
Efficient Aggregatable BLS Signatures
with Chaum-Pedersen Proofs

Oana Ciobotaru, Jeff Burdges, Syed Lavasani, and Alistair Stewart

Web3 Foundation

Abstract. BLS signatures have fast aggregated signature verification
but slow individual signature verification. We propose a three part op-
timisation that dramatically reduces CPU time in large distributed sys-
tems using BLS signatures: First, public keys should be given in both
source groups G2 and G1, with a proof-of-possession [1] check for cor-
rectness. Second, aggregated BLS signatures should carry their particular
aggregate public key in G2, so that verifiers can do both hash-to-curve
and aggregate public key checks in G1. Third, individual non-aggregated
BLS signatures should carry short Chaum-Pedersen DLEQ proofs of cor-
rectness [2], so that verifying individual signatures no longer requires
pairings, which makes their verification much faster. We prove security
for these optimisations. The proposed scheme is implemented and bench-
marked to compare with classical BLS scheme.

1 Introduction

BLS signatures introduced by Boneh, Lynn and Shacham [3] are a popu-
lar aggregatable signature scheme. It has short aggregate signatures that
can be efficiently verified. However due to the heavier cryptography in-
volved, i.e., pairings on elliptic curves, individual signatures are much
slower to verify compared to e.g. Schnorr or ECDSA signatures.

Aggregation of BLS signatures [3] simplifies some distributed systems,
usually by being exportable proofs of byzantine agreement. After agree-
ment and aggregation occurs, the aggregate signature saves foreign aggre-
gate verifiers both compute and bandwidth over checking numerous slow
signatures, especially at the scale of Ethereum’s hundreds of thousands
of signers. Because individual signature verification is very slow, either
most nodes incur the high verification costs for every other node’s signa-
tures, or, else, system designers choose more centralised gossip flavours
which may harm liveness.

As a rule, today one always does BLS signatures on curves with type III
pairings, i.e. the pairing takes as input elements of two different groups
G1 and G2. Typically, such as with the standard BLS12-381 curve, these
have very different performance characteristics with G2 having much
slower arithmetic and hash-to-curve, due to being defined over an ex-
tension field. In fact, recent progress against the discrete log problem
in extension fields [4] could precipitate adopting pairings with a higher

embedding degree, which would slow G2 further. We want the parts of
our protocol that need to be efficient to use all or mostly G1 operations.

In this work we propose individual BLS signatures carry Chaum-Pedersen [2]
DLEQ proofs of their correctness, done in G1, so that verifying them no
longer requires pairings or G2 operations. Moreover, a classical BLS sig-
nature places the public key and signature on opposite groups of the
pairing (for type III pairings), but the choice of which of the groups is
used for the keys or signatures creates trade offs. We mitigate these trade
offs by proposing the following:

Protocol Sketch: First, we provide the public key on both source group-
slike pk = (sk · g1, sk · g2). We enforce this public key structure during
the public key validation phase present in many aggregate BLS proto-
cols in order to protect against rogue-key attacks [1] by adding proof-of-
possession check [1] via a pairing check.
Second, we create BLS signatures σ = sk ·H(m) using the much faster G1

hash-to-curve H(m), but also provide a Chaum-Pedersen proof πsig that
logH(m)(σ) = logg1

(pk1). Verifying the correctness of σ is thus reduced
to verifying the correctness of πsig , which avoids any expensive pairing
operations.

Third, an aggregator node provides both the aggregate BLS signature,
as well as aggregate signer keys apk2 ∈ G2, by summing the individual
signatures and second source group public keys. At this point, aggregate
verifiers only need to compute apk1 as the sum of first source group
public keys and check that apk2 was correctly computed with only two
additional scalar multiplications in G1. In the end, aggregate verifiers
save time despite these multiplications because their hash-to-curve runs
on G1, far faster than on G2. Even when using alternative methods for
computing apk1 that involve custom SNARKs such as in [5], the aggre-
gate verifiers still require operations only in the smaller and faster source
group.
We remark that a natural variation on our protocol exists in which one
finds an even faster non-pairing curve S having the same group order as
G1, publishes triplet public keys like pk = (sk ·g1, sk ·g2, sk ·S), in which S
generates S, and then DLEQ proofs use pk3 for performance. We do not
discuss this variant because it falls under our security arguments without
additional mathematical complexities, aside from choosing curve param-
eters for S.

