
Another Round of Breaking and Making Quantum Money:
How to Not Build It from Lattices, and More

Jiahui Liu∗ Hart Montgomery† Mark Zhandry ‡

Abstract

Public verification of quantum money has been one of the central objects in quantum
cryptography ever since Wiesner’s pioneering idea of using quantum mechanics to construct
banknotes against counterfeiting. So far, we do not know any publicly-verifiable quantum money
scheme that is provably secure from standard assumptions.

In this work, we provide both negative and positive results for publicly verifiable quantum
money.

• In the first part, we give a general theorem, showing that a certain natural class of quantum
money schemes from lattices cannot be secure. We use this theorem to break the recent
quantum money scheme of Khesin, Lu, and Shor.

• In the second part, we propose a framework for building quantum money and quantum
lightning we call invariant money which abstracts some of the ideas of quantum money
from knots by Farhi et al.(ITCS’12). In addition to formalizing this framework, we provide
concrete hard computational problems loosely inspired by classical knowledge-of-exponent
assumptions, whose hardness would imply the security of quantum lightning, a strengthening
of quantum money where not even the bank can duplicate banknotes.

• We discuss potential instantiations of our framework, including an oracle construction using
cryptographic group actions and instantiations from rerandomizable functional encryption,
isogenies over elliptic curves, and knots.

1 Introduction

1.1 Motivation

Quantum information promises to revolutionize cryptography. In particular, the no cloning theorem
of quantum mechanics opens the door to quantum cryptography: cryptographic applications that
are simply impossible classically. The progenitor of this field, due to Wiesner [Wie83], is quantum
money: quantum digital currency that cannot be counterfeited due to the laws of physics. Since
Wiesner’s proposal, many applications of quantum information to cryptography have been proposed,
including quantum key distribution (QKD) [BB87], randomness expansion [Col09, CY14, BCM+18],
quantum copy protection [Aar09, AL21, ALL+21, CLLZ21], quantum one-time programs [BGS13],
and much more.

∗University of Texas at Austin. Email: jiahui@utexas.edu
†Linux Foundation & Fujitsu Research. Email: hart.montgomery@gmail.com
‡NTT Research. Email: mzhandry@gmail.com

1

Throughout the development of quantum cryptography, quantum money has remained a central
object, at least implicitly. Indeed, the techniques used for quantum money are closely related
to those used in other applications. For example, the first message in the BB84 quantum QKD
protocol [BB87] is exactly a banknote in Wiesner’s scheme. The techniques used by [BCM+18] to
prove quantumness using classical communication have been used to construct quantum money
with classical communication [RS19]. The subspace states used by [AC12] to construct quantum
money were recently used to build quantum copy protection [ALL+21].

The Public Verification Barrier. Wiesner’s scheme is only privately verifiable, meaning that
the mint is needed to verify. This results in numerous weaknesses. Improper verification opens the
scheme to active attacks [Lut10]. Moreover, private verification is not scalable, as the mint would be
required to participate in every single transaction. Wiesner’s scheme also requires essentially perfect
quantum storage, since otherwise banknotes in Wiesner’s scheme will quickly decohere and be lost.

All these problems are readily solved with publicly verifiable quantum money1, where anyone can
verify, despite the mint being the sole entity that can mint notes. Public verification immediately
eliminates active attacks, and solves the scaling problem since the transacting users can verify the
money for themselves. Aaronson and Christiano [AC12] also explain that public verifiability allows
for also correcting any decoherance, so users can keep their banknotes alive indefinitely.

Unfortunately, constructing convincing publicly verifiable quantum money has become a no-
toriously hard open question. Firstly, some natural modifications to Wiesner’s quantum money
scheme will not give security under public verification [FGH+10]. Aaronson [Aar09], and later
Aaronson and Christiano [AC12] gave publicly verifiable quantum money relative to quantum and
classical oracles, respectively. Such oracle constructions have the advantage of provable security,
but it is often unclear how to instantiate them in the real world2: in both [Aar09] and [AC12],
“candidate” instantiations were proposed, but were later broken [LAF+10, CPDDF+19]. Another
candidate by Zhandry [Zha19] was broken by Roberts [Rob21]. Other candidates have been pro-
posed [FGH+12, Kan18, KSS21], but they all rely on new, untested assumptions that have received
little cryptanalysis effort. The one exception, suggested by [BDS16] and proved by [Zha19], uses
indistinguishability obfuscation (iO) to instantiate Aaronson and Christiano’s scheme [AC12]. Unfor-
tunately, the post-quantum security of iO remains poorly understood, with all known constructions
of post-quantum iO [GGH15, BGMZ18, BDGM20, WW21] being best labeled as candidates, lacking
justification under widely studied assumptions.

Thus, it remains a major open question to construct publicly verifiable quantum money from
standard cryptographic tools. Two such post-quantum tools we will investigate in this work are the
two most influential and well-studied: lattices and isogenies over elliptic curves.

This public verification barrier is inherited by many proposed applications of quantum cryp-
tography. For example, quantum copy protection for any function whose outputs can be verified
immediately implies a publicly verifiable quantum money scheme. As such, all such constructions in
the standard model [ALL+21, CLLZ21] require at a minimum a computational assumption that
implies quantum money.3

1Sometimes it is also referred to as public-key quantum money. We may use the two terms interchangeably.
2Quantum oracles are quantum circuits accessible only as a black-box unitary. They are generally considered as

strong relativizing tools when used in proofs. Classical oracles are black-box classical circuits, a much weaker tool.
3This holds true even for certain weaker versions such as copy detection, also known as infinite term secure software

leasing.

2

Quantum Money Decentralized: Quantum Lightning An even more ambitious goal is a
publicly verifiable quantum money where the bank/mint itself should not be capable of duplicating
money states. To guarantee unclonability, the scheme should have a "collision-resistant" flavor: no
one can (efficiently) generate two valid money states with the same serial number. This notion of
quantum money appeared as early in [LAF+10]; the name "quantum lightning" was given in [Zha19].

Quantum lightning has broader and more exciting applications: as discussed in [Zha19, Col19,
CS20, AGKZ20], it can be leveraged as verifiable min-entropy, useful building blocks to enhance
blockchain/smart contract protocols and moreover, it could lead to decentralized cryptocurrency
without a blockchain.

Quantum money has a provably secure construction from iO, a strong cryptographic hammer
but still a widely used assumption. On the other hand, quantum lightning from even relatively
standard-looking assumptions remains open. Some existing constructions [Kan18, KSS21] use strong
oracles such as quantum oracles, with conjectured instantiations that did not go through too
much cryptanalysis. [FGH+12] is another candidate built from conjectures in knot theory. But a
correctness proof and security reduction are not provided in their paper.

Collapsing vs. Non-Collapsing With a close relationship to quantum money, collapsing
functions [Unr16] are a central concept in quantum cryptography. A collapsing function f says that
one should not be able to distinguish a superposition of pre-images |x1⟩+|x2⟩···|xk⟩√

k
, from a measured

pre-image |xi⟩, i ∈ [k] for some image y = f(xi), for all i ∈ [k].
While collapsing functions give rise to secure post-quantum cryptography like commitment

schemes, its precise opposite is necessary for quantum money: if no verification can distinguish a
money state in a superposition of many supports from its measured state, a simple forgery comes
ahead. Hence, investigating the collapsing/non-collapsing properties of hash functions from lattices
and isogenies will provide a win-win insight into quantum money and post-quantum security of
existing cryptographic primitives.

2 Our Results
In this work, we give both negative and positive results for publicly verifiable quantum money.

Breaking Quantum Money. Very recent work by Khesin, Lu, and Shor [KLS22] claims to
construct publicly verifiable quantum money from the hardness of worst-case lattice problems, a
standard assumption. Our first contribution is to identify a fatal flaw in their security proof, and
moreover show how to exploit this flaw to forge unlimited money. After communicating this flaw
and attack, the authors of [KLS22] have retracted their paper.4

More importantly, we show that a general class of natural money schemes based on lattices
cannot be both secure and publicly verifiable. We consider protocols where the public key is a short
wide matrix AT , and a banknote with serial number u is a superposition of “short” vectors y such
that AT · y = u mod q. Our attack works whenever AT is uniformly random. We also generalize
this to handle the case where AT is uniform conditioned on having a few public short vectors in

4We thank the authors of [KLS22] for patiently answering our numerous questions about their work, which was
instrumental in helping us identify the flaw.

3

its kernel. This generalization includes the Khesin-Lu-Shor scheme as a special case. Our result
provides a significant barrier to constructing quantum money from lattices.

Along the way, we prove that the SIS hash function is collapsing [Unr16] for all moduli, resolving
an important open question in the security of post-quantum hash functions.5

Invariant Money/Lightning. To complement our negative result, we propose a new framework
for building quantum money, based on invariants. Our framework abstracts some of the ideas
behind the candidate quantum money from knots in [FGH+12] and behind [LAF+10]. Our main
contributions here are two-fold:

• We propose a (classical) oracle construction that implements our framework assuming the
existence of a quantum-secure cryptographic group action and a relatively modest assumption
about generic cryptographic group actions. We then give proposals for instantiating our
invariant framework on more concrete assumptions. The first is based on isogenies over elliptic
curves6; the second is based on rerandomizable functional encryption with certain properties;
finally, we also discuss the quantum money from knots construction in [FGH+12] with some
modifications.

• In order to gain confidence in our proposals, we for the first time formalize abstract properties
of the invariant money under which security can be proved. Concretely, we prove that a
certain mixing condition is sufficient to characterize the states accepted by the verifier, and in
particular prove correctness7. We also propose “knowledge of path” security properties for
abstract invariant structures which would be sufficient to justify security. These knowledge of
path assumptions are analogs of the “knowledge of exponent” assumption on groups proposed
by Damgård [Dam92]. Under these assumptions, we are even able to show that the invariants
give quantum lightning [LAF+10, Zha19], the aforementioned strengthening of quantum money
that is known to have additional applications.
Note that the knowledge of exponent assumption in groups is quantumly broken on groups
due to the discrete logarithm being easy. However, for many of our assumptions, which
are at least conjectured to be quantum-secure, the analogous knowledge of path assumption
appears plausible, though certainly more cryptanalysis is needed to gain confidence. The
main advantage of our proposed knowledge of path assumption is that it provides a concrete
cryptographic property that cryptographers can study and analyze with a well-studied classical
analog.

3 Technical Overview

3.1 How to Not Build Quantum Money from Lattices

We first describe a natural attempt to construct quantum money from lattices, which was folklore but
first outlined by Zhandry [Zha19]. The public key will contain a random tall matrix A ∈ Zm×n

q ,m≫
5Previously, [LZ19] showed that SIS was collapsing for a super-polynomial modulus.
6The recent attacks [CD22a, MM22a, Rob22] on SIDH do not apply to the isogeny building blocks we need. We

will elaborate in the C and E.1
7[FGH+12] did not analyze correctness of their knot-based proposal, nor analyze the states accepted by their

verifier and formalize the property needed for a security proof. [LAF+10] had informal correctness analysis on their
proposal, but also did not analyze the security property needed.

4

n. To mint a banknote, first generate a superposition |ψ⟩ =
∑

y αy|y⟩ of short vectors y ∈ Zm,
such that |y| ≪ q. A natural |ψ⟩ is the discrete-Gaussian-weighted state, where αy ∝

√
e−π|y|2/σ2

for a width parameter σ. Then compute in superposition and measure the output of the map
y 7→ AT · y mod q, obtaining u ∈ Zn

q . The state collapses to:

|ψu⟩ ∝
∑

y:AT ·y=u
αy|y⟩ .

This will be the money state, and u will be the serial number. This state can presumably not be
copied: if one could construct two copies of |ψu⟩, then one could measure both, obtaining two short
vectors y,y′ with the same coset u. As |ψu⟩ is a superposition of many vectors (since m ≫ n),
with high probability y ̸= y′. Subtracting gives a short vector y− y′ such that AT · (y− y′) = 0,
solving the Short Integer Solution (SIS) problem. SIS is presumably hard, and this hardness can
be justified based on the hardness of worst-case lattice problems such as the approximate Shortest
Vector Problem (SVP).

The challenge is: how to verify |ψu⟩? Certainly, one can verify that the support of a state is only
short vectors y such that AT · y = u. But this alone is not enough: one can fool such a verification
by any classical y in the support of |ψu⟩. To forge then, an adversary simply measures |ψu⟩ to
obtain y, and then copies y as many times as it likes.

To get the scheme to work, then, one needs a verifier that can distinguish classical y from
superpositions. This is a typical challenge in designing publicly verifiable money schemes. A typical
approach is to perform the quantum Fourier transform (QFT): the QFT of y will result in a uniform
string, whereas the QFT of |ψu⟩ will presumably have structure. Indeed, if |ψu⟩ is the Gaussian
superposition, following ideas of Regev [Reg05], the QFT of |ψu⟩ will be statistically close to a
superposition of samples A ·r+e, where r is uniform in Zn

q , and e ∈ Zm
q is another discrete Gaussian

of width q/σ. The goal then is to distinguish such samples from uniform.
Unfortunately, such distinguishing is likely hard, as this task is the famous (decisional) Learning

with Errors (LWE) problem. LWE is presumably hard, which can be justified based on the hardness
of the same worst-case lattice problems as with SIS, namely SVP. So either LWE is hard, or the
quantum money scheme is insecure in the first place.

Nevertheless, this leaves open a number of possible strategies for designing quantum money from
lattices, including:

1. What if non-Gaussian |ψ⟩ is chosen?

2. What if distinguishing is not done via the QFT but some other quantum process?

3. What if we somehow make LWE easy?

The first significant barrier beyond the hardness of LWE is due to Liu and Zhandry [LZ19].
They show that, if the modulus q is super-polynomial, then the map y 7→ AT · y for a random
A is collapsing [Unr16]: that is, for any starting state |ψu⟩ of short vectors, distinguishing |ψu⟩
from y is infeasible for any efficient verification process. Collapsing is the preferred notion of
post-quantum security for hash functions, as it is known that collision resistance is often not
sufficient for applications when quantum adversaries are considered.

The result of [LZ19] follows from the hardness of LWE (which is quantumly equivalent to
SIS [Reg05]), albeit with a noise rate super-polynomially smaller than q/σ which is a stronger

5

assumption than the hardness with rate q/σ. Moreover, their result requires q to be super-
polynomially larger than σ. In practice, one usually wants q to be polynomial, and the result
of [LZ19] leaves open the possibility of building quantum money in such a setting.

What about making LWE easy (while SIS remains hard)? The usual approach in the lattice
literature to making decisional LWE easy is to output a short vector s in the kernel of AT . If
|s| ≪ (q/σ), this allows for distinguishing LWE samples from uniform, since s · (A · r + e) = s · e,
which will be small relative to q, while s · x for uniform x will be uniform in Zq. Unfortunately,
adding such short vectors breaks the security proof, since s is a SIS solution, solving SIS is trivially
easy by outputting s. To revive the security, one can try reducing to the 1-SIS problem, which is to
find a short SIS solution that is linearly independent of s. 1-SIS can be proved hard based on the
same worst-case lattice problems as SIS [BF11]. However, in the scheme above, it is not clear if
measuring two forgeries and taking the difference should result in a vector linearly independent of s.

The Recent Work of [KLS22]. Very recently, Khesin, Lu, and Shor [KLS22] attempt to provide
a quantum money scheme based on lattices. Their scheme has some similarities to the blueprint
discussed above, taking advantage of each of the strategies 1, 2 and 3. But there are other differences
as well: the state |ψ⟩ is created as a superposition over a lattice rather than the integers, and the
measurement of u is replaced with a move complex general positive operator-value measurement
(POVM). [KLS22] claims to prove security under the hardness of finding a second short vector in a
random lattice when already given a short vector. This problem is closely related to 1-SIS, and
follows also from the hardness of worst-case lattice problems.

Our Results. First, we show an alternative view of [KLS22] which shows that it does, indeed,
fall in the above framework. That is, there is a way to view their scheme as starting from |ψ⟩ that
is a non-Gaussian superposition of short integer vectors y. The minting process in our alternate
view then measures AT · y, where A is part of the public key, and is chosen to be uniform except
that it is orthogonal to 3 short vectors s0, s1, s2. These vectors play a role in verification, as they
make the QFT non-uniform. Using this alternative view, we also demonstrate a flaw in the security
proof of [KLS22], showing that forged money states actually do not yield new short vectors in the
lattice. See Section 6 for details.

We then go on (Section 7) to show an explicit attack against their money scheme. More generally,
we show an attack on a wide class of instantiations of the above framework. Our attack works in
two steps:

• First, we extend the collapsing result of [LZ19] to also handle the case of polynomial modulus,
and in particular, we only need LWE to be hard for noise rate that is slightly smaller than
q/σ. This resolves an important open by showing that SIS is collapsing for all moduli.
Our proof requires a novel reduction that exploits a more delicate analysis of the quantum
states produced in the proof of [LZ19]. We also extend the result in a meaningful way to
the case where several short kernel vectors s0, s1, . . . are provided. We show that instead of
just using y as a forgery (which can be distinguished using the short vectors si), a particular
superposition over vectors of the form y +

∑
i cisi can fool any efficient verification. Fooling

verification requires the hardness a certain “k-LWE” problem, which we show follows from
worst-case lattice problems in many settings (see Section B). This requires us to extend the
known results on k-LWE hardness, which may be of independent interest.

6

• Then we show how to construct such a superposition efficiently given only y and the si, in
many natural settings. Our settings include as a special case the setting of [KLS22]. Along
the way, we explain how to construct Gaussian superpositions over lattices, when given a
short basis. The algorithm is a coherent version of the classical discrete Gaussian sampling
algorithm [GPV08]. In general, it is not possible to take a classical distribution and run it
on a superposition of random coins to get a superposition with weights determined by the
distribution. This is because the random coins themselves will be left behind and entangled
with the resulting state. We show how to implement the classical algorithm coherently in a way
that does not leave the random coins behind or any other entangled bits. Such an algorithm
was previously folklore (e.g. it was claimed to exist without justification by [KLS22]), but we
take care to actually write out the algorithm.

After communicating this flaw and attack to the authors of [KLS22], they have retracted their
paper.8

3.2 Quantum Money from Walkable Invariants

In the second part of the paper, we describe a general framework for instantiating publicly verifiable
quantum money from invariants satisfying certain conditions. This framework abstracts the ideas
behind the construction of quantum money from knots [FGH+12] and its precedent [LAF+10].

At a high level, we start from a set X, which is partitioned into many disjoint sets O ⊆ X.
There is a collection of efficiently computable (and efficiently invertible) permutations on X, such
that for every permutation in the collection and every O in the partition, the permutation maps
elements of O to O. Such a set of permutations allows one to take an element x ∈ O, and perform a
walk through O. We additionally assume an invariant I : X → Y on X, such that I is constant on
each element O of the partition. In other words, I is invariant under action by the collection of
permutations.

