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Abstract—QC-MDPC (quasi cyclic moderate density parity
check) code-based McEliece cryptosystems are considered to be
one of the candidates for post-quantum cryptography. Decreasing
DER (decoding error rate) is one of important factor for their
security, since recent attacks to these cryptosystems effectively
use DER information. In this paper, we pursue the possibility
of optimization-base decoding, concretely we examine ADMM
(alternating direction method of multipliers), a recent developing
method in optimization theory. Further, RSPA (reproducing sum-
product algorithm), which efficiently reuse outputs of SPA (sum-
product algorithm) is proposed for the reduction of execution
time in decoding. By numerical simulations, we show that
the proposing scheme shows considerable decrement in DER
compared to the conventional decoding methods such as BF (bit-
flipping algorithm) or SPA.

Index Terms—QC-MDPC code-based cryptosystem, ADMM
method, reproducing sum-product algorithm, McEliece cryp-
tosystem.

I. INTRODUCTION

The safety of current cryptosystem (for example, RSA,
ECDH) are based on the computation difficulty such as
integer factoring or discrete logarithmic problem. These crypto
schemes are said to be no longer secure under the presence of
quantum computers, which are able to solve these problems
in polynomial time [16]. Although current number of qubits
are relatively small, algorithms resistant for quantum com-
puters equipped with practical qubits are desirable. Following
proposals; lattice-based, code-based, hash-based and multi-
variate, isogeny-base etc. are considered to be the framework
of cryptosystems for post quantum generation and these are
continuing to be reviewed in NIST post-quantum cryptography
standardization [20].

The present paper is concerned with the reduction of DER
(decoding error rate) in code-based cryptosystem. It is known
that there is an attack (GJS attack) [8] that effectively uses
decoding failure statistics to retrieve the parity check matrix
of the code (which is a secret key). Thus, reducing the DER is
considered to be one of important factors for preventing such
attacks. We note the efforts to reduce DER are seen in recent
studies [5], [6], [10], [13]–[15].

The security of code-based schemes is based on the hardness
of decoding linear random codes (indeed the problem is known
to be NP-hard problem [3]). The first code-based scheme is the
McEliece cryptosystem which use Goppa codes. The original

McEliece cryptosystem has been withstanding evaluation more
than thirty years and still regarded secure. A problem of
original McEliece cryptosystem is its large public key size.
For the reduction of public key size, various improvements
were proposed; see [4], [12], [19]. It should be noted that
the usage of LDPC codes directly for this purpose is known
to be dangerous, since parity check matrix of LDPC (low-
density parity check) codes might be recovered by decoding
low Hamming weight codewords, for example using Stern’s
method [17], as dual codes of original codes.

On the other hand, QC-MDPC (quasi cyclic moderate den-
sity parity check) code is currently regarded as safe and public
key size is small, and for such reasons, this scheme is remain-
ing as alternatives of NIST PQC as Public-key Encryption
and Key-establishment Algorithms [20]. Standard decoding
methods for QC-MDPC codes are variants of BF (bit-flipping)
algorithm. In this paper, we show DER of QC-MDPC codes
can be considerably improved compared to BF or SPA (sum-
product algorithm) by applying ADMM (alternating direction
method of multipliers) based decoding, which is a recently
developing subject in optimization theory. The ADMM de-
coding is a method based on IP (integer programming), which
achieve MLD (maximum likelihood decoding); see Feldman,
Wainwright and Karger [7]. Although IP decoding presents
high precision decoding, it costs a considerable amount of
execution time and hence the adoption seems to be limited to
relatively short code-length problems (about a few hundred
bits or so). While the ADMM decoding is reported to be
applicable to more than thousands of bits of code-length; see
[2], [11]. In this paper, we apply the algorithm of Barman, Liu,
Draper and Recht [2] and Liu and Draper [11] as the ADMM
decoding method and show even in the case of middle-density
parity checks and middle code-length (in cases code-length are
9602 and 10779), it works well.

Here, we have to note that the original projection algo-
rithm (Algorithm 2 of [2]) seems to be including some error
(actually, Algorithm 2 of [2] sometimes shows mismatching
values compared to the values computed by MIP solver Gurobi
optimizer 9.5 [9]); see Figure 1 and 2 in Section III. We
present the corrected projection algorithm to the code-polytope
in Algorithm 3 and examine its validity in Section VI.

The ADMM method can decode encrypted messages con-
siderably faster than original IP decoding, however, in our
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implementation, it required about 2.8∼7.8 times as many
decoding time in average, compared to BF algorithm; see
Table I and II. For improving this difference, we propose
yet another decoding method, RSPA (reproducing sum-product
algorithm), which efficiently reuse decoding failure of SPA. As
a result, the combination of RSPA and ADMM decoding show
the certain improvement of decoding time in average.

As for the reduction in DER, by numerical examination in
Section IV, we observe in the case of (n, k) = (9602, 4801)
code, the correctable number of errors increases from t = 87
(BF algorithm) to t = 103 under almost the same DER (less
than 10−7). Similarly, in the case of (n, k) = (10779, 3593),
correctable number of number of errors increases from t = 55
(BF algorithm) to t = 66 under almost the same DER (less
than 10−7). In other words, proposing scheme attains far less
DER for fixed error number t compared to BF algorithm
and hence prevents the collection of DER information by
adversaries.

