability.

To exemplify features, applications, and the generality of AUC, we present the first accountability analyses
of three different case studies in a UC model. These case studies are chosen to be relatively simple to better
illustrate AUC. Firstly, we show how an accountable consensus service can be scaled up, e. g., to support a larger
number of clients, by adding a scaling protocol layer on top while retaining accountability of the overall protocol.
Using composability, this result can be iterated arbitrarily often to obtain security of multiple scaling layers. The
case study introduces and illustrates general techniques that can be used for future analyses of accountability
of existing real-world protocols that follow a similar scaling approach, such as the prominent blockchain
Hyperledger Fabric [3, 50], the consensus service Hashgraph [11], and content delivery networks [39]. Secondly,
we model and analyze accountability of a public key infrastructure (PKI) based on certificate transparency logs
(CTLs). We then, thirdly, compose this result with an ISO 9798-3-based authenticated key exchange [17,26,
56, 66], showing that the resulting protocol provides security based on an accountable PKI. To the best of our
knowledge, this analysis is the first UC analysis of that protocol without assuming pre-distributed public keys
or an idealized PKI where the adversary cannot create certificates for honest parties.

Contributions. In summary, the contributions of the paper are as follows:

o We propose AUC, the first general framework for accountability in UC models.

o AUC transfers and generalizes existing concepts from game-based approaches to the UC world, generalizes
existing UC approaches, and develops new concepts.

o AUC supports, among others, arbitrary ideal and real protocols, a wide range of accountability properties,
local and public accountability properties, concurrent consideration and combination of preventive and ac-
countability properties, accountability of protocol internal parties, and composition of accountable protocols.

o To exemplify AUC, we present three case studies, providing the first UC analysis of accountability properties
for the considered protocols.

o As a sanity check, in Appendix G we further show that AUC can capture accountability aspects of existing
UC MPC literature as a special case, thereby generalizing and unifying this line of work.

Structure of this paper. Section 2 presents AUC, including a discussion of its core concepts. Section 3 provides
our case studies. We discuss related work in Section 4. Further details are given in the appendix.

2. AUC - ACCOUNTABLE UNIVERSAL COMPOSABILITY

In this section, we introduce the accountable universal composability (AUC) framework. We first clarify notation
and terminology in Section 2.1. Section 2.2 discusses several high-level ideas of AUC before we formally specify
the AUC transformation for ideal functionalities in Section 2.3, with AUC’s modeling of real protocols covered
in Section 2.4. In Section 2.5, we discuss several aspects of AUC’s composability abilities. In Section 2.6, we
present a deterrence analysis to analyze the behavior of rational adversaries. Section 2.7 concludes this section
with a discussion on AUC.

2.1 Notation and Terminology

Computational Model. Formally, we define AUC within the iUC model [17], an easy to use but fully expressive
instantiation of the IITM model [64]. However, AUC and its concepts can also be used within arbitrary other
models for universal composability, e. g., [23,53,77]. We keep our presentation on a level such that readers
familiar with these UC models can understand and use AUC without requiring any prior knowledge of iUC.
For interested readers, we provide a brief introduction to the iUC model including an overview of its pseudo
code notation in Appendix A and in Appendix B, we provide an overview of the used pseudo code notation.

A party in iUC and hence also AUC is uniquely identified via its party ID pid, the session sid it runs in,
and the piece of code/role role it is executing. We call the triple (pid, sid, role) entity."! In what follows, we
use the terms entity and party synonymously.

We call a party in a protocol main if it can directly receive inputs from and send outputs to the environment.
We call a party internal otherwise, i.e., if it is part of an internal subroutine. Whether a party is an internal
or a main party can be determined from its role. As in all UC models, an ideal functionality and a realization
share the same sets of main parties/roles. A realization might have additional internal parties/roles, such as an
internal server used by main clients, that are not present in the ideal protocol.

As is standard in UC models, the adversary A is allowed to corrupt parties by sending a special corrupt
command. If an entity is corrupted, the adversary generally gets full control over the (input and output interface
of the) entity. The environment can obtain the current corruption status of main parties in a protocol, which
allows for checking whether corruption of main parties is simulated correctly.

Classes of Security Properties. As mentioned in the introduction, the literature traditionally distinguishes
between preventive security properties and accountability properties. We denote the set of accountability
properties of a protocol by Sec®* and divide preventive properties into two classes:

Absolute: A preventive security property is called absolute if all underlying assumptions used in the security
proof are assumed to always hold true. The analysis of the case where such assumptions might become broken
is out of scope. We denote the set of absolute security properties (of some protocol) by Sec™.

Assumption-based: We call a preventive security property assumption-based if it is shown to hold true under
certain assumptions but the security analysis also analyzes the case that these assumptions might become broken
at some point. We denote the set of assumption-based preventive security properties by Sec?ssimpten,

By this categorization, we have that absolute security properties can neither be assumption-based properties
nor accountability properties, i.e., we require Sec?® N (Sec?UMPioN U Secc) = (). The set Sec®sumption N Secice,
if non-empty, contains preventive security properties that offer accountability as a second layer of defense
whenever the underlying assumptions are broken. The set Sec®*U™Pion \ Sec?® contains those assumption-based
security properties which are not additionally secured via accountability.

Verdicts. AUC defines verdicts to be positive boolean formulas consisting of propositions of the form dis(A4;)
where A, is an entity and dis(A4;) expresses that the judge believes that A; misbehaved/is dishonest. For example,
the verdict “dis(A;1) A (dis(Az) Vv dis(A3))” captures the statement that party A; and at least one of the parties
As and A3z have misbehaved. We can evaluate verdicts by setting dis(A;) = true iff A; is actually a corrupted
entity at the point where the verdict is stated, and false otherwise. We call a verdict fair if it evaluates to
true, and hence, does not mistakenly blame honest parties. In a secure protocol, all honestly computed verdicts
are required to be fair.

This definition of verdicts allows for capturing different levels of accountability. Verdicts such as dis(A;)
or dis(A1) A dis(As) imply that the specific party A; (and potentially others) misbehaved. This captures the
strongest level of so-called individual accountability. In contrast, a verdict of the form dis(A;)Vdis(A3)Vdis(As)
only identifies a group of three parties where at least one has misbehaved, therefore capturing a weaker level
of accountability.

2.2 Overview of AUC’s Central Concepts

The AUC framework serves as a general blueprint for modeling and analyzing a wide range of accountability
properties both in real and ideal protocols. Before delving into AUC, let us first give a high-level overview of
its main concepts and ideas:

'In those UC models that identify parties only via the pair (pid, sid), different roles can be modeled by adding them as a prefix to
pid, say, pid = (role, pid’), where pid’ is the actual party ID.

Breaking accountability properties in exchange for verdicts: In an (AUC) accountable ideal functionality, the

adversary A may, at any point in time, instruct the functionality to break/disable accountability properties. In
exchange for breaking an accountability property, the ideal functionality requires A to provide a verdict that
indicates parties who are blamed for the security breach. This verdict must be fair, i.e., it may not blame
parties who were honestly following the protocol. Verdicts are received and their fairness is checked by so-
called (ideal) judges. A judge is a new role added to the ideal functionality that models parties who are
responsible for determining misbehaving protocol participants. The environment and higher-level protocols,
including higher-level judges, can ask for a judge’s verdict.
In a realization of the ideal functionality, the corresponding (real) judges specify the exact judging procedures,
such as checking signatures, and the exact input data used as evidence to compute verdicts. For example, in
an e-voting protocol that is supposed to provide accountability w.r.t. counting votes (a strong form of so-called
end-to-end verifiability [33]), a real judge — run by an auditor or even a voter — might take as input all messages
from a bulletin board and then blame parties who produce output, e.g., the election result, but with invalid
accompanying zero-knowledge proofs.

Judge Types: AUC considers an a priori unbounded number of concurrent judges, which can be instantiated
by protocol designers to capture different numbers and types of judges executed by different parties modeling
various flavors of accountability. Most common are public and local judges, which capture public and local
accountability, respectively: (i) A single public judge implements public accountability, i.e., verdicts of the
(real) public judge are computed solely based on publicly available information. For example, in e-voting to
check that the tallying process went correctly, (cf. “accountability w.r.t. counting votes” above) a public judge
typically uses data, such as zero-knowledge proofs, from a public bulletin board. Since the data used is public,
everyone, including outside observers, can take the role of a public judge. It therefore typically makes sense
to model a public judge as an incorruptible entity. (ii) Several local judges, each of them belonging to and
typically representing the validation procedure executed by one protocol participant, model local accountability.
That is, verdicts of a (real) local judge are computed by a protocol participant, say Alice, and can therefore
be based not just on public information and whatever data other parties are willing to provide to Alice, but
verdicts can also be based on Alice’s own private data, possibly allowing for detecting a wider variety of
misbehavior. For example, in e-voting Alice, resp. her local judge, can tell that her ballot does not appear on
the bulletin board, even though she submitted it. Since a local judge is run by a (potentially malicious) protocol
participant who might lie about the verdict, a local judge is typically considered corrupted iff the corresponding
protocol participant is corrupted. (iii) Additionally, AUC also supports other types of judges, such as, mandated
judges. A mandated judge models a (potentially trusted) external auditor which (in the realization) computes
verdicts based on evidence that protocol participants provide. For instance, in some e-voting protocols aiming
for everlasting privacy [36] not all data needed for verifiability of the election can be published. Instead, only a
trusted auditor would obtain all necessary data, including potentially non-public data, to perform the verification
procedure.

We emphasize that in AUC protocol designers are free to define judges in whatever way suitable. In particular,
protocol designers can decide what kind of information judges use/require, whether the information is public
or private, what groups of parties they are responsible for, or whether judges are corruptible. Hence, AUC does
not dictate specific types of judges, and as mentioned, also does not bound the number of judges considered.

Judge dependent accountability properties: We take the view that a judge is responsible for one or more
security properties and one or more parties (not necessarily exclusively). That is, if a security properties is
broken from the point of view of a party, then a judge responsible for this security property and party is
supposed to output a verdict; conversely, without such a verdict the property should still hold true for this party.
For example, consider again accountability w.r.t. counting votes in e-voting. Here it makes sense to have a
public judge responsible for all parties and the correctness of the tallying process, who would output a verdict
when the tallying process was carried out incorrectly. To give another example, in Section 3.2 we consider a PKI
based on Certificate Transparency Logs (CTL). Here, a security property is that there should not be certificates
on the CTL containing a public key that does not belong to the alleged party, say Alice. This property may be
broken for Alice but not other parties, and only Alice can check this property. So here we would have a local
judge responsible for Alice carrying out the necessary checks; as long as this judge does not output a verdict,
all of Alice’s certificates on the CTL should be correct.

We formalize the above in AUC by allowing the adversary in the ideal protocol to mark an accountability

property p as broken for a specific set of judges, and require these judges to output verdicts. From then on,
the property p is no longer enforced by the ideal functionality for those parties that are protected by that set
of judges.

Judicial reports: Judges can provide arbitrary information, such as an aggregated view of collected evidence
to higher-level protocols via the novel concept of judicial reports. Judges in such higher-level protocols can
then in turn also use this information for computing their own verdicts. This is crucial to enable modular design
and analysis of a wide range of accountability-based protocols.

Assumption-based properties: Similarly to accountability properties, AUC formalizes assumption-based prop-
erties in ideal protocols by allowing the adversary to mark the underlying assumptions as broken. If that property
is not additionally protected by accountability, then the property itself is also considered broken. In general,
the assumptions and corresponding properties might hold true for some parties but not for others. For example,
Alice might achieve liveness since all of her messages were delivered within a bounded network delay but
Bob might no longer have liveness as some of his messages were dropped. Hence, just as for judge dependent
accountability properties, the ideal functionality allows the adversary to mark assumptions as broken for a
specific set of affected parties. Those parties then lose security guarantees, unless they are still protected by
accountability.

Supervisor: A new meta party called supervisor collects information about (i) corruption of internal protocol
participants (i. e., those that exist only within subroutines of the real protocol but not in the ideal protocol) and
(ii) broken security assumptions. This information is provided by the supervisor to the environment to guarantee
that the real and ideal worlds coincide in these aspects. In other words, a simulator cannot cheat but has to
keep these aspects consistent.

2.3 AUC Transformation for Ideal Functionalities

We now explain how AUC turns an arbitrary ideal functionality into an accountable one. Let F be an
arbitrary (non-accountable) ideal functionality that enforces a set of preventive security properties Sec, e.g.,
correctness, consistency, or liveness. AUC provides a general transformation 7(-) for such ideal functionalities
F that creates an accountable ideal functionality F*°° where arbitrary subsets of the properties from Sec are
changed to instead be assumption-based and/or accountability properties.> That is, F%° ensures a combination
of absolute properties Sec®®, assumption-based properties Sec**"™Ption " and accountability properties Sec*. The
transformation 7(-) := T2(71(-)) consists of two steps 77 and 75 that progressively modify F to obtain F*° =
T(F). The first step adds the necessary infrastructure to F to be able to express accountability properties, such
as code for the new judge and supervisor roles, but does not yet alter the actual behavior and security guarantees
of F. The second step 73(-) then changes the behavior of F to model the effects of broken security properties.
Next, we define each step.

Step 1: The transformation 77 (F) =: F’ takes as input the original ideal functionality to create an intermediate
functionality F'. This step adds a fixed set of parameters, variables, and static code to F that defines the set
of accountability properties, judges, a supervisor, verdicts, as well as related operations for the adversary (cf.
Figures 1 to 3). The parameters are designed to be instantiated by a protocol designer to customize aspects
of F*¢ that depend on the specific real protocols at hand, e.g., the exact accountability level one wants to
analyze.

The full version of 7;(-) builds the entire range of AUC features into F'. This should be seen as a general
blueprint. Features not needed in the application at hand can be omitted.

Structural changes. Figure 1 specifies structural components, parameters, and state variables that are added
by 71 to F. More specifically, the roles of judge and supervisor are added to F, as well as their corruption
behavior: The supervisor is purely a modeling tool, hence incorruptible. As explained in Section 2.2, whether
judges are corruptible mainly depends on the types of judges that are modeled and is therefore not a priori
fixed by AUC. Protocol designers rather flexibly specify the corruption model for judges by instantiating the
newly added subroutine FjudgeParams (this new subroutine is also used to customize further aspects such as

’It is straightforward to also add entirely new assumption-based and/or accountability properties to F while applying the AUC
transformation. For simplicity of presentation we will leave this option implicit.

Additional roles: judge, supervisor

Additional protocol parameters: {They may be polynomially checkable predicates
- Sec™* C {0,1}~ {Accountability properties
— Sec?ssumetion — {0,1}* {Assumption-based security properties
- pidsjuage C {0,1}" {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
— idSassumption C {0, 1} {set of entities/IDs where properties are ensured via assumptions

Additional subroutines: Fj,dqgeParams
Additional Corruption behavior:
- AllowCorruption(pid, sid, role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:
send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid, FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted
wait for b
return b
- DetermineCorrStatus‘(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status
send (CorruptionStatus?, (pid, sid, judge), internalState)
to (pid, sid, -Fjudgel"arams : judgeParams)
wait for b; return b
- AllowAdeessage(pid, sid, role, pidreceiver; Sidreceiver » rOl€receiver ; m)

Do not allow sending messages to FjudgeParams- { A is not allowed to invoke FjudgeParams in the name of corrupted parties.
Additional internal state: i Stores broken security properties per judge/id,
— brokenProps : (Sec®S'™PtOM | Sec®) x (pidsj,dge U ids ion) — {true, false A N : o

ps: (S S) % (Pidsjudge assumption) { ’ ¥ initially false Ventries

- verdicts : pidsjygge — {0,1}" {Verdicts per p € pidsjuqge, initially €
Stores broken security assumptions per id, initially
false Ventries

- corruptedintParties C {0,1}* x {0,1}* x {0,1}* \ (Roles=” U {judge, supervisor}), initially 0 {

assumption

— brokenAssumptions : Sec X idSassumption —> {true, false}

The set of corrupted internal
parties (pid, sid, role)

“DetermineCorrStatus allows protocol designers to specify whether an entity that is currently not directly controlled by the attacker should
nevertheless consider itself to be corrupted. E.g., a local judge will typically consider itself to be corrupted already if its corresponding party is
corrupted.

bRoles is the set of (main) roles provided by F to the environment. For example, Rolesz = {signer, verifier} for an ideal signature
functionality F := Fiig.

Fig. 1: Parameters and state added by the transformation 77 (F) to an ideal functionality F.

accountability levels; we explain this later). For example, for local judges Fjudgeparams Would typically disallow
corruption if the corresponding protocol participant is honest, and conversely consider the local judge to be
corrupted as soon as the protocol participant is corrupted. As mentioned, the adversary gains full control over
corrupted judges. Further, AUC adds the parameters Sec®* and Sec®*'™P"*" to F, which are instantiated by the
protocol designer to contain exactly those accountability and assumption-based properties (C Sec) she wants
to consider.

The parameter pidsj,4ge specifies the considered (possibly infinite) set of party IDs of (different types of)
judges. For example, the most common types of judges mentioned in Section 2.2 can be model via PIDs
pid; € pidsjudge of the following form: (i) pid; = public identifies a unique public judge, (i) pid; =
(Local, pid, role) models a local judge of protocol participant (pid, sid, role), and (iii) pid; = (mandated,
pid) highlights a mandated judge with PID pid.

In the state variable brokenProps we track for each combination of a security property € Sec®* and judge
€ pidsjudge Whether the property is broken for that judge (and hence, not guaranteed anymore for the parties this
judge is responsible for). Jumping slightly ahead, the second transformation step 75(-) will change the behavior
of the functionality depending on which properties are marked broken for which judges and their governed
parties. The map verdicts stores the current verdict of each judge.

The parameter idS,ssumption defines the (possibly infinite) set of IDs for which an assumption and the
corresponding assumption based property might become broken. For example, (i) id = public can be used
to model a global assumption and property that affects all parties, whereas (ii) id = (local, pid, role) can
model an assumption and corresponding property specific to a protocol participant (pid, sid, role). For each
combination of property € Sec®“™P"°" and ID € idSassumption, We track whether underlying assumptions are
currently broken in the new variable brokenAssumptions. Once assumptions are broken, then the property itself
might also become broken for the affected ID (see below), which again is tracked in brokenProps.

Finally, we add the set corruptedIntParties which tracks corrupted internal parties in a realization in addition
to corrupted main parties that are already tracked by the functionality.

Additional code for the judge role:
recv (BreakAccProp, verdict, toBreak) from NET® to (pid, sid, judge)
s.t. toBreak C Sec®™ x pidsjyqge A verdict maps from pidsjygge — {0,1}":
(successful, leakage) < breakAttempt(verdict, toBreak) {breakAttempt is defined below
reply (BreakAccProp, successful, leakage)

recv GetVerdict from I/0 to (pidj, sid, judge): {The environment can query the verdicts of local and public judges
reply (GetVerdict, verdicts[pid;])

recv (GetJudicialReport, msg) from I/0 to (pidj , sid, judge): {The environment may query for local or public judicial reports
send (GetJudicialReport, msg, internalState) to (pidj7 sid, FjudgeParams : judgeParams)

wait for (GetJudicialReport, report)
reply (GetJudicialReport, report)

Forward judicial report re-
quest 10 FijudgeParams

Helperfunctions:
procedure breakAttempt(verdict, toBreak) : {Process break attempt

Check for all non-¢ verdicts in verdict, ie., Vpid; s.t. verdict[pidj] # e
1. it holds true that verdict[pid,] is a positive boolean expression built from propositions of the form dis((pid, sid, role)),
2. it holds true that eval(verdict[pid;]) = true, b

Check that V(prop, pid;) € toBreak:
3. verdict[pid;] # e,] _
4. brokenAssumptions|[prop, pidj] = true, if prop € Sec®sUmPton A pid; € Sectsumpuon,

if any of the above check fails: FiudgeParams Can impose
return(false,s) further conditions, e.g., on
send (BreakAccProp, verdict, toBreak, internalState) t0 (_, _, FjudgeParams : judgeParams) verdicts or whether it is al-
wait for (BreakAccProp, successful, leakage) lowed to violate breakable
if successful: security properties.
for all Vpid; s.t. verdict[pid,;] # e do:
verdicts[pidj] “— vETdict[pidj] {Record accepted local and public verdict

for all (prop, pidj) € toBreak do:
brokenProps[prop, pid;] < true

return(successful, leakage)

“NET denotes message from the network adversary. I/0 denotes messages from the environment.

beval evaluates the bolean expression, where dis(pid, sid, role) evaluates to true if (pid, sid, role) € CorruptionSet or (pid, sid, role) €
corruptedIntParties. CorruptionSet is a predefined variable of iUC that contains all corrupted main parties of this functionality. We set eval(e) :=
true.

Fig. 2: Judge code added by the transformation 7;(F) to an ideal functionality F.

Additional code for the supervisor role:) A may break
recv (BreakAssumption, toBreak) from NET to (_,_, supervisor) S.t. toBreak C Sec®"™"" X ids,ssumption’ {the_yg assump-
for all (prop, id) € toBreak do: tions

brokenAssumptions[prop, id] + true {Record broken assumptions
if prop ¢ Sec® V id ¢ pidsjuqge:
brokenProps[prop, id] < true
{Record property as broken if not additionaly secured via accountability
send (BreakAssumption, toBreak, internalState)
to (p'ida sid, -Fjudgel”arams : judgeparams)
{-Fjudgel’aram& provides leakage
wait for (BreakAssumption, leakage)
reply (BreakAssumption, leakage)

recv (corruptint, (pid, sid, role)) from NET to (_, _, supervisor)
s.t. role ¢ Rolesx U {judge, supervisor}: {f(\”[;e(zllowed to corrupt internal protocol
corruptedIntParties.add((pid, sid, role)) parties
reply (corruptInt, ack)
recv (IsAssumptionBroken?, prop, id) from I/0 . .
. . . . The environment may ask whether proper-
to (_,_, supervisor) S.t. id € idssssumption® X
if prop € Secassumption. ties are broken
reply (IsAssumptionBroken?, brokenAssumptions|[prop, id])
else:

reply (IsAssumptionBroken?, 1)

recv (corruptInt?, (pid, sid, role)) from I/0 to (_,_, supervisor)
s.t. role ¢ Rolesr U {judge, supervisor}:
{The environment may ask for the corruption status of internal parties
if (pid, sid, role) € corruptedintParties:
reply (corruptInt,true)
else:
reply (corruptlnt, false)

Fig. 3: Supervisor code added by the transformation 77 (F) to an ideal functionality F.

Judges. Figure 2 specifies the code AUC adds to ideal functionalities to model judges. Each judge in AUC is
an entity of the form (pid;, sid, judge) where pid; is the judge’s PID running the fixed judge role.

The adversary can try to break accountability properties € Sec** by sending a BreakAccProp message to the
ideal functionality, which contains a list of properties including the judges C pids;j,qge for which these properties
shall be broken as well as a list of new verdicts for (some of the) judges. After receiving the message, the ideal
functionality first checks whether this attempt meets all minimal requirements for accountability, i.e., (i) all
(non-empty) verdicts are positive boolean formulas, (ii) all verdicts are fair based on the current corruption
status of main and internal parties, (iii) if a property is marked as broken for some judge, then that judge also
outputs a verdict, and (iv) accountability properties that are also assumption-based properties may not be broken
as long as the underlying assumptions still hold true. If the attempt passes these checks, F’ forwards the attempt
(including its full internal state) to the subroutine FjuqgeParams, Which decides whether the attempt actually
succeeds and whether/which information is leaked to the attacker, say, because a privacy property was broken.
By instantiating FjudgeParams @ protocol designer can therefore customize the exact level of accountability and
also relationships between properties. For example, an instance of FjudgeParams might require verdicts to have
the form “dis(A)”, i.e., identify exactly one misbehaving party, thereby providing individual accountability (cf.
Section 3 for examples with different accountability levels). It might also require that, if a property connected to
a party is broken, then the same property must also be broken concurrently for others, capturing the relationship
that several/all parties are affected and thus able to compute verdicts simultaneously (cf. Appendix G).

The environment can query judges of F’ to obtain their current verdicts and their judicial reports. For verdicts,
F' returns the last accepted verdict. For reports, F' calls FiydgeParams Which can compute the report based on
the entire internal state of F’. This allows a protocol designer to customize which information is contained in
such reports by instantiating FjudgeParams appropriately (see Section 3.1 for an example).

Supervisor. Figure 3 presents the code added for the supervisor. The adversary can send a BreakAssumption
message to mark the assumptions as broken that underlie some properties p € Sec®**"™""" for some set of
IDs C idSassumption- Assumption-based properties also protected by accountability, i.e., p € Sec®“ and id €
pidsjudge N idSassumption, are not yet marked as broken; for these, the adversary still has to issue a BreakAccProp
message to id with a valid verdict. Otherwise, breaking the underlying assumption also breaks the property.
The adversary may further mark arbitrary internal parties as corrupted. These parties can then also be blamed
in verdicts.

As mentioned, the environment can ask the supervisor whether assumptions are marked as broken and whether
internal parties are marked as corrupted. Note that 7’ does not impose any limitations on when assumptions can
be marked as broken but only ensures — by providing this information to the environment — that this occurs if and
only if assumptions are broken in the realization. By this, the realization can specify the exact conditions and
limitations for broken assumptions without requiring any modifications to F’ each time a different realization
is considered (cf. Sections 2.4 and 2.7).

Step 2: The second step of the transformation 75 specifies the effects of a broken property. Observe that the
exact implications in terms of behavior of F strongly depend on the individual security properties. Therefore,
T2, unlike 77, cannot simply be a fixed set of variables, code that need to be added to a functionality, or even a
black-box transformation of F’. Instead, 75 rather constitutes a more abstract guideline on how the functionality
F’ has to be modified. Importantly, such modifications must not alter the behavior when security guarantees
hold true since we want to retain the same security guarantees of F in those cases:

Definition 1. Let F' := T1(F). Let F*° := T3(F') be a functionality obtained by introducing additional
behavior for capturing broken security properties. We say that F°“ is an accountable transformation of F if
the behavior of F°“ and F' is identical in all runs until a security property is marked as broken.

Technically, modeling the effects of a broken security property p € Sec® U Sec®U™Pto" affecting some

ID id € pidsjudge U idSassumption (specifying, e.g., an affected party), generally entails introducing (one or
more) conditional clauses of the form “if (p,id) is not marked as broken then <original behavior> else
<new behavior>". As the name suggests, <original behavior> denotes the original unchanged behavior of
the functionality F, i.e., the code that enforces p. The code <new behavior> then defines what “breaking p”
actually means, typically by giving more power to the adversary.

For example, if F := F, is an ideal signature functionality and p = unforgeability (for, say, id =
public, modeling public unforgeability), then <original behavior> is a check during signature validation

_I interface I interface I interface

I
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Fig. 4: Example of machines and connections in an accountable real protocol P with ideal (possibly
accountable) subroutines i, ..., F,,. Blue components are added by AUC.

that, if it detects forgery of a signature, returns false irrespective of the actual result of signature validation.
Breaking this property would simply disable this forgery check, i.e., <new behavior> is empty. Thus, if a
signature is forged if unforgeability is broken, the transformed version of Fg;; might actually return true.

More complex conditional statements can be used as well to capture advanced relationships of properties.
For example, consider privacy in MPC protocols. The statement “if there are at least t PIDs pid; of local
Judges such that (privacy, pid,;) is marked as broken then <leak secret information>" captures a threshold
relationship of local properties: in order to break privacy, the adversary has to mark privacy as broken for at
least ¢ parties.

Observe that all transformations 75 following the form described above always satisfy Definition 1. That
is, the resulting ideal functionalities 2 := T5(71(F)) are indeed accountable transformations of F as per
Definition 1.

2.4 AUC in Real Protocols

As illustrated in Figure 4, modeling accountability in a real protocol P using AUC mainly entails adding
and specifying a supervisor and several judges that correspond to the ones in the ideal protocol. Again, not
always all of these components are needed and can be omitted if not used.

Judges. The concrete definitions of judges in real protocols formalize (i) the judging algorithms used for
computing verdicts, (ii) inputs and hence evidence needed for obtaining the verdict, (iii) which parties are
supposed to provide which information as evidence, and (iv) to whom evidence is provided, namely, the party
that is running the judge. We exemplify modeling of real judges for the most common types of public, local,
and mandated judges: Intuitively, a public judge computes verdicts solely based on publicly available/verifiable
data such as information from a public bulletin board or data that individual parties are willing to provide and
therefore publish even to external observers. Since an honest party can always locally execute the public judge,
the public judge is modeled to be incorruptible. To make formally explicit in the security analysis that also
an attacker might run the public judge, public judges should generally publish all collected information via
their network interface to the environment. For the same reason, if a public judge is allowed to interact with
other parts of the protocol, e.g., to verify a signature in an ideal signature functionality F;g, then typically the
judge should provide a network interface for the environment to be able to perform the same interactions.> We
provide a concrete example of a public judge in Section 3.1. Local judges, typically one per (main) protocol
party, use public information and also (private) data that protocol participants are willing to share with the
party running the local judge but might not want to fully publish. In addition, since a local judge is run by
a party herself, it also takes as input the entire internal state and possibly history of that corresponding party,
including any private information, to compute a verdict. A local judge should be considered to be corrupted iff
its corresponding protocol participant is corrupted. We provide concrete examples of local judges in Sections 3.2
and 3.3. Mandated judges reflect the judging procedure of an external mandated auditor, which takes as input
publicly available data and also (private) data that protocol participants are willing to share with the auditor.
Whether (some of the) mandated judges are corruptible depends on the setting that shall be modeled.

3This modeling of public judges is similar in spirit to modeling random oracles. A random oracle represents a public function, which
is captured by being incorruptible but providing outputs via an additional network interface to the environment.

10

When evaluating evidence, real judges often obtain or compute additional information that might be useful
for and can even be required by higher-level protocols. Such information can be shared via judicial reports (we
discuss the need for this novel concept, including example use cases, in Section 2.7).

Supervisor. A supervisor in a real protocol forwards the corruption status of internal protocol participants and
specifies when exactly the assumptions underlying an assumption-based property for some party/ID must be
considered broken.

This generally involves gathering data from other parts of the protocol. For example, consider a property
p € Sec®™Umption that relies on an honest majority assumption and thus affects everyone (i.e., id = public),
e. g., consistency in Bitcoin [48]. That is, a protocol only ensures p if more than half of the protocol participants
are honest. To determine whether the protocol still ensures p, the supervisor would check whether a majority of
the protocol participants is still honest. If the majority is lost, the supervisor would indicate that the assumptions
for p are no longer met and thus the protocol might no longer guarantee p.

As we discuss in Section 2.7, our novel concept of a supervisor is necessary to be able to capture a wide
range of assumption-based properties as well as real protocols with arbitrary internal structures, such as client-
server protocols (e. g., [14,55]). Our case studies in Sections 3.1 and 3.2 provide concrete examples and indeed
require a SUpervisor.

2.5 Composable Security Analysis in AUC

A security analysis in AUC consists of a realization proof where one shows that the protocol P at hand
indeed realizes (in the UC sense) the accountable ideal functionality /. Among others, this formally proves
that P*° enjoys the desired security properties, including accountability properties. Since AUC works within
existing UC models and uses the standard realization notion, one can now, as usual, build an (accountable
or traditional) higher-level protocol Q*° using F* as a subroutine (written (Q° | F2)) and prove that it
is secure, i.e., realizes some F'*“°. The composition theorem of the underlying UC model then immediately
implies that also the composed protocol (Q*¢ | P¢) using P** instead of F2¢ still realizes 7', i.e., achieves
all desired strict, assumption-based, and/or accountability properties.

In an accountable higher-level protocol Q*°, the judges can and typically will obtain verdicts and judicial
reports from the subroutine judges in F2°° resp. P?°. This information can then be used by higher-level judges to
compute their own verdicts and reports (cf. the BFT example in Section 2.7 and our case studies in Sections 3.1
and 3.3 for higher-level judges that rely on lower level judges). We note that we do not impose any restrictions
on which lower-level judges a higher-level judge may access. For example, often a higher-level local judge
of some party will only use local subroutine judges belonging to the same party. This models that the party
executes all of its judges from all protocol layers iteratively and can re-use the results of previous computations,
such as verdicts identifying misbehavior in subroutines, in the following computations. However, a higher-level
local judge can also, e.g., obtain the verdicts of lower level judges of different parties, modeling that one party
uses the (claimed) results of other parties. While these results might not necessarily be trustworthy, a higher-
level judge might, e.g., be able to aggregate and perform majority voting to obtain a fair result, or achieve a
weaker level of accountability that considers the possibility of the subroutine judge lying in their verdict.

2.6 Deterrence Analysis

In addition to the UC security analysis, protocol designers should perform a cost-benefit/deterrence analysis
of the (possibly composed) real protocol to determine whether honest parties are willing to take part in the
protocol and whether accountability indeed deters rational adversaries from misbehavior. This analysis can
be performed using any standard approach from the literature. As a simple example, based on the approach
by Asharov et al. [6] we describe one possible concrete mechanism for this purpose. For a rational acting
honest party p;, one considers the utility/profit U}, for running the protocol, the cost U}, for disclosing
private data as evidence to judges, and the loss due to (falsely) accusation U}, (by a corrupted judge). For a
rational but maliciously acting party p;, U’ . is the potential utility/profit from misbehaving, U ; is the cost
for misbehaving (e.g., reputation loss or contractual penalties after being detected), and U is the cost for

11

providing (possibly maliciously crafted) evidence to judges. Now, accountability provides a suitable security
mechanism in a practical deployment if

Upp = Uhg — Upp > 0 and (1)
Unp = Upp = Upp 2 Upp = Upp = Upp,)

i.e., honest parties benefit from and hence are willing to take part in the protocol (Eq. (1)) and malicious parties
are deterred from misbehaving as they stand to gain more when honestly following the protocol (Eq. (2)).

Often, the result of such an analysis will be obvious. For example, if CAs in a PKI are detected misbehaving,
they typically have to close business [92], i.e., U’ ; will be much higher than U! . We also note that
utilities/costs might depend on the context/higher-level protocol that a subroutine will be deployed in. For
example, the potential profit U’ , for tempering with an accountable bulletin board is very large if it is used
as subroutine in an e-voting protocol for a major political election. But U, » might be negligible if the bulletin
board is just one out of several redundant backups in a distributed cloud storage protocol. In such cases a
deterrence analysis cannot be performed for individual components but should rather be performed after fully
composing the entire real protocol.

2.7 Discussion

AUC is the first general purpose accountability framework for UC models. It builds on and extends existing

concepts but also introduces entirely new concepts that are required to construct such a general framework.
Here we discuss these concepts and relate them to existing literature.
Accountability properties: AUC formalizes a property-based interpretation of accountability, i.e., security
properties might be broken as long as misbehaving parties can be identified and blamed. This is a standard
interpretation that is widely established and used in the area of formal protocol security analyses [33,42-
45,52,57,62,63,67,68,79]. There are other (often informal) interpretations of accountability, also outside of the
field security (cf. [46]). A relatively close one in the domain of security requires that any object/message/action
can be connected to its originator, e. g., by requiring all parties to sign (cf., e. g., [25,27]). This interpretation
is orthogonal to the property-based interpretation. For example, in e-voting it is important that one cannot trace
back ballots to individual voters but one can still achieve property-based accountability for such protocols,
namely correctness/verifiability of the election result (see, e.g., [69]). Conversely, even if the election servers
sign all their messages, it might not be possible to verify from those messages whether all votes were counted
correctly. That is, the protocol might not provide accountability for correctness of the election result.

Verdicts: The game-based model of Kiisters et al. [67] defines verdicts as boolean formulas to be able to express
different levels of accountability. We transfer this concept to the setting of universal composability. This allows
AUC to capture a wide range of common accountability levels, from strong individual accountability to very
weak levels where, say, a verdict only says that someone misbehaved but gives no further information on who
exactly is at fault.

Judges, Relationships, and Judge Dependent Properties: Judges are an integral part of the specification of
protocols since they define the routines, including inputs, that are used by that protocol to detect misbehavior. A
formal analysis can then verify for a given detection routine whether it provides (property-based) accountability.
Hence, judges are used (at least implicitly) by all works that formally analyze (property-based) accountability
(e.g., [6,13,34,37,54,62,63,67,79,87]).

