
1

ADMM and Reproducing Sum-Product Decoding
Algorithm Applied to QC-MDPC Code-based

McEliece Cryptosystems
Kohtaro Watanabe, Motonari Ohtsuka and Yuta Tsukie

Department of Computer Science, National Defense Academy of Japan

Abstract

QC-MDPC (quasi cyclic moderate density parity check) code-based McEliece cryptosystems are considered to be one of the
candidates for post-quantum cryptography. Decreasing DFR (decoding failure rate) is one of important factor for their security,
since recent attacks to these cryptosystems effectively use DFR information. In this paper, we pursue the possibility of optimization-
base decoding, concretely we examine ADMM (alternating direction method of multipliers) based method, a recent developing
method in optimization theory. Further, RSPA (reproducing sum-product algorithm), which efficiently reuse outputs of SPA (sum-
product algorithm) is proposed for further reduction of DFR. By numerical simulations, we show that the proposing scheme shows
considerable decrement in DFR compared to the conventional decoding methods such as BF (bit-flipping algorithm) or SPA.

Index Terms

QC-MDPC code-based cryptosystem, ADMM method, reproducing sum-product algorithm, McEliece cryptosystem.

I. INTRODUCTION

The safety of current cryptosystem (for example, RSA, ECDH) are based on the computation difficulty such as integer
factoring or discrete logarithmic problem. These crypto schemes are said to be no longer secure under the presence of quantum
computers, which are able to solve these problems in polynomial time [24]. Although current number of qubits are relatively
small, algorithms resistant for quantum computers equipped with practical qubits are desirable. Following proposals; lattice-
based, code-based, hash-based and multi-variate, isogeny-base etc. are considered to be the framework of cryptosystems for
post quantum generation and these are continuing to be reviewed in NIST post-quantum cryptography standardization [28].

The present paper is concerned with the reduction of DFR (decoding failure rate) in code-based cryptosystem. It is known
that there is an attack (GJS attack) [11] that effectively uses decoding failure statistics to retrieve the parity check matrix of
the code (which is a secret key). In addition, to achieve λ bits of security under IND-CCA (Indistinguishability under Chosen
Ciphertext Attack) circumstance, the condition DFR≤ 2−λ should be satisfied; see p. 9 of BIKE specification document [6].
Thus, reducing the DFR is considered to be one of important factors for the code-based cryptosystems. We note the efforts to
reduce DFR are seen in recent studies [7]–[9], [13], [16], [19], [23].

The security of code-based schemes is based on the hardness of decoding linear random codes (indeed the problem is
known to be NP-hard problem [5]). The first code-based scheme is the McEliece cryptosystem which use Goppa codes. The
original McEliece cryptosystem has been withstanding evaluation more than thirty years and still regarded secure. A problem
of original McEliece cryptosystem is its large public key size. For the reduction of public key size, various improvements
were proposed; see [6], [15], [27]. It should be noted that the usage of LDPC codes directly for this purpose is known to be
dangerous, since parity check matrix of LDPC (low-density parity check) codes might be recovered by decoding low Hamming
weight codewords, for example using Stern’s method [25], as dual codes of original codes.

On the other hand, QC-MDPC (quasi cyclic moderate density parity check) code is currently regarded as safe and public
key size is small, and for such reasons, this scheme is remaining as alternatives of NIST PQC as Public-key Encryption
and Key-establishment Algorithms [28]. Standard decoding methods for QC-MDPC codes are variants of BF (bit-flipping)
algorithm. Although BF variants algorithms show good performance in execution time and in DFR, these algorithms are not
optimization based, so there might be still room for improvement of DFR. In this paper, we show DFR of QC-MDPC codes
can be considerably improved compared to BF or SPA (sum-product algorithm) by applying ADMM (alternating direction
method of multipliers) based decoding, which is a recently developing subject in optimization theory. The ADMM decoding is
a method based on IP (integer programming), which achieve MLD (maximum likelihood decoding); see Feldman, Wainwright
and Karger [10]. Although IP decoding presents high precision decoding, it costs a considerable amount of execution time
and hence the adoption seems to be limited to relatively short code-length problems (about a few hundred bits or so). While
the ADMM decoding is reported to be applicable to more than thousands of bits of code-length; see [4], [14]. In this paper,
we apply the algorithm of Barman, Liu, Draper and Recht [4] and Liu and Draper [14] as the ADMM decoding method and
show even in the case of middle-density parity checks and middle code-length (in cases code-length are 9602 and 10779), it
works well.

2

Here, we have to note that the original projection algorithm (Algorithm 2 of [4]) seems to be including some error (actually,
Algorithm 2 of [4] sometimes shows mismatching values compared to the values computed by MIP solver Gurobi optimizer
9.5 [12]); see Figure 1 and 2 in Section III. We present the corrected projection algorithm to the code-polytope in Algorithm
3 and examine its validity in Section VI.

As for the reduction in DFR, by numerical examination in Section IV, we observe in the case of (n, k) = (9602, 4801)
code, the correctable number of errors increases from t = 87 (BF algorithm) to t = 103 under almost the same DFR (less
than 10−7). Similarly, in the case of (n, k) = (10779, 3593), correctable number of number of errors increases from t = 55
(BF algorithm) to t = 66 under almost the same DFR (less than 10−7). In other words, proposing scheme attains far less DFR
for fixed error number t compared to BF or SPA and hence prevents the collection of DFR information by adversaries. It is
observed that in both numerical examinations, ADMM method decreases its DFR rapidly if t is under the threshold value t0
(for the case (n, k) = (9602, 4801), t0 = 103 and for the case (n, k) = (10779, 3593), t0 = 66). Thus, we can expect further
decrement of DFR if with some preprocessing, error number t could be lowered to less than t0. For that purpose, we introduce
the method RSPA (reproducing sum-product algorithm), which efficiently reuse decoding failure of SPA as a preprocessing
for ADMM. We also compare the DFR of RSPA with Backflip+ [8] and BGF decoder [6], [9] We note these are 80 bits and
128 bits security parameters achieve IND-CPA security; see Table 2 of [15].

Finally, we examine the DFR behaviour of “weak keys” (actually Type I weak keys of [22]). It may come as a bit surprise
that experiments indicate that Type I weak keys are not “weak keys” for ADMM based decoding. Rather, they seem to be
“strong keys”.

II. QC-MDPC MCELIECE CRYPTOSYSTEMS

A. McEliece cryptosystems

We briefly review McEliece cryptosystems. Throughout this paper, a set of codewords is denoted by C. The variables n, k, t
denote code-length, information bits length and correctable error number, respectively. We abbreviate m = n− k. Also, k× n
binary matrix G, m×n binary matrix H , n×n matrix P and k×k binary matrix S represent generator matrix, parity-check
matrix, random permutation matrix and scramble matrix respectively. Put

G′ = SGP . (1)

Then (G′, t) is a public key and (G,S,P) is a private key of Bob. For a message m, using public key, Alice encrypts as

c = mG′ + e, (2)

where e is a correctable error vector whose Hamming weight satisfies w(e) = t. Decoding process of Bob is as follows:
(i) Multiply P−1 to both sides of (2), that is

cP−1 = mG′P−1 + eP−1 = mSG+ eP−1.