In addition to the above proposed protocol which we present in detail
in Section 2.2, we include a formal definition of signature aggregation in
Section 2.1 and we also provide a security proof for our instantiation in
Section 2.2. In Section 3 we present the comparison of the efficiency of
the proposed scheme with classic BLS scheme.

Related Work: Alternative constructions for BLS signatures as well
as other defence mechanisms against rogue key attacks [1], exist and we

2

briefly review both below. First, aggregation of BLS signatures for differ-
ent messages have been studied before (e.g., [6]). In this case, rouge-key
attacks are not a threat anymore (and, hence, PoPs are not a necessity
anymore), but signature verification is computationally more expensive
than in our case, requiring O(n) parings for n different messages. Sec-
ond, alternative aggregatable BLS signatures exist (e.g., [7]) where both
the aggregated public key have their size independent of the number
of signers and the signature verification is comparable to our variant.
However, for the blockchain use cases we envision (for example the ac-
countable light client system from [5]) we prefer our scheme detailed in
Section 2.2: its corresponding key aggregation is a simple sum of the
individual signers’ public keys, while, in [7] the key aggregation opera-
tion involves more expensive scalar multiplications every time the key
aggregation is performed.

2 Our Aggregatable Signature Scheme

2.1 Secure Signature Aggregation

An aggregatable signature scheme compresses signatures issued using
possibly different signing keys into one signature. In this work we use an
aggregatable signature scheme making explicit use of proofs-of-possession
(PoPs) [1] in order to protect against rogue-key attacks [1].

Definition 1. (Aggregatable Signature Scheme) An aggregatable signa-
ture scheme consists of the following tuple of algorithms (AS .Setup,
AS .GenerateKeypair, AS .VerifyPoP, AS .Sign, AS .AggregateKeys,
AS .AggregateSignatures, AS .Verify):

– pp ← AS .Setup(λ): a setup algorithm that, given a security param-
eter λ, outputs public protocol parameters pp.

– ((pk , πPoP), sk) ← AS .GenerateKeypair(pp): a key pair generation
algorithm that outputs a secret key sk, and the corresponding public
key pk together with a proof-of-possession πPoP of the secret key.

– 0/1 ← AS .VerifyPoP(pp, pk , πPoP): a public key verification algo-
rithm that, given a public key pk and a proof-of-possession πPoP ,
outputs 1 if πPoP is valid for pk and 0 otherwise.

– σ ← AS .Sign(pp, sk ,m): a signing algorithm that, given a secret key
sk and a message m ∈ {0, 1}∗, returns a signature σ.

– apk ← AS .AggregateKeys(pp, (pki)
n
i=1): a public key aggregation al-

gorithm that, given a vector of public keys (pki)
n
i=1, returns an ag-

gregate public key apk.

– asig ← AS .AggregateSignatures(pp, (σi)
n
i=1): a signature aggregation

algorithm that, given a vector of signatures (σi)
n
i=1, returns an ag-

gregate signature asig.

– 0/1← AS .Verify(pp, apk ,m, asig): a signature verification algorithm
that, given an aggregate public key apk, a message m ∈ {0, 1}∗, and
an aggregate signature σ, returns 1 or 0 to indicate if the signature
is valid.

3

We say (AS .Setup, AS .GenerateKeypair, AS .VerifyPoP, AS .Sign,
AS .AggregateKeys, AS .AggregateSignatures, AS .Verify) is an aggregat-
able signature scheme if it satisfies perfect completeness, completeness
for aggregation and unforgeability as defined below.