In the case of [FGH+12], X is essentially the set of knot diagrams9, the permutations are
Reidemeister moves, and the invariant is the Alexander polynomial.

An honest quantum money state will essentially be a uniform superposition over O 10. Such a
state is constructed by first constructing the uniform superposition over X, and then measuring
the invariant I. Applying a permutation from the collection will not affect such a state. Thus,
verification attempts to test whether the state is preserved under action by permutations in the
collection by performing an analog of a swap test, and only accepts if the test passes.

In [FGH+12], it is explained why certain attack strategies are likely to be incapable of dupli-
cating banknotes. However, no security proof is given under widely believed hard computational
assumptions. To make matters worse, [FGH+12] do not analyze what types of states are accepted
by the verifier. It could be, for example, that duplicating a banknote perfectly is computationally
infeasible, but there are fake banknotes that pass verification that can be duplicated; this is exactly
what happens in the lattice-based schemes analyzed above in Section 3.1. Given the complexities
of their scheme, there have been limited efforts to understand the security of the scheme. This is

8We once again want to emphasize that the authors of [KLS22] were exceptionally helpful and we thank them for
their time spent helping us understand their work.

9Due to certain concerns about security, [FGH+12] actually sets X to contain extra information beyond a knot
diagram.

10Technically, it is a uniform superposition over the pre-images of some y in the image of I. If multiple O have the
same y, then the superposition will be over all such O.

7

problematic, since there have been many candidates for public key quantum money that were later
found to be insecure.

Generally, a fundamental issue with public key quantum money schemes is that, while quantum
money schemes rely on the no-cloning principle, the no-cloning theorem is information-theoretic,
whereas publicly verifiable quantum money is always information-theoretically clonable. So un-
clonability crucially relies on the adversary being computationally efficient. Such computational
unclonability is far less understood than traditional computational tasks. Indeed, while there have
been a number of candidate post-quantum hard computational tasks, there are very few quantum
money schemes still standing. The challenge is in understanding if and how quantum information
combines with computational bounds to give computational unclonability.

To overcome this challenge, the security analysis should be broken into two parts: one part that
relies on information-theoretic no-cloning, and another part that relies on a computational hardness
assumption. Of course, the security of the scheme itself could be such an assumption, so we want
to make the assumption have nothing to do with cloning. One way to accomplish this is to have
the assumption have classical inputs and outputs (which we will call “classically meaningful”), so
that it could in principle be falsified by a classical algorithm, which are obviously not subject to
quantum unclonability. Separating out the quantum information from the computational aspects
would hopefully give a clearer understanding of why the scheme should be unclonable, hopefully
allow for higher confidence in security. Moreover, as essentially all widely studied assumptions are
classically meaningful, any attempt to prove security under a widely studied assumptions would
have to follow this blueprint, and indeed the proof of quantum money from obfuscation [Zha19] is
of this form.

Our Results. In this work, we make progress towards justifying invariant-based quantum money.

• First, we prove that if a random walk induced by the collection of permutations mixes, then
we can completely characterize the states accepted by verification. The states are exactly
the uniform superpositions over O 11. Unfortunately, it is unclear if the knot construction
actually mixes, and any formal proof of mixing seems likely to advance knot theory12.

• Second, we provide concrete security properties under which we can prove security. These
properties, while still not well-studied, at least have no obvious connection to cloning, and are
meaningful even classically. Under these assumptions, we can even prove that the schemes are
in fact quantum lightning, the aforementioned strengthening of quantum money where not
even the mint can create two banknotes of the same serial number.

Our Hardness Assumptions We rely on two hardness assumptions in our invariant money
scheme for a provably secure: the path-finding assumption and knowledge of path finding assumption.

Informally speaking, the path-finding assumption states that, given some adversarially sampled
x from a set of elements X and given a set of "permutations" Σ, it is hard for any efficient adversary,
given a random z ∈ X, where there exists some σ ∈ Σ such that σ (x) = z, to find such a σ. One
can observe that it is similar to a “discrete logarithm” style of problem. Even though we cannot use

11Or more generally, if multiple O have the same y, then accepting states are exactly those that place equal weight
on elements of each O, but the weights may be different across different O

12Nevertheless we provide a discussion on the knot money instantiation in F.

8

discrete logarithm due to its quantum insecurity, we have similar hard problems in certain isogenies
over ellitic curves, abstracted as "group action discrete logarithm" problems [ADMP20].

Our Knowledge of Path Assumptions. The main novel assumption we use is a “knowledge of
path” assumption. This roughly says that if an algorithm outputs two elements x, z in the same O,
then it must “know” a path between them: a list of permutations from the collection that, when
composed, would take x to z. While such a knowledge of path assumption is undoubtedly a strong
assumption, it seems plausible in a number of relevant contexts (e.g. elliptic curve isogenies that
have no known non-trivial attacks or “generic” group actions).

Formalizing the knowledge of path assumption is non-trivial. The obvious classical way to
define knowledge of path is to say that for any adversary, there is an extractor that can compute
the path between x and z. Importantly, the extractor must be given the same random coins as
the adversary, so that it can compute x and z for itself and moreover know what random choices
the adversary made that lead to x, z. Essentially, by also giving the random coins, we would be
effectively making the adversary deterministic, which is crucial for the extractor’s output to be
related to the adversary’s output.

Unfortunately, quantumly the above argument does not make much sense, as quantum algorithms
can have randomness without having explicit random coins. In fact, there are quantum procedures
that are inherently probabilistic, in the sense that the process is efficient, but there is no way to
run the process twice and get the same outcome both times. This is actually crucial to our setting:
we are targeting the stronger quantum lightning, which means that even the mint cannot create
two banknotes with the same serial number. This means that the minting process is inherently
probabilistic. The adversary could, for example, run the minting process, but with its own minting
key. Such an adversary would then be inherently probabilistic and we absolutely would need a
definition that can handle such adversaries.

Our solution is to exploit the fact that quantum algorithms can always be implemented reversibly.
We then observe that with a classical reversible adversary, an equivalent way to define knowledge
assumptions would be to just feed the entire final state of the adversary (including output) into the
extractor. By reversibility, this is equivalent to giving the input, coins included, to the extractor.
But this alternate extraction notion actually does make sense quantumly. Thus our knowledge of
path assumption is defined as giving the extractor the entire final (quantum) state of the reversible
adversary, and asking that the extractor can find a path between x and z. This assumption allows
us to bypass the issue of inherently probabilistic algorithms, and is sufficient for us to prove security.

Instantiations of Invariant Quantum Money and Lightning After we provide the charac-
terization of security needed for invariant money, we discuss four candidate instantiations13:

• We show a construction from structured oracles and generic cryptographic group actions.
Notably, while we do not know how to instantiate these oracles, we can prove that this con-
struction is secure assuming the existence of a cryptographic group action and the assumption
that the knowledge of path assumption holds over a generic cryptographic group action.14

13Throughout the sections on invariant quantum money framework and construction 8, C, D, E and F, we will
sometimes interchangeably use "money" or "lightning". But in fact the proposed candidates are all candidates for
quantum lightning.

14This seems like a very plausible assumption to us: classically, the knowledge of exponent would almost trivially
hold over generic groups.

9

• We explain how re-randomizable functional encryption, a type of functional encryption with
special properties that seem reasonable, can be used to build another candidate quantum
lightning. We don’t currently have a provably secure construction from standard cryptographic
assumptions for this special re-randomizable functional encryption, but we provide a candidate
construction based on some relatively well-studied primitives.

• Elliptic curve isogenies are our final new candidate instantiation. We outline how, given some
assumptions about sampling certain superpositions of elliptic curves, it may be possible to
build quantum lightning from isogeny-based assumptions.

• Finally, we analyze the construction of quantum money from knots in [FGH+12] in our
framework.

For all these three constructions, we show that their corresponding path-finding problem between
two elements x, z in the same O is relatively straightforward to study (reducible to reasonably
well-founded assumptions). Nevertheless, we need the knowledge of path assumptions to show
that we can extract these paths from a (unitary) adversary. We believe that one may show a
knowledge-of-path property when replacing some plain model components in the above candidates
with (quantum accessible) classical oracles, thus giving the possibility for a first quantum lightning
scheme relative to only classical oracles and widely studied assumptions.

4 Related Work and Discussion
Other Related Work. In addition to the related work we have discussed in the introduction, we
would like to mention some other relevant work.

The schemes [AGKZ20] and [Shm22] can be viewed as quantum lightning with an interactive
minting procedure: a multi-round interactive protocol between the bank and the user is needed
to create a valid money state. [AGKZ20] is based on classical oracles and [Shm22] is based on
(subexponential) iO. One may argue that “compressing” their interaction might lead to a standard
quantum lightning protocol. However, after investigating the constructions, we believe that showing
the security for such “compressed” protocols leads us back to the land of highly non-standard
assumptions.

Semi-quantum money is a notion put forward in [RS19]. More precisely, the authors construct
an interactive private-key quantum money scheme verifiable through classical interactions, built
from LWE, with ideas from classically-verifiable proof of quantumness [BCM+18]. Later, the idea
was extended to a notion in-between public and private key quantum money, which is called two-tier
quantum lightning in [KNY21]. Due to the essential structure of the proof-of-quantumness protocol
on which these two schemes are based, they cannot be made publicly verifiable.

Regarding non-collapsing functions: it has been shown that some "natural" classes of hash
functions are collapsing [Unr16, LZ19, Zha22, CX22]. [ARU14] constructed non-collapsing functions
using quantum oracles.

For the cryptanalysis on existing quantum money proposals: [BDG22] shows a quantum reduction
from the conjecture in [KSS21] to a linear algebra problem, which is the only cryptanalysis work we
know of on a quantum money scheme that is not broken yet.

10

Discussion and Open Problems. In this paper, we aimed to investigate the feasibility of
quantum money and, in particular, quantum lightning. While we hope that readers believe our
work helps shed light on the subject, we still believe that this is a wide open area for study with
important applications once we reach a world where quantum computers proliferate.

In particular, fully settling the question of whether or not it is possible to build quantum lightning
from lattice-based assumptions would be a very exciting result. Our paper rules out (arguably) the
most natural class of schemes, but that does not mean that a less natural lattice-based quantum
lightning scheme could exist.

5 Preliminaries
In this section we explain some background material needed for our work.

For quantum notations, we denote |·⟩ as the notation for a pure state and |·⟩⟨·| for its density
matrix. ρ denotes a general mixed state.

We will go over some fundamental lattice facts and then move to quantum money definitions.
Due to the restriction of space, we leave some additional lattice basics, hardness theorems and
necessary quantum background (in particular related to lattices) to Appendix A.

5.1 Lattice Basics

We say a distribution D is (B, δ)-bounded if the probability that D outputs a value larger than
B is less than δ. We extend this to distributions that output vectors in an entry-by-entry way.
Given a set of vectors B = {b1, ...,bn}, we define the norm of B, denoted ||B||, as the length of the
longest vector in B, so ||B|| = maxi ||bi||. For any lattice Λ, we define the minimum distance (or
first successive minimum) λ1 (Λ) as the length of the shortest nonzero lattice vector in Λ.

We next define a the Gram-Schmidt basis and the Gram-Schmidt norm based on the definitions
of [GPV08].

Definition 1. Gram-Schmidt Basis. For any (ordered) set S = {s1, ..., sn} ⊂ Rn of linearly
independent vectors, let S̃ = {s̃1, ..., s̃n} denote its Gram-Schmidt orthogonalization, defined
iteratively in the following way: s̃1 = s1, and for each i ∈ [2, n], s̃i is the component of si orthogonal
to span (s1, ..., si−1).

We next define discrete Gaussians formally. Since we later use their lemmas, our definition is
loosely based on that of [BLP+13].

Definition 2. For any σ > 0, the n-dimensional Gaussian function ρσ : Rn → [0, 1] is defined as

ρr (x) = e−π x2
σ2

We define the discrete Gaussian function with parameter σ at point p ∈ Rn, which we usually
denote DΨσ or just Ψσ when the context is clear, as the function over all of the integers y ∈ Zn

such that the probability mass of any y is proportional to

e−π
(p−y)2

σ2 .

11

We can also define more complicated discrete Gaussians over lattices. In this case, let Σ be a matrix
in Rn×n. The discrete Gaussian over a lattice Λ with center p and “skew” parameter Σ is the
function over all lattice points in Λ such that the probability mass of any y is proportional to

e−π(p−y)T (ΣΣT)−1(p−y),

very similar to as before. We usually denote this type of discrete Gaussian as ΨΛ,Σ,p or DΨΛ,Σ,p ,
where we sometimes substitute σ for Σ when Σ = σ · In, where In is the n× n identity matrix. We
also sometimes omit parameters when they are obvious (e.g. 0) in context.

5.2 (Lattice-relevant) Quantum Facts

All quantum notations used in this work are relatively basic and standard; we therefore omit
extensive preliminaries on them. For further quantum basics, we refer the readers to [NC02].

5.2.1 Gaussian Superposition Preparation

We now show that it is possible to efficiently sample a discrete Gaussian quantumly over a lattice
basis.

Generating Gaussian Superpositions. Let L be a lattice. Given a vector c (not necessarily in
L) and covariance matrix Σ, define

|ΨL,Σ,c⟩ ∝
∑
x∈L

√
e−π(x−c)T ·Σ−1·(x−c)|x⟩

This is the discrete-Gaussian-weighted superposition over lattice vectors.

Theorem 1. There is a QPT algorithm which, given a basis B = (b1, . . . ,bn) for a lattice L, a
center c, and covariance matrix Σ such that bi · Σ−1 · bi ≤ 1/ω(log λ), constructs a state negligibly
close to |ΨL,Σ,c⟩.

We prove Theorem 1 by gradually building up from special cases.

Lemma 2. There is a QPT algorithm which, given c ∈ Z and σ ≥ ω(
√

log λ), constructs a state
negligibly close to |ΨZ,σ2,c⟩.

Proof. This is a straightforward adaptation of the classical algorithm for sampling from the discrete
Gaussian over integers [GPV08]. Let t ≥ ω(

√
log λ). The algorithm proceeds in the following steps:

1. Let I = Z ∩ [c− tσ, c+ tσ]. Let xmin be the minimal element of I, and w = |I|.

2. Initialize a register to |0⟩. Then using the QFT on w elements, construct the state ∝
∑w−1

i=0 |i⟩.

3. By adding xmin in superposition, construct the state ∝
∑

i∈I |i⟩

4. Now apply in superposition the map |i⟩ 7→ |i⟩ ⊗
(√

e−π(i−c)2/σ2 |0⟩+
√

1− e−π(i−c)2/σ2 |1⟩
)
.

5. Measure the second register, obtaining a bit b; the first register collapses to a state |Ψ⟩. If
b = 0, output |Ψ⟩. Otherwise, discard |Ψ⟩ and restart from Step 2.

12

Note that the state outputted by the above algorithm is |Ψ⟩ ∝
∑

i∈I
√
e−π(i−c)2/σ2 |i⟩. This is

identical to |ΨZ,σ2,c⟩, except that the support is truncated to the interval I (and therefore the state
is also re-scaled, but the proportions for i ∈ I are identical). [GPV08] show that the analogous
distributions over i are negligibly close ([GPV08], Lemma 4.3). An almost identical argument shows
that the states |ΨZ,σ2,c⟩ and |Ψ⟩ are negligibly close.

Lemma 3. There is a QPT algorithm which, given a basis B = (b1, . . . ,bn) for a lattice L, a
center c ∈ Zn, and σ ≥ ∥B∥ω(

√
log λ), constructs a state negligibly close to |ΨL,σ2,c⟩.

Proof. This is also a straightforward adaptation of the classical algorithm for sampling from discrete
Gaussians over lattices. However, care is needed to ensure that there is no spurious information left
behind; such spurious information would not affect classical sampling, but could be entangled with
the resulting quantum state, thereby perturbing it. We show that the algorithm can be implemented
without such perturbation.

The classical sampling algorithm ([GPV08], Section 4.2) works as follows:

1. Initialize v← 0. Then for i = 1, . . . ,m (m being the dimension of L), do:

(a) Let c′i = (c−v)·b̃i

|b̃1i|2
and σ′i = σ/|b̃1i|.

(b) Sample zi ← DZ,σ′
i,c

′
i

(c) Update v← v + zibi.

Then [GPV08] proves that the output distribution is statistically close to DL,σ,c. We now explain
how to run the sampling algorithm coherently to produce |ΨL,σ2,c⟩:

1. Initialize a register V to |0⟩. Then for i = 1, . . . ,m, do:

(a) Apply the map |v⟩ 7→ |v⟩ ⊗ |c′i⟩ in superposition to V , where c′i = (c−v)·b̃i

|b̃1i|2
. Also compute

σ′i = σ/|b̃1i|.
(b) Apply the map |v⟩⊗ |c′i⟩ 7→ |v⟩⊗ |c′i⟩⊗ |ΨZ,(σ′

i)2,c′
i
⟩ in superposition. Here, we assume for

simplicity the ideal |ΨZ,(σ′
i)2,c′

i
⟩, but we would actually use the algorithm from Lemma 2,

incurring a negligible error.
(c) Uncompute c′i by performing the operation in Step 1a in reverse.
(d) Apply the map |v, zi⟩ 7→ |v + zibi, zi⟩
(e) Uncompute zi, which can be computed from v + zibi via linear algebra, since zi is just

the coefficient of bi when representing v in the basis {b1, . . . ,bi}.

By an essentially identical analysis to [GPV08], Theorem 4.1, the resulting state is statistically close
to |ΨL,σ2,c⟩.

We are now ready to prove Theorem 1, which follows as a simple corollary from Lemma 3.

Proof. Write Σ−1 as Σ−1 = UT ·U. Let B′ = {b′1 = U · b1, . . . ,b′n = U · bn}, and let L′ be the
lattice generated by B′. Let c′ = U · c.

Now invoke Lemma 3 on B′ to construct the state (statisticaly close to) |ΨL′,1,c′⟩. To see
that B′ satisfied the conditions of Lemma 3, observe that ∥B′∥ ≤ maxi |b′i|, and we have that
|b′i|2 = bT

i ·UT ·Ubi = bi · Σ−1bi ≤ 1/ω(log λ).

13

Now given |ΨL′,1,c′⟩, we simply apply in superposition the map v 7→ U−1v, which gives us
exactly. |ΨL,Σ,c⟩.

5.3 General LWE Definition

In this section we define basic LWE with an eye towards eventually defining k-LWE. We note that,
while equivalent to the standard definitions, our definitions here are presented a little bit differently
than usual in lattice cryptography. This is so that we can keep the notation more consistent with
the typical quantum money and quantum algorithms presentation styles. We first provide a properly
parameterized definition of the LWE problem [Reg05].