II. QC-MDPC MCELIECE CRYPTOSYSTEMS

A. McEliece cryptosystems

We briefly review McEliece cryptosystems. Throughout this
paper, a set of codewords is denoted by C. The variables n, k,
t denote code-length, information bits length and correctable
error number, respectively. We abbreviate m = n − k. Also,
k×n binary matrix G, m×n binary matrix H , n×n matrix P
and k× k binary matrix S represent generator matrix, parity-
check matrix, random permutation matrix and scramble matrix
respectively. Put

G′ = SGP . (1)

Then (G′, t) is a public key and (G,S,P ) is a private key of
Bob. For a message m, using public key, Alice encrypts as

c = mG′ + e, (2)

where e is a correctable error vector whose Hamming weight
satisfies w(e) = t. Decoding process of Bob is as follows:

(i) Multiply P−1 to both sides of (2), that is

cP−1 = mG′P−1 + eP−1 = mSG+ eP−1.

(ii) Since w(eP−1) = w(e) = t, by applying certain
decoding scheme, he obtains c′ = mSG.

(iii) Multiplying G−1S−1 to c′, Bob retrieves the sent
message m.

B. QC-MDPC McEliece cryptosystems with code-rate R =
(n0 − 1)/n0

QC-MDPC codes are linear block codes whose binary
parity check matrices have moderate density of “one’ and
are introduced to reduce public key size of original McEliece
cryptosystems; see Misoczki, Tillich, Sendier and Barreto [12].
A parity check matrix of QC-MDPC McEliece cryptosystems
with code-rate R = (n0− 1)/n0 assumes the following form;
see for example [1, Section 3.6],

H = [H0,H1, . . . ,Hn0−1] , (3)

where each Hi, (0 ≤ i ≤ n0 − 1) is a binary p× p circulant
matrix of each row and column weight equals to dc. Hence it
holds that n = n0p and k = (n0− 1)p (so R = (n0− 1)/n0).
Without loss of generality, we can assume Hn0−1 is non-
singular, then the generator matrix of the code is expressed as
(see also [1, Section 3.6]),

G =


(
H−1

n0−1 ·H0

)T
Ik

...(
H−1

n0−1 ·Hn0−2

)T
 , (4)

where Ik is the k×k identity matrix. Since
(
H−1

n0−1 ·Hi

)T
,

(0 ≤ i ≤ n0 − 1) are circulant, public key will be only first
rows of these matrices, and as a result, reducing the size of
the public key.

III. DECODING METHODS

A. Bit-flipping decoding algorithm

The basic bit-flipping decoding algorithm is described as
follows:

Algorithm 1 Bit-flipping decoding algorithm
1: s←HcT .
2: while s ̸= 0 do
3: i← arg min0≤i≤n−1w(s+ hi).
4: if w(s+ hi) < w(s) then
5: ci ← 1− ci.
6: s← s+ hi.
7: else
8: return decoding failure.
9: end if

10: end while
11: return c.

As shown in the numerical experiments of next section, BF
decoding algorithm shows lower DER than SPA, especially in
cases w(e) are relatively small value; see Figure 7 and 8.

B. Notations

Next, we introduce ADMM algorithm according to [2].
Although, an algorithm developed in [2] assumes LDPC codes,
we show that the algorithm is also effective for decoding of
MDPC codes. We define some necessary notations: X and Y
denote: X = {0, 1} and Y = {0, 1}, since we assume BSC
(binary symmetric channel). Thus, sending messages belong to
k-dimensional subspace C of Xn and corresponding received
messages belong to Yn. The neighborhood of a each “check”
i is denoted by Nc(i) and the neighborhood of a each “vertex”
j is denoted by Nv(j), namely:

Nc(i) = {j |Hi,j = 1} and Nv(j) = {i |Hi,j = 1} ,

where Hi,j is a (i, j) element of parity check matrix H . In the
case, H is assumed to be as (3), since each row and column
of Hk, (0 ≤ k ≤ n0 − 1) has dc non-zero element, it holds
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that |Nc(i)| = n0dc, (0 ≤ i ≤ p) and |Nv(j)| = dc, (0 ≤ j ≤
n0p).

Let Nc(i) = {j1, j2, · · · , jd} (note that in the case of (3),
d = n0dc), then we define a linear map Pi : Rn → Rd as

(Pi)k,l =

{
1, l = jk

0, else.

For example, in the case

H =

1 1 1 0 0 0
0 0 1 1 0 1
0 0 0 1 1 1

 (5)

we have

P1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , P2 =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


P3 =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Define

Pd :=
{
x ∈ {0, 1}d | ∥x∥1 is even

}
,

where ∥ · ∥p represents a lp norm. Then, we can write

x ∈ C ⇔ Pix ∈ Pd, (1 ≤ i ≤ m).