Perfect Completeness An aggregatable signature scheme (AS .Setup,
AS .GenerateKeypair , AS .VerifyPoP , AS .Sign, AS .AggregateKeys,
AS .AggregateSignatures, AS .Verify) has perfect completeness if for any
message m ∈ {0, 1}∗ and any n ∈ N it holds that:

Pr [AS .Verify(pp, apk ,m, asig) = 1 ∧ ∀i ∈ [n] AS .VerifyPoP(pp, pki , πPoP,i) = 1 |
pp ← AS .Setup(λ),

((pki, πPoP,i), ski)← AS .GenerateKeypair(pp), i = 1, . . . , n

apk ← AggregateKeys(pp, (pk i)
n
i=1),

σi ← AS .Sign(pp, ski ,m), i = 1, . . . , n,

asig ← AS .AggregateSignatures(pp, (σi)
n
i=1)] = 1.

We note that an aggregatable signature scheme with perfect complete-
ness implies the underlying signature scheme has perfect completeness.

Completeness for Aggregation An aggregatable signature scheme
(AS .Setup, AS .GenerateKeypair , AS .Verify , AS .Sign, AS .AggregateKeys,
AS .AggregateSignatures, AS .Verify) has completeness for aggregation if,
for every adversary A

Pr [AS .Verify(pp, apk ,m, asig) = 1 (∗ ∗ ∗∗) | pp ← AS .Setup(λ),

((pki , πPoP,i)
n
i=1,m, (σi)

n
i=1)← A(pp),

∀i ∈ [n],AS .VerifyPoP(pp, pki , πPoP,i) = 1 (∗),
∀i ∈ [n],AS .Verify(pp, pki ,m, σi) = 1 (∗∗),
apk ← AS .AggregateKeys(pp, (pk i)

n
i=1),

asig ← AS .AggregateSignatures(pp, (σi)
n
i=1)(∗ ∗ ∗)] = 1− negl(λ).

Unforgeable Aggregatable Signature For an aggregatable signa-
ture scheme (AS .Setup, AS .GenerateKeypair , AS .VerifyPoP , AS .Sign,
AS .AggregateKeys, AS .AggregateSignatures, AS .Verify) the advantage
of an adversary against unforgeability is defined by

Adv forge
A (λ) = Pr [Game forge

A (λ) = 1], where

4

Game forge
A (λ) :

pp ← AS .Setup(λ)

((pk∗, π∗PoP), sk∗)← AS .GenerateKeypair(pp)

Q← ∅

((pki , πPoP,i)
n
i=1,m, asig)← AOSign(pp, (pk∗, π∗PoP))

If pk∗ /∈ {pki}ni=1 ∨m ∈ Q, then return 0

For i ∈ [n]

If AS .VerifyPoP(pp, pki , πPoP,i) = 0 return 0

apk ← AS .AggregateKeys(pp, (pki)
n
i=1)

Return AS .Verify(pp, apk ,m, asig)

and

OSign(mj) :

σj ← AS .Sign(pp, sk∗,mj)

Q← Q ∪ {mj}
Return σj

and AOSign denotes the adversary A with access to oracle OSign.
We say an aggregatable signature scheme is unforgeable if for all efficient
adversaries A it holds that Adv forge

A (λ) ≤ negl(λ).

2.2 Aggregatable BLS Signatures

In the following, we instantiate the aggregatable signature definition
given above with a scheme inspired by the BLS signature scheme [3] and
its follow-up variants [1,7]. Because, in general, multisignatures are sus-
ceptible to so-called “rogue-key attacks” which can be mounted whenever
the adversary is allowed to choose his public keys arbitrarily, in order to
protect against such rogue-key attacks, we enhance our multisignature
instantiation with proofs-of-possessio as defined in [1]. In turn, we in-
stantiate our proofs-of-possession with BLS signatures in the first source
group.