Definition 3. Learning with Errors (LWE) Problem: Let n, m, and q be integers, let DA
and Dr be distributions over Zn

q , and let DΨ be a distribution over Zm
q . Let A ∈ Zm×n

q be a matrix
where each row is sampled from DA, let r ∈ Zn

q be a vector sampled from Dr, and let e ∈ Zm
q be a

vector sampled from DΨ. Finally, let t ∈ Zm
q be a uniformly random vector.

The (n,m, q,DA,Dr,DΨ)-LWE problem is defined to be distinguishing between the following
distributions:

(A,A · r + e) and (A, t) .

5.4 The k-LWE Problem

With the LWE definition in place, we are ready to move to the actual k-LWE problem. The
k-LWE problem was first formally defined in [LPSS14] and used to build traitor-tracing schemes.
It extends the k-SIS assumption [BF11] which was used to build linearly homomorphic signatures.
Our definition below is essentially a parameterized version of the one in [LPSS14].

Definition 4. k-LWE Problem: Let k, n, m, and p be integers, let DR be a distribution over
Zn

q , and let DΨ and DS be distributions over Zm
q . Let S ∈ Zk×m

q be a matrix where each row is
selected from DS.

Let A ∈ Zm×n
q be a matrix sampled uniformly from the set of matrices in Zm×n

q such that
S ·A = 0 mod q, let r ∈ Zn

q be a vector sampled from Dr, and let e ∈ Zm
q be a vector sampled

from DΨ. Let C ∈ Zm×(m−k)
q be a basis for the set of vectors v ∈ Zm

q such that S · v = 0, and let
r′ ∈ Zm−k

q be a uniformly random vector.
The (k, n,m, q,DS,Dr,DΨ)-k-LWE problem is defined to be distinguishing between the following

distributions:
(S,A,C,A · r + e) and

(
S,A,C,C · r′ + e

)
We note that k-LWE is traditionally defined in a slightly different way: usually the matrix A is

sampled before (or jointly with) S rather than after it. We sample S first in our definition because
we will need to handle very unusual (at least for cryptographic applications) distributions DS.

5.5 Quantum Money and Quantum Lightning

Here, we define public key quantum money and quantum lightning. Following Aaronson and
Christiano [AC12], we will only consider so-called “mini-schemes”, where there is only a single
banknote.

14

Both quantum money and quantum lightning share the same syntax and correctness requirements.
There are two quantum polynomial-time algorithms Gen,Ver such that:

• Gen(1λ) samples a classical serial number σ and a quantum state |ψ⟩.

• Ver(σ, |ψ⟩) outputs a bit 0 or 1.

Correctness. We require that there exists a negligible function negl such that Pr[Ver(Gen(1λ))] ≥
1− negl(λ).

Security. Where public key quantum money and quantum lightning differ is in security. The
differences are analogous to the differences between one-way functions and collision resistance.

Definition 5 (Quantum Money Unforgeability). (Gen,Ver) is secure public key quantum money if,
for all quantum polynomial-time A, there exists a negligible negl such that A wins the following
game with probability at most negl:

• The challenger runs (σ, |ψ⟩)← Gen(1λ), and gives σ, |ψ⟩ to A.

• A produces a potentially entangled joint state ρ1,2 over two quantum registers. Let ρ1, ρ2 be
the states of the two registers. A sends ρ1,2 to the challenger.

• The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 = b2 = 1.

Definition 6 (Quantum Lightning Unforgeability). (Gen,Ver) is secure quantum lightning if, for
all quantum polynomial-time A, there exists a negligible negl such that A wins the following game
with probability at most negl:

• A, on input 1λ, produces and sends to the challenger σ and ρ1,2, where ρ1,2 is a potentially
entangled joint state over two quantum registers.

• The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 = b2 = 1.

The difference between quantum lightning and quantum money is therefore that in quantum
lightning, unclonability holds, even for adversarially constructed states.

Note that, as with classical collision resistance, quantum lightning does not exist against non-
uniform adversaries. Like in the case of collision resistance, we can update the syntax and security
definition to utilize a common reference string (crs), which which case non-uniform security can
hold. For this paper, to keep the discussion simple, we will largely ignore the issue of non-uniform
security.

6 The Flaw in [KLS22] Lattice-Based Quantum Money

6.1 Overview of [KLS22]

We do not describe the whole scheme here, but re-create enough of the scheme to describe our
attack.

15

Setup. To set up the scheme, first a few parameters are specified:

• An exponentially-large prime P

• A Gaussian width σ ≫
√
dP 1/d

• An integer t ([KLS22] suggest t = 3).

• An odd positive integer ∆ ≳ σ.

• An integer k ≤ tσ∆.

Next [KLS22] create a vector v = (v1, . . . , vd) ∈ Zd
P such that

v1 = 1 , v2 = P + ∆
2 = ∆/2 mod P

All the remaining entries of v are uniform in ZP . [KLS22] then defines the linear subspaces
L = {x ∈ Zd

P : x.v = 0 mod P} and L⊥ = {mv : m ∈ ZP } ⊆ Zd
P . Note that the authors

require that there is a w ∈ L⊥ such that w · v = 1 mod P . This is equivalent to requiring that
v.v ̸= 0 mod P , which holds with overwhelming probability since v.v is statistically close to uniform
over ZP .

Minting Process. After a few steps, the minting process has the following state ([KLS22] page 3,
Eq (8)) over registers X ,U :

|ϕ⟩ ≈ 1
C

∑
u∈L⊥

∑
x∈L

e−(x−u)2/4σ2 |x⟩|u⟩ (1)

Where C is a normalization constant.

Next, the mint maps u ∈ L⊥ to m ∈ ZP in the U register, where u = mw, obtaining the state
close to:

1
C

∑
m∈ZP

∑
x∈L

e−(x−mw)2/4σ2 |x⟩|m⟩

Next, the mint applies a certain POVM to the U register. Let Γ = 1/2 + tσ∆ mod P . The
measurement is specified matrices MT where:

MT = 1
4k + 2

 k∑
j=−k

|T + j⟩⟨T + j|+ |T + Γ + j⟩⟨T + Γ + j|


[KLS22] does not explain how to realize the POVM. But the following process suffices:

• Initialize registers J and B to 1√
2k+1

∑k
j=−k |j⟩ and 1√

2 (|0⟩+ |1⟩), respectively. It also initial-
izes a register T to |0⟩

• Apply the following operation to the U ,J ,B, T registers:

|m, j, b, 0⟩ 7→ |m, j, b,m− j − bΓ⟩

16

• Now measure the T register to obtain a serial number T . Discard the T register.

• Now, given T = m− j − bΓ, and x, this uniquely determines m, j, b: since x−mw must be a
short vector, there is only a single value of m for any x. As explained in [KLS22], mw and
hence m can be computed from x alone in the given parameter settings. Moreover, since
Γ ≈ P/2 ≫ k, there is at most a single (j, b) for any m,T with T = m− j − bΓ. Moreover,
(j, b) can be computed efficiently by simply trying both b = 0 and b = 1, and seeing which
one gives j = T + bΓ ∈ [−k, k]. So we use this to uncompute U ,J ,B registers, which we then
discard.

After obtaining T , the banknote is whatever state |ϕT ⟩ is left in the X register, and the serial
number is T .

Verification. We don’t replicate the verification procedure here. Ultimately, we will show that
verification is irrelevant: there is a procedure which produces two faked quantum money states, but
which nevertheless fools the verifier.

Remark 1. In [KLS22], the banknote actually consists of a tuple of states as above. The overall
verification will verify each element of the tuple separately, and then accept if a certain threshold
of the elements accept. This structure is needed because their verification algorithm will reject
honest banknotes some of the time. As we will see, this fact will not affect our attack, since our
forged money will pass the verification of individual elements with the same probability as an honest
banknote (up to potentially negligible error). For this reason, we just focus on a single element as
described above.

6.2 An Alternate View of [KLS22]

Here, we present an alternative view of [KLS22] that we believe is easier to reason about.
First, we notice that the requirement that v · v ̸= 0 mod P implies that the linear spaces L

and L⊥ together span all of Zd
P . This means there is a one-to-one correspondence between Zd

P and
L×L⊥. Using that L⊥ is just the linear space of multiples of v and that w · v = 1 by the definition
of w, we also have the correspondence:

y ∈ Zd
P ↔ (x,m) ∈ L × ZP

y = x−mw ↔ m = −v · y
x = y +mw = y− (v · y)w (2)

Using this correspondence, the state in Equation 1 can be equivalently written as a state over
register Y containing a Gaussian-weighted superposition over all integers:

|ϕ0⟩ = 1
C

∑
y∈Zd

P

e−|y|
2/4σ2 |y⟩

Going between |ϕ⟩ and |ϕ0⟩ is just a simple matter of linear algebra to go between y and x,m.

Remark 2. Note that our alternative view gives a much simpler way to construct the state in
Equation 1 than what was described in [KLS22]. Indeed, they construct the state by preparing
first a large Guassian superposition of lattice points in L. Then it performs a lattice quantum

17

Fourier transform, which gives a superposition over lattice points very close to dual lattice vectors.
Finally, the lattice points in the superposition are close enough to the dual vectors that bounded
distance decoding algorithms can be run to recover the dual lattice vectors, which gives the state
in Equation 1. Each of these steps requires non-trivial algorithms that must all be performed
in superposition. In contrast, our alternative view shows that one could instead simply create a
Guassian-weighted superposition of integers and then perform some basic linear algebra.

The Measurement. Now consider the POVM described above. The action of the POVM on |ϕ⟩
translates straightforwardly to acting on |ϕ0⟩, where instead of acting on the U register containing
m directly, we instead compute m from y as m = −v · y, and apply the POVM to this m. The |ϕT ⟩
of the original minting process can therefore be obtained from |ϕ0⟩ as follows:

• Initialize registers J and B to 1√
2k+1

∑k
j=−k |j⟩ and 1√

2 (|0⟩+ |1⟩), respectively. It also initial-
izes a register T to |0⟩

• Apply the following operation to the Y,J ,B, T registers:

|y, j, b, 0⟩ 7→ |y, j, b,−v · y− j − bΓ⟩

• Now measure the T register to obtain serial number T . Discard the T register. Call the state
remaining in the Y,J ,B registers |ϕ′T ⟩.

• Given y, T = −v ·y−j−bΓ, we can compute m,x from y via the correspondence in Equation 2.
From m,x we can un-compute y, again using Equation 2. Then using x, T , we can uniquely
determine (m, j, b). So we use this to uncompute U ,J ,B registers, which we then discard.

Our equivalent formulation. Instead of arriving at |ϕT ⟩ using our alternate formulation, we
simply stop at the second-to-last step, outputting |ϕ′T ⟩. Since the final step of the minting process
is reversible, it is equivalent to give out |ϕT ⟩ and |ϕ′T ⟩.

6.3 Summary of Alternate Minting Process

We can now concisely describe out alternate minting process. This process will be equivalent to the
original one, in that, we can map banknotes from our process to banknotes from [KLS22] and vice
versa. This means that our alternate minting process is secure if and only if [KLS22] is secure.

Setup. Let P, σ,∆, t, k as before. Let v as before, and define v′ = (−Γ,−1,v) ∈ Zd′
P where

d′ = d+ 2.

Minting. Let Y ′ = B × J × Y. Initialize the following state over register Y ′:

|ϕ′⟩ ∝
∑

y∈Zd
P ,j∈[−k,k],b∈{0,1}

e−|y|
2/4σ2 |b, j,y⟩

Note that this is a superposition over short vectors y′ ∈ Zd′
P . It is also a product state, with

each coordinate being produced separately.

18

Now we apply the following map in superposition:

|y′⟩ 7→ |y′,v′ · y′⟩

Now measure the T register (the second register), obtaining T . The result of the Y ′ register is
exactly the state |ϕ′T ⟩, a uniform superposition over short vectors y′ such that v′ · y′ = T . Here,
by short, we mean that each entry of y′ is in [−W,W], except with negligible probability, where
W = max(2, k, σ × ω(

√
log(λ))).

6.4 The Flaw

Here, we describe the flaw in [KLS22]. The flaw is most easily seen using our alternate view of their
scheme.

Note that the vector v′ has 3 known orthogonal short vectors, namely

s0 =



0
0
∆
−2
0
...
0


s1 =



0
1
1
0
0
...
0


s2 =



−2
2Γ = 2tσ∆ + 1

0
0
0
...
0


In [KLS22], the authors define three vectors s(0), s(1), s(2); s0, s1, s2 play the roles of s(0), s(1), s(2)

in the alternate view, respectively.
In the security proof (originally starting from Page 4 of [KLS22], here translated to our alternate

view), the authors imagine an adversary an adversary that outputs two possibly entangled states
that pass verification. The authors argue that each state |ϕ⟩ must have significant weight on y′
where the first digit b is 0, and also significant weight where b is 1. Recall that a valid money
state must have the first digit being 0 or 1. If true, this would allow them to finish the proof:
by measuring both states, the authors can then conclude that with non-negligible probability the
resulting vectors y′0,y′1 will have different first bits. Then the difference between the vectors y′0−y′1
is a short vector orthogonal to v′. It moreover cannot be in the span of s0, s1, s2 because if if did,
the coefficient of s2 must be 1/2, and since the second coordinate of s2 is odd, the resulting vector
would have a large second coordinate. Thus, the authors obtain a short vector linearly independent
of the provided vectors, which is presumably hard.

The flaw in their argument is the claim that each state the adversary constructs must have
significant weight on b = 0 and also b = 1. Indeed, the authors toward contradiction consider an
adversary which measures the provided state to obtain y′, and then constructs a state of the form:∑

j

αj |y′ + js1⟩

for small j. They argue that their verification procedure would reject such a state. Indeed, their
test essentially looks at the 4th coordinate in the Fourier domain (which is the 2nd coordinate in
their view). Since the 4th coordinate in the primal is not affected by adding multiples of s1, the 4th
coordinate is exactly the 4th coordinate of y′. As such, in the Fourier domain the 4th coordinate

19

is uniform. On the other hand, the authors show that the 4th coordinate of their money state is
non-uniform, which is leveraged in verification.

However, the authors failed to consider more general states of the form∑
j0,j1

αj0,j1 |y′ + j0s0 + j1s1⟩

for small j0, j1. Since s0 is non-zero in the 4th coordinate, by adding multiples of s0, the Fourier
transform of the 4th coordinate is no longer guaranteed to be uniform.

The authors reject such states as being a possibility, since the 3rd coordinate of s0 is ∆, which is
larger than the allowed width of the 3rd coordinate of y′ (which is limited to σ ≪ ∆). Thus, adding
s0 to a vector in the allowed support of y′ would move do outside the allowed support. However,
the vector s0 −∆× s1 has a small non-zero 4rd coordinate, and the 3rd coordinate is 0. Now, the
2nd coordinate of s0 −∆× s1 is of size ∆, but the 2nd coordinate of y′ is allowed to be as large as
k ≫ ∆. So while one cannot add s0 itself to a state and remain in the required domain, one can
add multiples of s0 −∆× s1. In other words, even though adding s0 results in an invalid y′, we can
add an appropriate multiple of s1 to move back to a valid y′. The introduction of s0 completely
invalidates their security proof.

7 Our General Attack on a Class of Quantum Money
Now, we show that a natural class of schemes, including the equivalent view on [KLS22] demonstrated
in Section 6.3, cannot possibly give secure quantum money schemes, regardless of how the verifier
works.

7.1 The General Scheme

Here, we describe a general scheme which captures the alternate view above. Here, we use somewhat
more standard notation from the lattice literature. Here we give a table describing how the symbols
from section 6 map to this section:

This Section Section 6.3
q P

n 1
m d′ = d+ 2
A v′ as a column vector
|ψ⟩ |ϕ′⟩
u T

W k +
√
m× σ × ω(

√
log(λ)))

Setup. Let q be a super-polynomial, which may or may not be prime. Sample from some
distribution several short vectors s1, . . . , sℓ ∈ Zm

q for a constant ℓ, and assemble them as a matrix
S ∈ Zm×ℓ

q . Then generate a random matrix A ∈ Zm×n
q such that AT · S = 0 mod q.

20

Minting. Create some superposition |ψ⟩ of vectors in y ∈ Zm
q such that an all but negligible

fraction of the support of |ψ⟩ are on vectors with norm W . Let αy be the amplitude of y in |ψ⟩.
Then apply the following map to |ψ⟩:

|y⟩ → |y,AT · y mod q⟩

Finally, measure the second register to obtain u ∈ Zn
q . This is the serial number, and the note is

|ψu⟩, whatever remains of the first register, which is a superposition over short vectors y such that
AT · y = u.

Verification. We do not specify verification. Indeed, in the following we will show that the money
scheme is insecure, for any efficient verification scheme.

7.2 Attacking the General Scheme

We now show how to attack the general scheme. Let C be a matrix whose columns span the space
orthogonal to the columns of S. Let |ψ′u⟩ be the state sampled from |ψu⟩ by measuring y 7→ CT · y,
and letting |ψ′u⟩ be whatever is left over.

Our attack will consist of two parts:

• Showing that |ψ′u⟩ is indistinguishable from |ψu⟩, for any efficient verification procedure. We
show (Section 7.3) that this follows from a certain “k-LWE” assumption, which depends on
the parameters of the scheme (SS, k, n, etc). In Section B, we justify the assumption in certain
general cases, based on the assumed hardness of worst-case lattice problems. Note that these
lattice problems are essentially (up to small differences in parameters) the same assumptions
we would expect are needed to show security for the money scheme in the first place. As such,
if k-LWE does not hold for these special cases, most likely the quantum money scheme is
insecure anyway. Our cases include the case of [KLS22].

• Showing that |ψ′u⟩ can be cloned. Our attack first measures |ψ′u⟩ to obtain a single vector y in
it’s support. To complete the attack, it remains to construct |ψ′u⟩ from y; by repeating such a
process many times on the same y, we successfully clone. We show (Section 7.4) that in certain
general cases how to perform such a construction. Our cases include the case of [KLS22].

Taken together, our attack shows that not only is [KLS22] insecure, but that it quite unlikely
that any tweak to the scheme will fix it.

7.3 Indistinguishability of |ψ′u⟩

Here, we show that our fake quantum money state |ψ′u⟩ passes verification, despite being a very
different state that |ψu⟩. We claim that, from the perspective of any efficient verification algorithm,
|ψ′u⟩ and |ψu⟩ are indistinguishable. This would mean our attack succeeds.

