
A Universally Composable PAKE
with Zero Communication Cost

(And Why It Shouldn’t Be Considered UC-Secure)

Lawrence Roy1 and Jiayu Xu2

1 Aarhus University, ldr709@gmail.com
2 Oregon State University, xujiay@oregonstate.edu

Abstract. A Password-Authenticated Key Exchange (PAKE) protocol
allows two parties to agree upon a cryptographic key, when the only
information shared in advance is a low-entropy password. The standard
security notion for PAKE (Canetti et al., Eurocrypt 2005) is in the
Universally Composable (UC) framework. We show that unlike most
UC security notions, UC PAKE does not imply correctness. While
Canetti et al. has briefly noticed this issue, we present the first
comprehensive study of correctness in UC PAKE:

1. We show that TrivialPAKE, a no-message protocol that does not
satisfy correctness, is a UC PAKE;

2. We propose nine approaches to guaranteeing correctness in the UC
security notion of PAKE, and show that seven of them are equivalent,
whereas the other two are unachievable;

3. We prove that a direct solution, namely changing the UC PAKE
functionality to incorporate correctness, is impossible;

4. Finally, we show how to naturally incorporate correctness by
changing the model — we view PAKE as a three-party protocol,
with the man-in-the-middle adversary as the third party.

In this way, we hope to shed some light on the very nature of UC-security
in the man-in-the-middle setting.

1 Introduction

A password-authenticated key exchange (PAKE) protocol allows two parties to
jointly establish a cryptographically strong key, where the only information
shared in advance is a low-entropy password. Crucially, such protocols must
remain secure in the presence of a man-in-the-middle adversary. Since its first
proposal in 1992 [5], PAKE protocols have been extensively studied in various
security models and under various assumptions; a very incomplete list of works
includes [1, 3, 4, 7, 10, 18, 22, 23]. Interest in the deployment of PAKE protocols
in practice — especially their integration with TLS — has been on the rise in
recent years, culminating in the standardization process by the IRTF in
2019–20 [13,26]. Several classes of extensions, such as asymmetric PAKE [6,20]
and fuzzy PAKE [14], have also been considered.

Security definitions for PAKE. Since passwords have low entropy, any
security definition of PAKE has to take into account the fact that an adversary
has non-negligible probability of guessing it correctly. Roughly speaking, the
basic security property of PAKE is that the only feasible attack is via online
guessing, whose probability of success is 1/|Dict| per session (where Dict is the
password dictionary, i.e., the set of all possible passwords). In particular, offline
dictionary attacks, where the adversary performs a brute-force search over the
dictionary upon seeing protocol messages, must be prevented.

There are two major paradigms of PAKE security definitions:
game-based [4] and Universally Composable (UC) [10]. In multi-party
computation, the UC definition is generally preferable since it supports
arbitrary composition, namely the security of PAKE is preserved when
composed with itself or other protocols, sequentially or in parallel. In the
context of PAKE, the UC definition has the additional advantage that it
naturally takes reused password or correlated passwords into consideration,
which is difficult to model in the game-based setting since the latter is
stand-alone in nature. The UC definition has become the de facto standard of
PAKE security; in particular, all candidates in the second round of the IRTF
standardization competition have a UC security analysis [1, 2, 18,20].

UC PAKE and correctness. A cryptographic protocol usually needs to
satisfy some notion of correctness (sometimes called completeness), namely the
parties’ outputs meet some desired requirements when there is no attack. For a
PAKE protocol, correctness means that the two parties should output the
same key as long as their passwords are equal. In the game-based definitions,
correctness and security are usually defined separately. By contrast, in the UC
setting, correctness is often a trivial implication of UC-security; that is, if we
remove the ideal adversary and let all protocol parties be honest in the UC
functionality and observe their outputs, then correctness can be seen
immediately from the functionality’s code. This the case for e.g., universally
composable commitment schemes [9] and oblivious transfer protocols [12].

Somewhat surprisingly, we show that for PAKE protocols, UC-security does
not imply correctness. In particular, in Section 3 we show protocol TrivialPAKE,
where the two parties independently output random keys, is a UC PAKE. At a
high level, this is because the UC PAKE functionality allows the ideal adversary
to cause the two protocol parties to output independent keys, even if both parties
are honest; therefore, a simulator can leverage such mechanism to complete the
simulation for TrivialPAKE. Of course, the same argument also goes for protocols
in which the two parties communicate in some arbitrary manner, and then output
independent random keys.

We note that the original UC PAKE paper [10] has already noticed that
UC PAKE does not imply correctness (called non-triviality therein). In [10,
Section 7], the authors wrote:

A protocol is non-trivial if two honest parties are ensured to agree on
matching session keys at the conclusion of a protocol execution (except
perhaps with negligible probability), provided that (1) both parties use

2

the same password, and (2) the adversary passes all messages between
the parties without modifying them or inserting any messages of its
own. The non-triviality requirement is needed since the “empty”
protocol where parties do nothing securely realizes FpwKE (the
ideal-model simulator simply never issues a NewKey query to the
functionality and so the parties never actually obtain keys).

However, the “empty” protocol realizes any two-party UC functionality,
and can be easily ruled out by requiring both parties to output something.
(Indeed, this is the approach suggested by [11, Section 2] in the context of
generic two-party computation.) By contrast, the issue with our TrivialPAKE
is unique to PAKE. We will see in Section 4.1 that the underlying mechanisms
of these two counterexamples are different: one is because the simulator might
send some commands while it should not (in TrivialPAKE), the other is
because the simulator might not send some commands while it should (in the
“empty” protocol).

Furthermore, the fact that correctness needs to be checked separately from
UC-security appears under-appreciated: some works on UC PAKE do not
perform this correctness check [15, 17, 20, 25], which is sometimes not
completely trivial.1

Guaranteeing correctness. At first glance, it seems trivial to fix the definition
of a UC PAKE: just require that the protocol satisfy correctness as well as realize
the PAKE ideal functionality. However, we believe a deeper understanding of
this issue is warranted, to learn why the PAKE functionality fails to guarantee
correctness (as opposed to most UC functionalities that do imply correctness)
and how to best address the issue. In Section 4, we study several approaches
to enforcing the correctness requirement in UC PAKE, finding that some are
impossible to achieve, while the rest are equivalent.

These definitions come from two different styles. First, as mentioned above,
we could enforce correctness separately from UC-security; namely, we require
that two honest parties using the same password, without any adversary
interference, must get the same key at the end. However, while UC definitions
are based on a correspondence between a real world and an ideal world, the
aforementioned definition of correctness only involves the real world; as a
result, it fails to provide any kind of composability, which makes it harder to

1 The cases of [17, 20, 25] are especially problematic, since their (asymmetric) PAKE
protocols use a UC-secure authenticated key exchange (AKE) protocol as a building
block, and their modelings of UC AKE also do not guarantee correctness. Therefore,
a proof of PAKE correctness would need a separate correctness notion for AKE:
roughly, that there exists an efficient algorithm Gen such that if we run it twice
and obtain two key pairs (pk, sk) and (pk′, sk′), then two AKE parties with inputs
(pk, pk′, sk) and (pk′, pk, sk′) should output the same key (assuming there is no
adversarial interference). Such structural requirement is not mentioned in any of the
aforementioned works (and in particular, the Key.Gen algorithm in [25, Fig. 6] is
undefined). The exact requirement of AKE correctness used in [17, 20, 25] is out of
the scope of this work.

3

either prove that a protocol is a valid PAKE (such as for [17, 20, 25]1), or to
make use of this proof in a higher level protocol — that is, the correctness of
the higher level protocol always needs to be proved separately.

Next, we consider placing constraints on the UC simulator for PAKE. The
basic observation here is that the simulator for TrivialPAKE always interrupts
the protocol sessions, causing the two protocol parties to output independent
random keys, even though such “interruption” mechanism in the PAKE
functionality is meant only to model a man-in-the-middle adversary that
modifies protocol messages. In other words, the underlying reason why
TrivialPAKE is UC-secure is that the simulator is given too much power. We
consider two slightly different ways to disallow such “rogue” interruptions of
protocol sessions: requiring either a so-called reasonable simulator or a strong
reasonable simulator. That is, we show that the existence of a (strong)
reasonable simulator is equivalent to the PAKE protocol being correct. We
further prove that a seemingly stronger notion, namely all successful
simulators must be (strong) reasonable simulators, is also equivalent to the
PAKE protocol being correct. Finally, we consider the question of whether the
simulator can perform a “rogue” interruption with negligible or zero
probability; we call the latter kind a (strong) perfectly reasonable simulator,
and show that PAKE correctness is equivalent to the existence of a (strong)
perfectly reasonable simulator. However, for any correct PAKE there always
exist simulators that fail to be perfectly reasonable. In sum, we present eight
approaches to placing requirements on the simulator, and show that six of
them are equivalent to directly enforcing PAKE correctness, whereas the other
two are unachievable. Finally, we note that this definition style has been used
to address a separate issue in the context of asymmetric PAKE [15, 20];
however, the necessity of similar constraints on simulators for (regular) PAKE
protocols went unnoticed.

Placing constraints on the simulator has the advantage that they often
compose easily (a similar observation is made in [15] in the context of
asymmetric PAKE). Still, such solutions are ad-hoc and we might ask whether
we can just modify the PAKE ideal functionality so that it implies correctness.
Unfortunately, in Section 5 we show that this is impossible. The problem is
that the ideal functionality has no clue whether the adversary is tampering
with the PAKE messages; therefore, it must allow the simulator to interrupt
the session in case the adversary interferes with the PAKE protocol in the real
world, but then the simulator can always use this interface to stop the keys
from matching.

Finally, in Section 6 we show how a more sophisticated model bypasses the
impossibility result and allows correctness to be included in the UC PAKE
functionality, making it fully composable. We add a third party called the
router, which is connected to both protocol parties via an authenticated
channel; when the router is honest, it simply forwards messages between the
two protocol parties. (Of course, a corrupted router is free to deviate from its
description arbitrarily, namely it can modify the messages sent between the

4

two protocol parties.) Correspondingly, in our modified PAKE ideal
functionality we require that session interruption must be done by a corrupted
party, who must be one of the three participants (including the router), rather
than the UC simulator. We prove that our notion of UC three-party PAKE is
equivalent to the definition of UC PAKE plus correctness.