For x ∈ X and y ∈ Y , W (y|x) represents the conditional
probability of BSC, i.e. W (1|0) = W (0|1) = p and W (0|0) =
W (1|1) = 1 − p where p ∈ [0, 1/2). Assume a sending
message is x = (x1, . . . , xn) ∈ Xn and a received message
be y = (y1, . . . , yn) ∈ Yn. Since we assume memoryless
channel, the conditional probability p(y|x) is represented
as: p(y|x) =

∏n
j=1 W (yj |xj). The ML encoding choose

x ∈ Xn that maximizes p(y|x), thus equivalently maximizes∑n
j=1 logW (yj |xj). We put

γj := log (W (yj |0)/W (yj |1)) , (1 ≤ j ≤ n). (6)

Since logW (yj |xj) = −γjxj + logW (yj |0), ML decoding
reduces to determining x ∈ C that minimizes γTx =∑n

j=1 γjxj . Thus, ML decoding is described as:

Minimize:
n∑

j=1

γjxj subject to Pix ∈ Pd, (1 ≤ i ≤ m). (7)

By the relaxation of each binary variable xi (1 ≤ i ≤ n) to the
interval [0, 1], we obtain LP (linear programming) relaxation
of IP (7) (The LP relaxation by Feldman etc. [7] is a kind of
this relaxation):

Minimize:
n∑

j=1

γjxj subject to Pix ∈ PPd, (1 ≤ i ≤ m), (8)

where PPd is a convex hull of Pd, i.e. PPd = conv(Pd).

C. ADMM formulation

For expressing LP decoding formulation (8) to correspond-
ing ADMM formulation, the “replica” vectors zi, (1 ≤ i ≤ m)
are introduced. Moreover, to accelerate the computation, we
also introduce a penalty term. Hence, we consider

Minimize:
n∑

j=1

γjxj − α

n∑
j=1

(xj − 0.5)
2 (9)

subject to Pix = zi, zi ∈ PPd, (1 ≤ i ≤ m),

where α > 0 is an acceleration parameter and the second term
of objective function is a penalty term. Put z = (z1, . . . ,zm)
and λ = (λ1, . . . ,λm). The ADMM method optimize the
augmented Lagrangian:

Lµ(x, z, λ) :=

n∑
j=1

γjxj − α

n∑
j=1

(xj − 0.5)
2 (10)

+

m∑
i=1

λT
i (Pix− zi) +

µ

2

m∑
i=1

∥Pix− zi∥22,

We can write the update steps of ADMM as:

xq+1 := arg min
x∈[0,1]n

Lµ (x, z
q,λq) (11)

zq+1
i := arg min

z∈(PPd)m
Lµ

(
xq+1, z,λq

)
, (1 ≤ i ≤ m)

λq+1
i := λq

i + µ
(
Pix

q+1 − zq+1
i

)
, (1 ≤ i ≤ m).

Let δx ∈ Rn be a variation vector of x, γ = (γ1, . . . , γn)
and 1 = (1, . . . , 1)T . Then, we obtain

Lµ (x+ δx, z, λ) = Lµ(x, z, λ) + ⟨γ, δx⟩

− 2α⟨x− 0.5 · 1, δx⟩+
m∑
i=1

⟨λi,Piδx⟩

+ µ

m∑
i=1

⟨Pix− zi,Piδx⟩

= ⟨γ, δx⟩ − 2α⟨x− 0.5 · 1, δx⟩+
m∑
i=1

⟨P T
i λi, δx⟩

+ µ

m∑
i=1

⟨P T
i Pix− P T

i zi, δx⟩

= ⟨γ, δx⟩ − 2α⟨x− 0.5 · 1, δx⟩+
m∑
i=1

⟨P T
i λi, δx⟩

+ ⟨µPx− µ

m∑
i=1

P T
i zi, δx⟩,

where P =
∑m

i=1 P
T
i Pi. Thus, we obtain,(

P − 2α

µ
I

)
x =

m∑
i=1

(
P T

i zi −
1

µ
P T

i λi

)
− α

µ
1− γ

µ
.

(12)
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In the case of (5), we have

P =

3∑
i=1

P T
i Pi =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 2

 ,

and in general, we have (P )i,j = |Nv(j)|δi,j . For simplicity,
we denote by z

(j)
i , the j-th component of P T

i zi. Similarly,
λ
(j)
i denotes the j-th component of P T

i λi. Hence from (12)
and the restriction xj ∈ [0, 1] for (1 ≤ j ≤ n), it holds that

xj =Π[0,1]

(
1

|Nv(j)| − 2α
µ

)
· (13)

·

{
m∑
i=1

(
z
(j)
i −

λ
(j)
i

µ

)
− α+ γj

µ

}
, (1 ≤ j ≤ n),

where Π[0,1] is a projection to the interval [0, 1]. To obtain the
minimizer of the second expression of (11), we rewrite the
third and fourth terms of (10) as follows:

λT
i (Pix− zi) +

µ

2
∥Pix− zi∥22

=
µ

2

{
∥Pix+

λi

µ
− zi∥22 −

∥λi∥22
µ2

}
.

Hence it holds

zq+1
i = arg min

zi∈PPd

∥Pix
q+1 +

λq
i

µ
− zi∥2,

which is a metric projection of Pix
q+1 +

λq
i

µ onto the closed
convex set PPd with d = N0dc, i.e.

zq+1
i = ΠPPd

(
Pix

q+1 +
λq
i

µ

)
. (14)

Summarizing the above argument, the ADMM decoding pro-
cedure is described as follows. Recall that y = x + e is a
received message where e satisfies w(e) = t.