Toward this end, let C ∈ Zm×(m−ℓ)
q be a matrix whose rows span the space orthogonal to S:

CT · S = 0. Notice that the state |ψ′u⟩ can be equivalently constructed by applying the partial
measurement of CT · y to |ψu⟩

Consider the following problem, which is closely related to “k-LWE”(4):

21

Problem 4. Let n,m, q,Σ be functions of the security parameter, and D a distribution over S.
The (n,m, q,Σ, ℓ,D)-LWE problem is to efficiently distinguish the following two distributions:

(A,A · r + e) and (A,C · r′ + e) ,

Where r is uniform in Zn
q , r′ is uniform in Zm−ℓ

q , and e is Gaussian of width Σ. We say the problem
is hard if, for all polynomial time quantum algorithms, the distinguishing advantage is negligible.

In Section B, we explain that in many parameter settings, including importantly the setting
of [KLS22], that the hardness of Problem 4 is true (assuming standard lattice assumptions).

With the hardness of Problem 4, we can show the following, which is a generalization of a result
of [LZ19] that showed that the SIS hash function is collapsing for super-polynomial modulus:

Theorem 5. Consider sampling A,S as above, and consider any efficient algorithm that, given
A,S, samples a u and a state |ϕu⟩ with the guarantee that all the support of |ϕu⟩ is on vectors y
such that (1) AT · y = u mod q and (2) |y|2 ≤W .

Now suppose |ϕu⟩ is sampled according to this process, and then either (A) |ϕu⟩ is produced, or
(B) |ϕ′u⟩ is produced, where |ϕ′u⟩ is the result of applying the partial measurement of CT · y to the
state |ϕu⟩.

Suppose there exists Σ such that q/WΣ = ω(
√

log λ) such that (n,m, q,Σ, ℓ,D)-LWE is hard.
Then cases (A) and (B) are computationally indistinguishable.

Note that an interesting consequence of Theorem 5 in the case ℓ = 0 is that it shows that the
SIS hash function is collapsing for any modulus, under an appropriate (plain) LWE distribution.
This improves upon [LZ19], who showed the same but only for super-polynomial modulus. We now
give the proof of Theorem 5:

Proof. For an integer t, let ⌊·⌉t denote the function that maps a point x ∈ Zq to the z ∈
{0, ⌊q/t⌋, ⌊2q/t⌋, ·, ⌊(t − 1)q/t⌋} that minimizes |z − x|. Here, |z − x| is the smallest a such that
z = x± a mod q. In other words, ⌊·⌉t is a course rounding function that rounds an x ∈ Zq to one of
t points that are evenly spread out in Zq.

Let ρ be a mixed quantum state, whose support is guaranteed to be on y such that (1)
AT · y = u mod q and (2) |y|2 ≤W . For a quantum process M acting on ρ, let M(ρ) be the mixed
state produced by applying Mi to ρ. We will consider a few types of procedures applied to on
quantum states.

M0: Given A, M0 is just the partial measurement of y 7→ CT · y.

M t
1: Given A, to apply this measurement, first sample an LWE sample b = A · r + e. Then apply

the measurement y 7→ ⌊b · y⌉t. Discard the measurement outcome, and output the remaining state.

Lemma 6. For any constants t, d, M t
1(ρ) is statistically close to 1

dM
t×d
1 (ρ) +

(
1− 1

d

)
ρ

Note that Lemma 6 means that M t
1 can be realized by the mixture of two measurements: M t×d

1
with probability 1/t2, and the identity with probability

(
1− 1

d

)
. We now give the proof.

22

Proof. Consider the action of M t
1 on |y⟩⟨y′|, for a constant t. First, an LWE sample b = A · r + e

is chosen. Then conditioned on this sample, if ⌊b · y⌉t = ⌊b · y′⌉t, the output is |y⟩⟨y′|. Otherwise
the output is 0. Averaging over all b, we have that

M t
1(|y⟩⟨y′|) = Pr

b
[⌊b · y⌉t = ⌊b · y′⌉t]

where the probability is over b sampled as b = A · r + e. Recalling that u = AT · y = AT · y′, we
have that:

b · y = r · u + e · y
b · y′ = r · u + e · y′

Now, by our choice of Σ, |e · (y−y′)| < q/t for any constant t, except with negligible probability.
We will therefore assume this is the case, incurring only a negligible error.

Note that z := r · u is uniform in Zq and independent of e · y, e · y′. So measuring ⌊b · y⌉t
is identical to measuring the result of rounding e · y, except that the rounding boundaries are
rotated by a random z ∈ Zq. Since the rounding boundaries are q/t apart, at most a single rounding
boundary can be between e · y and e · y′, where “between” means lying in the shorter of the two
intervals (of length |e · (y − y′)|) resulting by cutting the circle Zq at the points e · y and e · y′.
⌊b · y⌉t = ⌊b · y′⌉t if and only if no rounding boundary is between them.

Since the cyclic shift z is uniform each rounding boundary is uniform. Since there are t rounding
boundaries and no two of them can between e · y and e · y′, we have that, conditioned on e, the
probability ⌊b · y⌉t ≠ ⌊b · y′⌉t is therefore t

q |e · (y− y′)|. Averaging over all e, we have that, up to
negligible error:

M t
1(|y⟩⟨y′|) =

(
1− t

q
E
e
[|e · (y− y′)|]

)
|y⟩⟨y′|

Notice then that M t
1(|y⟩⟨y′|) = 1

dM
t×d
1 (|y⟩⟨y′|) +

(
1− 1

d

)
|y⟩⟨y′|. By linearity, we therefore

prove Lemma 6.

Note that the proof of Lemma 6 also demonstrates that M0 and M t
1 commute, since their action

on density matrices is just component-wise multiplication by a fixed matrix.

M t
2: Given A, to apply this measurement, first sample an LWE sample b = C · r′ + e. Then apply

the measurement y 7→ ⌊b · y⌉t. Let pt be the probability that ⌊x⌉t = ⌊y⌉t for uniformly random
x, y ∈ Zq. Note that for any constant t, pt ≤ t−1 +O(q−1).

Lemma 7. For any constant t, M t
2(ρ) is statistically close to M0(M t

1(ρ)) + pt(ρ−M0(ρ)).

Note that unlike Lemma 6, the expression in Lemma 7 does not correspond to a mixture of
measurements applied to ρ. However, we will later see how to combine Lemma 7 with Lemma 6 to
obtain such a mixture.

Proof. The proof proceeds similarly to Lemma 6. We consider the action of M t
2 on |y⟩⟨y′|, and

conclude that
M t

2(|y⟩⟨y′|) = Pr
b

[⌊b · y⌉t = ⌊b · y′⌉t]

23

where the probability is over b = C · r′ + e. But now we have that

b · y = r′T ·CT y + e · y
b · y′ = r′T ·CT y + e · y′

We consider two cases:

• CT · y = CT · y′. This case is essentially identical to the proof of Lemma 6, and we conclude
that Prb[⌊b · y⌉t = ⌊b · y′⌉t] = 1− t

q Ee[|e · (y− y′)|]. Note that for such y,y′, we also have

M0(M t
1(|y⟩⟨y′|))+pt(|y⟩⟨y′|−M0(|y⟩⟨y′|)) = M t

1(M0(|y⟩⟨y′|))+pt×0 = 1− t
q

E
e
[|e·(y−y′)|] ,

since M0 is the identity on such |y⟩⟨y′|. Thus, we have the desired equality for ρ = |y⟩⟨y′|.

• CT · y ̸= CT · y′. In this case, b · y and b · y′ are independent and uniform over Zp. Therefore,
Prb[⌊b · y⌉t = ⌊b · y′⌉t] = pt. Note that for such y,y′, we also have

M0(M t
1(|y⟩⟨y′|)) + pt(|y⟩⟨y′| −M0(|y⟩⟨y′|)) = 0 + pt|y⟩⟨y′| ,

since M0(|y⟩⟨y′|) = 0 in this case.

Thus for each |y⟩⟨y′|, we have the desired equality. By linearity, this thus extends to all ρ.

Combining Lemmas 6 and 7, we obtain:

Corollary 8. For any constants t, d, M t
2(ρ) is statistically close to 1

dM0(M t×d
1 (ρ))+

(
1− 1

d − pt

)
M0(ρ)+

ptρ.

For d such that 1− 1
d − pt ≥ 0, this represents a mixture of measurements M0 ◦M t×d

1 ,M0, and
the identity.

We are now ready to prove Theorem 5. Suppose there is an algorithm A that constructs a mixed
state ρ, and then can distinguish ρ from M0(ρ) with (signed) advantage ϵ. Let d be a positive
integer, to be chosen later. Let ρ0 = ρ, and ρi = M t×d

1 (ρi−1). Note that for any polynomial i, ρi

can be efficiently constructed. Let ϵ0 = ϵ, and ϵi be the (signed) distinguishing advantage of A when
given ρi vs M0(ρi).

Let δi be the (signed) distinguishing advantage of A for M t
2(ρi) and M t

1(ρi). Write g = 1− 1
d −pt.

Invoking Lemma 6 and Corollary 8 with d, we have that

δi = 1
d
ϵi+1 + gϵi

Now, we note that δi must be negligible, by the assumed hardness of (n,m, q,Σ, ℓ,D)-LWE.
Solving the recursion gives:

ϵi(−dg)−i = ϵ− 1
d

i−1∑
j=0

(−dg)−jδj+1

Next, assume d is chosen so that dg is a constant greater than 1. Define T =
∑λ−1

j=0 (dg)−j =
dg

dg−1 − 2−O(λ). Consider the adversary A′ for (n,m, q,Σ, ℓ,D)-LWE, which does the following:

24

• On input A,S,b, where b = A · r + e or b = C · r′+ e, it chooses j ∈ [0, λ−1] with probability
(dg)−j/T

• Then it constructs ρ according to A.

• Next, A′ computes ρj by applying M t×d
1 to ρ for j times.

• Now A′ applies the measurement y 7→ ⌊b · y⌉t to ρj , obtaining ρ′j .

• A′ runs the distinguisher for A, obtaining a bit b

• A′ outputs b if j is even, 1− b if j is odd.
Note that if b is A · r + e, then ρ′ = M t

1(ρi), and if b is C · r′ + e, then ρ′ = M t
2(ρi). Therefore, the

distinguishing advantage of A′ is:

δ = 1
T

λ−1∑
j=0

(−dg)−jδj+1

Thus, we have that
ϵλ(−dg)−λ = ϵ− T

d
δ ,

Noting that ϵλ must trivially be in [−1/2, 1/2], we have that:

|δ| ≥ d

T

(
|ϵ| − 1

2(dg)−λ
)
≥ d

(
1− 1

dg

)
|ϵ| − 2−O(λ)

Thus, if A has non-negligible distinguishing advantage, so does A′, breaking the (n,m, q,Σ, ℓ,D)-LWE
assumption. This completes the proof of Theorem 5.

7.4 Constructing |ψ′u⟩

Here, we explain how to construct |ψ′u⟩, given just the vector y that resulted from measuring it.
We first observe that, since |ψ′u⟩ has support only on vectors that differ from y by multiples of the
columns of S, we can write:

|ψ′u⟩ ∝
∑

t
αy+S·t|y + S · t⟩

Where αy is the amplitude of y in |ψ⟩. This gives a hint as to how to construct |ψ′u⟩: create
a superposition over short linear combinations of S, and then use linear algebra to transition to
a superposition over y + S · t, weighted according to α. The problem of course is that α may be
arbitrary except for having support only on short vectors. Therefore, we do not expect to be able
to construct |ψ′u⟩ in full generality, and instead focus on special (but natural) cases, which suffice
for our use.

Wide Gaussian Distributed. Suppose the initial state |ψ⟩ is the discrete Gaussian over the
integers: |ψ⟩ = |ΨZm,Σ,c⟩ for some center c and covariance matrix Σ. Then |ψ′u⟩ is simply

|ΨL+y,Σ,c⟩

Here, L is the integer lattice generated by the columns of S, and L+ y is the lattice L shifted by y.
We can construct the state |ΨL+y,Σ,c⟩ by first constructing |ΨL,Σ,c−y⟩, and then adding y to the
superposition. Thus, as long as sT

i · Σ−1 · si ≤ 1/ω(
√

log λ) for all i, we can construct the necessary
state.

25

Constant Dimension, Hyper-ellipsoid Bounded. Here, we restrict L to having a constant
number of columns, but greatly generalize the distributions that can be handled.

A hyper-ellipsoid is specified by a positive definite matrix Σ, which defines the set EΣ,c = {y :
(y− c)T ·M · (y− c) ≤ 1}.

Definition 7 (Good Hyper-ellipsoid). A good hyper-ellipsoid for |ψ⟩ is an EΣ,c such that there
exists a function η(λ) and polynomials p(λ), q(λ) such that, if |ψ⟩ is measured to get a vector y,
then each of the following are true except with negligible probability:

• y ∈ EΣ,c. In other words, EΣ,c contains essentially all the mass of |ψ⟩.

• |αx|2 ≤ η(λ). In other words, η is an approximate upper bound on αx.

• If a random vector x is chosen from EΣ,c ∩ {y + S · t : t ∈ Zℓ}, then with probability at least
1/p(λ), |αx|2 ≥ η/q(λ). In other words, EΣ,c doesn’t contain too many points with mass too
much lower than η.

Taken together, a good hyper-ellipsoid is one that fits reasonably well around the |ψ⟩. It must
contain essentially all the support of |ψ⟩, but can over-approximate it by a polynomial factor.

Lemma 9. Suppose there is a good hyper-ellipsoid for |ψ⟩, and that αy can be efficiently computed
given any vector y. Then there is a polynomial-time algorithm which constructs |ψ′u⟩ from y

Proof. Let EΣ,c be the good hyper-ellipsoid. Let L be the lattice generated by the columns of S.
By assumption, with overwhelming probability if we measure |ψ⟩ to get y, we have y ∈ EΣ,c. Let
EΣ′,c′ be the ellipsoid that is the intersection of EΣ,c and the affine space {y + S · t : t ∈ Rℓ}.

Claim 10. There is PPT algorithm which, given S,Σ′, computes T = {r1, · · · , rℓ′} such that:

• rT
i · (Σ′)−1 · ri ≤ 2 for all i ∈ [ℓ′], and

• EΣ′,c′ ∩ {y + T · t : t ∈ Zℓ′} = EΣ′,c′ ∩ {y + S · t : t ∈ Zℓ}.

Proof. Write (Σ′)−1 as (Σ′)−1 = UT ·U. Let S′ = {s′1 = U · s1, . . . , s′ℓ = U · sn}, and let L′ be the
lattice generated by S′. Since ℓ is constant, we can find shortest vectors in L′ in polynomial time.
Therefore, compute r′1, . . . , r′ℓ such that r′i is the shortest vector in L′ that is linearly independent
from {r′1, . . . , r′i−1}. Then let ℓ′ be such that |r′ℓ′ |2 ≤ 2, but |r′ℓ′+1|2 > 2, or ℓ′ = ℓ if no such ℓ′ exists.

Finally, let ri = U−1 · r′i. Clearly, we have that rT
i · (Σ′)−1 · ri ≤ 2. It remains to show

that EΣ′,c′ ∩ {y + T · t : t ∈ Zℓ′} = EΣ′,c′ ∩ {y + S · t : t ∈ Zℓ}. First, we notice that the
lattice L(T) spanned by T is a sub-lattice of L(S) spanned by S. So one containment is trivial.
Now assume toward contradiction that there is a x ∈ EΣ′,c′ ∩ {y + S · t : t ∈ Zℓ} that is not in
EΣ′,c′∩{y+T·t : t ∈ Zℓ′}. This means x−y is in L(S). We also have that (y−c′)T ·(Σ′)−1·(y−c′) ≤ 1
(since and (x − c′)T · (Σ′)−1 · (x − c′) ≤ 1. By the triangle inequality, we have therefore that
(x− y)T · (Σ′)−1 · (x− y) ≤ 2.

But then we have that U · (x− y) has norm at most 2, lies in L′, and is linearly independent
of {r′1, . . . , r′ℓ′}. This contradicts that r′ℓ′+1 (which has norm squared strictly greater than 2) is a
shortest vector linearly independent of {r′1, . . . , r′ℓ′}. This completes the proof of the claim.

We now return to proving Lemma 9. Let β = ω(log λ). We construct |ψ′u⟩ in three steps:

26

• We first construct a state negligibly close to |ΨL+y,βΣ′,c′⟩, as we did in the Gaussian-distributed
case above.

• We then construct the state |E⟩, defined as the uniform superposition over the intersection of
L+ y and EΣ′,c′ . |E⟩ will be obtained from |ΨL+y,βΣ′,c′⟩ via a measurement.

• Construct |ψ′u⟩ from |E⟩. This also will be obtained via a measurement.

We now describe the two measurements. We start from the second. Let η, p, q be the values
guaranteed by the goodness of EΣ,c. Define ηx = 1/η if |αx|2 ≤ η, and otherwise ηx = 1/|αx|2. To
obtain |ψ′u⟩ from |E⟩, we apply the following map in superposition and measure the second register:

|x⟩ 7→ |x⟩
(√

ηxαx|0⟩+
√

1− |ηxαx|2|1⟩
)

Suppose for the moment that ηx = 1/η for all x. Then conditioned on the measurement outcome
being 0, the resulting state is exactly |ψ′u⟩. By the guarantee that EΣ,c is good, we have that except
with negligible probability over the choice of y, all but a negligible fraction of the support of |ψ′u⟩
satisfies ηx = 1/η. Therefore, we will assume (with negligible error) this is the case. The probability
the measurement is 0 (over the choice of y as well) is Ex←EΣ′,c′ [α2

x/η], which, with probability at
least 1/p over the choice of y, is at least 1/q. Thus, the overall probability of outputting 0 is inverse
polynomial, and in this case we produce a state negligibly close to |ψ′u⟩.

It remains to construct |E⟩ from |ΨL+y,βΣ′,c′⟩. This follows a very similar rejection-sampling
argument. Let

γx =
{
e−π/β ×

√
eπ(x−c′)T ·(βΣ′)−1·(x−c′) if (x− c′)T · (Σ′)−1 · (x− c′) ≤ 1

0 otherwise

Note that 0 ≤ γx ≤ 1. Now apply to |ΨL+y,βΣ′,c′⟩ the map |x⟩ 7→ |x⟩(γx|0⟩+
√

1− γ2
x|1⟩), and

measure the second coordinate. If the measurement outcome is 0, then the resulting state is exactly
|E⟩. For x ∈ EΣ′,c′ , we have γx ≥ e−π/β ≥ 1− o(1). Therefore, the probability the measurement
outputs 0 is at least 1− o(1) times the probability measuring ΨL+y,βΣ′,c′ produces an x ∈ EΣ′,c′ .
This latter probability is Oℓ(β−ℓ/2), where the constant hidden by the big O depends on ℓ. Since
ℓ is constant and β is polynomial (in fact, sub-polynomial), the overall probability is polynomial.
This completes the construction of |ψ′u⟩ and the proof of Lemma 9.