(ii) Since w(eP−1) = w(e) = t, by applying certain decoding scheme, he obtains c′ = mSG.
(iii) Multiplying G−1S−1 to c′, Bob retrieves the sent message m.

B. QC-MDPC McEliece cryptosystems with code-rate R = (n0 − 1)/n0

QC-MDPC codes are linear block codes whose binary parity check matrices have moderate density of “one’ and are
introduced to reduce public key size of original McEliece cryptosystems; see Misoczki, Tillich, Sendier and Barreto [15]. A
parity check matrix of QC-MDPC McEliece cryptosystems with code-rate R = (n0 − 1)/n0 assumes the following form; see
for example Baldi [2, Section 3.6],

H = [H0,H1, . . . ,Hn0−1] , (3)

where each Hi, (0 ≤ i ≤ n0−1) is a binary p×p circulant matrix of each row and column weight equals to dc. Hence it holds
that n = n0p and k = (n0 − 1)p (so R = (n0 − 1)/n0). Without loss of generality, we can assume Hn0−1 is non-singular,
then the generator matrix of the code is expressed as (see also [2, Section 3.6]),

G =

(
H−1

n0−1 ·H0

)T
Ik

...(
H−1

n0−1 ·Hn0−2

)T
 , (4)

where Ik is the k × k identity matrix. Since
(
H−1

n0−1 ·Hi

)T
, (0 ≤ i ≤ n0 − 1) are circulant, public key will be only first

rows of these matrices, and as a result, reducing the size of the public key.

3

III. DECODING METHODS

A. Bit-flipping decoding algorithm

The basic bit-flipping decoding algorithm is described as follows:

Algorithm 1 Bit-flipping decoding algorithm
1: s←HcT .
2: while s ̸= 0 do
3: i← arg min0≤i≤n−1w(s+ hi).
4: if w(s+ hi) < w(s) then
5: ci ← 1− ci.
6: s← s+ hi.
7: else
8: return decoding failure.
9: end if

10: end while
11: return c.

As shown in the numerical experiments of next section, BF decoding algorithm shows lower DFR than SPA, especially in
cases w(e) are relatively small value; see Figure 7 and 8.

B. Notations

Next, we introduce ADMM algorithm according to [4]. Although, an algorithm developed in [4] assumes LDPC codes,
we show that the algorithm is also effective for decoding of MDPC codes. We define some necessary notations: X and Y
denote: X = {0, 1} and Y = {0, 1}, since we assume BSC (binary symmetric channel). Thus, sending messages belong to
k-dimensional subspace C of Xn and corresponding received messages belong to Yn. The neighborhood of a each “check” i
is denoted by Nc(i) and the neighborhood of a each “vertex” j is denoted by Nv(j), namely:

Nc(i) = {j |Hi,j = 1} and Nv(j) = {i |Hi,j = 1} ,

where Hi,j is a (i, j) element of parity check matrix H . In the case, H is assumed to be as (3), since each row and column of
Hk, (0 ≤ k ≤ n0 − 1) has dc non-zero element, it holds that |Nc(i)| = n0dc, (0 ≤ i ≤ p) and |Nv(j)| = dc, (0 ≤ j ≤ n0p).

Let Nc(i) = {j1, j2, · · · , jd} (note that in the case of (3), d = n0dc), then we define a linear map Pi : Rn → Rd as

(Pi)k,l =

{
1, l = jk

0, else.

For example, in the case

H =

1 1 1 0 0 0
0 0 1 1 0 1
0 0 0 1 1 1

 (5)

we have

P1 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , P2 =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 , P3 =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Define

Pd :=
{
x ∈ {0, 1}d | ∥x∥1 is even

}
,

where ∥ · ∥p represents a lp norm. Then, we can write

x ∈ C ⇔ Pix ∈ Pd, (1 ≤ i ≤ m).

For x ∈ X and y ∈ Y , W (y|x) represents the conditional probability of BSC, i.e. W (1|0) = W (0|1) = p and W (0|0) =
W (1|1) = 1 − p where p ∈ [0, 1/2). Assume a sending message is x = (x1, . . . , xn) ∈ Xn and a received message be
y = (y1, . . . , yn) ∈ Yn. Since we assume memoryless channel, the conditional probability p(y|x) is represented as: p(y|x) =∏n

j=1 W (yj |xj). The ML encoding choose x ∈ Xn that maximizes p(y|x), thus equivalently maximizes
∑n

j=1 logW (yj |xj).
We put

γj := log (W (yj |0)/W (yj |1)) , (1 ≤ j ≤ n). (6)

4

Since logW (yj |xj) = −γjxj + logW (yj |0), ML decoding reduces to determining x ∈ C that minimizes γTx =
∑n

j=1 γjxj .
Thus, ML decoding is described as:

Minimize:
n∑

j=1

γjxj subject to Pix ∈ Pd, (1 ≤ i ≤ m). (7)

By the relaxation of each binary variable xi (1 ≤ i ≤ n) to the interval [0, 1], we obtain LP (linear programming) relaxation
of IP (7) (The LP relaxation by Feldman etc. [10] is a kind of this relaxation):

Minimize:
n∑

j=1

γjxj subject to Pix ∈ PPd, (1 ≤ i ≤ m), (8)

where PPd is a convex hull of Pd, i.e. PPd = conv(Pd).

C. ADMM formulation

For expressing LP decoding formulation (8) to corresponding ADMM formulation, the “replica” vectors zi, (1 ≤ i ≤ m)
are introduced. Moreover, to accelerate the computation, we also introduce a penalty term. Hence, we consider

Minimize:
n∑

j=1

γjxj − α

n∑
j=1

(xj − 0.5)
2 (9)

subject to Pix = zi, zi ∈ PPd, (1 ≤ i ≤ m),

where α > 0 is an acceleration parameter and the second term of objective function is a penalty term. Put z = (z1, . . . ,zm)
and λ = (λ1, . . . ,λm). The ADMM method optimize the augmented Lagrangian:

Lµ(x, z, λ) :=

n∑
j=1

γjxj − α

n∑
j=1

(xj − 0.5)
2 (10)

+

m∑
i=1

λT
i (Pix− zi) +

µ

2

m∑
i=1

∥Pix− zi∥22,

We can write the update steps of ADMM as:

xq+1 := arg min
x∈[0,1]n

Lµ (x, z
q,λq) (11)

zq+1
i := arg min

z∈(PPd)m
Lµ

(
xq+1, z,λq

)
, (1 ≤ i ≤ m)

λq+1
i := λq

i + µ
(
Pix

q+1 − zq+1
i

)
, (1 ≤ i ≤ m).