There is a division in the existing literature concerning relationships of security properties: On the one hand,
prior general frameworks for accountability such as [62,63,67,79] consider only a single (public/local) judge
running at the same time. Hence, these general frameworks cannot actually capture relationships of properties
where different parties and/or different types of judges are affected at the same time. This includes, e.g.,
all local judges obtaining the same verdict or a security property holding true until at least a threshold of ¢
judges (possibly a mixture of local, mandated, and/or a public one) detect misbehavior. On the other hand,
there are works that have already considered and analyzed such relationships by proposing specialized security
models that hard code a certain relationship for a specific property and setting. This includes, for example,
[6, 8, 14,55, 85] which require for identifiable abort in MPC protocols that honest parties agree on the culprit,
i.e., their local judges compute the same verdict.

12

AUC is the first general accountability framework that can capture such relations. At its core, this is enabled
by considering multiple concurrent judges and judge types as well as judge dependent properties. Appendix G
illustrates this feature.

Judicial reports: This novel concept introduced by AUC allows judges from different protocol layers to
exchange information, which is often required to perform a modular analysis.

For example, consider a publicly accountable BFT consensus algorithm used as a subroutine by a higher-level
protocol P, As long as the (lower-level) public judge Jppr in the BFT algorithm does not detect misbehavior,
she will typically be able to compute the consensus established among the parties from the available evidence. In
P¢, misbehaving parties might be able to break security properties by deviating from the consensus established
in the BFT subroutine. Hence, for a higher-level public judge Jpa« to detect who deviated from the consensus
he must first learn the correct consensus. But Jpae cannot compute this on his own since, by UC composition,
he does not see the internals of the BFT subroutine but only gets restricted access via a limited interface. AUC
solves this issue and enables a modular analysis by extending this interface via judicial reports: JppT, who has
full access within the BFT subroutine and who can thus compute the unique consensus if it exists, can provide
this information as part of a report to Jpac. See also our case study in Section 3.1 for a composed protocol
whose modular analysis requires judicial reports.

Supervisor: AUC is the first framework that allows for modeling and analyzing the combination of assumption-
based and accountability-based security for the same properties in a UC model. It is also the first framework
that supports modeling and analyzing accountability of real protocols with arbitrary internal parties without
assuming any specific internal structure. Both of these features are enabled by, among others, the novel concept
of a supervisor.

To formalize the guarantees of assumption-based properties the behavior of the ideal functionality has to change
depending on whether the assumption currently holds true. Note that for many assumptions an ideal functionality
cannot actually determine whether they are still met as they often depend on internals that only exist in the
realization. For example, liveness properties of blockchains typically assume that an internal network subroutine
in the real protocol has a bounded message delivery delay; such a network subroutine does not necessarily exist
in the ideal functionality. The supervisor solves this issue: firstly, the realization of the supervisor can specify
the exact conditions under which an assumption holds true while having full access to all information of the
real protocol. By allowing the environment to query whether assumptions are currently broken, the supervisor
then further ensures that the assumption will be marked as broken in the ideal functionality if and only if the
conditions specified in the real world are no longer met. Hence, e. g., an ideal blockchain functionality would
enforce liveness iff the real blockchain supervisor determines that the real network still has a bounded message
delay. Our case study in Section 3.1 underlines the need for this aspect of supervisors.

Verdicts in (possibly composed) real protocols might have to blame internal protocol parties, e. g., servers in
client-server protocols [50, 85], where clients are main parties that are available to higher-level protocols while
servers are purely internal subroutines. Since only main parties but not any of the internal parties of the real
protocol also exist in the corresponding ideal protocol, we use the supervisor to ensure that the simulator can
mark internal parties as corrupted in the ideal functionality iff they are corrupted in the real protocol (the same
property is already guaranteed for the main parties by the underlying model). This mechanism is necessary to
ensure that verdicts which are fair in the ideal functionality are also fair in the realization. Our case studies in
Sections 3.1 to 3.3 rely on this use of the supervisor.

Composition: The combination of the above concepts is what allows AUC, for the first time, to capture
UC compositions of arbitrary accountability-based protocols. This is further illustrated by our case studies in
Sections 3.1 and 3.3, which are the first modular accountability analyzes for these settings and protocols.

Since AUC works within an arbitrary UC model, AUC inherits and preserves all features of the underlying
composition theorems. In particular, if the underlying model supports composition with global state (e. g., [9,
17,18, 71]), then it is possible to make some or all of the subroutine judges within a composed protocol globally
available to the environment and arbitrary other concurrent protocols.* Whether it is sensible to consider globally
available or rather private subroutine judges depends, as with most other global functionalities, on the protocol
and the context that is modeled. For example, local judges within composed MPC protocols (cf. Appendix G)

4We note that, as observed by [9, 17,71], the same UC security proof of the subroutine already implies composition with and without
globally available subroutine judges.

13

G CEIES o Ty (P90 8 (P | Y Y

T — —N, Scaling
scdy scd,, Protocol
CDy - f---mmmmmmmm - - -CDg-t---====-=---- -CD,,-|---
cedy cedn Consensus
Y Protocol

[cs)
Fig. 5: Consensus scaling: a central service CS establishes consensus. Consensus is distributed via distributors

CDy,...,CD,,. The CD connect to CS via their CS-clients ccdy, ..., ccd,,. The CDs distribute consensus
via server components scdy, .. . ,scd,, to their clients cly 1,cly2,. ..

should typically be modeled as private: the subroutine is supposed to be used only within a single context,
namely the MPC protocol, and there is no reason for Alice to share the verdicts and judicial reports of her
internal subroutines with arbitrary other parties, protocols, and the environment. In contrast, one might consider
modeling judges belonging to a PKI subroutine (cf. Section 3.2) to be globally available within a composed
protocol if the same PKI is supposed to be shared by multiple different protocols.

We note that the main difference between global and private subroutine judges is whether only one or multiple
higher-level protocols can be composed with the same subroutine. Hence, when only a single specific higher-
level protocol has to be considered, then an analysis with a private subroutine is generally already sufficient.

3. CASE STUDIES

In this section, we exemplify the usage and features of AUC via three case studies: an accountable scaling
protocol, a simplified version of the Web PKI including CTLs, and a key exchange protocol based on an
accountable PKI. We provide for each case study a brief deterrence analysis in the appendix. Additionally
— as a sanity check — we cast existing accountability definitions from the UC MPC literature into AUC in
Appendix G.

3.1 Scaling Accountable Consensus

In this case study, we analyze a common situation from practice, namely, a scaling protocol built on top
of a consensus service (CS), cf. Figure 5. The purpose of this scaling protocol is to increase throughput and
hence support a larger number of clients. This is achieved by introducing an additional layer of intermediate
servers (called CD in Figure 5) that regularly obtain the established ordered sequence of messages/the consensus
from the underlying CS, cache the result, and then use this cache to answer incoming requests from clients.
This scaling approach is commonly used, e.g., by the prominent Hyperledger Fabric blockchain [3,50], the
Hashgraph consensus service [11], and content delivery networks [39].

More specifically, in this case study our goal is to scale a consensus service that provides public and individual
accountability, takes inputs from clients, appends them to a globally unique ordered list/state, and gives all
clients access to this global state. In particular, if a client does not obtain a prefix of the (same) global state,
then a judge, based on public evidence, can blame a misbehaving party. We want to show that the composition
of a suitable scaling protocol on top of this service retains all properties of the underlying consensus service,
most notably public individual accountability. Note that consensus might fail due to misbehavior of parties in
CS but could also be introduced by the scaling layer.

This case study exemplifies several features and aspects of the AUC framework, including (i) accountability
and assumption-based security properties, (ii) public accountability, (iii) individual accountability, (iv) compo-
sition using judicial reports, which are required to express this case study, and (v) complex protocol structures,
namely a client-server protocol with internal, potentially malicious parties/servers. Full details, including formal
specifications of all UC machines, functionalities, and a full security proof are available in Appendix D.

14

The scaling protocol. We consider a scaling protocol that has the structure depicted in Figure 5 and works
as described in what follows. While this scaling protocol is a custom one that we chose to illustrate AUC, the
general construction is similar to Hyperledger Fabric and Hashgraph. Hence, this case study can serve as a
basis for the first UC accountability analysis of these protocols in future work.

Transaction submission: When a client, say cly 1, submits a transaction (after receiving that transaction from
some higher-level protocol), she adds her identity, signs the resulting transaction, and then sends (via an
unprotected network) the signed transaction to her consensus distributor (CD), here CD;. The CD is divided
into two components: a server part called SCD which interacts with higher-level clients and a client part CCD
which interacts with the CS. An SCD verifies the signature of incoming transactions from higher-level clients
and then starts acting as a client CCD towards the CS to add the signed transaction to the globally ordered
state. This involves running the code of a client, e.g. ccd;, as specified by the underlying consensus protocol.
Depending on the consensus protocol, this client code might, e.g., also add its own signature to the signed
transaction.

Accessing the global state: A SCD, say scd;, regularly calls the client code ccd; to obtain a current copy
of the global state from the CS. scd; then signs (with the key of CD;) and caches this global state. Whenever
a client, such as cl; 1, queries its SCD for the global state, the SCD, here scd;, responds by returning the most
recent signed cached copy of the global state, hence, reducing the load of the CS. cl;,; accepts and outputs the
message to a higher-level protocol if the signature by CD; on the whole state is valid.

Security properties. We consider two security properties for both the underlying and the scaled consensus
protocols, formalized by an ideal functionality (see below):

Public individual accountability w.r.t. consistency: Clients (both of the scaling protocol and the CS) obtain
a prefix of the same global state or can identify an individual misbehaving party. This definition follows the
game-based accountability property formalized for Hyperledger Fabric in [50] but using AUC takes it to the
composable UC setting. As mentioned, we want to show this property for the composition of the scaling protocol
and the consensus protocol.

(Assumption-based) liveness: Liveness states that transactions submitted by honest clients (of the scaling
protocol and CS) will be part of the global state after at most § time units assuming a network with bounded
message delay (cf., e. g., [48,50,78, 80, 89]). To illustrate assumption-based properties, our analysis extends to
the case that, at some point in the run, the underlying assumption of a network with bounded message delay
might no longer hold true.

C
accountable) ideal consensus service functionality ., that is essentially a simplified version of established ideal

ledger functionalities, e. g., [10, 51], tailored towards the special case of consensus establishment. F., enforces
consistency and liveness as preventive security properties. We then apply AUC to obtain an accountable version
Fé& (cf., Figure 9 and 10 in Appendix D) that captures the above security properties. More specifically, we
set Sec®™ = {consistency} and Sec®*"™P"°" — {1iveness}. Note that 1iveness ¢ Sec®™, and hence, Fes©
will not require judges to blame anybody (e.g., the network) if liveness fails.

We start by explaining Fp and then the AUC transformation to derive FE°. Fop itself consists of an
unbounded number of clients who offer a read and write interface to higher-level protocols. These clients can
write transactions to and read from a single globally ordered list/state in F.,. Upon writing a new transaction,
Fp models network traffic by allowing the simulator to determine when and in which order these transactions are
appended to the global state. F, guarantees that all incoming transactions by honest clients will be appended
to the global state after at most § time units. More formally, ., models (absolute) preventive liveness by
disallowing the attacker from advancing time as long as there are pending transactions that have not been
added to the state since 0 time units. Whenever F, receives a read request from an honest client from a
higher-level protocol, F, allows A to determine the prefix of the global state that will then be returned to the
client. For read requests received by corrupted/malicious clients, i.e., clients that are under full control of the
adversary, Fcp always allows A to freely determine the output of Fp.

To derive FZ;¢ from Fp, we implement the AUC transformation step 72 as follows. (i) FZ° includes one
incorruptible public judge (in a protocol session), i.e., pidsj,dge = {public}, and considers only assumptions
that affect all parties (in a session), i.e., idSassumption = {public}. (ii) As soon as liveness is marked broken
(for id = public), & no longer enforces that messages are added to the global state within 0 time units.
(iii) If (public) consistency is broken, FZ7¢ allows A to freely determine the output of FZ° in turn for a fair

The ideal accountable consensus functionality F:7¢. To define F&°, we start by considering a (non-

15

I interface _I interface _I interface

$ interface

= -6 =)

Fig. 6: Illustration of Theorem 1. All machines are also connected to A.

verdict matching the customization in F{ 08, . The subroutine Fj %%, . forces A to provide a verdict
which implies individual accountability, i. e., all parties in the verdict can rightfully be blamed for misbehavior.
As long as there is no verdict reached yet in FZJ°,]-"ﬁfg;%arams’s public judicial report returns a view on the
global state which contains at least the longest prefix that was read by an honest client so far (everything else
after this prefix can be chosen freely by .A). If there has been a verdict, the report is empty.

By this construction, FZ5¢ indeed models the desired security properties (individual public) accountability

w.r.t consistency and assumption-based liveness.

Protocol Model. We model the scaling protocol from Figure 5 via a hybrid protocol as depicted in Figure 6.
Specifically, the client machine models the code run by the clients cl; ; and the internal machine scd models
code of the SCD. The ideal subroutine FZ;¢ models an ideal accountable consensus protocol used by the scaling
protocol, i.e., it abstracts the code of the CCD and the code of the consensus service CS, all of which are
specified in a realization of FZJ¢ (we discuss a possible realization at the end of this section). In a run of the
protocol, there can be an unbounded number of instances of client and scd, each modeling one party in one
protocol session. These parties additionally have access to an ideal signature functionality Fccy (Which includes
a PKI) and an ideal network functionality F,; with bounded message delay ¢’. The adversary is allowed to
break the assumption of a bounded network delay in F,.¢ by sending a special message.

Observe that the CD consists of two components, SCD and CCD, modeled via separate machines, i.e., the
server component scd and the client component in FZ°, but should be considered corrupted as soon as just
one of those machines misbehaves. We capture this expected property by considering a party running scd to
be corrupted also if the corresponding client in FZ7¢ is corrupted, i.e., we use the corruption state of scd to
represent the corruption status of the combined CD. This idea allows for capturing individual accountability also
in a composed protocol, where the same party takes part in multiple parts of a protocol and hence needs to be
split into multiple machines. Without this mechanism the judge would be required, by individual accountability
and fairness, to identify whether SCD or CCD has misbehaved. In addition to the above, since we identify a
party (running client or scd) with its signature key, we also consider parties to be corrupted if their signature
key is corrupted.

Two important aspects of the protocol model are the specifications of the public judge and the supervisor.
The judge collects the evidence from clients and from the lower-level judge. That is, clients provide all
sequences of messages/states that they received from SCDs (include SCD’s signature over the state) to the
judge as evidence. This judge also queries the public judge of the subroutine FZ° to get the most recent
verdicts and judicial report from FZ¢. If the subroutine judge returns a non-empty verdict, then the judge
outputs the same verdict since a misbehaving party was already found in the subroutine and hence consensus
might no longer hold true. Otherwise, the judge verifies that evidence provided by clients is (i) correctly signed
by a CD/SCD and (ii) the provided state is a prefix of the current judicial report, i.e., the correct consensus
as determined by the public judge in the subroutine consensus protocol. If the first check fails, the client’s
evidence is not valid and is discarded. If the second check fails, the SCD violated consistency as it signed and
forwarded a sequence of messages that differs from the established consensus. Hence, in this case the judge

16

blames an individual SCD. In all other cases no misbehavior was detected and the verdict remains empty.
For judicial reports, judge simply forwards the judicial report from the consensus protocol. The public judge
follows the modeling as explained in Section 2.4 and, e.g., she reveals all gathered evidence to the network
adversary.

The supervisor determines whether the assumptions needed for liveness still hold true by querying (i) Fet
to check whether the bounded network delay is guaranteed and (ii) the supervisor of FZ¢ to check whether
liveness assumptions for the subroutine are still met (via IsAssumptionBroken?). If any of these checks fail,
the supervisor returns that liveness assumptions no longer hold true. Hence, only in this case is the simulator
in the ideal world allowed to actually break liveness.

UC Security Result. Our security result (cf., Figure 6) states that the scaling protocol PS¢ using an ideal
accountable consensus service subroutine]-"?;C is still an accountable consensus service, i.e., all security
guarantees are retained and hence the scaled protocol is also a realization of FZ

Theorem 1. Let PE¢ and FE° be as described above. Then,
(Page | Fage) < Fage.
We provide the formal proof for Theorem 1 in Appendix D.

Discussion. Using the iUC composition theorem, the ideal subroutine FZ5° of P can be replaced with an
arbitrary realization while retaining security results. The perhaps simplest realization consists of clients with
access to a consensus service run by a single party, analogous to what is shown in Figure 5 (if CS were
considered one party), where the consensus party signs its outputs to provide accountability. By Theorem 1,
one can also realize the subroutine FZ° via another copy of PZ°, i.e., one can iterate the above scaling
approach to add additional scaling layers. Security of such a protocol with multiple scaling layers is then
directly implied by Theorem 1 and the composition theorem. This nicely demonstrates one of the advantages
of composition for accountability properties.

These kinds of composition results are enabled by several features offered by the AUC framework, most
notably our novel concept of judicial reports. Indeed, if the public judge in the subroutine FZ° had been
unable to share his knowledge (i. e., a consistent view on the global state of the subroutine) via a judicial report
with the higher-level judge in the scaling protocol, then the judge would be unable to decide, given two
inconsistent views, whether CS or CD (CDs in the case of multiple layers) have provided inconsistent views.
Without judicial reports, it would thus be impossible to prove individual accountability modularly.

As mentioned at the begin of this section, this case study illustrates the possibilities of AUC. Most notably,
composability of accountability-based protocols enabled by judicial reports, the supervisor concept, handling

of assumption-based and accountability properties concurrently, and blaming of internal parties (CD).

3.2 An Accountable PKI for the Web Based on CTLs

In our second case study, we analyze accountability of a Web PKI based on Certificate Transparency Logs
(CTLs) [32,72]. For the sake of presentation, we consider a slightly simplified version that does not include
certificate revocation. We show that such a PKI with CTLs indeed achieves the expected property of certificate
transparency [72], i.e., accountability w.r.t. certificate correctness. That is, if someone obtains a certified public
key for Alice from the PKI, then either this key was indeed registered by Alice or Alice can identify and blame
a misbehaving CA for issuing a wrong certificate based on the information provided by CTLs. In Section 3.3,
we analyze and prove the security of a standard key exchange (KE) protocol composed with this accountable
PKI protocol.

This case study along with the KE protocol uses several features of AUC, including some that were not
yet illustrated in Section 3.1, such as (i) local accountability, (ii) individual and group-based accountability
levels, and (iii) composition, including the case where higher-level judges use verdicts from lower level judges
belonging to different parties. Altogether, using AUC, we are able to perform the first UC analysis of a CTL-
based PKI and protocols based thereupon.

In what follows, we present our case study with full formal specifications available in Appendix E.

Protocol Description. As depicted in Figure 7, the roles in a CTL-based PKI protocol are (i) clients, (ii) CAs,
and (iii) CTLs. Clients request CAs to issue a certificate for them and query CAs for certificates of other clients.

17

!
|
|
|
client | cal cay
|
I
I
I
[}
|
|
|
|
|

register .
pre-cert .
- certificate :

e e

retrieve cert _ :

1 = I

B Heliver cert if certin :
e localstate | 1 - - - - - - = - _

monitor

monitor response

Fig. 7: CTL-based PKI protocol

Here we consider clients that certify at most one key.> More specifically, to certify a new key a client sends a
registration request, containing its pid and the public key via an authenticated channel to a CA. When a CA
receives a registration request, it checks that it did not issue a certificate for pid so far. If the request passes
the check, the CA generates a pre-certificate containing the original request and a signature of the CA. The CA
forwards the pre-certificate to potentially several CTLs. When a CTL receives a pre-certificate, it verifies the
CA’s signature. If the signature is valid, the CTL finalizes the certificate and also signs the certificate. CTLs
store the certificates they signed/issued and allow clients to monitor these certificates. The underlying idea is
that clients can detect identity theft by retrieving certificate lists from CTLs regularly and checking whether
there are any certificates in their name that they did not request; we call these maliciously created certificates
in what follows. Finally, a client pid can ask to obtain the certificate for another client pid’ from a CA if such
a certificate was issued by that CA.

Security Goal. Informally, a CTL-based PKI protocol such as the one presented here is supposed to achieve
the security goal of accountability w.r.t. certificate correctness (typically called certificate transparency): honest
parties detect maliciously generated certificates for their own identity after some bounded time delay. We denote
this local accountability property in what follows by “correctCert”. As long as correctCert holds true for a
dedicated client, this means that the client actually requested the available certificate and there is no maliciously
generated certificate available in the PKI.

The ideal PKI functionality F357¢,. We formalize the property just sketched starting with a non-accountable
ideal PKI functionality Fpk; that is analogous to Canetti et al.’s ideal functionality Ggg [27] and the ideal
CA Fpxi from [17]. We then apply AUC to obtain an accountable version F3%; that captures accountability
w.r.t. certificate correctness.

Clients are the main roles of Fpki; CTLs and CAs are internal parties of potential realizations of Fpki.
Fpxi allows (honest) clients to register one certificate for their own identity at some CA. The adversary A
decides when and whether a registration is successful. If it succeeds, Fpkr issues the certificate (consisting of
the party’s pid, a string, meant to be the party’s public key, and the name of the issuing CA) and adds the
certificate to its state. When parties query Fpk; for a certificate of an honest pid’ issued by a certain CA, A is
free to choose when and whether Fpk1 answers the request. If A instructs Fpk7 to respond, Fpky provides the
unique certificate for pz’d’ (as stored in Fpky’s state) or it outputs L if there is no certificate recorded at that
CA. For corrupted clients pid’, Fpk1 does not provide any guarantees but lets A freely determine the response.

SThis is not an actual restriction. Higher-level protocols can certify multiple keys for a single identity pid’ by setting, e.g., pid =
(pid’, keyid).

18

We now apply AUC to Fpxg to derive F3% which additionally captures local accountability w.r.t. certificate
correctness. We include a local judge ((local, pid,client), sid, judge) for every client (pid, sid,client)
in Fpxi, i.e., pidsjydge C {local} x {0,1}* x {client}. We set Sec® = {correctCert}. This allows the
adversary to indicate that certificate correctness is broken for some client pid as long as the adversary provides
a verdict to the corresponding local judge. We require that these verdicts blame individual CAs, i. e., the affected
client pid can identify those CAs that misissued a certificate in their name. This is enforced by instantiating
ﬂicgéfélmms to check that verdicts are of the form A_, dis(CA;), where CA; are parties with the (internal)
ca role. If correctCert is broken for a pid, then F3%; treats pid in the same way as corrupted parties for
the purpose of retrieving certificates, i.e., the adversary can return arbitrary certificates issued for pid.

Security model. We model the CTL-based PKI as a real protocol Pp{;; which implements the previously
mentioned roles and operations. We model dynamic sets of clients, CAs, and CTLs. Clients and CAs can be
dynamically corrupted, whereas CTLs act as trust anchor and are hence incorruptible.® P35S, uses an ideal

CA

signature functionality Fg;, for signatures. It further uses three ideal functionalities F;};, Fpsync-net> Fauth O

capture setup assumptions: FCk, distributes public keys of CAs and CTLs, which are assumed to be known to
all parties. Fpsync-net Mmodels a network with bounded message delay, i. e., messages are delivered within § time
units. This functionality is used by clients during certificate monitoring to guarantee that a response from the
CTL is received in a timely fashion, thereby ensuring that clients can detect maliciously created certificates after
some bounded time. Fpeync-net further provides a clock to all parties, capturing that parties are aware of the
current time. Finally, F,,sn, models an ideal authenticated channel which is used during certificate registration,
modeling that a CA has some means to identify a client.

We model that a client pid regularly monitors CTL certificate lists, namely after at most J time units (any
other publicly known bound can be used as well). Hence, by the bounded message delay enforced by Fpsync-net>
we have that pid will detect a maliciously created certificate registered at some CTL after at most 3 - 6. If the
client pid detects such a certificate, then, from its point of view, the CA is at fault for signing a certificate
that was not requested by her.” Hence, the local judge of pid blames such CAs via the verdict A", dis(C4;),
where CA; are exactly those CAs that signed maliciously generated certificates for pid. Since a maliciously
created certificate is detected by pid only after at most 3 - § time units, any other party pid’ that retrieves the
certificate before that point in time cannot be sure whether a certificate is genuine or whether pid did not yet
see and hence did not have the opportunity to complain about the certificate. We therefore model that clients,
during certificate retrieval from some CA, accept certificates only with an age of at least 3 - ¢ time units. Such
a certificate is either correct or pid’ has already noticed and complained about the malicious certificate, as
required by accountability w.r.t. certificate correctness.

Since we consider only local accountability, there is no public judge in Pai;. We also do not use judicial
reports in this protocol. As we do not consider assumption-based security properties, we set idSassumption = 0
The supervisor in P5{; is responsible only for forwarding the corruption status of the internal CAs. This ensures
that a simulator in the ideal world can blame a CA in a verdict only if the CA is corrupted in the real world.

UC Security Result. We obtain the following result.

Theorem 2. Let PS5 be the real PKI protocol and F35% be the ideal accountable PKI functionality as
described above. Then,

acc acc
PPKI < ‘/T-PKI'

We provide a formal proof of Theorem 2 in Appendix E.

3.3 A Key Exchange Based on an Accountable PKI

We now analyze a standard authenticated key exchange protocol, the so-called “ISO protocol”, an authen-
ticated version of the Diffie-Hellman key exchange with digital signatures based on the ISO/IEC 9798-3

Trusting a CTL is indeed necessary as a malicious CTL can simply hide certificates during monitoring. This trust can be distributed
among several CTLs by requiring ¢ € N CTLs to validate and sign new certificates. In this case, one can obtain a security result if at most
t — 1 CTLs are malicious. Our analysis carries over to this setting.

7Observe that only pid itself can be sure that the CA is at fault. A third party cannot determine whether the CA or pid has misbehaved
(e. g., by requesting a certificate but then blaming an honest CA). This observation becomes important in the composed protocol analyzed
in Section 3.3.

19

A g
37 gya SIGB(gxa gy7 A)
SIGA(g?, g", B)

A

Fig. 8: The ISO protocol for mutually authenticated Diffie-Hellman key exchange between two parties A and
B.

standard [56] (see Figure 8). UC security of this protocol has already been studied in various settings [17,
19,20,26,27,66] but always based on the assumption that the underlying PKI is perfect, i.e., the adversary
cannot register certificates for honest parties. In contrast, we base our analysis on F3{¢; which can then be
realized by Ppi; (Section 3.2) using the composition theorem. We thus provide the first analysis of the ISO
protocol based on a PKI that may fail, but provides accountability when it does. This not only illustrates
the features of AUC highlighted at the beginning of Section 3.2. This also shows that even protocols which
traditionally consider only preventive security, such as key exchanges, can benefit from AUC. In the main body,
we explain the main aspects of this case study; full details, including formal specifications and proofs, are
provided in Appendix F.

Ideal accountable key exchange. A signature-based authenticated key exchange can only provide security as
long as the underlying public signature key/certificate is trustworthy. We capture this intuition with AUC: We
start with a standard ideal key exchange functionality Fxg [17,20] and apply AUC to obtain an accountable
version F255. In F25 we consider the local accountability property authenticity € Sec®™ which determines
if a party, say Alice, can still expect to authenticate her intended session partner, say Bob, or whether the
certificate for Bob might be incorrect due to a fault in the PKI. If authenticity is marked as broken for
Alice by the adversary A (in exchange for a verdict), then F{$ acts just as Fkg does in case one of the parties
in the session is corrupted and hence no authentication can be guaranteed, i.e., it leaks the session key, if any,
and allows A to determine the output for parties that have not yet finished the KE. We require verdicts to be of
the form dis(pmain) V v, where py,qin is @ main party, i.e., initiator or responder in this key exchange session,
and v is a verdict containing only internal parties. This is a group based accountability level which captures that
Alice in the real protocol, if Bob complains about a maliciously generated certificate, cannot decide whether
Bob is lying or the PKI has actually misbehaved (cf. Footnote 7).

Protocol model. P3¢ is a straightforward model of the ISO protocol shown in Figure 8 derived from [17]

180

consisting of the KE protocol part P and the ideal subroutine F35¢; which is used for public key distribution.

As required by AUC, P3ic° contains local judges and a supervisor. As in Section 3.2, the supervisor only forwards
the corruption status of internal parties including those that are part of F3i;, namely JF35;’s clients, CAs and
CTLs. The main idea of the local judge of Alice is to request the verdict of Bobs local judge in F3§;. If this
judge does not complain, then, by definition of JF3f;, any certificate of Bob that Alice retrieves must have
been registered by Bob. If Bobs subroutine judge complains and returns a verdict v to Alice, then Alice’s
judge returns the overall verdict dis(pg.p) V v (and vice versa for Bob’s judge), capturing the aforementioned
insecurity that Alice cannot decide whether Bob is lying or whether v is actually a fair verdict identifying a

misbehaving PKI.
UC Security results. We can show the following:

Theorem 3. Let PLE, Fpi, and FE5 be as described above and assume that the DDH assumption holds
true. Then,

(PKE [FPK1) < Fice -
This immediately implies by UC composition that the key exchange remains secure when based on the real
accountable CTL-based PKI P3¢;:

Corollary 4. Let PXE, P, and FE55 be as described above. Then,

(PR [PPicr) < Fice -

20

Proof. Follows from Theorem 2, Theorem 3, and the composition theorem of the underlying UC model. [

4. RELATED WORK AND CONCLUSION

As already discussed in Section 2.7, AUC focuses on property-based accountability, it generalizes and extends
concepts from the literature and also introduces new concepts, such as judicial reports and supervisors to provide
a general accountability framework.

Property-based Accountability in UC. To the best of our knowledge, the only other works that formalize
and use the concept of property-based accountability in a UC model are those on MPC protocols, e.g., [13,
14,24,34,35,55,74,81]. As discussed in the introduction and in Appendix G, these works are specialized to
the case of MPC and hence do not serve as general accountability frameworks. Most of these works consider
composition of accountability properties with higher-level protocols to be out of scope. A notable exception is
the very recent work of Baum et al. [14]. However, Baum et al. focus on the composability of verifiability in
MPC protocols adhering to a specific structure. Baum et al. do not provide a general purpose accountability
framework which can be used for arbitrary protocols.

Other simulation-based approaches. There are also a number of non-UC simulation-based formalizations
of accountability properties, e.g., [5, 6, 8,34,37,54,86,96]. Just as for the UC approaches mentioned above,
these works analyze and are tailored towards MPC protocols and thus do not serve as general accountability
frameworks. Furthermore, since they are not based on a UC model, they provide only weaker compositional
properties, if any.

The covert adversaries model [6, 8] is perhaps the most prominent line of work in this category. The covert
adversaries model formalizes accountability w.r.t. correctness (in the sense of identifiable abort) and w.r.t. privacy.
AUC, even when restricted to the special case of MPC, and covert adversaries are incomparable due to different
simulation paradigms. Both approaches can formalize accountability w.r.t. to correctness and privacy of MPC
protocols (cf. Appendix G). On the one hand, AUC offers stronger composability that, unlike covert adversaries,
also includes parallel composition. On the other hand, covert adversaries provide the additional concept of a
deterrence factor ¢ to also model cases where a malicious party breaking security might remain undetected
by a judge with (potentially non-negligible) probability e. AUC models only the case that this probability is
negligible. While it would be straightforward to add the same concept to AUC, we did not do so as it does
not appear to offer any benefit within UC models. Indeed, it seems that all covert adversaries protocols that
have been analyzed for a non-negligible ¢ use protocol rewinding within their simulators. This technique is
not available to UC simulators since it prevents parallel composition, i.e., such protocols are not UC secure
anyway. We leave further exploration of this aspect for future work.

Game-based accountability. There are many works that formalize accountability within a game-based setting,
e.g., [42-46,62,63,67,79]. Some of these works are closely related to AUC in that they also consider highly
general frameworks for accountability, e.g., [42, 45,62, 67]. The main difference between AUC and these works
is that AUC is the first general accountability framework for UC models, thereby providing particularly strong
security statements while also offering the benefit of modular protocol analysis and composition. We, however,
note that there are aspects in existing game-based accountability frameworks that AUC does not handle yet,
such as causality [62]. It is an interesting challenge for future work to investigate whether and how these aspects
can also be captured in a general accountability framework for UC.

Altogether, AUC lifts some of the work on game-based accountability frameworks to the UC setting, generalizes
and unifies existing work on UC accountability, and also introduces several new concepts to make it a general
purpose framework for accountability in UC.

5. ACKNOWLEDGMENTS

This research was partially funded by the Ministry of Science of Baden-Wiirttemberg, Germany, for the Doctoral

Program “Services Computing”.® This work was also supported by Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) through grant KU 1434/13-1.

8http://www services-computing.de/

21

http://www.services-computing.de/

(1]
(2]

[3]

(4]
(3]
[6]

(7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

REFERENCES

B. Adida, “Helios: Web-based Open-Audit Voting,” in Proceedings of the 17th USENIX Security Symposium, P. C. van Oorschot,
Ed. USENIX Association, 2008, pp. 335-348.

J. E. Almansa, I. Damgard, and J. B. Nielsen, “Simplified Threshold RSA with Adaptive and Proactive Security,” in Advances in
Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, ser. Lecture Notes in Computer Science, vol. 4004. Springer, 2006,
pp. 593-611.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco,
and J. Yellick, “Hyperledger fabric: a distributed operating system for permissioned blockchains,” in Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018. ACM, 2018, pp. 30:1-30:15.

Apache Software Foundation, “Apache Kafka,” https://kafka.apache.org/, 2017, (Accessed on 04/01/2019).

G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient Oblivious Transfer Extensions,” J. Cryptol., vol. 30, no. 3,
pp. 805-858, 2017.

G. Asharov and C. Orlandi, “Calling Out Cheaters: Covert Security with Public Verifiability,” in Advances in Cryptology - ASIACRYPT
2012 - 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, ser. Lecture Notes in Computer Science, vol. 7658. Springer, 2012, pp. 681-698.

N. Asokan, V. Shoup, and M. Waidner, “Asynchronous protocols for optimistic fair exchange,” in Proceedings of the IEEE Symposium
on Research in Security and Privacy. 1EEE Computer Society, 1998, pp. 86-99.

Y. Aumann and Y. Lindell, “Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries,” in Proceedings of
the 4th Theory of Cryptography Conference,(TCC 2007), ser. Lecture Notes in Computer Science, S. P. Vadhan, Ed., vol. 4392.
Springer, 2007, pp. 137-156.

C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V. Zikas, “Universal Composition with Global Subroutines: Capturing Global
Setup Within Plain UC,” in Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part III, ser. Lecture Notes in Computer Science, vol. 12552. Springer, 2020, pp. 1-30.

C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas, “Bitcoin as a Transaction Ledger: A Composable Treatment,” in Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 10401. Springer, 2017, pp. 324-356.

L. Baird and A. Luykx, “The Hashgraph Protocol: Efficient Asynchronous BFT for High-Throughput Distributed Ledgers,” in 2020
International Conference on Omni-layer Intelligent Systems, COINS 2020, Barcelona, Spain, August 31 - September 2, 2020. 1EEE,
2020, pp. 1-7.

J. Baron, K. E. Defrawy, J. Lampkins, and R. Ostrovsky, “Communication-Optimal Proactive Secret Sharing for Dynamic Groups,”
in Applied Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015,
Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 9092. Springer, 2015, pp. 23-41.

C. Baum, I. Damgérd, and C. Orlandi, “Publicly Auditable Secure Multi-Party Computation,” in Security and Cryptography for
Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, ser. Lecture Notes in Computer
Science, vol. 8642. Springer, 2014, pp. 175-196.

C. Baum, E. Orsini, P. Scholl, and E. Soria-Vazquez, “Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability,”
in Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part 11, ser. Lecture Notes in Computer Science, vol. 12171. Springer, 2020, pp. 562-592.
A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel, A. Roger, and R. Sirdey, “Towards Better Availability and
Accountability for IoT Updates by Means of a Blockchain,” in 2017 IEEE European Symposium on Security and Privacy Workshops,
EuroS&P Workshops 2017, Paris, France, April 26-28, 2017. 1EEE, 2017, pp. 50-58.

V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,” CoRR, vol. abs/1710.09437, 2017.

J. Camenisch, S. Krenn, R. Kiisters, and D. Rausch, “iUC: Flexible Universal Composability Made Simple,” in Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part II1, ser. Lecture Notes in Computer Science, vol. 11923. Springer,
2019, pp. 191-221, the full version is available at http://eprint.iacr.org/2019/1073.