7.5 Applying to [KLS22]

We can then adapt the quantum money scheme in [KLS22] into the above general framework.
To apply to [KLS22], we apply the above with n = 1.
First, recall that the first few entries of v′ are −Γ = (2tσ∆ + 1)/2,−1, 1,∆/2, and the rest are

random. We then note that we can always arbitrarily re-scale the vector v′, without affecting the
scheme, since it only permutes the serial numbers but does not change the scheme. Then we see

27

that v′ is a random vector, subject to being orthogonal to the following three vectors:

s0 =



0
0
∆
−2
0
...
0


s1 =



0
1
1
0
0
...
0


s2 =



−2
2Γ = 2tσ∆ + 1

0
0
0
...
0


A randomly re-scaled v′ is just a random vector orthogonal to each of these three vectors, which

are short and linearly independent.

So our alternative view of [KLS22] is an instance of the above the general scheme with n = 1 and
short vectors S = (s1, s2, s3). We also note that we can easily construct a good ellipsoid for their
|ψ⟩, which has axis lengths 4, 2k, σω(log λ), · · · , σω(log λ). By Lemma 9, we can therefore construct
as many copies as we would like of the state |ψ′u⟩, which will fool verification under Conjecture 4.
In the next section, we demonstrate that Conjecture 4 holds for their particular parameter settings.
Thus their scheme is insecure.

Remark 3. Note that in our re-conceptualized version of [KLS22], the superpositions always have
support on vectors whose the first entry equal to 0 or 1. As such, there is no non-zero small multiple
of s1 such that adding this multiple results results in another vector whore first entry is 0 or 1.
This means that, in our attack, the superposition |ψ′u⟩ will actually only have support on shifts by
multiples of s0, s1.

8 Invariant Money
From this section on, we discuss our positive results on quantum money/lightning.

We now describe our framework for instantiating quantum money using invariants, or more
precisely what we call walkable invariants.

Let X,Y be sets, and I : X → Y an efficiently computable function from X to Y . I will be
called the “invariant.” We will additionally assume a collection of permutations σi : X → X indexed
by i ∈ [r] for some integer r, with the property that the permutations respect the invariant:

I(σi(x)) = I(x), ∀i ∈ [r]

In other words, action by each σi preserves the value of the invariant. We require that σi is efficiently
computable given i. r may be polynomial or may be exponential. To make the formalism below
simpler, we will be implicitly assuming that there exists a perfect matching between the σi such
that for any matched σi, σi′ , we have σi′ = σ−1

i . Moreover, i′ can be found given i. This can be
relaxed somewhat to just requiring that σ−1

i can be efficiently computed given i, but requires a
slightly more complicated set of definitions.

Given a point x, the orbit of x, denoted Ox ⊆ X, is the set of all z such that there exists a
non-negative integer k and i1, . . . , ik ∈ [r] such that z = σik

(σik−1(· · ·σi1(x)·)). In other words, Ox

is the set of all z “reachable” from x by applying some sequence of permutations. Note that I(z) = y

28

for any z ∈ Ox. We will therefore somewhat abuse notation, and define I(Ox) = y. We also let Py

be the set of pre-images of y: Py = {x ∈ X : I(x) = y}.
We will additionally require a couple properties, which will be necessary for the quantum money

scheme to compile:

• Efficient Generation of Superpositions: It is possible to construct the uniform superposi-
tion over X: |X⟩ := 1√

|X|

∑
x∈X |x⟩.

• Mixing Walks: For an orbit O, with a slight abuse of notation let σO,i be the (possibly
exponentially large) permutation matrix associated with the action by σi on O. Then let
MO = 1

r

∑
i∈[r] σO,i be the component-wise average of the matrices. Let λ1(O), λ2(O) be the

largest two eigenvalues by absolute value15, counting multiplicities. Note that λ1(O) = 1,
with corresponding eigenvector the all-1’s vector. We need that there is an inverse polynomial
δ such that, for every orbit O, λ2(O) ≤ 1− δ. This is basically just a way of saying that a
random walk on the orbit using the σi mixes in polynomial time.

We call such a structure above a walkable invariant.

8.1 Quantum Money from Walkable Invariants

We now describe the basic quantum money scheme.

Minting. To mint a note, first construct the uniform superposition |X⟩ over X. Then apply the
invariant I in superposition and measure, obtaining a string y, and the state collapsing to:

|Py⟩ := 1√
|Py|

∑
x∈Py

|x⟩

This is the quantum money state, with serial number y.

Verification. To verify a supposed quantum money state |ϕ⟩ with serial number y, we do the
following.

• First check that the support of |ϕ⟩ is contained in Py. This is done by simply applying the
invariant I in superposition, and measuring if the output is y. If the check fails immediately
reject.

• Then apply the projective measurement given by the projection
∑

O⊆Py
|O⟩⟨O|, where O

ranges over the orbits contained in Py, and |O⟩ := 1√
|O|

∑
x∈O |x⟩. In other words, project onto

states where, for each orbit, the weights of x in that orbit are all identical; weights between
different orbits are allowed to be different.
We cannot perform this measurement exactly, but we can perform it approximately using the
fact that λ2(O) ≤ 1− δ. This is described in Section 8.2 below. Outside of Section 8.2, we
will assume for simplicity that the measurement is provided exactly.
If the projection rejects, reject the quantum money state. Otherwise accept.

15They are real-valued, since MO is symmetric, owing to the fact that we assumed the σi are perfectly matched into
pairs that are inverses of each other.

29

It is hopefully clear that honestly-generated money states pass verification. Certainly their
support will be contained in Py, and they apply equal weight to each element in an orbit (and in
fact, equal weight across orbits).

8.2 Approximate Verification

Here, we explain how to approximately perform the verification projection V =
∑

O⊆Py
|O⟩⟨O|,

using the fact that λ2(0) ≤ 1 − δ for all O. The algorithm we provide is an abstraction of the
verification procedure of [FGH+12], except that that work presented the algorithm without any
analysis. We prove that the algorithm is statistically close to the projection V , provided the mixing
condition λ2(0) ≤ 1− δ is met.

Theorem 11. Assume λ2(0) ≤ 1 − δ for all O, for some inverse-polynomial δ. Then there is a
QPT algorithm Ṽ such that, for any state |ψ⟩, if we let |ψ′⟩ be the un-normalized post-measurement
state from applying Ṽ to |ψ⟩ in the case Ṽ accepts, then |ψ′⟩ is negligibly close to V |ψ⟩.

Proof. Let r′ = 2r. Let R be a register containing a superposition over 1, . . . , r′, and S be the
register containing the supposed quantum money state. Define the following:

• The unitary U acting on R ⊗ S defined as U =
∑r

i=1 |i⟩⟨i| ⊗ σi +
∑r′

i=r+1 |i⟩⟨i| ⊗ I. Here,
we use a slight abuse of notation, using σi to denote the unitary implementing the classical
permutation σi. U can be computed efficiently, by our assumption that we can efficiently
invert σi.

• The state |1⟩ = 1√
r′

∑r′
i=1 |i⟩

• The projection P = |1⟩⟨1| ⊗ I.

Our algorithm is the following:

• Initialize the register R to |1⟩.

• Repeat the following t = λ/δ times:

– Apply the unitary U to R⊗ S.
– Apply the measurement corresponding to projection P to R⊗ S. If the measurement

outcome is reject, immediately abort and reject the state.
– Apply U−1.

• If all t trials above accepted, then accept and output the contends of the S register.

We now analyze the algorithm above. M = 1
r

∑
i∈[r] σi. This matrix is symmetric, since we

assumed the σi come in pairs that are inverses of each other. It is not necessarily positive. For
example, consider X that can be divided into two subsets X0, X1 such that each σi maps Xb to
X1−b. Then the vector that places equal weight on all x ∈ X, but makes the values in X0 positive
and X1 negative will have eigenvalue −1. In general, the eigenvalues of M must be in the real
interval [−1, 1]. The eigenvectors with eigenvalue 1 are exactly |O⟩ and the space spanned by them,

30

as O ranges over all possible orbits. By our mixing assumption, all other eigenvalues are at most
1− δ.

Suppose |ψℓ⟩ is an eigenvector of M , with eigenvalue ℓ. We now explore how the algorithm
above behaves on |ψℓ⟩. Then we will extend our understanding to non-eigenvector states.

We have that

PU |1⟩|ψℓ⟩ = 1√
r′

(|1⟩⟨1| ⊗ I) ·

 r∑
i=1
|i⟩ ⊗ σi|ψℓ⟩+

r′∑
i=r+1

|i⟩|ψℓ⟩


= 1
r′
|1⟩ ⊗

(
r∑

i=1
σi|ψℓ⟩+ r|ψℓ⟩

)

= |1⟩ ⊗
(1

2M |ψℓ⟩+ 1
2 |ψℓ⟩

)
=
(1 + ℓ

2

)
|1⟩|ψℓ⟩

Now consider a general state |ψ⟩, which we write in an eigenbasis for M as |ψ⟩ =
∑

ℓ αℓ|ψℓ⟩.
Then PU |1⟩|ψ⟩ =

∑
ℓ αℓ

(
1+ℓ

2

)
|ψℓ⟩. After t trials, we have:

(PU)t|1⟩|ψ⟩ = |1⟩ ⊗
∑

ℓ

αℓ

(1 + ℓ

2

)t

|ψℓ⟩

Let |ψ′⟩ be the state after discarding |1⟩. Now

| V |ψ⟩ − |ψ′⟩ |2 =
∣∣∣∣∣ |ψℓ⟩ −

∑
ℓ

αℓ

(1 + ℓ

2

)t

|ψℓ⟩
∣∣∣∣∣
2

=

∣∣∣∣∣∣−
∑
ℓ̸=1

αℓ

(1 + ℓ

2

)t

|ψℓ⟩

∣∣∣∣∣∣
2

=
∑
ℓ̸=1
|αℓ|2

(1 + ℓ

2

)2t

≤
∑
ℓ ̸=1
|αℓ|2 (1− δ/2)2t

= (1− |α1|2) (1− δ/2)2t ≤ e−λ

This bound is negligible. This completes the proof of Theorem 11.

8.3 Hardness Assumptions

To get an intuition for security, we define assumptions which, together, imply the quantum money
(even quantum lightning) scheme is secure. We first introduce some notation. Let p ∈ [r]k for some
k. Given a starting element x ∈ X, we will interpret p as a path from x, leading to an element
z = σpk

(σpk−1(· · ·σp1(x)·)). We will therefore call p a path from x to z. We will say that p is a path
between x and z if p is a path from x to z or a path from z to x.

31

Hardness of Path-finding. This is an analog of discrete log, but for our setting. When thinking
of X as elliptic curves and the σ as isogenies, path-finding is just the problem of computing isogenies
between elliptic curves, which is presumably hard.

In our setting, the assumption says: it should be hard for any quantum algorithm, given points
in the same orbit, to find a path between them.

Assumption 1. Consider an adversary A playing the following game:

• The adversary outputs an x ∈ X.

• The challenger then computes a random z ∈ Ox.

• The adversary wins if it can output a path p between x to z.

The path-finding assumption is that, for all quantum polynomial-time adversaries A, the probability
A wins in the above game is negligible.

Remark 4. Note that technically the challenger in the path-finding game might be inefficient, since
it is required to sample a random z and no such explicit procedure is provided by an invariant.
However, the game can be made efficient using the statistical property that λ2(Ox) ≤ 1− δ: it can
simply do a random walk on Ox to compute z. Such z will be statistically close to uniform.

Knowledge of Path. This is an analog of the “knowledge of exponent” assumption due to
Damgård [Dam92]. The knowledge of exponent assumption (KEA) says that, given (g, ga) for
unknown a, it is hard to find (h, ha) without also finding a b such that h = gb. Formalizing KEA
classically is a bit subtle, as an adversary can always construct (h, ha) using some exponent b, but
then simply forget it. Or it could encrypt (g, ga) under an FHE scheme, choose an encryption of a
random b, and then homomorphically compute (h, ha) where h = gb. Then it decrypts the result to
get (h, ha), without ever explicitly writing down b.

In both the cases above, it is nevertheless trivial to figure out what b is by looking at the
algorithm. In the first example, the execution transcript will contain b before it is erased. In the
FHE example, the secret key is needed to decrypt (h, ha). Using the same secret key also allows
decrypting b.

KEA says that it must be possible to find b always, for any algorithm. This is formalized by
means of an extractor: given any algorithm A, there exists an extractor E that is given the same
inputs as A—importantly, including any random coins of A—that can find the corresponding b
whenever A outputs an (h, ha).

We now explore what such a knowledge assumption looks like quantumly. Of course, quantumly
the KEA assumption is not interesting since there is no hardness over groups. But we can nevertheless
try to see how we might formalize it. The immediate problem is that quantum algorithms can
be probabilistic without having explicit random coins as input. Instead, the quantum algorithm
could create a superposition and measure it. This measurement is unpredictable, and un-repeatable.
Trying to run the adversary from the same initial inputs will give different answers every time.

This says that a knowledge assumption in the quantum setting must be conditioned on the
output the adversary produces, rather than the input. Note that in the classical setting, we cared
about the output as well (since different outputs would have different b values), but we could connect
the inputs to outputs by making the adversary deterministic by considering the random coins as
input. In the quantum setting, this is no longer the case.

32

But if we are only looking at the final state of the algorithm, we run into a different problem.
Namely, we are back to the setting where the adversary could have known an explicit path at one
point, and then discarded the information. This is potentially even easier quantumly than classically:
a quantum algorithm could measure the path in the Fourier basis, which would have the effect of
erasing the path.

Our solution is natural: we consider only adversaries A that are unitary. To get the final output,
we must measure the registers containing the output. However, these are the only measurements
performed and there is no measurement on the adversaries internal state. The extractor E is then
given the final state of A (as well as the output). E then must be able to find b given this state.
Note that the restriction to unitary A is without loss of generality, as any A can be made reversible
by Stinespring dilation (basically, instead of measuring, we XOR the registers into some newly
created registers).

The classical analog is to restrict to reversible classical adversaries, and giving E the final internal
state of A in addition to A’s output. Again, restriction to reversible A is without loss of generality.
This notion is actually equivalent to the usual classical KEA: given the output and internal state
of A, reverse A to find the input, including the random coins. Then apply the traditional KEA
extractor using these random coins.

We now adapt this idea to the path-finding setting, giving the following notion of “Knowledge
of Path”. We will define two variants, based on whether the invariant is invertible.

Assumption 2. Let A be a quantum polynomial time adversary A that is unitary (in the above
sense where there are no measurements except the output registers). Let E be a quantum polynomial
time extractor that is given A’s final output as well as its final state. Let (x, z) be the A’s output,
and p ∈ [r]∗ be the output of E.

Let B be the event that (1) I(x) = I(z), but (2) p is not a path between x and z. In other
words, B is the event that A outputs two elements with the same invariant but E fails to find a
path between them.

The knowledge of path assumption is that, for any quantum polynomial time unitary A, there
exists a quantum polynomial time E such that Pr[B] is negligible.

Remark 5. Note that Assumption 2 implies that it is infeasible to find x, z such that x and z are
in different orbits, but I(x) = I(z). This is because in such case, there does not exist a path from x
to z and therefore E must fail.

Invariant Inversion. Sometimes, the invariant I may be invertible. This is not required (or
forbidden) for constructing quantum money, but it makes it likely that Assumption 2 is false, since
inverting I(x) would give an element z that most likely has no known path to x (and a path may
not even exist). Therefore, we will need to explicitly model such an invertible invariant, and modify
our assumptions appropriately. So we introduce a classical randomized algorithm I−1 : Y → X,
with the guarantee that Pr[I(I−1(y)) = y] = 1 for all y. We will typically consider the random coins
of I−1 as an explicit input, writing I−1(y; t).

Since our adversary can find multiple elements with the same invariant by inverting, and
presumably elements obtained by inverting have no known path, we need to model this in our
extractor. We therefore allow the extractor E to do one of two things:

• It can find a path from x to z, or

33

• It can find random coins t, a path p, with the requirement that p connects either x or z to
I−1(y; t), where y = I(x) = I(z).

In other words, the assumptions requires that the only way to find x, z with the same invariant is
to either know a path between them, or at least one of x, z was the result of using the inversion
algorithm on y and then following some path. We now give the assumption.

Assumption 3. Let A be a quantum polynomial time adversary A that is unitary (in the above
sense where there are no measurements except the output registers). Let E be a quantum polynomial
time extractor that is given A’s final output as well as its final state. Let (x, z) be the A’s output,
and p ∈ [r]∗, t be the output of E. Let B be the event that (1) I(x) = I(z), but (2) p is not a path
between any two of {x, z, I−1(y; t)}.

The knowledge of path assumption for invertible invariants is that, for any quantum polynomial
time unitary A, there exists a quantum polynomial time E such that Pr[B] is negligible.

We will also require that I−1 is hard to invert. Namely, that, given x, it should be infeasible
to come up with coins t such that I−1(I(x); t) = x. This is required for our updated knowledge of
path assumption to be meaningful.

Assumption 4. Consider an adversary A playing the following game:

• The adversary outputs an x ∈ X. Let y = I(x).

• The challenger then computes a random z ∈ Ox.

• The adversary wins if it can output t and a path p between I−1(y; t) and z.

The Inversion Inverting assumption is that, for all quantum polynomial-time adversaries A, the
probability A wins in the above game is negligible.

As with Path Finding Assumption (Assumption 1), the challenger in the Inversion Inverting
assumption can be made efficient by choosing z as a random walk starting from x. Note that in the
experiment, x is only used to specify an orbit Ox; the adversary’s goal only depends on z.

8.4 Security Proof for Invariant Money

Theorem 12. Assuming the Path-Finding assumption (Assumption 1) and the Knowledge of Path
Assumption (Assumption 2), the scheme above is secure quantum lightning. If the invariant is
invertible, then assuming the Path-Finding assumption (Assumption 1), the Knowledge of Path
Assumption for Invertible Invariants (Assumption 3), and the Inversion Inverting assumption
(Assumption 4), the scheme above is secure quantum lightning.

Proof. We prove the case for invertible invariants, the case of non-invertible invariants been very
similar and somewhat simpler.

Toward contradiction, let A be a quantum lightning adversary with non-negligible advantage ϵ.
By running A for up to λ/ϵ times, stopping at the first success, we can gaurantee that A wins with
advantage negligibly close to 1. For simplicity in the following proof, we will assume the success
probability is actually 1, incurring only a negligible error.