2 Preliminaries

Notations. For any q ∈ N+, define [q] as the set {1, . . . , q}. We let λ denote the
security parameter. For a set X, let x ← X denote the process of sampling an
element x uniformly at random from X. We use “efficient” as a shorthand for
“probabilistic polynomial time”.

2.1 Overview of the UC Framework

In this section, we briefly review the Universally Composable framework by
Canetti [8], and introduce necessary notations to be used in later sections. For
simplicity’s sake, we only cover two-party protocols, and it extends to the case
of multi-party protocols (used in Section 6 only) naturally.

A protocol Π involves two parties (modeled as efficient interactive Turing
machines), P and P′, sending messages to each other. In an execution of protocol
Π, there are two additional parties, the environment Z and the adversary A,
where Z sends inputs to P and P′ and receives outputs from them; furthermore, Z
and A may communicate with each other at any time during protocol execution.
Multiple sessions may run in parallel during protocol execution, distinguished
by a session id denoted sid (which is agreed upon before protocol execution and
is not part of the protocol description). For a PAKE protocol, we consider the
man-in-the-middle setting, where all messages sent between P and P′ pass the
adversary A, which can arbitrarily modify these messages or simply drop them.
In the special case where A merely transmits all messages between P and P′

without modifying or dropping any of them, we say A is an eavesdropper.

The above describes the real world. In the ideal world, there is an
uncorruptable ideal functionality F whose code is public, and the adversary
A’s role is replaced by an ideal adversary (a.k.a. simulator) S. F
communicates with protocol parties P and P′, as well as the ideal adversary S;
P and P′ are “dummy” parties that merely transmit messages between F and
Z without any modifications. Importantly, F and Z do not communicate with
each other directly.

In both the real world and the ideal world, the view of the environment Z
consists of its input to/output from protocol parties P and P′, as well as its
communications with either the (real) adversary A or the ideal adversary S. In
a nutshell, UC-security says that any efficient environment’s view can be
successfully simulated by an efficient simulator, meaning that Z cannot
distinguish whether it is in the real world or the ideal world:

5

P A P′

Z

oo // oo // oo // oo //
OO

��

(a) Real world

P F P′

S

Z

oo // oo // oo // oo //
OO

��
OO

��

(b) Ideal world

Fig. 1: Real world and ideal world in the UC framework

Definition 1. For a protocol Π, an ideal functionality F , and a (real) adversary
A, we say a simulator S is successful w.r.t. A if (1) S is efficient, and (2) for
any efficient environment Z,

DistΠ,F (A,S,Z) , |Pr[Z outputs 1 in the real world with Π,A]

− Pr[Z outputs 1 in the ideal world with F ,S]|

is negligible, where the probability is taken over the randomness generated in the
execution of Π, as well as the random tapes of F , A, S, and Z.

Definition 2. We say protocol Π UC-realizes functionality F if for any efficient
adversary A, there exists a successful simulator w.r.t. A.

A standard result [8, Claim 11] states that only the dummy adversary, i.e.,
the adversary that merely transmits all messages between the environment and
the protocol parties, needs to be considered. (We may intuitively say that A
follows Z’s “instructions”, e.g., Z “instructs” A to send message (sid,m) to
protocol party P.) That is, Definition 2 is equivalent to the following:

Definition 3. We say protocol Π UC-realizes functionality F if there exists a
successful simulator w.r.t. the dummy adversary.

Definition 3 is what we will use in subsequent sections. Since the adversary
A is now fixed, we may simply say “the simulator S is successful” and write
DistΠ,F (S,Z). Furthermore, when Π and F are clear from context, we may
drop them and write Dist(S,Z).

2.2 Overview of PAKE

A password-authenticated key exchange (PAKE) is a two-party protocol where
each party inputs a supposedly low-entropy string (called the password) and
outputs a cryptographic session key. Let Dict be the set of all candidate

6

passwords; we place no restrictions on |Dict| except that |Dict| ≥ 2. Correctness
requires that if the two parties’ passwords match, and there is no
man-in-the-middle attack, then they output a shared key with overwhelming
probability:

Definition 4. We say a PAKE protocol Π is correct if the following holds: for
any pw ∈ Dict, in an execution of Π, if both protocol parties P and P′ input
(sid, pw) (with appropriate additional fields for UC-compatibility; see Figure 2
below), both P and P′ are honest, and the adversary A is an eavesdropper, then

Pr[Correct(pw)] , Pr[P outputs (sid,K)∧P′ outputs (sid,K ′)∧K = K ′ ∈ {0, 1}λ]

is overwhelming, where the probability is taken over the randomness generated
in the execution of Π.

Note that our notion of correctness requires that P and P′ must output
something at the end of the session. This is a trivial requirement since the
parties can always output a random key (or an “abort” symbol in the case of
explicit authentication; see discussion at the end of this section).

The UC PAKE functionality. We recall in Figure 2 the standard UC PAKE
functionality FPAKE from [10] (with minor notational changes).

– On input (NewSession, sid,P,P′, pw, role) from P, send (NewSession, sid,P,P′,
role) to S. Furthermore, if this is the first NewSession message for sid, or this
is the second NewSession message for sid and there is a record 〈P′,P, ·〉, then
record 〈P,P′, pw〉 and mark it fresh.

– On (TestPwd, sid,P, pw∗) from S, if there is a record 〈P,P′, pw〉 marked fresh,
then do:
• If pw∗ = pw, then mark the record compromised and send “correct guess”

to S.
• If pw∗ 6= pw, then mark the record interrupted and send “wrong guess” to
S.

– On (NewKey, sid,P,K∗ ∈ {0, 1}λ) from S, if there is a record 〈P,P′, pw〉, and
this is the first NewKey message for sid and P, then output (sid,K) to P,
where K is defined as follows:
• If the record is compromised, or either P or P′ is corrupted, then set

K := K∗.
• If the record is fresh, a key (sid,K′) has been output to P′, at which time

there was a record 〈P′,P, pw〉 marked fresh, then set K := K′.
• Otherwise sample K ← {0, 1}λ.

Finally, mark the record completed.

Fig. 2: UC PAKE functionality FPAKE

The functionality allows for three types of commands:

7

– A NewSession command, sent from a protocol party P, indicates that P
(whose password is pw) wants to jointly establish a key with another party
P′.2 This initiates a session from P to P′; for each session id sid, only one
session from P to P′ and one session from P′ to P is allowed. The NewSession
command is transmitted to the ideal adversary S (without the password
pw), which corresponds to the real-world scenario where the adversary sees
the first message from P to P′ and thus learns that the P → P′ session has
started.

– A TestPwd command models the inevitable attack in which the adversary
chooses a password guess pw∗ and communicates with P by running the
algorithm of P′ on pw∗. If pw∗ happens to be the password of P (i.e., the
adversary’s password guess is correct), then the adversary learns the
session key of P when the session ends; otherwise the adversary should not
learn anything about the session key of P.3 Thus, FPAKE marks the P→ P′

session record compromised (for a correct guess) or interrupted (for a wrong
guess) accordingly. Importantly, once the session record becomes
compromised or interrupted, all further TestPwd commands for the same
session will be ignored; this implies that the adversary can only test one
password for the P→ P′ session and one password for the P′ → P session.

– Finally, a NewKey command models the end of a session where the party
outputs a session key. How the session key is determined depends on the
status of the session:

• If both the P → P′ session and the P′ → P session are fresh, i.e., the
adversary did not interrupt the communication between P and P′, then
the two parties should output the same key as long as their passwords
match; furthermore, the key should be random to the adversary. This is
formally modeled as follows: assume w.l.o.g. that P receives its session
key before P′ does. Then P should output a random key (modeled in the
third case under NewKey), and when P′ outputs its session key, the key
should be equal to what was previously output by P (modeled in the
second case under NewKey).

• If the session is compromised, i.e., the adversary successfully guessed the
password during an online attack, then as noted above, the adversary
learns the session key. In this case, we consider all security guarantees to

2 The role field might be necessary for the description of the protocol when the
algorithms of the two parties are not completely identical (especially when one
party must wait for the other party’s message in order to start its own session;
see [10, Figure 5] for an example), but it has nothing to do with the security of the
protocol.

3 The functionality in Figure 2 lets the ideal adversary S learn whether its password
guess is correct or not. This is necessary for the simulation of some PAKE protocols
but not for others. The variant where S does not learn this information is called
implicitly-only PAKE ; see [14] for further discussion. We follow the standard PAKE
functionality, but note that all theorems below apply to implicitly-only PAKE as
well.

8

be lost, so we might as well let the ideal adversary S choose the session
key. This is modeled in the first case under NewKey.

• If the session is interrupted, i.e., the adversary performed an online attack
using a wrong password guess, then as noted above, the session key
should be independent of the adversary’s view. The same goes for the
case where the session P → P′ is fresh but its counter-session P′ → P
has been attacked (either compromised or interrupted); as well as the case
where both the P→ P′ session and the P′ → P session are fresh, yet the
passwords of P and P′ are different. This is modeled in the third case
under NewKey.

After outputting the session key, the session record is marked completed to
prevent NewKey from being sent twice and TestPwd from being sent after
the session ends.

The functionality above only achieves implicit authentication, namely if a
session is interrupted by the adversary (or the passwords do not match), then
the two parties do not learn this fact and merely output independent random
keys. In a PAKE with explicit authentication, the two parties output an “abort”
symbol instead. Explicit authentication can be achieved by adding one round to
an implicit-authentication PAKE [16].

3 A No-Message UC PAKE

In this section, we consider protocol TrivialPAKE, where each party simply
outputs a random string as the key. For a formal presentation in the UC
framework, see Figure 3.

1. On input (NewSession, sid,P,P′, pw, role), if this is the first NewSession
message for sid, party P samples K ← {0, 1}λ and outputs (sid,K).

Fig. 3: Protocol TrivialPAKE

Obviously TrivialPAKE does not satisfy correctness. On the other hand, we
show:

Proposition 1. Protocol TrivialPAKE (Figure 3) realizes FPAKE.

