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Abstract. Since its introduction at Asiacrypt 2017, the CKKS approxi-
mate homomorphic encryption scheme has become one of the most widely
used and implemented homomorphic encryption schemes. Due to the
approximate nature of the scheme, application developers using CKKS
must ensure that the evaluation output is within a tolerable error of the
corresponding plaintext computation. Choosing appropriate parameters
requires a good understanding of how the noise will grow through the
computation. A strong understanding of the noise growth is also neces-
sary to limit the performance impact of mitigations to the attacks on
CKKS presented by Li and Micciancio (Eurocrypt 2021).
In this work we present a comprehensive noise analysis of CKKS, that
considers noise coming both from the encoding and homomorphic opera-
tions. Our main contribution is the first average-case analysis for CKKS
noise, and we also introduce refinements to prior worst-case noise anal-
yses. We develop noise heuristics both for the original CKKS scheme
and the RNS variant presented at SAC 2018. We then evaluate these
heuristics by comparing the predicted noise growth with experiments in
the HEAAN and FullRNS-HEAAN libraries, and by comparing with a
worst-case noise analysis as done in prior work. Our findings show mixed
results: while our new analyses lead to heuristic estimates that more
closely model the observed noise growth than prior approaches, the new
heuristics sometimes slightly underestimate the observed noise growth.
This evidences the need for implementation-specific noise analyses for
CKKS, which recent work has shown to be effective for implementations
of similar schemes.

1 Introduction

Homomorphic Encryption (HE) enables computation on ciphertexts without re-
vealing any information about the underlying plaintexts. The first scheme was
proposed by Gentry [20] and, since then, many homomorphic encryption schemes



have been proposed [5, 19, 12, 11] based on the security of the Learning with
Errors (LWE) problem [41] and its variants.

One of the most popular schemes is the approximate homomorphic encryp-
tion scheme CKKS [11], which we describe in Section 2. Ciphertexts in all ho-
momorphic encryption schemes based on LWE variants contain noise, which
grows with each evaluation operation, and must be carefully controlled to en-
sure correct decryption. The main insight of [11] is that it may be tolerable
for decryption to be approximate, for example in applications where we expect
small errors to occur. This enables the CKKS scheme to natively support real-
valued plaintexts, making it attractive for application settings such as privacy-
preserving machine learning [28, 4, 39]. In contrast, other similar schemes such
as BGV [5] or BFV [19], are exact, and thus have a finite plaintext space that
data must be encoded into. CKKS has been extensively optimised [8, 9, 29]
and is implemented in many prominent open-source homomorphic encryption
libraries [24, 26, 31, 2, 40, 42].

Homomorphic encryption schemes involve many different parameters, and
it can be a challenge to choose appropriate parameters that balance efficiency,
security, and noise growth. This is particularly true for the CKKS scheme, for
two main reasons. Firstly, unlike for exact schemes, encoding and encryption
noises must be considered together. Secondly, in CKKS, we have to track not
only the level of ciphertexts (as in BFV and BGV), but we must also track the
scaling factor ∆. Unfortunately, there is no clear guidance for choosing ∆ and a
trial-and-error approach is usually advised4.

Prior noise analyses for CKKS [11, 8, 9, 22, 29] employ a worst-case analysis
in the canonical embedding, in analogue to the line of work [14, 15, 21] for
analysing noise growth in BGV and BFV. In particular, a worst-case bound
on the noise of each ciphertext in the canonical embedding is tracked through
each homomorphic operation. This leads to a bound on the noise in the output
ciphertext, which can be used to set parameters for correctness. These worst-case
bounds are developed assuming that the random variable falls within a certain
multiple of standard deviations (e.g. six [21] or ten [22]) from its mean. We can
thus expect the bounds to be loose even from the beginning of the computation
(as a freshly sampled noise is likely to be closer to the mean than several standard
deviations away), and that the looseness will compound as we move further
through the computation. This intuition was confirmed in experiments of [15]
for the BFV and BGV schemes, whose operations are similar to those of CKKS.

An alternative, average-case approach to noise analysis was proposed in [13]
for the CGGI scheme [12], in which the noise is modelled as a Gaussian, and
its variance is tracked through each homomorphic operation. The noise in the
output ciphertext is finally bounded from the output variance, in order to pick
parameters for correctness. Adopting a similar approach for CKKS appears chal-
lenging, as the noise after a homomorphic multiplication is a product of the noises
in the two input ciphertexts, whereas as the output distribution of the product

4 See e.g. https://ibm.github.io/fhe-toolkit-linux/html/helib/md__opt__i_b_
m__f_h_e-distro__h_elib__c_k_k_s-security.html
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of two subgaussians is not necessarily subgaussian, and can have a much heavier
tail [38]. In this work, we will demonstrate how a Central Limit Theorem ap-
proach can be applied to give a heuristic average-case noise growth analysis for
CKKS.

Contributions: Our first contribution is a new result relating the CKKS mes-
sage and plaintext spaces. Recall that CKKS encoding maps an element from
the (complex) message space into an element in the (polynomial ring) plaintext
space via a scaled restriction of the inverse canonical embedding. In Theorem 1,
we provide a new, tighter bound relating the size of an error in the plaintext
space to the size of the induced error in the message space. Moreover, we prove
that this bound is the best possible. In addition, we show that the worst case
expansion factor in either the real or complex part of our message equals the
worst case expansion factor of the entire embedding. This means that, perhaps
surprisingly, bounding a decrypted and decoded message over only the real part,
rather than the whole embedding, provides no benefit for worst-case analyses.

Our next contribution is to present the first average-case noise analysis for
CKKS. In Theorem 3 we give a result showing that the product of two Normally
distributed polynomials has Normally distributed coefficients under a Central
Limit assumption. Using this result we are able to heuristically model all CKKS
noise operations as operations on Normal random variables, thus recovering an
analysis similar to [13]. We present our noise analyses for ‘Textbook’ CKKS as
originally presented in [11] and the RNS variant presented in [9].

In order to evaluate the efficacy of our average-case noise analysis for CKKS,
we compare the noise heuristics developed under this analysis with the worst-
case bounds of prior work. We also present refinements to these prior worst-case
noise analyses using the techniques of [27]. We parameterise all our noise bounds
in terms of a failure probability, α, rather than a-priori fixing a one dimensional
failure probability as in prior work [21, 14, 15]. We evaluate the bounds arising
from all these noise analyses with experiments in HEAAN v1.0 [25] and FullRNS-
HEAAN [23]. We note that neither the Textbook CKKS nor the RNS variant
noise analysis is implementation-specific, and we chose the HEAAN library as it
is the implementation that most closely resembles the theoretical description of
both variants of the scheme.

Our experimental results are given in Table 4 for Textbook CKKS heuristics
as compared with HEAAN v1.0 [25] and in Table 5 for heuristics for the RNS
variant [9] as compared with FullRNS-HEAAN [23]. Our results show that our
new heuristics improve upon prior noise analyses in terms of modelling more
closely the observed noise. However, we also observe that our heuristics may
underestimate the noise growth observed in practice. Prior work [16] for BGV has
noted another example of a noise analysis that was not implementation specific
that also led to underestimates of the observed noise. Our work can therefore
be seen as an improved starting point for a tight noise analysis for CKKS, but
an implementation-specific analysis may be more suitable for applications that
cannot afford this underestimate.
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As an additional contribution, we consider the recent key recovery attack for
CKKS presented by Li and Micciancio [34]. The attack exploits the fact that the
noise ε of an output m + ε from CKKS decryption depends on the secret key.
We discuss how an improved noise analysis for CKKS can support one possible
mitigation for this attack. In particular, we show how to develop an IND-CPAD

secure exact variant of CKKS for correctable circuits.

Related work: Average-case noise analyses were presented for the BGV scheme
in [37], by applying results from the present work. An implementation-specific
average-case noise analysis for the BGV scheme was presented in [16]. An average-
case noise analysis for BFV was presented in [3].

Lee et al. [32] use the signal-to-noise ratio to analyse CKKS noise, and pro-
poses to track the variance of the errors, rather than an upper bound. The vari-
ances of the noise in multi-key BFV and CKKS operations were tracked in [7],
but a proof that the noises are distributed as Gaussians was not presented. Our
work thus provides a theoretical justification for these approaches. Our study of
encoding also provides theoretical support for the heuristics in [22].

Mitigations for the Li-Micciancio attack were also discussed in [10, 34, 35].
In [18], an approach is presented that can increase the number of correctable
circuits for a fixed scale.

Structure: In Section 2 we introduce relevant background material and nota-
tion, including the Textbook CKKS scheme [11] and its RNS variant [9]. In
Section 3 we study the precision loss coming from encoding and decoding in
CKKS. In Section 4 we describe the three methods for noise analysis that we
will apply to Textbook CKKS and its RNS variant. We then apply this to Text-
book CKKS. In Section 5 we describe the modifications required to the noise
analysis methods for the RNS setting, and provide heuristics for this setting. In
Section 6 we report on experimental results to evaluate the noise analysis ap-
proaches that we introduced. In Section 7 we discuss an application of improved
CKKS noise analyses to mitigate the Li-Micciancio attack on CKKS.

2 Preliminaries

Notation: Vectors are denoted in small bold font z, and zj refers to the jth

element of a vector, indexing from zero. The notation b·e is used for rounding to
the nearest integer and [·]q represents reduction modulo q. For z = x + iy ∈ C,
we denote by dzc := dxc + i dyc the rounding of both its real and imaginary
components, and extend this componentwise to define the rounding dzc of a
complex vector z ∈ CN/2. Unless otherwise stated, log will always mean log2.

In this work, we will consider several different norms. We denote the p-norm
by ‖·‖p and the infinity norm by ‖·‖∞. We consider norms on a polynomial
m both as a vector of its coefficients and under the canonical embedding, and
denote these norms by ‖m‖ and ‖m‖can respectively. We use s ← D to denote
sampling s according to the distribution D.
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SecretKeyGen(λ): Sample s← S and output sk = (1, s).

PublicKeyGen(sk): For sk = (1, s), sample a ← RQ uniformly at random and e ← χ.
Output pk = ([−as+ e]Q, a).

EvaluationKeyGen(sk, w): Sample a′ ← RP ·Q uniformly at random and e′ ← χ. Out-
put evk =

(
[−a′s+ e′ + Ps2]P ·Q, a

′).
Encrypt(pk,m): For the message m ∈ R. Let pk = (p0, p1), sample v ← V and e1, e2 ←

χ. Output ct = ([m+ p0v + e1]Q, [p1v + e2]Q).

Decrypt(sk, ct): Let ct = (c0, c1). Output m′ = [c0 + c1s]Q.

Add(ct0, ct1): Output ct = ([ct0[0] + ct1[0]]Q, [ct0[1] + ct1[1]]Q).

Pre-Multiply(ct0, ct1): Set d0 = [ct0[0]ct1[0]]Q, d1 = [ct0[0]ct1[1] + ct0[1]ct1[0]]Q,
and d2 = [ct0[1]ct1[1]]Q. Output ct = (d0, d1, d2).

KeySwitch(ct, evk): Here, ct is an output of Pre-Multiply. Let ct[0] = d0, ct[1] = d1
and ct[2] = d2. Recall evk[0] = −a′s + e′ + Ps2 and evk[1] = a′. Set c′0 = [d0 +
bP−1 ·d2 ·(−a′s+e′+Ps2)e]Q, and c′1 = [d1+bP−1 ·d2 ·a′e]Q. Output ct′ = (c′0, c

′
1).

Rescale(ct,∆) : For ct = (c0, c1) a ciphertext at level `. Set c′0 =
[⌊

1
∆
c0
⌉]
Q`−1

and

c′1 =
[⌊

1
∆
c1
⌉]
Q`−1

. Output ct = (c′0, c
′
1).

Multiply(ct): Here, ct is an output of Pre-Multiply. We apply KeySwitch followed
by Rescale. Output ct = 1

∆

[
(d0, d1) + bP−1d2evke

]
Q

.

Fig. 1: The Textbook CKKS Scheme

We use the notation N(µ, σ2) to refer to a univariate Normal distribution
with mean µ and variance σ2, and N(µ;Σ) to refer to an N -dimensional mul-
tivariate Normal distribution with N -dimensional mean vector µ and N × N
covariance matrix Σ. For a polynomial Z(X) ∈ R[X]/(XN + 1), we will write
Z ∼ N(µ, ρ2IN ) to indicate that each coefficient of Z is independently and iden-
tically normally distributed, i.e., Zi ∼ N(µi, ρ

2). We denote by erf the (Gauss)
error function, by erf−1 its inverse, and by erfc the complementary function.

The Textbook CKKS scheme: The CKKS scheme as originally presented
in [11] is a levelled HE scheme that we refer to as Textbook CKKS. The scheme
is specified in Figure 1.