34

We then assume without loss of generality that A is unitary, so that the output is a pure state∑
x,z,s αx,z,s|x, z, s⟩, where the first two registers are the supposed quantum money states, and the

last register is auxiliary state left over by running A.
Since A passes verification with probability 1, we can instead write the output of A as:

|ψ⟩ :=
∑

s,O1,O2:I(O1)=I(O2)
βO1,O2,s|O1⟩|O2⟩|s⟩

=
∑

s,O1,O2:I(O1)=I(O2)

βO1,O2,s√
|O1||O2|

∑
x∈O1,z∈O2

|x, z, s⟩

=
∑

s,x,z:I(x)=I(z)

βOx,Oz ,s√
|Ox||Oz|

|x, z, s⟩

where O1, O2 range over orbits with the same invariant.
Let E be the extractor guaranteed by applying Assumption 3 to A. Now consider measuring the

registers containing x, z, leaving the auxiliary state as

|ψOx,Oz⟩ ∝
∑

s

βOx,Oz ,s|s⟩

Then since I(x) = I(y), we have that E(x, z, |ψOx,Oz⟩) outputs p, t such that, with overwhelming
probability over x, z, p, t, p is a path between two of {x, z, I−1(I(x); t)}. B1 as the event p connects
x, z, B2 as the event p connects x, I−1(I(x); t), and B3 as the event p connects z, I−1(I(x); t). Let
q1, q2, q3 be the probabilities of the events B1, B2, B3. Then q1 + q2 + q3 ≥ 1− negl.

Now we notice that for any x′ ∈ Ox and and z′ ∈ Oz, the probability of obtaining x′, z′ is
identical to the probability of obtaining x, z, and the state |ψOx,Oz⟩ = |ψOx′ ,Oz′ ⟩ = |ψO1,O2⟩. In
particular, we have that E(x′, z′, |ψOx,Oz⟩) outputs a path p between {x′, z′, I−1(I(x′); t)} with
non-negligible probability, for uniform x′ ∈ Ox, y

′ ∈ O(z). Moreover, the quantities q1, q2, q3 are
unchanged by using x′, z′. We now use this to construct adversaries for path-finding (Assumption 1)
and inversion inverting (Assumption 4).

Let AP be the following path-finding adversary:
• Run A and measure x, z, obtaining the state |ψOx,Oz⟩.

• Send z to the challenger, obtaining a random x′ ∈ Oz in response.

• Run E(x′, z, |ψOx,Oz⟩) to get p, t. Output p.
Note that AP simulates exactly A, E in the case where x, z are in the same orbit, which in particular
is implied by event B1. Therefore, AP outputs a path between x′, z with probability at least q1. By
the assumed hardness of path-finding (Assumption 1), q1 must be negligible.

Let AI be the following inversion-inverting adversary:
• Run A and measure x, z, obtaining the state |ψOx,Oz⟩.

• Send x to the challenger, obtaining a random x′ ∈ Ox in response.

• Run E(x′, z, |ψOx,Oz⟩) to get p, t. Output p, t.
Note that AP simulates exactly A, E, and so p connects x′ to I−1(I(x); t) with probability q2. By
the assumed hardness of inversion inverting (Assumption 4), q2 must be negligible. By an identical
argument exchanging the roles of x and z, we must also have q3 is negligible. This contradicts
q1 + q2 + q3 ≥ 1− negl. This completes the security proof.

35

References
[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of the

2009 24th Annual IEEE Conference on Computational Complexity, CCC ’09, pages
229–242, Washington, DC, USA, 2009. IEEE Computer Society.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Howard J. Karloff and Toniann Pitassi, editors, 44th Annual ACM Symposium on
Theory of Computing, pages 41–60, New York, NY, USA, May 19–22, 2012. ACM
Press.

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Crypto-
graphic group actions and applications. In Shiho Moriai and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes
in Computer Science, pages 411–439, Daejeon, South Korea, December 7–11, 2020.
Springer, Heidelberg, Germany.

[AFMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Crypto-
graphic group actions and applications. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 411–439. Springer,
2020.

[AGKZ20] Ryan Amos, Marios Georgiou, Aggelos Kiayias, and Mark Zhandry. One-shot signa-
tures and applications to hybrid quantum/classical authentication. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 255–268,
2020.

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology – EURO-
CRYPT 2021, Part II, volume 12697 of Lecture Notes in Computer Science, pages
501–530, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New
approaches for quantum copy-protection. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes
in Computer Science, pages 526–555, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany.

[AMRR11] Andris Ambainis, Loïck Magnin, Martin Roetteler, and Jérémie Roland. Symmetry-
assisted adversaries for quantum state generation. In 2011 IEEE 26th Annual
Conference on Computational Complexity, pages 167–177. IEEE, 2011.

[ARU14] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on
classical proof systems: The hardness of quantum rewinding. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 474–483, 2014.

[BB87] Charles H. Bennett and Gilles Brassard. Quantum public key distribution reinvented.
SIGACT News, 18(4):51–53, July 1987.

36

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption
without random oracles. In International conference on the theory and applications
of cryptographic techniques, pages 223–238. Springer, 2004.

[BCM+18] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas
Vidick. A cryptographic test of quantumness and certifiable randomness from a single
quantum device. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of
Computer Science, pages 320–331, Paris, France, October 7–9, 2018. IEEE Computer
Society Press.

[BDG22] Andriyan Bilyk, Javad Doliskani, and Zhiyong Gong. Cryptanalysis of three quantum
money schemes. Cryptology ePrint Archive, Paper 2022/624, 2022. https://eprint.
iacr.org/2022/624.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for iO: Circular-secure LWE suffices. Cryptology ePrint
Archive, Report 2020/1024, 2020. https://eprint.iacr.org/2020/1024.

[BDS16] Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures, 2016.
https://arxiv.org/abs/1609.09047.

[BF11] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures. In Dario Catalano, Nelly
Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International
Conference on Theory and Practice of Public Key Cryptography, volume 6571 of
Lecture Notes in Computer Science, pages 1–16, Taormina, Italy, March 6–9, 2011.
Springer, Heidelberg, Germany.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15:
Provable security against zeroizing attacks. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018: 16th Theory of Cryptography Conference, Part II, volume 11240
of Lecture Notes in Computer Science, pages 544–574, Panaji, India, November 11–14,
2018. Springer, Heidelberg, Germany.

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs
- (extended abstract). In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 344–360, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. Csi-fish: efficient
isogeny based signatures through class group computations. In International Confer-
ence on the Theory and Application of Cryptology and Information Security, pages
227–247. Springer, 2019.

[BKW17] Dan Boneh, Sam Kim, and David J Wu. Constrained keys for invertible pseudorandom
functions. In Theory of Cryptography Conference, pages 237–263. Springer, 2017.

37

https://eprint.iacr.org/2022/624
https://eprint.iacr.org/2022/624
https://eprint.iacr.org/2020/1024

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 575–584, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[BLW17] Dan Boneh, Kevin Lewi, and David J Wu. Constraining pseudorandom functions
privately. In IACR International Workshop on Public Key Cryptography, pages
494–524. Springer, 2017.

[BS04] Reinier Bröker and Peter Stevenhagen. Elliptic curves with a given number of
points. In Duncan Buell, editor, Algorithmic Number Theory, pages 117–131, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[BY91] Gilles Brassard and Moti Yung. One-way group actions. In Alfred J. Menezes and
Scott A. Vanstone, editors, Advances in Cryptology – CRYPTO’90, volume 537
of Lecture Notes in Computer Science, pages 94–107, Santa Barbara, CA, USA,
August 11–15, 1991. Springer, Heidelberg, Germany.

[CD22a] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh
(preliminary version). Cryptology ePrint Archive, 2022.

[CD22b] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh
(preliminary version). Cryptology ePrint Archive, Paper 2022/975, 2022. https:
//eprint.iacr.org/2022/975.

[CL14] Alexander Coward and Marc Lackenby. An upper bound on reidemeister moves.
American Journal of Mathematics, 136(4):1023–1066, 2014.

[CLG08] Denis Charles, Kristin Lauter, and Eyal Goren. Cryptographic hash functions from
expander graphs. Journal of Cryptology, 22:93–113, 12 2008.

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and
applications to unclonable cryptography. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes
in Computer Science, pages 556–584, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
Csidh: an efficient post-quantum commutative group action. In International Con-
ference on the Theory and Application of Cryptology and Information Security, pages
395–427. Springer, 2018.

[Col09] Roger Colbeck. Quantum and relativistic protocols for secure multi-party computation,
2009.

[Col19] Andrea Coladangelo. Smart contracts meet quantum cryptography, 2019.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291, 2006. https://eprint.iacr.org/2006/291.

38

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2006/291

[CPDDF+19] Marta Conde Pena, Raul Durán Díaz, Jean-Charles Faugère, Luis Hernández Encinas,
and Ludovic Perret. Non-quantum cryptanalysis of the noisy version of aaron-
son–christiano’s quantum money scheme. IET Information Security, 13(4):362–366,
2019.

[CS20] Andrea Coladangelo and Or Sattath. A quantum money solution to the blockchain
scalability problem. Quantum, 4:297, 2020.

[CX22] Shujiao Cao and Rui Xue. The gap is sensitive to size of preimages: Collapsing
property doesn’t go beyond quantum collision-resistance for preimages bounded hash
functions. Cryptology ePrint Archive, 2022. CRYPTO 2022.

[CY14] Matthew Coudron and Henry Yuen. Infinite randomness expansion with a constant
number of devices. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 427–436, New York, NY, USA, May 31 – June 3, 2014.
ACM Press.

[Dam92] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext
attacks. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume
576 of Lecture Notes in Computer Science, pages 445–456, Santa Barbara, CA, USA,
August 11–15, 1992. Springer, Heidelberg, Germany.

[DF17] Luca De Feo. Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062, 12, 2017.

[DFM20] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions. In
IACR International Conference on Public-Key Cryptography, pages 187–212. Springer,
2020.

[DN21] Nico Döttling and Ryo Nishimaki. Universal proxy re-encryption. In IACR Interna-
tional Conference on Public-Key Cryptography, pages 512–542. Springer, 2021.

[Dyn03] Ivan Alekseyevich Dynnikov. Recognition algorithms in knot theory. Russian Mathe-
matical Surveys, 58(6):1093, 2003.

[FGH+10] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, Daniel Nagaj,
and Peter Shor. Quantum state restoration and single-copy tomography for ground
states of hamiltonians. Physical review letters, 105(19):190503, 2010.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter W.
Shor. Quantum money from knots. In Shafi Goldwasser, editor, ITCS 2012: 3rd
Innovations in Theoretical Computer Science, pages 276–289, Cambridge, MA, USA,
January 8–10, 2012. Association for Computing Machinery.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015:
12th Theory of Cryptography Conference, Part II, volume 9015 of Lecture Notes in
Computer Science, pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany.

39

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206,
Victoria, BC, Canada, May 17–20, 2008. ACM Press.

[JMV09] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Expander graphs
based on grh with an application to elliptic curve cryptography. Journal of Number
Theory, 129(6):1491–1504, 2009.

[JQSY19] Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action
on tensors: a candidate for post-quantum cryptography. In Theory of Cryptography
Conference, pages 251–281. Springer, 2019.

[Kan18] Daniel M. Kane. Quantum money from modular forms, 2018.
https://arxiv.org/abs/1809.05925.

[KLS22] Andrey Boris Khesin, Jonathan Z Lu, and Peter W Shor. Publicly verifiable quantum
money from random lattices, 2022. https://arxiv.org/abs/2207.13135v2.

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software leasing
from standard assumptions. In Theory of Cryptography Conference, pages 31–61.
Springer, 2021.

[KSS21] Daniel M. Kane, Shahed Sharif, and Alice Silverberg. Quantum money from quaternion
algebras. Cryptology ePrint Archive, Report 2021/1294, 2021. https://eprint.
iacr.org/2021/1294.

[Lac15] Marc Lackenby. A polynomial upper bound on reidemeister moves. Annals of
Mathematics, pages 491–564, 2015.

[Lac16] Marc Lackenby. Elementary knot theory. arXiv preprint arXiv:1604.03778, 2016.

[Lac21] Marc Lackenby. An online attack against wiesner’s quantum money, 2021. https:
//www.maths.ox.ac.uk/node/38304.

[LAF+10] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset, Jonathan A.
Kelner, Avinatan Hassidim, and Peter W. Shor. Breaking and making quantum
money: Toward a new quantum cryptographic protocol. In Andrew Chi-Chih Yao,
editor, ICS 2010: 1st Innovations in Computer Science, pages 20–31, Tsinghua
University, Beijing, China, January 5–7, 2010. Tsinghua University Press.

[LPSS14] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-LWE
and applications in traitor tracing. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 315–334, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany.

40

https://arxiv.org/abs/2207.13135v2
https://eprint.iacr.org/2021/1294
https://eprint.iacr.org/2021/1294
https://www.maths.ox.ac.uk/node/38304
https://www.maths.ox.ac.uk/node/38304

[Lut10] Andrew Lutomirski. An online attack against wiesner’s quantum money, 2010.
https://arxiv.org/abs/1010.0256.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 326–355, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

[MM22a] Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary starting
curve. Cryptology ePrint Archive, 2022.

[MM22b] Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary starting
curve. Cryptology ePrint Archive, Paper 2022/1026, 2022. https://eprint.iacr.
org/2022/1026.

[MMP22] Marzio Mula, Nadir Murru, and Federico Pintore. Random sampling of supersingular
elliptic curves. Cryptology ePrint Archive, 2022.

[MZ22] Hart Montgomery and Mark Zhandry. Full quantum equivalence of group action
dlog and cdh, and more. Cryptology ePrint Archive, Paper 2022/1135, 2022. https:
//eprint.iacr.org/2022/1135.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum informa-
tion, 2002.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium
on Theory of Computing, pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009.
ACM Press.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on
Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM
Press.

[Rei27] Kurt Reidemeister. Elementare begründung der knotentheorie. In Abhandlungen
aus dem Mathematischen Seminar der Universität Hamburg, volume 5, pages 24–32.
Springer, 1927.

[Rob21] Bhaskar Roberts. Security analysis of quantum lightning. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part II, volume 12697 of Lecture Notes in Computer Science, pages 562–567, Zagreb,
Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

[Rob22] Damien Robert. Breaking sidh in polynomial time. Cryptology ePrint Archive, 2022.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On
Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.
iacr.org/2006/145.

41

https://arxiv.org/abs/1010.0256
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1135
https://eprint.iacr.org/2022/1135
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145

[RS19] Roy Radian and Sattath. Semi-quantum money. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, AFT ’19, page 132–146, New
York, NY, USA, 2019. Association for Computing Machinery.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields. Journal de théorie
des nombres de Bordeaux, 7(1):219–254, 1995.

[Shm22] Omri Shmueli. Public-key quantum money with a classical bank. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 790–803,
2022.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture
Notes in Computer Science, pages 256–266, Konstanz, Germany, May 11–15, 1997.
Springer, Heidelberg, Germany.

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,
Part II, volume 9666 of Lecture Notes in Computer Science, pages 497–527, Vienna,
Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January 1983.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, Part III, volume 12698 of Lecture Notes in Computer Science,
pages 127–156, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III,
volume 11478 of Lecture Notes in Computer Science, pages 408–438, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

[Zha22] Mark Zhandry. New constructions of collapsing hashes. Cryptology ePrint Archive,
Paper 2022/678, 2022. CRYPTO 2022, https://eprint.iacr.org/2022/678.

A Additional Preliminaries
Worst-Case Lattice Problems and LWE We next define the GapSVP problem, which is the
worst-case lattice problem upon which the hardness of LWE is based.

Definition 8. Let n be an integer and γ = γ (n) ≥ q a real number. The (n, γ)-GapSVP problem
is the problem of deciding, given a basis B of an n-dimensional lattice Λ and a number d, whether
or not λ1 (Λ) ≤ d or λ1 (Λ) > γd.

We emphasize that GapSVP is a “promise problem” and that a (successful) adversary can output
whatever it wants when d < λ1 (Λ) ≤ γd.

In his seminal work [Reg05], Regev showed that LWE was hard worst-case lattice problems for
uniformly random choices of DA and DR and when Ψ was defined to be choosing each coordinate

42

https://eprint.iacr.org/2022/678

as a (small) discrete Gaussian. To capture this, we cite a theorem from [BLP+13] which itself is
derived from Theorem 3.1 of [Reg05] and Theorem 3.1 of [Pei09].

Theorem 13. (Theorem 2.16, [BLP+13]) Let n, m, and q be positive integers and let Dm
Ψσ

be
a distribution over Zm where each entry is selected according to a discrete Gaussian distribution
with noise rate parameter σ > 2

√
n. Then there exists a quantum reduction from worst-case(

n, Õ (nq/σ)
)
−GapSV P to

(
n,m, q,U

(
Zn

q

)
,U
(
Zn

q

)
,Dm

Ψσ

)
-LWE. In addition, if q ≥ 2n/2, then

there is also a classical reduction between those problems.

We note that our presentation of this theorem differs quite a bit from the presentation in [BLP+13]
because they present LWE as a problem over the cycle (the additive group of reals modulo 1) for
ease of exposition about the noise parameters, but it makes more sense when working in quantum
money setting to present things over the integers.

B On the Hardness of k-LWE
In this section we prove a number of hardness results on k-LWE, showing that the k-LWE instance
implied by the [KLS22] scheme is hard, assuming standard lattice assumptions. In addition, we
provide additional evidence through proofs that more general instances of k-LWE are likely to be
hard, which seemingly indicates that it would be difficult to “tweak” the [KLS22] construction by
altering the distributions to gain security.

We start by presenting some useful LWE lemmas from previous work.

B.1 Helpful LWE Lemmas

In this section, we add in some useful lemmas that allow us to change the distribution of the key in
the LWE problem (Dr) without affecting the hardness of the underlying problem too much. Looking
ahead, we will need to use various versions of the powerful modulus switching lemma from [BLP+13],
which requires LWE instances with “low-norm” keys.

We start with a simple folklore lemma, which informally states that LWE with a uniformly
sampled random key is at least as hard as LWE with any other secret key distribution.

Lemma 14. Let n, m, and q be integers, let DA and Dr be distributions over Zn
q , and let DΨ be

a distribution over Zm
q . Any adversary that can solve the

(
n,m, q,DA,U

(
Zn

q

)
,DΨ

)
-LWE problem

with advantage ϵ can be used to solve the (n,m, q,DA,Dr,DΨ)-LWE problem with advantage ϵ.

Proof. We give an abbreviated proof because this result is simple and well-known. Given an LWE
challenge tuple (A, t) where t = A · r + e and r← Dr or t is random, sample r′ ∈ Zn

q uniformly at
random and add A · r′ to t. This gives the correct LWE challenge distribution if t = A · r + e and
is still uniformly random if t was uniformly random.

We will also use a lemma from [BLP+13] that says, informally speaking, that LWE with certain
parameters where the key is drawn from the noise distribution is at least as hard as when the key is
uniform (modulo some small parameter losses). We state this below.