Proof. For the dummy adversary A, construct simulator S as follows:

Simulator S:

1. On (NewSession, sid,P,P′, role) from FPAKE, send (TestPwd, sid,P,⊥) to
FPAKE followed by (NewKey, sid,P, 0λ).

9

We claim that S’s simulation is perfect, i.e., any environment Z’s views in the
real world and the ideal world are identical. Suppose Z inputs
(NewSession, sid,P,P′, pw, role) to party P.4 In the ideal world, FPAKE stores a
record 〈P,P′, pw〉 and marks it fresh. When FPAKE receives
(TestPwd, sid,P,⊥), since pw 6= ⊥, the status of the record is changed to
interrupted. Finally, when FPAKE receives (NewKey, sid,P, 0λ), it enters the
third case, so P receives a random string K ← {0, 1}λ (independent of
everything else) and outputs (sid,K). We conclude that in the ideal world,
each party independently outputs a random key in {0, 1}λ together with the
session id — which is exactly the case in the real world. (Note that there are
no protocol messages, so the only strings Z receives are parties’ outputs.) This
completes the proof. �

Remark 1. One might hope to prevent TrivialPAKE from being a UC PAKE
by simply disallowing the simulator from sending (TestPwd, sid, ·,⊥) to FPAKE,
i.e., FPAKE would ignore a (TestPwd, sid, ·, x) message if x /∈ Dict. Assuming
|Dict| is polynomial and the password is chosen uniformly at random from Dict,
the simulator always has non-negligible probability of guessing the password
correctly (hence setting the session record compromised). However, a simulator
that sends (TestPwd, sid,P, x) for any x ∈ Dict followed by (NewKey, sid,P,K)
for K ← {0, 1}λ, still ensures that each party independently outputs a random
key (if x = pw, P outputs K; if x 6= pw, P outputs a random key freshly sampled
by FPAKE), thus its simulation is perfect.

4 Seven Equivalent Ways to Guarantee Correctness

4.1 Three Equivalent Ways to Guarantee Correctness

While TrivialPAKE is indeed trivial and the issue appears minor, closer scrutiny
shows that there are a number of natural ways to guarantee correctness, resulting
from different insights on the essence of the issue. In this section, we propose
three such approaches, and show that they are equivalent.

First of all, a straightforward approach would be explicitly requiring
correctness:

Proposal 1. Only consider PAKE protocols that both realize FPAKE and are
correct.

It is instructive, however, to understand why FPAKE fails to guarantee
correctness. Correctness is meant to be enforced in the second case under
NewKey, where two parties output the same key if their passwords match and
both of their session records are fresh — the latter of which in turn models an
eavesdropping adversary. However, as we have seen in the proof of

4 We can assume w.l.o.g. that Z never reuses a session id, i.e., it never sends
(NewSession, sid,P, ·, ·, ·) to P twice (otherwise the second message will be ignored
in both the real world and the ideal world).

10

Proposition 1, there is a gap in the modeling, namely the ideal adversary can
interrupt the protocol sessions (causing the two parties to output independent
keys) even if the real adversary merely eavedrops. In other words, the ideal
adversary is too strong, resulting in an unreasonably weak functionality.

To bridge this gap, we could limit the ideal adversary’s power (thus making
the power of the ideal adversary and the real adversary “equal”) by enforcing
the following rule: the ideal adversary is forbidden from sending TestPwd, if the
real adversary merely eavesdrops. To formalize this, we borrow some notations
from [10]. Consider any PAKE protocol Π, and fix a simulator S for the
dummy adversary A. For any environment Z, define SpuriousGuess(S,Z) as
the following event: both P and P′ are honest, there exists a session sid in
which A is an eavesdropper, yet S sends a (TestPwd, sid, ·, ·) message to
FPAKE. As a separate condition, define NoOutput(S,Z) as the following event:
both P and P′ are honest, there exists a session sid in which S receives
(NewSession, sid,P, ·, ·) from FPAKE, yet S does not send
(NewKey, sid,P,K ∈ {0, 1}λ) to FPAKE before it halts.

Definition 5. We say a simulator S is reasonable if for any efficient
environment Z, Pr[SpuriousGuess(S,Z)] and Pr[NoOutput(S,Z)] are both
negligible, where the probability is taken over the randomness generated in the
execution of Π, as well as the random tapes of S, Z, and FPAKE.5

We can now consider a proposal where only reasonable simulators “count”,
and unreasonable simulators (such as the one in the proof of Proposition 1) are
considered invalid:

Proposal 2. Only consider PAKE protocols for which a successful reasonable
simulator exists.

The above proposal does not rule out the possibility that for some protocols,
there are some reasonable simulators and some unreasonable simulators. We
could strengthen it to:

Proposal 3. Only consider PAKE protocols for which all successful simulators
are reasonable.

Which, then, is the “right” proposal to guarantee correctness? We now show
that all three are the “right” approach, since they are equivalent:

Lemma 1. Let Π be any PAKE protocol. Then the followings are equivalent:

(1) Π is correct and realizes FPAKE;
(2) There exists a successful reasonable simulator for Π;

5 The purpose of considering NoOutput is to rule out the “empty” protocol mentioned
in Section 1, where P and P′ simply don’t do anything (and S also doesn’t do
anything). Although our primary focus is to rule out protocols like TrivialPAKE,
with the requirement on NoOutput in place and with how we define correctness
(Definition 4), we can formally rule out the “empty” protocol as well.

11

(3) Π realizes FPAKE, and all successful simulators for Π are reasonable.6

Proof. (1)⇒(3): This is [10, Lemma A.1], except that [10] requires correctness
to be perfect. For completeness, we present the full proof in Appendix A.

(3)⇒(2): This is immediate.

(2)⇒(1): The intuition is that, a reasonable simulator cannot send TestPwd
in a session where the adversary merely eavesdrops, so in the ideal world this
session must remain fresh, hence FPAKE will let the two parties output the same
key. This must happen in the real world as well (since the simulator is successful),
which implies correctness.

Formally, let S be a successful reasonable simulator as in the statement of
(2). Since S is successful, it follows that Π realizes FPAKE. We now show that Π
is correct.

For any pw ∈ Dict, consider the following environment Z:

Environment Z:

1. Initialize a single session between P and P′ on pw. That is, pick any sid,
and input (NewSession, sid,P,P′, pw, role) to P and (NewSession, sid,P′,P,
pw, role′) to P′.

2. Instruct A to be an eavesdropper in session sid.
3. When P outputs (sid,K) and P′ outputs (sid,K ′), output 1 if K = K ′ ∈
{0, 1}λ and output 0 otherwise. If P or P′ does not output anything when it
halts, then output 0.

Since S is reasonable, we know that

Pr[SpuriousGuess(S,Z)] = Pr[S sends (TestPwd, sid, ·, ·) to FPAKE]

is negligible (where the equation is due to the fact that there is only one
session, and A is an eavesdropper in this session). Suppose SpuriousGuess(S,Z)
does not occur. Then in the ideal world, when S sends (NewKey, sid,P, ·) and
(NewKey, sid,P′, ·) to FPAKE (note that S must send such commands except
with negligible probability Pr[NoOutput(S,Z)]), FPAKE’s records 〈P,P′, pw〉
and 〈P′,P, pw〉 are both fresh, resulting in P and P′ outputting the same key
K = K ′ (together with sid), as can be seen from the second case of FPAKE.7

This causes Z to output 1. Therefore,

Pr[Z outputs 1 in the ideal world] ≥ 1−Pr[SpuriousGuess(S,Z)]−Pr[NoOutput(S,Z)].

6 The condition “Π realizes FPAKE” cannot be omitted, since otherwise (3) can be
trivially satisfied by having no successful simulator.

7 More precisely, assume w.l.o.g. that S sends (NewKey, sid,P, ·) first and
(NewKey, sid,P′, ·) next. Then when S sends (NewKey, sid,P, ·), FPAKE enters the
third case, so P receives and outputs (sid,K) for K ← {0, 1}λ; when S sends
(NewKey, sid,P, ·), FPAKE enters the second case, so P receives and outputs (sid,K′)
for K′ := K.

12

It follows that

Pr[Z outputs 1 in the real world] ≥ 1−Pr[SpuriousGuess(S,Z)]−Pr[NoOutput(S,Z)]−Dist(S,Z),

i.e., in the real world P outputs K, P′ outputs K ′, and K = K ′ with
overwhelming probability (Dist(S,Z) is negligible since S is successful). This
implies that Π is correct. �

Discussion. In traditional game-based definitions, correctness and security are
usually defined separately. In the UC framework, by contrast, there is usually
one functionality achieving various desired properties, including correctness.
However, as TrivialPAKE shows, correctness cannot be taken “for granted”;
apart from the standard “sanity check” that UC-security implies game-based
security, one should also try to prove (or disprove) that UC-security implies
correctness.

Proposal 1 above can be viewed as simply “conceding” that in the context
of PAKE, UC-security only implies a notion of security, and correctness needs
to be separately defined — just as in game-based notions. On the other hand,
Proposals 2 and 3 attempt to address the underlying reason that causes the issue,
namely FPAKE gives the ideal adversary too much power. Intuitively, TestPwd
corresponds to an adversary incorporating a password guess pw∗ in a message
m∗, and replacing an honest party’s message m with m∗. (The adversary sending
random garbage is modeled as pw∗ = ⊥.) Therefore, any ideal adversary sending
TestPwd should be viewed as modifying protocol messages, which disqualifies it
from being a valid simulator for an eavesdropper. Essentially, Proposals 2 and 3
are a formalization of this intuition.

4.2 Three Sets of Variants

In this section, we consider some variants of reasonable simulators (Definition 5).

Strong reasonable simulators. Requiring a simulator to be reasonable only
implies that it cannot send TestPwd if the (real) adversary is an eavesdropper;
this does not prevent the simulator from sending TestPwd before the adversary
modifies a protocol message (if the adversary does modify one eventually). For
example, suppose the adversary passes the first two protocol messages without
modification, and modifies the third; a reasonable simulator may send TestPwd
when the first message is sent. Intuitively, sending TestPwd “in advance” should
not be considered reasonable, since this would again cause a discrepancy between
the simulator’s power and the adversary’s power: the simulator modifies protocol
messages even when the adversary does not.

We now consider the notion of strong reasonable simulators, which essentially
says that the simulator is not allowed to send TestPwd unless and until the
adversary modifies a protocol message. It turns out that formalizing this notion
is not as straightforward as formalizing reasonable simulators: in the latter case
we can consider the adversary and the simulator separately, whereas here we
need to consider the order of the two parties’ actions, namely the adversary

13

modifying a protocol message and the simulator sending TestPwd. Furthermore,
these two events occur in two different worlds, so we cannot compare their timing
directly.