Let δx ∈ Rn be a variation vector of x, γ = (γ1, . . . , γn) and 1 = (1, . . . , 1)T . Then, we obtain

Lµ (x+ δx, z, λ)

= Lµ(x, z, λ) + ⟨γ, δx⟩ − 2α⟨x− 0.5 · 1, δx⟩+
m∑
i=1

⟨λi,Piδx⟩+ µ

m∑
i=1

⟨Pix− zi,Piδx⟩

= ⟨γ, δx⟩ − 2α⟨x− 0.5 · 1, δx⟩+
m∑
i=1

⟨P T
i λi, δx⟩+ µ

m∑
i=1

⟨P T
i Pix− P T

i zi, δx⟩

= ⟨γ, δx⟩ − 2α⟨x− 0.5 · 1, δx⟩+
m∑
i=1

⟨P T
i λi, δx⟩+ ⟨µPx− µ

m∑
i=1

P T
i zi, δx⟩,

where P =
∑m

i=1 P
T
i Pi. Thus, we obtain,(

P − 2α

µ
I

)
x =

m∑
i=1

(
P T

i zi −
1

µ
P T

i λi

)
− α

µ
1− γ

µ
. (12)

5

In the case of (5), we have

P =

3∑
i=1

P T
i Pi =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 2

 ,

and in general, we have (P)i,j = |Nv(j)|δi,j . For simplicity, we denote by z
(j)
i , the j-th component of P T

i zi. Similarly, λ(j)
i

denotes the j-th component of P T
i λi. Hence from (12) and the restriction xj ∈ [0, 1] for (1 ≤ j ≤ n), it holds that

xj = Π[0,1]

(
1

|Nv(j)| − 2α
µ

){
m∑
i=1

(
z
(j)
i −

λ
(j)
i

µ

)
− α+ γj

µ

}
, (1 ≤ j ≤ n),

where Π[0,1] is a projection to the interval [0, 1]. To obtain the minimizer of the second expression of (11), we rewrite the
third and fourth terms of (10) as follows:

λT
i (Pix− zi) +

µ

2
∥Pix− zi∥22 =

µ

2

{
∥Pix+

λi

µ
− zi∥22 −

∥λi∥22
µ2

}
.

Hence it holds

zq+1
i = arg min

zi∈PPd

∥Pix
q+1 +

λq
i

µ
− zi∥2,

which is a metric projection of Pix
q+1 +

λq
i

µ onto the closed convex set PPd with d = N0dc, i.e.

zq+1
i = ΠPPd

(
Pix

q+1 +
λq
i

µ

)
. (13)

Summarizing the above argument, the ADMM decoding procedure is described as follows. Recall that y = x+e is a received
message where e satisfies w(e) = t.

Algorithm 2 The ADMM decoding algorithm
1: Initialize γ as (6), q = 0, set a positive integer M and ϵ > 0, a small number.
2: Initialize zi = Piy, λi = 0, (1 ≤ i ≤ m).
3: repeat
4: for all j (1 ≤ j ≤ n) do
5: Update xj accrding to (13).
6: end for
7: for all i (1 ≤ i ≤ m) do
8: set vi = Pix+ λi/µ.
9: zi ← ΠPPn0dc

(vi).
10: λi ← λi + µ (Pix− zi).
11: end for
12: q ← q + 1
13: until HxT = 0 (Parity satisfied) or q > M
14: return x.

The most time consuming part of the Algorithm 2 is Step 9: zi ← ΠPPn0dc
(vi), a projection of vi to code-polytope PPn0dc .

Here, we have to note the projection algorithm to the code-polytope PPn0dc
(Algorithm 2 of [4]) seems to need some

modification, and without such modification, non-negligible degradation in decoding performance arises. Indeed, sometimes
mismatching values were observed for the convex-quadratic programming (20) compared to the one obtained by MIP solver
Gurobi optimizer 9.5 [12] (we note replacing the projection algorithm for (20) with MIP solver is unrealistic from the time-
consuming view point).

We will show these degradations with numerical examples. Figure 1 shows the DFR of each decoding method for (n, k) =
(2000, 1000) and dc = 5 LDPC code. In the figure labels “SPA” and “BF” mean sum-product algorithm and bit-flipping
algorithm, respectively. While labels “PROJO” and “PROJ” mean ADMM decoding with original projection algorithm of [4]
(Algorithm 2) and corrected projection algorithm respectively. We can observe that “PROJ” decreases DFR about 1/10 times
to “PROJO” for each error number t and even superior to SPA. We note both ADMM decoding use parameters α = 10, µ = 6
and M = 10000. Figure 2 shows the DFR of each decoding method for (n, k) = (2000, 1000) and dc = 25 MDPC code. In

6

t
30 32 34 36 38 40 42 44 46 48 50

D
F

R

10
-5

10
-4

10
-3

10
-2

10
-1

10
0 Decoding error rate for each method

SPA
BF
PROJ

O

PROJ

Fig. 1. DFR of each decoding method for (n, k) = (2000, 1000) and dc = 5 LDPC code.

this case SPA deteriorates its performance compared to the of Figure 1 since the low-density property of parity check matrix
was lost. Comparing “PROJO” with “PROJ”, we observe that in this case “PROJ” also decreases DFR about 1/10 times to
“PROJO” for each error number t. We note both ADMM decoding use parameters α = 10, µ = 6 and M = 10000.

From these observations, we conclude that the correction of projection algorithm is a principal factor for the improvement
of DFR.

D. Modified projection algorithm

Following is a correction of projection algorithm to PPn0dc . For simplicity, we abbreviate d = N0dc and denote by ⌊x⌋even
the largest even number integer smaller than x. The correctness of the following algorithm is shown in Appendix VI.

Algorithm 3 The projection algorithm ΠPPd
(u)

1: Permutate u to v in descending order: v1 ≥ v2 ≥ · · · ≥ vd. Let Q be the corresponding permutation matrix i.e. v = Qu.
2: ẑ ← Π[0,1]d(v). Put r = ⌊∥ẑ∥1⌋even.
3: Put f = (f1, . . . , fd) and set fi = 1, (1 ≤ i ≤ r + 1), fi = −1, (r + 2 ≤ i ≤ d).
4: if r = d or r = d− 1 then
5: return QT ẑ.
6: end if
7: if

∑d
i=1 fiẑi ≤ r then

8: return QT ẑ.
9: end if

10: set βmax ← 1
2 (vr+1 − vr+2).

7

t
33 33.5 34 34.5 35 35.5 36 36.5 37

D
F

R

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0 Decoding error rate for each method

SPA
BF
PROJ

O

PROJ

Fig. 2. DFR of each decoding method for (n, k) = (2000, 1000) and dc = 25 MDPC code.

11: set β̂ ←
{
β̂1, . . . , β̂2d

}
as

β̂i =

vi − 1, (1 ≤ i ≤ r + 1)

−vi, (r + 2 ≤ i ≤ d)

vi−d, (d+ 1 ≤ i ≤ d+ r + 1)

1− vi−d, (d+ r + 2 ≤ i ≤ 2d).