The Textbook CKKS scheme is parameterised by L, p, q0, N , λ, χ, S, V ,
and ∆. The base p > 0 and modulus q0 are used to form the scale parameter
and the chain of moduli (one for each level) as follows: ∆ = 2p and Q` = ∆`q0
for 1 6 ` 6 L. The dimension N is typically chosen as a power of two, and we
will only use such N in this work. The dimension N and the chain of moduli
parameterise the underlying plaintext and ciphertext rings. The plaintext space
isR = Z[X]/(XN+1). We denote by Q some fixed level in the description below,
so that the ciphertext space at any given moment is RQ = ZQ[X]/(XN + 1).

The security parameter is λ. The Ring-LWE error distribution is denoted by χ
and is such that each coefficient is sampled as a discrete Gaussian with standard
deviation σ = 3.2 [1]. The parameter S denotes the secret key distribution,
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which is specified in [11] to be HWT (h), i.e. the secret is ternary with Hamming
weight exactly h. The parameter V denotes the ephemeral secret distribution,
which is specified in [11] to be ZO(ρ) with ρ = 0.5, i.e. the secret is ternary with
coefficients having probability ρ/2 for each of −1 and 1, and probability 1− ρ of
being 0.

The CKKS scheme uses the canonical embedding to define an encoding from
the message space CN/2 to the plaintext space Z[X]/(XN + 1) in the following
way: an isomorphism τ : R[X]/(XN + 1) → CN/2 can be defined via consid-
ering the canonical embedding restricted to N/2 of the 2N th primitive roots
and discarding conjugates. Encoding and decoding then use this map τ , as
well as a precision parameter ∆, as follows: Encode(z, ∆) = d∆τ−1(z)c and
Decode(m,∆) = 1

∆τ(m), where z ∈ CN/2, m ∈ Z[X]/(XN + 1), and d·c is taken
coefficient-wise.

RNS variants of CKKS: Variants of CKKS using RNS have been proposed [9,
29]. In this work, we focus on the RNS-CKKS scheme as described in [9]. This
scheme is specified in Figure 2.

In RNS variants of CKKS [9, 29], the chain of ciphertext moduli changes
compared to the original scheme. The `th ciphertext modulus is given by Q` =∏`
j=0 qj where the jth ciphertext slot is with respect to the modulus qj . In the

RNS variant [9], the key switching procedure requires the large modulus P to be

formed similarly from a set of k pairwise coprime pi as P =
∏k
i=0 pi. The other

parameters as specified in [9], and the encoding and decoding, are the same as
for Textbook CKKS.

Precision Loss: in this work we are concerned with bounding the precision loss
in CKKS, which we can define informally as the difference between evaluating
a circuit in the clear and evaluating the same circuit homomorphically. A more
formal description is given below.

Definition 1. Consider a normed space (M, || · ||), messages m1, ...,mn ∈ M,
and a circuit C :Mn →M. Then we define the precision loss associated with
calculating the circuit C homomorphically as the distance ||m̃−m||, where m̃ is
the output of the homomorphic evaluation of C(m1, ...,mn), and m is the true
value of the circuit.

This definition is similar to Definition 10 of [36]. We will consider precision
loss in three spaces: firstly, the plaintext space R with infinity norm on the vector
of coefficients; secondly, the message space CN/2 with infinity norm, which is
equivalent to R with infinity canonical norm; and lastly the projection to the
real part RN/2 with infinity norm.

3 Encoding Analysis

In this section, we give theoretical bounds on the precision loss from encoding
and decoding. To understand precision loss due to encoding, as well as translate
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SecretKeyGen(λ): Sample s← S and output sk = (1, s).

PublicKeyGen(sk): For sk = (1, s), for all 0 ≤ j ≤ L, a representative a(j) is
sampled uniformly from Rqj , and b(j) ← −a(j)s + e mod qj is set. Output

pk = (pk(j))0≤j≤L = (b(j), a(j))0≤j≤L.
EvaluationKeyGen(sk, w): Sample e′ ← χ. Output (evk(0), . . . , evk(k+L)) =

((b′(0), a′(0)), . . . , (b′(k+L), a′(k+L))), where, for 0 ≤ i < k, a′(i) ←
Rpi uniformly and b′(i) = −a′(i)s + e′ mod pi; and for 0 ≤ j ≤ L, a′(k+j) ← Rqj
uniformly and b′(k+j) = −a′(k+j)s+ [P ]qj s

2 + e′ mod qj .
Encrypt(pk,m): For m ∈ R. Sample v ← V and e0, e1 ← χ. For all 0 ≤ j ≤ L, and

for the public key pk = (pk(j))0≤j≤L = (b(j), a(j))0≤j≤L, output ct = (ct(j))0≤j≤L
where ct(j) = (b(j)v + e0 +m,a(j)v + e1) ∈ R2

qj .

Decrypt(sk, ct): For ct = (ct(j))0≤j≤`, output m′ =
〈
ct(0), sk

〉
mod q0.

Add(ct0, ct1): For 0 ≤ j ≤ `, for input ciphertexts ct1 = {ct(j)1 } and ct2 = {ct(j)2 },
output ctadd = (ct

(j)
add)0≤j≤` where ct

(j)
add = ct

(j)
1 + ct

(j)
2 mod qj .

Pre-Multiply(ct0, ct1): For 0 ≤ j ≤ `, for input ciphertexts ct1 = {ct(j)1 } ={(
c
(j)
0 , c

(j)
1

)}
and ct2 = {ct(j)2 } =

{(
C

(j)
0 , C

(j)
1

)}
, output ctpre-mult =

{ct(j)pre-mult}0≤j≤` = {(d(j)0 , d
(j)
1 , d

(j)
2 )} where d

(j)
0 = c

(j)
0 C

(j)
0 mod qj , d

(j)
1 =

c
(j)
0 C

(j)
1 + c

(j)
1 C

(j)
0 mod qj , and d

(j)
2 = c

(j)
1 C

(j)
1 mod qj .

KeySwitch(ct, evk): For 0 ≤ j ≤ `, for input ciphertext ctpre-mult =

{ct(j)pre-mult}0≤j≤` = {(d(j)0 , d
(j)
1 , d

(j)
2 )}, output ctks = {ct(j)ks }0≤j≤` ={(

c
(0)
0 , c

(0)
1

)
, . . . ,

(
c
(`)
0 , c

(`)
1

)}
, where

(
c
(j)
0 , c

(j)
1

)
=
(

[d
(j)
0 + ĉ

(j)
0 ]qj , [d

(j)
1 + ĉ

(j)
1 ]qj

)
,

for ĉ
(j)
0 and ĉ

(j)
1 as defined in Supplementary Material Section E.

Rescale(ct) : For 0 ≤ j ≤ `, for input ciphertext ct = {ct(j)}0≤j≤` =(
(c

(j)
0 , c

(j)
1 )
)
0≤j≤`

outputctrs = {ct(j)rs }0≤j≤`−1 = {(c′ (j)0 , c
′ (j)
1 )}0≤j≤`−1, where

c
′ (j)
0 = q−1

` (c
(j)
0 − c

(`)
0 ) mod qj and c

′ (j)
1 = q−1

` (c
(j)
1 − c

(`)
1 ) mod qj .

Multiply(ct0, ct1): Output Rescale(KeySwitch(Pre-Multiply(ct0, ct1), evk)).

Fig. 2: The RNS-CKKS Scheme

noise bounds derived in the plaintext space to noise bounds in the message space,
we investigate how distance measured in R[X]/(XN +1) corresponds to distance
measured in CN/2, when we move between the two via τ for N a power of 2.

If we measure using the 2-norm in both spaces, these two distances correspond

exactly as here τ gives a scaled isometry with ‖τ(m)‖2 =
√

N
2 ‖m‖2. However,

we will use the infinity norm in both spaces to support our Worst Case in the
Ring analysis (see Section 4). We find that, in the worst case, there is an O(N)
expansion in the infinity norm under the map τ and unlike the 2-norm, there is
no contraction under the map τ−1.

The section is organised as follows. In Section 3.1, we develop new theoretical
results on the relationships between distances in the two spaces. In Section 3.2,
we then apply these results in the context of CKKS encoding and decoding.
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3.1 Mapping Theory

Lemma 1 ([17]). Let m ∈ RN . Then ‖m‖∞ 6 ‖m‖can∞ .

This inequality is best possible in the sense that it is achieved: let m = τ−1(z)
and let zk = Bζjk for 0 6 k 6 N

2 − 1, so that ‖z‖∞ = B. Then we find ‖m‖can∞ =
‖z‖∞ = B = |mj | = ‖m‖∞. In particular, there is no contraction as we move
from CN/2, ‖·‖∞ to RN , ‖·‖∞ but there is an expansion as we move the other
way. The prior result on this bound is as follows.

Lemma 2 ([17, 21]). Let m ∈ RN . Then ‖m‖can∞ 6 N ‖m‖∞.

Using generic proof methods and properties of the norm, we can reduce this
factor to N/

√
2. Before improving further, we require some definitions and a

Lemma. The proof technique of the following Lemmas 3 and 4 is adapted from [6].
We introduce the notation I(N, j) and I(N) as follows:

I(N, j) :=

N−1∑
k=0

∣∣∣∣sin(jkπN
)∣∣∣∣ , I(N) := max

06j6N−1
I(N, 2j + 1).

Lemma 3. For j ∈ Z, we have that I(N, 2j + 1) = I(N, 1), so that I(N) =
I(N, 1).

Proof. 2j + 1 ∈ Z×N , so {(2j + 1)k mod N : k = 0, ..., N − 1} = {k mod N :
k = 0, ..., N − 1}. Therefore

I(N, 2j + 1) =
∑

x=
(2j+1)k

N ,
06k6N−1

|sin(xπ)| =
∑
x= k

N ,
06k6N−1

|sin(xπ)| = I(N, 1).

Here, the central equality follows from the π-periodicity of |sin(·)|. ut

Lemma 4. lim
N→∞

1
N I(N) = 2

π , and this limit is approached from below.

Proof. We have that 1
N I(N) = 1

N I(N, 1) = 1
N

∑N−1
k=0

∣∣sin (kπN )∣∣, while using
Riemann sums we get:∫ π

0

|sin(x)| dx = lim
N→∞

π

N

N−1∑
k=0

∣∣∣∣sin(kπN
)∣∣∣∣ = π lim

N→∞

1

N
I(N).

As the LHS is equal to 2, we get the claimed limit. Moreover, as |sin(·)| is concave,
we get this sequence of Riemann sums is increasing. ut

Theorem 1. Let m ∈ RN . Then ‖m‖can∞ 6
√
I(N)2 + 1 ‖m‖∞, and this bound

is the best possible for fixed N .
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Proof. Fix ‖m‖∞ 6 1, and consider optimising ‖m‖can∞ subject to this constraint.
Since we can rotate the entries of σ(m) ∈ CN/2 via performing automorphisms
on m, we may consider without loss of generality maximising |m(ζ)|, where
ζ = exp(πiN ).

Let M(X) =
∑N−1
k=0 X

j . We will show that, if m(X) achieves a maximum
of |m(ζ)| with ‖m‖∞ 6 1, then m(X) = XkM(X) for some k ∈ Z2N . This is

sufficient to prove our result as
∥∥XkM(X)

∥∥can
∞ =

√
I(N)2 + 1.

Let us fix some maximising polynomial m(X) with ‖m‖∞ 6 1, and let k ∈
Z2N be such that k = arg max

j
Im(ζ−jm(ζ)). If m(X) = XkM(X), we are done,

as otherwise we will derive a contradiction to either the maximality of k or the
maximality of m. By negating m as necessary, we say Im(ζ−km(ζ)) > 0. In fact,
we can say Im(ζ−km(ζ)) > 1, since otherwise the maximality of m would give
Re(ζ−km(ζ))2 > Im(ζ−km(ζ))2, contradicting the maximality of k via either
k +N/2 or k −N/2.

The polynomial M(X) (up to sign, uniquely) maximises the imaginary com-
ponent |Im(M(ζ))|. We therefore have

∣∣Im(ζ−km(ζ))
∣∣ 6 |Im(M(ζ))|. Comparing

|m(ζ)| and |M(ζ)| we find

|m(ζ)|2 − |M(ζ)|2 =
∣∣ζ−km(ζ)

∣∣2 − Im(M(ζ))2 − Re(M(ζ))2

= Im(ζ−km(ζ))2 − Im(M(ζ))2︸ ︷︷ ︸
(1)

+ Re(ζ−km(ζ))2 − 1︸ ︷︷ ︸
(2)

.

As discussed, we certainly have (1) 6 0. We will show that we also have (2) 6 0,
since otherwise k is not the maximal choice.