Algorithm 2 The ADMM decoding algorithm
1: Initialize γ as (6), q = 0, set a positive integer M and

ϵ > 0, a small number.
2: Initialize zi = Piy, λi = 0, (1 ≤ i ≤ m).
3: repeat
4: for all j (1 ≤ j ≤ n) do
5: Update xj accrding to (13).
6: end for
7: for all i (1 ≤ i ≤ m) do
8: set vi = Pix+ λi/µ.
9: zi ← ΠPPn0dc

(vi).
10: λi ← λi + µ (Pix− zi).
11: end for
12: q ← q + 1
13: until HxT = 0 (Parity satisfied) or q > M
14: return x.

The most time consuming part of the Algorithm 2 is Step
9: zi ← ΠPPn0dc

(vi), a projection of vi to code-polytope
PPn0dc

.

Here, we have to note the projection algorithm to the code-
polytope PPn0dc (Algorithm 2 of [2]) seems to need some
modification, and without such modification, non-negligible
degradation in decoding performance arises. Indeed, some-
times mismatching values were observed for the convex-
quadratic programming (20) compared to the one obtained by
MIP solver Gurobi optimizer 9.5 [9] (we note replacing the
projection algorithm for (20) with MIP solver is unrealistic
from the time-consuming view point).

We will show these degradations with numerical examples.
Figure 1 shows the DER of each decoding method for (n, k) =

t
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Fig. 1. DER of each decoding method for (n, k) = (2000, 1000) and dc = 5
LDPC code.

(2000, 1000) and dc = 5 LDPC code. In the figure labels
“SPA” and “BF” mean sum-product algorithm and bit-flipping
algorithm, respectively. While labels “PROJO” and “PROJ”
mean ADMM decoding with original projection algorithm of
[2] (Algorithm 2) and corrected projection algorithm respec-
tively. We can observe that “PROJ” decreases DER about 1/10
times to “PROJO” for each error number t and even superior to
SPA. We note both ADMM decoding use parameters α = 10,
µ = 6 and M = 10000. Figure 2 shows the DER of each
decoding method for (n, k) = (2000, 1000) and dc = 25
MDPC code. In this case SPA deteriorates its performance
compared to the of Figure 1 since the low-density property
of parity check matrix was lost. Comparing “PROJO” with
“PROJ”, we observe that in this case “PROJ” also decreases
DER about 1/10 times to “PROJO” for each error number t.
We note both ADMM decoding use parameters α = 10, µ = 6
and M = 10000.

From these observations, we conclude that the correction of
projection algorithm is a principal factor for the improvement
of DER.

D. Modified projection algorithm

Following is a correction of projection algorithm to PPn0dc .
For simplicity, we abbreviate d = N0dc and denote by ⌊x⌋even
the largest even number integer smaller than x. The correctness
of the following algorithm is shown in Appendix VI.
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Fig. 2. DER of each decoding method for (n, k) = (2000, 1000) and dc =
25 MDPC code.

Algorithm 3 The projection algorithm ΠPPd
(u)

1: Permutate u to v in descending order: v1 ≥ v2 ≥ · · · ≥
vd. Let Q be the corresponding permutation matrix i.e.
v = Qu.

2: ẑ ← Π[0,1]d(v). Put r = ⌊∥ẑ∥1⌋even.
3: Put f = (f1, . . . , fd) and set fi = 1, (1 ≤ i ≤ r + 1),

fi = −1, (r + 2 ≤ i ≤ d).
4: if r = d or r = d− 1 then
5: return QT ẑ.
6: end if
7: if

∑d
i=1 fiẑi ≤ r then

8: return QT ẑ.
9: end if

10: set βmax ← 1
2 (vr+1 − vr+2).

11: set β̂ ←
{
β̂1, . . . , β̂2d

}
as

β̂i =


vi − 1, (1 ≤ i ≤ r + 1)

−vi, (r + 2 ≤ i ≤ d)

vi, (d+ 1 ≤ i ≤ d+ r + 1)

1− vi, (d+ r + 2 ≤ i ≤ 2d).

12: set β̃ ←
{
β̃ ∈ β̂ ∪ {0} ∪ {βmax} | 0 ≤ β̃ ≤ βmax

}
.

13: Sort β̃ to β in ascending order. Hence β =
{β1, β2, . . . βp} satisfies 0 = β0 < β1 < · · · < βp = βmax.

14: set L← 0, R← p,M ← ⌊(L+R)/2⌋.
15: while R− L > 1 do
16: set

ẑi =

{
vi − βM , (1 ≤ i ≤ r + 1)

vi + βM , (r + 2 ≤ i ≤ d).

17: if
∑d

i=1 fi ·
(
Π[0,1] (ẑi)

)
< r then

18: R←M .
19: else
20: L←M .
21: end if

22: M ← ⌊(L+R)/2⌋.
23: end while
24: set

ẑi =

{
vi − βR, (1 ≤ i ≤ r + 1)

vi + βR, (r + 2 ≤ i ≤ d).

25: set fz ←
∑d

i=1 fi ·
(
Π[0,1] (ẑi)

)
.

26: set

ẑi =

{
vi − βL, (1 ≤ i ≤ r + 1)

vi + βL, (r + 2 ≤ i ≤ d).