R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally Composable Security with Global Setup,” in Theory of Cryptography,
Proceedings of TCC 2007, ser. Lecture Notes in Computer Science, S. P. Vadhan, Ed., vol. 4392. Springer, 2007, pp. 61-85.

R. Canetti and J. Herzog, “Universally Composable Symbolic Analysis of Mutual Authentication and Key-Exchange Protocols,” in
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, ser. Lecture Notes in Computer Science, S. Halevi
and T. Rabin, Eds., vol. 3876. Springer, 2006, pp. 380—403.

R. Canetti and H. Krawczyk, “Universally Composable Notions of Key Exchange and Secure Channels,” in Advances in Cryptology
- EUROCRYPT 2002, International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, ser.
Lecture Notes in Computer Science, vol. 2332. Springer, 2002, pp. 337-351.

R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally composable two-party and multi-party secure computation,” in
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002). ACM Press, 2002, pp. 494-503.

R. Canetti, “Universally Composable Security: A New Paradigm for Cryptographic Protocols,” in Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science (FOCS 2001). 1EEE Computer Society, 2001, pp. 136-145.

——, “Universally Composable Security,” J. ACM, vol. 67, no. 5, pp. 28:1-28:94, 2020.

R. Canetti, A. Cohen, and Y. Lindell, “A Simpler Variant of Universally Composable Security for Standard Multiparty Computation,”
in Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I1, ser. Lecture Notes in Computer Science, vol. 9216. Springer, 2015, pp. 3-22.

R. Canetti, K. Hogan, A. Malhotra, and M. Varia, “A Universally Composable Treatment of Network Time,” in 30th IEEE Computer
Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. 1EEE Computer Society, 2017, pp.
360-375.

R. Canetti and H. Krawczyk, “Security Analysis of IKE’s Signature-Based Key-Exchange Protocol,” in Advances in Cryptology
- CRYPTO 2002, 22nd Annual International Cryptology Conference, ser. Lecture Notes in Computer Science, M. Yung, Ed., vol.
2442. Springer, 2002, pp. 143-161.

22

https://kafka.apache.org/
http://eprint.iacr.org/2019/1073

[27]

[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

R. Canetti, D. Shahaf, and M. Vald, “Universally Composable Authentication and Key-Exchange with Global PKL” in Public-Key
Cryptography - PKC 2016 - 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei,
Taiwan, March 6-9, 2016, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9615. Springer, 2016, pp. 265-296.
M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4,
pp- 398461, 2002.

C. Chang and Y. Chang, “Efficient anonymous auction protocols with freewheeling bids,” Comput. Secur., vol. 22, no. 8, pp. 728-734,
2003.

M. Ciampi, Y. Lu, and V. Zikas, “Collusion-Preserving Computation without a Mediator,” Cryptology ePrint Archive, Tech. Rep.
2020/497, 2020.

D. O. Coiledin and D. O’Mahony, “Accounting and Accountability in Content Distribution Architectures: A Survey,” ACM Comput.
Surv., vol. 47, no. 4, pp. 59:1-59:35, 2015.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,” RFC 5280, Internet Engineering Task Force, may 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5280.txt

V. Cortier, D. Galindo, R. Kiisters, J. Miiller, and T. Truderung, “SoK: Verifiability Notions for E-Voting Protocols,” in IEEE 37th
Symposium on Security and Privacy (S&P 2016). 1EEE Computer Society, 2016, pp. 779-798.

R. K. Cunningham, B. Fuller, and S. Yakoubov, “Catching MPC Cheaters: Identification and Openability,” in Information Theoretic
Security - 10th International Conference, ICITS 2017, Hong Kong, China, November 29 - December 2, 2017, Proceedings, ser.
Lecture Notes in Computer Science, vol. 10681. Springer, 2017, pp. 110-134.

E. Cuvelier and O. Pereira, “Verifiable Multi-party Computation with Perfectly Private Audit Trail,” in Applied Cryptography and
Network Security - 14th International Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, ser. Lecture Notes
in Computer Science, vol. 9696. Springer, 2016, pp. 367-385.

E. Cuvelier, O. Pereira, and T. Peters, “Election Verifiability or Ballot Privacy: Do We Need to Choose?” in Computer Security -
ESORICS 2013 - 18th European Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013. Proceedings,
ser. Lecture Notes in Computer Science, vol. 8134. Springer, 2013, pp. 481-498.

1. Damgard, C. Orlandi, and M. Simkin, “Black-Box Transformations from Passive to Covert Security with Public Verifiability,” in
Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 12171. Springer, 2020, pp. 647-676.
G. D’Angelo, S. Ferretti, and M. Marzolla, “A Blockchain-based Flight Data Recorder for Cloud Accountability,” in Proceedings
of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, CRYBLOCK@MobiSys 2018, Munich, Germany,
June 15, 2018. ACM, 2018, pp. 93-98.

J. Dilley, B. M. Maggs, J. Parikh, H. Prokop, R. K. Sitaraman, and W. E. Weihl, “Globally Distributed Content Delivery,” IEEE
Internet Comput., vol. 6, no. 5, pp. 50-58, 2002.

Ethereum Foundation, “Ethereum enterprise,” https://www.ethereum.org/enterprise/, 2019, (Accessed on 11/13/2019).

C. Farkas, G. Ziegler, A. Meretei, and A. Lorincz, “Anonymity and accountability in self-organizing electronic communities,” in
Proceedings of the 2002 ACM Workshop on Privacy in the Electronic Society, WPES 2002, Washington, DC, USA, November 21,
2002. ACM, 2002, pp. 81-90.

J. Feigenbaum, “Privacy, Anonymity, and Accountability in Ad-Supported Services,” in Proceedings of the 27th Annual IEEE
Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. 1EEE Computer Society, 2012, pp.
9-10.

J. Feigenbaum, J. A. Hendler, A. D. Jaggard, D. J. Weitzner, and R. N. Wright, “Accountability and deterrence in online life,” in
Web Science 2011, WebSci '11, Koblenz, Germany - June 15 - 17, 2011. ACM, 2011, pp. 7:1-7:7.

J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a formal model of accountability,” in 2011 New Security Paradigms
Workshop, NSPW 11, Marin County, CA, USA, September 12-15, 2011. ACM, 2011, pp. 45-56.

, “Open vs. closed systems for accountability,” in Proceedings of the 2014 Symposium and Bootcamp on the Science of Security,
HotSoS 2014, Raleigh, NC, USA, April 08 - 09, 2014. ACM, 2014, p. 4.

——, “Accountability in Computing: Concepts and Mechanisms,” Found. Trends Priv. Secur., vol. 2, no. 4, pp. 247-399, 2020.

E. Funk, J. Riddell, F. Ankel, and D. Cabrera, “Blockchain technology: a data framework to improve validity, trust, and accountability
of information exchange in health professions education,” Academic Medicine, vol. 93, no. 12, pp. 1791-1794, 2018.

J. A. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone Protocol: Analysis and Applications,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 9057. Springer, 2015, pp. 281-310.
S. Goldwasser and S. Park, “Public Accountability vs. Secret Laws: Can They Coexist?: A Cryptographic Proposal,” in Proceedings
of the 2017 on Workshop on Privacy in the Electronic Society, Dallas, TX, USA, October 30 - November 3, 2017. ACM, 2017,
pp. 99-110.

M. Graf, R. Kiisters, and D. Rausch, “Accountability in a Permissioned Blockchain: Formal Analysis of Hyperledger Fabric,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. Los Alamitos, CA,
USA: IEEE, 2020, pp. 236-255.

M. Graf, D. Rausch, V. Ronge, C. Egger, R. Kiisters, and D. Schroder, “A Security Framework for Distributed Ledgers,” in CCS
"21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 -
19, 2021. New York City, USA: ACM, 2021, pp. 1043-1064.

A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: practical accountability for distributed systems,” in Proceedings of the
21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, T. C. Bressoud and M. F. Kaashoek, Eds. ACM, 2007,
pp. 175-188.

D. Hofheinz and V. Shoup, “GNUC: A New Universal Composability Framework,” J. Cryptology, vol. 28, no. 3, pp. 423-508, 2015.
C. Hong, J. Katz, V. Kolesnikov, W. Lu, and X. Wang, “Covert Security with Public Verifiability: Faster, Leaner, and Simpler,”
in Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part 111, ser. Lecture Notes in Computer Science,
vol. 11478. Springer, 2019, pp. 97-121.

23

http://www.ietf.org/rfc/rfc5280.txt
https://www.ethereum.org/enterprise/

[55]

[56]
[57]
[58]
[59]

[60]

[61]

[62]
[63]

[64]

[65]
[66]

[67]

[68]
[69]

[70]

[71]
[72]
[73]
[74]

[75]
[76]

[77]

[78]
[79]

[80]

[81]

[82]
[83]

[84]

[85]

Y. Ishai, R. Ostrovsky, and V. Zikas, “Secure Multi-Party Computation with Identifiable Abort,” in Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, ser. Lecture Notes
in Computer Science, vol. 8617. Springer, 2014, pp. 369-386.

“ISO/IEC IS 9798-3, Entity authentication mechanisms — Part 3: Entity authentication using assymetric techniques,” 1993.

R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely, “Towards a theory of accountability and audit,” in ESORICS. Springer, 2009.
J. Kamto, L. Qian, J. Fuller, J. Attia, and Y. Qian, “Key Distribution and management for power aggregation and accountability in
Advance Metering Infrastructure,” in IEEE Third International Conference on Smart Grid Communications, SmartGridComm 2012,
Tainan, Taiwan, November 5-8, 2012. 1EEE, 2012, pp. 360-365.

G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Capkun, “Misbehavior in Bitcoin: A Study of Double-Spending
and Accountability,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 1, pp. 2:1-2:32, 2015.

A. Kiayias, H. Zhou, and V. Zikas, “Fair and Robust Multi-party Computation Using a Global Transaction Ledger,” in Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9666. Springer,
2016, pp. 705-734.

T. H. Kim, L. Huang, A. Perrig, C. Jackson, and V. D. Gligor, “Accountable key infrastructure (AKI): a proposal for a public-key
validation infrastructure,” in 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013.
International World Wide Web Conferences Steering Committee / ACM, 2013, pp. 679-690.

R. Kiinnemann, I. Esiyok, and M. Backes, “Automated Verification of Accountability in Security Protocols,” in 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE, 2019, pp. 397-413.

R. Kiinnemann, D. Garg, and M. Backes, “Accountability in the Decentralised-Adversary Setting,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021,. 1EEE, 2021.

R. Kiisters, “Simulation-Based Security with Inexhaustible Interactive Turing Machines,” in Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW-19 2006). 1EEE Computer Society, 2006, pp. 309-320, see [71] for a full and revised
version.

R. Kiisters, J. Liedtke, J. Miiller, D. Rausch, and A. Vogt, “Ordinos: A Verifiable Tally-Hiding E-Voting System,” in /[EEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. 1EEE, 2020, pp. 216-235.

R. Kiisters and D. Rausch, “A Framework for Universally Composable Diffie-Hellman Key Exchange,” in IEEE 38th Symposium
on Security and Privacy (S&P 2017). 1EEE Computer Society, 2017, pp. 881-900.

R. Kiisters, T. Truderung, and A. Vogt, “Accountability: Definition and Relationship to Verifiability,” in Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS 2010). ACM, 2010, pp. 526-535, the full version is available
at http://eprint.iacr.org/2010/236.

R. Kiisters, T. Truderung, and A. Vogt, “Verifiability, Privacy, and Coercion-Resistance: New Insights from a Case Study,” in 32nd
IEEE Symposium on Security and Privacy (S&P 2011). 1EEE Computer Society, 2011, pp. 538-553.

——, “Clash Attacks on the Verifiability of E-Voting Systems,” in 33rd IEEE Symposium on Security and Privacy (S&P 2012).
IEEE Computer Society, 2012, pp. 395-409.

R. Kiisters and M. Tuengerthal, “Composition Theorems Without Pre-Established Session Identifiers,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security (CCS 2011), Y. Chen, G. Danezis, and V. Shmatikov, Eds. ~ACM,
2011, pp. 41-50.

R. Kiisters, M. Tuengerthal, and D. Rausch, “The IITM model: a simple and expressive model for universal composability,” Journal
of Cryptology, vol. 33, no. 4, pp. 1461-1584, 2020.

B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC 6962, jun 2013. [Online]. Available: https:
/Iwww .rfc-editor.org/rfc/rfc6962. txt

H. Leibowitz, A. Herzberg, and E. Syta, “Provable Security for PKI Schemes,” Cryptology ePrint Archive, Tech. Rep. 2019/807,
2019.

Y. Lindell and B. Pinkas, “Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer,” J. Cryptol., vol. 25, no. 4, pp.
680-722, 2012.

J. Liu, Y. Xiao, and J. Gao, “Achieving Accountability in Smart Grid,” IEEE Syst. J., vol. 8, no. 2, pp. 493-508, 2014.

S. Matsumoto and R. M. Reischuk, “Certificates-as-an-insurance: Incentivizing accountability in ssl/tls,” in Proceedings of the NDSS
Workshop on Security of Emerging Network Technologies (SENT’15), 2015.

U. Maurer, “Constructive Cryptography - A New Paradigm for Security Definitions and Proofs,” in Theory of Security and
Applications - Joint Workshop, TOSCA 2011, Saarbriicken, Germany, March 31 - April 1, 2011, Revised Selected Papers, ser.
Lecture Notes in Computer Science, vol. 6993. Springer, 2011, pp. 33-56.

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The Honey Badger of BFT Protocols,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016. ACM, 2016, pp. 31-42.
K. Morio and R. Kiinnemann, “Verifying Accountability for Unbounded Sets of Participants,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021,. 1EEE, 2021.

R. Pass, L. Seeman, and A. Shelat, “Analysis of the Blockchain Protocol in Asynchronous Networks,” in Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part II, ser. Lecture Notes in Computer Science, vol. 10211, 2017, pp. 643-673.

A. Patra and D. Ravi, “Beyond Honest Majority: The Round Complexity of Fair and Robust Multi-party Computation,” in Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 11921. Springer,
2019, pp. 456-487.

R3, “R3 Corda master documentation,” https://docs.corda.net/docs/corda-os/4.4.html, 2020, (Accessed on 04/24/2020).

H. V. Ramasamy, A. Agbaria, and W. H. Sanders, “A Parsimonious Approach for Obtaining Resource-Efficient and Trustworthy
Execution,” IEEE Trans. Dependable Secur. Comput., vol. 4, no. 1, pp. 1-17, 2007.

K. Ramchen, C. Culnane, O. Pereira, and V. Teague, “Universally Verifiable MPC and IRV Ballot Counting,” in Financial
Cryptography and Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22,
2019, Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 11598. Springer, 2019, pp. 301-319.

M. Rivinius, P. Reisert, D. Rausch, and R. Kiisters, “Publicly accountable robust multi-party computation,” in S&P '22. IEEE,
2022.

24

http://eprint.iacr.org/2010/236
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.rfc-editor.org/rfc/rfc6962.txt
https://docs.corda.net/docs/corda-os/4.4.html

[86] B. Schoenmakers and M. Veeningen, “Universally Verifiable Multiparty Computation from Threshold Homomorphic Cryptosystems,”
in Applied Cryptography and Network Security - 13th International Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015,
Revised Selected Papers, ser. Lecture Notes in Computer Science, vol. 9092. Springer, 2015, pp. 3-22.

[87] P. Scholl, M. Simkin, and L. Siniscalchi, “Multiparty Computation with Covert Security and Public Verifiability,” Cryptology ePrint
Archive, Tech. Rep. 2021/366, 2021.

[88] A. Shamis, P. Pietzuch, B. Canakci, M. Castro, C. Fournet, E. Ashton, A. Chamayou, S. Clebsch, A. Delignat-Lavaud, M. Kerner
et al., “IA-CCF: Individual accountability for permissioned ledgers,” in /9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 467-491.

[89] C. Stathakopoulou, T. David, and M. Vukolic, “Mir-BFT: High-Throughput BFT for Blockchains,” CoRR, vol. abs/1906.05552,
2019.

[90] Y. S. Tan, R. K. L. Ko, and G. Holmes, “Security and Data Accountability in Distributed Systems: A Provenance Survey,” in /0th
IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China, November 13-15, 2013. 1EEE, 2013, pp. 1571-1578.

[91] The Guardian, “Steve jobs suggests: get rid of the drm on online music,” https://www.theguardian.com/technology/blog/2007/feb/
06/stevejobssugg, 2007, (Accessed on 07/09/2021).

[92] VASCO Data Security International, Inc., “news: Vasco announces bankruptcy filing by diginotar b.v.” https://web.archive.org/web/
20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_
diginotar_bv.aspx, 09 2011, (Accessed on 06/13/2022).

[93] WIRED, “Shocker: Apple’s drm-free music not so easily stolen,” https://www.wired.com/2007/06/apples-drmfree-/, 2007, (Accessed
on 07/09/2021).

[94] Z. Xiao, N. Kathiresshan, and Y. Xiao, “A survey of accountability in computer networks and distributed systems,” Secur. Commun.
Networks, vol. 9, no. 4, pp. 290-315, 2016.

[95] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Separating agreement from execution for byzantine fault tolerant
services,” in Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton Landing, NY,
USA, October 19-22, 2003. ACM, 2003, pp. 253-267.

[96] B. Zeng, C. Tartary, P. Xu, J. Jing, and X. Tang, “A Practical Framework for t-Out-of-n Oblivious Transfer With Security Against
Covert Adversaries,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 2, pp. 465-479, 2012.

[97] Z. Zhao, M. Naseri, and Y. Zheng, “Secure quantum sealed-bid auction with post-confirmation,” Optics Communications, vol. 283,
no. 16, pp. 3194-3197, 2010.

[98] J. Zhou and D. Gollmann, “A fair non-repudiation protocol,” in Proceedings of the IEEE Symposium on Research in Security and
Privacy. 1EEE Computer Society, 1996, pp. 55-61.

, “An Efficient Non-repudiation Protocol,” in 10th Computer Security Foundations Workshop (CSFW °97), June 10-12, 1997,

Rockport, Massachusetts, USA. 1EEE Computer Society, 1997, pp. 126-132.

, “Evidence and non-repudiation,” Journal of Network and Computer Applications, vol. 20, no. 3, pp. 267-281, 1997.

[99]

[100]

APPENDIX
A. A Brief Introduction to the iUC Framework

This section provides a brief introduction to the iUC framework, which underlies all results in this paper.
The iUC framework [17] is a highly expressive and user-friendly model for universal composability. It allows
for the modular analysis of different types of protocols in various security settings.

The iUC framework uses interactive Turing machines as its underlying computational model. Such interactive
Turing machines can be connected to each other to be able to exchange messages. A set of machines Q = { M,
...y My} is called a system. In a run of Q, there can be one or more instances (copies) of each machine in Q.
One instance can send messages to another instance. At any point in a run, only a single instance is active,
namely, the one to receive the last message; all other instances wait for input. The active instance becomes
inactive once it has sent a message; then the instance that receives the message becomes active instead and can
perform arbitrary computations. The first machine to run is the so-called master. The master is also triggered
if the last active machine did not output a message. In iUC, the environment (see next) takes the role of the
master. In the iUC framework a special user-specified CheckID algorithm is used to determine which instance
of a protocol machine receives a message and whether a new instance is to be created (see below).

To define the universal composability security experiment (cf. [17]), one distinguishes between three types
of systems: protocols, environments, and adversaries. As is standard in universal composability models, all
of these types of systems have to meet a polynomial runtime notion. Intuitively, the security experiment in
any universal composability model compares a protocol P with another protocol F, where F is typically an
ideal specification of some task, called ideal protocol or ideal functionality. The idea is that if one cannot
distinguish P from F, then P must be “as good as” F. More specifically, the protocol P is considered secure
(written P < F) if for all adversaries A controlling the network of P there exists an (ideal) adversary S, called
simulator, controlling the network of F such that { A, P} and {S, F} are indistinguishable for all environments
£. Indistinguishability means that the probability of the environment outputting 1 in runs of the system {&,
A, P} is negligibly close to the probability of outputting 1 in runs of the system {£,S,F} (written {&, A,
P} = {£,8,F}). The environment can also subsume the role of the network attacker .4, which yields an

25

https://www.theguardian.com/technology/blog/2007/feb/06/stevejobssugg
https://www.theguardian.com/technology/blog/2007/feb/06/stevejobssugg
https://web.archive.org/web/20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_diginotar_bv.aspx
https://web.archive.org/web/20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_diginotar_bv.aspx
https://web.archive.org/web/20110923180445/http://www.vasco.com/company/press_room/news_archive/2011/news_vasco_announces_bankruptcy_filing_by_diginotar_bv.aspx
https://www.wired.com/2007/06/apples-drmfree-/

equivalent definition in the iUC framework. We usually show this equivalent but simpler statement in our
proofs, i.e., that there exists a simulator S such that {€,P} = {£,S, F} for all environments.

A protocol P in the iUC framework is specified via a system of machines {Mj, ..., M;}; the framework
offers a convenient template for the specification of such systems. Each machine M; implements one or more
roles of the protocol, where a role describes a piece of code that performs a specific task. For example, a (real)
protocol Pgis for digital signatures might contain a signer role for signing messages and a verifier role
for verifying signatures. In a run of a protocol, there can be several instances of every machine, interacting
with each other (and the environment) via I/O interfaces and interacting with the adversary (and possibly the
environment subsuming a network attacker) via network interfaces. An instance of a machine M; manages one
or more so-called entities. An entity is identified by a tuple (pid, sid, role) and describes a specific party with
party ID (PID) pid running in a session with session ID (SID) sid and executing some code defined by the
role role where this role has to be (one of) the role(s) of M; according to the specification of M;. Entities
can send messages to and receive messages from other entities and the adversary using the I/O and network
interfaces of their respective machine instances. More specifically, the I/O interfaces of both machines need to
be connected to each other (because one machine specifies the other as a subroutine) to enable communication
between entities of those machines.

Roles of a protocol can be either public or private. The I/O interfaces of private roles are only accessible
by other (entities belonging to) roles of the same protocol, whereas 1/O interfaces of public roles can also be
accessed by other (potentially unknown) protocols/the environment. Hence, a private role models some internal
subroutine that is protected from access outside of the protocol, whereas a public role models some publicly
accessible operation that can be used by other protocols. One uses the syntax “(pubroley,...,pubrole, |
privroley,...,privrole,)” to uniquely determine public and private roles of a protocol. Two protocols P
and Q can be combined to form a new more complex protocol as long as their I/O interfaces connect only
via their public roles. In the context of the new combined protocol, previously private roles remain private
while previously public roles may either remain public or be considered private, as determined by the protocol
designer. The set of all possible combinations of P and Q, which differ only in the set of public roles, is
denoted by Comb(Q, P).

An entity in a protocol might become corrupted by the adversary, in which case it acts as a pure message
forwarder between the adversary and any connected higher-level protocols as well as subroutines. In addition,
an entity might also consider itself (implicitly) corrupted while still following its own protocol because, e.g.,
a subroutine has been corrupted. Corruption of entities in the iUC framework is highly customizable; one can,
for example, prevent corruption of certain entities during a protected setup phase.

The iUC framework supports the modular analysis of protocols via a so-called composition theorem:

Corollary 5 (Concurrent composition in iUC; informal). Let P and F be two protocols such that P < F. Let
Q be another protocol such that Q and F can be connected. Let R € Comb(Q,P) and let T € Comb(Q, F)
such that R and I agree on their public roles. Then R < T.

By this theorem, one can first analyze and prove the security of a subroutine P independently of how it is
used later on in the context of a more complex protocol. Once we have shown that P < F (for some other,
typically ideal protocol F), we can then analyze the security of a higher-level protocol Q based on F. Note
that this is simpler than analyzing Q based on P directly as ideal protocols provide absolute security guarantees
while typically also being less complex, reducing the potential for errors in proofs. Once we have shown that the
combined protocol, say, (Q | F) realizes some other protocol, say, ', the composition theorem and transitivity
of the < relation then directly implies that this also holds true if we run Q with an implementation P of
F. That is, (Q | P) is also a secure realization of F'. Please note that the composition theorem does not
impose any restrictions on how the protocols P, F, and Q look like internally. For example, they might have
disjoint sessions, but they could also freely share some state between sessions, or they might be a mixture of
both. They can also freely share some of their subroutines with the environment, modeling so-called globally
available state. This is unlike most other models for universal composability, such as the UC model, which
impose several conditions on the structure of protocols for their composition theorem.

26

B. Notation in Pseudo Code

ITMs in our paper are specified in pseudo code. Most of our pseudo code notation follows the notation
introduced by Camenisch et al. [17]. To ease readability of our figures, we provide a brief overview over the
used notation here.

The description in the main part of the ITMs consists of blocks of the form recv (msg) from (sender) to
(receiver) s.t. (condition):(code) where (msg) is an input pattern, (sender) is the receiving interface (I/O or
NET), (receiver) is the dedicated receiver of the message and (condition) is a condition on the input. (code)
is the (pseudo) code of this block. The block is executed if an incoming message matches the pattern and the
condition is satisfied. More specifically, (msg) defines the format of the message m that invokes this code block.
Messages contain local variables, state variables, strings, and maybe special characters. To compare a message
m to a message pattern msg, the values of all global and local variables (if defined) are inserted into the pattern.
The resulting pattern p is then compared to m, where uninitialized local variables match with arbitrary parts
of the message. If the message matches the pattern p and meets (condition) of that block, then uninitialized
local variables are initialized with the part of the message that they matched to and {(code) is executed in the
context of (receiver); no other blocks are executed in this case. If m does not match p or (condition) is not
met, then m is compared with the next block. Usually a recv from block ends with a send to clause of
form send (msg) to (sender) where msg is a message that is send via output interface sender.

If an ITM invokes another ITM, e. g., as a subroutine, ITMs may expect an immediate response. In this case,
in a recv from block, a send to statement is directly followed by a wait for statement. We write wait for
(msg) from (sender) s.t. (condition) to denote that the ITM stays in its current state and discards all incoming
messages until it receives a message m matching the pattern msg and fulfilling the wait for condition. Then
the ITM continues the run where it left of, including all values of local variables.

To clarify the presentation and distinguish different types of variables, constants, strings, etc. we follow the
naming conventions of Camenisch et al. [17]:

1. (Internal) state variables are denoted by sans-serif fonts.
2. Local (i.e., ephemeral) variables are denoted in ifalic font.
3. Keywords are written in bold font (e. g., for operations such as sending or receiving).
4. Commands, procedure, function names, strings and constants are written in teletype.

To increase readability, we use the following notation:

o For a set of tuples K, K.add(_) adds the tuple to K.

o For a string S, S.add(_) concatenates the given string to S.

« For a verdicts v, and vo, we define vy.add(vg) := vy A vs.

o K.remove(_) removes always the first appearance of the given element/string from the list/tuple/set/string

K.
We use the following additional nomenclature from [17]:

e (pidcyr, Sideyr, roleq,,) denotes the currently active entity and (pidcai, Sideal, rolecan) denotes the entity which
called the currently active ITM.

o The macro corr(pid, sid, role) is simply a shortcut to invoke the ITM of (pid, sid, role) and query it for
its corruption status.

o The macro init(pid, sid, role) triggers the initialization of (pid, sid, role) and returns the activation to the
calling ITM.

C. Reusing Existing Security Results with AUC

In this section, we briefly discuss how existing security results can be reused when transforming an ideal
functionality with AUC. Therefore, we consider an ideal functionality F which ensures some security properties
Sec and its accountable transformation F2°° (cf. Definition 1) which may replace some of F’s security properties
with the corresponding assumption-based and/or accountability properties, i.e., Sec?® U Sec?sumption | Secice =
Sec. According to Definition 1, F and F** behave identical as long as no security property is marked as broken.
Thus, an existing security proof remains valid until this case occurs. Thus, one often can reuse the existing
security proof as is (up to the point where some property breaks). As AUC is a non-back-box transformation,
one needs to enhance proofs in order to capture the behavior when transforming F to F%.

27

We further note that accountability/assumption-based and preventive security properties can be heavily
intertwined. Therefore one may also need to adjust the existing simulator to correctly handle broken properties
of F¢.

We essentially illustrate this approach in our case study in Section 3.3.

D. Scaling Accountable Consensus (Full Details)

In this section, we provide full details regarding the scalable accountable consensus case study presented
in Section 3.1. In particular, we provide (i) a full specification of FZ5°, (ii) a full specification of the scaling
protocol, and (iii) provide a formal proof for Theorem 1.

D.1 The Accountable Consensus Functionality #27°: In this section, we present a full specification of the
ideal accountable consensus service F5¢ in Figure 9 and 10 including its subroutine Fj -5, in Figure 11.
For technical details and notation specific to the iUC framework, see the brief summary of the iUC framework
in Section A.

JF & ¢ models one instance of a consensus protocol per sid. FZ7’s duty is to allow clients to write to a stream of
messages (also called the state of F27°) and read from this stream. For write operations, FZ° expects messages
of the form (Submit, msg) where msg denotes some arbitrary bit string. Submitted transactlons/messages do
not enter the state of FZ7¢ immediately. Firstly, they get an unambiguous temporary ID and are then stored
in a buffer buffer for later processing - this is necessary to capture network artifacts. Besides the submitted
message, the buffer also contains the round, resp. point in time (provided by FZ“ internal clock, see below),
when the message was added to the buffer. This will later be used to enforce liveness. The submitted message
as well as its temporary ID are leaked to .A. Note that the Submit interface is accessible via I/O and NET. The
adversary A is allowed to read the buffer via the getBuffer command. Further, A is allowed to permutate
the content of the buffer, i.e., A may interchange the order/IDs in the buffer. To add the first element from
buffer to F& s state, A can use the Update command. When an entry from buffer is moved to state, FZ°
assigns an 1ncrementa1 counter as ID to the message and removes the message from the buffer. That is, FZ*
establishes a total order over the transactions in state.

When a party (pid, sid, role) wants to read F¢;’s current state, it sends Read via I/O to FZ7°. Analogously
to submit requests,]-'j;c buffers the request in buffer,.,q including an unambiguous ID id and the current time.
A is then expected to trigger the delivery of the response to the request via (Deliver, id). If the accountability
property consistency is already broken, A can freely determine F&p¢’s responses to the read request. To do
s0, F&5© queries A for the response and forwards the output to the requestor If consistency still holds true,
F&© requests A for the prefix of the state it should provide to the requestor. More specifically, A provides
a pomter N to the prefix of the state and a potential receiver (pid,.,sideyr, r0ley to F& . If there exists an
entry in buffer,.,q matching id, F& ¢ ignores the receiver provided by A and sends the prefix of the state to
the requesting party stored in buffer,,,, (for id) and deletes the read request from buffer,c.q. If there is no
corresponding message to id in buffer,¢,q,]-'aCC pushes the prefix of the state to (pid,., sideyr, role;.).

As already mentioned, FZ¢ also includes an (1nternal) clock which allows measuring time to capture liveness
properties. Parties and A can query the current time of FZJ via the GetCurRound command. Further, A is
allowed to increase the round, resp. current time, in]-'jlfc by one via UpdateRound. In case that 1iveness
still holds true, F&5 checks that there does not exist an entry (id, msg,r) in buffer such that it holds true
round —r > § where round is the current round in F&° and § is the liveness parameter of FZ7¢. If 1iveness
is already broken, there are no restrictions on time updates.

In FZ5¢, we use the standard corruption behavior for dynamic corruption without secure erasures of iUC.
In particular, & only acts as message forwarder for corrupted parties. Further, we model a dynamic set of
participants in]-' S

F&p € also rehes on the concepts of AUC in order to capture and handle accountability properties. We expect
Fos¢ to be used with the parameters Sec®™ = {consistency} and Sec®*"™P"°" — {1iveness}. For the security
properties, F. icgg‘;%amms enforces that A has to trade in a (public) verdict for pid; = public, i.e., we expect
the parameter pidsj,qge to be {public}, which ensures individual accountability if he breaks consistency. To

capture that liveness may break for all participating parties, we expect idsassymption t0 be {public}. T(fgfﬁgamms
does not provide additional leakage to A if he breaks liveness. As judicial report]:Jfggz%arams outputs a

prefix of F&’s state including an extension provided by A. In particular, the prefix needs to contain at least

28

Description of the ideal and accountable consensus service 75 = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: dynamic corruption without secure erasures
Protocol parameters:

- d€eN {The expected liveness guarantee for in time units
- Sec®™* C {0,1}~ {Accountability properties
— Secsumption - o, 1}* {Assumption-based security properties
- pidsjuage C {0,1}" {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
— idSassumption C {0, 1} {set of entities/IDs where properties are ensured via assumptions

acc,

Description of M

Implemented role(s) {client}

Subroutines: ‘F]udgePerdIna judgeParams

Internal state:
- state C N x {0, 1}* state = () {The set of totally ordered transactions/messages
— buffer C N x {0,1}* x N, buffer = & {The buffer ob submitted transactions including submission round

- buffer,eqq € N* x ({0,1}*)3 buffer,eqq = 0 {Buffer for handling Read requests, entries of form (id, round, (pid, sid, role))
The counter for odered transactions, to order tx
in buffer, and read requests in buffer,q,q

~ round € N, round = 0 {The time in F3°
— maxHonestOutput € N, maxHonestOutput = 0 {The longest prefix of the state queried by an honest party

— counter, counter g, counterrp € N, counter = 0, counterg = 0, counterp = 0 {

_ . - - - a X . s The set of corrupted internal
corruptedIntParties € {0,1}* x {0,1}* x {0,1}* \ (Rolesz* U {judge, supervisor}), initially () {pam’es (pid, sid, role)

assumption

— brokenAssumptions : Sec X idSassumption —> {true, false} {Stores broken security assumptions per id, initially false Ventries

Stores broken security prop-

— brokenProps : (Sec®*mPton | Sec?<c) x (pidsjugge U idSassumption) — {true, false} erties per judge/id, initially
. . N false Ventries
- verdicts : pidsjygge — {0, 1} {Verdicts per p € pidsjuqge, initially &

CheckID (pid, sid, role):
Accept all messages for the same sid. For messages to (pid, sid, judge) accept only if pid = public.
Corruption behavior:
- AllowCorruption(pid, sid, role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:
send (Corrupt, (pid, sid, judge), internalState) FjudgeParams decides
to (pid, sid, FjudgeParams : judgeParams) {whether judges can be
wait for b; return b corrupted
- DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status
send (CorruptionStatus?, (pid, sid, judge), internalState) to (pid, sid, FjudgeParams : judgeParams)
wait for b; return b

- AllowAdvMessage(pid, sid, role, pidreceiver; Sidreceiver s F0l€receiver, 1)

Mai Do not allow sending messages to FjudgeParams- { A is not allowed to invoke FijudgeParams in the name of corrupted parties.
ain:
recv (Submit, msg): {Transaction submission
counterg < counterp + 1; buffer.add([counterg, msg, round])
send (Submit, counterp, msg) to NET {Leak submitted data to A
recv Read from I1/0: {Read request
counterr <— counterg + 1; buffer,¢,q.add(counter g, round, (pidcyr, Sidcyr, rolecyr)) {Record read request including current time
send (Read, counter i, round, (pidcyr, Sidcyr, rolecyr)) to NET {Leak information to A
recv (Deliver, id) from NET: { A triggers delivery of response to read request or injects a response without a read request
if brokenProps[consistency, public] = true: Check whether F 37 still provides consistency
send responsively Read to NET {If consistency is “broken” A is allowed to determine the output of Facs
wait for (Read, state, (pid, sid, role))
if 3(id, round, (pid, sid, role)) € buffer,,,: {Check that ID exists
maxHonestOutput «— |state| {Record longest output of the state so far
buffer,cqq.remove([id, round, (pid, sid, role)]); send (Read, state) to (pid, sid, role)
else: {If consistency holds, output the current state
send responsively Read to NET (%) {Allow A to determine the prefix of state as response

wait for (Read, N, (pid,., sidcur, Toles))

A decides on the prefix of the state. If there is no read
request for id, A also determines the recipient.

if [state| < N:
Go to (%)
if 3(id, round, (pid, sid, role)) € buffer,,: {Check that ID exists
buffer,cqq.remove([id, round, (pid, sid, role)]); Let state be the prefix of state up to and including entry N.
send (Read, state) to (pid, sid, role) {Send state to requestor
else:
send (Read, state) to (pid,., sidcyr, role;,) {Send state the entity determined by A
recv Read from NET: {.A is allowed to access the full state of Fé}“c.

reply (Read, state)

recv getBuffer from NET: {A is allowed to query the current buffer
reply (getBuffer, buffer)

recv (Permute, 7) from NET: { A is allowed to change the order in the buffer
require: 7 is a permutation of the IDs in buffer.
for all (ctr, msg) € buffer do: buffer.remove([ctr, msg]); buffer.add([7(ctr), msg])
reply ack

“Rolesy = {client} here.