Suppose Re(ζ−km(ζ)) > 1, so that
∑N−1
j=0 mj cos

(
(j−k)π
N

)
> 1. Then:

Im(ζ−(k−1)m(ζ)) − Im(ζ−km(ζ))

=

N−1∑
j=0

mj

(
sin

(
(j − k + 1)π

N

)
− sin

(
(j − k)π

N

))
=
(

cos
( π
N

)
− 1
)

Im(ζ−km(ζ)) + sin
( π
N

)
Re(ζ−km(ζ))

> cos
( π
N

)
+ sin

( π
N

)
− 1 > 0

since N > 2, contradicting the maximality of k. We can derive a similar contra-
diction using ζ−(k+1)m(ζ) in the case Re(ζ−km(ζ)) < −1.

We have therefore shown |m(ζ)|2 6 |M(ζ)|2, with equality if and only if there
exists a k ∈ Z2N with m(X) = XkM(X). The maximum for |m(ζ)| is therefore
given by |M(ζ)| =

√
I(N)2 + 1 as claimed. ut

Corollary 1. Suppose for all m ∈ RN we have ‖m‖can∞ 6 N ·M(N) ‖m‖∞ with
M(N) a least upper bound. Then M(N)→ 2

π as N →∞.

Proof. Immediate from Lemma 4 and Theorem 1. ut
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We now bound just the real component of the canonical embedding of m, al-
though the following results apply equally to the imaginary component. We use
the notation ‖m‖can,Re

∞ = maxj |Re(m(ζj))|. We find that, in the limit, the upper
bound on expansion of just the real component equals the upper bound on the
entire expansion.

Lemma 5. Let m ∈ RN . Then ‖m‖can,Re
∞ 6 I(N) ‖m‖∞, and this result is best

possible.

Proof. This proof technique is again adapted from [6]. Consider the jth com-
ponent of the canonical embedding zj , given by evaluating m(X) at the jth

primitive 2N th root of unity. Then the real part of zj is given by:

Re(zj) =

N−1∑
k=0

mkRe(ζkj ).

We maximise the magnitude of this quantity, subject to ‖m‖∞ = B, by setting
each mk = B · Sign(Re(ζkj )). We therefore have:

‖m‖can,Re
∞ 6 B max

j=0,...,N−1

N−1∑
k=0

∣∣∣∣cos

(
k(2j + 1)π

N

)∣∣∣∣
= I(N) ‖m‖∞ .

ut

Corollary 2. Let m ∈ RN . If for all N we have that ‖m‖can,Re
∞ 6 kN ‖m‖∞

then k 6 2
π and k → 2

π as N →∞.

Proof. Immediate from Lemma 4 and Lemma 5. ut

3.2 Application to Encoding

In this section, we apply the results from Section 3.1 to produce bounds on the
growth of polynomials under encoding and decoding. Our first result enables us
to produce bounds in the plaintext space given bounds in the message space.

Lemma 6. Suppose m ∈ RN and z ∈ CN/2 are such that m = Encode(z, ∆).
Then ‖m‖∞ 6 ∆ ‖z‖∞ + 1

2 .

Proof. Immediate from Lemma 1 and that encoding rounds coefficient-wise.
ut

The result in Theorem 1 enables us to give bounds in the message space given
bounds in the plaintext space.

Lemma 7. Suppose m ∈ RN has ‖m‖∞ 6 B. If z = Decode(m,∆) we have

that ‖z‖∞ 6
√
I(N)2+1

∆ B, and this bound is the best possible.

10



Due to the fast convergence of I(N) to 2N
π , we can replace this result by its

limiting value. We can therefore precisely bound the error introduced during
encoding.

Corollary 3. Suppose z ∈ CN/2 is encoded under scale factor ∆. Then the

precision lost in each slot as a result of encoding is bounded by

√
I(N)2+1

2∆ , and

this bound tends to N
π∆ as N →∞.

Proof. Immediate from Lemma 7 and the fact that the encoding error polynomial
has coefficients in

[
− 1

2 ,
1
2

]
. ut

We can also give analogous results for the real and imaginary components alone.

Lemma 8. Suppose m ∈ RN has ‖m‖∞ 6 B. Then if z = Decode(m,∆) we
have that ‖Re(z)‖∞ , ‖Im(z)‖∞ 6 2N

π∆B, and this bound is the best possible.

Corollary 4. Suppose z ∈ CN/2 is encoded under scale factor ∆. Then the
precision lost on both the real and imaginary components of each slot is bounded
by N

π∆ .

This shows that, perhaps surprisingly, if using a worst case analysis, it is not
possible to achieve a tighter analysis of precision loss by considering only the
error on the real part of the message. To benefit from restricting our attention
to only the real part, we must be able to specify statistical, rather than worst
case, behaviour.

4 Noise analysis methods

In this section, we present the three noise analysis methods considered in this
work, and apply them to give noise heuristics for the Textbook CKKS scheme [11].
We first introduce some notation and definitions.

Noise definitions and notation: For a Textbook CKKS ciphertext (ct0, ct1)
at level ` encrypting a message m, we define its noise as the polynomial ε such
that 〈ct, sk〉 = m + ε mod Q` where this noise ε is small. We denote by ρ2

the (component) variance of a noise polynomial ε. Some operations, such as key
switching, introduce an additive noise term, whose variance we denote by η2.
We treat noise polynomials as continuous random variables for simplicity, but
the distributional results are applicable to the corresponding discrete random
variables for practical purposes.

Variance: We will use the following variance results. A polynomial f with coef-
ficients distributed uniformly in [−k/2, k/2], has coefficient variance ρ2f = k2/12.
A polynomial sampled from ZO(ρ) has coefficient variance ρ. A polynomial sam-
pled from the Ring-LWE error distribution has coefficient variance σ2.

11



4.1 Bounding noise random variables

In this subsection, we introduce our refinement for bounding a random variable
of a given variance. Given a (multivariate) random variable, we wish to identify a
reasonable upper bound on the size of the components of the random variable(s).
It has been common practice [14, 15, 21] to give an upper bound using the
fact that erfc(6) ≈ 2−55. Instead of deferring to such a bound in all contexts,
we express our bounds on distributions in terms of a new failure probability
parameter α, defined as follows.

Definition 2. Suppose a random variable Z has real support. We will say B is
a probability 1− α bound on Z if Pr(Z > B) = α. Equivalently, we will say B
has failure probability α, or that B has error tolerance α.

This refinement enables us to determine bounds on a random variable that
hold with probability (1−α). In Theorem 2, we give bounds both for the canonical
embedding as in prior CKKS analyses (e.g. [11]), and for the plaintext ring.
When applying Theorem 2 in real and complex settings respectively, we use the
following functions for notational convenience:

HR(α,N) := erf−1((1− α)
1
N ) and HC(α,N) := (− ln(1− (1− α)

2
N ))

1
2 .

For example, a ciphertext with noise variance ρ2 can be bounded in the canonical
embedding as

√
N · ρ ·HC(α,N) using Theorem 2 part(3).

Theorem 2. Suppose Z ∼ N(0, ρ2IN ). Then:

1. A probability (1− α) bound on the random variable ‖Z‖∞ is given by

B =
√

2 ρ erf−1((1− α)
1
N ).

2. Let τ denote the map used in encoding and decoding and consider τ(Z). Then
we have that Re(τ(Z)), Im(τ(Z)) ∼ N(0, N2 ρ

2IN/2), and a probability (1−α)
bound on both ‖Re(τ(Z))‖∞ and ‖Im(τ(Z))‖∞ is given by

B =
√
N ρ erf−1((1− α)

2
N ).

3. A probability (1− α) bound on the random variable ‖Z‖can∞ is given by

B =
√
Nρ (− ln(1− (1− α)

2
N ))

1
2 .

Proof. A proof is given in Supplementary Material Section A. ut

4.2 Worst-case noise analysis methods

In this subsection, we introduce the two worst-case noise analysis methods con-
sidered in this work.
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Worst-case canonical embedding analysis: The first noise analysis method
we consider is a refinement of the standard approach for analysis of CKKS noise,
as e.g. in [11]. This method tracks bounds on the noise polynomials under the
canonical embedding, ‖ε‖can∞ , i.e. the bounds are presented in the message space.
We improve on the canonical embedding bounds in [11] by following the Il-
iashenko approach [27]. For a noise polynomial that consists of several sum-
mands, this approach calculates the coefficient variance of the whole sum and
then maps under the canonical embedding to obtain a bound on the noise. In
contrast, the prior approach relies on repeated applications of the triangle in-
equality to bound individual summands that are then combined into a final
bound. The Iliashenko approach is expected to provide tighter bounds than
the prior approach [15]. We use Theorem 2 or triangle inequalities to derive
bounds in the canonical embedding. We use the fact that ‖p(X)q(X)‖can∞ 6
‖p(X)‖can∞ ‖q(X)‖can∞ is the worst case bound on a product of polynomials.

Worst-case analysis in the ring: In this method, like the other worst-case
analyses, we track how a bound ‖ε‖∞ on the size of the largest coefficient of the
noise polynomial grows with each homomorphic operation. The difference is that
we give the bound ‘in the ring’, i.e. the bounds are presented in the plaintext
space, into which decryption takes place. We again use triangle inequalities and
Theorem 2 to derive bounds in the ring. We use the fact that ‖p(X)q(X)‖∞ 6
N ‖p(X)‖∞ ‖q(X)‖∞ is the worst case bound on a product. We note that this
noise analysis method has has been considered for other homomorphic encryption
schemes, as e.g. in [33], and this is the first work that considers it for CKKS.

4.3 Average-case noise analysis method

We present the main result of this section, Theorem 3, that considers the product
of two Normally distributed polynomials. We then show how Theorem 3 enables
us to develop the first average-case noise analysis for CKKS using Heuristic 1.

Theorem 3. Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ), then the
polynomial product ZZ ′ (modulo XN + 1) has mean vector E(ZZ ′) and covari-
ance matrix Cov(ZZ ′) given by

E(ZZ ′) = µ∗ and Cov(ZZ ′) = ρ2∗IN + S,

where µ∗ is the polynomial product of µ and µ′, ρ2∗ = Nρ2ρ′2+ρ′2 ‖µ‖22+ρ2 ‖µ′‖22
and S is an off-diagonal matrix with entries

Si,i′ = ρ′2
N−1∑
j=0

ξ(i− j)ξ(i′ − j)µi−jµi′−j + ρ2
N−1∑
j=0

ξ(i− j)ξ(i′ − j)µ′i−jµ′i′−j ,

for a modified sign function ξ given by ξ(z) = Sign(z) for z 6= 0 and ξ(0) = 1.
Furthermore, the components (ZZ ′)i of this polynomial product can be approxi-
mated as a Normal N(µ∗i , ρ

2
∗) distribution.
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Proof. Let Y = ZZ ′, so Y has components Yi =
∑N−1
j=0 ξ(i − j)Zi−jZ

′
j . The

mean of such a component Yi is given by

E(Yi) =
∑N−1
j=0 E(ξ(i− j)Zi−jZ ′j) =

∑N−1
j=0 ξ(i− j)µi−jµ′j = µ∗i ,

so ZZ ′ has mean vector E(ZZ ′) = E(Y ) = µ∗. The summands of a component
Yi are independent, so the variance of Yi is given by

Var(Yi) =
∑N−1
j=0 Var

(
Zi−jZ

′
j

)
=
∑N−1
j=0 E

(
Z2
i−j
)
E
(
Z ′2j
)
−E (Zi−j)

2
E
(
Z ′j
)2

=
∑N−1
j=0

(
ρ2 + µ2

i−j
) (
ρ′2 + µ′2j

)
− µ2

i−jµ
′2
j

=
∑N−1
j=0 ρ2ρ′2 + ρ2µ′2j + ρ′2µ2

i−j = Nρ2ρ′2 + ρ′2 ‖µ‖22 + ρ2 ‖µ′‖22 .

A similar argument shows that the covariance of distinct components Yi and Yi′

(so i 6= i′) is given by

Cov(Yi, Yi′) = ρ′2
N−1∑
j=0

ξ(i−j)ξ(i′−j)µi−jµi′−j+ρ2
N−1∑
j=0

ξ(i−j)ξ(i′−j)µ′i−jµ′i′−j .

Thus Y = ZZ ′ has covariance matrix ρ2∗IN +S. The distribution of Yi = (ZZ ′)i
can be addressed by considering the related sum

Y ′i =
∑N−1
j=0 ξ(i− j)(Zi−j − µi−j)(Z ′j − µ′j)

= Yi −
∑N−1
j=0 ξ(i− j)

(
µi−jZ

′
j + µ′jZi−j − µi−jµ′j

)
.