27: set fz0 ←
∑d

i=1 fi ·
(
Π[0,1] (ẑi)

)
.

28: set βopt ← (r−fz)(βR−βL)
fz−fz0

+ βR

29: set zi, (1 ≤ i ≤ d) as

zi =

{
Π[0,1] (vi − βopt) , (1 ≤ i ≤ r + 1)

Π[0,1] (vi + βopt) , (r + 1 ≤ i ≤ d).

30: return QTz.

IV. NUMERICAL EXPERIMENTS

We examine the proposing ADMM based decoding with
some parameters of Table II of [12]. Numerical examinations
were executed on Intel Core i9-7980XE CPU @ 2.60GHz
processor, with no parallelization (except Step 8 in Algorithm
5 where NSPA parallelization were applied) and ANSI C
implementation (icc 2021.6.0 with -O3 option). Table I shows
the execution time ratio (execution time of BF was taken as a
reference point) for (n, k, dc, n0) = (9802, 4601, 45, 2) code.
The number of experiments for each method is 100000. In
SP, maximum iteration number is set as 50 and in ADMM,
parameters are set as (µ, α,M) = (6, 15, 10000). The label
“ME” is the “matrix-extension” method proposed in [5]. The
maximum extension size of parity matrix is 14403 × 19204.
For (n, k, dc, n0) = (10779, 3593, 51, 3) code, execution time

TABLE I
EXECUTION TIME RATIO OF EACH DECODING METHODS FOR

(n, k, dc, n0) = (9802, 4601, 45, 2) CODE.

method t = 105 t = 100
BF 1.0 1.0

SPA 1.90 1.53
ADMM 3.60 2.76

ME 2.84 1.67
RSPA-ADMM 1.98 1.55

ratio is as Table II. In SP, maximum iteration number is set

TABLE II
EXECUTION TIME RATIO OF EACH DECODING METHODS FOR

(n, k, dc, n0) = (10779, 3593, 51, 3) CODE.

method t = 68 t = 66
BF 1.0 1.0

SPA 2.53 2.04
ADMM 7.76 5.80

ME 1.99 1.15
RSPA-ADMM 4.02 2.19

as 50 and in ADMM, parameters are set as (µ, α,M) =
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(8, 15, 10000). In this case the maximum extension size of
parity matrix in ME is 14372× 21588.

Although as we can recognize from Figures 2, 7 and 8, error
correction ability of ADMM is superior to BF SP and ME,
average decoding time, in our implementation, requires about
2.8∼7.8 as many times compared to BF decoding. For im-
proving this difference, we pursue yet another algorithm RSPA
(Reproducing Sum-Product Algorithm) which effectively reuse
outputs of SPA. The algorithm RSPA is as follows:

Algorithm 4 The reproducing sum-product algorithm

1: set NSPA as maximum iteration number, i = 0.
2: while i < NSPA do
3: set c′ as decoding result of SPA for c (after hard

decision is applied to each bits).
4: if Hc′T = 0 then
5: return c′.
6: end if
7: c← c′.
8: i← i+ 1.
9: end while

10: return decoding failure.

We consider the case HcT ̸= 0. Put the difference
between noiseless received information mG′ and decoding
result of SPA (after hard decision to each bits) as dh(c

′): i.e.
dh(c

′) = w (mG′ − c′). Thus dh(c
′)− t represents decrease

(if dh(c′)−t < 0) and increase (if dh(c′)−t > 0) of error bits
number ∥e∥1 after hard decision. Figure 3 show the number of
observed values of dh(c′)− t when t = 110. For example, the
number of trials which take −5 ≤ dh(c

′)− t ≤ −1 occupies
51, while the number of trials which take 1 ≤ dh(c

′)− t ≤ 5
is 5, under total 100 decoding errors. Figure 4 shows the

Fig. 3. The barchart of the number of observed values of w (mG′ − h(c′))
in the case of SPA decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 110).

case t = 95. In this case, there is no case which takes
dh(c

′) − t ≥ 0. From Figure 3 and 4, we can expect that
as the iteration number i increases, the value dh(c

′)− t tends
to decrease. As a result, all errors will be fixed as the iteration
number increases. We note that the same effect cannot be
expected for BF algorithm. Figure 5 and 6 are results obtained
by replacing the decoding method SPA in Algorithm 4 to BF
under the circumstance of Figure 3 and 4 respectively. We

Fig. 4. The bar chart of the number of observed values of w (mG′ − h(c′))
in the case of SPA decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 95).

Fig. 5. The bar chart of the number of observed values of w (mG′ − h(c′))
in the case of BF decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 110).

observe that Figure 5 and 6 show dh(c
′) − t > 0 almost all

cases, and hence we cannot expect the reduction of erroneous
bits by successive hard decision of decoding results.

After each iteration of RSPA, in most case, the number
of erroneous bits is expected to reduce, hence by applying
ADMM method to c obtained by hard decision in Step 7,
further improvement in DER could be expected. We call this
hybrid algorithm RSPA-ADMM method.

Algorithm 5 The RSPA-ADMM method.