We overcome this difficulty by requiring that the simulator send TestPwd
only with permission from the environment, which bridges the real world and the
ideal world since the environment participates in both worlds. Formally, assume
w.l.o.g. that for each session sid, the environment always sends a (Modify, sid)
message while instructing the adversary to modify a protocol message for the first
time in this session, and does not send such messages anywhere else (so Z sends
at most one Modify message for each session).8 For any environment Z, define
GeneralSpuriousGuess(S,Z) as the following event: both P and P′ are honest,
and there exists a session sid in which S sends a (TestPwd, sid, ·, ·) message to
FPAKE without receiving (Modify, sid) from Z.

Definition 6. We say a simulator S is strong reasonable if for any efficient
environment Z, Pr[GeneralSpuriousGuess(S,Z)] and Pr[NoOutput(S,Z)] are
both negligible, where the probability is taken over the randomness generated in
the execution of Π, as well as the random tapes of S, Z, and FPAKE.

The following straightforward lemma states that the strong reasonability
requirement is indeed stronger than the ordinary reasonability requirement:

Lemma 2. Any strong reasonable simulator is also a reasonable simulator.

Proof. Suppose S is a strong reasonable simulator. For any efficient environment
Z, let SID be the set of sessions in which Z instructs the adversary to be
an eavesdropper. If SpuriousGuess(S,Z) occurs, there exists a sid ∈ SID such
that S sends (TestPwd, sid, ·, ·) to FPAKE. However, since the adversary never
modifies a protocol message in sid, Z never sends a (Modify, sid) message, so
GeneralSpuriousGuess(S,Z) occurs. It follows that

Pr[SpuriousGuess(S,Z)] ≤ Pr[GeneralSpuriousGuess(S,Z)],

which is negligible. So S is a reasonable simulator. �

We now show that the notion of “reasonably realizing FPAKE” remains
equivalent if we replace reasonable simulators with strong reasonable
simulators:

Lemma 3. Let Π be any PAKE protocol. Then the followings are equivalent:

(2+) There exists a successful strong reasonable simulator for Π;
(3) Π realizes FPAKE, and all successful simulators for Π are reasonable;

8 This is w.l.o.g. because any environment Z can be converted into another
environment Z ′ that behaves exactly like Z, except that Z ′ additionally sends
(Modify, sid) when Z instructs the adversary to modify a protocol message for the
first time in session sid. Obviously the distinguishing advantages of Z and Z ′ are
equal.

14

(3+) Π realizes FPAKE, and all successful simulators for Π are strong reasonable.

Proof. (2+)⇒(3): This is because (2+) implies (2) by Lemma 2, and (2) implies
(3) by Lemma 1.

(3)⇒(3+): The high-level idea is that, before the adversary modifies a
protocol message, a reasonable simulator does not know whether the adversary
will eventually be an eavesdropper or not, so it “dare not” send TestPwd to
FPAKE (in case the adversary turns out to be an eavesdropper).

Let S be a successful simulator for Π; then S is reasonable, and we need to
show that S is strong reasonable. Let Z be an efficient environment. As a
warm-up, we first prove the lemma in the case that Z only initiates a single
session sid. If Z instructs its adversary A to be an eavesdropper, then
SpuriousGuess(S,Z) and GeneralSpuriousGuess(S,Z) are equivalent, so the
lemma is immediate. Otherwise consider the following environment Z ′, which
inputs the passwords that Z inputs, and instructs its adversary A′ to be an
eavesdropper:

Environment Z ′:

1. Run Z. When Z sends (NewSession, sid,P,P′, pw, role) (resp.
(NewSession, sid,P′,P, pw′, role′)) to P (resp. P′), send the same message to
P (resp. P′).

2. Instruct A′ to be an eavesdropper in session sid.
3. When session is completed, output b← {0, 1}.9

Since A (the adversary corresponding to Z) is not an eavesdropper, there exists
an r ∈ N+ such that A does not modify the first r − 1 protocol messages, but
modifies the r-th protocol message. 10 The key observation is that Z and Z ′
behave identically up to the r-th protocol message, since both use password pw
for P and password pw′ for P′, and both instruct the adversary to pass the first
r − 1 messages without modification. Therefore, we have (below we abbreviate
(TestPwd, sid, ·, ·) as TestPwd):

Pr[S sends TestPwd before receiving the r-th protocol message in the world of Z]

= Pr[S sends TestPwd before receiving the r-th protocol message in the world of Z ′]
≤Pr[S sends TestPwd in the world of Z ′]
= Pr[SpuriousGuess(S,Z ′)].

However, since the r-th protocol message is the first time when Z instructs A to
modify a protocol message, this is also when Z sends (Modify, sid). Therefore, (in

9 In fact Z ′ does not need to output anything, since we rely on the fact that
Pr[SpuriousGuess(S,Z ′)] is negligible, rather than the distinguishing advantage of
Z ′ is negligible; whether SpuriousGuess(S,Z ′) happens or not is already determined
before Z ′ finally outputs a bit.

10 Formally, r is a random variable depending on the random tape of Z, and all
probabilities below are also taken over the random tape of Z.

15

the world of Z) S receives (Modify, sid) together with the r-th protocol message
from Z. GeneralSpuriousGuess(S,Z) is defined as S sends TestPwd before this,
i.e., S sends TestPwd before receiving the r-th protocol message. So,

Pr[S sends TestPwd before receiving the r-th protocol message in the world of Z]

= Pr[GeneralSpuriousGuess(S,Z)].

Combining the above, we obtain

Pr[GeneralSpuriousGuess(S,Z)] ≤ Pr[SpuriousGuess(S,Z ′)],

which is negligible. This shows that S is strong reasonable.
In the general case, assume Z initiates q sessions sid1, . . . , sidq. Z may

instruct A to be an eavesdropper in some of them, and to modify messages in
others. For ` ∈ [q], if A is not an eavesdropper, then there exist an r` ∈ N+

such that A does not modify the first r` − 1 protocol messages, but modifies
the r`-th protocol message; if A is an eavesdropper, then let r` = ∞.
Environment Z ′ works exactly as in the simple-session case, except that it does
not output the bit b until all sessions are completed. Just as the single-session
argument above, we observe that in session sid`, Z and Z ′ behave identically
up to the r`-th protocol message, so

Pr[GeneralSpuriousGuess(S,Z)]

= Pr[There exists ` ∈ [q] such that S sends (TestPwd, sid`, ·, ·)
before receiving the r`-th protocol message in the world of Z]

≤Pr[SpuriousGuess(S,Z ′)],

which is negligible. So S is strong reasonable.

(3+)⇒(2+): This is immediate. �

(Strong) perfectly reasonable simulators. If we require that a simulator
never make a spurious guess (rather than making it with negligible probability),
we get:

Definition 7. We say a simulator S is perfectly reasonable if for any efficient
environment Z, Pr[SpuriousGuess(S,Z)] = 0 and Pr[NoOutput(S,Z)] = 0, where
the probability is taken over the randomness generated in the execution of Π, as
well as the random tapes of S, Z, and FPAKE.

Similarly, for general spurious guesses,

Definition 8. We say a simulator S is strong perfectly reasonable if for any
efficient environment Z, Pr[GeneralSpuriousGuess(S,Z)] = 0 and
Pr[NoOutput(S,Z)] = 0, where the probability is taken over the randomness
generated in the execution of Π, as well as the random tapes of S, Z, and
FPAKE.

16

Remark 2. Interestingly, strong perfectly reasonable simulators have been
studied while addressing a separate definitional issue in the context of
asymmetric PAKE (aPAKE), where one party (called the user) holds the plain
password and another party (called the server) holds a password file file,
namely a one-way mapping of the password. For the purpose of our discussion,
it suffices to let file = H(pw), where H is a random oracle. We want to ensure
that after compromising the server and learning file, the adversary needs
Θ(|Dict|) time to recover pw.

Formally, this is modeled as follows: after compromising the server, the ideal
adversary can send an (OfflineTestPwd, sid, pw∗) command to the functionality,
which returns “correct guess” (if pw∗ is the correct password) or “wrong guess”.
Here an issue analogous to our “general spurious guess” emerges: what prevents
the simulator from sending OfflineTestPwd for all x ∈ Dict and learning the
password, before the real adversary makes any H queries?

This issue has been discussed in [15,20], where the proposed solution is similar
to requiring the simulator to be strong perfectly reasonable; that is, the simulator
is not allowed to send (OfflineTestPwd, sid, x), unless and until the real adversary
queries H(x). Both of the aforementioned works require OfflineTestPwd messages
to be “accounted for by the environment” (yet neither of them formally defines
what “accounted for by the environment” means).

However, it was later pointed out [19] that such a solution is insufficient
for aPAKE. In a nutshell, this is because the random oracle H can be queried
by the environment directly (rather than the environment instructing the real-
world adversary to do so); therefore, an environment can learn H input/output
pairs without sending any permission to the adversary, causing the simulator
not being able to send any OfflineTestPwd messages (even when the environment
already learns the password). (For a formal treatment of the discussion above,
see [19, Appendix D].) We do not suffer from this issue, because in our setting
all protocol messages must be passed by the real adversary, rather than the
environment itself — in contrast to the environment being able to query the
random oracle on its own.

It is not hard to see that for (2) and (2+), the analogous conditions — where
the simulator is required to be perfect — are equivalent to (2+), whereas for (3)
and (3+), the analogous conditions cannot be satisfied:

Lemma 4. Let Π be any PAKE protocol. Then the followings are equivalent:

(2+) There exists a successful strong reasonable simulator for Π;
(2*) There exists a successful perfectly reasonable simulator for Π;

(2*+) There exists a successful strong perfectly reasonable simulator for Π.

Furthermore, the followings do not hold:

(3*) Π realizes FPAKE, and all successful simulators for Π are perfectly
reasonable;

(3*+) Π realizes FPAKE, and all successful simulators for Π are strong perfectly
reasonable.

17

Proof. (2+)⇒(2*+): The intuition is that if and when GeneralSpuriousGuess or
NoOutput occurs, the simulator can simply abort instead. Formally, let S be a
successful strong reasonable simulator for Π. Consider the following simulator
S ′:

Simulator S ′:

1. Upon receiving the first message from FPAKE, activate S using the same
message. After that, pass messages between S and FPAKE without any
modifications. That is, upon receiving a message from S (aimed at FPAKE),
send the same message to FPAKE; upon receiving a message from FPAKE,
send the same message to S (as a message from FPAKE). Also, pass
messages between S and Z without any modifications.