12: set β̃ ←
{
β̃ ∈ β̂ ∪ {0} ∪ {βmax} | 0 ≤ β̃ ≤ βmax

}
.

13: Sort β̃ to β in ascending order. Hence β = {β1, β2, . . . βp} satisfies 0 = β0 < β1 < · · · < βp = βmax.
14: set L← 0, R← p,M ← ⌊(L+R)/2⌋.
15: while R− L > 1 do
16: set

ẑi =

{
vi − βM , (1 ≤ i ≤ r + 1)

vi + βM , (r + 2 ≤ i ≤ d).

17: if
∑d

i=1 fi ·
(
Π[0,1] (ẑi)

)
< r then

18: R←M .
19: else
20: L←M .
21: end if
22: M ← ⌊(L+R)/2⌋.
23: end while
24: set

ẑi =

{
vi − βR, (1 ≤ i ≤ r + 1)

vi + βR, (r + 2 ≤ i ≤ d).

8

25: set fz ←
∑d

i=1 fi ·
(
Π[0,1] (ẑi)

)
.

26: set

ẑi =

{
vi − βL, (1 ≤ i ≤ r + 1)

vi + βL, (r + 2 ≤ i ≤ d).

27: set fz0 ←
∑d

i=1 fi ·
(
Π[0,1] (ẑi)

)
.

28: set βopt ← (r−fz)(βR−βL)
fz−fz0

+ βR

29: set zi, (1 ≤ i ≤ d) as

zi =

{
Π[0,1] (vi − βopt) , (1 ≤ i ≤ r + 1)

Π[0,1] (vi + βopt) , (r + 1 ≤ i ≤ d).

30: return QTz.

IV. NUMERICAL EXPERIMENTS

We examine the proposing ADMM based decoding with some parameters of Table II of [15]. Numerical examinations
were executed on Intel Core i9-7980XE CPU @ 2.60GHz processor, with no parallelization (except Step 8 in Algorithm
5 where NSPA parallelization were applied) and ANSI C implementation (icc 2021.6.0 with -O2 option). Although we are
concerned with DFR properties of each methods, we show their decoding time in our implementation. Table I shows the
average execution time (ms) for (n, k, dc, n0) = (9802, 4601, 45, 2) code. The number of experiments for each method is
100000. In SP, maximum iteration number is set as 50 and in ADMM, parameters are set as (µ, α,M) = (6, 15, 10000). The
label “ME” is the “matrix-extension” method proposed in [7]. The maximum extension size of parity matrix is 14403×19204.

TABLE I
AVERAGE DECODING TIME (MS) OF EACH DECODING METHODS FOR (n, k, dc, n0) = (9802, 4601, 45, 2) CODE.

method t = 90 t = 100
BF 275 322

SPA 597 680
ADMM 561 876

ME 276 352
RSPA-ADMM 602 718

As we can recognize from Figures 7 and 8, error correction ability of ADMM is superior to BF SP and ME. It is observed
that DFR falls rapidly if t is less than certain threshold value t0 (for the case (n, k) = (9802, 4601), t0 = 103 and for the case
(n, k) = (10779, 3593), t0 = 66). Thus, we can expect further decrement of DFR if with some preprocessing, error number
t could be lowered to less than t0. For that purpose, we introduce the method RSPA (reproducing sum-product algorithm),
which efficiently reuse decoding failure of SPA as a preprocessing for ADMM. The algorithm RSPA is as follows:

Algorithm 4 The reproducing sum-product algorithm

1: set NSPA as maximum iteration number, i = 0.
2: while i < NSPA do
3: set c′ as decoding result of SPA for c (after hard decision is applied to each bits).
4: if Hc′T = 0 then
5: return c′.
6: end if
7: c← c′.
8: i← i+ 1.
9: end while

10: return decoding failure.

We consider the case HcT ̸= 0. Put the difference between noiseless received information mG′ and decoding result of SPA
(after hard decision to each bits) as dh(c′): i.e. dh(c′) = w (mG′ − c′). Thus dh(c′)−t represents decrease (if dh(c′)−t < 0)
and increase (if dh(c′)− t > 0) of error bits number ∥e∥1 after hard decision. Figure 3 show the number of observed values
of dh(c

′) − t when t = 110. For example, the number of trials which take −5 ≤ dh(c
′) − t ≤ −1 occupies 51, while the

number of trials which take 1 ≤ dh(c
′) − t ≤ 5 is 5, under total 100 decoding errors. Figure 4 shows the case t = 95. In

this case, there is no case which takes dh(c
′) − t ≥ 0. From Figure 3 and 4, we can expect that as the iteration number i

increases, the value dh(c
′) − t tends to decrease. As a result, all errors will be fixed as the iteration number increases. We

note that the same effect cannot be expected for BF algorithm. Figure 5 and 6 are results obtained by replacing the decoding

9

Fig. 3. The barchart of the number of observed values of w (mG′ − h(c′)) in the case of SPA decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 110).

Fig. 4. The bar chart of the number of observed values of w (mG′ − h(c′)) in the case of SPA decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 95).

method SPA in Algorithm 4 to BF under the circumstance of Figure 3 and 4 respectively. We observe that Figure 5 and 6
show dh(c

′)− t > 0 almost all cases, and hence we cannot expect the reduction of erroneous bits by successive hard decision
of decoding results.

After each iteration of RSPA, in most case, the number of erroneous bits is expected to reduce, hence by applying ADMM
method to c obtained by hard decision in Step 7, further improvement in DFR could be expected. We call this hybrid algorithm
RSPA-ADMM method.

Algorithm 5 The RSPA-ADMM method.

1: set NSPA as maximum iteration number, i = 0.
2: while i < NSPA do
3: set c′ as decoding result of SPA for c (after hard decision is applied to each bits).
4: if Hc′T = 0 then
5: return c′.
6: end if
7: c← c′.
8: Apply ADMM decoding to c. set c′ as decoding result of ADMM for c.
9: if Hc′T = 0 then

10: return c′.

10

Fig. 5. The bar chart of the number of observed values of w (mG′ − h(c′)) in the case of BF decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 110).

Fig. 6. The bar chart of the number of observed values of w (mG′ − h(c′)) in the case of BF decoding and (n, k, dc, n0) = (9602, 4801, 45, 2) code
(t = 95).

11: end if
12: i← i+ 1.
13: end while
14: return decoding failure.