Instantiation 1. (Aggregatable BLS Signatures) We call aggregatable
BLS signatures the following instantiation of aggregatable signatures:

– (G1,G2, g1, g2,GT , e,H ,HPoP ,HDLEQ,sig) from pp where
pp ← AS .Setup(λ), where G1, G2, g1, g2, GT , e are the first and
second source groups, their generators and the associated pairing for
some BLS elliptic curve E, respectively, and H : {0, 1}∗ → G1,
HPoP : {0, 1}∗ → G1 and HDLEQ,sig : {0, 1}∗ → Z∗r are three hash
functions.

– (pk1 , pk2 , sk , σPoP) ← AS .GenerateKeypair(pp), where sk
$←− Z∗r

and pk1 = sk · g1 ∈ G1 and pk2 = sk · g2 ∈ G2 and σPoP =
sk ·HPoP (pk2) and r is the size of the scalar field of elliptic curve E.

5

– 0/1← AS .VerifyPoP(pp, pk1 , pk2 , σPoP), where AS .VerifyPoP out-
puts 1 if the following holds:

e(HPoP (pk2) + t · g1, pk2) = e(σPoP + t · pk1, g2),

with t
$←− Zr. If the verification above does not pass, then AS .VerifyPoP

outputs 0.
– (σ, πDLEQ,sig)← AS .Sign(pp, sk ,m): where σ = sk ·H (m) ∈ G1 and
πDLEQ,sig ← ProveDLEQ,sig(g1,m, pk1 , σ, sk).

– apk1 ← AS .AggregateKeys(pp, (pk
(i)
1 , pk

(i)
2)ni=1), where apk1 =

∑n
i=1 pk

(i)
1 .

– asig ← AS .AggregateSignatures(pp, (pk
(i)
1 , pk

(i)
2)ni=1, (σ

(i), πi)
n
i=1), where

asig = (σ(1), π1) if n = 1 and asig = (
∑n
i=1 σ

(i), apk2 ,⊥) if n > 1,

where apk2 =
∑n
i=1 pk

(i)
2 .

– 0/1 ← AS .Verify(pp, apk1 ,m, asig), where AS .Verify outputs 1 if
either asig3 = ⊥ and e(asig1 + t · apk1 , g2) = e(H(m) + t · g1, asig2),

with t
$←− Z∗r or there exists no component asig3 and

VerifyDLEQ,sig(g1,m, apk1 , asig1, asig2) = 1; in all other cases, it
outputs 0.

Above we have used the following argument system

PSDLEQ,sig = (KeyGenDLEQ,sig ,ProveDLEQ,sig ,VerifyDLEQ,sig) (1)

– (G1, g1,HDLEQ,sig)← KeyGenDLEQ,sig(λ) as a subprotocol of AS .Setup(λ).
– πDLEQ,sig = (c, s)← ProveDLEQ,sig(g1,m, pk1 , σ, sk) where

k
$←− Z∗r , A = k ·g1, B = k ·H(m), c = HDLEQ,sig(g1,m, pk1 , σ, A,B),

s = k − c · sk mod r.
– 0/1← VerifyDLEQ,sig(g1,m, pk1 , σ, (c, s)), where VerifyDLEQ,sig out-

puts 1 if c = HDLEQ,sig(g1,m, pk1 , σ, A
′′, B′′) where A′′ = s·g1+c·pk1

and B′′ = s ·H(m) + c · σ and it outputs 0 otherwise.

Note: It is easy to show that PSDLEQ,sig is a zero-knowledge non-interactive
argument of knowledge for relation RDLEQ,sig , where

RDLEQ,sig = {(G1, g1,m, pk1 , σ); sk) : pk1 = sk · g1, σ = sk ·H(m)},

and G1 is generated by g1.

Theorem 2. Assuming that co-CDH holds for e (see Appendix for a
reminder of this assumption) and H, HPoP and HDLEQ,sig are modelled as
random oracles, then instantiation 1 is an aggregatable signature scheme
as per definition 1.