2. If at any time there exists a sid such that S ′ has not sent (Modify, sid)
to S, but S sends (TestPwd, sid,P, ·) to S ′ (aimed at FPAKE), then send
(NewKey, sid,P, 0λ) to FPAKE, output Abort and halt.

3. If there exists a sid such that S ′ has sent (NewSession, sid,P, ·, ·) to S, but
S ′ does not send (NewKey, sid,P,K ∈ {0, 1}λ) when it halts, then send
(NewKey, sid,P, 0λ) to FPAKE, output Abort and halt.

Clearly, S ′ simulates the ideal game to S perfectly, and behaves exactly as
S in its own ideal game, unless and until GeneralSpuriousGuess(S,Z) or
NoOutput(S,Z) occurs (in which case S ′ sends NewKey to FPAKE and outputs
Abort). This means that GeneralSpuriousGuess(S ′,Z) or NoOutput(S ′,Z) never
occurs, i.e., S ′ is strong perfectly reasonable; furthermore,

|Dist(S ′,Z)−Dist(S,Z)| ≤ Pr[Abort] = Pr[GeneralSpuriousGuess(S,Z)]+Pr[NoOutput(S,Z)],

so Dist(S ′,Z) ≤ Dist(S,Z) + Pr[GeneralSpuriousGuess(S,Z)] +
Pr[NoOutput(S,Z)]. Since S is successful, Dist(S,Z) is negligible; since S is
strong reasonable, Pr[GeneralSpuriousGuess(S,Z)] and Pr[NoOutput(S,Z)] are
both negligible. We conclude that Dist(S ′,Z) is negligible, i.e., S ′ is successful.
This completes the proof.

(2*+)⇒(2*): This is immediate.

(2*)⇒(2+): This is because (2*) trivially implies (2), (2) implies (3) by
Lemma 1, and (3) implies (2+) by Lemma 3.

(3*) does not hold: This is because a simulator can always send TestPwd with
negligible probability (which does not affect it being successful). Formally, let S
be a successful reasonable simulator for Π. Consider the following simulator S ′:

Simulator S ′:

1. On (NewSession, sid,P,P′, role) from FPAKE, send (TestPwd, sid,P,⊥) with
probability 1/2λ. Then output Abort and halt.

18

2. If Abort does not occur, do the following: activate S with
(NewSession, sid,P,P′, role). After that, pass messages between S and
FPAKE without any modifications, and also pass messages between S and
Z without any modifications.

Let Z be the environment that runs a single session and instructs the
adversary to be an eavesdropper. If Abort occurs, then S ′ sends TestPwd
command in step 1, so SpuriousGuess(S ′,Z) occurs. We have that

Pr[SpuriousGuess(S ′,Z)] ≥ Pr[Abort] =
1

2λ
,

i.e., S ′ is not perfectly reasonable. On the other hand, if Abort does not occur,
then S ′ behaves exactly as S. Therefore,

Dist(S ′,Z) ≤ Pr[Abort] + Dist(S,Z) =
1

2λ
+ Dist(S,Z),

which is negligible (Dist(S,Z) is negligible because S is successful). So S ′ is
successful.

We have a simulator for Π that is successful but not perfectly reasonable,
which contradicts (3*).

(3*+) does not hold: This is because (3*+) is stronger than (3*), and we have
just proved that (3*) does not hold. �

Remark 3. The proof of (2+)⇒(2*+) critically relies on the fact that once
GeneralSpuriousGuess(S,Z) occurs, S ′ can detect it before sending any TestPwd
commands. The same thing cannot be said for SpuriousGuess. That is, if we
wanted to prove (2)⇒(2*) directly, i.e., S is only reasonable (but not
necessarily strong reasonable), then S ′ would run into trouble: S ′ needs to wait
until the end of a session to determine whether SpuriousGuess(S,Z) occurred
or not (recall that SpuriousGuess(S,Z) requires the adversary to be an
eavesdropper throughout the session), at which point S ′ might have already
sent TestPwd, which might be a “spurious guess” if the adversary eventually
turns out to be an eavesdropper. It seems that the only way to prove (2)⇒(2*)
is via the chain (2)⇒(2+)⇒(2*+)⇒(2*).

4.3 Putting It Together

By Lemmas 1, 3 and 4, we get:

Theorem 1. Let Π be any PAKE protocol. Then the followings are equivalent:

(1) Π is correct and realizes FPAKE;
(2) There exists a successful reasonable simulator for Π;

(2*) There exists a successful perfectly reasonable simulator for Π;
(2+) There exists a successful strong reasonable simulator for Π;

19

(2*+) There exists a successful strong perfectly reasonable simulator for Π;
(3) Π realizes FPAKE, and all successful simulators for Π are reasonable;

(3+) Π realizes FPAKE, and all successful simulators for Π are strong reasonable.

Furthermore, the followings do not hold:

(3*) Π realizes FPAKE, and all successful simulators for Π are perfectly
reasonable;

(3*+) Π realizes FPAKE, and all successful simulators for Π are strong perfectly
reasonable.

Since all seven conditions in the first part of Theorem 1 are equivalent, we
can now define the notion of reasonably realizing the PAKE functionality:

Definition 9. We say a PAKE protocol Π reasonably realizes FPAKE if Π is
correct and realizes FPAKE, i.e., Π satisfies condition (1) in Theorem 1
(equivalently, Π satisfies any of conditions (2), (2*), (2+), (2*+), (3), and
(3+) in Theorem 1).

5 Impossibility of a Direct Solution

All proposals in Section 4 are somewhat unsatisfactory, in that they either
require correctness to be separate from security (Proposal 1) or place
additional requirements on the UC simulator, hence changing the very
definition of UC-security (all other proposals). Is it possible to have a direct
solution, i.e., to incorporate correctness directly into the UC functionality,
without changing the definition of UC-security? In this section, we give a
negative answer.

Theorem 2. There does not exist a UC functionality F such that a PAKE
protocol Π reasonably realizes FPAKE if and only if it realizes F .

Proof. The high-level idea is as follows: in a PAKE protocol, if the protocol
messages are ⊥, then the two parties output independent random keys. This
means that there must be some mechanism in F that allows the two parties to
output independent random keys. But then a simulator can use the same
mechanism to complete the simulation for TrivialPAKE. The formal proof
follows.

Assume towards contradiction that there exists such a UC functionality F .
Take any “natural” PAKE protocol that reasonably realizes FPAKE; for
concreteness, here we use Diffie-Hellman-based Encrypted Key Exchange
(DH-EKE, Figure 4). Correctness can be checked as follows: assuming both
parties P and P′ hold the same password pw, and the adversary is an
eavesdropper, then party P outputs

H((Dpw(Y))x) = H((Dpw(Epw(gy)))x) = H((gy)x) = H(gxy)

20

The protocol uses a group (G, g, q), an ideal cipher (E ,D) where E : Dict × G →
{0, 1}λ and D : Dict × {0, 1}λ → G, and a random oracle H : G → {0, 1}λ. The
protocol is completely symmetric, so we only describe the behavior of party P.

1. On input (NewSession, sid,P,P′, pw, role), if this is the first NewSession
message for sid, party P samples x← Zq, computes X := Epw(gx), and sends
(sid,X) to P′.

2. On (sid, Y) from party P′, if Y /∈ {0, 1}λ, then party P samples K ← {0, 1}λ
and outputs (sid,K). Otherwise P computes K := H(Dpw(Y)) and outputs
(sid,K).

Fig. 4: Protocol DH-EKE

together with sid, and so does P′. Furthermore, it has been proven that DH-
EKE realizes FPAKE in the ideal cipher model and the random oracle model,
under the computational Diffie-Hellman assumption in the group (G, g, q) [14,
24]. Therefore, DH-EKE reasonably realizes FPAKE and thus realizes F .

Let S be the simulator for DH-EKE realizing F . We now use S to show that
TrivialPAKE also realizes F . The simulator S ′ works as follows:

Simulator S ′:

1. Upon receiving the first message from F , activate S using the same message.
After that, pass messages between S and F without any modifications. That
is, upon receiving a message from S (aimed at F), send the same message
to F ; upon receiving a message from F , send the same message to S (as a
message from F).

2. Upon receiving a message (sid,X) from S as a message from P to P′, send
(sid,⊥) to S as a message from P′ to P. The same goes for P′.

3. Continue passing messages between S and F .

We now prove that S ′ is successful. As warm-up, we first show that if
F = FPAKE, then S ′ is exactly the simulator for TrivialPAKE in the proof of
Proposition 1. The first message S ′ receives from FPAKE is
(NewSession, sid,P,P′, role), and S ′ passes this message to S. Then S begins to
simulate protocol messages, i.e., S sends (sid,X) aimed at P′. S ′ then behaves
like an environment that instructs the adversary to respond with (sid,⊥).
Upon receiving (sid,⊥), S needs to simulate P’s behavior of outputting a
random key; it does so by sending (TestPwd, sid,P,⊥) followed by
(NewKey, sid,P, 0λ) to FPAKE (whose role is played by S ′).11 This means that
S ′ also sends these two messages to its own FPAKE. At this point we recover
the simulator in the proof of Proposition 1.

11 0λ can be replaced by any string in {0, 1}λ.

21

In general, the crucial point is that S ′, while communicating with S, behaves
like an environment that instructs the real adversary to send (sid,⊥) to protocol
parties (causing them to output independent random keys). To see this formally,
for any environment Z ′ in the world of S ′ and attacking TrivialPAKE, consider
the following environment Z in the world of S and attacking DH-EKE:

Environment Z:

1. When Z ′ activates a new session for 〈P,P′〉 on password pw, do the same
thing.

2. Instruct the adversary to send (sid,⊥) as protocol messages.

Recall that S communicates with two parties: F to which it sends UC
commands, and Z to which it sends protocol messages (as messages from P
aimed at P′, or vice versa). S ′ plays the roles of both F and Z to S. For the
former interface, S ′ merely passes all messages from F to S, and from S to F ;
furthermore, Z ′ behaves exactly like Z when sending messages to F via P.
Therefore, the view of 〈S ′ � F � P� Z ′〉 is identical to the view of
〈S � F � P� Z〉. On the other hand, S ′ replaces all protocol messages with
(sid,⊥), which is exactly what Z does. We conclude that S ′ perfectly simulates
Z to S.