These summands are a product of Zi−j−µi−j ∼ N(0, ρ2) and Z ′j−µ′j ∼ N(0, ρ′2),

so have mean 0 and variance ρ2ρ′2. Furthermore, the summands of Y ′i are in-
dependent and identically distributed, so a Central Limit argument shows that
the distribution of Y ′i is well-approximated by a Normal distribution for large
N . However, Yi differs from Y ′i by a Normal random variable so Yi = (ZZ ′)i is
well-approximated by a Normal N(µ∗i , ρ

2
∗) distribution. ut

Theorem 3 gives the mean and covariance of the product Y = ZZ ′, and shows
the components Yi of Y can be well-approximated as Normal. Our average-case
analysis will model ZZ ′ as a multivariate Normal distribution of the established
mean and covariance. This is expressed in Heuristic 1 and will be justified below.

Heuristic 1 Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ). Then, for
µ∗, ρ2∗ and S as specified in Theorem 3, the polynomial product ZZ ′ (modulo XN+
1) can be approximated as a multivariate Normal distribution as

ZZ ′ ∼ N
(
µ∗; ρ2∗IN + S

)
.

Small-S assumption: To simplify our analysis, we make the assumption that
the off-diagonal matrix S encountered in Theorem 3 is negligible. While we
believe this assumption is reasonable in many circumstances of interest, we note
that it would not hold e.g. if the mean vectors have large constant components.

Definition 3. A covariance matrix of the form ρ2∗IN + S with constant compo-
nent covariance ρ2∗ and off-diagonal matrix S satisfies the Small-S assumption
if this off-diagonal matrix S is negligible compared to ρ2∗IN .
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Average-case noise analysis: In an average-case noise analysis, we track the
how the variance of the noise polynomial ε develops with each homomorphic
operation, rather than tracking how a bound on the coefficients of ε develops.
In our average-case noise analysis of CKKS, we consider how the variance of ε
develops ‘in the ring’, i.e., in the plaintext space. Heuristic 1 shows that, in the
ring, the polynomial product (modulo XN + 1) of multivariate Normal vectors
can be well-approximated as a multivariate Normal distribution. Moreover, under
the Small-S assumption, we can model the input and output polynomials in an
application of Heuristic 1 as Normal random variables of a specified component
variance. This enables us to track the variance of the noise polynomial through
each homomorphic operation using the results presented below in Corollary 5.
Given the variance in an output ciphertext, we can then use Theorem 2 to derive
a bound on the noise in the output ciphertext.

Corollary 5. Suppose that Z ∼ N(µ; ρ2IN ) and Z ′ ∼ N(µ′; ρ′2IN ) are indepen-
dent, λ is a constant vector. Approximations to the distribution of Z + Z ′, λZ
and the rounding bZe are then given by:

Z+Z ′ ∼ N(0, (ρ2+ρ′2)IN ), λZ ∼ N
(
λµ ; ρ2 ‖λ‖22 IN

)
, bZe ∼ N

(
µ , ρ2 + 1

12

)
.

Furthermore, an approximation to the distribution of ZZ ′ when the Small-S
assumption is valid for ZZ ′ and an approximation to the distribution of Z2

when the Small-S assumption is valid for Z2 are given by:

ZZ ′ ∼ N
(
µµ′ ; (Nρ2ρ′2 + ρ′2 ‖µ‖22 + ρ2 ‖µ′‖22)IN

)
and Z2 ∼ N

(
µ2 ; 2ρ2(Nρ2 + 2 ‖µ‖22)IN

)
.

4.4 Summary of textbook noise heuristics

In this subsection, we summarise the noise heuristics obtained when analysing
the Textbook CKKS scheme [11] according to the three different noise analysis
methods presented in this work. Table 1 gives the worst-case analyses in the ring
(WCR) and in the canonical embedding (CE) for Textbook CKKS [11]. Table 2
gives the average-case analysis in terms of the variance of the noise after each
homomorphic operation, and illustrates how this variance could be converted to
a bound on the noise in the output ciphertext using Theorem 2.

The full justification for the distributional results leading to the noise heuris-
tics in Tables 1 and 2 is given in Supplementary Material Section B. This gives
a variance for the noise polynomial after each operation, directly giving the
average-case analysis. The variances can then be converted to a bound in either
the canonical embedding or the ring after each operation to give the respec-
tive worst-case analyses, using Theorem 2. This is illustrated in Supplementary
Material Section C.

The worst-case bounds developed in this work can be contrasted with the
worst-case canonical embedding bounds given in prior work (as e.g. in [11]).
These are restated in Supplementary Material Section D.
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Operation WCR CE

Fresh σ
√
N + 2h+ 2 ·HR(α,N) σ

√
N2

2
+ hN +N ·HC(α,N)

Add B1 +B2 B1 +B2

PreMult N ·
(
‖m1‖∞B2 + ‖m2‖∞B1 +B1B2

)
‖m1‖can∞ B2 + ‖m2‖can∞ B1 +B1B2

Key-Switch B +
√

2 · ηks ·HR(α,N) B +
√
N · ηks ·HC(α,N)

Rescale ∆−1B +
√

1
6
(h+ 1) HR(α,N) ∆−1B +

√
N
12

(h+ 1)HC(α,N)

Table 1: Worst-case bounds for Textbook CKKS [11]. Here, B1, B2, and B
denote input noise bounds in the ring or canonical embedding, as appropriate,

and ηks =
√

1
12

(
P−2NQ2

`σ
2 + 1P -Q`

(h+ 1)
)
.

Operation Output Variance Final output bound (CE)

Fresh ρ2fresh = (N
2

+ h+ 1)σ2
√
N · ρfresh ·HC(α,N)

Add ρ2add = ρ21 + ρ22
√
N · ρadd ·HC(α,N)

PreMult ρ2pre-mult = Nρ21ρ
2
2 + ρ22 ‖m1‖22 + ρ21 ‖m2‖22

√
N · ρpre-mult ·HC(α,N)

Key-Switch ρ2ks = ρ2 + 1
12

(
P−2NQ2

`σ
2 + 1P -Q`

(h+ 1)
) √

N · ρks ·HC(α,N)

Rescale ρ2rs = ρ2

∆2 + 1
12

(h+ 1)
√
N · ρrs ·HC(α,N)

Table 2: Average-case noise analysis for Textbook CKKS [11]. Here, ρ1, ρ2, and
ρ denote input noise variances. The final output variance can be converted to
(e.g.) a canonical embedding bound using Theorem 2.

5 Application of methods to RNS-CKKS

In this section we discuss the application of the noise analysis methods described
in Section 4 to RNS variants of CKKS [9, 29]. We focus mainly on [9]. We also
present, in Section 5.4, the application of the analyses to some of the optimisa-
tions presented in [29].

5.1 Differences from Textbook CKKS

The operations in RNS variants of CKKS are performed ‘slotwise’ with respect to
the constituent moduli qj making up the `th ciphertext modulus Q` =

∏`
j=0 qj .

In [9], for all 0 ≤ j ≤ L, a distinct qj = 1 mod 2N is chosen to support NTT
operations in each slot. It is also required that ∆/qj ≈ 1 for all 1 ≤ j ≤ L and q0
is sufficiently large for correctness. The need for distinct qj that are not exactly
equal to ∆ incurs an approximation error not present in Textbook CKKS.

The changes in parameters in the RNS variants require modifications to the
rescale and key switch operations. The other operations carry over to the RNS
case in a more straightforward way. When rescaling from Q` to Q`−1 in RNS
variants, instead of dividing by ∆, we divide by q`. The key switching procedure
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presented in [9] translates the key switching approach of [11] to the RNS setting
and so requires the large modulus P to be formed from a set of k pairwise
coprime pi as P =

∏k
i=0 pi. We also note that a hybrid key switching is possible

in the RNS setting, for example as done in [29].
The definition of noise in the RNS variant [9] also differs from the Textbook

CKKS definition. A RNS ciphertext ct at level ` can be expressed as a vector of
its RNS representatives (ct(j))0≤j≤`. The noise in a ciphertext is defined in [9]
as ε such that

〈
ct(0), sk

〉
= m+ ε mod q0 .

5.2 Distribution of noise polynomials for the RNS variant [9]

In this subsection we derive the distributions of the noise polynomials for the
RNS variant [9] that differ from Textbook CKKS, namely, for the rescale and
key switch operations. The analysis for the other operations is analogous to the
Textbook CKKS case as presented in Section 4.4. Proofs for the results in this
subsection are presented in Supplementary Material Section E.

Lemma 9. [Key Switch – RNS] The RNS-CKKS Key Switch operation ap-
plied to a ciphertext at level ` introduces an additive error such that the output
noise is given by εks := ε+ εks if the input noise is given by ε. The additive error
εks has a Normal distribution given by

εks ∼ N(0, η2ksIN ), where η2ks = 1
12P

−2NQ2(`2 + 1)σ2 + 1
12 (k2 + 1)(‖s‖22 + 1) .

For example, if the secret is sparse with fixed Hamming weight h, we have
η2ks = 1

12P
−2NQ2(`2 + 1)σ2 + 1

12 (k2 + 1)(h+ 1).

Lemma 10. [Rescale – RNS] Let ct be a ciphertext encrypting m with noise
ε. Let ctrs encrypting m be the ciphertext with noise εrs resulting from the
Rescale operation. The Rescale noise εrs ∼ N(0; ρ2rsIN ), where the component
variance ρ2rs is given by

ρ2rs =
ρ2

q2`
+
(

1
12 (‖s‖22 + 1)

)
.

For example, if the secret is sparse with fixed Hamming weight h, we have

ρ2rs = ρ2

q2`
+ 1

12 (h+ 1).

5.3 Summary tables of noise bounds

In this subsection, we present noise heuristics for the RNS variant [9] that were
developed by applying the noise analyses of Section 4 to this variant. Table 3
summarises the worst-case canonical embedding and average-case noise heuristics
for the RNS variant [9]. These heuristics can be justified in the same manner as
explained in Section 4.4 for the Textbook CKKS case, using the distributional
results presented in Section 5.2.
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Operation CE Output variance (CLT)

Fresh σ
√

N2

2
+ hN +N ·HC(α,N) ρ2fresh = (N

2
+ h+ 1)σ2

Add B1 +B2 ρ2add = ρ21 + ρ22
PreMult ‖m1‖can∞ B2 + ‖m2‖can∞ B1 +B1B2 ρ

2
pre-mult = Nρ21ρ

2
2 + ρ22 ‖m1‖22 + ρ21 ‖m2‖22

Key-Switch B +
√
N ηks HC(α,N) ρ2ks = ρ2 + η2ks

Rescale q−1
` B +

√
N
12

(h+ 1) HC(α,N) ρ2rs = ρ2

q2
`

+ 1
12

(h+ 1)

Table 3: Worst-case canonical embedding bounds (CE) and average-case noise
analysis (CLT) for RNS CKKS [9]. Here, B1 and B2 denote input noise bounds
in the canonical embedding; ρ1, ρ2, and ρ denote input noise variances; and
η2ks = 1

12P
−2NQ2(`2 + 1)σ2 + 1

12 (k2 + 1)(h+ 1).

5.4 Other RNS optimisations

In this work, we mainly focus on Textbook CKKS [11] and the RNS CKKS
variant [9]. Several optimisations for RNS-CKKS have been proposed, e.g. in [29].
Our noise analysis techniques can also be applied to other RNS variants. In this
section, we illustrate this with some examples. Proofs for the results in this
subsection are provided in Supplementary Material Section F.

Level-specific scaling factor: As a first example, in [29] it is proposed to use
a level-specific scaling factor ∆` to remove the approximation error in rescaling
arising from the fact that each of the qi is not exactly equal to ∆. Having
level-specific scaling factors ∆` means that we may wish to add or multiply two
ciphertexts ct1 and ct2 at different scales ∆`1 and ∆`2 . If WLOG `1 > `2 then
the Adjust operation is used to bring the ciphertext ct1 to level `2 before the
addition or multiplication is performed.

For simplicity, we give the analysis when adjusting by one level. This opera-
tion takes as input a ciphertext ct := (c0, c1) with respect to level `+ 1 and the
output ciphertext is with respect to level `. By definition of the chain of moduli,
Q`+1 = Q` · q`+1. Let

ct1 :=

([⌈
∆` · q`+1

∆`+1
c0

⌋]
Q`+1

,

[⌈
∆` · q`+1

∆`+1
c1

⌋]
Q`+1

)

The output ciphertext is then ctadj = Rescale(ct1, q`+1). That is,

ctadj =

[⌈ 1

q`+1

[⌈
∆` · q`+1

∆`+1
c0

⌋]
Q`+1

⌋]
Q`

,

[⌈
1

q`+1

[⌈
∆` · q`+1

∆`+1
c1

⌋]
Q`+1

⌋]
Q`

 .

Lemma 11. [Adjust] Let ct = (c0, c1) be a ciphertext encrypting m with noise
ε ∼ N(0; ρ2IN ). Let ctadj encrypting m be the ciphertext with noise εadj resulting
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from the Adjust by one level operation. The Adjust noise εadj ∼ N(0; ρ2adjIN ),

where the component variance ρ2adj of the noise after the Adjust operation is

ρ2adj =
∆2
`

∆2
`+1

ρ2 + 1
12 (‖s‖22 + 1).