Proof. The perfect completeness property is very easy to prove.

Regarding completeness for aggregation, the non-trivial case is when
n > 1. Let A1 be an efficient adversary trying to break this prop-
erty. Due to our instantiation, we have the following explicit notation
(pki , πPoP,i)

n
i=1 = ((pk

(i)
1 , pk

(i)
2), σ

(i)
PoP)ni=1. Since (∗) holds, then by the

Schwartz-Zippel lemma e(g1, pk
(i)
2) = e(pk

(i)
1 , g2), ∀i ∈ [n], which, due

to the bilinearity of pairing e and the fact that the associated source
groups G1 and G2 are cyclic, it implies that ∀i ∈ [n], ∃ (sk i)

n
i=1 ∈ (Zr)n

6

such that pk
(i)
1 = sk i · g1 and pk

(i)
2 = sk i · g2. Since (∗∗) holds, then

due to the existential soundness of PSDLEQ,sig , except with negligible

probability, there exist (sk i)
n
i=1 ∈ (Zr)n such that pk

(i)
1 = sk i · g1 and

σ(i) = sk i · H (m). The above properties together with (∗ ∗ ∗) in turn,
imply that, except with negligible probability, apk1 = (

∑n
i=1 sk i) · g1,

asig2 = (
∑n
i=1 sk i) · g2 and asig1 = (

∑n
i=1 sk i) · H (m). This, in turn,

implies that the aggregated signature verification (∗ ∗ ∗∗) holds, except
with negligible probability.

Regarding unforgeability, let A2 be an efficient adversary trying to break
this property (see definition 1). Next, we follow a similar proof technique
as detailed for theorem 15.2, part b in [8] where given a successful adver-
sary A2 against unforgeability one can construct a successful adversary
B against the co-CDH assumption as follows:
Adversary B is given a tuple (u1 = α · g1, u2 = α · g2, v1 = β · g1) where

α, β
$←− Zr, as in the co-CDH attack game (see Appendix); B needs to

compute z1 = αβ · g1 = α · v1. First, B sends the public key (pk∗ =

(u1, u2), σ∗PoP) to the forger A2, where σ∗PoP = δ∗ · u1 and δ∗
$←− Zr,

HPoP (pk2
∗) = δ∗ · g1. Hence σ∗PoP = α ·HPoP (pk2

∗).
Afterwards, A2 makes a sequence of queries: Qro hash queries to H,
Qsig signature queries, Qpop queries to HPoP , and QDLEQ,sig queries to
HDLEQ,sig . To these queries, adversary B responds as follows:

– Overall, hash queries to H are handled by B by first choosing a
random ω ∈ {1, . . . , Qro}. (Note that among the Qro hash queries
there may be one message that is not part of the signature queries
from A2 but is output as an alleged forgery by A2. Using random
value ω, B is trying to guess the index of that precise message queried
byA2.) Then, for j = 1, 2, ..., Qro , whenA2 issues hash query number
j (i.e., query for H(mj)), B responds by:

• if j 6= ω then B chooses ρj
$←− Zr and sets H(mj) := ρj · g1,

• if j = ω then B sets H(mω) = v1.
– Signing queries mj are answered as follows: The first component σ(j)

of the individual signature for a message mj is ρj · u1 = α ·H(mj).
This can be answered correctly by B as long as he guesses the correct
index ω defined above and, also, since all the corresponding values
ρj are chosen and known by him. Regarding the second component

of the individual signature, i.e., π
(j)
DLEQ,sig , this can be computed by

B using the fact that it can program the oracle for HDLEQ,sig and,
also, since the non-interactive argument of knowledge PSDLEQ,sig

has zero-knowledge. Indeed, π
(j)
DLEQ,sig is computed as (cj , sj) where

cj , sj are chosen uniformly at random in Z∗r , setting Aj = sj · g1 +
cj · u1 and Bj = sj · H(mj) + cj · σ(j) and finally B records in
the corresponding table the value for the simulated random oracle
HDLEQ,sig in (g1,mj , u1, σ

(j), Aj , Bj) as equal to cj .