P F P′

S ′

Z ′

oo // oo // oo // oo //
OO

��
OO

(a) S ′ simulating TrivialPAKE to Z ′

P F P′

S

Z

oo // oo // oo // oo //
OO

��
OO
(sid,⊥)

��

(b) S simulating DH-EKE to Z

Fig. 5: Comparison of S ′ simulating TrivialPAKE to Z ′ and S simulating EKE
to Z. The messages in the upper halves of (a) and (b) are identical. However, in
(b), Z (whose role is played by S ′ in (a)) sends (sid,⊥) as protocol messages to
S. Since S is successful, P and P′ must output independent random keys in (b),
which in turn implies that P and P′ output independent random keys in (a), so
S‘ is also successful. Note that S ′ never sends any messages to Z ′, as there are
no protocol messages to simulate.

Since Z sends (sid,⊥) as protocol messages, in a real execution, this causes
P and P′ to output independent random keys in {0, 1}λ (together with sid).

22

P A P′oo // oo // =⇒ P oo FAUTH

// R oo FAUTH

// P′

A
��

OO

�� ��

Fig. 6: Changes to the real-world model used by PAKE. The left is for the
usual PAKE definition with a man-in-the-middle adversary, while the right
shows the router model (where the router R is corrupted). The unauthenticated
channel becomes two authenticated channels, with an extra router party passing
messages back and forth.

Thus, in the ideal world simulated by S, the output distribution of parties is
indistinguishable with each party independently outputting a random string in
{0, 1}λ (together with sid) per session. Recall again that the messages sent
between S ′ and F (whose role is played by S) are exactly the same with the
messages sent between S and F ; it follows that the parties’ output distribution
in the world of Z and S is also indistinguishable with the above, i.e., each
party independently outputting a random string in {0, 1}λ (together with sid)
per session. But TrivialPAKE has no protocol messages, and the only strings Z
receives are parties’ outputs (also see the proof of Proposition 1). This shows
that the view of Z simulated by S is indistinguishable from the real view —
i.e., S is “as successful as” S ′. Therefore, TrivialPAKE realizes F .

Since TrivialPAKE does not satisfy correctness, it does not reasonably realize
FPAKE. So we have a PAKE protocol that does not reasonably realize FPAKE

but realizes F , which contradicts the hypothesis about F . �

6 PAKE as a Three-Party Protocol

In this section, we show how to bypass the impossibility result in the previous
section and directly incorporating correctness into the PAKE functionality, by
changing the execution model of the PAKE to add a third party called the router
R. Such a definition allows a UC PAKE to compose with other protocols in the
normal sense of UC composition, allowing the higher level protocols to use the
fact that the PAKE is correct in a natural way.

Concretely, any protocol in the router model is required to have a
distinguished party R, and authenticated channels (Figure 7) connecting every
party to R; parties other than R do not communicate with each other directly.
The protocol’s code for R must tell it to simply route messages between the
parties — where each message sent to R is prefixed with the desired

23

– On input (sid,R,m) from S, send (sid,S,R,m) to A. Wait for (Ok, sid) from A.
Then send (sid,S,m) to R.

Fig. 7: The authenticated channel functionality, FAUTH (includes highlighted),
together with it’s guaranteed delivery variant F ′AUTH (excludes highlighted).
Note that we do not allow corrupted parties to modify their own messages –
this feature is unimportant for our purposes. F ′AUTH is modified from FAUTH

to guarantee that every message is delivered eventually. This is needed in
Section 6.2, as otherwise the protocol might not complete even when both parties
are honest.

destination, while each message sent by R is prefixed with the original source.
However, R is a corruptible party like any other, and when corrupted the
adversary can have it modify the messages arbitrarily. Intuitively, R represents
the man-in-the-middle adversary, and an honest R corresponds to the
adversary being an eavesdropper. The modified structure for PAKE protocols
in the router model is illustrated in Figure 6.

6.1 Correctness

In this section, we first deal with the case that both protocol parties must output
a key. This covers TrivialPAKE but not the “empty” protocol. In Figure 8, we
present a modified PAKE ideal functionality that works in the router model.
Below we show that it is equivalent to a UC PAKE that satisfies correctness.

Definition 10. A PAKE protocol Π has guaranteed output when all parties are
honest, or simply guaranteed output, if in any session where all parties are honest
(including the router R), the protocol parties both output a string in {0, 1}λ
(together with sid) with overwhelming probability before they halt.

Theorem 3. For any PAKE protocol Π that is based on an unauthenticated
channel and has guaranteed output, there is a corresponding router model PAKE
protocol Π̃ that is based on an authenticated channel and has guaranteed output,
and vice versa, such that the following conditions are equivalent:

(a) Π reasonably realizes FPAKE (Definition 9);

(b) Π̃ realizes FPAKE-3 (Figure 8), where R follows the static corruption model;

(c) Π̃ realizes FPAKE-3, where R follows the adaptive corruption model.

Proof. The correspondence between Π and Π̃ is already completely specified by
the router model. Below we prove equivalence of the three conditions.

(a)⇒(c): Let S be a successful strong perfectly reasonable simulator for

Π, which must exist by Theorem 1. We now construct a simulator S̃ for Π̃.

24

– On input (NewSession, sid,P,P′, pw, role) from P, create a record 〈P,P′, pw〉 and
mark it fresh if either: (a) this is the first NewSession message for sid, or (b) this
is the second NewSession message for sid and there is a record 〈P′,P, ·〉. Send
(NewSession, sid,P,P′, role) to S.

After sending NewSession, check if case (b) happened and P, P′ and R are all
honest. If so, run the NewKey handler below for P and then P′, i.e., behave as if
the messages (NewKey, sid,P, 0λ) and (NewKey, sid,P′, 0λ) were sent by S.

– On (TestPwd, sid,P, pw∗) from R or P′, if it is corrupted and there is a record
〈P,P′, pw〉 marked fresh, then do:
• If pw∗ = pw, mark the record compromised and send “correct guess” to R.
• If pw∗ 6= pw, mark the record interrupted and send “wrong guess” to R.

– On (NewKey, sid,P,K∗ ∈ {0, 1}λ) from S, if there is a record 〈P,P′, pw〉, and
this is the first NewKey message for sid and P, then output (sid,K) to P, where
K is defined as follows:
• If the record is compromised, or either P or P′ is corrupted, then set K := K∗.
• If the record is fresh, and a key (sid,K′) has been output to P′, at which

time there was a record 〈P′,P, pw〉 marked fresh, then set K := K′.
• Otherwise sample K ← {0, 1}λ.

Finally, mark the record completed.

Fig. 8: Three-party model UC functionality FPAKE-3 for PAKE. Differences with
the standard PAKE functionality (Figure 2) are highlighted in yellow. F ′PAKE-3

adds the lines highlighted in red to guarantee output.

Essentially, S̃ does whatever S does, except that S̃ treats the corrupted R as the
man-in-the-middle adversary while simulating protocol messages and sending
TestPwd commands:

Simulator S̃:

1. Upon receiving the first message from FPAKE-3 (which must be NewSession),
activate S using the same message. After that, forward FPAKE-3’s other
NewSession messages to S (as messages from FPAKE).

2. On (sid,m) from S as the simulation of a protocol message from P to P′, if R

is honest, then send (sid,P,R,m) and (sid,R,P′,m) to Z̃ (as messages from
FAUTH to the adversary; same below), and (sid,m) to S (as a message from
S’s environment; same below). If R is corrupted, then send (sid,P,R,m)

to Z̃ and (sid,m) to R; on (sid,m′) from R, send (sid,R,P′,m′) to Z̃ and
(sid,m′) to S.

3. On (TestPwd, sid,P, pw∗) from S, if either R or P′ is corrupted, then
forward this message to FPAKE-3 (as a message from the corrupted party),
and forward FPAKE-3’s response (“correct guess” or “wrong guess”) back to
S.

25

On the other hand, if both R and P′ are honest but P is corrupted, note
that FPAKE-3 does not allow a party to attack itself — that is, P cannot
trigger (TestPwd, sid,P, pw∗). Instead, simply check if pw∗ matches the
password of P, which can be seen from the NewSession message.

4. On (NewKey, sid, ·, ·) from S, forward this message to FPAKE-3.

We now prove that S̃ is successful; that is, for any efficient environment Z̃
attacking Π̃, S̃ generates a view indistinguishable from the real view of Z̃. The
key point is that S̃ acts like an environment — whose behavior corresponds to Z̃’s
behavior — in the view of S. To formalize this argument, define an environment
Z in the world of S and attacking Π:

Environment Z:

1. When Z̃ activates a new session for 〈P,P′〉 on password pw, do the same
thing.

2. As long as R is honest, instruct the adversary to transmit messages between
P and P′ without any modifications.

3. When R is corrupted, Z̃ may let R modify the protocol messages
arbitrarily, and Z matches this by instructing its own adversary modify the
unauthenticated channel messages in the same way. That is, when R
receives (sid,m) from P and sends (sid,m′) to P′, instruct the adversary to
send (sid,m′) to P′.

4. When Z̃ outputs a bit b, output the same bit b.

In the real world, the only difference between an execution of Π̃ by Z̃ and
the corresponding execution of Π by Z is how the messages are passed and
modified: in Π̃, the protocol messages are passed through FAUTH to the router,
which may modify them when corrupted; while in Π, the protocol messages
are passed and modified directly by the man-in-the-middle adversary. However,
we made Z instruct the man-in-middle adversary to apply the same message
modifications as would be made by the router (as can be seen in step 3 above).

Therefore, the view of Z̃ in the execution of Π̃ is identical to the view of Z in
the corresponding execution of Π. We have that

Pr[Z̃ outputs 1 in the real world] = Pr[Z outputs 1 in the real world].

In the ideal world, we first claim that the view of S when run by S̃, is identical
to the view of S in the world of Z. Indeed, the behavior of S̃ when communicating
with S is exactly the same as Z and FPAKE combined, except that when P, P′

and R are all honest, S̃ ignores TestPwd commands from S. However, notice that
as long as all parties are honest, Z instructs the adversary to transmit messages
between P and P′ without any modifications, so S sending TestPwd to FPAKE

means that GeneralSpuriousGuess(S,Z) occurs — which violates the assumption
that S is a strong perfectly reasonable simulator for Π. That is, it is impossible
for S to send TestPwd when all parties are honest, so S̃ does not need to consider
such an event.