We note Step 8 can be done in parallel.
Figure 7 shows the DFR of 6 methods (SPA, BF, ME, RSPA, ADMM, RSPA-ADMM) for (n, k, dc, n0) = (9602, 4801, 45, 2)

code. The maximum iteration number of SP was set to 50. The parameters (µ, α,M) in ADMM and RSPA-ADMM methods
were fixed to (6, 15, 10000). We note parameters µ and α were chosen by heuristic trials, hence these may not be an optimal
choice. In spite of this, it holds that ADMM and RSPA-ADMM attains DFR lower than 10−7 at t = 103 compared to the
result that BF decoding requires t = 87 for attaining almost the same DFR. We note DFR of RSPA-ADMM when t = 103
might be less than 10−8, since no decoding error was observed under 108 trials. We can observe that RSPA-ADMM improves
the DFR compared to ADMM. Figure 8 shows the DFR of 6 methods (SPA, BF, ME, RSPA, ADMM, RSPA-ADMM) for
(n, k, dc, n0) = (10779, 3593, 51, 3) code. The maximum iteration number of SP was set to 50 and the maximum extension
size of parity matrix in ME is 14372×21588. The parameters (µ, α,M) in ADMM and RSPA-ADMM methods were fixed to
(8, 15, 10000). It seems to be remarkable that ADMM and RSPA-ADMM attains DFR lower than 10−7 at t = 66 compared

11

Fig. 7. DFR of each decoding method for (n, k, dc, n0) = (9602, 4801, 45, 2) code.

to the result that BF decoding requires t = 55 for attaining almost the same DFR. We note DFR of RSPA-ADMM when
t = 66 might be less than 10−8, since no decoding error was observed under 108 trials. In this case, we also observe that
RSPA-ADMM improves the DFR compared to ADMM.

A. Comparison with the decoding algorithm of BIKE

BIKE (Bit Flipping Key Encapsulation) is sumitted for round 4 selection of NIST PQC [28]. For its λ bits security under IND-
CPA circumstance, work-factor of QCSDP (QC-Syndrome Decoding Problem) and QCCFP (QC-Codeword Finding Problem)
are required to be over 2λ; see p.8-9 of [6] and p.7 of [22]. These assumptions are satisfied by the appropriate choice of (m, t)
and (m, dc) respectively. For example, Table II of [15] represents parameters (n,m, dc, t) for λ bit IND-CPA security. However,
for the λ bits IND-CCA security, further requires that DFR≤ 2−λ; see p. 9 of [6] and p. 7 of [22]. Direct confirmation of this
assumption is impossible, so DFR are computed for some feasible (m, t, dc) cases, and using these information, fixing (t, dc),
the matrix size m that reaches DFR≤ 2−λ is computed by the method of extrapolation. The current version of BIKE uses
BGF (Black-Gray-Flip) decoder [9] that fix over flipped erroneous bits belonging to black and gray lists once. The backflip+

algorithm [8] achieves the same effect as the BGF decoder by introducing the concept of TTL (Time-To-Live) period for each
bit. As shown on p.3 of [8], the backflip+ algorithm performs better than the BG decoder (so possibly BGF decoder) when a
large number of iterations for flipping is allowed (it is also noted for practical iteration number and large matrix size m, BG
decoder performs better).

Figure 9 is the comparison with back-flip+ decoder (we have used the decoder from [23]) with RSPA-ADMM algorithm for
(n, k, dc, n0) = (9602, 4801, 45, 2) (80-bit security parameter from Table 2 of [15]). The label “BFP+-100” and “BFP+-108”
are the results of backflip+ algorithm with an iteration number of 100 and 108 respectively. It can be seen that the DFR curve
of “BFP+-100” is almost the same as the “RSPA”. It is observed that when t > 105, the DFR of BFP+-108 is lower than that
of the RSPA-ADMM method. While for the case t ≤ 105, the DFR of RSPA is lower than that of BFP+-108 and at t = 105 it
shows rapid dicrease of DFR compared to the “BFP+-108” DFR curve. We note the DFR of BFP+-108 seems to be gradually
approaching the result of BFP+-100.

Figure 10 is the comparison BGF and backflip+ decoders with RSPA-ADMM algorithm for (n, k, dc, n0) = (19714, 9857, 71, 2)
(128-bit security parameter from Table 2 of [15]). The reason we examined the BGF algorithm is that the parameter of the
threshold function is given by on page 8 of BIKE [6] for (dc, t) = (71, 134). The label “BGF-106” is th result of BGF algorithm

12

Fig. 8. DFR of each decoding method for (n, k, dc, n0) = (10779, 3593, 51, 3) code.

with an iteration number of 106. The labels “BFP+-106” and “BFP+-100” are the results of the Backflip+ algorithm with an
iteration number of 106 and 100 respectively. Since we make the number of iterations very large, as mentioned above, the
backflip+ algorithm outperforms the BGF algorithm. We can see that the DFR of RSPA-ADMM is almost the same as that of
“BFP+-106” at t = 150, but shows a rapid decrease in DFR compared to the “BFP+-106” DFR curve. In the RSPA-ADMM
algorithm, the parameters are set as (µ, α,M) = (13, 26, 10000) in the ADMM part and the iteration number is 100 in the
sum-product part. We note that the average decoding time of RSPA-ADMM is large (about 3000ms even for t = 134), and
therefore improvement of the algorithm seems necessary for larger values of m.

B. Weak key examination

Weak keys are sets of public and private keys that have a relatively high DFR compared to ordinary random keys [1], [3],
[8], [17], [22]. Thus, weak keys are a potential thread for IND-CCA security if the probability of their occurrence is not
negligible. In this subsection, we examine Type I weak keys of [22] (originally defined in [8]) and show that Type I weak keys
are not weak keys for the ADMM decoder, but rather, these keys are “strong keys”. First, we introduce two lemmas about
ring isomorphism.

Lemma 4.1: Assume hi ∈ GF2 (0 ≤ i ≤ m). Then

φ : H 7→ h0 + h1x+ · · ·+ hm−2x
m−2 + hm−1x

m−1 (14)

is ring isomorphism from r × r circurant matrices to quotient ring GF2[x]/(x
m − 1).

For example, in the case

Ha =

1 1 0 1 0
0 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1

 , Hb =

1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

 ,

13

Fig. 9. DFR of each decoding method for (n, k, dc, n0) = (9602, 4801, 45, 2) code.

φ (Ha +Hb) = φ

0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0

 = x+ x2 =

(
1 + x+ x3

)
+
(
1 + x2 + x3

)
= φ(Ha) + φ(Hb),

and

φ (Ha ·Hb) = φ

0 0 1 1 1
1 0 0 1 1
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

 = x2 + x3 + x4 =

(
1 + x+ x3

)
·
(
1 + x2 + x3

)
= φ(Ha) · φ(Hb).

Also, following holds.
Lemma 4.2: For any δ ∈ Zm \ {0}, ϕδ : x 7→ xδ is the ring isomorphism from GF2[x]/(x

m − 1) to GF2[x]/(x
m − 1).

For example, in the case δ = 3 and h(x) = 1 + x+ x3 ∈ GF2[x]/(x
5 − 1),

ϕ3(h(x)) = 1 + x3 + x9 = 1 + x3 + x4.