– HDLEQ,sig(g1,m
′, pk

(j)
1 , σ(j), A

′
j , B

′
j) queries are received, stored in

a table and retrieved as consistent queries to a simulated random
oracle.

– HPoP (mj) queries for mj 6= pk∗2 by choosing δj
$←− Zr and setting

HPoP (mj) = v1 + δj · g1; HPoP (pk∗2) has already been defined.

7

Eventually, A2 outputs a valid aggregate forgery

(((pk
(i)
1 , pk

(i)
2), σ

(i)
PoP)ni=1,m, asig)

where

∀i ∈ [n], e(HPoP (pk2
(i)) + ti · g1, pk2

(i)) = e(σ
(i)
PoP + ti · pk1

(i), g2) (10),

with ti
$←− Zr, ∀i ∈ [n] and

AS .Verify(pp,

n∑
i=1

pk
(i)
1 ,m, asig) = 1 (20)

and pk∗ = (u1, u2) is among the public keys and m was not signed before.
– Case 1: n = 1. In this case, the valid forgery has the form

(pk
(1)
1 = u1, pk

(1)
2 = u2, σ

∗
PoP ,m, σ

∗).

If index ω was guessed correctly by B, then by definition of H above
H(m) = v1; moreover, by the definition of valid forgery, we also have

VerifyDLEQ,sig(g1,m, pk∗1 = u1 = α · g1, σ∗, π∗) = 1. (30)

Due to knowledge soundness of the argument system PSDLEQ,sig

with respect to simulated oracle H, (30) implies that, with over-
whelming probability, σ∗ = α · H(m). But since H(m) = v1, we
conclude the value z1 = α ·v1 that B needs to output in the co-CDH
game is σ∗, so B can indeed output z1 with the help of A2. This
concludes the proof in this case.

– Case 2: n > 1. To conclude the proof, B uses a similar technique
as in theorem 15.2 part b in [8] for computing the first compo-
nent σ∗ of signature which corresponds to public key pk∗ by di-
viding out of asig1 all the first components of every individual sig-
nature (corresponding to every public key pk (i) 6= pk∗). Note that
there are two types of signatures: type I corresponding to public key
pk (i) = pk∗ = (u1, u2) and type II corresponding to all other public
keys pk (i) 6= (u1, u2). For type I signature, B only needs to know
how many times the public key (and, consequently, the respective
signature) is repeated in the output of A2. For type II signatures,

let αi ∈ Zr be such that pk
(i)
2 = αi · g2. Due to (10), this implies

that pk1
(i) = αi · g1 and σ

(i)
PoP = αi · HPoP (pk2

(i)). B can compute
for a public key pk (i) 6= (u1, u2) the corresponding signature’s first

component as σ(i) = σ
(i)
PoP − δi · pk

(i)
1 . It is clear that

σ(i) = σ
(i)
PoP−δi ·pk

(i)
1 = αi ·v1+αiδi ·g1−αiδi ·g1 = αi ·v1 = αi ·H(m).

Since σ(i) is a correct signature, it verifies

e(σ(i), g2) = e(H(m), pk2
(i)) (40)

Moreover, let d be the number of repetitions of pk∗ in the output
of A2. If s is the product of all the signatures that B can compute

8

(i.e., for public keys different from pk∗), then from (20) we obtain
e(s, g2) = e(H(m),

∑n
i=1 pk2

(i) − d · pk2
∗) and, together with (40),

this implies e(d · σ∗, g2) = e(asig − s, g2) = e(H(m), pk2
∗)d. Finally,

using also the definitions of H(m), pk2
∗ and z1 we have

e(asig , g2) = e(s, g2) · e(asig − s, g2) = e(s, g2) · e(H(m), pk2
∗)d =

= e(s, g2) · e(z1, g2)d = e(s, g2) · e(d · z1, g2).