26

We now argue that the view of Z̃ simulated by S̃ is identical to the view
of Z simulated by S. For protocol messages, S̃ simply sends whatever messages
simulated by S to Z̃ (as from FAUTH). For the outputs from P and P′, they are

triggered by a NewKey command from S̃. S̃ sends TestPwd to FPAKE-3 whenever
S sends such a message to FPAKE, and sends NewKey to FPAKE-3 whenever S
sends such a message to FPAKE. Finally, note that FPAKE-3 processes NewKey
messages in the same way as FPAKE does. We conclude that

Pr[Z̃ outputs 1 in the ideal world with S̃] = Pr[Z outputs 1 in the ideal world with S].

Combining the above, we get that DistΠ̃,FPAKE-3
(S̃, Z̃) = DistΠ,FPAKE

(S,Z),

which is negligible since S is successful. This shows that S̃ is successful, i.e., Π̃
realizes FPAKE-3.

(c)⇒(b): This implication is trivial, because the adaptive corruption model
is stronger than the static corruption model.

(b)⇒(a): We first prove that Π realizes FPAKE. Let S̃ be a successful

simulator for Π̃. The simulator S for Π is relatively simple so we only provide a
sketch: S runs S̃, passing its inputs and outputs to the appropriate parties and
functionalities. While simulating the environment for S̃, since R does not exist
for Π, S runs a fake party itself, treating R as always corrupted. Any
communication between S and FPAKE-3 is passed through directly by S̃ (using
FPAKE instead of FPAKE-3). For protocol messages, S needs to translate
between protocol message tampering by A and tampering by R — that is,
when S̃ sends e.g., (sid,P,R,m) as a message from FAUTH to the adversary, S
sends (sid,m) as a message from P to P′; when S receives (sid,m′) aimed at

P′, it sends the same message to S̃ as a message from R.
To show that S is successful, for any environment Z attacking Π, let Z̃ be

an environment attacking Π̃ that corrupts R at the beginning of the protocol.
Whenever Z instructs its adversary to tamper with protocol messages in Π, Z̃
translates this into tampering by R in Π̃. With this change to the environment,
the real and ideal worlds of Π exactly match the real and ideal worlds of Π̃,
and following the same structure as the proof of (a)⇒(c), we can see that S is
successful.

Finally, we must prove that Π is correct. To see this, consider an environment
Z̃ attacking Π̃, which activates a session between P and P′ with the two parties
using the same password pw, and outputs 1 if P and P′ output the same key
when they halt. (Z̃ does not corrupt R.) In the ideal world of Z̃, TestPwd cannot
be used so session records must remain fresh, guaranteeing that P and P′ output
the same key. This means that in a real execution of Π̃, when P and P′ are honest
using the same password pw, and R is honest, P and P′ must eventually output
the same key with overwhelming probability. (The argument above relies on the

fact that Π̃ has guaranteed output, i.e., P and P′ must output some key in Π̃.)

By the definition of Π̃, this immediately implies the correctness of Π, where the
condition “R is honest” is replaced by “the adversary is an eavesdropper”. �

27

6.2 PAKE Guaranteeing Output

Figure 6 also presents F ′PAKE-3, another PAKE ideal functionality in the router
model, this time designed to guarantee output as well as correctness. The idea is
to have the ideal functionality itself trigger the NewKey interface if the simulator
does not do it.

Unfortunately, two complications come with this change to the router model
PAKE functionality. First, we need to guarantee delivery of all messages sent
through the authenticated channel, as otherwise this functionality is impossible
to realize. We use a modified authenticated channel functionality F ′AUTH (see
Figure 7), where the message is both sent to the adversary and delivered directly.

Parallel execution. More importantly, these modified ideal functionalities now
send more than one message per activation, which is unusual for UC. Normally
ideal functionalities (as well as adversaries and simulators) are supposed to send
just one message and halt, not send other messages that might be processed in
parallel — in which case there might a “race condition”.

To see why this is problematic, consider the following example: let the
environment start a PAKE session with P, P′, and R all honest. The
corresponding protocol messages must then be simulated. If the ideal
functionality were to “run faster” than the simulator, i.e., if it triggers the
NewKey handlers before the simulator finishes generating the protocol
messages, then the key will be delivered too early. This would let the real world
and ideal world be easily distinguished.

We clarify the execution order by specifying that if program is of the form
“Send message m to party X, then do y”, the action y waits until after m is sent
and every action that occurs as a result of send m completes.12 For example,
with adaptive corruption, if the adversary receives (sid,P,R,m) from F ′AUTH it
could decide to corrupt R; this corruption would take place before (sid,S,m) is
sent to R. This ensures that there is still only one thread of execution occurring
at a time, and the ideal functionality merely writes down some action for later
(when there is nothing left to do).

While this is not a usual description of UC functionalities, it can be made
rigorous using the techniques from [21]. In their model, the environment is given
the power to slowly advance the protocol through the honest party’s interfaces,
by repeatedly triggering an Output interface in the functionality. On every Output
message13, let the ideal functionality start performing whatever action was saved
for later. As long as these queries are made by the environment, the functionality
will work as described above.

12 This can be viewed as a priority system. In programs of this form, we assign the
action y a lower priority than sending m to X, all processing done by X, all messages
sent by X as a result, and so on.

13 Technically, Output must be sent by every honest party. Additionally, it must be sent
some polynomial number of times, not just once, to allow protocols with multiple
rounds. See [21] for details.

28

Theorem 4. A router model PAKE protocol Π̃ realizes FPAKE-3 with guaranteed
output if and only if Π̃ realizes F ′PAKE-3 (in the guaranteed delivery router model,
i.e., all protocol messages are sent via F ′AUTH). This holds whether the router is
modeled with static or adaptive corruption.

Proof. F ′PAKE-3 ⇒ FPAKE-3 with guaranteed output: It is trivial that Π̃ realizes
FPAKE-3, because removing the extra NewKey trigger in NewSession only
strengthens the simulator’s power, as does adding the ability to not deliver
messages sent through FAUTH. That is, the simulator can send
(NewKey, sid,P, 0λ) and (NewKey, sid,P′, 0λ) to FPAKE-3 at the end, like
F ′PAKE-3 would have done, and can always choose to have all messages
delivered eventually, like in F ′AUTH.

We now show that Π̃ has guaranteed output. Consider the following
environment in the world of F ′PAKE-3:

Environment Z̃:

1. Initialize a single session between P and P′ on pw. That is, pick any sid,
and input (NewSession, sid,P,P′, pw, role) to P and (NewSession, sid,P′,P,
pw, role′) to P′.

2. Instruct A to be an eavesdropper in session sid.
3. Output 1 if P outputs (sid,K ∈ {0, 1}λ) and P′ outputs (sid,K ′ ∈ {0, 1}λ)

before they halt, and output 0 otherwise.

Let S be a successful simulator for Z̃. In the ideal world, note that the
extra clause in F ′PAKE-3 (under the NewSession command) guarantees that
(NewKey, sid,P, ·) and (NewKey, sid,P′, ·) will be called at least once, causing

P and P′ to output a key in {0, 1}λ (together with sid). Thus, Z̃ always
outputs 1. This means that in the real world,

Pr[P outputs (sid,K ∈ {0, 1}λ)∧P′ outputs (sid,K ′ ∈ {0, 1}λ)] ≥ 1−Dist(S,Z),

which is overwhelming. This shows that Π̃ has guaranteed output.

FPAKE-3 with guaranteed output ⇒ F ′PAKE-3: Given a successful simulator S̃
for Π̃ realizing FPAKE-3 using FAUTH, we define a simulator S̃ ′ for Π̃ realizing
F ′PAKE-3 using F ′AUTH:

Simulator S̃ ′:

1. Run S̃, and processing each message as if S̃ ′ had received it.
2. Whenever S̃ sends (sid,S,R,m) to A, instruct S̃ to deliver (sid,S,m) to the

recipient R.

Let Z̃ ′ be an efficient environment against Π̃ realizing F ′PAKE-3. Consider the

following environment Z̃ against Π̃ realizing F ′PAKE-3:

Environment Z̃:

29

1. Run Z̃ ′, and pass messages between Z̃ ′ and P, P′ and F ′AUTH without any

modifications (when a message is sent from FAUTH, pass this message to Z̃ ′
as if it is from F ′AUTH).

2. Whenever a message (sid,S,R,m) is sent from FAUTH to Z̃ ′, wait until Z̃ ′
finishes processing the message and all actions it triggers complete. Then let
FAUTH deliver the message to its destination R.

3. When Z̃ ′ outputs a bit b, output the same bit b.

In the real world, Z̃ behaves identically to Z̃ ′. Indeed, waiting for Z̃ ′’s
processing (and whatever Z̃ ′ triggers) to finish before delivering the message is
exactly the semantics given above for the execution splitting in F ′AUTH (see
discussion at the start of this section).

In the ideal world, this same feature of Z̃ matches with S̃ ′ always instructing
S̃ to simulate delivering its messages. This makes the ideal world with F ′PAKE-3,

S̃ ′ and Z̃ ′, and the ideal world with FPAKE-3, S̃ and Z̃, differ only in the extra
clause in F ′PAKE-3. However, this clause only matters when all three parties are
honest, and no NewKey message has been sent for both P and P′ — in which
case in the ideal world with FPAKE-3, S̃ and Z̃, Z̃ might halt without the key
sent to P and P′. We have that

DistΠ̃,F ′
PAKE-3

(S̃ ′, Z̃ ′)

= Pr[P,P′ outputs nothing in some session in the ideal world with FPAKE-3, S̃ and Z̃]

≤Pr[P,P′ outputs nothing in some session in the real world with Π̃ and Z̃]+

DistΠ̃,FPAKE-3
(S̃, Z̃),

which is negligible since Π̃ has guaranteed output and S̃ is successful. So S̃ ′ is
successful and we conclude that Π̃ realizes F ′PAKE-3. �

7 Conclusion

In this work, we presented a comprehensive study of correctness in universally
composable symmetric PAKE. Our contributions are four-fold:

First, we showed that TrivialPAKE, a protocol where the two parties simply
output independent random keys, realizes the standard UC PAKE functionality
FPAKE. The crux of the proof is that the simulator can use the TestPwd command
in FPAKE to interrupt protocol sessions, causing FPAKE to output independent
random keys to the two parties.