Rescale before multiplication: As a second example, in [29] it is proposed to
reorder multiplication and rescaling. This enables the reduction of the noise in a
ciphertext after multiplication. We give the analysis for the case of level-specific
∆`. In this case, we have:

ctPre-Mult′ = Pre-Mult(Rescale(ct1, q`), Rescale(ct2, q`)) .

Lemma 12. [Pre-Mult′] Let ct1 encrypt ∆2
` ·m1 with noise ε1 ∼ N(0, ρ21) and

let ct2 encrypt ∆2
` ·m2 with noise ε2 ∼ N(0, ρ22). Then ctPre-Mult′ encrypts ∆2

`−1 ·
m1m2 and noise εPre-Mult′ . If the conditions of Lemma 17 hold then εPre-Mult′ ∼
N(0, ρ2

Pre-Mult′
) where

ρ2Pre-Mult′ :=
Nρ21ρ

2
2

q4`
+

(
N2

18q2`
+

N

12q`

)
(ρ21 + ρ22) +

∆`−1

q2`

(
ρ22 ‖m1‖22 + ρ21 ‖m2‖22

)
+

(
∆`−1N

18
+
∆`−1

12

)(
‖m1‖22 + ‖m2‖22

)
+
N3

18
+
N2

108
+

N

144
.

6 Experimental results

In this section we evaluate the efficacy of the noise analyses developed in this
work for Textbook CKKS and the RNS variant of [9] as compared with their
implementations HEAAN [25] and FullRNS-HEAAN [23] respectively. We also
compare the new heuristics with those obtained from a worst-case canonical
embedding approach as in prior work (denoted as P-CE). The code used to
generate our results is available at https://github.com/bencrts/CKKS_noise.

Experimental framework: We run experiments in the HEAAN v1.0 [25] and
FullRNS-HEAAN [23] libraries. We note that neither the Textbook CKKS nor
the RNS variant noise analysis is implementation-specific, and we chose the
HEAAN library as it is the implementation most closely resembles the theoretical
description of both variants of the scheme.

The LWE parameters (ring dimension N , ciphertext modulus q, error stan-
dard deviation σ, secret distribution S) were set as follows. Following [1], we
used (log2(N), log2(q)) ∈ {(13, 109), (14, 219), (15, 443)} in HEAAN v1.0. We
used (log2(N), log2(q)) ∈ {(12, 100), (13, 100), (14, 220), (15, 420)} in FullRNS-
HEAAN. We used σ = 3.2 and the default secret distribution in both libraries.
We set the error tolerance as α = 0.0001 and the scale parameter as ∆ = 240.

For FullRNS-HEAAN the moduli chains are parameterised by L and k. The
bit-size of the top-level modulus is generated by FullRNS-HEAAN as 60+(L−1)·
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log2(∆). For log(N) ∈ {13, 14, 15}, we choose L to allow for a top-level modulus
which is close to the choices in HEAAN v1.0. For log(N) = 12 we choose a
modulus large enough to support one multiplication. We always set the default
library selection of k = L+ 1.

For both libraries we evaluate the following circuit, similarly to [15]. We gen-
erate fresh ciphertexts ct0, ct1 and ct2 and evaluate the circuit ct2∗(ct1+ct0),
i.e. a homomorphic addition, followed by a (full) homomorphic multiplication. In
each experiment, we iterate 1000 times and record the average, and maximum,
observed noise. In Tables 4 and 5 we report the observed noises together with
the noise predicted from the heuristics developed in this work: the average-case
approach (CLT), and the worst-case heuristics (WCR and CE). We also compare
with the noise predicted from the prior heuristics (P-CE). For the multiplication
operation estimates we use worst-case message bounds, specifically ∆ for WCR,
N∆2 for CLT, and 2N∆

π for CE.
In Table 4 we report the experimental results for HEAAN v1.0 [25] in two

settings. We first (in the rows marked as ‘Ring’) report the observed noise in
the plaintext space. In these experiments, in each trial, we generate a random
plaintext with coefficients in [−∆,∆], evaluate the specified circuit, and measure
noise in the ring after each operation. We also (in the rows marked as ‘Real’ and
‘Complex’) report the observed noise in the message space. In Table 5 we report
the experimental results for FullRNS-HEAAN [23] in the message space.

For the HEAAN v1.0 [25] and FullRNS-HEAAN [23] experiments in the mes-
sage space, in each trial, we generate a vector of random numbers, encode them,
encrypt them, and homomorphically evaluate the circuit as described above.
Then, we decrypt and decode and measure the precision loss. The rows marked
as ‘Real’ correspond to generating numbers with real part and imaginary part
both uniform in [0, 1], encoding and decoding with scale factor ∆, and reporting
only the real error on the computation. The rows marks as ‘Complex’ correspond
to generating numbers with real part and imaginary part both uniform in [0, 1]
and reporting the magnitude of the largest error.

While in exact schemes, it is trivial to observe the noise, this is not so straight-
forward for CKKS. Our methodology was to generate three plaintexts m1,m2

and m3, and to run the circuit both in the plaintext space and in the ciphertext
space. In other words, the noise reported in Tables 4 and Table 5 is the result of

((m1 +m2) ·m3)− Dec((Enc(m1) + Enc(m2)) · Enc(m3)) .

Results: The plaintext space experiments of Table 4 illustrate that for Textbook
CKKS [11], the average case noise approach (CLT) introduced in this work, and
our refinements to the prior worst case canonical embedding approach (CE), both
improve on the heuristics given in prior work (P-CE), in the sense of predicting
a value closer to the observed noise. For CLT compared to P-CE, the heuristic-
to-practical gap reduces from around 8 bits to less than 1 bit. However, the
CLT approach slightly underestimates the maximal noise, and sometimes slightly
underestimates the maximum noise (as illustrated in the column gap). The WCR
approach leads to a large heuristic-to-practical gap after multiplication, which
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we also observed in the Complex experiments (in the message space), so we omit
it in the FullRNS-HEAAN experiments.

For the message space results in Table 4, the addition and multiplication
results are similar for both the Real and Complex case. The CLT and CE ap-
proaches both underestimate the average and maximum noise by 3 to 7 bits. The
WCR approach correctly bounds the noise: tightly for addition, but very loosely
after multiplication.

The results in Table 5 illustrate that for the RNS variant of [9], the CLT
approach and the CE approach both improve on the prior approach (P-CE), in
the sense of predicting a value closer to the observed noise. For CLT compared
to P-CE, the heuristic-to-practical gap typically reduces from around 6 bits to
less than 1 bit. However, we again very frequently observe the CLT giving an
underestimate. At logN = 14, a jump is seen in the observed noise values, and
in this case the prior approach P-CE gives a tight bound on the noise.

Discussion: Our results illustrate that, for the plaintext space for Textbook
CKKS, and for the message space in the RNS variant of [9], both the average-
case noise analysis introduced in this work and the refinement of the prior worst-
case canonical embedding approach improve upon prior noise analyses in terms
of modelling more closely the observed noise. Our work can thus represent an
improved starting point for manual parameter selection compared to prior ap-
proaches.

However, some discrepancies can be seen between the observed results and
the predictions from the heuristic analyses. For example, in the multiplication
results in the ring in Table 4, the WCR respectively CE bounds seem to increase
by 1 respectively 0.5 bits as logN increases by 1 bit, while the average observed
noise shows a much slower growth. As another example, in the message space
results in Table 4, the prior canonical embedding approach (P-CE) also leads
to underestimates of the predicted noise. Moreover, in the multiplication results
of Table 5, there seems to be a jump in the observed noise after logN = 14,
whereas the noise heuristics all grow more smoothly as logN grows. This means
that, for larger logN , the P-CE approach gives a correct and tight noise growth
prediction, while for smaller logN , the CLT and CE approaches give a closer
prediction of the observed noise. This discussion suggests a fundamental issue
with the modelling in all existing noise analysis approaches, including those prior
to this work, suggesting that a refined theory of CKKS noise is needed.

One of the most crucial observations is that our heuristics underestimate
the noise growth in many places (denoted by negative gap values in Tables 4
and 5). Similar underestimates have been observed in the literature before [16, 3].
In more detail, the authors of [3] show that an average-case analysis of the
BFV scheme that assumes independence of the coefficients of the noise leads to
underestimates of the multiplication noise, and they develop a correcting function
to account for this discrepancy. The authors of [16] compare experimental results
of the BGV scheme as implemented in HElib to the theoretical bounds from the
work of [30], and observe that the latter also underestimates the noise growth
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Table 4: Average and maximum bits of noise observed in the ring and message
space over 1000 trials in HEAAN compared with noise predicted by the CLT,
WCR and CE noise analyses. The column gap denotes the difference between
the predicted CLT noise value and the maximum experimental observation, with
a negative value representing a heuristic underestimate.
log(N) log(q) Average Maximum CLT WCR CE P-CE gap

Ring Addition noise.

13 109 4.58 5.52 4.32 4.82 10.87 12.77 -1.20

14 219 4.63 5.39 4.35 4.85 11.40 13.27 -1.04

15 443 4.68 5.49 4.37 4.87 11.92 13.77 -1.12

Ring Multiplication noise.

13 109 5.18 6.19 5.67 19.32 12.61 14.32 -0.52

14 219 5.21 6.04 5.70 20.35 13.13 14.82 -0.34

15 443 5.27 6.09 5.72 21.37 13.66 15.32 -0.37

Real Addition error.

13 109 -25.37 -23.42 -29.70 -22.83 -29.13 -27.22 -6.28

14 219 -24.41 -22.55 -29.18 -21.80 -28.60 -26.72 -6.63

15 443 -23.35 -21.32 -28.65 -20.78 -28.08 -26.22 -7.33

Real Multiplication error.

13 109 -25.07 -23.00 -28.35 -8.33 -27.39 -25.68 -5.35

14 219 -24.03 -21.77 -27.83 -6.30 -26.87 -25.18 -6.06

15 443 -23.03 -20.98 -27.30 -4.28 -26.34 -24.68 -6.32

Complex Addition error.

13 109 -24.81 -23.12 -29.63 -22.83 -29.13 -27.22 -6.51

14 219 -23.81 -22.22 -29.10 -21.80 -28.60 -26.72 -6.88

15 443 -22.76 -21.17 -28.58 -20.78 -28.08 -26.22 -7.41

Complex Multiplication error.

13 109 -24.45 -22.52 -28.28 -8.33 -27.39 -25.68 -5.76

14 219 -23.47 -21.53 -27.75 -6.30 -26.87 -25.18 -6.22

15 443 -22.41 -20.61 -27.23 -4.28 -26.34 -24.68 -6.62

in practice. In contrast, the implementation-specific analysis of [16] is shown to
very closely match the observed noise growth. Our heuristics are not specific
to the implementations in HEAAN v1.0 [25] or Full-RNS HEAAN [23], and
assumptions on which the heuristics rely may not hold for each implementation.
For example, our experiments indicate that in HEAAN v1.0 [25] (though not in
Full-RNS HEAAN [23]), the independence heuristic between coefficients of the
noise polynomial fails at encryption. We believe that developing implementation-
specific noise analyses for CKKS is an important direction for future work.
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Table 5: Average and maximum bits of noise observed in the message space over
1000 trials in FullRNS-HEAAN compared with noise predicted by the CLT, CE
and P-CE noise analyses. The column gap denotes the difference between the
predicted CLT noise value and the maximum experimental observation, with a
negative value representing a heuristic underestimate.

log(N) log(q) L k Average Maximum CLT CE P-CE gap

Real Addition error.

12 100 2 3 -24.38 -24.21 -24.25 -23.63 -18.89 -0.04

13 100 2 3 -23.16 -22.93 -23.23 -22.61 -17.89 -0.30

14 220 5 6 -22.07 -21.75 -22.21 -21.59 -16.89 -0.46

15 420 10 11 -21.00 -20.74 -21.19 -20.57 -15.89 -0.45

Real Multiplication error.

12 100 2 3 -21.86 -21.80 -22.96 -21.62 -17.39 -1.16

13 100 2 3 -21.70 -21.41 -21.94 -20.61 -16.39 -0.53

14 220 5 6 -17.79 -17.67 -20.92 -19.59 -15.39 -3.25

15 420 10 11 -16.77 -16.73 -19.90 -18.57 -14.39 -3.17

Complex Addition error.

12 100 2 3 -24.03 -23.78 -24.17 -23.63 -18.89 -0.39

13 100 2 3 -22.83 -22.42 -23.16 -22.61 -17.89 -0.74

14 220 5 6 -21.84 -21.52 -22.14 -21.59 -16.89 -0.62

15 420 10 11 -20.76 -20.57 -21.12 -20.57 -15.89 -0.55

Complex Multiplication error.