Hence, d ·σ∗ = asig−s = d ·z1. The value z1 that B needs to output
is computable as d−1 · (asig − s).

3 Benchmarks

The implementation of the scheme proposed in this paper using Rust
programming language can be found as part of the Web3 Foundation
BLS Library [9]. The BLS library uses Arkworks Framework [10] as the
backend to perform curve and arithmetic operations. The curve used in
for benchmarking is the BLS12-377 curve introduced in [11].
The benchmarks have been measured using a ‘cargo bench‘ running on
a single thread on an ‘Intel(R) Xeon(R) E5-2440 0 @ 2.40GHz‘ CPU.

3.1 Verification using aggregated G1 public keys

Table 1 lays out the details of times needed to perform operations related
to aggregate the signers’ public keys and verifying the aggregated signa-
ture signed by 100 signers or 1000 signers respectively. In both scenarios
we assume that an aggregated signature in G1 and a list of signers’ public
keys is handed to the verifier.

In the first case, in accordance with aggregated BLS signature verifica-
tion, the verifier has the list of signers’ public keys in G2 and aggregates
them to check the validity of the given signature. In the second case
the aggregated public key of the signers in G2 is additionally handed to
the verifier. The verifier has the list of signers’ public keys in G1 and
aggregates them to check the validity of the signature using the scheme
proposed in this work.

Scheme 1000 Signers 10000 Signers

Aggregate Public keys in G2 and Verify (standard BLS) 10.815 ms 69.062 ms

Aggregate Public keys in G1 and Verify (our scheme) 6.815 ms 22.159 ms

Table 1: Verification time for 1000/10000 aggregated signatures using public keys
in G1 and G2 on BLS12-377 Curve.

The benchmarks in Table 1 demonstrate that when the number of signers
increases, the advantage of performing the aggregation of public keys in

9

G1 becomes more prominent. This result is expected because the scheme
presented in this work performs only two extra scalar multiplications in
G1 compared to standard BLS verification with aggregate public key in
G2. Thus, when the number of signers increases, the benefit from having
to perform a large number of elliptic curve additions in the faster G1

group compared to the same number of additions in the slower G2 group
overcompensates for the overhead cost of two extra scalar multiplications
in the case of our scheme.

3.2 Verification of individual BLS signatures via
verification of Chaum-Pedersen Proofs

Table 2 illustrates the efficiency of verification when using additional
Chaum-Pedersen proofs that accompany the BLS signatures and the
BLS public keys in the first source group G1.

Scheme 1000 Signatures

BLS Verification (applying pairings with each individual signature) 4534 ms

Chaum-Pedersen verification for BLS signature and key (our scheme) 2480 ms

Table 2: Verification time for 1000 signatures verified individually (non-
aggregated) using BLS Verification vs using the Chaum-Pedersen proofs.

Note that for the BLS verification, we have applied pairings to each of
the 1000 signatures1 rather than aggregating those signatures and apply-
ing pairings to the aggregated signature. There are real world practical
applications which require individual verification of BLS signatures, such
as when individual signatures are gossiped to an aggregator node and the
gossiper is supposed not to gossip invalid signatures. Similarly is the case
of identifying the signer(s) accountable for the failure of an aggregated
signature.

Considering that the pairing costs as much as eight naive G1 scalar mul-
tiplications in the Artworks library, we have benefited from about a 45%
reduction of the cost of the verification of time of individual signatures.
We note that there are various avenues to improve the efficiency of the
scalar multiplications (such as employing efficient multi-scalar multipli-
cation methods) which has not been accounted for and can make our
scheme even more efficient.

4 Conclusion

In this paper we define, instantiate and prove the security properties for
an aggregatable BLS signature scheme such that when used appropri-
ately, it allows the verifier to essentially store or work only with short

1 In our scheme, the first component of the individual signatures is in G1 and the
signature is over the corresponding signer’s G2 public key.