Second, we showed nine possible ways to address the issue. The first one is
to add a separate notion of correctness. The others require the UC simulator
to be reasonable: roughly speaking, the simulator is not allowed to send the
TestPwd command to FPAKE if the real adversary is an eavesdropper. There
are eight ways to impose this constraint on the simulator, resulting from three
dimensions:

30

– Whether it is a strong reasonable simulator, which means that it cannot send
TestPwd before the real adversary tampers with a protocol message, even if
the adversary later turns out not to be an eavesdropper;

– Whether it is a perfectly reasonable simulator, which means that it must
have zero probability of sending TestPwd when it should not, rather than
merely negligible probability;

– Whether we require only one successful simulator to be reasonable, or all
successful simulators to be reasonable.

We proved that six of the approaches above are equivalent to directly enforcing
correctness, while the other two are unachievable.

Third, we proved that it is impossibly to modify the UC PAKE functionality
to include correctness. The high-level idea is that any UC PAKE functionality
must have some mechanism equivalent to TestPwd in FPAKE, hence allowing
TrivialPAKE’s simulator to cause the two parties to output independent random
keys.

Finally, we showed how to bypass the impossibility result by modeling PAKE
as a three-party protocol, including a third party called the router. Messages
between the two protocol parties must pass through the router via a pair of
authenticated channels — hence a corrupted router essentially models the man-
in-the-middle adversary. We presented a three-party PAKE functionality where
the TestPwd command may only be sent from a corrupted party, who must be one
of the three participants (including the router), instead of the ideal adversary.
We proved that this PAKE functionality is equivalent to normal PAKE with
correctness.

While this work is in the context of PAKE, it seems that similar issues
about correctness appear in any protocol in the man-in-the-middle setting. For
example, the UC authenticated key exchange (AKE) functionalities in [17, 25]
also do not guarantee correctness: the functionalities include an Interfere
command which causes the corresponding party to output a random key, just
like TestPwd in FPAKE (when the password guess is incorrect); thus, an
incorrect protocol where the two parties output independent random keys still
has a successful simulator, just as with TrivialPAKE. We conjecture that
results similar to ours — including the natural fix by switching to the router
model — hold for other UC functionalities in the man-in-the-middle setting.

Finally, as pointed out in Remark 2, reasonable simulators have been
(informally) discussed while addressing another definitional issue in
asymmetric PAKE (aPAKE), although not in the context of correctness (hence
the underlying reason why this constraint on the UC simulator is needed is
different from ours). It would be interesting to explore whether a similar
impossibility result holds for aPAKE, and whether the requirement that a
simulator be reasonable can be removed by adding another party to the
modeling of aPAKE.

31

References

1. M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally
composable relaxed password authenticated key exchange. In CRYPTO 2020,
Part I, Aug. 2020.

2. M. Abdalla, B. Haase, and J. Hesse. Security analysis of CPace. In
ASIACRYPT 2021, Part IV, Dec. 2021.

3. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols. In CT-RSA 2005, Feb. 2005.

4. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT 2000, May 2000.

5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and
Privacy, May 1992.

6. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise. In
ACM CCS 93, Nov. 1993.

7. V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In EUROCRYPT 2000, May 2000.

8. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, Oct. 2001.

9. R. Canetti and M. Fischlin. Universally composable commitments. In
CRYPTO 2001, Aug. 2001.

10. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally
composable password-based key exchange. In EUROCRYPT 2005, May 2005.

11. R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of
universally composable two-party computation without set-up assumptions. In
EUROCRYPT 2003, May 2003.

12. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-
party and multi-party secure computation. In 34th ACM STOC, May 2002.

13. Crypto Forum Research Group. PAKE selection, 2020. https://github.com/

cfrg/pake-selection.

14. P.-A. Dupont, J. Hesse, D. Pointcheval, L. Reyzin, and S. Yakoubov. Fuzzy
password-authenticated key exchange. In EUROCRYPT 2018, Part III,
Apr. / May 2018.

15. C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In CRYPTO 2006, Aug. 2006.

16. A. Groce and J. Katz. A new framework for efficient password-based authenticated
key exchange. In ACM CCS 2010, Oct. 2010.

17. Y. Gu, S. Jarecki, and H. Krawczyk. KHAPE: Asymmetric PAKE from key-hiding
key exchange. In CRYPTO 2021, Part IV, Aug. 2021.

18. B. Haase and B. Labrique. AuCPace: Efficient verifier-based PAKE protocol
tailored for the IIoT. Cryptology ePrint Archive, Report 2018/286, 2018. https:

//eprint.iacr.org/2018/286.

19. J. Hesse. Separating symmetric and asymmetric password-authenticated key
exchange. In SCN 20, Sept. 2020.

20. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In EUROCRYPT 2018, Part III,
Apr. / May 2018.

32

https://github.com/cfrg/pake-selection
https://github.com/cfrg/pake-selection
https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2018/286

21. J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Universally composable
synchronous computation. In TCC 2013, Mar. 2013.

22. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key
exchange using human-memorable passwords. In EUROCRYPT 2001, May 2001.

23. J. Katz and V. Vaikuntanathan. Smooth projective hashing and password-based
authenticated key exchange from lattices. In ASIACRYPT 2009, Dec. 2009.

24. I. McQuoid, M. Rosulek, and L. Roy. Minimal symmetric PAKE and 1-out-of-N
OT from programmable-once public functions. In ACM CCS 2020, Nov. 2020.

25. B. F. D. Santos, Y. Gu, S. Jarecki, and H. Krawczyk. Asymmetric PAKE with low
computation and communication. In EUROCRYPT 2022, Part II, May / June
2022.

26. S. V. Smyshlyaev. Results of the PAKE selection process, 2020. https://

mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8.

A Proof of (1)⇒(3) in Lemma 1

Proof. Let S be any successful simulator for Π and Z be any efficient
environment; it is not hard to see that Pr[NoOutput(S,Z)] ≤ Pr[Correct(pw)] +
Dist(S,Z) is negligible, and we need to show that Pr[SpuriousGuess(S,Z)] is
negligible. Let q be an upper bound of the total number of sessions that Z
initializes. We construct another environment Z ′, which behaves exactly as Z
except that Z ′ uses a random password in a random session:

Environment Z ′:

1. Sample a random integer ` ← [q] as a guess of the session in which
Pr[SpuriousGuess(S,Z)] occurs.

2. Activate Z. For all sessions other than the `-th, pass messages between Z
and P, as well as messages between Z and P′, without any modifications.

3. For the `-th session sid, sample a random password pw ∈ Dict and input
(NewSession, sid,P,P′, pw, role) to P and (NewSession, sid,P′,P, pw, role′) to
P′. After that, instruct A to be an eavesdropper.

4. When P outputs (sid,K) and P′ outputs (sid,K ′) in the `-th session, output
1 if K = K ′ ∈ {0, 1}λ and output 0 otherwise. If P or P′ does not output
anything when it halts, then output 0.

Note that the output of Z ′ only depends on the `-th session, in which the
password is pw and Z ′ instructs the adversary to be an eavesdropper. In the real
world, we have that

Pr[Z outputs 1 in the real world] = Pr[Correct(pw)].

In the ideal world, assume that the guess of Z ′ is correct, i.e.,
SpuriousGuess(S,Z) occurs in the `-th session (denote this event as
SpuriousGuess`(S,Z)). This means that that Z instructs the adversary to be an
eavesdropper in this session, and S sends (TestPwd, sid,P, pw∗) or

33

https://mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8
https://mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8

(TestPwd, sid,P′, pw∗) to FPAKE. Observe that until the end of the `-th session,
the view of S in the experiment simulated by Z ′ is identical to the view of S in
the experiment with Z (the only difference between the behaviors of Z ′ and Z
is that Z ′ uses pw as the password in the `-th session, in which both Z and Z ′
instruct the adversary as an eavesdropper, so the password in this session is
independent of the view of S); thus, S also sends (TestPwd, sid,P, pw∗) or
(TestPwd, sid,P′, pw∗) to FPAKE in the experiment simulated by Z ′. Since pw
is independent of S’s view, the probability that pw∗ = pw is 1/|Dict|, and if
pw∗ 6= pw (i.e., the password guess of S is wrong), then the corresponding
session record becomes interrupted and the party outputs a random key in
{0, 1}λ, as can be seen in the third case of NewKey — so the probability that
K = K ′ is 1/2λ. Summing up, we have that

Pr[K = K ′ in the ideal world | SpuriousGuess`(S,Z)] ≤ 1

|Dict|
+

1

2λ
,

so

Pr[Z outputs 1 in the ideal world]

≤Pr[K = K ′ in the ideal world]

≤Pr[K = K ′ in the ideal world | SpuriousGuess`(S,Z)] · Pr[SpuriousGuess`(S,Z)]

+ Pr[SpuriousGuess`(S,Z)]

=

(
1

|Dict|
+

1

2λ

)
· Pr[SpuriousGuess`(S,Z)] + (1− Pr[SpuriousGuess`(S,Z)])

=1−
(

1− 1

|Dict|
− 1

2λ

)
· Pr[SpuriousGuess`(S,Z)]

=1−
(

1− 1

|Dict|
− 1

2λ

)
· Pr[SpuriousGuess(S,Z)]

q
.

Comparing the probabilities that Z outputs 1 in the real world and in the
ideal world, we get

Dist(S,Z) ≥
(

1− 1

|Dict|
− 1

2λ

)
· Pr[SpuriousGuess(S,Z)]

q
− Pr[Correct(pw)],

so

Pr[SpuriousGuess(S,Z)] ≤ q

1− 1
|Dict| −

1
2λ

· (Dist(S,Z) + Pr[Correct(pw)]).

Since Π is correct, Pr[Correct(pw)] is negligible; since S is successful, Dist(S,Z)
is negligible. Therefore, we conclude that Pr[SpuriousGuess(S,Z)] is negligible,
completing the proof. �

34

	A Universally Composable PAKE with Zero Communication Cost (And Why It Shouldn't Be Considered UC-Secure)
	Introduction
	Preliminaries
	Overview of the UC Framework
	Overview of PAKE

	A No-Message UC PAKE
	Seven Equivalent Ways to Guarantee Correctness
	Three Equivalent Ways to Guarantee Correctness
	Three Sets of Variants
	Putting It Together

	Impossibility of a Direct Solution
	PAKE as a Three-Party Protocol
	Correctness
	PAKE Guaranteeing Output

	Conclusion
	Proof of (1)(3) in lem:reasonable