Using above lemmas, we define Type I weak keys [22].
Definition 4.3: Let

H = [H0,H1] ,

where each H0,H1 is m×m binary circulant matrix and each row weight is dc. Further, put φ(H0) = h0 and φ(H1) = h1

respectively, where φ is a ring isomorphism defined in Lemma 4.1. Type I weak keys are specified as the pair (h0, h1) with

hi = ϕδ

(
(1 + x+ · · ·+ xf−1) + h′

i

)
, i ∈ {0, 1},

such that |h′
i| = dc − f , (i ∈ {0, 1}) and degree of h′

i, (i ∈ {0, 1}) is higher than f − 1.

14

Fig. 10. DFR of each decoding method for (n, k, dc, n0) = (19714, 9857, 71, 2) code.

Figure 11 is the DFR of the individual methods BF, SPA, BFP+-106 and ADMM for a Type I weak key of (f, δ) = (23, 0)
and (n, k, dc, n0) = (9602, 4801, 45, 2) code. We can see that only ADMM decreases its DFR rapidly at t = 115 and the
other three methods degrade their DFR compared to the normal random key case; see figures 7 and 9. It may be interesting to
note that the DFR of the ADMM method shows an improvement compared to the normal random key case, so “weak keys”
seem to be rather “strong keys” for the ADMM algorithm (at present, we can not provide a satisfactory explanation for this
phenomena). Figure 12 is the DFR of the individual methods BF, SPA, BFP+-106 and ADMM for a Type I weak key of
(f, δ) = (20, 7) and (n, k, dc, n0) = (9602, 4801, 45, 2) code. In this case, we can see the almost the same DFR behaviour as
in Figure 11.

V. DISCUSSION

This paper presented the effectiveness of ADMM based methods in decoding QC-MDPC codes. Since proposing two methods
ADMM and RSPA-ADMM have abilities to correct more errors than standard error number assumed for BF algorithm, these
ADMM based decoding can detect irregular usage of error numbers that aimed for the collection of DFR information by
adversaries. Hence, proposing schemes may serve as an audit device which guard the conventional BF algorithm based decoding
systems.

Although ADMM based decoding showed certain improvements in DFR, following problems remains. First, the systematic
methods for the determination of the optimal parameters (µ, α) in ADMM decoding algorithm.

Second, an acceleration problem of the ADMM decoding methods. In Algorithm 2, Step 5 can be done in parallel. Thus, the
acceleration of the projection to ΠPPn0dc

remains as an essential problem. Zhang-Siegel [26] proposes an alternative projection
algorithm that is reported to be effective in improving the decoding speed for LDPC codes. The essential improvement of [26]
is replacing sorting operation in Step 1 of Algorithm 3 with “cut search algorithm”. Since the numbers of n0dc that should
be sorted in Step 1 of Algorithm 3 are rather large number for MDPC codes compared to LDPC codes cases, the “cut search
algorithm” might work more effectively than LDPC codes cases in [26].

Third, the error correction capability analysis done for the bitflipping algorithm as [18], [21] seems to be necessary for the
proposed ADMM-based algorithm.

15

Fig. 11. DFR of each decoding method for (n, k, dc, n0) = (9602, 4801, 45, 2) and (f, δ) = (23, 0) Type I weak key code.

Source code usage: The source code for validating the results in Figures 11 and 12 is available from
https://www.nda.ac.jp/∼wata/ADMM prog/ADMM4.zip
They are implemented in ANSI C.

VI. APPENDIX

A. Preparation

In this section, we show the validity of projection algorithm 3 for the sake of completeness. The main difference with
Algorithm 2 of [4] is the set β̂ in Step 11 of Algorithm 3. In Algorithm 2 of [4], the set β̂ is defined as:

β̂i =

{
vi − 1, (1 ≤ i ≤ r + 1)

−vi, (r + 2 ≤ i ≤ d).

This seems to be the main factor which cause non-negligible degradation of DFR in Figure 1 and 2.
First, we prepare lemmas necessary for our purpose.
Lemma 6.1 ([4, Propostion 3]): Assume the components of v ∈ Rd is sorted in descending (ascending) order, then the

components of ΠPPd
maintain this order.

Definition 6.2: Assume the components of v,w ∈ Rd are sorted in descending order, i.e.

v1 ≥ v2 ≥ · · · ≥ vd, w1 ≥ w2 ≥ · · · ≥ wd.

Then the vector w is said to “majorizes” u if{∑q
k=1 uk ≤

∑q
k=1 wk, (1 ≤ q ≤ d− 1)∑d

k=1 uk =
∑d

k=1 wk.

Lemma 6.3 ([4, Theorem 1]): Suppose vectors u and w are sorted in descending order. Then u is in the convex hull of all
permutations of w if and only if w majorizes u.

We define Ps
d = {x ∈ {0, 1}d | ∥x∥1 = s} and PPs

d = conv(Ps
d). Recall that PPd = conv(Pd), so it holds

PPd = conv (∪0≤s≤d,s:evenPPs
d) . (15)

16

Fig. 12. DFR of each decoding method for (n, k, dc, n0) = (9602, 4801, 45, 2) and (f, δ) = (20, 7) Type I weak key codecode.

From Lemma 6.3, it holds that u ∈ PPs
d ⇐⇒{∑q

k=1 uk ≤ min(q, s), (1 ≤ q ≤ d− 1)∑d
k=1 uk = s.

(16)

Further, following lemma (two-slice lemma) holds:
Lemma 6.4 ([4, Lemma 2]): Suppose the components of z ∈ PPd is sorted in descending order. Define r be the minimum

even integer greater than or equal to ⌊∥z∥1⌋even. Then z is expressed by convex combination of PPr
d and PPr+2

d .
Suppose u ∈ PPr

d ∩ [0, 1]d and v ∈ PPr+2
d ∩ [0, 1]d. Then, from Lemma 6.4, for α satisfying 0 ≤ α ≤ 1, it holds

q∑
k=1

zk =

q∑
k=1

(αuk + (1− α)vk) (17)

= α

q∑
k=1

uk + (1− α)

q∑
k=1

vk

≤ αmin(q, r) + (1− α)min(q, r + 2), (1 ≤ q ≤ d− 1).

and
d∑

k=1

zk =

d∑
k=1

(αuk + (1− α)vk) (18)

= α

d∑
k=1

uk + (1− α)

d∑
k=1

vk = αr + (1− α)(r + 2).