12 100 2 3 -21.17 -21.08 -22.88 -21.62 -17.39 -1.80

13 100 2 3 -21.03 -20.95 -21.86 -20.61 -16.39 -0.91

14 220 5 6 -16.94 -16.82 -20.84 -19.59 -15.39 -4.02

15 420 10 11 -15.93 -15.90 -19.82 -18.57 -14.39 -3.92

7 Application to Li-Micciancio mitigations

A natural application of improved noise analyses for CKKS is in the implemen-
tation of more performant countermeasures to the CKKS key recovery attack of
Li and Micciancio [34]. One possible countermeasure suggested in [34] is to make
the CKKS scheme exact. In this section, we describe how to do so under certain
conditions, and prove this modified version is sufficient to satisfy the security
notion IND-CPAD introduced in [34]. In particular, we rely on a correctability
condition for the circuit being homomorphically evaluated, defined as follows.

Definition 4. (Condition for correctability). Fix parameters, and a circuit g :
(CN/2)l → CN/2. Suppose that the message g(z1, . . . , zl) + e is obtained from
the decoding and decryption of the output ciphertext of the homomorphic evalu-
ation of the circuit g such that ‖e‖∞ < B for some bound B > 0, with all but
negligible probability over the choice of inputs and randomness of encryption.
Then g is correctable for these parameters if 1

∆′ g(z1, ..., zl) ∈ Z[i]N/2, where
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∆′ = 2dlogBe+1, for all feasible inputs zi. We will call this ∆′ a correcting fac-
tor.

In this definition, the bound B and the factor∆′ are properties of the function
g itself, and not specific to any particular noise analysis method. Informally,
correctability ensures that for set parameters, the evaluation noise of g and
the desired result g(z1, . . . , zl) never interact. Observe that it should always be
possible to select parameters for which g is correctable.

We note that, for real circuits, analogous definitions could be made using
bounds on the real noise. We could instead define correctability in the ring, but
we opt for a definition in the message space due to its easy interpretability in
terms of the precision of input messages. Correcting in the ring rather than in
the message space would lead to a scheme similar to BFV with the addition of
a rescale procedure and an implicit plaintext modulus.

We now proceed to show how to define an exact version of CKKS in the case
of correctable circuits, show it is exact in the sense of [34], and outline why our
adapted version achieves the IND-CPAD security.

Lemma 13. Suppose z ∈ CN/2 has ‖z‖∞ < B, and let ∆′ = 2dlogBe+1. Then
d 1
∆′ zc = 0.

Proof. We have that for all i, |zi| < B 6 ∆′

2 . We must therefore have that∣∣ zi
∆′

∣∣ < 1
2 , so that d zi∆′ c = 0, and as claimed d 1

∆′ zc = 0. ut

We therefore introduce the following procedure, performed after decoding, which
converts an approximate homomorphic evaluation of a correctable function to
an exact one:

Definition 5. Suppose we have a message z ∈ CN/2. Then we define the algo-
rithm Correct : CN/2 × R+ → CN/2 via

Correct(z, ∆′) = ∆′
⌈

1

∆′
z

⌋
.

Definitions 4 and 5 allow us to derive a correct scheme in the following sense.

Lemma 14. Fix parameters, and suppose g is a correctable circuit with correct-
ing factor ∆′. Suppose z = g(z1, ..., zl) + e is the result of the homomorphic
evaluation of the circuit g on inputs z1, ..., zl. Then with all but negligible prob-
ability, we have Correct(z, ∆′) = g(z1, ..., zl).

Proof.

Correct(z, ∆′) = ∆′
⌈

1

∆′
z

⌋
= ∆′

⌈
1

∆′
(g(z1, ..., zl) + e)

⌋
= g(z1, ..., zl) +

⌈
1

∆′
e

⌋
= g(z1, ..., zl),

as required, with the third equality following due to the correctability of g, and
the final equality following with all but negligible probability from definition of
∆′ and Lemma 13. ut
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If we therefore augment the decryption procedure by performing Correct

after decoding, we have that the resulting scheme is exact, or correct, for cor-
rectable circuits g in the sense of [34]:

Pr

(
cti ← Encpk(zi) for 1 6 i 6 l,

Decsk(Eval(g, (cti)
l
i=1)) = g((mi)

l
i=1)

)
= 1− negl(κ) ,

where κ is the security parameter. Therefore, by [34, Lemma 1], we have that
our corrected scheme is IND-CPAD secure. In more detail, where the IND-CPA
adversary is unable to provide decryptions to the IND-CPAD adversary in the
pure CKKS case due to their inability to simulate the noise, for our corrected
scheme the noise is eliminated and so the decryptions are simply a function of
messages the adversary possesses.

It can be seen that a tight noise analysis for CKKS enables an accurate
choice for B in applying this countermeasure. On the other hand, a significant
overestimate of the noise would have the undesirable effect of eliminating correct
bits during correction. This further motivates the development of tighter analyses
of CKKS noise growth.

Another natural direction for future work is to explore whether such a cor-
rected version of CKKS can be developed for arbitrary circuits, whose cor-
rectability may not be guaranteed. The difficulty here is the rounding during
correction may corrupt higher bits, thus the IND-CPA adversary cannot neces-
sarily simulate decryptions. This may yield an effective attack on the corrected
CKKS scheme in the IND-CPAD model.
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tors, Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11-15,
2019, pages 45–56. ACM, 2019.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, January 2012.
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Supplementary Material

A Proof of Theorem 2

Proof of Theorem 2 Part 1: If Zj ∼ N(0, ρ2), then |Zj | ∼ ρχ1 has a
scaled χ-distribution with 1 degree of freedom and cumulative distribution

function F|Zj |(t) = P(|Zj | < t) = erf
(

t√
2ρ

)
where t > 0. Thus ‖Z‖∞ =

max{|Z1|, . . . , |ZN |} has distribution function F‖Z‖∞(t) = P(‖Z‖∞ ≤ t) =

P(|Zj | < t)N = erf
(

t√
2ρ

)N
. The probability of ‖Z‖can∞ exceeding a bound

B is therefore given by P(‖Z‖∞ > B) = 1 − P(‖Z‖∞ ≤ t) = 1 − erf
(

B√
2ρ

)N
.

Setting this equal to α gives the claimed probability (1− α) bound. ut

Proof of Theorem 2 Part 2: We define a “real” version τ ′ : RN → RN of the
function τ : RN → CN/2 by the N ×N matrix

T ′ =

((
Re(ζkj )

)(
Im(ζkj )

)) [
j = 0, . . . , 12N − 1

k = 1, . . . , N

]
.
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The matrix 1
2N ×N matrix T =

(
IN/2

∣∣ i IN/2)T ′ then gives the canonical em-

bedding τ . The matrix T ′ satisfies T ′T ′T = 1
2NIN as τ is a scaled isometry

with |τ(x)|2 = 1
2N |x|

2 (see Section 3 preamble), so that for Z ∼ N(0; ρ2IN ), we

have X = T ′Z ∼ N
(
0; N2 ρ

2IN
)
. The vector Y := τ(Z) therefore has real part

Re(Y ) = (X0, X1, ..., XN
2 −1

) and imaginary part Im(Y ) = (XN
2
, XN

2 +1, ..., XN−1),

so that the distributions of Re(Y ) and Im(Y ) can be read off. The bounds follows
by part (1) applied to Im(Y ) and Re(Y ). ut

Proof of Theorem 2 Part 3: If we write Yj = Xj + iXj+ 1
2N

, then |Yj |2 =

X2
j + X2

j+ 1
2N

, which has a scaled χ2
2-distribution as the sum of two indepen-

dent squared standard Normal random variables. Thus |Y0|, . . . , |Y 1
2N−1

| ∼
( 1
2N)

1
2 ρχ2 are independent and identically distributed random variables hav-

ing a scaled χ distribution with 2 degrees of freedom with cumulative distri-

bution function F|Yj |(t) = P (|Yj | ≤ t) = 1 − exp
(
− t2

Nρ2

)
where t > 0. Thus

‖Y ‖∞ has distribution function F‖Y ‖∞(t) = P(‖Y ‖∞ ≤ t) = P (|Yj | ≤ t)
1
2N =(

1− exp
(
− t2

Nρ2

)) 1
2N

. For a bound B on ‖Y ‖∞, the failure probability α is thus

given by α = P(‖Y ‖∞ > B) = 1− P(‖Y ‖∞ ≤ t) = 1−
(

1− exp
(
− B2

Nρ2

)) 1
2N

,

so we derive a 1− α probability on ‖Y ‖∞ as B =
√
Nρ (− ln(1− (1− α)

2
N ))

1
2 ,

which is also a 1− α probability bound on ‖Z‖can∞ = ‖τ(Z)‖∞ = ‖Y ‖∞. ut

B Distribution of noise polynomials

In this section, we derive distributional results about CKKS noise polynomials.
We give results for the Textbook CKKS scheme [11]; as well as for the RNS
variant [9] where the distributional results are the same as for the Textbook
case. In particular, these distributional results give us the variances of the noise
polynomials after each operation.

Lemma 15. [Fresh – Textbook and RNS] The noise in a fresh cipher-
text has a Normal distribution given by εfresh ∼ N(0; ρ2freshIN ) with component

variance ρ2fresh = (‖v‖22 + ‖s‖22 + 1)σ2.

Proof. We give a proof for the RNS case; the Textbook case is very similar. For
all 0 ≤ j ≤ L, the jth RNS representative of ct = (ct(j))0≤j≤L that is output
by encryption has the form ct(j) := (b(j)v+ e0 +m, a(j)v+ e1) ∈ R2

qj . The same
ephemeral secret v ← χenc and ephemeral Ring-LWE errors e0 ← χerr, e1 ← χerr

are used in each of the j RNS representatives. The noise in a fresh ciphertext can
then be seen to be given by the same expression as for the noise in the analogous
Textbook ciphertext:〈

ct(0), sk
〉

= −a(0)vs+ ev + e0 +m+ a(0)vs+ e1s mod q0
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= m+ ev + e0 + e1s mod q0 .

In particular, the noise is given by the polynomial εfresh := ev + e0 + e1s where
e, e0, e1 ∼ N(0, σ2IN ), and the ephemeral secret v ← χenc and secret key
s← χkey are fixed vectors. Thus we have εfresh ∼ N(0; ρ2freshIn) , where ρ2fresh =
(‖v‖22 + ‖s‖22 + 1)σ2. ut

For example, if v ← ZO(0.5) and s is ternary with fixed Hamming weight h
as in [11], this variance is ρ2fresh = (N2 + h+ 1)σ2.

Lemma 16. [Add – Textbook and RNS] Let ct1, ct2 be two indepen-
dent ciphertexts encrypting m1 and m2 with noises ε1 ∼ N(0; ρ21IN ) and ε2 ∼
N(0; ρ22IN ) respectively. Let ctadd with noise εadd be the ciphertext resulting
from the homomorphic addition of the ciphertexts ct1 and ct2. Then εadd ∼
N(0; ρ2addIN ) where ρ2add = ρ21 + ρ22.

Proof. Follows directly from Corollary 5. ut

Lemma 17. [Pre-Mult – Textbook and RNS] Let ct1, ct2 be two in-
dependent ciphertexts encrypting m1 and m2 with noises ε1 ∼ N(0; ρ21IN ) and
ε2 ∼ N(0; ρ22IN ) respectively. Let ctpre-mult with noise εpre-mult be the ciphertext
resulting from applying pre-multiplication to the ciphertexts ct1 and ct2. If the
Small-S assumption is valid for the product distribution (m1 +ε1)(m2 +ε2), then
εpre-mult ∼ N(0; ρ2pre-multIN ) and the noise variance ρ2pre-mult is given by:

ρ2pre-mult = Nρ21ρ
2
2 + ρ22 ‖m1‖22 + ρ21 ‖m2‖22 .

Proof. We give a proof for the RNS case; the Textbook case is very similar.