Lemma 15. (Lemma 2.12, [BLP+13]) Let n, m, and q be positive integers with q ≥ 25.
Let m′ = m − (16n+ 4 ln ln q). Consider some parameter s ≥

√
ln (2n (1 + 1/ϵ) /π). Let ϵ < 1

2

43

and σ, σ′ > 0 be real numbers such that σ′ ≥
√
σ2 + s2. Finally, let DΨσ be a discrete Gaussian

distribution with parameter σ.
Any adversary that can solve the

(
n,m′, q,U

(
Zn

q

)
,DΨσ′ ,DΨσ

)
-LWE problem with advantage ϵ′

can be used to solve the
(
n,m, q,U

(
Zn

q

)
,U
(
Zn

q

)
,DΨσ

)
-LWE problem with advantage (ϵ′ − 8ϵ) /4.

In particular, assuming σ > s, we can take s = σ and set σ′ =
√

2σ.

Note that the two versions of LWE in this reduction have a (slightly) different number of samples
(m and m′), but the dimension of the LWE problem (n) is the same.

B.2 Modulus Switching

In their seminal work [BLP+13], Brakerski et al. use a technique called modulus switching to
improve known reductions from the GapSVP problem to the LWE problem. Informally speaking,
this modulus switching technique allows those authors to show that LWE in “small modulus” and
“high dimension” is roughly equivalent in hardness to LWE in “big modulus” and “low dimension”.
We state some of their results here since we would eventually like to use the fact that one-dimensional
LWE with exponential modulus is hard, which is known from results in [BLP+13].

Rather than present a single instance of their main theorem, we go through two of their corollaries
to make it easier to follow. We emphasize that our presentation looks very different from theirs
because they consider LWE over the unit cycle T and we work over the integers.

Lemma 16. (Corollary 3.2, [BLP+13]) Let n, m, q, and q′ be positive integers with q′ > q,
and consider some (B, δ)-bounded distribution D̃ over Zn. Let ϵ ∈

(
0, 1

2

)
be a parameter and let

σ, σ > 0 be real numbers. Finally, let

σ′ ≥

√(
σ
q′

q

)2
+ (4/π) ln (2n (1 + 1/ϵ)) ·B2

Then there is an efficient reduction from
(
n,m, q,U

(
Zn

q

)
, D̃,DΨσ

)
-LWE to

(
n,m, q′,U

(
Zn

q

)
, D̃,DΨσ′

)
-

LWE that reduces the advantage by at most σ + 14ϵm.

Informally speaking, this lemma gives us a way to increase the modulus of an LWE instance
while keeping the “gap between the noise level and the modulus” almost the same. This is a rather
counterintuitive result, and even moreso when you consider the fact that it works for essentially
arbitrary distributions on LWE secrets. Importantly, q and q′ can be (essentially) arbitrary as long
as q′ > q, so we can use this lemma to help us prove LWE hardness for “arbitrary” choices of q′ in
conjunction with other lemmas that require certain properties of q′.

We next present another modulus switching lemma that lets us go from “high modulus, low
dimension” to “normal modulus, normal dimension” instances of LWE. Once again, note that this
reduction approximately preserves the gap between the noise rate and the modulus.

Lemma 17. (Corollary 3.4, [BLP+13]) Consider any positive integers n, m, q, and k such that
k divides n, real numbers σ, σ′ > 0, a parameter ϵ ∈

(
0, 1

2

)
, and some (B, δ)-bounded distribution

D̃. In addition, let
σ′ ≥

√
(σqk−1)2 + (4/π) ln (2n (1 + 1/ϵ)) · (Bqk−1)2

44

and define G = In/k ⊗
(
1, q, q2, ..., qk−1

)T
.

Then there is an efficient reduction from
(
n,m, q,U

(
Zn

q

)
, D̃,DΨσ

)
-LWE to

(
n/k,m, qk,U

(
Zn

q

)
,GD̃,DΨσ′

)
-

LWE that reduces the advantage by at most δ + 14ϵm.

Note that setting k = n gives us hardness for single-dimension LWE (i.e. n = 1). We will use
this exact setting later in our proofs.

B.3 k-LWE for a Constant Number of Vectors Is Hard

In this section we prove that k-LWE with the appropriate parameters is as hard as regular LWE for
any distribution on the short vectors, up to a superpolynomial loss in the noise, assuming that the
number of short vectors k is constant. We state this below. Our proof is inspired by the k-SIS proof
of [BF11].

Lemma 18. Let k, n, m, and q be positive integers, and let DR be a distribution over Zn
q . Let DΨσ

be a discrete Gaussian distribution over Zm
q with noise parameter (width) σ. Furthermore, let DS be

a distributions over Zm
q with the additional requirement that DS is B-bounded. Let S ∈ Zk×m

q be a
matrix where each row is selected from DS. Let f (n) be a function that is superpolynomial in n.

Any adversary that can solve the
(
k, n,m+ k, q,DS,Dr,DΨσf(n)

)
-k-LWE problem with advantage

ϵ can be used to solve the
(
n,m, q,U

(
Zn

q

)
,Dr,DΨσ

)
-LWE problem with advantage ϵ− negl (n).

Proof. Suppose we are given an LWE challenge tuple in the form of (A, t) where t = A · r + e
(the “real” case) or t = r for some uniformly sampled r. We will show that we can use this LWE
challenge to build a k-LWE challenge of the appropriate distribution in a way that succeeds with all
but negligible probability. Thus, given an appropriate k-LWE adversary, we can simply feed it our
challenge tuple and then mimic that response in the LWE challenge game, winning with probability
negligibly close to ϵ. Our reduction proceeds as follows (and borrows heavily from the techniques
of [BF11]):

First, suppose we sample S← DS ∈ Zk×(m+k)
q and let Si,j denote the (i, j) th entry of S. Suppose

we pick k columns of S such that the k × k submatrix formed by these columns is full-rank; and
note that we can always do this unless S has rank less than k (in which case, we can just reduce S
by one row and repeat the process). Call this matrix T. Let T̃ denote the adjugate matrix of T; in
other words, T̃ ·T = det (T) · Ik and T̃ ∈ Zk×k. Let S̃ ∈ Zk×m = T̃ · S, and note that it has the
following structure:

S̃ =


det (T) 0 0 ... 0 S̃1,k+1 ... S̃1,k+m

0 det (T) 0 ... 0 S̃2,k+1 ... S̃2,k+m

0 0 det (T) ... 0 S̃3,k+1 ... S̃3,k+m

...

0 0 0 ... det (T) S̃k,k+1 ... S̃k,k+m


Suppose we let U ∈ Z(m+k)×m be defined in the following way: for each entry Ui,j where i ≤ k, we
set Ui,j = S̃i,j+k. For each entry Ui,j for i > k, we set Ui,j = −det (T) if i = j and 0 otherwise.

45

Note that, pictorially, this gives us the following structure:

U =



S̃1,k+1 S̃1,k+2 S̃1,k+3 ... S̃1,k+m

S̃2,k+1 S̃2,k+2 S̃2,k+3 ... S̃2,k+m

S̃3,k+1 S̃3,k+2 S̃3,k+3 ... S̃3,k+m

...

S̃k,k+1 S̃k,k+2 S̃k,k+3 ... S̃k,k+m

−det (T) 0 0 ... 0
0 −det (T) 0 ... 0
0 0 −det (T) ... 0
...
0 0 0 ... −det (T)


We interrupt the reduction to make a couple of claims.

Claim: S ·U = 0. This follows from the fact that S̃ is orthogonal to U by definition and S = T̃S.
Since T is invertible (over both Z and Zq, S ·U = 0 if and only if S̃ ·U = 0.

Claim: no entry in U has value larger than (2B)k. First, note that the determinant of any
k × k matrix with entries in [−B,B] is at most (2B)k, and the determinant of any B-bounded
smaller matrices must be smaller than that. Since the entries of the adjugate matrices are themselves
determinats of submatrices of T, they must also follow this bound.

Now we may continue with our reduction. Suppose we sample e′ ← Dm+k
Ψσf(n)

and let A′ ∈
Zm+k

q × n = U · A and t′ = U · t + e′. Additionally, suppose we sample some random matrix
W ∈ Zm×m

q and set C = U ·W. We claim that the tuple (S,A′,C, t′) is an appropriately distributed
k-LWE challenge. We show this in a number of claims: first, with some claims that apply to both
the “real” and “random” cases, and then we argue these cases separately.

Claim: C is a uniform basis of the kernel of S mod q. This follows from the fact that
S ·C = 0 over Z and the ranks of the matrices sum to m+ k.

Claim: A′ = U ·A mod q is distributed uniformly at random subject to the constraint
S ·A′ = 0. Since A is uniformly random and U is a basis for all vectors in the kernel of S, we know
that A′ is distributed appropriately mod q.

So, at this point we know that S, A′, and C are distributed appropriately. All that remains is
to handle t′ We handle this separately for the “real” and “random” cases below.

The “Real” Case. Assume now that t = A · r + e. Then we have

t′ = U (A · r + e) + e′ = A′ · r +
(
Ue + e′

)
.

If k is constant, then (2B)k is constant and Ue has no entries larger than O
(
m2σ

)
with all

but negligible probability since the probability that a discrete Gaussian with parameter σ is larger
than mσ is negligible. Since f (n) grows faster than any polynomial, we know that U · e + e′ is
distributed statistically close to just sampling a discrete Gaussian with parameter σf (n) (i.e. how
we sampled e′), so we know that t′ is sampled appropriately in this case.

The “Random” Case. Now assume that t′ is distributed uniformly at random over Zm
q . In this

case, we know that U · t is distributed uniformly at random over the kernel of S mod q and thus

46

can be written as C · r′ for a uniformly random r′ as desired. Since t′ = U · t + e′, we therefore
know that the output distribution is correct in the “random” case as well.

Completing these two cases finishes the reduction and completes the proof.

B.4 Putting It All Together

In order to show that any adversary that can solve the k-LWE instance implied by the [KLS22]
scheme can solve worst-case lattice problems, we just need to put all of our lemmas together. Below,
we show a table containing all of our hybrid arguments with approximate factors: we ignore constant
factors in the dimensions and polynomial factors in the noise and modulus (when the modulus is
exponentially large). We assume q > (q′)n and that the noise distributions are Gaussians. We note
that the “Noise” entry for GapSVP is the approximation ratio defined by the problem, not the noise
itself.

Assumption Lattice Dim. Samples Modulus Key Dist. Noise Proof Comment
k − LWE 1 m q Unif. q

η n/a
LWE 1 m q Unif. q

ηf(n) Lemma B.4
LWE 1 m q Noise q

ηf(n) Lemma 14
LWE 1 m (q′)n Noise (q′)n

ηf(n) Lemma 16
LWE n m q′ Noise q′

ηf(n) Lemma 17
LWE n m q′ Unif. q′

ηf(n) Lemma 15
GapSV P n − − − ηf (n) Theorem 13

We can state this in a nice lemma.

Lemma 19. Let n, m, q, and k be integers such that k is a constant. Let f (n) be some function
that grows superpolynomially in n. Let q be exponentially large and m polynomially sized in some
security parameter n, and let q′ = poly (n) f (n). Let σ be a discrete Gaussian parameter such that
σ ≥ q

η and let DΨσ denote a discrete Gaussian with parameter σ. Let DS be any distribution over
Zm that outputs vectors bounded by some polynomial in n.

An adversary that solves the (k, 1,m, q,DS,U (Zq) ,DΨσ)-k-LWE problem with non-negligible
advantage can be used to solve the

(
logq′ (q) , σf (n)

)
-GapSVP problem with non-negligible advantage.

Proof. The proof follows from a simple hybrid argument outlined in the table above and by just
applying the lemmas in sequence without much additional thought. We explain each step below.
For the sake of clarity, we ignore small factors in the discussion below (and these don’t matter
anyway because we are only focused on an asymptotic result).

• We start by reducing to k-LWE in dimension 1 from LWE in dimension 1, with the only loss
being a superpolynomial factor in the noise parameter. This follows from the one lemma that
did not follow from previous work, lemma .

• The modulus switching lemmas require a key with “small” entries, so we next use a reduction
to LWE in dimension 1 with uniform key from LWE in dimension 1 with small key. This is
exactly what is stated in lemma 14.

47

• We now have a dimension 1 LWE instance with a “small” key. We use lemma 16 to reduce to
this LWE instance from an LWE instance with a tailored modulus of the form q′n so that we
can easily apply the core modulus switching lemma.

• Given an LWE instance in dimension 1 with modulus q′n, we apply the core modulus-switching
lemma–lemma 17–to reduce to this from an LWE instance in dimension n with modulus q′.
This allows us to reach our desired “standard” dimension. We note that the key in both of
these instances is still “small” and of the noise distribution.

• We next apply lemma 15 to reduce to LWE with a small key (drawn from the noise distribution,
or a similar distribution) from LWE with a uniform key. After this step we have essentially a
“standard” LWE problem.

• Finally, we apply the famous theorem of Brakerski et al. to reduce to “standard” LWE from
the Gap-SVP problem.

This completes the proof, which is essentially just a combination of a new result on k-LWE and
an application of modulus switching.

Note that logq′ (q) will be quite large (possibly even polynomial, depending on the choice of q),
so the Gap-SVP problem reduced from here seems very likely to be hard.

C Instantiation Using Elliptic Curves
We next outline how our invariant construction might be instantiated with elliptic curve isogenies.
Our candidate construction(s) here are relatively high-level and need substantially more study on their
security properties, particularly in light of some recent cryptanalysis on isogenies [CD22b, MM22b].

Elliptic Curve Isogenies. We briefly outline some properties of elliptic curves and isogenies
that we will use in our candidate constructions. For a full treatment, we highly recommend [DF17].
Elliptic curves are projective curves of genus one with a specified base point. Elliptic curves over
finite fields k are often defined in Weierstrass form, consisting of all points in the locus of the
equation y2 = x3 +ax+ b and the point at infinity in P2

(
k
)
, where we use k to denote the algebraic

closure of k. The j-invariant of an elliptic curve E in Weierstrass form is defined as

j (E) = 1728 4a3

4a3 + 27b2 .

Two elliptic curves E1 and E2 are isomorphic if and only if they have the same invariant.
An isogeny ψ : E → E is a surjective group morphism between elliptic curves. We note that

isogenies only exist between elliptic curves with the same number of points. We denote the number
of points of a curve as #E (k), or sometimes just #E. Very roughly speaking, isogeny-based
cryptography is built on the fact that for certain elliptic curves E and related isogenies ψ, it is
possible to efficiently compute ψ (E), but given two elliptic curves E1 and E2, it is hard to find an
isogeny ψ (or set of isogenies applied in sequence) so that ψ (E1) = E2.

48

Background Ideas. Suppose we start with a hypothetical example. Let X be the set of elliptic
curves (perhaps represented by their j-invariants) where the number of points on the curve has the
form ℓ ∗ q for a prime q and some small ℓ. This can be generalized; having several small factors
could work as well, or also potentially restricting to super-singular curves.

The invariant could be the number of points on the curve. The σy,i are degree-ℓ isogenies, or
if we are generalizing to multiple small factors, σi will range over low-degree isogenies. Basically,
we choose some arbitrary way of mapping [r] to kernels of the ℓ-torsion, and then σi is applying
the isogeny defined by that kernel. The inverse of an isogeny is just the dual isogeny, which can be
efficiently computed.

The orbits O then correspond to sets of elliptic curves that can be reached by sequences of degree-
ℓ isogenies. Under some Ramanujan-Petersson conjecture [CLG08] (or alternatively GRH [JMV09]),
action by small-degree isogenies gives an expander. This should give us λ2 ≤ 1− δ as needed. We
also see that isogenies preserve the number of points on the curve, so the invariant property is
satisfied.

For security, the path finding is probably hard, as it is essentially the basis of isogeny cryptog-
raphy [Cou06, RS06]. The plain knowledge of path is false: since we can compute elliptic curves
with a given size, we have an invertible invariant. However, the knowledge of path for invertible
invariants could possibly be true: perhaps the only way of obtaining two elliptic curves with the
same number of points is to either:

• Sample an elliptic curve E1 and then follow a sequence of isogenies from it

• Sample an elliptic curve E1, compute the number of points on the curve, and then construct
a curve E2 with that many points using the known algorithms for doing so (or potentially
follow a sequence of isogenies from E2).

If so, then the knowledge of path assumption holds. Lastly, the invariant inversion assumption could
plausibly be true: given an elliptic curve, it seems likely that an adversary cannot construct random
coins for the elliptic curve construction procedure that produce the given elliptic curve.

Instantiating These Ideas. While it may seem straightforward to build a candidate quan-
tum lightning scheme using the template above, it unfortunately is not so straightforward. To
start, generating superpositions over X, where X is the set of all ellitpic curves with some (even
polynomially likely) property seems difficult. In fact, we do not even know how to generate a
uniform superposition over all elliptic curves efficiently. Recent work [MMP22] explains the known
approaches to sampling uniform supersingular elliptic curves classically, and unfortunately none of
it is amenable to sampling a uniform quantum superposition. Many of the most common ways to
sample elliptic curves use random walks, and generating superpositions this way makes it difficult
to avoid a hard index erasure problem [AMRR11].

There may also be a duality: the easier the sets of elliptic curves are to sample, the more difficult
it is to prove or argue security (since the number of isogenies that are computable may be less or less
sophisticated). We leave it open to future work to instantiate our framework (or something similar)
from elliptic curve isogenies, and instead lay out a rough sketch of what such an instantiation might
be like below. To do this, we start by making a conjecture on the efficient samplability of certain
elliptic curves.

Conjecture 20. There exists an efficient quantum algorithm A to sample a uniform superposition
over some distribution E of elliptic curves over some finite field Fp with the following properties:

49

• Given two random elliptic curves E1, E2 ∈ E such that E1 and E2 are isogenous, there is no
efficient (quantum) algorithm to find an isogeny ψ such that ψ (E1) = E2. This is analogous
to the path-finding assumption holding.

• Let I (E0) denote the number of points on an elliptic curve, and consider an algorithm
I−1 : Z × {0, 1}ℓ that takes an integer k and a random bit string b and outputs an elliptic
curve E0 with k points. We require the following two properties (which imply the knowledge
of path assumption for invertible invariants, and the inversion inverting assumption be true):

– Given any algorithm that outputs two elliptic curves E1 and E2 with k points, there
exists an extractor E that can either compute an isogeny ψ such that ψ (E1) = E2
or it can find randomness t and an isogeny ψ′ such that either ψ′

(
I−1 (k, t)

)
= E1 or

ψ′
(
I−1 (k, t)

)
= E2.

– No efficient adversary can do the following: sample an (arbitrary) elliptic curve E1 with
k points, and then, for a randomly selected elliptic curve E2, compute randomness t and
an isogeny ψ such that ψ

(
I−1 (k, t)

)
= E2.