We note in the case q ≤ r, (17) clearly holds. While in the case q ≥ r + 2, (since d− 1 ≥ q ≥ r + 2, this case occurs when
r + 3 ≤ d), we can observe (17) holds if(18) is valid. Thus, (17) should be considered only for the case q = r + 1. For the

17

case q = r + 1, (since d− 1 ≥ q = r + 1, this case occurs when r + 2 ≤ d) (17) becomes as follows
r+1∑
k=1

zk ≤ αr + (1− α)(r + 1) = r + 1− α, (r + 2 ≤ d). (19)

From (18), we have

α = 1 +
1

2

(
r −

d∑
k=1

zk

)
,

and hence the projection ΠPPd
(v) for v ∈ Rd is described as convex quadratic programming problem:

(P) Minimize ∥v − z∥22 (20)
Subject to

0 ≤ zi ≤ 1, (1 ≤ i ≤ d) (21)
zi ≥ zi+1, (1 ≤ i ≤ d− 1) (22)

r ≤
d∑

k=1

zk ≤ r + 2↔ 0 ≤ α ≤ 1 (23)

r+1∑
k=1

zk −
d∑

k=r+2

zk ≤ r, (r + 2 ≤ d)↔ (19). (24)

We note (24) is valid only in the case r + 2 ≤ d and in this case we can express (24) by

fT
r z ≤ r (25)

where fT
r = (1, . . . , 1,−1, . . . ,−1).

Following lemma is well-known.
Lemma 6.5: Assume f , gi, (1 ≤ i ≤ m) are all convex functions on Rd. Define the minimization problem:

(CP) Minimize f(x) (26)

Subject to gi(x) ≤ 0, (1 ≤ i ≤ m), x ∈ Rd.

Suppose x̄ satisfies Karush-Kuhn-Tucker (KKT) conditions. Then x̄ is a (global) minimizer of problem (CP).
In the case of problem (P), f is a strictly convex function on Rd, thus we obtain:
Lemma 6.6: Assume x̄ satisfies KKT condition for problem (P). Then x̄ is a unique (global) minimizer of problem (P).

B. Varidity of Algorithm 3

Since r = ⌊∥ẑ∥1⌋even (step 2), we have

r ≤ d. (27)

As noted (25) is valid only in the case r + 2 ≤ d, we consider the cases r = d or r + 1 = d for problem (P). For these
cases, from the definition of r it holds

r ≤
d∑

k=1

ẑk ≤ r + 2.

Since v1 ≥ v2 ≥ · · · ≥ vd, ẑk (1 ≤ k ≤ d) keeps this order. Thus

ẑk+1 − ẑk ≥ 0, (1 ≤ k ≤ d− 1).

From the definition 0 ≤ ẑk ≤ 1, (1 ≤ k ≤ d). Hence ẑ is a minimizer of problem (P) under constraint conditions (21), (22)
and (23); (see step 4 and 5).

Here after, we fix r+ 2 ≤ d. First we consider the case fT
r ẑ ≤ r. As in the case r = d or r+ 1 = d, ẑ satisfies conditions

(21), (22) and (23). Moreover, form the assumption (24) is satisfied. Hence ẑ is a minimizer of problem (P); (see step 7 and
8).

Hence we can assume

fT
r ẑ > r. (28)

18

The KKT condition for the problem (P) is described as: there exists β,ν,η, ξ,θ and ζ such that following conditions are
satisfied.

z =v − βfr − ν + η − (ξ − ζ)1+ STθ, (29)

0 ≤ β ⊥ fT
r z − r ≤ 0, (30)

0 ≤ ν ⊥ z ≤ 1, (31)
0 ≤ η ⊥ z ≥ 0, (32)
θ ⊥ Sz ≥ 0, (33)

0 ≤ ξ ⊥ 1Tz − r − 2 ≤ 0, (34)

0 ≤ ζ ⊥ 1Tz − r ≥ 0, (35)

then z is a unique minimizer of (P). Here ⊥ means for example for (31) νi(1− zi) = 0, (1 ≤ i ≤ d) and

S =

1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
. . .

...
0 0 0 0 · · · 1 −1

 .

We note the uniqueness of the minimizer follows from Lemma 6.5.
In the following we see that such β,ν,η, ξ,θ and ζ exists. For fixed β > 0 we decide νi, (1 ≤ i ≤ d) as follows:

νi =

{
0, vi − β(fr)i ≤ 1

vi − β((fr)i)− 1, vi − β(fr)i > 1.
(36)

Similarly, ηi is decided as follows:

ηi =

{
0, vi − β(fr)i ≥ 0

−vi + β(fr)i, vi − β(fr)i < 0.
(37)

Moreover, we fix ξ = ζ = 0 and θ = 0. From these z, which is the LHS of (29) is regarded as a function of β and expressed
as

z(β) = Π[0,1]d (v − βfr) . (38)

Hence, from (36), condition (31) is satisfied, also form (37), condition (32) is satisfied. As Step 10, range of β is defined as

0 ≤ β ≤ βmax =
1

2
(vr+1 − vr+2) .

We note following holds:

β ≤ βmax ←→ vr+2 + β ≤ vr+1 − β.

From

(z(βmax))r+1 = Π[0,1] (vr+1 − βmax) = Π[0,1]

(
1

2
(vr+1 + vr+2)

)
and

(z(βmax))r+2 = Π[0,1] (vr+2 + βmax) = Π[0,1]

(
1

2
(vr+1 + vr+2)

)
= (z(βmax))r+1 ,

we have

frz(βmax) =

r∑
i=1

(z(βmax))i + (z(βmax))r+1 − (z(βmax))r+2 −
d∑

i=r+3

(z(βmax))i

=

r∑
i=1

(z(βmax))i −
d∑

i=r+3

(z(βmax))i

≤ r −
d∑

i=r+3

(z(βmax))i ≤ r.

19

Since from (28)

fT
r z(0) = fT

r ẑ > r,

there exists βopt (0 < βopt ≤ βmax) such that

fT
r z(βopt) = r. (39)

We will show that z(βopt) satisfies KKT condition (recall that conditions (31) and (32) are already satisfied). From (39), the
condition (30) is satisfied.

To see (33), Sz(βopt) ≥ 0 is enough (since θ = 0, ⊥ relation is satisfied). From the assumption (Step 1), for non-negative
β it holds

v1 − β ≥ v2 − β ≥ · · · ≥ vr+1 − β

and

vr+2 + β ≥ vr+3 + β ≥ · · · ≥ vd + β.

Since

vr+1 − β ≥ vr+2 + β ←→ β ≤ 1

2
(vr+1 − vr+2) = βmax,

we have

(z(βopt))1 ≥ (z(βopt))2 ≥ · · · ≥ (z(βopt))r+1 ≥ (z(βopt))r+2 ≥ · · · ≥ (z(βopt))d.

Thus, we have shown (33).
To see (34) and (35)

r ≤
d∑

i=1

(z(βopt))i ≤ r + 2 (40)

is enough. From (39),

r ≤ r + 2

d∑
i=r+2

(z(βopt))i =

d∑
i=1

(z(βopt))i.

Also from (39),
d∑

i=r+2

(z(βopt))i =

r+1∑
i=1

(z(βopt))i − r ≤ r + 1− r = 1,

we obtain
d∑

i=1

(z(βopt))i =

r+1∑
i=1

(z(βopt))i +

d∑
i=r+2

(z(βopt))i ≤ r + 1 + 1 = r + 2.