1: set NSPA as maximum iteration number, i = 0.
2: while i < NSPA do
3: set c′ as decoding result of SPA for c (after hard

decision is applied to each bits).
4: if Hc′T = 0 then
5: return c′.
6: end if
7: c← c′.
8: Apply ADMM decoding to c. set c′ as decoding result

of ADMM for c.
9: if Hc′T = 0 then

10: return c′.
11: end if
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Fig. 6. The bar chart of the number of observed values of w (mG′ − h(c′))
in the case of BF decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 95).

12: i← i+ 1.
13: end while
14: return decoding failure.

We note Step 8 can be done in parallel. As an effect of
the introduction of RSPA-ADMM method, it is observed that
the average decoding time is reduced to 1.55∼4.02 times
compared to BF decoding. This is because in most cases,
RSPA-ADMM algorithm ends with RSPA part.

Fig. 7. DER of each decoding method for (n, k, dc, n0) =
(9602, 4801, 45, 2) code.

Figure 7 shows the DER of 6 methods (SPA, BF,
ME, RSPA, ADMM, RSPA-ADMM) for (n, k, dc, n0) =
(9602, 4801, 45, 2) code. The maximum iteration number of
SP was set to 50. The parameters (µ, α,M) in ADMM and
RSPA-ADMM methods were fixed to (6, 15, 10000). We note
parameters µ and α were chosen by heuristic trials, hence
these may not be an optimal choice. In spite of this, it holds
that ADMM and RSPA-ADMM attains DFR lower than 10−7

at t = 103 compared to the result that BF decoding requires

t = 87 for attaining almost the same DFR. We note DER of
RSPA-ADMM when t = 103 might be less than 10−8, since
no decoding error was observed under 108 trials. Figure 8

Fig. 8. DER of each decoding method for (n, k, dc, n0) =
(10779, 3593, 51, 3) code.

shows the DER of 6 methods (SPA, BF, ME, RSPA, ADMM,
RSPA-ADMM) for (n, k, dc, n0) = (10779, 3593, 51, 3) code.
The maximum iteration number of SP was set to 50. The
parameters (µ, α,M) in ADMM and RSPA-ADMM methods
were fixed to (8, 15, 10000). It seems to be remarkable that
ADMM and RSPA-ADMM attains DFR lower than 10−7 at
t = 66 compared to the result that BF decoding requires
t = 55 for attaining almost the same DFR. We note DER
of RSPA-ADMM when t = 66 might be less than 10−8, since
no decoding error was observed under 108 trials.

V. DISCUSSION

This paper presented the effectiveness of ADMM based
methods in decoding QC-MDPC codes. Since proposing two
methods ADMM and RSPA-ADMM have abilities to correct
more errors than standard error number assumed for BF
algorithm, these ADMM based decoding can detect irregular
usage of error numbers that aimed for the collection of DER
information by adversaries. Hence, proposing schemes may
serve as an audit device which guard the conventional BF
algorithm based decoding systems.

Although ADMM based decoding showed certain improve-
ments in DER, following problems remains. First, the system-
atic methods for the determination of the optimal parameters
(µ, α) in ADMM decoding algorithm.

Second, an acceleration problem of the ADMM decoding
methods. In Algorithm 2, Step 5 can be done in parallel.
Thus, the acceleration of projection to ΠPPn0dc

remains as
essential problem. Zhang-Siegel [18] is proposing an alterna-
tive projection algorithm that is reported to be effective in the
improvement of decoding speed for LDPC codes. The essential
improvement of [18] is replacing sorting operation in Step 1 of
Algorithm 3 with “cut search algorithm”. Since the numbers of
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n0dc that should be sorted in Step 1 of Algorithm 3 are rather
large number for MDPC codes compared to LDPC codes
cases, the “cut search algorithm” might work more effectively
than LDPC codes cases in [18].

VI. APPENDIX

A. Preparation

In this section, we show the validity of projection algorithm
3 for the sake of completeness. The main difference with
Algorithm 2 of [2] is the set β̂ in Step 11 of Algorithm 3.
In Algorithm 2 of [2], the set β̂ is defined as:

β̂i =

{
vi − 1, (1 ≤ i ≤ r + 1)

−vi, (r + 2 ≤ i ≤ d).

This seems to be the main factor which cause non-negligible
degradation of DER in Figure 1 and 2.

First, we prepare lemmas necessary for our purpose.
Lemma 6.1 ( [2, Propostion 3]): Assume the components

of v ∈ Rd is sorted in descending (ascending) order, then the
components of ΠPPd

maintain this order.
Definition 6.2: Assume the components of v,w ∈ Rd are

sorted in descending order, i.e.

v1 ≥ v2 ≥ · · · ≥ vd, w1 ≥ w2 ≥ · · · ≥ wd.

Then the vector w is said to “majorizes” u if{∑q
k=1 uk ≤

∑q
k=1 wk, (1 ≤ q ≤ d− 1)∑d

k=1 uk =
∑d

k=1 wk.

Lemma 6.3 ( [2, Theorem 1]): Suppose vectors u and w
are sorted in descending order. Then u is in the convex hull
of all permutations of w if and only if w majorizes u.