Fig. 9: The ideal and accountable consensus service ¢, including accountability (Part 1).

29

Description of prcc (continued):

Main:
recv Update from NET: {A may trigger when buffer is included in state
Let (¢, msg) € buffer the first entry in buffer; counter <— counter + 1;state.add([counter, msg]); buffer.remove([i, msg])
{Remove entry from buffer
reply ack
recv UpdateRound from NET: { A triggers round update
if (3(_,_,r,) € buffer,
s.t. round —r > 5V 3(_,r,_) € buffer,cqq,
s.t. round — r > §) AbrokenProps[liveness, public| = false:
reply (UpdateRound, false, €) {Reject round update if there are old messages in queue but liveness still holds
else:
round < round + 1
reply (UpdateRound, true, €)
recv GetCurRound: {Allow access to the “global clock”
reply (GetCurRound, round)

Include static code from the AUC transformation 77 (-) here, i.e., include additional code from Figure 2 and 3 here.

Fig. 10: The ideal and accountable consensus service J¢;“ including accountability (Part 2).

Description of]:ja:;éfpamms = (judgeParams):
Participating roles: {judgeParams}
Corruption model: incorruptible
Description of sztxfi(;eigrsams'

Implemented role(s): {judgeParams}
Internal state:
- ptr € N,ptr =0 {Pointer which stores the length of the prefix of the state reported as judicial report
CheckID(pid, sid, role):
Accept all messages with the same sid.
Main:

recv (BreakAccProp, verdict, toBreak, internalState) from I/0:
if verdict[public] ensures individual accountability) A
all other entries in verdict map to e

toBreak = {(consistency, public}: {Handle violation of accountability w.r.t. consistency
reply (BreakAccProp, true, ¢)
else:

reply (BreakAssumption, false,€)

recv (BreakAssumption, toBreak, internalState) from 1/0: {Do not generate leakage when breaking assumptions
reply (BreakAssumption,)

recv (GetJudicialReport, msg, internalState) from I/0: {Generate judicial report

Forward request to A an wait for a pointer to the

send responsively (GetJudicialReport, msg, internalState) to NET (%) {.rrate including an extension of this state

wait for (GetJudicialReport, ptr, ext)
if ptr < maxHonestOutput V ptr > |state|V
ext ¢ N x {0,1}*V

ext— start with index ptr 4+ 1V Require valid input from A, prefix must at
further elements — consecutive enumerated: least contain honest output and extension
g0 to (%) needs to be valid
ptr < pir
Let statepy, the prefix of the state from the beginning including the ptr’ component unite with ext.
reply (GetJudicialReport, statepq.) {Return state as report
recv (Corrupt, (public, sid, judge), internalState) from 1/0: {*Fja\f};;fpmams declines corruption requests for the public judge
reply false {The public judge is incorruptible
acc-cp e e .
recv (CorruptionStatus?(public, sid, judge), internalState) from I/0: {]:judgel’arams asks for the public judge’s corruption
reply false status {The public judge is incorruptible
1 . : : : acc-cp acc
Fig. 11: The judge parameter functionality]-"judgepmmS for F55°.

30

interface
to &

interface _I interface

[client

! ts }

to €

<[7]

I interface

Fig. 12: Possible realization relation of the consensus service. The system £ denotes the environment,
modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally connected to
the adversary.

the prefix of the state that was already outputted to honest parties. As we model a public judge here, the judge
is incorruptible. Thus, F; 550, answers false to Corrupt and CorruptionStatus? queries.

In what follows, we will assume that we already have a realization for FZ5 which we scale via the scaling
protocol. Figure 12 gives an overview over a centralized consensus service CS (including relevant subroutines) in
the client-server model which can be used to realize #Z; and includes (public) accountability w.r.t. consistency
and assumption-based liveness. Importantly, the consensus service CS has to sign answers to read request from its
clients in this case. Thus, the (public) judge can gather undeniable evidence whether CS misbehaved according
based on CS signatures and can ensure accountability w.r.t. consistency. As already explained in Section 3.1,
communication via Fpe; allows including breakable liveness guarantees. Of course, 7 can also be realized
by a distributed system. For example, the accountable version of Apache Kafka [4] as presented in [50] is a

good candidate to realize FZ;°.

D.2 The Scaling Protocol: In this section, we provide some additional details regarding the consensus scaling
protocol PZ we use in our example introduced in Section 3.1. We provide formal definitions for P in
Figures 13 to 18.

Remark: To simplify presentation in Section 3.1, we introduced P as (client, supervisor, judge |
scd, Fuet, }"Cp , Feert)- Formally, the scaling protocol is defined as:
Pl = (PSE

GD . client, PSP : supervisor, PR . : judge | Pep : scd, Fuet net, Fo,¢ : client, Feert)-

judge
Client PSP Tient- Clients of the scaling protocol PID Tient (cf. Figure 13) are the connection point between higher-
level protocols/the environment and the scaling protocol. An instance of Pchent models one party accessing the
scaling protocol. The environment may queue messages/transactions via PSP Jient TOT consensus and read (from)
the established totally ordered sequence of transactions. If an instance (pidcyr, Sidcyr, rolecyr) of Ppech Tient TECEIVES
a Submit command, it firstly queries .4 which CD it should use to submit the transaction. Then, it assigns a
unique ID to the message and signs (id, tz, pide,y) via Feery and sends the submit request (id, tx, pideyr, o)
(where o is the signature from above) via Ft to the determined CD.

If the environment triggers a read request at an instance (pideyr, Sideyr, rolecyr) of PSP Tiont> (Pideur, Sideur, rolecur)
first queries A which CD to use to process the request. Then, it forwards the request via Fyc; to the CD. PSP

client

also receives the response to the query via Fyet. To pull the response from the CD from F, A triggers PCIBM

with the Pull command. PP then querles Fret for new messages and verifies that the state in the delivered

message is validly signed. In this case, Pchem forwards the message to the judge PSR, , waits for its reactivation,

and then forwards the response to the environment.

judge’

The consensus distributors Pcp. Though the CD are the core of the scaling protocol, they are internal/private
parties which use an internal/private consensus service to achieve consistency/consensus. Internal/private means
that the interfaces of Pcp are not accessible to higher-level protocols. An instance of Pcp (cf. Figure 14)
models one dedicated consensus distributor. Communication to/from the environment is always via PSP client -

31

Messages from Pchent to Pcop are sent via Fye, and vice versa. If A triggers Pcop via the Pull message,
Pcp pulls for a new message at Fyo. (i) If the pulled message contains a Submit command, Pcp verifies
the signature of the client submitting the transaction. If the signature verifies, it queues the submit request at
F& ¢ for consensus. In particular, Pcp forwards the request to its client component of FZ&°. (i) If the pulled
message is a Read request, Pop creates a signature over state and replies with the state including the created
signature via JFpt to the requestor.

If A wants Pcp to update its state, it sends Update to Pcp. Thereupon, Pcp sends a Read request to
Fé& ¢ F&© replies with a Read message including a state update. Pcp verifies that the state update has a valid
format and that it is an extension of its current state. If both checks succeed, Pcp overwrites its current state

with the provided update.

The public judge PCY iudges 1he public judge PR udge
and (ii) from the lower-level consensus service F&. In contrast to clients which push evidence data to PR udge’
the judge pulls data from the lower-level public judge of FZ° on every activation during preprocessing. More
specifically, as long as verdicts = ¢, Pj?lgge queries FZo’s judge for the most recent verdicts and a judicial
report and overwrites its current (empty) verdicts and Jud|ciaIReport with the received data. The judge only
processes evidence in the case that there is no verdict so far.

If Pjud . receives evidence from PSP - which contains some CD’s state (we assume that CD is identified with
(pid, sid, role)) including its pid and a signature over the data. Pjudge checks that the signature verifies (which
implicitly includes a check that pid is indeed a CD). If the signature does not verify, the reported evidence is
ignored. Otherwise, Pudge checks that the reported state is a prefix of the most recent judicialReport. If this
check fails, this means that (pid, sid, role) violated consistency. Thus, PJ will blame (pid, sid, role) for
its misbehavior.

On request GetVerdict, Pjud o
GetJudicialReport interface, PSR
in judiciaIReport

As Pud . models a public judge, it also provides the GetEvidence interface to A. Pudge provides all
collected evidence (W), the current judicial report, and its full transcript to A if A 1nV0kes this interface. This
models that all data used by PR indge 18 indeed public (as P Judge makes it public). PSR, ’s VerResult interface
further allows \A to verify signatures of the parties of P¢ .

(cf. Figure 15) collects information (i) from clients Pchent

udge

outputs the verdict stored in verdicts. If the environment invokes the

indge OUtputs the judicial report it gathered from FZ7¢’s judge which is stored

judge

The public supervisor PSP. The supervisor PSP (cf. Figure 16) is responsible for determining whether the
assumption-based security property liveness still holds true and to make the corruption status of internal
parties/parties from lower-level protocols accessible to the environment. If the environment queries PSP via
the (IsAssumptionBroken?, liveness, public), PSP asks Fe; via getDeliveryStatus whether liveness
still holds true and also queries Fc7“’s public supervisor and asks whether 1iveness still holds true for FZ5e.
If both checks succeed, PSP responses that liveness still holds true for the scaling protocol. Otherwrse it
reports the property as broken.

If the environment queries for the corruption status of internal parties of the protocol via corruptInt?, PSP
checks whether the matching instance of Pcp is corrupted or whether the party at F5, resp. the internal party
at F&° is corrupted and outputs the corruption status accordingly.

The network functionality F,.;. The ideal network functionality F; (cf. Figure 18) with breakable liveness
mainly provides a Send and a Pull interface to parties. There should be one instance of Fy.¢ per sid modeling
one separated network for a protocol. In order to measure whether liveness is broken, F; includes an in-build
clock (see below). When an entity sends a message via Fet to another entity, Fpet firstly buffers the message
including a unique ID, sender, receiver, and the round JF¢ received the message in buffer,,,,. Additionally,
the message (including all metadata) is leaked to .A.

In order to change the sequence of messages in buffer,,,,, A is allowed to permute the messages in buffer,,,
via Permute analogously to the Permute command in FZ°.

If a party (pid, sid, role) wants to access its messages, 1t can query JFpet via Pull. In this case, Fpet looks
for the message with the smallest ID addressed to (pid, sid, role), deletes this message from buffer,,,, and
forwards the message to (pid, sid, role).

To increase the current time stored in round, A can use the UpdateRound command. In the case that liveness
still holds true, i.e., inTime = true, F,¢ checks whether the round received of all messages in buffer,,, is

32

less than § time units in the past (where ¢ is the liveness parameter of F.). If the check succeeds, Fies
increases round by one. Otherwise, the round update is rejected. If liveness does not hold true anymore, Fpes
accepts all UpdateRound requests of .A.

Via BreakLiveness, A can break the liveness guarantees of ;. The other subroutines can query for the
time of F,¢¢ via GetCurRound and they can also query via getDeliveryStatus whether liveness holds true
or not. (Note that F,. is private in the considered protocol, thus not accessible to the environment).

The ideal signature functionality F.., with in-built CA. In the scaling protocol model, we use Fcer (cf.
Figure 17)— an adapted version of the standard ideal signature functionality F (cf. Figure 31) as presented
in [17] (which we use later on as well). The major difference between Feet and Fig is that Feerq includes an
“in-build” CA. This simplifies the handling of signatures in this model.

This concludes the description of P¢;¢. For a description of the corruption behavior, we point to Section 3.1.

D.3 UC Security Analysis: We now present the full proof of Theorem 1 in detail. To ease notation, we use
F&p¢ for the ideal consensus service subroutine on the real side/hybrid setting and call the instance of the ideal
consensus service we want to realize]-'f}fc'.

Theorem 6. Let 6 € N be the upper time boundary for message delivery and ¥ = (gen(1"), sig, ver) be an EUF-
CMA secure signature scheme. Let P3¢ be as defined above. Let F35' as described above with Fi 7%,

as subroutine with parameters Sec®* = {consistency}, Sec®* mPton

and idsassumption = {public}. Then:

= {liveness}, pidsjudge = {public},

'Pca;c < (]_—:;):c/ | .Facc—cp)

judgeParams

Proof. We firstly define a responsive simulator S such that the real world running the protocol R := P2 =

cp
(Pccfite’nt : client, PSP supervisor,Pj?lgge : judge | Pcp : scd, Fret : net,fj‘gc . client, Feert) 18
indistinguishable from the ideal world running {S, 7}, with the protocol Z := (Fg;° | f;g;‘{)mms), for every

ppt environment &.

The simulator S is defined as follows: as common, S is a single machine. It is connected to Z and the
environment £ via their network interfaces. In a run, there is only a single instance of the machine S that accepts
and processes all incoming messages. The simulator S internally simulates the realization R, including its
behavior on the network interface connected to the environment, and uses this simulation to compute responses
to incoming messages. For ease of presentation, we will refer to this internal simulation by R’. More precisely,
the simulation runs as follows:

Network communication from/to the environment
o Messages that S receives on the network connected to the environment (and which are hence meant for R)
are forwarded to the internal simulation R'.

« Any messages sent by R’ on its network interface (that are hence meant for the environment) are forwarded
to the environment &.

Corruption handling

o The simulator S keeps the corruption status of entities in R’ and Z synchronized. That is, whenever an entity
of nggm, Pcp,]—"flfc, or an internal entity of]fjlfc in R’ starts to consider itself corrupted, the simulator
first corrupts the corresponding (internal) entity of]—"jlfc’ in 7 before continuing its simulation. Note that
corruption of internal entities, i.e., of Pcp, or (non-internal) parties of FZ7¢ is mapped to a corruption of
an internal party in .7-'3;‘3’ in Z.

o Incoming Messages from corrupted (non-internal) entities of fé"}fcl in Z are forwarded on the network to
the environment in the name of the corresponding entity ngnt in R’. Conversely, whenever a corrupted
entity of ngggm wants to output a message to a higher-level protocol, S instructs the corresponding entity
of]-"f;c’ to output the same message to the higher-level protocol.

o For indirectly corrupted parties:’ Note that these parties are (directly) corrupted in Z. For these instances,
T forwards the inputs from S. An indirectly corrupted party in R’ produces an output on an I/O tape then

S instructs 7 to forward this message to the intended receiver.

Indirectly corrupted parties are not directly corrupted parties, i.e., A did not send Corrupt to the party so far, but (in our case)
DetermineCorrStatus outputs true. That is, the party considers itself to be corrupted, e.g., due to a corrupted subrouting. For

example, an instance of Pccli]gm considers itself corrupted if its accompanied signer session at Fcert is corrupted.

33

Transaction submission

Whenever an honest entity entity = (pid, sid, role) of]-'?;C' receives a request (Submit, msg) to submit a
new transaction msg, .FaCC' buffers the message for later adding it to the state and leaks the full message
including the ID of the message in F? aCC"s buffer to S. S uses the leaked message to simulate the input of
msg to PSP, in R’

In the case that a corrupted party submits a message (which can be extracted from Fet), S submits the

transaction via the Submit command to]-"f;c'.

Read requests

Whenever an honest entity (pid, sid, role) receives a request Read to read from the global state, F&y ace! buffers
this read request and leaks the request to S and waits for a trigger to process the read request. Upon receiving
this request, S uses the leaked message to simulate the input of this message to PSP . in R’ and stores (i) the
ID provided by FZJ ace/ for further processing and (ii) which entity triggered the read request.

If A triggers a 51mulated entity (pid, sid, role) of Pcllent to output the response to a read request via Pull,
S simulates the input of Pull in R'. If (pzd, sid, role) wants to output a state via a (Read, state) message
on its I/O connection in R’, S extract the connected request ID id matching the request (see above) and
sends (Deliver,id) to F2¢. If brokenProps[consistency,public] = true in F2*",!" S simply forwards
(Read, state, (pid,.,sideyr, Tole,)) from R’ including the stored receiver as response to .Facc’ Read request.
Otherwise, S compares state with state from .F?;C'“ and extracts the pointer N, such that state up to the N
entry matches state. S then forwards (Read, N, (pid,., sideur, role,)) to Fas®" where (pid,., sideur, Tole,) is the
recorded requestor of read request.

State updates

If there occurs a state update in R’ in the simulation of]-'jrfc, i.e., the variable state of .FS;C is updated, S
triggers a state update at F 2 acc! Therefore, it firstly retrieves the buffer of submitted messages/transactions which
are not part of the state so far via getBuffer and the state’ from Fé acc! yia Read. It checks, which entries
of state from the simulation are missing in state’ in Fé ace! Tt then denves a permutation over the received
buffer such that the entries missing in state’ have the same order as in state starting with the lowest ID in the
buffer. Then, S sends this permutation via Permute to F&; acc/ }"j‘gc/ activates S again with an ack message.
Thereupon, S sends Update to F&; ace’! and is activated agam via ack. S repeats sending the Update message
until state and state’ are equal.

Public judge and supervisor

o If during the simulation of Pudge in R/, PLE idge Tenders a verdict, i.e., verdicts # ¢, S extracts the verdict
and forwards it to F25¢’. More specifically, S sends (BreakAccProp, verdict, {(consistency, public)})
to (public,sideur, Fip icc : judge) where verdict is a map from pidsjugge — {0, 1}* where only the entry
verdict[public] = verdicts (contains the verdict from PR,) and all other entries are mapped to &.

o If }'j}fc’ is queried for a judicial report, it allows S to determme some details of the judicial report which is
derived from]-'gfc’s state. If S receives (GetJudicialReport, msg, internalState) from Fg; ace! it extracts
the judicial report report (as currently produced) from FZ5¢. It extracts the necessary pomter ptr to map
report to state from F5¢ and then sends (GetJudicialReport, pir,e) back to .Fg"‘rfc’.

o If S receives GetEv1dence or VerResult via NET, it forwards this input to its simulated version of PSP fudge
and sends the output of the simulated machine back via NET. For the transcript provided as response to
GetEvidence, S maps data such as if the simulated version of PEL would be directly connected to NET,
etc.

« As soon as liveness breaks (i) in Fpet or (ii) in ¢ in R’, S breaks liveness at F; dgc/ In the case of (i), as
soon as inTime = false in Fpet, S sends (BreakAssumptlon {(1iveness,public)}) to (public,sideyr,
F&p© + supervisor). In Case (ii), if the brokenProps[liveness, public] = true at Fi;°, S sends the
same message as above to]-"acc' .

Further details

o S keeps the clocks/rounds of R’ and F. ar‘fc’ synchronous. That is, S sends UpdateRound to FZ5 ace/ whenever
a round update in the simulated Fe¢ is performed and before continuing the simulation.

This concludes the description of the simulator. It is easy to see that (i) {S,Z} is environmentally bounded '?

judge

10Note that S explicitly breaks this property. Thus, S knows the value of brokenProps[consistency, public] in .ngcc’ .
"This is possible, as S determines the state via Update commands.
12This is the polynomial runtime notion employed by the iUC framework.

34

and (ii) S is a responsive simulator for Z, i.e., restricting messages from Z are answered immediately as long
as {S,Z} runs with a responsive environment. We now argue that R and {S,Z} are indeed indistinguishable
for any (responsive) environment £ € Env(R).

Let £ € Env(R) be an arbitrary but fixed environment. First, observe that F2’ provides S with full
information about all submit and read requests performed by higher-level protocols. Hence, the simulated
protocol R’ within S obtains the same inputs and thus performs identical to the real world R. Therefore, the
network behavior simulated by S towards the environment is indistinguishable from the network behavior of
R. Note that state changes triggered via network interface are synchronized between R’ and Z. Together with
the state synchronization during I/O interaction (see below), the simulator can keep the states of R’ and Z in
synchronization. Moreover, we can also conclude that the corruption status of (internal) entities in the real and
ideal world is synchronized. Since the simulator has full control over corrupted entities, which are handled via
the internal simulation R/, this implies that the I/O behavior of corrupted entities of R /Z towards higher-level
protocols/the environment is also identical in the real and ideal world. Note that purely internal (private) parties
have no interface to the environment. Thus, the only way to potentially distinguish the real and ideal world is
the I/O behavior of honest entities of R /Z towards higher-level protocols.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by induction,
that all of those interactions result in identical behavior towards the environment, i.e., are also indistinguishable.
At the start of a run, there were no interactions on the I/O interface with honest parties yet. In the following,
assume that all I/O interactions so far have resulted in the same behavior visible towards the environment in
both the real and ideal world.

Submission requests: Submission requests do not directly result into an output to the environment. But, they
might affect the output of }'f;c' at a later point in time as they have direct impact of the state of fé‘“}fc/, resp.
R. Thus, we now show that submit requests behave “identical”, i.e., we have to argue that these changes are
“synchronized” between Z and R’. In particular, the buffered set of transactions in fj;c’ is a subset of the
buffered set of transactions in R’ (which are buffered (i) as Submit message in Fye; and (ii) in the buffer of
F&O)-

Observe that, upon receiving a submission request,]-"f;c’ behaves similar to R: in]-"f}fc’, the submitted
transaction is directly stored into the buffer. In R’, the submit message is forwarded via Fpe; to Pcp. So, the
“buffers” of]—'j‘}fcl and R’ stay synchronized when defining the buffer of R’ as the set of Submit messages in
Fhet’s buffer union the buffer of F°. Note that as soon as submit request of corrupted parties are visible to
S (as specified above), S also submits these transactions to]-'é;c' . Thus, S is indeed able to keep the buffers
in Z and R synchronized.

State updates: As buffers in R’ and fé‘}fcl are synchronized, we can conclude that the states of ffPCC’ and R’
stay synchronized during updates as this boils down to mirror the state from S to]-'f;c’ (as S does). (i) The
buffer of F& ¢ is a subset of the buffer of]—'?;C'. (ii) Submitted transaction which are not in the intersection of
the states of FZ7 and }"ca;d are currently in the buffer of F,.¢. (iii) By construction, both provide the same
security guarantees. Thus, .Ff}fc/ provides at most less guarantees than FZ5° (in case that properties are broken
at]-'flfcl). Thus, .7-"?;0/ will accept every state update of S and both, Z and R’ stay synchronized. Note that

.F?Ifc/ also provides S the possibility to forward answers to read requests which have not been requested. As

this is possible in real and ideal world, both worlds stay indistinguishable.

Read requests: Observe that, upon receiving a read request,]-'frfc’ stores the read request in a buffer and leaks
the full request to the simulator including an ID and the receiver of the response. Note that the procedure is
analogously to a submission requests. A read request does not directly result into an output to the environment.
With the same argumentation as above follows that S is able to keep the “read buffers” of Z and R’ synchronized.

Deliver response to read request: If S is triggered to output a response to a read request (via Pull), there
are two cases to consider: (i) brokenProps[consistency, public| = true or (ii) brokenProps[consistency,
public] = false. In the first case,]-"flfc’ will simply forward the input from S to the requestor. As the output
is extracted from R’ we can conclude that R and Z are indistinguishable. In the second case, S can extract
the response from R’. Honest clients in R’ receive a validly signed prefix of the state of F&© (which is in
synchronization with]—'é‘}fc’s state). Thus,]—'j‘;cl will accept the Deliver command of S and the outputs in
both worlds is identical. Thus, both worlds are indistinguishable.

35

Verdicts: Firstly, note that S sends a BreakAccProp message to break public consistency when consistency in
R’ breaks, resp. when there is a new verdict available in R’s public judge.'®> Secondly, note that this request

matches the rules in Fiqo v : the verdict S provides ensures individual accountability and S solely tries

udgeParams*
to break public consisténcggf. Thus,]-'flfc' accepts the verdict S provides. Further note that we assume the used
signature scheme to be EUF-CMA secure. Thus, the probability that an honest party receives and accepts a
state update that includes a forged signature (and forwards this to a judge) is negligible. Further, as verifier
is incorruptible, Thus, we can conclude that S can always keep the verdicts and whether consistency is broken
synchronized in Z and R’ and the output on a GetVerdict request is equal in R and Z. Thus, both worlds

are/stay indistinguishable.

Judicial Reports: Observe that the states of F&° in R’ and fj‘}fcl are synchronized (see above). As the judicial
report is derived as a prefix of the state, S always provides a pointer to the full state of both R’ and Z to
determine the judicial report of]-'frfc'. Thus, delivered judicial reports are equal in both worlds and R and Z
stay indistinguishable.

GetEvidence and VerResult: We note that the environment cannot use the GetEvidence or the VerResult
interface of Pj?lgge to distinguish between real and ideal world. The activation order of the simulated Pj(iﬁ)ge
matches the real world order and also messages to Pjggge match in both worlds perfectly. As S maps the
transcript such that it matches the real world execution the transcript (and provided state) is indistinguishable
in both worlds. Similarly, S fully simulates all interaction with F,¢ (in the same order in both worlds). Thus,

requests in both worlds will lead to the same output.

Supervisor: The same holds true for BreakAssumption requests to the supervisor. The message of S matches
the rules and thus will be accepted. This allows S to keep both worlds synchronized regarding the assumption-
based security property liveness. Thus, both worlds will answer requests to the supervisor identically, i. e., both
worlds remain indistinguishable.

Time requests: As the simulator updates the internal clock of]-'jlfc/ every time Fye’s clock in R’ is increased,
both worlds always output the same value for the current time. Note that, even if fjlfc/ enforces liveness,
any round update requests of S will indeed be accepted: as S keeps the liveness guarantees of Z and R’
synchronized, S will not ask for a time update that violates the liveness check in]-'?;C' as long as liveness still
holds true.

We also note that the (additional) public evidence A, resp. £, may gather at the Pj(iffge (via GetEvidence)
does not enable £ to distinguish between both worlds. As R’ gets the same input as Z/R, the output of
GetEvidence in R’ is the same as in the real world R. We emphasize that the judicial report of PSR,
already includes most of the information £ receives via GetEvidence. The transcript is the same in Z and R
as the order of activations of and the inputs to Pj?]gge, resp. its simulated version, are identically. Additionally,
GetEvidence provides signatures to £. However, as signatures do not contain private information and are
ideally generated in both worlds, it is not possible to distinguish between R and Z based on the additional
signature data.

Altogether, R and {S,Z} behave identical in terms of behavior visible to the environment £ and thus are
indistinguishable.

O

D.4 Deterrence Analysis: Common consensus services, e.g., Hashgraph [11], charge fees for their service.
Clients also benefit from a consensus service as they do not have to establish a consensus service on their
own. Thus, we conclude U}, > 0 for all parties involved in the consensus service. As Pg¢ provides public
accountability and verdicts are fair (by definition), we can conclude that the public judge will not falsely
accuse an honest party. Further, all data used in the judging procedure is public. Thus, we can assume that
Ul =U}, = 0. To deter parties from misbehavior, penalties for violating consistency need to be sufficiently
high. Thus, we assume that U’ ; > 0. In particular, penalties need to negate potential profit due to malicious
behavior, i.e., it needs to hold true Ufn p— Ufn L <U, }11 p- The exact value of Ufn p and hence the minimally
required fees depend on the context that uses the consensus protocol. As the judging procedure would identify
faked evidence, we assume U; p = 0. Thus, Equation 1 and 2 hold true.

13We remark that Pﬁ]gg . does not update her verdict.

36

CD
client

Description of the client P = (client) of the consensus distributors:

Participating roles: {client}
Corruption model: Dynamic corruption without secure erasures

Description of Mcijent:

Implemented role(s): {client}
Subroutines: Feert : verifier, Feert : signer, Fret : net,’Pqu]ggC : judge
Internal state:
— owner € ({0,1})3 {The entity (pid, sid, role) that has access to this instance of PSio, .
— serial € N, serial =0 {The serial for “agreed” transactions
CheckID(pid, sid, role):
Accept all messages for the same (pidcyr, Sidcyr, rolecyr).
Corruption behavior:
DetermineCorrStatus(pid, sid, role):

if corrupted = true: {Checks whether a party itself is corrupted.
return true
corrRes < corr(pidcyr, sidcyr, signer) {Request corruption status at Feert
return corrRes {Return whether Fcrt instance is corrupted
Initialization:
owner <— (pideall, sidcall, rolecair) {Remrd that only (pidcalr, sidcal, rolecan) has access to this instance of PSBM
Main:
recv (Submit, tz) from I/0 s.t. (pidcai, sidcai, roleca) = owner: {Transaction submission with specified CD
send responsively (Submit, tz) to (NET) { A desides which CD (pidcyr, Sidcur, rolecyr) will use
wait for (Submit, tz, pidcp)
serial < serial + 1
o’ <+ sign([serial, tz, pidcur])
send (Send, (pidcur, Sideur, rolecyr), (pidcp, Sideur, scd), (Submit, serial, tz, pidcyr, o)) 10 (pidcur, Sideur, Fnet : net)
{Send transaction via Fret to Pcp
recv Read from I/0 s.t. (pidcai, sidcai, roleca) = owner: {Read request from 10
send responsively Read to (NET) { A desides which CD (pidcyr, Sidcur, rolecyr) will use
wait for (Read, pidgp) o
send (Send, (pidcur, Sidcur, rolecyr), (pidcp, Sideur, scd), (Read, pideyr)) t0 (pideur, Sideur; Fret : net) f—;(_)rtzard request via
ne
recv Pull from NET: { A triggers pulling at Fet
send Pull to (pidcyr, Sidcur, Fret : net)
wait for (Pull, msg)
if msg = (Read, state, pidcp,0):
b + verifySig(pidcp, state, o)
if b A state C state:
state < state
ser_Id (Evidence, pidgp, state, o) to (pidcyr, Sidcur, PﬁE’ge : judge)
wait for ack
send (Read, state) to owner {Output response of read request to owner
Procedures and Functions:
function sign(msg) : {Sign message at Fcert

send (sign, msg) to (pidcyr, (Pidcur, Sideur), Feert : signer)
wait for (sign, o)
return o
function verifySig(pid, msg, o) : {Verify signature at Feert
send (VerResult, msg, o) to (pideur, (pid, sidcyr), Feert : verifier)
wait for (VerResult, result)
return result

Fig. 13: The consensus distributors client PSP ..

37

Description of the consensus distributors Pcp = (scd):

Participating roles: {scd}
Corruption model: Dynamic corruption without secure erasures

Description of Mgcq:

Implemented role(s): {scd}
Subroutines:]-';DCC : client, Foert : verifier, Feert @ signer, Fret : net, 'Pj%gge : judge
Internal state:
- state C N x {0,1}",state =0 {The set of totally ordered transactions/messages
CheckID(pid, sid, role):
Accept all messages for the same sid.
Corruption behavior:
DetermineCorrStatus(pid, sid, role):

if corrupted = true: {Checks whether a party itself is corrupted.
return true
corrResy < corr(pideyr, Sidcyr, Feert : Signer) {Request corruption status at Feert
corrResz « corr(pideyr, sideur, Fop © ¢ client) {Request corruption status at Fg;°
return corrRes; V corrRess {Rerum whether Feory or F. C"Pf"“ instance is corrupted
Main:
recv Pull from NET: { A triggers pidcyr to query Fet
send Pull to (pidcyr, Sideur, Fret : net)
wait for (Pull, msg)
if msg = (Submit, serial, tz, pid, o): {Received message is a Submit
b < verifySig(pid, (serial, tz, pid), o) {Check valid signature
if b: {If signature is valid, submit data to consensus service
send (Submit, (serial, tz, pid, o)) to (pideyr, sidcur, ff;cc : client) {Forward tx to consensus service
else if msg = (Read, pid): {In case of a Read request
o <+ sign(state) {Sign current state
send (Send, (pidcyr, Sideur, rolecur), (pid, sideyr, client), (Read, state, pidcyr, o) t0 (pidcur, Sidcur; Fnet : net)
{Reply with full state including signature
recv Update from NET: {Request update at consensus service
send Read to (pidcyr, sidcur,]-'Capcc : client) {Forward request to consensus service
recv (Read, state) from (pidcr, sideyr,]—‘;}CC : client): {State update from consensus service

require: state is a set with entries of form (ctr, msg),
where ctr € N, msg € {0,1}".
if state C state:
state < state
Procedures and Functions:

function sign(msg) : {Sign message at Feert
send (sign, msg) to (pidcur, (PidcunSidcur)v]:cert : Signer)
wait for (sign, o)
return o

function verifySig(pid, msg, o) : { Verify signature at Fcert
send (VerResult, msg, o) to (pidcur, (pid, sideyr), Feert : verifier)
wait for (VerResult, result)
return result

Fig. 14: The consensus distributor ITM Pcp which scales consensus.

E. Accountable Key Exchange based on an accountable PKI (Full Details)

In this section, we provide full details regarding the accountable PKI case study as presented in Section 3.2.
This section is structured as follows: we firstly present the details regarding the accountable PKI as introduced
in Section 3. In particular, we provide a detailed introduction to the ideal accountable PKI functionality F55s;.
Afterwards, we explain the protocol Pg%; and provide a formal specification of the model. We conclude this

part with a security analysis of the accountable PKI.

E.1 An Accountable Ideal PKI Functionality 73575 : We now present the full specification of the ideal
accountable PKI functionality F3%; including the formal specification of F5%; in Figure 19 including its
acc- PKI acc

subroutine Fig b ams 10 Figure 20. F35; extends Canetti et al.’s Gpp as presented in [27].

One session of F3f models one instance of a PKI including several different CAs and CTLs. From a
high-level perspective, F3i; offers the possibility to register certificates for identities at a dedicated CA and to
retrieve certificates of identities from CAs. We model that parties use a local PKI client which is responsible
for the communication with the PKI, i.e., the client is connected via I/O to the environment modeling higher-
level protocols which access/use the PKI. To interact with the PKI, honest parties, resp. clients identified by
(pid, sid, client), can register a certificate for their own identity. To register a certificate, clients send a message
of the form (Register, pk, pidy,) (Where pidg, is the PID of the CA that should attest the entities identity

and pk be a string, typically the public key of the client) to F3%;. Fpi; does not immediately process the

38

Description of ’F'j(flggc = (judge):

Participating roles: {judge}
Corruption model: incorruptible

Description of Mjugge:

Implemented role(s): {judge}
Subroutines: Fcept @ verifier, FSPCC : judge
Internal state:

— counter € N, counter = 0 {Evidence counter
- W CNx ({0,1}*)2 {Reported evidence (enumerated) per party, entries of form (ctr, pid, state)
- judicialReport € {0, 1}, judicialReport = ¢ {The judicial report from FZ;°
- verdicts € {0, 1}, verdicts = ¢ {Recorded verdict

CheckID(pid, sid, role):
Accept all messages with the same sid addressed to (public, sid, judge).
MessagePreprocessing:
if verdicts = e:
send GetVerdict to (public, sideyr, &, © judge) {Query for verdicts regarding consensus service
wait for (GetVerdict, verdict)
verdicts «<— verdict
if verdicts = e: {Update judicial report
send GetJudicialReport t0 (public, sidcur, F ' : judge)
wait for (GetJudicialReport, judicialReport)
judicialReport < judicialReport

Main:
recv (Evidence, pidcp, state, o) from I/0: {Evidence from clients
b < verifySig(pidcp, state, o)
if b:
if state ¢ judicialReport: {Honest CD will always forward state wich is a subset of a judicial report
verdicts.add(dis(pidop, sideur, Pcp : scd))
reply ack

recv GetVerdict from I/0:
reply (GetVerdict, verdicts)

recv (GetJudicialReport, msg) from I/0:
reply (GetJudicialReport, judicialReport) {Return judicial report (from lower-level) to requestor
A may query the public judge for the

recv GetEvidence from NET: evidence it gathered including all details

reply (GetEvidence, W, judicialReport, transcript”)
recv VerResult(pid, msg, o) from NET: {A verify signatures via Pj(;?lgo s interface t0 Feert

result < verifySig(pid, msg, o

reply (VerResult, result)

Procedures and Functions:
function verifySig(pid, msg, o) : {Verify signature at Feery
send (VerResult, msg, o) to (pideur, (pid, sideyr), Feert : verifier)
wait for (VerResult, result)
return result

%transcript is a special variable in iUC, which, informally speaking, contains a transcript of all messages sent and received by the current machine
instance.