10

public keys and signatures because they are in the first target group of
the associated BLS pairing. We have implemented our signature scheme
and we have provided concrete benchmarks and an evaluation of its ef-
ficiency benefits. We are planning to improve the efficiency of the im-
plementation by applying other optimisations related to multiple scalar
multiplications.

References

1. T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Se-
curing multiparty signatures against rogue-key attacks,” in EURO-
CRYPT 2007, pp. 228–245, 2007.

2. D. Chaum and T. P. Pedersen, “Wallet databases with observers,”
in Annual international cryptology conference, pp. 89–105, Springer,
1992.

3. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in ASIACRYPT 2001, pp. 514–532, 2001.

4. R. Barbulescu, P. Gaudry, and T. Kleinjung, “The tower number
field sieve,” in International Conference on the Theory and Appli-
cation of Cryptology and Information Security, pp. 31–55, Springer,
2015.

5. O. Ciobotaru, F. Shirazi, A. Stewart, and S. Vasilyev, “Accountable
light clients for pos blockchains.” Cryptology ePrint Archive, Report
2022/1205, 2022.

6. D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and ver-
ifiably encrypted signatures from bilinear maps,” in EUROCRYPT
2003, pp. 416–432, 2003.

7. D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in ASIACRYPT 2018, pp. 435–464, 2018.

8. D. Boneh and V. Shoup, A Graduate Course in Applied Cryptogra-
phy. 2020.

9. “Boneh-Lynn-Shacham (bls) signature library with signa-
ture and aggregation in G1,” tech. rep., Web3.0 Tech-
nologies Foundation, https://github.com/w3f/bls/tree/

skalman-double-puclic-key-verify, 2022.
10. Arkworks, “An ecosystem for developing and programming with zk-

snarks,” tech. rep., Arkworks, https://github.com/arkworks-rs,
2022.

11. S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu,
“Zexe: Enabling decentralized private computation,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020.

12. S. Yonezawa, “Pairing-friendly curves,” 2020. https://tools.ietf.
org/id/draft-yonezawa-pairing-friendly-curves-02.html.

13. S. Galbraith, K. Paterson, and N. Smart, “Pairings for cryptogra-
phers.” ePrint 2006/165, 2006.

A Appendix

Below we remind the reader the co-CDH assumption, which is a variation
of the standard computational Diffie-Hellman assumption (CDH) for the

11

https://github.com/w3f/bls/tree/skalman-double-puclic-key-verify
https://github.com/w3f/bls/tree/skalman-double-puclic-key-verify
https://github.com/arkworks-rs
https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html
https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-02.html

case when two groups are used. Let E be a pairing friendly elliptic curve
and let G1, G1 and GT be appropriately chosen subgroups of order r
with g1, g2 generators for the first two subgroups, respectively. Let e :
G1 ×G2 → GT be a secure pairing [12,13].

Attack Game co-CDH For a given adversary A the attack runs as
follows:

– The challenger computes α, β
$←− Zr, u1 ← gα1 , u2 ← gα2 , v1 ← gβ1 ,

z1 ← gαβ1 and gives the tuple (u1, u2, v1) to A; α is used twice, once
in G1 and in G2.

– The adversary A outputs some ẑ1 ∈ G1.
A’s advantage in solving the co-CDH problem for e, denoted by

AdvcoCDH [A, e]

is the probability that ẑ1 = z1.

co-CDH Assumption We say that the co-CDH assumption holds for the
pairing e if for all efficient adversaries A, the quantity AdvcoCDH [A, e]
is negligible. If e is a symmetric pairing, then G1 = G2 and g1 = g2
in which case the co-CDH assumption is identical to the standard CDH
assumption.

12

	Efficient Aggregatable BLS Signatures with Chaum-Pedersen Proofs