We define Ps
d = {x ∈ {0, 1}d | ∥x∥1 = s} and PPs

d =
conv(Ps

d). Recall that PPd = conv(Pd), so it holds

PPd = conv (∪0≤s≤d,s:evenPPs
d) . (15)

From Lemma 6.3, it holds that u ∈ PPs
d ⇐⇒{∑q

k=1 uk ≤ min(q, s), (1 ≤ q ≤ d− 1)∑d
k=1 uk = s.

(16)

Further, following lemma (two-slice lemma) holds:
Lemma 6.4 ( [2, Lemma 2]): Suppose the components of

z ∈ PPd is sorted in descending order. Define r be the
minimum even integer greater than or equal to ⌊∥z∥1⌋even.
Then z is expressed by convex combination of PPr

d and
PPr+2

d .
Suppose u ∈ PPr

d ∩ [0, 1]d and v ∈ PPr+2
d ∩ [0, 1]d. Then,

from Lemma 6.4, for α satisfying 0 ≤ α ≤ 1, it holds
q∑

k=1

zk =

q∑
k=1

(αuk + (1− α)vk) (17)

=α

q∑
k=1

uk + (1− α)

q∑
k=1

vk

≤αmin(q, r) + (1− α)min(q, r + 2), (1 ≤ q ≤ d− 1).

and

d∑
k=1

zk =

d∑
k=1

(αuk + (1− α)vk) (18)

=α

d∑
k=1

uk + (1− α)

d∑
k=1

vk = αr + (1− α)(r + 2).

We note in the case q ≤ r, (17) clearly holds. While in the
case q ≥ r + 2, (since d − 1 ≥ q ≥ r + 2, this case occurs
when r + 3 ≤ d), we can observe (17) holds if(18) is valid.
Thus, (17) should be considered only for the case q = r + 1.
For the case q = r + 1, (since d − 1 ≥ q = r + 1, this case
occurs when r + 2 ≤ d) (17) becomes as follows

r+1∑
k=1

zk ≤ αr + (1− α)(r + 1) = r + 1− α, (r + 2 ≤ d).

(19)

From (18), we have

α = 1 +
1

2

(
r −

d∑
k=1

zk

)
,

and hence the projection ΠPPd
(v) for v ∈ Rd is described as

convex quadratic programming problem:

(P) Minimize ∥v − z∥22 (20)
Subject to

0 ≤ zi ≤ 1, (1 ≤ i ≤ d) (21)
zi ≥ zi+1, (1 ≤ i ≤ d− 1) (22)

r ≤
d∑

k=1

zk ≤ r + 2↔ 0 ≤ α ≤ 1 (23)

r+1∑
k=1

zk −
d∑

k=r+2

zk ≤ r, (r + 2 ≤ d)↔ (19). (24)

We note (24) is valid only in the case r + 2 ≤ d and in this
case we can express (24)by

fT
r z ≤ r (25)

where fT
r = (1, . . . , 1,−1, . . . ,−1).

Following lemma is well-known.
Lemma 6.5: Assume f , gi, (1 ≤ i ≤ m) are all convex

functions on Rd. Define the minimization problem:

(CP) Minimize f(x) (26)

Subject to gi(x) ≤ 0, (1 ≤ i ≤ m), x ∈ Rd.

Suppose x̄ satisfies Karush-Kuhn-Tucker (KKT) conditions.
Then x̄ is a (global) minimizer of problem (CP).

In the case of problem (P), f is a strictly convex function
on Rd, thus we obtain:

Lemma 6.6: Assume x̄ satisfies KKT condition for problem
(P). Then x̄ is a unique (grobal) minimizer of problem (P).



9

B. Varidity of Algorithm 3

Since r = ⌊∥ẑ∥1⌋even (step 2), we have

r ≤ d. (27)

As noted (25) is valid only in the case r + 2 ≤ d, we
consider the cases r = d or r + 1 = d for problem (P). For
these cases, from the definition of r it holds

r ≤
d∑

k=1

ẑk ≤ r + 2.

Since v1 ≥ v2 ≥ · · · ≥ vd, ẑk (1 ≤ k ≤ d) keeps this order.
Thus

ẑi+1 − ẑk ≥ 0, (1 ≤ k ≤ d− 1).

From the definition 0 ≤ ẑk ≤ 1, (1 ≤ k ≤ d). Hence ẑ is
a minimizer of problem (P) under constraint conditions (21),
(22) and (23); (see step 4 and 5).

Here after, we fix r + 2 ≤ d. First we consider the case
fT
r ẑ ≤ r. As in the case r = d or r + 1 = d, ẑ satisfies

conditions (21), (22) and (23). Moreover, form the assumption
(24) is satisfied. Hence ẑ is a minimizer of problem (P); (see
step 7 and 8).

Hence we can assume

fT
r ẑ > r. (28)

The KKT condition for the problem (P) is described as: there
exists β,ν,η, ξ,θ and ζ such that following conditions are
satisfied.

z =v − βfr − ν + η − (ξ − ζ)1+ STθ, (29)

0 ≤ β ⊥ fT
r z − r ≤ 0, (30)

0 ≤ ν ⊥ z ≤ 1, (31)
0 ≤ η ⊥ z ≥ 0, (32)
θ ⊥ Sz ≥ 0, (33)

0 ≤ ξ ⊥ 1Tz − r − 2 ≤ 0, (34)

0 ≤ ζ ⊥ 1Tz − r ≥ 0, (35)

then z is a unique minimizer of (P). Here ⊥ means for example
for (31) νi(1− zi) = 0, (1 ≤ i ≤ d) and

S =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
. . .