Fig. 15: The judging functionality Pjggge for PZZ¢ (the consensus scaling protocol).

request, it stores the register message including the pid of the party which requests the certificate in a buffer
buffers for later processing. This allows to model asynchronous network. Also, F3§; leaks the full request to
A. If an honest party (pid,., sid, client) wants to access a certificate of a party pid, the process is similar:
the party sends (Retrieve, pid, pidg,) to access the certificate of identity pid at CA pidg,. Retrieve requests
are also stored in a buffer bufferg including the requestor (pid,., sid,client) for processing later on. FaS;
also leaks the full request to A.

As A has full control over the network, A needs to inform F3§; when it should accept a certificate and add
it to its state. Therefore, 735 allows A: (i) to drop entries from buffers and (ii) to add buffered certificates
to Fpi;’s state. In Case (i), A sends a (Dropg, pid, pk, pide,) message to Fp5¢;. If the entry (pid, pk, pidc,)
exists in buffers, F35; removes the entry from buffers and replies (Dropg, ack) to .A. Otherwise, F35; declines
the request and responds (Dropg,nack) to .A. In Case (ii), A sends the command (Update, buffer) to Fa5,
where buffer is expected to be a subset of buffers. If buffer C buffers, F3; adds the elements from buffer
to the state and removes them from the buffers. 735 then replies to A that it accepted the update.

Similarly, 735, handles retrieve requests. 7355 allows the adversary A (i) to drop entries from bufferg and

39

Description of PSP = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible

Description of Msypervisor:

Implemented role(s): {supervisor}
Subroutines: FSPCC : supervisor, Fpet : net
CheckID(pid, sid, role):

Accept all messages with the same sid.

Main:
recv (IsAssumptionBroken?, prop, id):
if id = public A prop = liveness: {The model includes public liveness as assumption-based security property
send getDeliveryStatus to (pidcyr, Sidcur, Fnet : net) {Query Frnet whether liveness still holds

wait for (getDeliveryStatus, inTime)

send (IsAssumptionBroken?, liveness, public) to (pidcur, Sidcyr,]-_é;cc

wait for (IsAssumptionBroken?, b)

if inTime A —b: {Liveness holds true
reply (IsAssumptionBroken?, false)

else:
reply (IsAssumptionBroken?, true)

else:
reply (IsAssumptionBroken?, false)

Query Fi7’s supervisor

: supervisor
P) whether liveness still holds

recv (corruptInt?, (pid, sid, role)) from I/0 s.t. role ¢ {client, judge, supervisor}:

corrRes <— false; b < false {Check corruption depending on protocol layer

if role = scd: {Hcmdle internal parties of ’Pjp“
corrRes < corr((pid, sid, role)) {Check whether party is corrupted if directly accessible

else: {Handle internal parties from lower protocol levels

send (corruptInt, (pid, sid, role)) to (public, sidcyr,]-';CC : supervisor) {C/u%z?k if internal party at fcap“c is corrupted
wait for (corruptiInt,b)
if corrRes V b:
reply (corruptInt, true)
else:
reply (corruptInt, false)

recv (BreakAssumption, toBreak, internalState) from I1/0: {Leakage request
reply (BreakAssumption,) {Provide empty leakage

Fig. 16: The supervisor PSP for Pcs.

(ii) to trigger the response to a retrieve request. Case (i) is analogously to Case (i) from the paragraph above.
acC

Here, A sends a (Dropy, pid, pide,, pid,, role,) message to FR5. If the entry (pid, pide,, pid,., role,) exists
in bufferg, F35; removes the entry from bufferg and replies (Dropy,ack) to A. Otherwise, F35¢; declines
the request and responds (Dropy,nack) to A. In Case (ii), A sends (Deliver, pid, pidg,, pid,., role,, pk 4)
to F35. There are now two cases to consider: (i) correctCert is broken for (pid, sid, client) or the party
is corrupted and (ii) correctCert is not broken for (pid, sid, client) and the party is not corrupted. In the
latter case, Fpi; removes the entry from bufferr and sends the requested output (extracted from its local state)
via (Retrieve, pid, pidg,, state[pid, pids,]) to (pid,, sid, role,) (and ignores further data provided by .A).
Otherwise, 75, allows A to determine pid’s certificate. That is, F35; forwards the public key pk 4 provided
by A via (Retrieve, pid, pide,, pk 4) to (pid,., sid, role,).

To cover accountability properties, we expect F5i to be used with the parameters Sec®* = {correctCert}
and Sec®™™P"" — (). For correctCert, we require verdicts which state that one or several CAs mis-
behaved. F35§ includes local judges — one local judge ((local, pid,client), sid, judge) per client iden-
tity (pid, sid, client), i.e., pidsjuage is expected to be {local} x {0,1}* x {client}. As judicial report
ﬂicgéggiams outputs an empty report. Further, the func.tionality }ﬁﬁé&ﬁiams specifies that verdicts need to be
of form A, dis(pide,, sideur, ca),n € N, where (pidg,, sideur, ca) are CA identities in P35S;. As the model
does not include assumption-based security properties, we expect idSassumption = () and specify that }Tﬁﬁé{f’é{rams
always outputs ¢ as response to a BreakAssumption request. Note that (i) local judges act as pure message
forwarder for A if the associated party is corrupted and (ii) A may corrupt a local judge only if its accompanied

party, resp. client is already corrupted.

E.2 An Accountable PKI based on CTLs: In what follows, we provide the full specification of our PKI
protocol, resp. its model PE;, as presented in Section 3. We also provide a formal description of all components

40

Description of the protocol Feery = (signer, verifier):

Participating roles: {signer,verifier}

Corruption model: incorruptible {See text below
Protocol parameters:
- p € Z[x]. { Polynomial that bounds the runtime of the algorithms provided by the adversary.
-neN {The security parameter.
— sig {Signing algorithm, outputs a signature o on input (msg, sk). The generated signature has a length of 1 bits
— ver {Signature verifying algorithm, outputs verification result on input (msg, o, pk)
- gen {Key generation algorithm, outputs (pk, sk) on input 1"

Description of Mgigner, veritier:

Implemented role(s): {signer,verifier}
Internal state:

- (pk,sk) € ({0,1}* U {J_})2 =(L,1). {Key pair.
— pidowner € {0,1}* U{L} = L. {Party ID of the key owner.
- msglist C {0,1}* = 0. {Set of recorded messages.
— corrupted € {true, false} = false. {Is signature key corrupted?

CheckID(pid, sid, role):
Check that sid = (pid’, sid’):
If this check fails, output reject. A single instance manages all parties and roles in a
Otherwise, accept all entities with the same SID. {single session. A session models one signature key pair
Corruption behavior: belonging to party pid’.
— DetermineCorrStatus(pid, sid, role): Return corrupted.
Initialization:
(pk, sk) & Gen(1") {Generate public/secret key pair
Parse sidcy, as (pid, sid).
pidowner <+ pid.
Main:
recv (Sign, msg) from I/0 to (pidowner, _, signer):
o + sig® (msg, sk).
add msg to msglist.

reply (Signature, o). {Record msg for verification and return signature.
recv (Verify, msg,o) from I/0to (_,_, verifier):
b« ver(® (msg, o, pk). {Verify signature.
if b = true A msg ¢ msglist A corrupted = false:
reply (VerResult, false). {Prevent forgery.
else:
reply (VerResult, b). {Return verification result.
recv corruptSigKey from NET: {Allow network attacker to corrupt signature keys.

corrupted <— true.
reply (corruptSigKey, ok).

Fig. 17: The ideal signature functionality Feyt.

of the protocol in Figure 22 to 31. Figure 21 provides an overview over the different components of the PKI
protocol.

Remark: The full formal definition of P2, as presented in Section 3.1 is P35 = (PG, : client, PE: :
supervisor,Pﬁfdge : judge | P : ca, Pery - ctl, Fpsync-net : psync-net, Fyig, Fauth : auth).
We remark that one PKI consisting of clients, several CAs, and several CTLs is modeled as one instance (sid)

of Pa%;.

CA clients P . The CA client P (cf. Figure 22 and 23) handles the connection between the PKI and the

client*® client
environment. P%* °s main purpose is to request at most one certificate at the PKI and to query for certificates

client
of other parties. Additionally, PS_ . also monitors the PKI, resp. its CTLs and surveils whether there exists
solely certificates for its identity requested by itself.

client
If the environment instructs an instance of PG}, ., namely the instance for (pid, sid,client), to register a

string pk as its public key at a certain CA (pidg,, sideur, ca), it sends (Register, pk, pidq,) via an authenticated

channel Fouen to PSE . An honest instance of P&}, | registers at most one certificate. If the environment calls
CA

the register command once again, P, does not process the request.

If the environment wants to retrieve a certificate of pid issued by pidg,, it instructs its instance of PG}, .

to do so via (Retrieve, pid, pidg,). P, stores the request in requests and forwards the request via NET,
i.e., unprotected, to (pidg,, sid, ca) (with the same session ID). Note that there is neither a guarantee that

the request arrives at the CA nor that it arrives unchanged. When PS_ . receives the answer to the retrieve

41

Description of the protocol Fret = (net):

Participating roles: {net}
Corruption model: incorruptible
Protocol parameters:
- 5€eN {The expected liveness guarantee for Fet

Description of Myey:

Implemented role(s): {net}
Internal state:
- buffer,,gg C N? x {o, 1}*)7, buffer,,sg = 0 {Buffer for messages consisting of tuples (ctr, round, sender, receiver, content)

— counter € N, counter = 0 { Counter for messages
— round € N, round =0 {Current round/time unit
— inTime € {true, false}, inTime = true {Indicator whether messages where within § time units

CheckID (pid, sid, role):
Accept all messages with the same sid.
Main:

recv (Send, (pidcur, Sidcur, rolecur), (pid, sideyr, role), msg) from I/0: {(pidcyr, sidcyr, rolecy,) sends a message to (pid, sidey,, role)
counter <— counter 4 1

buffer s, .add([counter, round, (pideyr, Sideyr, rolecur), (pid, sideyr, role), msg]) {Record message
send (Send, counter, (pidcyr, Sidcur, rolecyr), (pid, sideur, T0le), msg) to NET {Forward leakage and identifier to A
recv Pull from I/0: {Parties can pull messages

Let (counter, (pid, sidcur, role), (pideur, Sideur, rolecyr), msg) € bufferp,s,, such that there exists no smaller counter
with recipient (pideyr, Sidcyr, rolecyr).

if (counter, (pid, sideyr, role), (pideur, Sideur, rolecyr), msg) as above exists:

buffer,s,.remove([counter, (pid, sideyr, Tole), (pideur, Sideyr, rolecyr), msg]) {Remove message from delivery queue
reply (Pull, msg) {Deliver message to receiver
else:
reply (Pull, 1)
recv (Permute, 7) from NET: {A is allowed to change the order in the buffer,,

require: 7 is a permutation of the IDs in buffer,,,.

for all (ctr, msg) € buffer,,s; where msg represents all other content of buffer,,s, besides ctr do:
buffer,,s,.remove([ctr, msg])
buffer,s,.add([7(ctr), msg])

recv UpdateRound from NET: { A triggers round update
if 3(_, round, _, _) € buffer,,sy, S.t. round — round > 6 A inTime = true:
reply (UpdateRound, false, €)
else:
round < round + 1
reply (UpdateRound, true, €)

reply (UpdateRound, true, €)

recv (GetCurRound): {A and & are allowed to query the current round.
reply (GetCurRound, round)

recv BreakLiveness from NET: { A breaks liveness
inTime < false

recv getDeliveryStatus from I/0: {& may query whether messages where delivered “in time”
reply (getDeliveryStatus,inTime)

Fig. 18: The simplified network model F.; with breakable d-liveness.

request via the message (Retrieve, (ctr, (serial, pid, pk, pidg,), pider, T,0)) on the NET interface, PS4

client

firstly request the current time 7' at Fpsync-net- Then, P . updates its information regarding the CA

pidg, and queries FCh (see below) for the public key of pidg, and the CTLs that the CAs uses includ-

ing their public keys (this is done via the message (GetCaCtls, pidg,)). When PS: . receives the answer

(GetCaCtls, pkgy, (pidy, ..., pid,), (pkq, ..., pk,)), it stores the CA’s public key pkg, in pke,[pidg,]. Further,
it stores the CTLs connected to the CA in CTLs[pidg,] and their public keys in pkey [pider]. After PS

A
client
gathered the trusted information from FZ4, it checks whether (i) PS:. . indeed requested the certificate for
pid at pidg,, (ii) the provided certificate is older than 3 - ¢ time units, (iii) pider is a CTL for pidg,, (iv) the
certificate is validly signed by the CTL pid.r;, and (v) the certificate is also validly signed by the CA pid,. If
the checks succeed, P&, . removes the request from its request queue and sends the certificate to the requestor.

The adversary is responsible for starting the certificate monitoring process of P . .'* When A triggers the
monitoring process by sending Monitor, PS, . updates the set of CTLs at F<r, (by using the GetCTLs). Let
CTL be the set of all CTLs provided by FZh,. PS. . then queries all CTLs via (Monitor, pidey, CTL) via
Fpsync-net. Note that Pgﬁent and Fpsync-net are connected via a (direct and thus secure) 1/O interface. When

14We note that security guarantees are incorporated into Fpsync-net Which we will discuss later on.

42

acc

Description of the ideal and accountable PKI F3{¢; = (client, judge, supervisor):

Participating roles: {client, judge, supervisor}
Corruption model: dynamic without secure erasures
Protocol parameters:

_ Sec™c _{O, 1} {Accountability properties

_ Secassumption — {0,1}* {Assumption-based security properties

- pidsjuage C {0,1}" {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)

— idSassumption C {0, 1}" {set of entities/IDs where properties are ensured via assumptions
Description of M35, PKI;

Implemented role(s): {client, judge, supervisor}
Subroutines: FjudgeParams : judgeParams
Internal state:
— state: {0,1}* x {0,1}* —, state =0 {The registered certificates, resp. identities (as mapping), initially L for all entries
— buffers C ({0,1}*)3, buffers = e,bufferg C ({0,1}*)*, bufferg = 0 {Requested certificates/buffer of form (pid, pide,, pid,., role,)
The set of corrupted internal
parties (pid, sid, role)
X idSassumption — {true, false} {Stores broken security assumptions per id, initially false Ventries

- corruptedIntParties € {0,1}* x {0,1}* x {0,1}* \ (Rolesz* U {judge, supervisor}), initially (

— brokenAssumptions : Sec?sumption

- brokenProp (Sac 1 Sec) (U mmir) - (e, ez} { S0 Dk scuris e per i
- verdicts : pidsjygge — {0,1}" {Verdicts per p € pidsjudge, initially &
CheckID(pid, sid, role):
Accept all messages for the same sid.
Corruption behavior:
— AllowCorruption(pid, sid, role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:
send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid, FjudgeParams * judgeParams) {FjudgeParams decides whether judges can be corrupted
wait for b; return b
— DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status
send (CorruptionStatus?, (pid, sid, judge), internalState)
to (pid, sid, FjudgeParams : judgeParams)
wait for b; return b
- AllowAdvMessage(pid, sid, role, pidreceiver; Sidreceiver s Fol€receiver , 1)
Do not allow sending messages to FjudgeParams- {A is not allowed to invoke FjuageParams in the name of corrupted parties.
MessagePreprocessing:
if message is addressed to ((local, pid, role), sid, judge) and (pid, sid, role) is corrupted:

Forward message to A {Forward request to corrupted local judges to A
if Receive (Fwd, msg, (pid’, sid’, role’)) to ((local, pid, role), sid, judge) via NET and (pid, sid, role) is corrupted:

send msg to (pid, sid, role) {A corrupted local judge acts as message forwarder for A

Main:) B

recv (Register, pk, pidg,) from 1/0: {Register certificate.

buffers.add([pidecur, pk, pidg,]) {Record registration attempt

send (Register, pk, pidcyr, pidg,) to NET {Leak request to A
recv (Retrieve, pid, pidg,) from I1/0: {Query for certificate

bufferg.add([pid, pidg,, pideal, rolec])

send (Retrieve, pid, pidg,, pidca, roleca) to NET {Leak request to A
recv (Dropg, pid, pk, pid,) from NET: { A is allowed to drop the register requests

if (pid, pk, pidg,) € buffers: buffers.remove([pid, pk, pidc,])
reply (Dropg, ack)

else:
reply (Dropg, nack)

recv (Deliver, pid, pidg,, pid,., role,, pk 4) from NET: If correctCert is broken, A may inject malicious
require: (pid, pidg,, pid,., role,) € bufferg certificates.
if brokenProps[correctCert, (pid, sideyr, client)] = false A (pid, sidcyr, client) ¢ CorruptionSet:
bufferg.remove([pid, pidg,, pid,, role,])
send (Retrieve, pid, pidg,, state[pid, pidg,]) to (pid,., sidey, Tole)

{A may trigger when retrieve requests are answered.

else:
bufferR.remgve([pz¢7 pld,c“’ pid,, role/]) . . A determines the certificate if correctCert is broken
send (Retrieve, pid, pidg,, pk_4) to (pid,., sidc, Tole,.) for pid or pid is corrupted

recv (Dropy, pid, pidg,, pid,., role,) from NET: { A is allowed to drop the read requests
if (pid, pidg,, pid,., role,) € bufferg:
bufferg.remove([pid, pidg,, pid,, role,])
reply (Dropp,, ack)
else:
reply (Dropp, nack)
recv (Update, buffer) from NET s.t. buffer C buffers: {A may trigger when buffers is included in state
for all (pid, pk, pidg,) € buffer do:
if state[pid, pidg,] = L:
state[pid, pidg,| < pk
buffers.remove[buffer] {Update buffer
reply (Update, ack)
Include static code from the AUC transformation 77 (-) here, i.e., include additional code from Figure 2 and 3 here.

“Rolesy = {client} here.

Fig. 19: An ideal and accountable PKI F3{¢; derived from Ggp [27].

43

Description of jfsgfyfmms = (judgeParams):
Participating roles: {judgeParams}
Corruption model: incorruptible
Description of M. ;ﬁz’eg}gms:

Implemented role(s): {judgeParams}
CheckID(pid, sid, role):

Accept all messages with the same sid.
Main:

recv (BreakAccProp, verdict, toBreak, internalState) from I/0: {No restrictions on verdict

if All entries in verdict are of form A"_, dis(pids,, sider, ca), n € N and all pidl, € {0,1}*:
if toBreak C {correctCert} x ({0,1}*)3:
reply (Cheat, true, ¢)
else:
reply (Cheat, false,)
else:
reply (Cheat, false,€)

recv (BreakAssumption, toBreak, internalState) from I/0: {Do not generate leakage when breaking assumptions
reply (BreakAssumption, €)

recv (GetJudicialReport, msg, internalState) from I/0: {Generate judicial report
reply (GetJudicialReport,¢) {Return an empty report
{.?—jitfjgslilrmm allows to corrupt a local judge iff the

recv (Corrupt, (id, sid, judge), internalState) from I/0: .
(pt, judge)) / accompanied client is corrupted

if id = (local, pid, client) A (pid, sid, client) € CorruptionSet:
reply true

else:
reply false

judgeParams

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/0: g ; iihes
the accompanied client is corrupted

if (id, sid, judge) € CorruptionSet:
reply true

else if id = (local, pid, client) A (pid, sid, client) € CorruptionSet :
reply true

else:
reply false

a -PK . . .
{.7: acc PKI interprets a local judge as corrupted iff

: . acc- PKI acc
Flg‘ 20: ‘EudgeParams for PKI*

interface interface interface
wEl to_“i ______________ to £
client
interface
¢ 1t0 &

acc
S

' t
supervisor %,[.]H[Judgs]

Fig. 21: Realization relation of a CA/CTL example stated in Theorem 2. The system £ denotes the
environment, modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally
connected to the network adversary who is responsible for delivering network messages.

Fpsync-net returns an answer of a CTL (containing all certificates issued for the requested pid recorded at that
CTL), P&, pulls updates public keys and data of CAs and CTLs at F-4, (see above). Afterwards, it verifies
whether the received certificates are validly signed (by a CA and a CTL). If one of the certificates does not
match the public key pk stored in PS, ., P, . reports the falsely issued certificate to its local judge PS

A
client> 7 clien judge*
Corruption: The adversary can dynamically corrupt every instance of P

ient- 1N this case, A has full control

44

over the input and output interface of the instance of PJ. . and can act on its behalf. Further note that an
instance of PS:. . considers itself corrupted if its session at Fg, is corrupted or if the used authenticated
channel session at F,yu 1S corrupted.

Further note that:

« Every new instance of Pffi‘ent registers itself automatically at Fpgync-net When activated for the first time.
o A is responsible to trigger an instance of P4 to register itself for the usage of authenticated channels

. client
(Vla }—auth) .

Remark: Note that we do not model that clients provide “self-signed certificates” as part of their certificate
requests to a CA, i.e., they do sign their public key in combination with their identity (and potentially some
metadata) and forward this certificate to the CA. We omit self-signed certificates in our model due to simplicity.
To incorporate this into our model, one can extend PS, . with a parameter (which is intended to include the
signature scheme) for creating a self-signed certificate. Before requesting a certificate, PSi, . then needs to
invoke this parameter with the input data and has to enrich the certificate request with the output produced by
the parameter. To cover this case, one also needs to adapt P°A. It needs to be enhanced with a new parameter
to check the validity of the client’s self-signed certificate. P°* only process certificate request if the parameter
(on input of the certificate request) accepts the certificate request.

Certification authorities P°*. The main purpose of CAs, resp. P°* (cf. Figure 24), is to issue and to distribute
certificates. There exists one instance of P® per CA. The issuance of certificates is divided into two steps:
(i) a CA generates a so-called pre-certificate and forwards the pre-certificate to a CTL. (ii) The CTL attests
the correct generation of the (pre-)certificate and provides a finalized certificate to the CA. More specifically,
PCA works as follows: On the first activation of an instance of P, it queries the FC4, for initialization. F A,
initializes P°’s instance at Fyg, i.e., P*’s signing and public key, and provides its public key pk to P
FEA also informs P which CTLs it will/has to use (including their public keys).

As clients send their certificate requests via an authenticated channel Fautn, A is responsible for triggering
PCA to pull certificate requests from F,un. When P receives such request (of form (Register, pid, pk)), it
creates a pre-certificate: it adds an ID/serial number (an incremental counter) and its own identity to (pid, pk),
and signs (id, (pid, pk), pidcy,). It then forwards the so-called pre-certificate (id, (pid, pk), oca) for finalization
via NET to its connected CTLs. Note that P35 does not enforce liveness properties here, i.e., we do not
enforce that these requests are actually delivered to a CTL.

As A has full control over the network, we model that A triggers P°*’s update process. If P°* receives a
(Read, pidqyy, state, ocr) message via NET from one of its CTLs (as stored in CTLs), P checks whether
(i) the message is validly signed by a CTL pidqq;, from CTLs, (ii) the provided state is an extension of the state
previously delivered by pidqp; (which is stored in certs[pidqr |), and (iii) all certificates in state are validly
signed by pidgq, . If these checks succeed, PC stores state (i.e., the certificates provided by pidgr) as update
in certs[pidar]-

When clients want to retrieve a certificate from Pcg, they send (Retrieve, pid, pidg,) to the instance of
PCA, namely (pidg,, sid, ca). Note that these requests are delivered via A/NET and can thus be tampered.
When receiving such a request, P checks in its storage certs whether it issued a pre-certificate for pid. If it
issued a pre-certificate, P°* looks for the finalized certificate in the certificates provided by the CTLs. If PC
can find a finalized certificate in certsery (for any CTL), it forwards the first certificate matching the search
criteria (via NET) to the requesting party.

Corruption: Analogously to P

CA>

e s A can dynamically corrupt every instance of P4, In case of a corruption,
A gains full control over the input and output interface of the instance of P°* and can act on its behalf.
Further note that an instance of P considers itself corrupted if its session at Fy;, is corrupted or if the used
authenticated channel session at F,1, is corrupted.

Moreover, A is responsible for triggering an instance of PC* to register itself for the usage of authenticated
channels (via Fautn)-

Certificate Transaction Logs Pcr.. CTLs validate and finalize (pre-)certificates. Further, they allow clients to
check whether there exist falsely/maliciously issued certificates for their identities. We provide the specification
of Pery in Figure 25. One instance of Pcr. models one CTL. Similarly to P, Pery queries the initialization
functionality F24, for initialization on its first activation. Fo%, initializes Pery, instance at F;, and provides its
public key pk to Per.. Fob, also informs Pery, for which CAs it will finalize pre-certificates.

45

If an instance of Pery, identified by (pider, sid, ctl) receives a Submit request to finalize a pre-certificate
(via NET), Pcrr. checks whether the pre-certificate is of form (id, (pid,., pk,.), pidey, oca). If the current instance
of Per. finalizes pre-certificates of pid,, i.e., pidg, is stored in CAs, and the signature ¢, verifies, Pery. starts
the certificate finalization process. Therefore, it firstly queries Fpsync-net for the current time 7. Then, Per
adds an own ID (incremental counter), its own identity, and the current timestamp 7 to the pre-certificate and
then signs (ider, (id, (pid,., pk,.), pidgy, ocs), pider, 7). Afterwards, it stores the finalized certificate ((idcrr,
(id, (pid,., pk,.), pidgy, oca), Pider), OctL, T) in its state.

If a party queries for Pcry’s state via Read, Pery, signs its state and replies to the request with (Read, pideyr,
state, ocrr).

To allow clients to monitor issued certificates, Perr. provides the Monitor interface/command. If Perp receives
(Monitor, ctr, pid) from a client pid (via Fpsync-net), it extracts all certificates issued for pid from its state
and sends the certificates (including the used message identifier ctr) back to Fpsync-net-

Corruption: CTLs are trusted anchors in our model and thus, Pcr. is incorruptible. Further note that signature
keys of CTLs, i.e., their signer instances at Fgg, as well as their signature verifying function, i.e., their
verifier instances at Fy,, cannot be corrupted. This is handled/ensured via F2& and our slightly adapted

ini
variant of Fq.

Remark: Note that one can enhance our model to a setting where only a threshold of CTLs per CA needs to
be honest. For the sake of presentation, we decided to present the simpler variant with incorruptible CTLs.

The initialization functionality 7% . The initialization functionality FC4, (cf. Figure 26) models a trusted
setup/distribution of CAs/CTLs identities and their public keys. There is one instance of Fii, per P
In particular, FCA includes (i) initialization of CAs, resp. P®, (ii) initialization of CTLs, resp. Perr., and
(iii) initialization of judges Pﬁﬁdge, It further provides a interface for all participants in Pp§; to query for CA,
resp. CTL, data including their public keys and is used to ensure that clients and their accompanied local judges
are initialized simultaneously.

If an instance of P®* asks for initialization, FC queries A for the CTLs P°* should use. If one of the

init
provided CTLs is not already registered, F54, initializes its session at Fy;,. Note that Fi, enforces that all used
ca
checks

init init
signature keys for CTLs are not corrupted. When storing which CTLs “work” for a dedicated CA, F.,
declines the initialization of

that every CTLs session at Fg;./signature key is not corrupted. Otherwise, FSh,
PC* and queries A for a new set of CTLs for P¢. If the registration of the CTLs succeeds, F3%, also initializes

PCA signature key at Fyg if necessary. All data is stored in FC4, state: each CA’s pid, resp. CTL, is added
to pidg,, resp. pidgr. The map pkg,, resp. pker, stores the public key of each registered CA, resp. CTL. The
map CTLs, FZ4, stores for each CA which CTLs are assigned to it. Finally, 754 sends (i) the CA’s public
key, (ii) the CTLs the CA uses, and (iii) the CTLs’ public keys back to the instance of P which asked for
initialization.

Similarly, F$4, initializes an instance of Pcrr. This mainly includes to provide the CTL (i) its public key,
(ii) the CAs for which it finalizes pre-certificates, and (iii) the relevant CAs public keys (to the dedicated
instance of Perr,). The handling is similar to the initialization of a CA. If the CTL/CA is not registered at Fh,
so far, FS4, creates a signature key for it at F,. Note that F54, ensures that signature keys of CTLs are not
corrupted — if a newly registered CTL’s Fy;, session is corrupted, i, aborts the registration for this CTL.

When a judge (Pfit,.) queries 0% for initialization, F3Y simply forwards all its information regarding the
PKI session to the judge. This includes, (i) the identities (PIDs) of the registered CAs, resp. CTLs, (ii) their
public keys, and (iii) the information which CA and CTLs work together.

Besides initializing parties, parties can also query ok, with (i) GetCaCtls, (ii) GetCAs, and (iii) GetCTLs.

If a party queries for (GetCaCtls, pidg,), Fobi, replies with the public key of the CA pid,,, the (PIDs of the)
CTLs of the CA, and the CTLs’ public keys. In Case (ii), F54, provides all registered (PIDs of) CAs and their
public keys to the requestor. In (iii), FS4, provides all registered (PIDs of) CTLs and their public keys to the
requestor.

Further, we use the initialization functionality FC&, to ensures that clients and their judges are initialized “at
the same time”. This simplifies the proof later on, as we do not have to take care of several edge cases in cases

of non-initialized parties."”

I5Note that an ITM in iUC which is initialized via a corruption status request always responds that the ITM is not corrupted so far. We
want to avoid this edge case in our modeling.

46

The certificate monitoring enforcing ¢ 1c.net - The network functionality Fpeync-net (cf. Figure 27) ensures
that honest parties can check in “near-time” whether there are malicious certificates issued for their identities.
Especially for this purpose, Fpsync-net models partially synchronous network between clients and CTLs. There
is one instance of Fpsync-net per PKI session.

On every activation, Fpsync-net Updates the list of available CTLs at F5.4, (via GetCTLs) and checks whether
all registered honest clients (stored in pidglicnt) are still honest (via querying all clients in pid?hCnt for their
corruption status). If previously honest clients have been corrupted, Fpsync-net T€émoves them from pid
(and also from monitoring in monReg and requestQueue, see below).

When honest parties start a monitoring process, i.e., they query every registered CTL for the certificates
published for their identity, they send a Monitor message to Fpsync-net including their identity/pid and (the
PIDs of) the CTLs which they want to monitor. Fpsync-net Stores this request in requestQueue. More specifically,
it stores one entry per CTL in requestQueue including (i) an unambiguous identifier for each entry and (ii) the
time 7 (according t0 Fpgync-net’s internal clock) when Fpgync- net Téceived the monitoring request. Additionally,
Fpsync-net Stores in monReg that P& = started a monitoring process at time T. Fpsync-net then leaks the
complete requestQueue to A.

Similar to the initialization of the monitoring process at P&}, ., A is expected to trigger further processing of
the monitoring at Fpeync-net, 1. €., (i) forwarding a monitoring request to a CTL and (ii) deliver the response
of a CTL back to the monitoring party. If the adversary triggers Fpsync-net Via (Deliver, ctr), Fpsync-net
firstly checks whether a request for the ctr exists in requestQueue and which of the two cases above needs to
be handled. If the request was not handled by the dedicated CTL so far, Fpsync-net adds in requestQueue a
(current) timestamp to entry ctr and forwards the monitor request (including the identifier c¢r) to the CTL. In
Case (ii), the Deliver message of A triggers the delivery of the (stored) response of the CTL (see below) to
the monitoring party. Before Fpync-net delivers the response, it updates the entry with ID ctr in requestQueue
and adds a (current) timestamp as delivery time.

When a CTL (immediately) responds to the request from Case (i) above, it sends (Monitor, ctr,resp)
t0 Fpsync-net- Fpsync-net Iecords the response in the dedicated entry for ctr in requestQueue. Note that
(i) CTLs are modeled to be incorruptible and (ii) CTLs and Fpsync-net have a direct I/O connection for
handling monitoring request, i.e., responses from CTLs to Fpsync-net Will be delivered “immediately” and
cannot be manipulated by A. Thus, A is not activated when a CTL generates a response to a monitoring
request and sends it t0 Fpsync-net- Therefore, we do not store an additional timestamp to determine when the
CTL replies to a response. This timestamp is always equal to the timestamp stored in Case (i) from above.

The adversary is allowed to update the internal clock of Fpsync-net Via the UpdateRound command. Fpsync- net
accepts a time update (and increases the time by one) iff (i) there is no monitoring process initially triggered
more than § time units ago but without response from a CTL, (ii) there is no response from a monitoring
process waiting for delivery for more then § time units (both properties can be derived from requestQueue),
and (iii) every honest party started a monitoring process at least d time units ago (stored in monReg). Fpsync- net
also allows parties to read from its in-build clock (via GetCurRound).

The network functionality Fpsync-net 1S incorruptible.

The local judge PS... The (local) judge Pih,.
issued certificate for its identity.

On every activation, Pj‘ffdge updates/pulls the list of CAs, resp. CTLs, which are currently available in the
PKI, including their public keys (via InitMejugge from FER).

In case that a client finds a certificate during monitoring issued for her identify which she did not request, the
client forwards the certificate to her local judge. chlfdge verifies that the certificate is valid, i.e., CA and CTL
signature verify. As this indicates that the issuing CA misbehaved (at least from the current clients perspective,
as clients requests certificates via an authenticated channel at CA), Pﬁfdge adds dis(pidg,, sidcyr, P°* @ ca)
(where (pidg,,sideur, P : ca) denotes the CA that attested the reported maliciously generated certificate) to
her (local) verdict. Note that external observers or the environment cannot trust the verdict of Pyt .. From a
higher-level perspective, one cannot be sure which of the two parties, the CA or the client, indeed misbehaved
in this case. A malicious client (in turn a malicious judge) could have requested the certificate at an honest CA
but then blames the CA that she did not request the certificate. Vice versa, CAs can simply generate certificates

for any client. Pﬁfdge also marks correctCert broken for its associated client.

client

(cf. Figure 28) handles when a client finds a maliciously

47

Pﬁfdge implements the GetVerdict interface which simply outputs the stored local verdict and a interface to
access a judicial report. On receiving GetJudicialReport, Pﬁﬁdge does not provide information and outputs

E.

Corrupting a local judge as long its accompanied client party is still honest is not allowed. This models
that a clients validation routine still works honestly/correctly as long as the accompanied client is honest/works

correctly. Note that Pﬁfdgc is a pure message forwarder to/from A in case that the associated client is corrupted.

The public supervisor PSA. As we do not model assumption-based security properties in this case study, the
purpose of the supervisor P4 (cf. Figure 29) is to provide the environment access to the corruption status of
internal protocol participants (here: CAs). Thus, on request (corruptInt?, (pid, sid, role)) where role needs
to be ca, PS! queries (pid, sid, role) for its corruption status and forwards the result to the requestor.

Note that we include a “dummy” interface for IsAssumptionBroken?. On every request, ch

A .
[dge simply
replies “false”.

The ideal authenticated channel functionality F,.:,. The authenticated channel functionality F,.n (cf.
Figure 30) is derived from Canetti’s message authentication functionality [22] in combination with the secure
channel functionality Fgec channet from [70]. In our case study, we use Fyy¢n to authenticate clients to CAs. Thus,
CAs can be sure that a client indeed registers a certificate for its identity.

One instance of F,,¢n is meant to handle all authenticated channels in an instance/session of P55 The
whole session of F,,tn can be corrupted (as long as there are no channels initialized yet). Parties “register”
at Fouth via Establish. The adversary may trigger the finalization the party’s registration. Parties can send
messages to specified receivers via Foyuin. Faush buffers the messages and 4 may trigger the delivery of the
message. Note that 4 has full control over the messages send to/delivered from F, ¢, when F,un is corrupted.
Furthermore, .4 may drop messages which are queued for delivery in Fauth.

The ideal signature functionality F;,. The ideal signature functionality Fg, (cf. Figure 31) is mainly the
same as presented in [17] and matches common approaches for ideal signature functionalities.

As we need to ensure in P35S, that CTL signatures are incorruptible, Fy;, is additionally connected to For,
to determine whether a party is a CTL. Fg;, declines corruption of CTLs.

In contrast to [17], we do not allow A to corrupt verifier instances of Fg, as one typically expects that
signature verification is a local process and not externalized and thus honest as long the considered party is
honest. Indeed, we need to ensure for the model that at least verifier instance of (local) judges need to be

honest as long as the accompanied judge is honest. Otherwise, the security proof would fail.

E.3 UC Security Analysis: We now present the formal variant of Theorem 2 and its security proof in detail.