Hence, we have shown conditions (34) and (35). Moreover, from Lemma 6.5, βopt is unique. Summarizing the argument, we
have shown that z(βopt) is the unique minimizer of the problem (P).

C. Searching method for βopt

Since βopt is unique, bi-section method is effective. Define

φ(β) = frz(β).

We can observe that φ is continuous and piecewise linear function. The possible non-differentiable points are such β, satisfying
vi−β = 1 or vi−β = 0 or vi+β = 1 or vi+β = 0. We divide set of these possible non-differentiable points in to four sets:

E1 = {vi − 1 | 1 ≤ i ≤ r + 1} ,
L1 = {vi | 1 ≤ i ≤ r + 1} ,
E2 = {1− vi | r + 2 ≤ i ≤ d} ,
L2 = {−vi | 1 ≤ r + 2 ≤ d}

20

and put

β̂ = E1 ∪ L1 ∪ E2 ∪ L2.

We set

β̃ ←
{
β̃ ∈ β̂ ∪ {0} ∪ {βmax} | 0 ≤ β̃ ≤ βmax

}
and sort β̂ to β in ascending order. Hence β = {β1, β2, . . . βp} satisfies 0 = β0 < β1 < · · · < βp = βmax (Step 12 and 13).
We can find βopt effectively with bi-section method by finding points βj and βj+1 satisfying

∑s
i=1(fr)i(z(βj))i > r and∑s

i=1(fr)i(z(βj+1))i < r (0 ≤ j ≤ p− 1).

()j b

b

00()b=
1b j

b optb 1jb + maxb

r

Fig. 13. The graph of φ.

REFERENCES

[1] N. Aydin, B. Yildiz, and S. Uludag, “A class of weak keys for the qc-mdpc cryptosystem,” in 2020 Algebraic and Combinatorial Coding Theory (ACCT),
pp. 1–4, 2020.

[2] M. Baldi, QC-LDPC Code-Based Cryptography, Springer 2014.
[3] M. Bardet, V. Dragoi, JG. Luque, A. Otmani, “Weak Keys for the Quasi-Cyclic MDPC Public Key Encryption Scheme”, In: Pointcheval, D., Nitaj, A.,

Rachidi, T. (eds) Progress in Cryptology – AFRICACRYPT 2016, Lecture Notes in Computer Science, vol 9646, Springer, 2016.
[4] S. Barman, X. Liu, S. C. Draper and B. Recht, ”Decomposition Methods for Large Scale LP Decoding,” IEEE Transactions on Information Theory, 59,

12, pp. 7870-7886, 2013.
[5] E. Berlekamp, R. McEliece and H. van Tilborg, ”On the inherent intractability of certain coding problems,” IEEE Transactions on Information Theory,

24, 3, pp. 384-386, 1978.
[6] BIKE (Bit Flipping Key Encapsulation), Available: https://bikesuite.org
[7] I. E. Bocharova, T. Johansson and B. D. Kudryashov, ”Improved iterative decoding of QC-MDPC codes in the McEliece public key cryptosystem,” 2019

IEEE International Symposium on Information Theory (ISIT), pp. 1882-1886, 2019.
[8] N. Drucker, S. Gueron, D. Kostic, “On Constant-Time QC-MDPC Decoders with Negligible Failure Rate”, In: Baldi, M., Persichetti, E., Santini, P. (eds)

Code-Based Cryptography, CBCrypto 2020, Lecture Notes in Computer Science, vol 12087, Springer, 2020.
[9] N. Drucker, S. Gueron, D. Kostic, “QC-MDPC Decoders with Several Shades of Gray”, In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography.

PQCrypto 2020. Lecture Notes in Computer Science, vol. 12100. Springer, 2020.
[10] J. Feldman, M. J. Wainwright and D. R. Karger, ”Using linear programming to decode binary linear codes,” IEEE Transactions on Information Theory,

51, 3, pp. 954-972, 2005.
[11] Q. Guo, T. Johansson and P. Stankovski Wagner, ”A Key Recovery Reaction Attack on QC-MDPC,” IEEE Transactions on Information Theory, 65, 3,

pp. 1845-1861, 2019.
[12] Gurobi Optimizer, https://www.gurobi.com/
[13] H. Kaneko, “Look-Ahead Bit-Flipping Decoding of MDPC Code”, 2022 IEEE International Symposium on Information Theory (ISIT), pp. 2922-2927,

2022.
[14] X. Liu and S. C. Draper, ”The ADMM Penalized Decoder for LDPC Codes,” IEEE Transactions on Information Theory, 62, 6, pp. 2966-2984, 2016.
[15] R. Misoczki, J. Tillich, N. Sendrier and P. S. L. M. Barreto, ”MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes”,

2013 IEEE International Symposium on Information Theory, pp. 2069-2073, 2013.
[16] A. Nilsson, I. E. Bocharova, B. D. Kudryashov and T. Johansson, ”A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems,” 2021 IEEE

International Symposium on Information Theory (ISIT), pp. 1266-1271 2021.
[17] M. R. Nosouhi et al, ”Weak-Key Analysis for BIKE Post-Quantum Key Encapsulation Mechanism,” IEEE Transactions on Information Forensics and

Security, 18, pp. 2160-2174, 2023.

21

[18] P. Santini, M. Battaglioni, M. Baldi and F. Chiaraluce, ”Analysis of the Error Correction Capability of LDPC and MDPC Codes Under Parallel Bit-Flipping
Decoding and Application to Cryptography,” IEEE Transactions on Communications, 68, 8, pp. 4648-4660, 2020.

[19] N. Sendrier and V. Vasseur, “About Low DFR for QC-MDPC Decoding”, in International Conference on Post-Quantum Cryptography 2020, Lecture
Notes in Computer Science, 12100, 2020.

[20] N. Sendrier and V. Vasseur,”On the Existence of Weak Keys for QC-MDPC Decoding.”, Cryptology ePrint Archive, Paper 2020/1232.
[21] J. -P. Tillich, ”The Decoding Failure Probability of MDPC Codes,” 2018 IEEE International Symposium on Information Theory (ISIT), pp. 941-945,

2018.
[22] V. Vasseur, “QC-MDPC codes DFR and the IND-CCA security of BIKE”, Cryptology ePrint Archive, Paper 2021/1458.
[23] QC-MDPC decoder, https://github.com/vvasseur/qcmdpc\ decoder .
[24] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, Proceedings 35th Annual Symposium on Foundations of Computer

Science, pp. 124-134, 1994.
[25] J. Stern, “A method for finding codewords fo small weight” in Coding theory and applications, Lecture Notes in Computer Science, 388, 1989.
[26] X. Zhang and P. H. Siegel, “Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers”, 2013 IEEE International

Symposium on Information Theory, pp. 1501-1505, 2013.
[27] HQC (Hamming Quasi-Cyclic) , Available: https://pqc-hqc.org
[28] Post-Quantum Cryptography, https://csrc.nist.gov/Projects/post-quantum-cryptography/