For 0 ≤ j ≤ `, for input ciphertexts ct1 = {ct(j)1 } =
{(
c
(j)
0 , c

(j)
1

)}
and ct2 =

{ct(j)2 } =
{(
C

(j)
0 , C

(j)
1

)}
, the output ctpre-mult = {ct(j)pre-mult} has representa-

tives (d
(j)
0 , d

(j)
1 , d

(j)
2 ) given by d

(j)
0 = c

(j)
0 C

(j)
0 mod qj , d

(j)
1 = c

(j)
0 C

(j)
1 + c

(j)
1 C

(j)
0

mod qj , and d
(j)
2 = c

(j)
1 C

(j)
1 mod qj . For input ciphertexts {ct(j)1 }0≤j≤` encrypt-

ing m1 with noise ε1 and {ct(j)2 }0≤j≤` encrypting m2 with noise ε2, we have:〈
ct

(0)
pre-mult, sk

〉
= d

(0)
0 + d

(0)
1 s+ d

(0)
2 s2 = (c

(0)
0 + c

(0)
1 s) · (C(0)

0 + C
(0)
1 s) mod q0

=
〈
ct

(0)
1 , sk

〉
·
〈
ct

(0)
2 , sk

〉
= (m1 + ε1) · (m2 + ε2) mod q0

= m1m2 + ε1m2 + ε2m1 + ε1ε2 mod q0 .

so {ct(j))pre-mult}0≤j≤` encrypts m1m2 with noise εpre−mult := ε1m2 + ε2m1 + ε1ε2.
Given that ε1 and ε2 are distributed Normally, and that the Small-S assumption
holds for m1 + ε1 and m2 + ε2, then εpre−mult is also distributed Normally by
Corollary 5. ut

Lemma 18. [Round – Textbook and RNS] The component-wise round-
ing of a ciphertext (ct0, ct1) ∈ (R[X]/(XN + 1))2 in RQ introduces an addi-
tive rounding error εround, which has a Normal distribution given by εround ∼
N(0, η2roundIN ) with component variance η2round = 1

12 (‖s‖22 + 1) .
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Proof. Let ct = (ct0, ct1) be a ciphertext encrypting a message m with noise
ε. Let ctround = (ct′0, ct

′
1) be the result of applying component-wise rounding

to ct, so ct′0 + ct′1s = ct0 + τ0 + (ct1 + τ1)s = ct0 + ct1s + τ0 + τ1s =
m+ ε+ τ0 + τ1s, where τi is the rounding error introduced in each component.
The rounding process thus introduces an additive noise ε := τ0 + τ1s, where
τ0 and τ1 are modelled as being drawn uniformly at random with components
in
[
− 1

2 ,
1
2

]
. Thus the jth component of this additive error is given by εj =

τ0,j+
∑N−1
k=0 ξ(k−j)sk τ1,j−k, where ξ is a modified sign function given by ξ(z) =

Sign(z) for z 6= 0 and ξ(0) = 1 arising from the multiplication modulo Xn + 1
(also see Theorem 3). This component εj therefore has mean 0 and variance

satisfying η2round = Var(εj) = Var(τ0,j) +
∑N−1
k=0 (ξ(k − j)sk)2 Var(τ1,j−k) = 1

12 +

‖s‖22 ·
1
12 = 1

12 (‖s‖22 + 1). Similarly, we can show for j′ 6= j that Cov(εj , εj′) =

E(εjεj′) =
∑N−1
k=0 ξ(k − j)2sksj′−j+k Var(τ1,j−k) = 1

12

∑N−1
k=0 sksj′−j+k, as si

are uniformly distributed over {−1, 0, 1}. Thus Cov(εj , εj′) can be modelled by
a Normal N(0, 1

72N) distribution, so is far smaller than η2round, and we can regard
Cov(εj , εj′) ≈ 0.

We have now found the mean and variance and established that the co-
variance is negligible. It remains to show normality. As shown above, the er-
ror component εj is the sum of the independent random variables τ0,j and
ξ(k − j)skτ1,j−k (for k = 0, . . . , N − 1) which are each independent random
variables uniformly distributed on

[
− 1

2 ,
1
2

]
(when sk 6= 0). Thus, εj is the sum of

(‖s‖2 + 1) independent and identically distributed random variables with mean
0 and variance 1

12 , so the Central Limit Theorem shows that εj has an approxi-
mate Normal N(0, η2round) distribution. Thus ε can be modelled as a multivariate
Normal N(0; η2roundIN ) distribution. ut

For example, if the secret is sparse with fixed Hamming weight h as in [11],
we have η2round = 1

12 (h+ 1).

Lemma 19. [Key Switch – Textbook] The output noise after the Textbook
CKKS key switch operation is given by εks := ε+εks if the input noise is given by
ε. The additive error εks has a Normal distribution given by εks ∼ N(0, η2ksIN ),

where η2ks = 1
12

(
P−2NQ2

`σ
2 + 1P -Q`

(‖s‖22 + 1)
)

.

Proof. The keyswitch operation introduces an additive error εks = P−1Q` ·d2e′+
εround (see for example [11, Lemma 3]). In this expression, e′ ∼ N(0;σ2IN ) is the
Ring-LWE noise term in the evaluation key, d2 = [ct0[1]ct1[1]]Q`

is a com-
ponent from the output of pre-multiply, and εround is a possible rounding er-
ror created by dividing by P−1. We can regard a component of d2 given by
d2,i =

∑N−1
j=0 ξ(i − j)ct0[1]jct1[1]i−j mod Q` as having a uniform distribution

on (− 1
2Q`,

1
2Q`)

N (including the “squaring” case ct0[1] = ct1[1]), so d2,i has
mean 0 and variance 1

12Q
2
` . A Central Limit argument similar to the proof of

Lemma 18 then shows that P−1(d2e
′) ∼ N(0 ; 1

12P
−2NQ2

`σ
2IN ).

The additional rounding error eround is required when P does not divide Q`, in
which case Lemma 18 shows that eround ∼ N(0; 1

12 (‖s‖22 +1)IN ). In these circum-
stances, εks is the sum of two independent multivariate Normal distributions, so
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has a multivariate Normal distribution itself with mean 0 and component vari-
ance 1

12P
−2NQ2

`σ
2 + 1

12 (‖s‖22 + 1). ut

For example, if the secret is sparse with fixed Hamming weight h as in [11],
we have η2ks = 1

12P
−2NQ2

`σ
2 + 1P -Q`

1
12 (h+ 1).

Lemma 20. [Rescale – Textbook] Let ct be a ciphertext encrypting m with
noise ε ∼ N(0; ρ2IN ). Let ctrs encrypting m be the ciphertext with noise εrs
resulting from the Rescale operation. Then εrs ∼ N(0; ρ2rsIN ), where the com-

ponent variance ρ2rs is given by ρ2rs = 1
∆2 ρ

2 + 1
12 (‖s‖22 + 1).

Proof. The ciphertexts after the Rescale operation are ct′i =
[⌊

1
∆cti

⌉]
Q`−1

(i = 0, 1), so we have ct′0+sct′1 =

[⌊
1

∆
ct0

⌉]
Q`−1

+s

[⌊
1

∆
ct1

⌉]
Q`−1

=
1

∆
(ct0+

sct1) + (τ0 + sτ1) where τ0, τ1 are rounding random variables as in Lemma 18
with εround = τ0 + sτ1. Thus Lemma 18 shows that εrs = 1

∆ε + εround, where

εround ∼ N(0; η2ksIN ) and η2ks = 1
12 (‖s‖22 + 1), so εrs ∼ N(0; ρ2rs), where ρ2rs =

1
∆2 ρ

2 + η2ks = 1
∆2 ρ

2 +
(

1
12 (‖s‖22 + 1)

)
. ut

C Justification of worst-case noise bounds

In this section, we justify the worst-case noise bounds presented in Section 4.4.
For illustration, we give the bounds for the noise after fresh encryption, after
the rounding operation, and after the key switching variant in [11]. Bounds for
other variants of key switching, e.g. as in [9] can be proved similarly. Worst-
case bounds on addition and multiplication are proved in prior work for the
canonical embedding case [11, 9], and the bound in the ring for these operations
is proved analogously, so we omit presenting them in detail. Similarly, worst-case
bounds for the rescale operation can also be proved in the same manner as prior
work [11, 9] using Lemma 22.

In more detail, we use Theorem 2 and the variances derived in Supplementary
Material Section B to give worst-case bounds on the noise ε in a ciphertext
obtained after each homomorphic evaluation operation. We give probabilistic
bounds, defined by the parameter α, both in the ring (i.e., bounding ‖ε‖∞), and
in the canonical embedding (i.e., bounding ‖ε‖can∞ ).

Lemma 21. [Fresh Bound - Textbook and RNS] Let ct be a fresh ci-
phertext encrypting a message m with noise ε. In the canonical embedding, with
probability 1− α, we have that ‖ε‖can∞ ≤ Bfresh, where

Bfresh =
√
Nρ2fresh HC(α,N) = σ

√
N

√
‖v‖22 + ‖s‖22 + 1 HC(α,N).

In the ring, with probability 1− α, we have that ‖ε‖∞ ≤ Bfresh, where

Bfresh =
√

2ρ2fresh HR(α,N) = σ
√

2

√
‖v‖22 + ‖s‖22 + 1 HR(α,N).
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Proof. Lemma 15 shows that the encryption noise has a multivariate Normal
N(0; ρ2freshIN ) distribution, where ρ2fresh = (‖v‖22 + ‖s‖22 + 1)σ2. The worst case
bounds on the encryption noise under the canonical embedding norm and in the
ring then follow from Theorem 2 (3) and Theorem 2 (1) respectively. ut

Lemma 22. [Round Bound - Textbook and RNS] Consider rounding a
non-integer ciphertext. In the canonical embedding, a worst-case bound on the
additive noise introduced by this process, that holds with probability 1 − α, is
given by

Bround =
√
Nη2round HC(α,N) =

√
N
12 (‖s‖22 + 1) HC(α,N).

In the ring, a worst-case bound on the additive noise introduced by this process,
that holds with probability 1− α, is given by

Bround =
√

2η2round HR(α,N) =

√
1
6 (‖s‖22 + 1) HR(α,N).

Proof. Lemma 18 shows that the rounding operation introduces an additive
noise with a multivariate Normal N(0; η2roundIN ) distribution, where η2round =
1
12 (‖s‖22 + 1). The worst case bounds on the rounding noise under the canonical
embedding norm and in the ring then follow from Theorem 2 (3) and Theorem 2
(1) respectively. ut

Lemma 23. [Keyswitch Bound - Textbook] Let ctmult be the ciphertext
resulting from the key switch operation applied on the ciphertext ct. This opera-
tion introduces an additive error term εks that can be bounded as follows. In the
canonical embedding, with probability 1− α, we have that ‖εks‖can∞ ≤ Bks, where

Bks =
√
Nη2ks HC(α,N)

=

√
N
(

1
12P

−2NQ2
`σ

2 + 1P -q`

(
1
12 (‖s‖22 + 1)

))
HC(α,N).

In the ring, with probability 1− α, we have that ‖εks‖∞ ≤ Bks, where

Bks =
√

2η2ksHR(α,N)

=

√
1
6

(
P−2NQ2

`σ
2 + 1P -q`

(
‖s‖22 + 1

))
HR(α,N).

Proof. Lemma 19 shows that the rounding operation introduces an additive noise
with a multivariate Normal N(0; η2ksIN ) distribution, where

η2ks = 1
12

(
P−2NQ2

`σ
2 + 1P -Q`

(‖s‖22 + 1)
)
.

The worst case bounds on the rounding noise under the canonical embedding
norm and in the ring then follow from Theorem 2 (3) and Theorem 2 (1) respec-
tively. ut
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Operation Bound

Fresh 8
√

2σN + 6σ
√
N + 16σ

√
hN

Add B1 +B2

Pre-Mult ν1B2 + ν2B1 +B1B2

Key Switch B + 8√
3
P−1NQ`σ

Rescale ∆−1B +
√

3N + 8√
3

√
hN

Table 6: Prior canonical embedding bounds for Textbook CKKS [11] (see [11,
Appendix B]). The notation νi denotes an upper bound on the message mi.

Operation Bound

Fresh 8
√

2σN + 6σ
√
N + 16σ

√
hN

Add B1 +B2

Pre-Mult ν1B2 + ν2B1 +B1B2

Key Switch B + 8√
3
NσQ

P

√
`2 + 1 + (k + 1)

(√
3N + 8√

3

√
hN
)

Rescale q−1
` B +

√
3N + 8√

3

√
hN

Table 7: Prior canonical embedding bounds for the RNS variant [9] (see [9,
Appendix A.2]). The notation νi denotes an upper bound on the message mi.

D Canonical embedding norm bounds in prior work

To support a comparison to prior work for each of our experiments, this sec-
tion summarises the prior worst-case canonical embedding norm noise bounds
used in prior noise analyses of variants of CKKS [11, 8, 9, 29], developed using
the methodology in [21, 14]. Table 6 gives the prior noise bounds for Textbook
CKKS [11] and Table 7 gives the prior noise bounds for the RNS variant [9].

E Proofs of noise distribution results in Section 5.2

E.1 Proof of Lemma 9

We will prove Lemma 9 in terms of the ‘full’ output ciphertext ctks, rather than
its RNS representatives. This follows the proof structure of [9], and eases the
analysis. We first recall the structure of the evaluation key, and relevant details
from [9] about the functionality of the Conv, ModUp, and ModDown algorithms.
We then give the proof.