...
0 0 0 0 · · · 1 −1

 .

We note the uniqueness of the minimizer follows from Lemma
6.5.

In the following we see that such β,ν,η, ξ,θ and ζ exists.
For fixed β > 0 we decide νi, (1 ≤ i ≤ d) as follows:

νi =

{
0, vi − β(fr)i ≤ 1

vi − β((fr)i)− 1, vi − β(fr)i > 1.
(36)

Similarly, ηi is decided as follows:

ηi =

{
0, vi − β(fr)i ≥ 0

−vi + β(fr)i, vi − β(fr)i < 0.
(37)

Moreover, we fix ξ = ζ = 0 and θ = 0. From these z, which
is the LHS of (29) is regarded as a function of β and expressed
as

z(β) = Π[0,1]d (v − βfr) . (38)

Hence, from (36), condition (31) is satisfied, also form (37),
condition (32) is satisfied. As Step 10, range of β is defined
as

0 ≤ β ≤ βmax =
1

2
(vr+1 − vr+2) .

We note following holds:

β ≤ βmax ←→ vr+2 + β ≤ vr+1 − β.

From

(z(βmax))r+1 = Π[0,1] (vr+1 − βmax)

= Π[0,1]

(
1

2
(vr+1 + vr+2)

)
and

(z(βmax))r+2 = Π[0,1] (vr+2 + βmax)

= Π[0,1]

(
1

2
(vr+1 + vr+2)

)
= (z(βmax))r+1 ,

we have

frz(βmax) =

r∑
i=1

(z(βmax))i + (z(βmax))r+1 (39)

− (z(βmax))r+2 −
d∑

i=r+3

(z(βmax))i

=

r∑
i=1

(z(βmax))i −
d∑

i=r+3

(z(βmax))i

≤ r −
d∑

i=r+3

(z(βmax))i ≤ r.

Since from (28)

frz(0) = frẑ > r,

there exists βmax (0 < βopt ≤ βmax) such that

frz(βopt) = r. (40)

We will show that z(βopt) satisfies KKT condition (recall that
conditions (31) and (32) are already satisfied). From (40), the
condition (30) is satisfied.

To see (33), Sz(βopt) ≥ 0 is enough (since θ = 0,⊥ relation
is satisfied). From the assumption (Step 1), for non-negative
β it holds

v1 − β ≥ v2 − β ≥ · · · ≥ vr+1 − β

and

vr+2 + β ≥ vr+3 + β ≥ · · · ≥ vd + β.

Since

vr+1 − β ≥ vr+2 + β ←→ β ≤ 1

2
(vr+1 − vr+2) = βmax,
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we have

(z(βopt))1 ≥ (z(βopt))2 ≥ · · · ≥ (z(βopt))r+1 ≥ (z(βopt))r+2

≥ · · · ≥ (z(βopt))d.

Thus, we have shown (33).
To see (34) and (35)

r ≤
d∑

i=1

(z(βopt))i ≤ r + 2 (41)

is enough. From (28),

r ≤ r + 2

d∑
i=r+2

(z(βopt))i =

d∑
i=1

(z(βopt))i.

Also from (28),

d∑
i=r+2

(z(βopt))i =

r+1∑
i=1

(z(βopt))i − r ≤ r + 1− r = 1,

we obtain
d∑

i=1

(z(βopt))i =

r+1∑
i=1

(z(βopt))i +

d∑
i=r+2

(z(βopt))i

≤ r + 1 + 1 = r + 2.

Hence, we have shown conditions (34) and (35). Moreover,
from Lemma 6.5, βopt is unique. Summarizing the argument,
we have shown that z(βopt) is the unique minimizer of the
problem (P).

C. Searching method for βopt

Since βopt is unique, bi-section method is effective. Define

φ(β) = frz(β).

We can observe that φ is continuous and piecewise linear
function. The possible non-differentiable points are such β,
satisfying vi−β = 1 or vi−β = 0 or vi+β = 1 or vi+β = 0.
We divide set of these possible non-differentiable points in to
four sets:

E1 = {vi − 1 | 1 ≤ i ≤ r + 1} ,
L1 = {vi | 1 ≤ i ≤ r + 1} ,
E2 = {1− vi | r + 2 ≤ i ≤ d} ,
L2 = {vi | 1 ≤ r + 2 ≤ d}

and put

β̂ = E1 ∪ L1 ∪ E2 ∪ L2.

We set

β̃ ←
{
β̃ ∈ β̂ ∪ {0} ∪ {βmax} | 0 ≤ β̃ ≤ βmax

}
and sort β̂ to β in ascending order. Hence β = {β1, β2, . . . βp}
satisfies 0 = β0 < β1 < · · · < βp = βmax (Step 12 and 13).
We can find βopt effectively with bi-section method by finding
points βj and βj+1 satisfying

∑s
i=1(fr)i(z(βj))i > r and∑s

i=1(fr)i(z(βj+1))i > r (0 ≤ j ≤ p− 1).

( )j b

b

10( )b=
2b j

b optb 1jb + maxb

r

Fig. 9. The graph of φ.
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