Theorem 7. Let P35S be as defined above and let 6 € N be the upper time boundary for message delivery in
PR resp. Fpsync-net, and X = (gen(1"),sig, ver) be an EUF-CMA secure signature scheme.
Let F35¢; be as described above with]—'ﬁfcféepélmms as subroutine with parameters Sec® = {correctCert},

Secassumption =0, pidsjudge = {local} X {0, 1}* X {Client}, and idSassumption = (). Then:

(PB%1) < (FBi | Fiiidacparams)
We remark that the following proof repeats many general points/techniques from the proof of Theorem 6, e.g.,
regarding the simulator, in verbatim. This is mainly due to the fact that both protocols — the scaling protocol

and the PKI protocol — rely on some kind of global state. In the scaling protocol, the global state is a sequence
of totally ordered transactions. In the PKI protocol, the global state consists of a set of certificates.

Proof.
Firstly, we define a responsive simulator S such that the real world running the protocol R := P25 = (P,
client, PSh: supervisor,Pﬁfdge : judge | P : ca, Per : ctl, Fyig, Fpsync-net : pSync-net, Fauen : auth)

is indistinguishable from the ideal world running {S,Z}, with the protocol Z := (Fa% | .}'j?ffgéfélrams), for
every ppt environment &.

The simulator S is defined as follows: as common, S is a single machine. It is connected to Z and the
environment £ via their network interfaces. In a run, there is only a single instance of the machine S that accepts
and processes all incoming messages. The simulator S internally simulates the realization R, including its
behavior on the network interface connected to the environment, and uses this simulation to compute responses

48

Description of a CA client P, . = (client):
Participating roles: {client}
Corruption model: Dynamic corruption without secure erasures
Protocol parameters:
- 5€eN {Network delay

Description of Mciient:

Implemented role(s): {client}

Subroutines: F.utn @ auth, Fgig : signer, Fgig : verifier, ”chl':dge : judge, Fpsync-net : psync-net, fﬁ‘:‘it : init
Internal state:
- pke{0,1}",pk= 1L {Public key of the client
— certCA € {0,1}",certCA = L {The CA which should create pidcy,’s certificate
— requests C {0,1}* x ({0,1}*)2, requests = {The recorded requests of pideyr including requesting party.
— pke : {0,1} — {0,1}" {The pubkeys of the CAs, initially L
- CTLs: {0,1}* — {0,1}" {The CTLs of each CA, initially 1.
- pker 1 {0,1}" — {0,1}~ {Pubkeys of CTLs, initially 1.
CheckID(pid, sid, role):
Accept all messages for the same sid.
Corruption behavior:
DetermineCorrStatus(pid, sid, role):
if corrupted = true: {Checks whether party itself is corrupted.
return true
corrResy < corr(pideyr, (pideur, Sidcur), signer) {Request corruption status at Fgig
send CorruptionStatus? to (_, sidcur, Fauth : auth) {Query Faun for its corruption status.
wait for (CorruptionStatus?, corrRess2)
return (corrResi V corrRess) {Return whether Fgig or Fautn instances are corrupted
EntityInitialization:
send Establish to (pidcyr, Sidcur, Fpsync-net : PSync-net); wait for _ {Register party at Fpsync - net
if ITM was not activated via init macro, resp. a InitEntity message:
send initPartner to (pidc.r, sidcur, fﬁ?it : init)
wait for initPartner
Main:
recv (Register, pk, pidg,) from I1/0: {Client should register certificate
if pk = e: {Store public key.
pk <— pk, certCA < pidg,
send (Send, (pidy, sider, ca), (Register, pideyr, pk)) t0 (pideur, sideur; Fauth : auth)
recv (Retrieve, pid, pidg,) from I1/0: {Query for certificate
requests.add([pid, pidg,], (pidcal, sidcal, rolecal))
send (Retrieve, pid, pidg,) to NET {Retrieve requests are dispatched via A, i.e., there are no delivery gura
recv (Retrieve, (ctr, (serial, pid, pk, pidg,, oca), pider, T, ocr.)) from NET:
send (GetCaCtls, pidg,) to (pidcyr, sideur, .7:5uit : init) {Quer}' trusted CA/CTL information at]:ic:it
wait for (GetCaCtls, pkey, (pidy, . .., pid,,), (Pky, ..., pk,))
pk[pidc,] < pkg, {Store trusted CA public key
CTLs[pidy,] < (pidy, ..., pid,)
foric {1,...,n} do: {Store CTL information
pker[pid;] < pk;
send GetCurRound to (pidcr, sidcur, psync-net) {Get current time

wait for (GetCurRound, 7')

if 3([pid, pide,], (pid,, sidc, role.)) € requests A pidey is in CTLs[pidg,] A 7" >3 -6 + 71
Handle answer only if there is a matching request and pid.y is registered as CTL for pidg, and certificate is sufficient old
to be considered valid

by < verifySig([ctr, (serial, pid, pk, pide,, oca), Pider, T, octL, PRer [Pider], Pidery) {Check CTL signature
by « verifySig([serial, pid, pk, pidg,], oca, Pkey[Pide,], pidey) {Check CA signature
if b1 A ba:

requests.remove[([pid, pidc,], [pid,, sid., role.])] {Remove request

send (Retrieve, pid, pidg,, pk) to (pid,, sid., role.)

recv Establish from NET: {\A triggers the registration at Fautn
send (Establish,) to (pidcur, Sidcur; Fauth : auth)

Fig. 22: The CA client P% __ (Part 1).

client

49

Description of Mciient (continued):

Main:
recv Monitor from NET: {.A triggers certificate m())mmmg
send GetCTLs to (pidcyr, sideur,]-'ic‘fit : init) {Requs\r CTLs at]:mn;
wait for (GetCTLs, CTL, pidgy)
send (Monitor, pideyr, CTL) t0 (pidcur, Sideur; Fpsync-net : psync-net) {Send request 10 Fpsync - net
recv (Monitor, ctr, msg) from NET: {Check monitored certificates
send GetCAs to (pidcyr, sidcur, Fic:it : init) {R()que\t CAs at .7:”“l
wait for (GetCAs, CA, pkg,)
send GetCTLs to (pidcyr, sidcur, fii?ic : init) {Rz)qum/ CTLs at }'m"
wait for (GetCTLs CTL, pkey)
if msg = {(ctr , [serial, pideur, Pk, pzdcm ocal, pzdc.n_, T,0cIL), - - - }% {Verify signatures
for all (ctr’, [serial, pldcur, pk, pidy,, ocal, pzdcﬂ_, , T, OCTL) from above set do:
b « verifySig([(ctr’, [serial, pideur, Pk, pidgy, ocal, Pider, T), OctL, Pher [Pidgr], Pidin) {Check CTL signature
if pid}, € CA:
¢ « verifySig([serial, pideur, Pk, pidg,], oca, Pkey[pidg,], Pidg,) {Check CA signature
else:
c < false
ifbAc: {Certificate is validly signed
if pk #£ pk:
send (Evidences, (ctr’, [serial, pid, pk, pidy,, oca], pidiy , T, ocr)) to ((Local, pid, client), sidcur, Pf:‘dge :
judge)
{I?)mard evidence to Pludge
// In the model: stop processing after finding the first maliciously generated certificate //
Procedures and Functions:
function verifySig(msg, o, pk, pid) : {Verify signature at Fgig
send (VerResult, msg, o, pk) to ((pideur, ctl), (pid, sideyr), Fsig : verifier); wait for (VerResult, result)
return result

Fig. 23: The CA client P, . (Part 2).

to incoming messages. For ease of presentation, we will refer to this internal simulation by R’. More precisely,
the simulation runs as follows:

Network communication from/to the environment

o Messages that S receives on the network interface (connected to the environment) and which are hence
meant for R are forwarded to the internal simulation R’'.

« Any messages sent by R’ on its network interface (that are hence meant for the environment) are forwarded
to the environment &.

Corruption handling

o The simulator S keeps the corruption status of entities in R’ and Z synchronized. That is, whenever an

entity of PS4, . or P in R’ starts to consider itself corrupted, the simulator corrupts the corresponding
(internal) entity of F3% in Z before continuing its simulation. Note that corruption of internal entities, i.e.,
of P4, is mapped to a corruption of an internal party in F355 in Z.

 Incoming messages from corrupted (non-internal) entities of F35% in Z are forwarded on the network
interface to the environment in the name of the corresponding entity/instance of PS5, . in R’. Conversely,
whenever a corrupted entity of PS, . wants to output a message to a higher-level protocol, S instructs the

corresponding entity of 3§ to output the same message to the higher-level protocol.

Certificate registration
Whenever an honest entity entity = (pid, sid, client) of F3{ receives a request (Register, pk, pidg,) to
register a certificate, resp. a public key, for its own identity pid, 5 buffers the request in buffers and leaks
the full message buffer to S. The simulator S uses the leaked message to simulate the registration of pk for
pid at pidg, in R’, i.e, it simulates the input of (Register, pk, pidg,) to the (pid, sid, client)’s instance of
,Pgl%cnt in R/'

We remark that S does not need to handle the registration of certificates from corrupted parties. F3{; does
not provide guarantees for these certificates and allows A to freely determine the output in case that a party

requests the certificate of a corrupted party.

Retrieve requests

Whenever the environment instructs an honest entity (pid, sid, client) via (Retrieve, pid,.,, pidg,) to request
a certificate of pid,., from pidg,, Fpi buffers this request (in bufFerR) and leaks the full request to S. Upon
receiving the leakage from F35;, S forwards this message to P, . in R’ and simulates its behavior.

50

Description of a CA P = (ca):

Participating roles: {ca}
Corruption model: Dynamic corruption without secure erasures

Description of Mc,:

Implemented role(s): {ca}

Subroutines: J-'icr‘}it :init, Fiig @ signer, Fgig @ verifier, chl‘:dge : judge

Internal state:
— pkey € {0,1}7,pkey = € {The public key of CA (pidcur, Sidcur, rolecyr)
- CTLs C {0,1}*,CTLs =0 {The CA’s CTL’s pids
- pker, : CTLs — {0,1}" {CTLs’ pubkeys, initially L
— serial € N, serial =0 {The serial number of certificates issued by entity is a counter
— certs C N x ({0,1}*)%, certs = 0 {CAs issued certificates of form (serial, subject, pk, issuer, o)
- certser, : CTLs — {0,1}~ {The state of each CTL after reading initially L

CheckID(pid, sid, role):

Accept all messages for (pid, sid, role) where sid = (pid, sid’) and role = ca.

Do not accept an entity (pid, sid, role) if pid can be parsed to (pid’, client) {Avoid local judges like PIDs
Corruption behavior:

DetermineCorrStatus(pid, sid, role):

if corrupted = true: {Checks whether party itself is corrupted.
return true

corrResy <+ corr(pideyr, (pideur, Sideyr), signer) {Request corruption status at Fig

send CorruptionStatus? t0 (pidcyr, Sidcur, Fauth : auth) {Query Faugn for its corruption status.

wait for (CorruptionStatus?, corrRess)

corrRess < false {Check that all used verifier instances are not corrupted

for all queries to (pideyr, (pid’, sid’), verifier) at Fsig from transcript do:
corrRess = corrRess V corr(pidey, (pid’, sid’), verifier)

return (corrResy V corrResz V corrRess) {Return whether Fgig or Faugn instances are corrupted
Initialization:
send InitMec, tO (pidcyr, Sidcyr, fﬁ?it : init) {Requesl CA setup at fi(::it
wait for (InitMecy, pkey, (pidy, ..., pid,), (Pky, ..., pk,), Pk.y)
pkey < Pkgy {Store (trusted) public keys and used CTLs
CTLs < {pidy,...,pid,}
foralli € {1,...,n} do:
pker [pid;] < pk;
Main:
recv (Received, (pid, sideyr, role), (Register, pid, pk)) from I/0: {pid registers public key/certificate via Fantn
if b AP, pid,_,_,_) € certs: {One certificate per party
serial <— serial + 1
cert’ «+ (serial, pid, pk, pidcyr) {Simplified version of a certificate for pid w/o signature
o’ + sign(cert’) {Generate signature for certificate
certs.add([cert’, o']) {Record certificate
send (Submit, cert’, o', CTLs) to NET {Publish certificate at CTLs
recv (Read, pidg, state, o) from NET s.t. pid., € CTLs: {Current state of CTL pid
b < verifySig(state, o, pkey [Pider], Pider) {Verify signature
if b A certser[pid] C state: {PCA only accepts valid states which extend the current state

check < true
for all (ctr, cert, pid, o) € state do:
if pid # pidgy: {A CTL only has its “own” certificates
break
b < verifySig([ctr, cert], o, pkey [pid], pid)
if —b:
check < check V' b
if check: {CTL list is valid
certser, [pid] < state

recv (Retrieve, pid, pide,) from NET: {Client queries for certificate
if I(serial, pid, pk, pidcyr, o) € certs:
if 3 certser. [pider] of a CTL pidey, S.t. (ctr, (serial, pid, pk, pider, 0), pider, T, 0ctL) € certser [pider]t
{Let pidqy be the first hit during search
reply (Retrieve, ((ctr, (serial, pid, pk, pideur, 0), pider, T, 0ctL)))

recv Establish from NET: {\A triggers the registration at Fautn

send (Establish, €) to (pidcyr, sidcur; Fauth : auth)
Procedures and Functions:

function verifySig(msg, o, pk, pid) : { Verify signature at Figq
send (VerResult, msg, o, pk) to ((pideur, ctl), (pid, sideyr), Fsig : verifier)
wait for (VerResult, result)
return result

function sign(msg) : {Sign message at Fgig
send (sign, msg) to ((pidcur, ctl), (pideyr, Sideur), Fsig : signer)
wait for (sign, o)
return o

Fig. 24: The model of a CA PCA.

51

Description of the CTL Per, = (ctl):

Participating roles: {ctl}
Corruption model: incorruptible
Description of Mt1:
Implemented role(s): {ctl}
Subroutines: Fy, : verifier, Fyg : signer, Fray, : init
Internal state:
— state C N x {0,1}" x {pidcur} X N x {0,1}",state =0 {The set of certificates of form (ctr, cert, pideyr, T, ocr)
- CAs C {0,1}*,CAs =10 {The set of CAs, the CTL will finalize pre-certificates for
— pker, € {0,1}7 {The public key of the CTL
— pkgy : CAs — {0,1}" {The (trusted) public keys of the CA
— counter € N, counter = 0 {Serial
CheckID(pid, sid, role):
Accept all messages for the same sid.
Initialization:
send InitMecr. to (pidcyr, sidcur,]:iC:it : init) {R(’t]u(’sl initialization at]:icll:it
wait for (InitMecrw, pker, (pidy, ..., pid,,), (pk,...,0k,))
Pkery <= Pker
CAs «+ {pid,,...,pid,} {Store (trusted) CAs and their public keys
forallic {1...,n} do:
Pkaa[pid;] + pk;
Main:
recv (Submit, cert) from NET: {Certificate submission
require: cert = (serial, pid,., pk,., pide,, oca), S.t. pidg, € CAs
b < verifySig((serial, pid,., pk,., pide,,), oca, Pk[pidg,], pide,) {Check valid signature
if b: {1f signature is valid, record data in state
send GetCurRound to (pidcyr, Sidcur; Fpsync-net : PSync-net) {Query current time at Fpsync - net
wait for (GetCurRound, 7)
counter <— counter 4 1
ocrL — sign([counter, cert, pidcyr, T]) {Mark certificate as valid
state.add([counter, cert, pideur, T, ocrL])
recv Read: {Read request
o < sign(state) {Sign full state
reply (Read, pidc,r, state, o) {Reply with full state including signatures
recv (Monitor, pid, ctr) from 1/0: {Monitor maliciously published certificates
resp < €
for all (ctr’, [serial, pid, pk, pidg,, ocal, Pideur, T, Ocrs) in state do: {Collect certificates for pid
resp.add(ctr’, [serial, pid, pk, pidg,, ocal, pideur, T, octL.)
reply (Monitor, ctr, resp) {Return certificate for pid to requestor
Procedures and Functions:
function verifySig(msg, o, pk, pid) : { Verify signature at Fsigq
send (VerResult, msg, o, pk) to ((pidcur, rolecyr), (pid, sideyr), Fsig : verifier)
wait for (VerResult, result)
return result
function sign(msg) : {Sign message at Fgig
send (sign, msg) to ((pidecur, rolecur), (Pideur, Sideur), Fsig : signer)
wait for (sign, o)
return o

Fig. 25: The simplified CTL Perr.

If A triggers a (simulated) entity (pid, sid, client) to respond on a retrieval request by sending (Retrieve,
cert) to the entity, S simulates the input the message in R’. If (pid, sid,client) (in R') wants to output
cert, resp. parts of cert within a message of form (Retrieve, pid, pidg,, pk) to (pid,, sid., role.) at the end
of its activation, & sends (Deliver, pid, pidg,, pid,, role., pk) to F3S5. This triggers F355 to deliver the
retrieval response. Note, that in case of brokenProps[(correctCert, (pid, sidcyr, client))] = true, the output
is forwarded without further checks. If correctCert still holds true, 735 will only forward the output, if a
matching request in bufferg exists.

State updates

When a CTL finalizes an uncorrupted party’s certificate (for which correctCert still holds true) in R/, S
triggers an update at 35 to include the finalized certificate in F3g;. Therefore, it firstly extracts the newly
generated certificate from the CTL’s state. In particular, S extracts the identity pid for which the certificate is
issued, the used public key pk as well as the used CA pidg,. S then sends (Update, {(pid, pk, pidg,)}) to
Fis6.

52

Description of the initialization machine

Fo

ini¢ = (init):

Participating roles: {init}
Corruption model: incorruptible

Description of Mipi¢:

Implemented role(s): {init}

Subroutines: Fgig :

signer

Internal state:

pide, C {0, 1}, pidg, = 0

pkey : pidg, — {0, 1}

pider, C {0, 1}7, pidey, = 0
Pkory : pidey, — {0, 1}

CTLs : pidg, — (pider, U {L})"
caller € ({0,1}")3U{Ll}y=1

CheckID (pid, sid, role):
Accept all messages for the same sid.

Main:

recv InitMecy from I/0:
send responsively (InitMecy) to NET (x)
wait for (InitMecy, pidq, ..., pid,,)
ifn < 1:
20 to (%)
foralli € {1,...,n} do:
corrRes <— corr(pid;, (pid;, sidey), Fsig
if corrRes:
g0 to (%)
if pkep [pid;] = L:

: signer)

send InitSign to (pid,, (pid;, sidcur), Fsig : Signer)
wait for (InitSign, success, pk;)
pker [pid;] < pk;
if pkey [pideur] # L:
send InitSign to (pideyr, (Pidcur, Sideur), Fsig : signer)

wait for (InitSign, success, pkg,)
Pkea [Pideur] <= pkey
CTLs[pide,] + (pidq,...,pid,)
reply (InitMecy, pkey[Pideur], (Pida, . . ., pid,,), (Pker [Pid4],
recv InitMecr; from I/0:
if corr(pidcair, (pidcair, Sideair), Fsig :
reply (InitMecr, L)
send responsively InitMecr, to NET (%)
wait for (InitMecry, pid,, ..., pid,,)
if n < 1:
g0 to (%)
if pkerp [pPideur] # Lt
send InitSign to (pideyr, (Pidcur, Sideur), Fsig
wait for (InitSign, success, pker)
Pker [Pideur] <= pery,
forall i € {1,...,n} do:
if pkey[pid;] = L:
send InitSign to (pid,, (pid;, sideur), Fsig :
wait for (InitSign, success, pk;)
pkey[pid;] < pk;
reply (InitMecrr, pkep [Pideur], (pidy, . . .

signer):

: signer)

signer)

recv InitMejuqge from I/0:
reply (InitMejudgecA, pidey, PKey s Pidery, Pkery, CTLs)

recv (GetCaCtls, pidg,) from I/0:
require: pidg, € pidg, A pk[pidg,] # L
Let pidq, ..., pid,, be the pids from CTLs[pid,]
reply (GetCaCtls, pke,[pide,], (pidy, ..., pid,,), (pker [Pid,],

recv GetCAs from I/0:
reply (GetCaCtls, pidg,, pkey)

recv GetCTLs from I/0:
reply (GetCTLs, pidery , Pkery)

recv initPartner from (pid, sid, role):

caller < (pid, sid, role)

if role = client:
init((local, pid, client), sid, judge)

else if role = judge:
Parse pid as (local, pid’, client)
init(pid’, sid, client)

recv InitEntityDone from (pid, sid, role):
caller < caller; caller +— L
send initPartner to caller

,pidy,), (Pkey[pid,], . ..

{The pids of the CAs

{The public keys of CAs, initially L for all entries
{The pids of the CTLs

{The public keys of CTLs, initially L for all entries
{A CAs trusted CTLs, intitally L

{Stores the callers during client/judge initialization.

{CA request initialization
{Query A for initialization details of pidcur

{Check whether CTL key is still uncorrupted

{Generate CTL’s signing keys

{Store public key
{Establish session at Fgig if it is not recorded
{Generate CA’s signing keys

{Store generated public key
{Store CA’s CTLs

< kaTL[pidn]))
{Output CA’s and CTLs’ pubkeys to CA

{CTL request initialization

{CTL key is corrupted, thus this entity cannot act as (trusted) CTL

{Query A for initialization details of pidc,r

{Establish session at Fgig if it is not recorded
{Generate CTL’s signing keys

{Store generated public key

{Generate CA’s signing keys

{Store public key

s Pkea[pid,,]))
{Output CA’s and CTL’s pubkey to CA

G

Tudge Tequests initialization
ge

{Output current state to Fjuage
{Clients can query for CA/CTL pk’s

<oy Pker[pid,,]))
{Clients can query for CAs and their pk’s

{Clients can query for CTLs and their pk’s
{Request to initialize accompanied local judge or client

{Trigger initialization of the entities local judge

{Trigger initialization of the accompanied client

{Finish initialization of accompanied local judge or client

Fig. 26: The initialization ITM

33

]:CA

init*

Description of the certificate monitoring enforcing network functionality Fpsync-net = (psync-net):

Participating roles: {psync-net}
Corruption model: incorruptible
Protocol parameters:

- d€N {The upper bound for liveness
Description of M;‘ymrnet:
Implemented role(s): {psync-net}
Subroutines: PS, . : client, Per : ctl
Internal state:
- T7eNT=0 {Current time in the Fpsync - net
— counter € N, counter = 0 {Request counter
w4 2 _ The set of messages to be delivered via Fpsync-net Of
requestQueue C N N> ({0, 1}7)7 x IV, requestQueue = 0 {form (ctr, trec, pid, pid,., msg, resp, tael, tout)
- monReg : {0,1}* —» N {Last recorded check request of party pid. Initially all set to 0.
= pidey, C {07 1}*1 pider, = 0 {The available CTLs
- pidﬁient c {0,1}* {The set of honest clients
CheckID(pid, sid, role):
Accept all messages for the same sid.
MessagePreprocessing:
send GetCTLs to (pidcyr, sidcur, ficl‘fit : init) {Reque‘\'f CTLs at]:ic:it
wait for (GetCTLs, CTL, pidcy)
pide, < CTL {Update available CTLs
forall pid € pid]},,. do:
send CorruptionStatus? to (pid, sidcyr, 'ngiem : client)
wait for (CorruptionStatus?, b)
if b:
pidzient.remove(pid) {Remove corrupted party
Remove entries for pid from requestQueue and monReg.
Main:
recv UpdateRound from NET: {Triggering a clock update increases the time
if 3(ctr, tree, pid,, pid,., msg, resp’, tier, tout) € requestQueue, S.t. tge = L A round — tr. > 8t
reply (UpdateRound, nack) {Requests need to delivered in § time units to a CTL
else if 3(ctr, tre, pid,, pid,., msg, resp’, tael, tour) € requestQueue, S.t. tyey # L Atree # LAty = L Around —tze > 8t
reply (UpdateRound, nack) {Requests need to delivered in & time units to a CTL
else if Ipid in monReg s.t.round — monReg[pid] > §:
reply (UpdateRound, nack) {A needs to allow honest parties to frequently trigger monitoring
else:
T+ 17+1 {Clock update successful
recv GetCurRound: {Handling reads from the clock
reply (GetCurRound, 7)
recv (Monitor, pid, {pid,, ..., pid;}) from I/0s.t. pidei = pid, rolecay = client, {pid,,...Apid;} C pide : {Monitor CTLs
for all pid’ € {pid,,...,pid,} do: {Record monitor requests
counter < counter + 1
requestQueue.add([counter, round, pid, pid’, (Monitor, counter, pid), L, L, 1, 1]) {Record requests to CTLs
monReg[pidcy] < round {Record last request of party
send (Monitor, requestQueue) to NET {Leak full information to A
recv (Deliver, ctr) from NET: {A triggers delivery of message with id ctr to Fcr, or Pffient

if I(ctr, tre, pid,, pid,., msg, resp, tael, towr) € requestQueue, 8.k, tge = L:
requestQueue.remove([ctr, trec, pidg, pid,, msg, Tesp, tiels tout])
requestQueue.add([ctr, trec, pids, pid,, msg, resp, round, tou]) {Record delivery to CTL
send (msg, ctr) to (pid,., sideyr, ForL : ctl) {Deliver request to CTL
else if 3(ctr, tye, pid,, pid,., msg, resp, tael, tout) € requestQueue, S.t. tgey # L A tour = L:
requestQueue.remove([ctr, tyec, pidy, pid,, msg, resp, tael, tout])

requestQueue.add([ctr, trec, pid,, pid,, msg, resp, t4e, round]) {Record delivery to client
send (resp) to (pid,, sidcur, Pljont : client) {Deliver answer to client
recv (Monitor, ctr, resp) from I/0: {Response from CTL on monitor request

if 3(ctr, tree, pid,, pid,., msg, resp’, tier, tour) € requestQueue, S.t. oy = L:
requestQueue.remove([ctr, trec, pids, pid,, msg, resp’, tael, tout])

requestQueue.add([ctr, trec, pidy, pid,, msg, resp, tiel, tout]) {Record reponse of CTL

send Monitor, requestQueue to NET {Leak full information to A

recv Establish from I/0: {Client registers at Fpsync - net
pidclient'add(Pidca”)

monReg[pidcyr] < round {Record registration round as starting point in monReg

Fig. 27: The certificate monitoring enforcing network functionality Fpsync-net for modeling a partially
synchronous network.

54

Description of PjCLA;dge = (judge):

Participating roles: {judge}
Corruption model: Dynamic corruption without secure erasures

Description of Mjuage:

Implemented role(s): {judge}

Subroutines: Fg, : verifier,]-'f:it :init

Internal state:
- pidg, C {0,1}" {The pids of the CAs
— pkegy : pidg, — {0,1}" {The public keys of CAs, initially L for all entries
- pider, € {0,1}" {The pids of the CTLs
— pkery, : pider, — {0,1}7 {The public keys of CTLs, initially L for all entries
— CTLs: pidgy, — (pidgy, U {L})" {A CAs trusted CTLs, intitally 1
- verdicts € {0, 1}*, verdicts = ¢ {Recorded verdict

CheckID(pid, sid, role):
Accept all messages with the same sid addressed to (pid, sid, judge) where pid can be parsed as (local, pid’, client).
Corruption behavior:
- AllowCorruption(pid, sid, role) :
Parse pidcyr as (pid’, role”)
corrRes < corr(pid’, sideyr, Tole”)
return corrRes {Corruption is allowed if accompanied client is corrupted.
- DetermineCorrStatus(pid, sid, role) : {Consider local judge corrupted if associated client is corrupted.
Parse pid as (pid’, role’)
corr < corr(pid’, sid, role’)
if corr:
return true
else:
return false
EntitylInitialization:
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcyr, sideur,]-'icr?it : init)
wait for initPartner
MessagePreprocessing:
send InitMejuage 10 (pideur, sideur,]-'f:it : init) {Update CA/CTL identities and pubkeys

w_ait for (InitMejuage, Pide,, pl.fm, pider, Pkor, CTLs)
pidey <= pidcy; Pkey <= Phcy; Pider, <= pidery; Pkery = Phepy; CTLs «— CTLs

Main:
. ,)) - -
rec;lt(Ev.zdenieMé (ctr.d, [seﬁm_ld, pid, :f]k’ pidc“l’ .UC‘:]:’_pldCTL’ 7, ocn)) from 1/0 Client complains that someone registered
-l Pilcall = PiCeur, Sicall = SiCeur, FO€call = CLient: a certificate for her identity
b « verifySig([(ctr’, [serial, pideyr, Pk, pidgy, oca], Pider, T], octr, Pider [Pider], Pider) {Check CTL signature
if pid(, € pidg,:
¢ < verifySig([serial, pideur, Pk, Pidg,], oca, Pidey [Pid,], pidg,) {Check CA signature
else:
c < false
ifbAc: { Certificate is valid
verdicts.add(dis(pidg, , sideyr, P : ca)) {The local judge blames the CA for misbehavior
recv GetVerdict: {Both 1/0 and NET may send this message.

reply (GetVerdict, verdicts)

recv (GetJudicialReport, msg) from I/0:
reply (GetJudicialReport,€)
Procedures and Functions:
function verifySig(msg, o, pk, pid) : {Verify signature at Fig
send (VerResult, msg, o, pk) to ((pideur, ctl), (pid, sideyr), Fsig : verifier)
wait for (VerResult, result)
return result

Fig. 28: The judging functionality P¢ for a CA (Part 1).

A
judge

55

Description of PS% = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible
Protocol parameters:

_ Secassumption =0

{The set of security properties that may break

Description of M

supervisor*

Implemented role(s): {supervisor}
Subroutines: P : ca, Pery : ctl
CheckID (pid, sid, role):

Accept all messages with the same sid.

Main:
recv (IsAssumptionBroken?, msg):
reply (IsAssumptionBroken?, false)
recv (corruptInt?, (pid, sid, role)) s.t. role ¢ {client, judge, supervisor}:
if role # ca:
reply (corruptInt, false)
else:
corrRes < corr(pid, sidcr, ca) {Reque.xr corruption status at Pt
reply (corruptInt, corrRes)
Fig. 29: The supervisor P2 for CA.
Local judges
. . . . CA . ! . . .
When an uncorrupted instance ((pid, role), sid, judge) of P}y, in R’ renders a verdict, i.e., verdicts # ¢, or

its verdicts changes, S extracts the verdicts and forwards it to F3S§;. More specifically, S sends (BreakAccProp,
verdict, {(correctCert, (pid, sid, role))}) to ((Local, pid, role), sid, FB5$: judge) where verdict is a map
from idSassumption — {0, 1}* where the entry verdict[id] = verdicts (contains the verdict from chlfdge). All
other entries in verdict are mapped to €.

If a judge’s associated client is corrupted, the local judge is also considered corrupted and serves as pure
message forwarder to/from .A. Thus — as stated above — S forwards the messages from/to A to/from Z in this
case.

This concludes the description of the simulator. It is easy to see that (i) {S,Z} is environmentally bounded,
and (ii) S is a responsive simulator for Z, i.e., restricting messages from Z are answered immediately as long
as {S,Z} runs with a responsive environment. We now argue that R and {S,Z} are indeed indistinguishable
for any (responsive) environment £ € Env(R).

In the following part of the proof, let £ € Env(R) be an arbitrary but fixed environment. First, observe
that 735 provides S with full information about (i) all creations requests for certificate of uncorrupted clients
(for which also correctCert holds true) and (ii) retrieve requests performed by higher-level protocols/the
environment. Hence, S’s simulated protocol R’ obtains the same inputs as R (resp. Z) and thus performs
identical to R. We remark that further I/O input, e. g., requests to judges, do not influence the state of Fp5%;.
Thus, we can conclude that the network behavior simulated by S towards the environment is indistinguishable
from the network behavior of R. Moreover, we can also conclude that the corruption status of (internal) entities
in the real and ideal world is synchronized. Since the simulator has full control over corrupted entities, which
are handled via the internal simulation R’, this implies that the I/O behavior of corrupted entities of R/Z
towards the environment is also identical in the real and ideal world. Note that purely internal (private) parties
have no interface to the environment. The only way to potentially distinguish the real and ideal world is the
I/O behavior of honest entities of R/Z towards higher-level protocols.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by induction,
that all of those interactions result in identical behavior towards the environment, i. e., are also indistinguishable.
At the start of a run, there were no interactions on the I/O interface with honest parties yet. Thus, R and Z
are indistinguishable. In the following, we assume that all I/O interactions so far have resulted in the same
behavior visible towards the environment in both the real and ideal world.

In what follows, we call the state which includes the certificates of uncorrupted parties for which correctCert
still holds true relevant state. The relevant state can be extracted from the union of all state variables of all Pery,

acc

instances in a session of P in R, resp. R’, by removing certificates from (i) corrupted parties and (ii) from

acc

honest parties whose local judges already store a verdicts €. In Z, the relevant state can be derived from F3§;’s

56

Description of the ideal authenticated channel functionality Fayu¢h = (auth):

Participating roles: {auth}
Corruption model: custom

Description of Mayen:

Implemented role(s): {auth}
Internal state:

- queue : {0,1}* x {0,1}* — {0,1}" {Queue of messages from entity ey to entity es, initially L for all entries
— status : ({0,1}*)® — {inactive, active, established} {The status of (pid, sid, role), initially inactive for all entries
— corrStatus € {0, 1} {The corription status of the Fautn

CheckID(pid, sid, role):
Accept all messages for the same sid.
Main:
recv corrupt from NET: {A (tries to) corrupts current instance of Fautn
if V entries in status are not equal to established: {This models static corruption
corrStatus <— true
reply (corrupt, ack)
else:
reply (corrupt, nack)

recv CorruptionStatus? from I/0: {Allows environment to check correct simulation of corrupted parties.
if corrStatus = true:
reply (CorruptionStatus?, true)
else:
reply (CorruptionStatus?, false)

recv (Establish,m) from I/0 s.t. sidcai = sidcyr, status [(pidcair, Sidca, rolecan)] = inactive: {Establish session
status[(pidcai, Sidcall, rolecai)] < active
send (Establish, m, (pidca”, sidcall s roleca”)) to NET

recv (Establish, (pid, sidey, role)) from NET s.t. status [(pid, sideyr, role)] = active: {Establish session
status[(pid, sidcur, T0le)] < established
send (Establish, m, (pid, sidcyr, role)) to (pid, side,r, role)

recv (Send, (pid, sideyr, role), msg) from I/0 s.t. status [(pidcai, sidcail, roleca)] = establishedApid # pidca :
if corrStatus = false:

via authenti-

{S(’nd message
cated channel

queue[(pidcall, sidcall, rolecan), (pid, sideyr, Tole)].add(msg) {Add msg to the queue of pid
send (Send, (pidcai, sideall, rolecan), (pid, sideyr, T0le), msg) to NET {Leak communication to NET
recv (Deliver, (pid,, side, roley), (pidy, sideyr, rolez), msg) from 1/0
s.t. status [(pid,, sidcur, T0les)] = established A pid, # pid, : {Deliver message via authenticated channel
if corrStatus = false:
if queue[, (pid,, sidcur, roler), (pidy, sideyr, Toleg)] = L: {There are no queued messages
reply (Deliver, 1) {Return error
else:
remove the first message from queue[(pid;, sidcur, Tole1), (pidy, sideur, Tole2), let msg’ be this message
send (Received, (pid, sidcyr, role1), msg’) t0 (pids,, sider, roles) {Deliver first message from queue
else:
send (Received, (pid,sideyr, T0le1), msg) to (pids,, sideyr, roles) {Deliver message from adversary if corrupted

recv (Drop, (pid,, sideur, roler), (pidsy, sideyr, rolez)) from NET:
if queue[(pid,, sidcur, role1), (pidy, sideyr, Tolea)] # L:
remove the first message from queue[(pidy, sideur, Tole1), (pidy, sideyr, Tole2)]. {Drop message
reply (Drop, ack)

Fig. 30: The ideal authenticated channel functionality F,u (cf. [70].

state variable by excluding (i) certificates of corrupted parties and (ii) certificates where correctCert does
not hold true for the certificate owner.