For full details of the key switching process, including a specification of the
Conv, ModUp, and ModDown algorithms, we refer the reader to [9]. We denote by
B the set of moduli {p0, . . . , pk}, by C the set of moduli {q0, . . . , qL}, and by D
the set D = B ∪ C.
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Evaluation key. The evaluation key is given by the RNS representatives in
the basis D of (b′, a′) where b′ = −a′s+ e′ + Ps2. Making explicit the reduction
modulo PQ, this gives, (for a suitable integer λ): b′ + a′s = e′ + Ps2 + λPQ.

The ModUp algorithm. We recall that ModUpC→D([z]C) = (ConvC→B([z]C), [z]C).
We give the detail of the implementation of Conv needed to analyse the noise.
In particular, the computation of ConvC→B involves reducing the following sum
modulo pi for each 0 ≤ i ≤ k:

S =

`−1∑
j=0

[a(j)q̂−1j ]qj q̂j .

We consider modulo reduction centred on 0 and write Xj = [a(j)q̂−1j ]qj ∈
{− 1

2 (qj − 1), . . . , 12 (qj − 1)}. We can therefore express the sum as

S =

`−1∑
j=0

[a(j)q̂−1j ]qj q̂j = a+ νQ,

where ν is a small integer. We now address the variance of this small integer
ν. In [9, Section 3.1], it is suggested that the primes q0, . . . , q`−1 ≈ q are all of
comparable size q, so we can approximateQ ≈ q` and q̂0, . . . , q̂`−1 ≈ q`−1. We can
therefore approximate X0, . . . , X`−1 as independent Uniform random variables
on (− 1

2q,
1
2q) with mean E(Xi) = 0 and variance Var(Xi) = 1

12q. Thus we obtain

the sum S = a+ νQ =
∑`−1
j=0[a(j)q̂−1j ]qj q̂j ≈

∑`−1
j=0Xiq

`−1 = q`−1
∑`−1
j=0Xi, with

variance Var(S) ≈ q2(`−1)
∑`−1
j=0 Var(Xi) = q2(`−1)` 1

12q
2 = 1

12`q
2` = 1

12`Q
2. This

gives an approximation to the variance of ν ≈ S − a
Q

as Var(ν) ≈ Var(S)
Q2 ≈ 1

12`.

The ModDown algorithm. At a high level, the inputs to ModDown are the RNS
representations of c̃0 := (d2 +Qe)b′ mod PQ and c̃1 := (d2 +Qe)a′ mod PQ,
and the outputs are RNS representations of ĉ0 and ĉ1 such that ĉ0 ≈ P−1(d2 +
Qe)b′ and ĉ1 ≈ P−1(d2 + Qe)a′. In more detail, for ι ∈ {0, 1}, suppose we can
find a small ε̃ι mod PQ such that ε̃ι ≡ c̃ι mod P . This would imply that c̃ι− ε̃ι
is divisible by P and so we can take ĉι = P−1(c̃ι − ε̃ι) mod Q. In particular,
ĉι ≈ P−1c̃ι with approximation error P−1ε̃ι. For ι ∈ {0, 1}, we let ει := [c̃ι]P .
We observe that the RNS representation of ει in the basis B is exactly those
elements [c̃ι]B. We then compute the RNS representatives of ε̃ι = ει + Pe′′ι in
the basis C via [ε̃ι]C = ConvB→C ([ει]B) = ConvB→C ([c̃ι]B).

Proof of Lemma 9. Consider the ciphertext ctks that is the output of key

switching on input
(
d
(j)
0 , d

(j)
1 , d

(j)
2

)
0≤j≤`

, the RNS representation of a ciphertext

ctmult = (d0, d1, d2) at level ` that encrypts m with noise ε. We have:

〈ctks, sk〉 = d0 + ĉ0 + (d1 + ĉ1) s = (d0 + d1s) + (ĉ0 + ĉ1s)
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= (d0 + d1s) +

(
(c̃0 + c̃1s)− (ε̃0 + ε̃1s)

P

)
= (d0 + d1s) +

(
(d2 +Qe)(b′ + a′s)− (ε̃0 + ε̃1s)

P

)
= (d0 + d1s) + (d2 +Qe)(s2 + λQ) +

(
(d2 +Qe)e′ − (ε̃0 + ε̃1s)

P

)
= (d0 + d1s+ d2s

2) +

(
(d2 +Qe)e′ − (ε̃0 + ε̃1s)

P

)
mod Q .

Thus, the additive error term introduced in key switching is the integer value

εks =

(
(d2 +Qe)e′

P

)
−
(
ε̃0 + ε̃1s

P

)
.

To simplify the second term, by definition, ε̃0 = ε0 +Pe′′0 ; and ε̃1 = ε1 +Pe′′1 . So,
ε̃0+ε̃1s
P = ε0

P + ε1
P s+ e′′0 + e′′1s = u0 +u1s+ e′′0 + e′′1s, where we define u0 := ε0

P and
u1 := ε1

P . By definition, we have that ε0 := [c̃0]P and ε1 := [c̃1]P and so we can

model ε0 and ε1 as uniform with coefficients in
[
−P2 ,

P
2

]
. Hence, we can model

u0 as uniform with coefficients in
[
− 1

2 ,
1
2

]
, and similarly for u1. This leads to the

final noise expression 〈ctks, sk〉 = m+ ε+
(

(d2+Qe)e
′

P

)
− (u0 +u1s)− (e′′0 + e′′1s).

In the above expression, e = (ν0, . . . , νN−1) is a multivariate version of the
univariate ν described in the ModUp paragraph above, having independent com-
ponents ν0, . . . , νN−1. The random variable d2 + Qe has mean 0 and compo-
nent variance 1

12Q
2 + 1

12Q
2`2 = 1

12Q
2(`2 + 1). A Central Limit argument sim-

ilar to the proof of Lemma 18 shows that the additive noise term (d2+Qe)e
′

P ∼
N(0; 1

12P
−2NQ2(`2 + 1)σ2IN ). By the same argument as Lemma 18, the addi-

tive noise term u0+u1s can be modelled as a multivariate Normal N(0; η2roundIN )

distribution where η2round = 1
12 (‖s‖22 + 1). The ModDown errors e′′0 and e′′1 can be

analysed in the same way as the ModUp errors so their coefficients have variance
k2

12 . The component variance of the additive noise term given by e′′0 + e′′1s is then

given by: k2

12 (‖s‖22 + 1), using the same argument as in the proof of Lemma 18.
The above means the overall η2ks is given by

η2ks = 1
12P

−2NQ2(`2 + 1)σ2 + 1
12 (‖s‖22 + 1) + k2

12 (‖s‖22 + 1)

= 1
12P

−2NQ2(`2 + 1)σ2 + 1
12 (k2 + 1)(‖s‖22 + 1).

E.2 Proof of Lemma 10

Proof. We consider the ciphertext (c0, c1) with RNS components given by c0 =

(c
(0)
0 , . . . , c

(`)
0 ) and c1 = (c

(0)
1 , . . . , c

(`)
1 ). The value c0 + sc1 has RNS components

c
(j)
0 +sc

(j)
1 (j = 0, . . . , `) satisfying c

(j)
0 +sc

(j)
1 = m+ε mod qj , where the error

ε is small and the modulus q0 is used for decryption. However, these decryption
components are small and constant for all j, so we have c0 +sc1 = m+ ε mod Q.
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The two-part ciphertext (c′0, c
′
1) obtained after the Rescale operation can be

expressed in terms dividing c0 and c1 by q` and then rounding to the nearest

integer [29], so c′0 =
⌊
c0
q`

⌉
= c0

q`
+ U0 and c′1 =

⌊
c1
q`

⌉
= c1

q`
+ U1, where U0 =

(U0,0, . . . , U0,`−1) and U1 = (U1,0, . . . , U1,`−1) are vectors of independent round-
ing Ui,j ∼ Uni((− 1

2 ,
1
2 )) random variables with mean E(Ui,j) = 0 and variance

Var(Ui,j) = 1
12 . Thus we have c′0+sc′1 = c0+sc1

q`
+(U0+sU1) = m

q`
+ ε
q`

+(U0+sU1),

where s = (s0, . . . , s`−1). As the righthand side is small, the reduction mod-

ulo q0 gives c
′(0)
0 + sc

′(0)
1 = m

q`
+ ε

q`
+ (U0 + sU1). The additive error given by

the Rescale operation is therefore given by εrs = ε
q`

+ (U0 + sU1), where the

first term
ε

q`
∼ N

(
0;
ρ2

q2`
IN

)
. For the second term, Lemma 18 gives the Normal

approximation εrs = U0 + sU1 ∼ N(0; η2roundI`), where η2round = 1
12 (‖s‖22 + 1).

Thus we have εrs ∼ N(0; ρ2rsIN ), where ρ2rs =
ρ2

q2`
+ ( 1

12 (‖s‖22 + 1)). ut

F Proofs of results in Section 5.4

F.1 Proof of Lemma 11

The noise in the ciphertext output by the Adjust by one level operation is given
by

〈ctadj, s〉 =

⌈
1

q`+1

[⌈
∆` · q`+1

∆`+1
c0

⌋]
Q`+1

⌋

+

(⌈
1

q`+1

[⌈
∆` · q`+1

∆`+1
c1

⌋]
Q`+1

⌋)
s+ k′Q`

=

⌈
1

q`+1

(
∆` · q`+1

∆`+1
c0 + ε0 + k0Q`+1

)⌋
+

(⌈
1

q`+1

(
∆` · q`+1

∆`+1
c1 + ε1 + k1Q`+1

)⌋)
s+ kQ`

=
∆`

∆`+1
c0 +

1

q`+1
ε0 +

1

q`+1
k0Q`+1 + ε′0

+

(
∆`

∆`+1
c1 +

1

q`+1
ε1 +

1

q`+1
k1Q`+1 + ε′1

)
s+ kQ`

=
∆`

∆`+1
(c0 + c1s) +

1

q`+1
(ε0 + ε1s) + ε′0 + ε′1s+ (k0 + k1s+ k)Q`

= ∆`m+
∆`

∆`+1
ε+

1

q`+1
(ε0 + ε1s) + ε′0 + ε′1s+ (k0 + k1s+ k)Q` .

Thus the output ciphertext ctadj encrypts m at level ` with scale ∆` and noise

εadj =
∆`

∆`+1
ε+

1

q`+1
εround + ε′round,
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where ε, εround = ε0+ε1s and ε′round = ε′0+ε′1s are independent random variables.

We therefore have
∆`

∆`+1
ε ∼ N

(
0;

∆2
`

∆2
`+1

ρ2IN

)
and, by Lemma 18,

εround
q`+1

∼ N

(
0;

1
12 (‖s‖22 + 1)

q2`+1

IN

)
and ε′round ∼ N

(
0;
(

1
12 (‖s‖22 + 1)

)
IN

)
.

This shows that
εround
q`+1

is a negligible random variable, giving

εadj ∼ N(0; ρ2adjIN ), where ρ2adj =
∆2
`

∆2
`+1

ρ2 + 1
12 (‖s‖22 + 1).

F.2 Proof of Lemma 12

Let ct′1 and ct′2 be the outputs of Rescale applied to ct1 and ct2 respectively.
Then ct′1 encrypts m′1 :=

(
∆2
`/q`

)
m1 = ∆`−1m1 with noise ε′1 and ct′2 encrypts

m′2 :=
(
∆2
`/q`

)
m2 = ∆`−1m2 with noise ε′2. Then ctMult′ encrypts m′1m

′
2 =(

∆4
`/q

2
`

)
m1m2 = ∆2

`−1 ·m1m2 with noise εMult′ . By Lemma 10, ε′1 ∼ N(0, ρ2′1)

where ρ2′1 =
ρ21
q2`

+
(

1
18N + 1

12

)
and ε′2 ∼ N(0, ρ2′2) where ρ2′2 =

ρ22
q2`

+
(

1
18N + 1

12

)
.

Then, if the conditions of Lemma 17 hold, εMult′ ∼ N(0, ρ2
Mult′

) where

ρ2Mult′ = Nρ2′1ρ
2
′2 + ρ2′2 ‖m

′
1‖

2
2 + ρ2′1 ‖m

′
2‖

2
2

= N

(
ρ21
q2`

+
1

18
N +

1

12

)(
ρ22
q2`

+
1

18
N +

1

12

)
+

(
ρ22
q2`

+
1

18
N +

1

12

)
∆`−1 ‖m1‖22

+

(
ρ21
q2`

+
1

18
N +

1

12

)
∆`−1 ‖m2‖22

=
Nρ21ρ

2
2

q4`
+

(
N2

18q2`
+

N

12q`

)
(ρ21 + ρ22) +

∆`−1

q2`

(
ρ22 ‖m1‖22 + ρ21 ‖m2‖22

)
+

(
∆`−1N

18
+
∆`−1

12

)(
‖m1‖22 + ‖m2‖22

)
+
N3

18
+
N2

108
+

N

144
.
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