Certificate creation/registration requests: Certificate creation/registration requests do not directly result in
an output to the environment. But, they might affect the output of F3§; later on as they have direct impact
on the relevant state of Z/R’, resp. R. Thus, we now show that registration requests behave “identical”, i.e.,
we have to argue that these changes in relevant state are “synchronized” between Z and R’. In particular, the
buffered set of relevant certificates registrations, i.e., certificate requested by uncorrupted parties for which
correctCert still holds true, in 35§ is equal to the buffered set of certificate registration from the same class
of clients in R’. We define buffered registration request in R’ as the following requests/messages: (i) certificate
requests stored in uncorrupted instances of P&}, . (in pk and certCA) for which correctCert still holds true
(ii) minus the set of finalized certificates from the different instances of Perp. In what follows, we will call
these certificates the buffered relevant certificates for registration at R’.

Observe that, upon receiving a certificate registration, 733 behaves similar to R': in F35, the submitted

certificate registration is directly stored in buffers. In R, the submit message is stored in PS, . and forwarded

57

Description of the protocol Fgiz = (signer, verifier):

Participating roles: {signer,verifier}
Subroutines: F :init

init

Corruption model: dynamic with secure erasures
Protocol parameters:
EPZ[I] Polynomial that bounds the runtime of the algorithms provided by the
P : adversary.

Description of Migner verifier:

Implemented role(s): {signer,verifier}
Internal state:

— (sig, ver, pk,sk) € ({0,1}* U {L})* = (L, L, L, 1). {Algorithms and key pair.
— pidowner € {0,1}* U{L} = L. {Party ID of the key owner.
- msglist C {0,1}* = 0. {Set of recorded messages.
— KeysGenerated € {ready, L} = L. {Has signer initialized his key?

CheckID(pid, sid, role):
Check that sid = (pid’, sid’):
If this check fails, output reject.
Otherwise, accept all entities with the same SID.
Corruption behavior: {

A single instance manages all parties
and roles in a single session.
The highlighted part differs between a standard version

- AllowCorruption(pid, sid, role): of Fsig and the version considered here

. - ,
Parse pida to (pid ,.role) cA s Query for the list of CTLs of session sid, decline
send GetCTLs t0 (pidcyr, Sideur, Fip;q @ init) g

. ! ini corruption requests for CTL keys
wait for (GetCaCtls, pidey, Pkor) ’
if pid’ € pidgy, A role’ = ctl:

return false {Not allowed to corrupt CLT keys.
else if role = verifier: {Corruption of verifier instances not allowed
return false
else:

return true

- LeakedData(pid, sid, role): If (pid, sid, role) determines its initial corruption status, use the default behavior of LeakedData.
Otherwise, if role = signer and pid = pidowner, return KeysGenerated. In all other cases return _L.
Initialization:
send responsively InitMe to NET;
wait for (Init, (sig, ver, pk, sk)).
(sig, ver, pk, sk) < (sig, ver, pk, sk).
Parse sidcyr as (pid, sid).
pidowner <— pid.
Main:

Successful initialization. Note that signer can submit

KeysGenerated <— dy. s . . .
Y reacy InitSign multiple times, always with the same effect.

recv InitSign from I/0 to (pidowner, _, signer): {
reply (InitSign, success, pk).

recv (Sign, msg) from I/0 to (pidowner, _, signer) s.t. KeysGenerated = ready:
o < sig'?’ (msg, sk).

b« ver(® (msg, o, pk). {Sign and check that verification succeeds.
if o = 1L Vb # true:

reply (Signature,). {Signing or verification test failed.
else:

add msg to msglist.

reply (Signature, o). {Record msg for verification and return signature.

recv (Verify, msg, o, pk) from 1/0to (_,_, verifier):

b+ ver® (msg, o, pk). {Verify signature.
if pk = pk A b = true A msg ¢ msglist A (pidowner, sidc,,, signer) ¢ CorruptionSet:

reply (VerResult, false). {Prevent forgery.
else:

reply (VerResult, b). {Return verification result.

Fig. 31: The ideal signature functionality F;q.

58

via Foutn to PCA. So, the buffered relevant certificates R’ also are in a buffer of 5% 1. €., the buffered relevant

certificates are synchronized between R’ and F3§{; (that is, the sets are equal in both worlds). Note that S does
not have to take care of certificates of corrupted parties as A/S fully determines the output of F35¢; for these
parties anyways. Thus, S is indeed able to keep the buffered relevant certificates in Z and R’ synchronized.

State updates: Again, state updates do not lead to a direct output to the environment. However, state updates
may influence the output to the environment later on. Thus, we argue here that the relevant state (see above) is
synchronized between Z and R’ (thus, it will allow for the same output in Z and R). As the buffered relevant
certificates in R’ and Z are synchronized (see above), we can conclude that the relevant states of 3§ and
R’ stay synchronized during state updates. This boils down to mirroring the relevant state (see above for the
definition) from the CTLs to Z (as S does). Thus, all relevant certificates which S would add to the state in
Fpi; are also buffered in F3i;. Therefore, F35; will accept every state update of S and thus the relevant
state stay synchronized in Z and R’.

Retrieve requests: Observe that, upon a retrieve request, Fp5; stores the read request in bufferg and leaks
the full request to the simulator including an ID and the receiver of the response. Note that the procedure is
analogously to a certificate registration. A retrieve request does not directly result in an output to the environment.
With the same argumentation as above follows that S is able to keep the “retrieve buffers”, i. e.the set of requested
certificates stored in honest instances of PS}, . resp. F35¢;, for honest participants of Z and R’ synchronized.
Deliver responses to retrieve requests: If S is triggered to output a response to a retrieve request, i.e., S
receives Retrieve via NET including the necessary data to output, S firstly simulates received input in R’ and
determines whether this input actually leads to an output on an I/O interface. In case of an output, S forwards

the output in a Deliver message to F5%;. In this case, there are two cases to consider: (i) correctCert

is broken for the certificate owner pid or (ii) correctCert still hold true for pid. In the first case, Fpg
will simply forward the input from S to the requestor as all checks at F3iS; are disabled. As the output is
extracted from R’, we can conclude that R and Z are indistinguishable. In the second case, the output is
honestly generated in R’ and Z. As argued above, the relevant states of both worlds are synchronized. Thus,
Fpi: will accept the Deliver command of S and the outputs in both worlds will be identical.

When a party queries for a certificate of corrupted party, F5i¢; allows A/S to freely determine the certificate
delivered to the requesting party. We already discussed this case after the description of the simulator and
emphasize that in this case, Fa5 simply forwards the output provided by S (which matches R').

Altogether, both worlds are also indistinguishable in the case of retrieve requests.

Monitoring Process: Note that the monitoring process only takes places in R’ and only its output, a verdict
if there is any, is mirrored to Z (see below). Thus, the monitoring process will not cause a case where Z and
R are distinguishable.

Verdicts: First note, that S sends a BreakAccProp message to break correctCert when an unambiguous or
an not requested certificate of an uncorrupted party in R’ appears. More specifically, S sends a BreakAccProp

when there is a new/updated verdict available in an uncorrupted instance of chlfdge. We remark that these

requests match the rules in ﬂicgéféﬂams and thus are always accepted by JF35%;. Further, we assume that the
used signature scheme is EUF-CMA secure. Thus, the probability that an honest party receives and accepts a
certificate created by A via forging signatures (without corrupting the party owning the key or corrupting the
key itself) only occurs with negligible probability. Also, the verifier instance of an honest local judge is
incorruptible. Thus, we can conclude that S can always keep the verdicts and whether consistency is broken
synchronized in Z and R’. Thus, the output on a GetVerdict request is equal in R’ and Z. Thus, ideal and
real world are indistinguishable.

We also remark that PS, . only forwards certificates to the environment if they are older than 3 - ¢ time
units. In this case, the monitoring process for the particular certificate is already finished (in R/R’) and thus
the associated local judge will provide a verdict in case of a maliciously created certificate. This triggers S to
break correctCert (including providing a verdict) for the dedicated party and ensures that there is always a
verdict available/the status of correctCert correctly reflected/synchronized between R’ and Z. Thus, also in

this special case, R and Z are indistinguishable.

Judicial Reports: The judicial report (for uncorrupted instances of }"ﬁfggfélrams) in both worlds is always ¢.
Thus, R and Z stay indistinguishable.

59

Supervisor: The same holds true for BreakAssumption requests to the supervisor. The message of S matches
the rules and thus will be accepted.

Altogether, R and {S,Z} behave identical in terms of behavior visible to the environment £ and thus are
indistinguishable.
O

E.4 Deterrence Analysis: As running CA business is profitable in practice and clients benefit from PKIs, we
should have that U} , > 0. We assume U}, to be negligible as parties falsely accusing another cannot provide
undeniable evidence that the party indeed misbehaved. As all relevant data is public in the PKI setting, we
assume U, , = 0. In real world scenarios, CAs would typically lose their complete reputation when misbehaving
and thus often have to close business afterwards [92]. Thus, we estimate U < U, }11 p- In order to deter CAs
from misbehavior, penalties need to be chosen significantly high such that U? ; > U! , — U} . As it is not
possible to generate faked undeniable evidence, we assume U = 0. Thus, Equation 1 and 2 are met.

F. Key Exchange Based on F3i; (Full Details)

Before we have a look at the security proof of Theorem 3, we present the ideal functionality Fg5 and the
key exchange protocol specified in ISO 9798-3 [56] in detail. This case study relies on existing analysis of the
ISO protocol [20,27,66]. More specifically, we derive the considered ideal key exchange functionality Fkg
from the functionality explained in [20] and use AUC to derive F{$ from Fkg. In particular, we add the

accountability property authenticity to FRE. Fi$ ensures for “honest” key exchange sessions, that they

provide security guarantees as long as non of the parties was involved in a misconduct in F3§. In contrast
to existing works, which typically rely on an ideal/perfect PKI which does not allow maliciously generated
certificates, our model of the ISO protocol Pic¢ uses the PKI F5%; for accessing the public signature keys of
the involved parties for mutual authentication. Theorem 2 then allows us to replace F355; with its realization
Par, a realistic PKI with CTLs.

In this section, we will firstly provide the formal specification of the (accountable) ideal key exchange
functionality F% and the model of the ISO protocol P2, Finally, we will provide a formal proof for

1SO
Theorem 3.

F.1 The Accountable Key Exchange Functionality F355: We also provide the full formal specification of
FE5 in Figure 32 and 33 including the specification of .ﬂ%ggepamms in Figure 34. The highlighted parts in the
specification of F2j5 mark the changes during the AUC transformation from Fxg to Fgf5. In what follows,
we firstly present Fkg and then discuss the differences between Fkg and Fi5.

The functionality Fxg consists of two roles, initiator and responder. Both, initiator and responder,
are implemented via a single machine. One instance of this machine models a single key exchange. In Fkg,
key exchange sessions are predefined via SIDs of form (sid’, pid,, pid,.) where sid’ is a local session ID for
the key exchange, pid, is the PID of the initiator and pid,. is the responder’s PID. If two honest entities finish
a key exchange, then FR5 ensures that they obtain an ideal session key which is unknown to the adversary.

JFke models a key exchange in three “phases” which are reflected in the available commands:
Public key registration (I/0): before parties can start a key exchange, they need to register their identities.

Initialization of key exchange (I/0O): when parties have registered, they can start a key exchange.

Finish key exchange (Net): Fxg allows the adversary/simulator to determine when a started key exchange
finished. The FinishKE message triggers the output of keys to higher-level protocols. In a session consisting
of honest initiator and responder, the session key is derived ideally, i.e., chosen uniformly at random from a
cyclic group (G, n, g). If one of the parties is corrupted, the adversary/the simulator may determine the session
key.

In a session without corrupted parties, Fxg provides mutual authentication.

We add the following to Fkg to derive F{5: if one of the two parties involved in a key exchange does not
provide authenticity, i.e., the parties are not corrupted but brokenProps[authenticity, (local, pid, role)] =
true for one of both participants, A is allowed to determine the session key during key exchange. If Fg55
already established a session key, the key is leaked to .A. Additionally, F2SS, resp. Fik restricts

judgeParams®
the local judges output to be a verdict blaming some internal protocol party and/or the intended key exchange

60

partner. Note that the local judge considers itself as corrupted if the accompanied initiator, resp. responder entity
is corrupted. Also, a local judge can only be (directly) corrupted if the accompanied initiator, resp. responder
entity is corrupted. If the local judge is directly corrupted, it acts (as common) as pure message forwarder for
A. Judicial reports do not contain content, i. e., the judicial report is always . We do not consider a supervisor
in this example/functionality. Formally, the supervisor does not accept break attempts and always outputs an
empty leakage.

F.2 The ISO 9798-3 Protocol as Accountable Key Exchange Protocol: The ISO protocol [56] or in short
the ISO Protocol as depicted in Figure 8 is a key exchange protocol which builds mutual authentication on top
of a Diffie-Hellman key exchange.

We model the ISO protocol in a modular way using several smaller protocols. The static structure of all
protocols, including their I/O connections for direct communication, is shown in Figure 35. In the following,
we give a high-level overview over each part of the protocol.

The (accountable) ISO protocol is modeled as a real protocol P5s¢. We derived Pic¢ mainly from P, [17].
However, as already stated above, we model the key exchange via an pre-established SID which predetermines
the session of the key exchange and initiator and responder in the particular session (cf., e.g., [20]). In what
follows, we firstly explain our variant of Pi,. Then, we explain how to derive the accountable variant Pic¢
from Pi,.

The real protocol Pjs, consists of three roles, initiator, responder, and setup. The setup role models
secure generation and distribution of a system parameter, namely, a description of a cyclic group (G, n,g).
As this parameter must be shared between all runs of a key exchange protocol, setup is implemented by a
single machine which spawns a single instance that manages all entities and always outputs the same parameter.
The roles initiator and responder implement parties A and B, respectively, from Figure 8. Each role is
implemented by a separate machine and every instance of those machines manages exactly one entity. Thus,
these instances directly correspond to an actual implementation where each run of a key exchange protocol
spawns a new program instance. Both, initiator and responder register their public keys at Fp3i; before they
actually start the key exchange.

In Piso, We use a standard ideal signature functionality Fy;,'¢ for signing messages and verifying signatures.
As common, the ideal functionality F;, consists of two roles, signer and verifier, that allows for the cor-
responding operations. Both roles are implemented by the same machine and instances of that machine manage
entities that share the same SID. The SID sid of an entity is structured as a tuple (pid,,,.,, (sid’, pid;, pid,.)),
modeling a specific key pair of the party pid,,,,,.,. More specifically, in protocol Pi,, every party pid owns a
single key pair per key exchange session, represented by SID (pid, (sid’, pid;, pid,.)). We use the accountable
PKI functionality F3%; as PKI. To simplify presentation, we use a fixed session of F5%5 (namely F5%; runs in
the session with SID ¢). This, however, can trivially be extended to the case where multiple PKIs are used by
different key exchanges. We use an initialization functionality }:‘;‘l’t which ensures that initiator and responder
and their judges are initialized “at the same time”. This simplifies the proof later on, as we do not have to take
care of several edge cases in cases of non-initialized parties.

The corruption model of P, allows A to corrupt users (pid, sid, role) (statically) before the key exchange
starts. We consider a party corrupted, if (i) a party is directly corrupted, (7i) the instance of the party at Fg;g,
i.e., its “private signature key”, is corrupted, (iii) its verification instance at F;g, used to verify the intended
partners signature, is corrupted, and (iv) its session at Fp5i; is corrupted. This essentially models a party-wise
corruption.

Additionally to Pis, Pic¢ adds local judges to Pis, — one local judge per signer, resp. verifier instance of

Piso — and a dummy supervisor. For the local judges in P3¢, we essentially pass-through the accountability

180 ?
properties from F555;. The judge queries for verdicts at its own local judge (instance) at 5% and the judge

of the intended partner. In case that there is a verdict from F3§; from the intended partners judge, PJ‘;‘jﬂ oo adds
the intended partner as potentially misbehaving party to the verdict (i.e., adds Vdis(intended partner)), if the
intended partner’s judge provides a verdict from the lower level. This captures that the judge cannot be certain

who behaved maliciously on the PKI level: the issuing CA or the intended partner.

1610 contrast to Appendix E, where we use an adapted variant of Fsig. Additionally, we also allow A to corrupt the verifier instance
here.

61

Description of the protocol F% = (initiator, responder, supervisor, judge):

Participating roles: {initiator, responder, judge, supervisor}
Corruption model: dynamic with secure erasures
Protocol parameters:

— groupGen(1"). {Algorithm for generating tuples (G, n, g) describing cyclic groups G of size n with generator g.
- Sec®™* C {0,1}" {Accountability properties, meant to be set to {authenticity}
— Secsumption — o, 1}* {Assumption-based security properties, meant to be set to ()
— pidsjyage C {0,1}" {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
— idSassumption C {0, 1} {set of entities/IDs where properties are ensured via assumptions

Description of Minitiator, responder, supervisor, judge

Implemented role(s): {initiator, responder, judge, supervisor}

iheg: FKE
Subroutines: Fj,scparams

Internal state:

- (G,n,g) € ({0,1}* U{L})®=(L,1,1) {Global group parameters.
— state : ({0,1}*)% = { L, registered, started, finished} {Stores the current state of entities in key exchange; initially 1.
— initiator : ({0,1}*)3 {The initiator of the key exchange
— responder : ({0,1}*)3 {The responder of the key exchange
— caller : {initiator, responder} — ({0, 1}*)3 u{Ll} {Stores the calling entity for both entities in key exchange; initially 1.
— sessionKey : {0,1}* U {L} {The session key; initially L.

The set of corrupted internal
parties (pid, sid, role)
— brokenAssumptions : Sec X idSassumption —> {true, false} {Stores broken security assumptions per id, initially false Ventries
i . . Stores broken security properties per
_ . assumption acc . . N
brokenProps : (Sec U Sec®™) x (pidsjugge U idSassumption) — {true, false} Judgefid, initially talse Ventries
- verdicts : pidsjgge — {0,1}" {Verdicts per p € pidsjudge, initially &
CheckID (pid, sid, role):
Accept all entities of form (pid, (sid’, pid,, pid,.), role) where role € {initiator,responder}
and pid € {pid;, pid,} or ((local,pid’,role’),(sid’,pid;, pid,), judge) where role’ €
{initiator, responder} and also pid’ € {pid,, pid,.} or (_, (sid’, pid,, pid,.), supervisor).

— corruptedIntParties € {0,1}* x {0,1}" x {0,1}" \ (Rolesz“ U {judge, supervisor}), initially ()

assumption

One session of Fi{s
manages a single in-
stance of a key ex-
change.
Corruption behavior:
— AllowCorruption(pid, sid, role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:
send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid, FjudgeParams * judgeParams) {FjudgeParams decides whether judges can be corrupted
wait for b; return b
— DetermineCorrStatus(pid, sid, role):
if role = judge: {FjudgeParams may determine a judge’s corruption status
send (CorruptionStatus?(pid, sid, judge), internalState)
to (pid, sid, FjudgeParams : judgeParams)
wait for b; return b
- AllowAdvMessage(pid, sid, role, pidreceiver; Sidreceiver s Fol€receiver , 1) {.A is not allowed to invoke]-"J.":f;;sparams.
Do not allow sending messages to FjudgeParams-
- LeakedData(pid, sid, role):
If called while (pid, sid, role) determines its initial corruption status, use the default behavior of LeakedData.
That is, output the initially received message and the sender of that message.
Otherwise, return (caller[pid, sid, role], sessionKey).
Initialization:
Parse sidc,r as (sid’, pid;, pid,.).
initiator < (pid,, (sid’, pid,, pid,), initiator) {Store initiator and responder
responder < (pid,., (sid’, pid,, pid,.), responder)
(G, n, g) < groupGen(17).
if sender = NET A m = InitGroup: {

send (LeakGroup, (G, n, g)) to NET. Allow adversary to start initialization and then return the

generated group. No other actions are performed in this case.

send responsively (LeakGroup, (G, n, g)) to NET; the adversary to respond before interacting with the protocol in any
wait for _. other way, i.e., the run can continue as expected.
MessagePreprocessing:
if rolec,, = initiator A caller[initiator] = L:
caller[initiator] <— entitycall
else if role.,, = responder A caller[responder] = L:
caller[responder] < entityca
Main: Register that
initiator and
responder want
exchange keys
Start key ex-
change key

else: {Leak group parameters to the adversary. Note that this command forces

recv RegisterPubKey from I/0to (_,_, initiator) V (_,_, responder) s.t. state[(pidcur, Sidcyr, rolecyr)] = L:
state[(pidcur, Sidcyr, rolecyr)] <— registered.
send RegisterPubKey to NET.

recv InitKE from I/0to (_,_, initiator) V (_,_, responder) S.t. state[(pidcur, Sidcyr, rolecyr)] = registered:
state[(pidcur, Sidcur, rolecyr)] <— started.
send InitKE to NET.

“Here: Rolesz := {initiator, responder}.

Fig. 32: The accountable ideal key exchange functionality F35 (part 1).

62

Description of Mipitiator,responder, supervisor, juage (continued):

. {Nme that Main continues processing the message m that Initialization has
Main: . e s .
already parsed if Initialization does not end the run.
recv (FinishKE, k) from NET to (
if sessionKey = L:
Choose sessionKey <— G uniformly at random
state[entityc,r] < finished.
if initiator € CorruptionSet V responder € CorruptionSetV
brokenProps[authenticity, (local, initiator, initiator)] = true V
brokenProps[authenticity, (local, responder, responder)] = true: {

,initiator) V (, _, responder) s.t. state[(pidcyr, Sidcur, rolecy)] = started:

—

A may choose the key if he has corrupted the partner or

send (FinishKE, k) to callerfentitycy|. authenticity is broken for one of the involved parties.

else:
send (FinishKE, sessionKey) to caller[entitycyr].

Include static code from the AUC transformation 77 (-) here, i.e., include additional code from Figure 2 and 3 here. Do not include the public
judge here.

Fig. 33: The accountable ideal key exchange functionality F&% (part 2).

K

Description of]:juggeparams = (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of Mjuageparans:

Implemented role(s): {judgeParams}
CheckID(pid, sid, role):
Accept all messages with the same sid.
Main:
recv (BreakAccProp, verdict, toBreak, internalState) from I/0:
Let initiator, responder be initiator and responder extracted from internalState.Further, let pid
if toBreak = {authenticity} X ({local} x {(pid initiator), (pid

initiator» T€SP. Pid be their PIDs.

responder
responder)}):

initiator responder ?

=:ids { s is defined to be the session ID of the considered session
forall id € ids do:
if verdict for id does not match conjunction of verdicts of form
dis((pid’, sid’, role’)) V V or V
where (pid’, sid’, role’) € {initiator, responder} and
V is a verdict not blaming parties with roles from {initiator, responder, judge, supervisor}:

Let k be sessionKey extracted from Fi% s provided internal state.
reply (BreakAccProp, true, k) {Accept verdict/broken properties, leak session key
else:
reply (BreakAccProp, false, ¢) {Decline verdict/broken properties
recv (GetJudicialReport, msg, internalState) from I/0: {Generate judicial report
reply (GetJudicialReport,€) {We do not provide a judicial report here
recv (BreakAssumption, toBreak, internalState) from I/0: {Do not generate leakage when breaking assumptions
reply (BreakAssumption,)
recv (Corrupt, (id, sid, judge), internalState) from 1/0: {‘FjU(igOPzLFzLdrl):s allows 1o corrupt “éow{ ‘Ilfdg‘(; 'ﬁc(flhf
if id = (Local, pid, role) A (pid, sid, role) € CorruptionSet: accompanied initiator or responder is corrupte
reply true
else:

reply false
. FRE interprets a local judge as corrupted iff
recv (CorruptionStatus?, (id, sid, judge), internalState) from I1/0: judgeParams ETPr a juas orrupted
if (id, sid, judge) € CorruptionSet: the accompanied initiator or responder is corrupted
’ k) -

reply true
else if id = (local, pid, role) A (pid, sid, role) € CorruptionSet :

reply true
else:

reply false

Fig. 34: The judge parameter functionality F.*

E acc
judgeParams for KE*

63

interface interface interface interface
to € to &

\/

interface
I to €

X S
1

supervisor setup

Fig. 35: Realization relation of a key exchange example stated in Theorem 8. The system £ denotes the
environment, modeling, as usual in UC setting, arbitrary higher level protocols. All machines are additionally
connected to the network adversary.

As we do not consider assumption-based security properties in this case study, the supervisor Pi° always
responds with false if a party queries for the status of an assumption. Further, P.°> allows querying for the
corruption status of (internal) parties in F35.

F.3 Security Analysis: We now provide the formal result that we can use the ISO protocol on top of an

accountable PKI to realize the (accountable) key exchange functionality F£5.

Theorem 8. Let groupGen(1") be an algorithm that outputs descriptions (G,n,g) of cyclic groups (i.e., G
is a group of size n with generator g) such that n grows exponentially in 1 and the DDH assumption holds
true. Let P3¢ be the (accountable) ISO protocol as described above, let F3i¢; be the accountable ideal PKI

5o

functionality and FA5 L the associated subroutine both with parameters Sec™* = {correctCert} and
Sec® UMY — () and let Fug be the (standard) ideal signature functionality, and let F255 be the (account-

acc assumption __ (Z)
- y

able) ideal functionality for authenticated key exchange with Sec®* = {authenticity}, Sec
pidsjudge = {local} x ({0,1}*)? and idssssumption = 0. Then the following holds true:

(chc /Piso P-im acc]_-_acc- PKI]:sig) S

iso v svo _]udgel PKI» Y judgeParams>

KE
(‘F&CE? ‘F}udgeParams)'
Proof. We show that the real key exchange R := (P2, Pise, jiff’dge | ;‘f&,}—fﬁgélrams,fsig) realizes the
ideal key exchange 7 := (FR% ﬂ%ggepawms). As part of this, we define a responsive simulator S such that

the real world running R is indistinguishable from the ideal world running {S,Z} for every ppt environment
E.

First note that it is easy to see that both R and Z are environmentally bounded and complete. Now, the
simulator S is defined as follows: the simulator is a single machine that is connected to Z and the environment
via their network interfaces. In a run, there is only a single instance of the machine S that accepts all incoming
messages. The simulator S internally simulates the full protocol R, including its behavior on the network
interface to the environment. To improve readability, we refer to S’s simulated version of the real protocol as
‘R’. More precisely, the simulation runs as follows:

o At the start of a run, S obtains the group parameters used by F{%: if the simulator is activated for
the first time via the (LeakGroup, (G, n,g)) message, then he simply saves this message and returns ok.
Otherwise, S sends an InitGroup message to (an arbitrary entity of) Fg55 to trigger Initialization and
obtain the group parameters. Note that the environment cannot observe whether the simulator has manually
triggered Initialization of 735 . The group parameters are used by S as output of the internally simulated

So¢ : setup role.

« Upon receiving RegisterPubKey from an honest party,!” S forwards this message to the dedicated machine

of R'. We note that S can derive all involved parties and their roles from the SID (which predefines initiator

7We consider an entity to be honest if it outputs false upon CorruptionStatus? requests. Conversely, we call an entity corrupted
if it outputs true, even if it was not explicitly corrupted.

64

and responder of the key exchange session including their local judges). In R’, the message then triggers the
initialization of the party’s signer instance at Jg;; and registers the generated public key for the dedicated
party at FRgy.

e Upon receiving a InitKE from an honest entity, S forwards this message — again — in the name of a
higher-level protocol to the simulated entity in R’. This triggers the start of a key exchange as defined in
the ISO protocol in R’.

o As soon as an honest initiator in R’ outputs (FinishKE, sessionKey), S sends the message (FinishKE,

sessionKey) to the initiator identity in Fg&%.

As soon as an honest responder in R’ outputs (FinishKE, sessionKey), S distinguishes three cases:

1. In the case that initiator is corrupted after its output of FinishKE, 7 leaks the initiator’s ideal key &’
to S. Then, S sends (FinishKE, k') to Z.

2. If authenticity is broken for (at least) one of both parties after initiator outputs the session key
via FinishKE. In this case, S learns the (ideal) session key &’ from F&$5 when providing the verdict to
FR$ before outputting FinishKE. Then, S sends (FinishKE, k') to Z.

3. In all other cases, S sends the message (FinishKE, sessionKey) to the responder identity in FR.

o S forwards all network communication from the environment to corresponding entities in R’, and vice

versa.

S keeps the (internal) corruption status of entities in roles of R’ and Z synchronized. In particular, if an

entity of Z asks for its initial corruption status, then the same entity in R’ is simulated to also do so.

Furthermore, as soon as a simulated entity of R’ considers itself to be corrupted (either explicitly or due

to a corrupted subroutine), S corrupts the same entity in Z.

« If a corrupted entity entity in a public role of R outputs a message on its I/O interface to a higher-level
protocol, then S instructs the (explicitly) corrupted entity entity in Z to forward the same message on its
I/O interface. The same is also done in the other direction. Note that this also includes corrupted local
judges.

o Always when an instance ((local, pid, role), sid, judge) of jifﬂige in R/ renders a verdict, S extracts this
verdict and sends (BreakAccProp, verdict, toBreak) where verdict maps (Llocal, pid, role) to the verdict
extracted from the simulation (and all other entries to ¢) and toBreak = {(authenticity, (local, pid,
role)}) to ((Local, pid, role), sid, judge) in Z.

o As the supervisor does not have to handle assumption-based properties, there is no additional specification
for S necessary.

This concludes the description of the simulator. It is easy to see that {S,Z} is environmentally bounded and
S is responsive for Z. We note that the behavior of the supervisor is indistinguishable between R and Z as he
always provides the same output in both worlds. Now, let £ be an arbitrary but fixed responsive environment.

We will now go over all possible interactions with honest entities on the I/O interface and argue, by
induction, that all of those interactions result in identical behavior towards the environment, i.e., Z and R
are indistinguishable. At the start of a run, there were no interactions on the I/O interface with honest parties
yet, i.e., Z and R are indistinguishable. In the following, the induction assumption is that all I/O interactions
to far have resulted in the same behavior visible towards the environment in both the real and ideal world.

We firstly have a look at the I/O output of initiator and responder. We then prove that the output of
local judges is also indistinguishable between the R and {S,Z}.

Initiator and responder. We note that all I/O calls to honest initiator and responder do not directly
lead to an output to £ in Z and R’ (for the corrupted case, see below). Thus, Z and R are indistinguishable.
However, note that the phases of the protocol are synchronized in Z and R’. RegisterPubKey initializes the
signatures key at Fg, and also registers the public key at 35 in R’ which does not have an adequate in Z.
InitKE starts the key exchange itself in both worlds.

Note that honest initiator or responder do not send FinishKE to & if their partners public key is
not registered at the PKI JFp5i; or if the signatures provided via NET do not verify. Also note that a party
initialization leads to an initialization of both parties, initiator and responder and also their local judges. This
enforces that the corruption status of the machines is always correctly handled and that we do not have to take
care of edge cases due to uninitialized parties.

When the initiator in R’ wants to output the message (FinishKE, sessionKey) to &, S triggers Z via
(FinishKE, sessionKey) also to output a session key. If initiator and responder are uncorrupted and the property

65

authenticity holds true for both, Z outputs a randomly selected group element (potentially # sessionKey)
from h;,;; on behalf of initiator. As &£ is not aware of the sessionKey (both parties are honest) and as the
DDH assumption holds true, £ can only distinguish with negligible probability between Z and R’'.

If both parties are still uncorrupted but authenticity is broken for at least one of both parties, this leads
to the case that Z directly outputs the sessionKey provided by S. As the session key is extracted from R’, this
case is also indistinguishable between R and Z.

In case that initiator considers itself as corrupted in R’, responder outputs the sessionKey. Note that
this session key matches the one exchanged with initiator thus potentially leaked to .A. Thus, £ cannot
distinguish between Z and R.

The same holds true for the case, responder is corrupted but initiator is not.

The two cases above also include the cases when authenticity is additionally broken for one party — as
this does not change the behavior of Z in the case that already one of the parties is corrupted.

Note that we have to consider two special cases here:

1. initiator gets corrupted after it outputted the key. However, as Fgj5 leaks the key upon corruption to

S and S forwards this leaked key to the responder, £ cannot distinguish between Z and R.

2. initiator or responder are both honest but one of them/both lose/s authenticity after the initiator
already outputted FinishKE including an ideally generated session key to £. However, as Fij5 leaks the
key upon breaking to S and S forwards this leaked key to the responder, £ cannot distinguish between
7 and R.

Judges. Note that S updates verdicts in Z as soon as they occur in R’. Further note that GetVerdict and
GetJudicialReport do not influence any state in R and Z. We also note that answers to GetJudicialReport
are indistinguishable in both worlds.

Further, J‘fl‘zi . always accepts the input of S as rendered verdicts in R’ are compliant with the restrictions
imposed in fjlgdgeparamy Thus, local judges output the same verdicts in Z and R’ and we can conclude that
both worlds are indistinguishable.

As local judges act as pure message forwarder when their associated party is corrupted, we can also conclude
that Z and R are indistinguishable in this case.

Supervisor. Supervisors is always the same in R and Z. Thus, both worlds are indistinguishable regarding their
output.

We can also conclude that the corruption status of (internal) entities in the real and ideal world is synchronized.
Since the simulator has full control over corrupted entities, which are handled via the internal simulation R/,
this implies that the I/O behavior of corrupted entities of R /Z towards the environment is also identical in the
real and ideal world.

Note that the behavior of F3i; is only visible to Z via its network interface. As S forwards these messages
to FR% in R’ and also provide the output of F3% to € via NET, £ cannot use F35 to distinguish between
7 and R.

Overall, we can conclude that 7 and R are indistinguishable.

O

F.4 Deterrence Analysis: Please note that we consider the fully composed protocol here, i.e., including the
used PKI. We emphasize that the meaning of a single established key exchange is negligible in contrast to a
working PKI. Therefore, being caught cheating in the PKI is the major deterrence to behave honestly in the
key exchange. In particular, we conclude that the utilities for PKI participants have the same relations as in
Appendix E.4, i.e., Equation 1 and 2 are met for these parties. For the parties involved in the key exchange,
we assume that U}, = Ul , = U}, = Ul , = Ul ; = Ul , = 0 expressing that a party typically does not
have a big advantage from executing the key exchange honest or maliciously. Thus, Equation 1 and 2 holds
true for all involved parties.

G. Capturing MPC Accountability Properties via AUC

As already mentioned in the introduction, there are several works that capture accountability properties in
a UC model for the special case of MPC protocols (e.g., [13,14,24,34,35,55,74,81]). These properties
include (publicly) identifiable abort [14,34,55])), (public/universal) verifiability [35, 84, 86], auditability [13],

66

Description of the protocol Pas¢ = (initiator, responder | setup):

Participating roles: initiator, responder, setup
Corruption model: static
Protocol parameters:
— groupGen(17). {Algorithm for generating tuples (G, n, g) describing cyclic groups G of size n with generator g.

Description of Minitiator:

Implemented role(s): initiator

Subroutines: setup, Fig,]:PKI’]:;;?lt :init

Internal state:
- pk € {0,1}",pk = ¢, pidg, € {0,1}",pidg, =& {The public key of (pidcur, Sidcyr, rolecyr) and the used CA
- (G,n,g) € ({O 1} U {J_})3 = (L, J_ 1) {Global group parameters.
- state € {L, reglstered started, flnlshed} =1 {Current state in key exchange.
— initiator : ({0 1}%)3 {The initiator of the key exchange
— responder : ({0, 1% {The responder of the key exchange
— caller € ({0,1}")°U{L} = {Stores the initial caller of this entity/instance.
— sessionKey € {0,1}* U {J_} = {Stores the session key.
— enit € Zp, U{L} =1 {Secret DH exponent of initiator.
- hesp € GU{L} =L {Public DH key share of responder.

CheckID(pid, sid, role):
Accept all entities of form (pid,, (sid’, pid,, pid,.), initiator).

Corruption behavior:
— DetermineCorrStatus(pid, sid, role) :{Entity corrupted if one of its signature keys or the verification subroutine are corrupted.

pid(responder)
out < corr(pid, (pid, sid), Fsig : signer) V corr(pid, (pid(responder), sid), Fsig : verifier) {dgngtgs responder’s
out < out V corr((pid, sid, role), e, Fp§ : client) PID
return out
- AllowAdvMessage(pid, sid, role, pzdmewer, Sidreceiver; TOl€receiver, M):
If rolereceiver = Fsig : Signer, return false.”
Otherwise output true iff pid = pid ..civer-
Initialization:
Parse sidc,r as (sid’, pid;, pid,.).
initiator < (pid,, (sid’, pid,, pid,), initiator). {Store initiator and responder .

responder < (pid,., (sid’, pid;, pid,.), responder).
caller < (pidca, sidcair, rolecair).
send GetParameters to (pidcyr, Sidcyr, setup); {Get DH parameters
wait for (GetParameters, (G, n, g))
(G,n, g) « (G, n,g).
if ITM was not activated via init macro, reqp a InitEntity message:
send initPartner to (pidcyr, sideur, F; : init)
wait for initPartner

lnlt

Main:
See Figure 37.

“In our modeling, the corruption status of signer entities indicates whether the adversary has access to the corresponding signature keys, i.e.,
whether he can sign his own messages (as in this case the signer entity should be considered compromised). Thus, the adversary is not allowed to
access uncorrupted signer entities. If the signer entity is corrupted, then the adversary already knows the secret key and can sign messages on his
own, so there is no need to give him access in this case.

Fig. 36: A real key exchange protocol P3¢ for realizing F%e (part 1). Note that each instance of Minitiator

and Mespondger cOrresponds to a single entity.

67

Description of Minitiator (continued):

Main:

recv RegisterPubKey from I/0 s.t. state[(pidcyr, Sidcur, rolecyr)] = L: {Register initiator’s signature and certificate
state[(pidcur, Sidcur, rolecyr)] <— registered.
send InitSign to (pidcyr, (pidcyr, sideur), Fsig : signer);
wait for (InitSign, success, pk); pk « pk;
send responsively (Register, pk) to NET;
wait for (Register, pk, pidg,) s.t. pide, € {0,1}";
pide, + pideg,:
send (Register, pk, pidc,) to ((pidcur, Sideur, rolecur), €, Fiey : client).” {Register identity at F35¢;
recv InitKE from I/0 s.t. state = registered: {Start KE and send first message.
state <— started.
Choose ejnit < Zy, uniformly at random, compute hjy,;; = geinit.
send (Send, (pidcur, Sidcur, rolecur), Rinit) to NET.
recv (FinishKE, responder, hresp, (g°iNit, hyegp, responder), o) from NET s.t. state = started: {5:::ﬁ;dﬁi;;jr ’Z:;
send responsively (RetrieveCA, responder) to NET {Query A for responder’s CA;
wait for (RetrieveCA, responder, pid,);
send (Retrieve, responder, pidg,) to ((pidcur, sideyr, rolecyr), €, FpE ¢ client);

wait for (Retrieve, intendedPartner, pidg,, pk). {Get public verification key of intended partner.
if pk = L:

abort. pid(responder)
send (Verify, (gfinit, hyeqy, responder), o, pk) to (pidcyr, (pid(responder),sidcyr), Fsig : verifier); {dem}tm/ the PID
wait for (VerResult, b). of responder
if b = false:

abort.

Nresp <= Presp; sessionKey <— hyespinit; state <— finished.
send (FinishKE, sessionKey) to caller.

recv GetLastMessage from NET s.t. state = finished:
m = (hyesp, g%init, responder).
send (Sign, m) to (pidcyr, (pidcyr, Sidcur), Fsig : signer);
wait for (Signature, o).
send (send , o) to NET.

“We consider here one instance of the PKI, namely the one with SID e.

Description of Metup:

Implemented role(s): setup
Internal state:

- (G,n,g) € ({0,1} U {L})®=(L,1,1) {Global group parameters.
CheckID(pid, sid, role): Accept all entities.
Corruption behavior: 3 .
. . . The adversary may not corrupt the (honestly
- AllowCorruption(pid, sid, role) : return false. 3 X
e 1 R generated) setup parameters.
Initialization:
(G, n,g) < groupGen(17).

Main:

recv GetParameters from _ :

reply (GetParameters, (G, n,g)).

Everyone may retrieve the group parameters, including
the adversary on the network.

Fig. 37: A real key exchange protocol P3¢ for realizing F35 (part 2).

180

openability [34], and privacy [8]. AUC can capture these accountability properties as special cases. This is not
only an important sanity check but also shows that AUC generalizes and unifies existing UC accountability
literature. Here we illustrate this for the most common property: identifiable abort. The other properties can be
dealt with analogously, see Appendix H for more details.

Identifiable abort. The standard definition of a basic ideal MPC functionality Fypc (cf., e.g., [6,8,21,24]) is
based on three phases. In the first phase, it takes inputs from m parties, with inputs of corrupted parties being
chosen by the adversary. In the second phase, it acts as a trusted third party that computes some function f
on those inputs. In the final phase, each party receives an output of f but otherwise obtains no information.
Hence, Fypc provides preventive security for correctness of the outputs and for privacy/secrecy of the inputs.

Instead of preventive security for correctness, MPC protocols often rather consider the weaker property of
identifiable abort [6, 8, 14,55, 85], which states that either all honest parties obtain a correct output or all honest
parties agree on the name of a malicious party who has caused the output to be incorrect and hence the protocol
to abort. In other words, identifiable abort is a type of (local) accountability w.r.t. correctness that additionally
requires individual accountability and certain relationships between local properties of different parties.

In the literature, identifiable abort has been formalized within ideal functionalities Fi3:3%, by letting the
simulator, during the final output phase, decide whether all honest parties obtain their correct output or provide

68

Description of Mesponder:

Implemented role(s): responder »
150

Subroutines: setup, Fsig, Fpiy> Finit : 10it

Internal state:
- pk € {0,1}*, pk = ¢, pidg, € {0,1}",pidg, = & {The public key of (pidcur, Sidcur, rolecyr) and the used CA
- (G,n,g) € ({0,1}* U{L})®=(L,1,1) {Global group parameters.
— state € {, registered, started, inSession, finished} = L {Current state in key exchange.
— initiator : ({0,1}*)3 {The initiator of the key exchange
— responder : ({0,1}")3 {The responder of the key exchange
— caller € ({0,1}*)*u{L}=1 {Stores the initial caller of this entity/instance.
— sessionKey € {0,1} " U{L} =1 {Stores the session key.
— €resp € Zn U {1l}=1 {Secret DH exponent of responder.
- hinr € GU{L} =1 {Public DH key share of initiator.

CheckID(pid, sid, role):
Accept all entities of form (pid,., (sid’, pid,, pid,.), responder).
Corruption behavior:
- DetermineCorrStatus(pid, sid, role) :
{Consider entity corrupted if one of the signature keys or the verification subroutine is corrupted.
out < corr(pid, (pid, sid), Fsig : signer) V corr(pid, (pid(initiator), sid), Fsig : verifier)
out < out V corr((pid, sid, role), e, Fp% : client)

return out
- AllowAdvMessage(pid, sid, role, pid q.eivers Strecciver, T0l€receivers M):
If rolercceiver = Fsig : signer, return false. {cf. explanation in Figure 36.
Otherwise output true iff pid = pid . cjer-
Initialization:
Parse side,r as (sid’, pid;, pid,.).
initiator < (pid;, (sid’, pid,, pid,), initiator). {Store initiator and responder .

responder < (pid,., (sid’, pid,, pid,), responder).
caller < (pidcan, sidca, rolecan).
send GetParameters to (pidcyr, sidcyr, setup); {Get DH parameters
wait for (GetParameters, (G, n, g)).
(G,n,g) + (G,n,g).
if ITM was not activated via init macro, resp. a InitEntity message:
send initPartner to (pidcur, sideur, Finy : init)
wait for initPartner

Main:

recv RegisterPubKey from I/0 s.t. state[(pidcyr, Sidcur, rolecyr)] = Lt {Register responder’s signature and certificate
state[(pidcur, Sidcur, rolecyr)] <— registered.
send InitSign to (pidcyr, (pidcyr, Sideur), Fsig : signer);
wait for (InitSign, success, pk); pk + pk;
send responsively (Register, pk) to NET;
wait for (Register, pk, pidg,) S.t. pidg, € {0,1}*;
pide, + pideg,:

send (Register, pk, pidc,) to ((pidcur, Sideur, rolecur), €, Ficy © client).” {Register identity at Fpicy
recv InitKE from I/0 s.t. state = registered: Start KE.
g
state <— started. o .
R L . Notify network that the key exchange has started and the responder is
send (InitKE, (pideur, sideur, rolecr)) to NET. {r‘ea(?? to receive the first rﬁessage ¢ "

recv (Receive, initiator, h;,;;) from NET s.t. state = started: {Receive first message, send second message.
hinit <= Rinit
Choose eresp <— Zyp, uniformly at random, compute hes, = g=reP.
send (Sign, (hinit, g%, initiator)) to (pidcyr, (Pidcur, Sidcur), Fsig : signer);
wait for (Signature, o).
state <— inSession
send (Send, (pidcur, Sidcyr, rolecyr), g¥eP, o) to NET.

recv (Receive, o) from NET s.t. state = inSession: {Receive third message, output key.
send responsively (RetrieveCA, initiator) to NET {Query A for initiator’s CA;
wait for (RetrieveCA, initiator, pid,);
send (Retrieve, initiator, pidg,) t0 ((pidcyr, Sideur, rolecur), €, Ffey : client);
wait for (Retrieve, initiator, pidg,, pk). {Get public verification key of intended partner.
if pk = L:
abort.
send (Verify, (gP, hinit, (Pidcur, Sideur, rolecyr)), o, pk) to (pidcyr, (initiator, sideyr), Fsig : verifier);
wait for (VerResult, b).
if b = false:
abort.
sessionKey < hj,;;*resP; state < finished.
send (FinishKE, sessionKey) to caller.

“We consider here one instance of the PKI, namely the one with SID e.

acc

Fig. 38: A real key exchange protocol PSc¢ for realizing F3%; (part 3).

iso

69

Description of the initialization machine

]_—i 50

init

= (init):

Participating roles: {init}
Corruption model: incorruptible

Description of Mips¢:

Implemented role(s): {init}
Subroutines: P ¢ : initiator,
Internal state:
init : ({0,1}*)® — {true, false}
initiator : ({0,1}*)3
responder : ({0,1}*)3
Judgeiiiator + ({0, 1}*)3
jUdgeresponder : ({07 1}*)3
— caller € ({0,1}")2U{Ll} =1
CheckID(pid, sid, role):
Accept all messages for the same sid.

Initialization:

Parse sidc,r as (sid’, pid;, pid,.).

initiator < (pid,, (sid’, pid,, pid,), initiator).

responder < (pid,., (sid’, pid,, pid,.), responder).

judge;iiator < ((local, pid;, initiator), (sid’, pid,, pid.), judge).

pace

<o . responder

judge esponder ((1ocal, pid,., responder), (sid’, pid,, pid,.), judge).

caller < (pidcan, sidca, rolecai)
MessagePreprocessing:

if (pidcalh sidcall, rolecan) = initiator:
init[initiator] <— true

else if (pidca, sidcai, rolecai) = responder:
init[responder] < true

else if (pidcai, sidca, roleca) = judgeiiator -
init[judge; itiator] <— true

else if (pidcan, sidcai, rolecan) = judge esponder
init[judge esponder] — true

Main:

recv initPartner from responder V initiator:
if init[initiator] = L:
init (initiator)
else if init[responder] = L:
init(responder)
else if init[judge; iiator] = L:
init (judgeitiator
else if init[judge esponder] =
016 (judge,sponmer)
else:
send initPartner to caller
recv InitEntityDone from initiator \VV responder V judge iiator
if init[initiator] = L:
init (initiator)
else if init[responder] = L:
init(responder)

1

V judge

else if init[judge; isiator] = L:
irfit(jUdgeinitiatOI')
else if init[judge,cponder] = L+

init(jUdgeresponder)
else:
send initPartner to caller

responder *

{Initialization status of the machine, initially false
{The initiator of the key exchange

{The responder of the key exchange

{The initiator’s local judge

{The responder’s local judge

{Stores the callers.

{Store initiator and responder

{Also store their judges entities

{Request to initialize

{Trigger initialization of initiator
{Trigger initialization of responder
{Trigger initialization of judge; iiator

{Trigger initialization ()_]"judge,esponder
{All parties are initialized

{Trigger initialization of initiator
{Trigger initialization of responder
{Trigger initialization of judge; iiator

{Trigger initialization of judge essonder
{All parties are initialized

Fig. 39: The initialization ITM

70

S0
init*

Description of ;T\’dge = (judge):

Participating roles: {judge}
Corruption model: incorruptible

Description of Mjugge:

Implemented role(s): {judge}
Subroutines: F3{ : judge, PisC
Internal state:
— initiator : ({0,1}*)3 {The initiator of the key exchange
— responder : ({0,1}*)3 {The responder of the key exchange
CheckID(pid, sid, role):
Accept all entities of form ((local,pid;,initiator), (sid’, pid,,pid,.), judge) and ((local,pid,.,responder),
(sid’, pid,, pid,.), judge).

Initialization:
Parse side,r as (sid’, pid;, pid,.).
initiator < (pid;, (sid’, pid,;, pid,), initiator). {Store initiator and responder

responder < (pid,., (sid’, pid,, pid,.), responder).
if ITM was not activated via init macro, resp. a InitEntity message:

send initPartner to (pidcur, sideur, Finyy © init)
wait for initPartner
Corruption behavior:
— AllowCorruption(pid, sid, role) :
Parse pid as (pid’, role’)
corr + corr(pid’, sid, role’)
if corr:
return true
else:
return false
- DetermineCorrStatus(pid, sid, role) : {Consider local judge corrupted if associated client is corrupted.
Parse pid as (pid’, role’)
corr < corr(pid’, sid, role’)
if corr:
return true
else:
return false
Main:
recv GetVerdict from I/0: {Forward local verdict from F35&;
send InitMe to initiator
wait for _
send InitMe to responder
wait for _
Parse pideyr as (pid’, role’).
send GetVerdict to ((initiator, client), e, FRE : judge) {Query for the initiator’s status at Fp§;
wait for (GetVerdict, vq)
send GetVerdict to ((responder, client), e, Fpi; : judge) {Query for the responder’s status at F3icy
wait for (GetVerdict, va)
if v1 # € A role’ = responder:
v1 .add(dis(initiator)) {The judge cannot be shure whether the intended partners verdict is trustful

if vo # € A role’ = initiator:

vs.add(dis(responder)) {The judge cannot be shure whether the intended partners verdict is trustful
Let verdict be

1. vy, if role’ = responder

2. wvg, if role’ = initiator
reply (GetVerdict, verdict)

recv (GetJudicialReport, msg) from I/0: {Forward judicial report from lower level.
reply (GetJudicialReport,e)

Fig. 40: The judging functionality P, for P2,

judge iso

71

Description of Pgy = (supervisor):

Participating roles: {supervisor}
Corruption model: incorruptible

Description of Mypervisor:

Implemented role(s): {supervisor}
Subroutines: F3{ : supervisor
CheckID (pid, sid, role):

Accept all messages with the same sid.
Main:

recv (IsAssumptionBroken?, msg, id):
reply (IsAssumptionBroken?, false)

recv (corruptInt?, pid, sid, role) s.t. role ¢ {initiator, responder, judge, supervisor}:

if role = client:
corrRes < corr(pid, sid, Fp : client) {Request corruption status at F35¢;
reply (corruptInt, corrRes)

else:
send (corruptInt?, pid, sid, role) to (pideur, Sideur, Fpicy © supervisor)
wait for (corruptInt?, corrRes)
reply (corruptInt, corrRes)

Fig. 41: The supervisor P for Pace,

1S0

the name pid of a malicious party that caused the protocol to abort (cf., [14, 34, 55]). Depending on this choice,

ﬁﬁ% either returns the outputs of f or a special message (abort, pid) to the honest parties.

Capturing identifiable abort using AUC. We can easily capture the same properties as Fijje, by applying
AUC to the basic functionality Fypc. We set Sec® = {correctness} and, as part of the transformation
T2, redefine the behavior of Fypc to output abort, instead of the actual function output, iff correctness
is broken for that party. To also capture the same relationships and exact accountability level required by
identifiable abort, we instantiate FjudgeParams t0 impose the following additional requirements whenever the
simulator tries to break correctness: (i) no honest party has already obtained an output, (ii) if correctness
is broken for one honest party, it must be broken for all others at the same time, and (iii) all verdicts for local
judges of honest parties are identical and of the form dis(A) for some party A.

The resulting functionality F{fS. models the exact same properties as Fida%, with the only syntactical

difference being that Fid2%, includes the verdict as part of the protocol output while in FfSq the verdict is

obtained separately from a judge.

H. Further Details on MPC Accountability Properties via AUC

In this section, we detail our presentation from Appendix G and show that AUC can be seen as a generalization
of the existing accountability related MPC/UC literature. Therefore, we firstly illustrate in detail how the common
MPC property of (internal) identifiable abort translates to AUC. We use a standard MPC functionality Fyipc
without in-build identifiable abort and depict how identifiable abort is typically captured and how one can
capture it with AUC. We then briefly discuss that this approach also works for other common properties, such
as verifiability.

The ideal MPC functionality Fyipc. For common ideal MPC functionalities (cf., e.g., [8, 21, 24]) one assumes
that there are m parties involved in the computation, each party p; contributes some secret input x;, and the
parties want to distributedly compute the output of a function f. The ideal MPC functionality Fypc models
a trusted third party which executes the computation on behalf of the participating users. Within Fypc, the
adversary A is typically allowed to (statically) corrupt parties. The execution of the computation via Fypc is
separated in phases. All parties are expected/forced to be in the same phase of the protocol: (i) Input: Each honest
party inputs z; to Fypc. Parties controlled by the adversary could input tainted data . (ii) Computation: Fyipc
evaluates f given the inputs from the parties. (iii) Finalization: Fyipc provides the output of the computation
to the parties. Fypc typically guarantees the correct computation of the function f. We present a formal
specification of Fypc in Figure 42 where the highlighted code denotes the differences between Fypc and
Fiso-

Identifiable abort in UC literature. With identifiable abort (cf., e.g., [14,34,55]), one typically protects
correctness of a MPC protocol and in particular the correctness of the protocol’s output. This models that

72

parties abort the protocol and blame a misbehaving party if, e.g., (i) a party identifies a misbehaving party
which tries to distort the computation or (ii) a (corrupted) party aborts the protocol. We focus on internal/local
identifiable abort, i.e., we interpret identifiable abort as a local accountability property. This is often the case
in MPC protocols as verdicts often rely on information that is only accessible to protocol participants and thus
do not convince outsiders of the protocol.

An adapted ideal MPC functionality Fj;p~ which covers identifiable abort typically differs from Fypc in
the following details: (i) Honest parties do not receive the output of the computation in case of an abort. (ii) To
abort, a corrupted party p inputs the string abort to Fypc., this informs F{;p that A, resp. party p, aborted
the execution of the protocol. (iii) Fypc then typically informs honest parties that p aborted the protocol. This
“individual verdict” on p allows the honest parties in the MPC protocol to exclude misbehaving parties from
the next computation attempt.

Identifiable Abort via AUC. In contrast to Appendix G, we do not consider the traditional interpretation of
MPC protocols which assumes that all parties do all phases of the MPC protocol synchronously — we call
this case synchronous MPC. We focus here on what we call the “asynchronous” case, where parties are not
forced to be in the same phase of the protocol. However, we provide a full specification of the synchronous
variant of Fypc which we call F{f5 in Figure 42 and 43 which include the properties of identifiable abort,
called non-aborting, verifiability, called correctness, and privacy. In what follows, we focus on the
asynchronous variant of {5~ and include identifiable abort to the functionality. We call this functionality
Fasyne- mpc (cf. Figure 44 and 45). In Fyipc, the following major adaptions are necessary to derive F (0 - vipe
(besides mapping messages): (i) Apply the AUC transformation 77(-) to Fupc, (ii) add one local judge per
participant/node to Fyipc, i.e., pidsjuage = {local} x {0,1}* and every set member is meant to be of form
(local, pid, role) (idSassumption = () as we do not consider assumption-based properties here), (iii) add the
property correctness to Sec® in FZ5, . ype and]ifgg;gggs '8 (iv) Allow A to abort the computation
using the BreakAccProp command. A’s request needs to mark correctness broken for honest parties and
needs to include a (fair) individual verdict for each of the parties. (v) F, sync Mpc outputs abort to a party if
correctness is broken for this party. Pames can query their Judge to retrieve the verdict which includes who

aborted the protocol. (vi) We adapt F2<¢ o, resp. FoyneM such that they ensure that (a) aborting

‘ . async—] judgeParams? -
is not possible after the first honest party received output from FI% - \ipe and vice versa, (b) that no party
async MPC

receives an output if one party received abort. (vii) F. udgeParams enforces that (local) verdicts are available
via the internal local judges, and that (viii) all internal Judges output the same verdict.

Clearly, the AUC formulation of identifiable abort can be mapped to the traditional definition of identifiable
abort: As soon as A signalizes that a corrupted party will abort the protocol, all honest parties will be informed
that the protocol aborted and which party caused the abort. This statement holds true for F{f5- as well as
for Foiine-mpo- Of course one can enhance our approach above analogously to achieve public identifiable
abort (cf., e.g., [30, 60].

Verifiability. Verifiability in MPC is also a correctness property [35, 84, 86]: in the case of public or universal
verifiability, every party including protocol outsiders should be able to verify that the MPC’s output was
computed correctly or honestly. Due to the privacy guarantees of MPC protocols, public verifiability typically
only provides a weak level of accountability as one cannot identify misbehaving parties individually.

The common formalization of verifiability is analogous to the formalization of identifiable abort. For public
verifiability (cf. [6]), one sometimes expects some certificate of misbehavior created by a judge which allows
outsiders to verify that the blamed party indeed misbehaved.

To capture verifiability with AUC, one uses the same techniques as for identifiable abort. The major difference
between both approaches are (i) verifiability is a public property, thus restrictions are incorporated into a public

judge instead of local judges, (ii) fggrfpgggs does not impose restrictions on the verdict, and (iii) one may

use the judicial report defined at F; fgggprgs to output a certificate of misbehavior.

For other MPC accountability properties, such as auditability [13], openability [34] or privacy [8], A also
signalizes the ideal functionality that a property is broken and the ideal functionality then acts appropriately
which typically signalizes that a party or a group of parties misbehaved. The approach above works analogously
for other accountability properties from MPC. Thus, AUC can be seen as generalization of existing work

regarding accountability in MPC/UC literature.

18We note that correctness captures identifiable abort in Fae gyn . mpc While it captures verifiability in F35. For the sake of
presentation fot F{rS~ we want to keep naming in F3S as close to literature as possible.

73

Description of the protocol Fi5 = (node, judge, supervisor)

Participating roles: {node, judge, supervisor}
Corruption model: static
Protocol parameters:

-neN {Input length for the MPC function
— £ ({0, 13)P = ({0, 131 st f = (f1,-- - flp)) {the MPC function
- Sec™* C {0,1}~ {Accountability properties, expected here: {privacy, correctness, non-aborting}
— Secsumption - o 1}* {Assumption-based security properties, expected here:)
- pidsjuage C {0,1}" {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
— idSassumption C {0, 1} {set of entities/IDs where properties are ensured via assumptions

Description of Myege:

Implemented role(s
MPC

): {node}

Subroutines: 7 jscparams : judgeParams

Internal state:
- PC{0,1}*,P#0,|P| < o0 {Parties involved in the protocol
— inputs: P — {0,1}" {The inputs for the computation, initially always set to L
- outputs: P — {0,1}" {The outputs of the computation, initially always set to L
— state € {uninitialized, computation, finalized}, state = uninitialized {State of the MPC computation

The set of corrupted internal

- corruptedIntParties € {0,1}* x {0,1}* x {0,1}* \ (Roles#“ U {judge, supervisor}), initially {purties (pid, sid, role)
assumption

— brokenAssumptions : Sec X idSassumption — {true, false} {Stores broken security assumptions per id, initially false Ventries

i . . Stores broken security properties per
_ . assumption acc . .
brokenProps : (Sec U Sec™) X (pidsjudge U idSassumption) — {true, false} {judge/id, initially talse Ventries
- verdicts : pidsjgge — {0,1}" {Verdicts per p € pidsjudge, initially &
CheckID (pid, sid, role): A single instance manages all parties in
Accept all messages if pid € P and with same sid. { g . 8 P
a single session.

Corruption behavior:
- AllowCorruption(pid, sid, role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge:
send (Corrupt, (pid, sid, judge), internalState)
to (pid, sid, FjudgeParams : judgeParams) {FjudgeParams decides whether judges can be corrupted
wait for b; return b
- DetermineCorrStatus(pid, sid, role):
if role = judge: { FjudgeParams may determine a judge’s corruption status
send (CorruptionStatus?(pid, sid, judge), internalState)
to (pid, sid, FjudgeParams : judgeParams)
wait for b; return b

- AllowAdvMessage(pid, sid, role, pidreceiver; Sidreceiver s rOl€receiver, ™M) {A is not allowed to invoke]‘-;,Csé?pamms
Do not allow sending messages to FjudgeParams-
Initialization:
send responsively InitMe to NET { A determines the involved parties
wait for (Init, P) s.t. P C {0,1}*
P+ P
MessagePreprocessing:
if state = uninitializedA number of inputs that are # L is |P|A brokenProps is false for all entries.:

{Update state/computation phase
state <— computation
Main:
recv (Compute,) from I/0 s.t. pideyr € P A state € {uninitialized}: {Input from uncorrupted users
inputs[pidcyr] < @ {Record user input
A input for
recv (Compute, pid, x) from NET s.t. pid in CorruptionSet A pid € P, state € {uninitialized, computation}: { corrupted
parties
inputs[pidcyr] < {Record user input
recv Finalize from NET:
if state = computation A Vpid € P : inputs[pid] # L A state = uninitialized: {That is, there was no cheating/corrupting
Let w; s.t. (pid;, w;) € inputs,i € {1,...,|P|}
(y1,-- 5 yp) « f(wi, ..., wp))) {If there was no “interrupt” from A, f is computed as expected
for : = 1 to |P| do:
outputs[pid;] < yi
state <— finalized
Let output contain every outputs[pid] where pid is in CorruptionSet.

reply (Finalize, output) {Send output of corrupted parties to A
recv GetResult from I/0 s.t. pide, € P:

if brokenProps[non-aborting, (local, pidcyr, rolecyr)]: {We are in the identifiable abort case
reply (GetResult, abort, verdicts) {Output abort information and verdict

else if brokenProps[privacy, (local, pidcyr, rolecyr)]: {We are in the case that A broke privacy
reply (GetResult, corrupted, verdicts) {Output privacy break and verdict
else if brokenProps[correctness, (local, pidcyr, rolec)]: {We are in the case that A broke correctness of the calculation
reply (GetResult, correctness, verdicts) {Output correctness break and verdict

reply (GetResult, outputs[pidcyr])
Include the missing static code from the AUC transformation 77 (-) here, i.e., include additional code from Figure 2 and 3 here.

“Here: Rolesz := {node}.

Fig. 42: The MPC7f‘1‘1nctionality MBC-

Description of ij c

P
udgeParams

= (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of M juageparans:

Implemented role(s): {judgeParams}
CheckID(pid, sid, role):

Accept all messages with the same sid.

Main:

recv (BreakAccProp, verdict, toBreak, internalState) from I/0:
if toBreak = {non-aborting} x ({local} x {0, 1}2*) A state € {uninitialized, compute}: {A aborts computation
reply (BreakAccProp, true,)
if toBreak = {correctness} x ({local} x {0,1}2*) A state = compute: {This models a cheat attempt
reply (BreakAccProp, true,€)
if toBreak = {privacy} x ({local} x {0,1}2*) A state = compute: {This models an attempt to break input privacy
Let @ be the vector of all values from inputs.
if eval(verdict) = true: {Need to check whether verdict evaluates to true as leakage forwarded to A anyways
reply (BreakAccProp, true, @)
else:
reply (BreakAccProp, false, €)
else:
reply (BreakAccProp, false, €)
recv (GetJudicialReport, msg, internalState) from I/0: {Generate judicial report
reply (GetJudicialReport,€) {Return state variable as report
KE) . o P
recv (Corrupt, (id, sid, judge), internalState) from I/0: {fjudgepa}mm_s L_IH{.”” fo corrupt a IOL‘I{ Judge iff the
if id = (Local, pid, role) A (pid, sid, role) € CorruptionSet: accompanied initiator or responder is corrupted
reply true
else:

reply false

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/0: {‘F_iudgﬂPamn}S interprets a local judge as @rmpted i
if (id, sid, judge) € CorruptionSet: the accompanied initiator or responder is corrupted
reply true
else if id = (local, pid, role) A (pid, sid, role) € CorruptionSet :
reply true
else:
reply false

Fig. 43: The judge parameter functionality ‘El\li[(fg%l)arams for Firsc-

75

acc

Description of the protocol 57, . vpc = (node, judge, supervisor)

Participating roles: {node, judge, supervisor}
Corruption model: static
Protocol parameters:

-neN,f: o, 1}*)“)‘ — ({0, 1}*)|P‘, st f=(f1,---, fir)) {Input length for the MPC function and the function itself
- Sec®™* C {0,1}" {Accountability properties
— Secsumption — o 1}* {Assumption-based security properties
- pidsjyage C {0,1}" {set of judge entities/(P)IDs in the protocol (which are often directly related to some protocol participants)
— idSsssumption C {0,1}" {set of entities/IDs where properties are ensured via assumptions
Description of Myege:

Implemented role(s): {node}

Subroutines:]-'jl\l/ll(lfgcéparams : judgeParams

Internal state:
- PC{0,1}*,P#0,|P| < o {Parties involved in the protocol
— inputs: P — {0,1}" {The inputs for the computation, initially always set to L
- outputs: P — {0,1}" {The outputs of the computation, initially always set to L

— state : P — {uninitialized, computation, finalized, finishedOutput}
{State of the MPC computation per party, initillay uninitialized
. L The set of corrupted internal
* * * a . .
corruptedIntParties € {0, 1} x {0,1}* x {0,1}* \ (Rolesz“ U {judge, supervisor}), initially {parties (pid, sid, role)
— brokenAssumptions : Sec®**™P" x ids s mption —> {true, false} {Stores broken security assumptions per id, initially false Ventries
Stores broken security properties per

_ kenP . assumption acc e, H . . . P
brokenProps : (Sec U Sec®*) x (pidsjudge U idSassumption) — {true, false} judge/id, initially false Ventries

- verdicts : pidsjygge — {0,1}" {Verdicts per p € pidsjuqge, initially €
CheckID (pid, sid, role): A single instance manages all parties in
Accept all messages if pid € P and with same sid. { ng L 8 P
a single session.

Additional Corruption behavior:
- AllowCorruption(pid, sid, role):
Do not allow corruption of (pid, sid, supervisor).
if role = judge: FjudgeParams decides
send (Corrupt, (pid, sid, judge), internalState) to (pid, sid, FjudgeParams : judgeParams){whether judges can be
wait for b; return b corrupted
- DetermineCorrStatus(pid, sid, role):
if role = judge: { FijudgeParams may determine a judge’s corruption status
send (CorruptionStatus?, (pid, sid, judge), internalState) to (pid, sid, FjudgeParams : judgeParams)
wait for b; return b
— AllowAdvMessage(pid, sid, role, pidreceiver; Sidreceiver s FOl€receiver; ™M)

Do not allow sending messages to FjudgeParams- {A is not allowed to invoke FjuageParams in the name of corrupted parties.
Initialization: X
send responsively InitMe to NET {A determines the involved parties
wait for (Init, P) s.t. P C {0,1}"
P <« P
Main:
recv (Compute, z) from I/0 s.t. pidc,r € P A state € {uninitialized}: {Input from uncorrupted users
state[pidc,r] < computation; inputs[pidc,] < = {Update phase of pidc,, and record user input

A input for cor-

recv (Compute, pid, x) from NET s.t. pid in CorruptionSet A pid € P, state € {uninitialized, computation}: {mpted parties

state[pidcyr] — computation {Update phase of pidc,r
inputs[pidcyr] < {Record user input
recv Finalize from NET:
if Vpid € P : state[pid] = computation A Vpid € P : inputs[pid] # L: {Trigger computation of f
Let w; st. (pid;, w;) € inputs,i € {1,...,|P|}
(Y1, yp) « fwi, ..., wp))) {If there was no “interrupt” from A, f is computed as expected

for i = 1 to |P| do:
outputs[pid;] < yi
if There is a brokenProps of type correctness true:

output < ¢ {The protocol aborted, no one receives output
else:
Let output contain every outputs[pid] where pid is in CorruptionSet.
reply (Finalize, output) {Send output of corrupted parties to A
recv (Finalize, P) from NET s.t. P C P: {A may advance participants from phase computation fo finalized

forall p € P do:
if state[p] = computation: state[p] < finalized

recv GetResult from I/0 s.t. pide, € P: {Access only for “registered” parties
if brokenProps[(correctness, (local, pidcyr, rolecyr)]: {Handle identifiable abort
reply (GetResult, abort) {Output abort information

else if state[pidc,] € {uninitialized, computation}: {Party did not finish computation so far

reply (GetResult, 1)
else if There exists an entry brokenProps[(correctness, (local, pidcyr, rolecyr)] = true: {If abort is recorded at another party
reply (GetResult, L) {Supress output in case of an abort of another party
else if state[pidc,] = finalized:
state[pidcyr] < finishedOutput
reply (GetResult, outputs[pidcyr]) {If A did not abort, output result

Include the missing static code from the AUC transformation 77 (-) here, i.e., include additional code from Figure 2 and 3 here.

“Here: Rolesz := {node}.

Fig. 44: The asynchronous MPC functionality F3%° vipc-

async-

76

Description of F2syne; MPC

judgeParams

= (judgeParams):

Participating roles: {judgeParams}
Corruption model: incorruptible

Description of Mjuageparans:

Implemented role(s): {judgeParams}
CheckID(pid, sid, role):
Accept all messages with the same sid.

Main:

recv (BreakAccProp, verdict, toBreak, internalState) from I/0:
Let ids C {0,1}" be the IDs part from toBreak.
if toBreak C {correctness x ids} A fip € P (P extracted from internalState) with state[p] = finishedOutput A
[Vid1, id2, such that idy # id2 where verdict[idi] # €, resp. verdict[ida] # e
it holds true that verdict[idi] = verdict[id2] A

all verdicts in verdict are individual verdicts: { A aborts computation, only allowed if restrictions are met
reply (BreakAccProp, true,€) {Accept abort

else:
reply (BreakAccProp, false, €) {Decline abort
recv (GetJudicialReport, msg, internalState) from I/0: {Generate judicial report
reply (GetJudicialReport,€) {Return state variable as report

recv (Corrupt, (id, sid, judge), internalState) from 1/0:
if i<d = (local, pid, role) A (pid, sid, role) € CorruptionSet:
reply true
else:
reply false

}-judgepamms allows to corrupt a /01,11{ Jjudge iff the
accompanied initiator or responder is corrupted

recv (CorruptionStatus?, (id, sid, judge), internalState) from I/0: {]:j"dgopuran}s l’?lef7’r_815 a local judge as zryrmpted if
if (id, sid, judge) € CorruptionSet: the accompanied initiator or responder is corrupted
reply true
else if id = (local, pid, role) A (pid, sid, role) € CorruptionSet :
reply true
else:

reply false

Fig. 45: The judge parameter functionality ﬂis(g;;gggs for Fass e mpc-

77

	Introduction
	AUC – Accountable Universal Composability
	Notation and Terminology
	Overview of AUC's Central Concepts
	AUC Transformation for Ideal Functionalities
	AUC in Real Protocols
	Composable Security Analysis in AUC
	Deterrence Analysis
	Discussion

	Case Studies
	Scaling Accountable Consensus
	An Accountable PKI for the Web Based on CTLs
	A Key Exchange Based on an Accountable PKI

	Related Work and Conclusion
	Acknowledgments
	References
	Appendix
	=A Brief Introduction to the iUC Framework
	=Notation in Pseudo Code
	=Reusing Existing Security Results with AUC
	=Scaling Accountable Consensus (Full Details)
	The Accountable Consensus Functionality
	The Scaling Protocol
	UC Security Analysis
	Deterrence Analysis

	=Accountable Key Exchange based on an accountable PKI (Full Details)
	An Accountable Ideal PKI Functionality
	An Accountable PKI based on CTLs
	UC Security Analysis
	Deterrence Analysis

	Key Exchange Based on (Full Details)
	The Accountable Key Exchange Functionality
	The ISO 9798-3 Protocol as Accountable Key Exchange Protocol
	Security Analysis
	Deterrence Analysis

	=Capturing MPC Accountability Properties via AUC
	Further Details on MPC Accountability Properties via AUC