We note that our chosen invarant I is the number of points on the elliptic curve. This is necessary
because this is the set of curves that are isogenous. Note that it is possible, in general, to compute
an elliptic curve with a certain number of points [BS04], so we need to use the invertible invariant
form of our quantum lightning construction. We note that A could, in theory, restrict the set of
curves to supersingular curves.

We emphasize that, while we cannot currently come up with algorithms to satisfy this conjecture,
it does not seem like a fundamentally impossible problem to us. In fact, it might be doable if we
knew of an algorithm to sample a uniform superposition of (all) elliptic curves over Fp. If we had
such a superposition, we could compute the number of points using Schoof’s algorithm [Sch95] or
some related algorithm and store this in an adjacent register. Then, we could compute a bit that
indicates whether or not the number of points on the curve satisfies some property, and then measure
this bit. If 1, we could continue (and thus have a superposition over curves where the number of
points had some property), and if 0, abort. If successful, we now have a uniform superposition over
elliptic curves where the number of points on the curve satisfies some property.16

We next provide a an instantiation of a quantum lightning scheme from elliptic curve isogenies
assuming that Conjecture 20 holds. A construction of quantum lightning from elliptic curve isogenies
might look something like the following:

Minting. To mint an instance of quantum money/lightning, we would do the following:

• Sample a uniform superposition over all non-degenerate elliptic curves using the (conjectured)
sampling algorithm A.

• Measure the number of points on the curve (i.e. compute the invariant I). This becomes the
serial number of the note.

16We would need this measurement to output 1 with polynomial probability, which would heavily restrict our
properties we could use here.

50

Verification. Our verification procedure would be very similar to as described in the walkable
invariant construction.

• To verify, we would apply isogenies that induce a random walk on the isogeny graph. We
simply need to apply enough isogenies so that the graph “mixes”.

• Then we simply apply the check as described in the walkable invariant construction to ensure
that we still have a uniform superposition over the orbits.

We do not know if it is even possible to instantiate such a scheme, as it would likely require
new ideas in isogeny-based cryptography. However, we think it is an enticing direction for future
research. We note that, given Conjecture 20, security immediately follows from the security of
our invariant money construction. So, if it is possible to come up with algorithms that satisfy the
conjecture, we can build secure quantum lightning from elliptic curve isogenies.

D Functional Encryption-inspired Instantiation
We present another candidate instantiation of invariant quantum money. We call it a “functional
encryption-inspired” instantiation because many components are functional encryption-like, but
the security properties we look for are very different than what is typically required in functional
encryption definitions.

At a high level, we need the following components:

• A secret-key functional encryption scheme FE for general functions with the following additional
properties:

– An invertible rerandomization algorithm ReRand that allows for ciphertext rerandomiza-
tion

– Obliviously sampleable ciphertexts.

• A (collision resistant) invariant function H or a family of such functions H.

We will specify the properties we need for the above building blocks in detail.

D.1 Re-randomizable Functional Encryption

We first have the basic algorithms for an FE scheme:

Basic Functional Encryption. A secret-key functional encryption scheme FE consists of the
following (basic) algorithms:

• FE.Setup(1λ)→ (pp,msk): a polynomial time algorithm that takes the security parameter as
input and outputs public parameters pp and a master secret key msk.

• FE.keygen(msk, f)→ skf : a polynomial time algorithm that takes as input the master secret
key msk and a function description f and outputs a corresponding secret key skf .

• FE.Enc(msk,m, r)→ ct: a polynomial time algorithm that takes the master secret key msk, a
message m and randomness r, outputs a ciphertext ct.

51

• FE.Dec(skf , ct)→ m: a polynomial time algorithm that takes a secret key skf and ciphertext
encrypting message m and outputs a result y.

We note that Setup and keygen may additionally take randomness, but we omit that in our
description for simplicity. To construct quantum money, we need the following additional properties:

Re-randomization We additionally need the following algorithm:

• FE.ReRand(pp, ctm,r, rδ) → ctm,r′ : takes in public parameters pp, a ciphertext ctm,r =
FE.Enc(msk,m, r), a string rδ; outputs a new ciphertext ctm,r′ .

We also require the ReRand algorithm to be invertible: there exists an efficient ReRand−1 such
that if ctm,r′ ← ReRand(pp, ctm,r, rδ), we can compute ctm,r ← ReRand−1(pp, ctm,r′ , rδ).

Randomness Recoverability In order for the re-randomization algorithm(and its inverse) to be
useful in the context of our scheme, we also need an efficient procedure to recover the randomness
from the ciphertext:

• RecoverR(msk, ctm,r)→ r: a deterministic algorithm takes in the the master secret key and a
ciphertext ctm,r; outputs the randomness r.

Note that in our scheme, it suffices to let RecoverR output both the message m and randomness r.
Therefore, we can just let RecoverR(msk, ·) and the decryption using the master secret key be the
same algorithm.

Obliviously Sampleable Ciphertexts. There exists a bijective function G : {0, 1}n+ℓ → C
where C is the space of all possible ciphertexts, n is the length of message and ℓ is the length of the
randomness used in encryption. We also give out the inverse function G−1 : C → {0, 1}n+ℓ.

Note that this function G is independent of the encryption function FE.Enc(msk, ·), and, in-
formally speaking, G should not be “useful” to any adversary attempting to attack the scheme.
One simple example of G is the identity function, when the ciphertexts are all possible strings in
{0, 1}n+m. However, we define G more generally since it may not be the case that the ciphertext
space is dense.

Remark 6. An alternative requirement to obliviously sampleable ciphertexts is to require that the
encryptions of random messages are statiscally close to uniform random strings. We note that this
is essentially equivalent to G being the identity function.

Correctness. A functional encryption scheme is correct for a family of functions F if for all
deterministic f ∈ F , all messages m ∈M, all randomness r ∈ R:

Pr

Dec(skf , ct) = f(m)

∣∣∣∣∣∣∣
(msk, pp)← Setup(1λ),
skf ← keygen(msk, f)
ct← Enc(msk,m, r)

 ≥ 1− negl(λ)

Note that the above correctness should also hold for re-randomized ciphertexts: that is, for all
f , all messages m ∈M, all randomness r, rδ ∈ R:

52

Pr

Dec(skf , ct′) = f(m)

∣∣∣∣∣∣∣∣∣
(msk, pp)← Setup(1λ, k),

skf ← keygen(msk, f)
ct← Enc(msk,m, r)

ct′ ← ReRand(pp, ct, rδ)

 ≥ 1− negl(λ)

Regarding encryption security, we do not require the usual indistinguishability based definition.
We instead present the following "Hardness of path finding" definition, analogous to 1:

Definition 9 ((Single-key) Ciphertext Path-Finding Security Game). The above FE scheme is secure
if for all functions f and all admissible non-uniform QPT A1,A2 with quantum advice {⟨ψauxλ}⟩λ∈N,
there exists a negligible function negl(·) such that for all λ ∈ N:

Pr

p = A2(1λ, pp, ct1, |st⟩)

∣∣∣∣∣∣∣
(msk, pp)← Setup(1λ)

(ctm0,r0 |st⟩)← A1(1λ, pp, skf ← keygen(msk, f))
ctm0,r1 ← Enc(msk,m0, r1), r1 ← R, r1 ̸= r0

 ≤ negl(λ)

The above p needs to be a path between ctm0,r0 and ctm0,r1 . That is, a sequence of inputs of the
form (ct, rδ) to the rerandomization algorithm FE.ReRand(pp, · · ·) that starts from ctm0,r0 and ends
with ctm0,r1 .
A is admissible if and only if it makes a single key query to the oracle keygen(msk, ·).
Note that in the functional key query phase of the above security game, the adversary may

attempt send a superposition query to the challenger; but the challenger can measure the register
that stores the circuit f ’s description so that it does not get to query on a superposition of circuits.

Remark 7. Informally speaking, the above game allows the adversary to choose a ciphertext,
and then the challenger chooses a ciphertext which is an encryption of the same message as the
adversarially chosen ciphertext. We note that this is a stronger notion of security than if the
challenger sampled two random ciphertexts of the same (randomly chosen) message, and that this
strengthened notion of security is essential for our path-finding assumption to hold.

Knowledge of Path Assumption for Rerandomizable FE We also make analogous assump-
tions to 2 on the knowledge of re-randomization path between two random encryptions of the same
message:

Assumption 5. Let A be a quantum polynomial time adversary A that is unitary (in the above
sense where there are no measurements except the output registers), given pp← Setup(1λ), skH ←
keygen(msk,H).

Let E be a quantum polynomial time extractor that is given A’s final output as well as its final
state. Let (ct1, ct2) be the A’s output, and p be the output of E.

Let B be the event that (1) H(ct1) = H(ct2), but (2) p is not a path between ct1 and ct2. In
other words, B is the event that A outputs two elements with the same invariant but E fails to find
a path between them.

The knowledge of path assumption for rerandomizable FE is that, for any quantum polynomial
time unitary A, there exists a quantum polynomial time E such that Pr[B] is negligible.

Other variants of the assumption 3,4 can be made analogously.

53

Remark 8. We can in fact modify the above requirement of H(ct1) = H(ct2) into "ct1 and ct1 are
encryptions of the same message m". As we will see later, the case that they are not of the same
message can be ruled out by collision resistance of H.

D.2 Quantum Money from Re-randomizable FE

Our candidate quantum money construction from re-randomizable FE follows from the framework
of walkable invariants in 8.1. We will describe its instantiation with a rerandomizable FE FE with
the properties described previously, as well as a collision resistant hash function.

Setup. the setup algorithm runs the FE setup and samplesH ← H, computes skH ← FE.keygen(msk,H)
of collision resistant hash function H. Publishes FE.pp, skH.

Minting. First, prepare a uniform superposition over all strings of length n+ ℓ, where n is the
message length and ℓ is the randomness length

∑
x∈{0,1}n+ℓ |x⟩.

• Compute the oblivious sampling function G in an output register to obtain
∑

x∈{0,1}n+ℓ |x⟩|G(x)⟩.

• Use the inverse of the oblivious sampling function, G−1 to remove the input register
∑

x∈{0,1}n+ℓ |x+
G−1(G(x))⟩|G(x)⟩ =

∑
x∈{0,1}n+ℓ |G(x)⟩. Now equivalently, we obtain a uniform superposition

of all possible ciphertexts
∑

m,r |ctm,r⟩.

• Compute FE.Dec(skH, ·) coherently on the state above, measure the output register to obtain
serial number y and money state:

|Py⟩ := 1√
|Py|

∑
m:H(m)=y;r

|ctm,r⟩

where Py is the set of pre-images of y.

Verification. The verification procedure is the same as the one described in 8.1. Here, the
permutation σ is the rerandomization operation FE.ReRand(pp, ·, rδ), specified by randomness rδ

(σ−1 corresponds to ReRand−1, accordingly). The "orbit" Om for message m corresponds to all
possible encryptions of m.

We note that correctness and security should follow immediately from the invariant money
scheme if the path-finding assumptions and knowledge of path assumptions hold.

D.3 Candidate Construction for Re-randomizable FE

We briefly sketch a candidate construction for the FE scheme with the above properties we need.
We leave the construction as a sketch because we do not know how to fully instantiate it, but think
a full, concrete instantiation from reasonably trusted assumptions is excellent future work.

• The encryption procedure is a permutation P (mskEval , ·) with puncturable secret key mskEval .
To show the path-finding security defined in 9, we (informally) characterize the security of the
puncturable permutation we use as follows:

54

– Let us denote the secret key as mskEval . The adversary A is allowed to make queries on
both forward evaluations P (mskEval , ·) as well as inversion evaluations P−1(mskEval , ·); it
is also given a "suffix" rerandomization program described as the above rerandomization
program in the FE scheme. A can then submit a challenge "prefix" m. The challenger
samples a random r and appends it to m17, computes Evalm,r = P (mskEval ,m||r) and
puncture the key at value Evalm,r. It gives Evalm,r and the punctured key msk∗Eval to A.
A finally outputs a value v and wins if and only if v = P−1(mskEval ,Evalm,r).

– Note that the usual indistinguishability based security notion(i.e. pseudorandomness of
the evaluation at punctured points) does not work here, since A knows the evaluation
starts with prefix m; we therefore rely on a search-type security.

• To encrypt, we apply P (mskEval , ·) on the concatenation of message m and randomness r. We
consider the master secret key msk for FE to contain both the (forward) evaluation key of the
permutation and the key for inversion.

• The functional decryption key for a function f is an obfuscated program that hardcodes
mskEval and function f : on input ciphertext P (mskEval ,m||r), it decrypts the ciphertext to
obtain m using mskEval ; then outputs f(m). The functional decryption procedure is hence
simply running the obfuscation program on the ciphertext.

• Randomness recoverability follows from invertibility of the permutation. The rerandomization
algorithm is also an obfuscated program that hardcodes mskEval and takes input ciphertext
P (mskEval ,m||r) and rδ: it inverts the input ciphertext to obtain both m and r; computes
r′ = r ⊕ rδ; finally outputs the re-encryption P (mskEval ,m||r′). This re-randomizarion
procedure is clearly invertible.

• Oblivious sampleability follows from the fact that encryptions of random messages in the
above scheme are uniform random strings. This follows from the fact that P is a permutation.

• For our CRHF H, we would like a post-quantum CRHF candidate, for example the SIS hash
function18.

Most of the above programs are constructible assuming indistinguishability obfuscation[GGH+16,
DN21, BKW17, BLW17]. The permutation we need is trickier to handle: one possible notion we
can take use is prefix-constrained PRP discussed in [BKW17] and its construction remains an open
problem. Besides, we need the evaluation key to be puncturable. [BKW17] also pointed out that
puncturable PRP is impossible for the usual security notion of pseudorandomness at punctured
points. But since we do not require our permutation to have such strong indistinguishability based
security, the impossibility does not apply here.

17More specifically, r is sampled through rejection sampling so that it does not collide with any suffix in previously
queried m||r′ and P (mskEval , m||r′) with the challenge prefix m. A is not allowed to query on the challenge value
Evalm,r after the challenge phase. These queries can all be seen as classical for the same reason in definition 9.

18Note that using a collapsing hash function as the invariant in an invariant money scheme does not lead to an
attack: intuitively, it only "collapses" the superposition over different orbits, but the superposition of all elements in
the same orbit remains hard to clone, which our verification essentially checks.

55

Ciphertext Path-Finding security Now we base the path-finding security (see definition 9) on
the permutation above. We first consider a weaker security called selective security: the adversary
has to commit to the challenge messages m0,m1 at the beginning of the security game, before seeing
the public parameters pp.

• After the adversary A1 submits ctm0,r0 to the reduction and the reduction submits it to an
inversion oracle of the permutation challenger to obtain (m0, r0). The reduction then submits
m0 as its challenge prefix to the permutation challenger.

• The challenger samples r1, append it to m1. It computes a value P (mskEval ,m0||r1) and
puncture the key at this value. Let us call this value ctm0,r1 and the punctured key msk∗ =
puncture(mskEval , ctm0,r1).

• The reduction receives ctm0,r1 and the punctured key msk∗. It can therefore prepare the
following program’s obfuscation as the functional decryption key on the adversary’s query f :

– Input: ct
– Harcoded: msk∗, ctm0,r1 , y = f(m0)
– If ct = ctm0,r1 : output y.
– Else: compute (m||r)← P (msk∗, ct); output f(m).

The reduction also sends ctm0,r1 as the challenge ciphertext.

• Suppose the adversary is able to produce a path between ctm0,r0 and ctm0,r1 , then the reduction
can use the path to compute r1 and thus knows m0||r1, which is the evaluation of P−1(msk∗, ·)
at the punctured point ctm0,r1 , while presumably it should not be able to compute this value.

In the quantum money scheme, we need to give out the functional key before the adversary
hands in the forged money states(i.e. the challenge ciphertext) and thus we need adaptive security
instead of selective security. This can be achieved through complexity leveraging (the reduction
needs to guess the correct m0; guessing r0 is not necessary) with subexponential security assumption,
as it is conventionally dealt with for FE [BB04].

Quantum Lightning Security. We discuss the security of the above quantum lightning scheme
based on functional encryption.

First, the verification correctness is satisfied since the re-randomization procedure is an invertible
permutation on the ciphertexts of the same message indexed by the randomness, and therefore 8.2
applies.

For security: suppose there is an adversary that produces two valid money states with the same
serial number and suppose measuring both of the money states in computational basis, there are
possible two events for the money states it produced:

• Event 1: both states produce two ciphertexts ctm,r1 , ctm,r2 , which are encryptions of the same
message, with all but negligible probability.

• Event 2: with non-negligible probability, two money states give encryptions of different
messages, ctm1,r1 , ctm2,r2 , where H(m1) = H(m2).

56

First, we can observe the probability that Event 2 happens is negligible: otherwise such an adversary
will help break the collision resistance of H (this case can also be covered by the knowledge-of-path
assumption 5 if we do not require the two outputs (ct1, ct2) by A to be of the same message. But
we can rule it out completely here by collision resistance).

To rule out Event 1, we first take use of the hardness of ciphertext path-finding security 9 that
we have shown. Then combining with the knowledge-of-path assumptions defined in 5, we would be
able to argue that Event 1 happens with negligible probability, just as shown in section 8.4, thus
ruling out any quantum lightning adversary. The proof would be largely identical so we omit it here.

Ideally we would want to rule out Event 1 without the knowledge-of-path assumptions. How-
ever, such a proof is likely to be beyond the power of existing functional encryption or even
indistinguishability obfuscation techniques.

E Instantiation from Classical Oracles and Group Actions
We present yet another instantiation of invariant quantum money. In this case, we present a classical
oracle-based scheme, whereas some previous lightning schemes are based on quantum oracles.

This scheme provides an alternative view on both of our isogenies over elliptic curve instantiation
and our functional encryption instantiation: group actions can be viewed as an abstraction for
certain isogeny-based cryptography, and the oracles we will use are abstractions of the algorithms in
the functional encryption scheme.

We show that any adversary that can break this scheme can be used to solve the discrete
logarithm problem over (quantum-accessible) generic group actions, assuming the knowledge of
path property.

E.1 Preliminaries: Cryptographic Group Actions

First and foremost we provide some preliminaries for group actions.
We define cryptographic group actions following Alamati et al. [ADMP20], which are based

on those of Brassard and Yung [BY91] and Couveignes [Cou06]. Our presentation is borrowed
from [MZ22].

Definition 10. (Group Action) A group G is said to act on a set X if there is a map ⋆ : G×X → X
that satisfies the following two properties:

1. Identity: If e is the identity of G, then ∀x ∈ X, we have e ⋆ x = x.

2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh) ⋆ x = g ⋆ (h ⋆ x).

We may use the abbreviated notation (G,X, ⋆) to denote a group action. We extensively consider
group actions that are regular :

Definition 11. A group action (G,X, ⋆) is said to be regular if, for every x1, x2 ∈ X, there exists a
unique g ∈ G such that x2 = g ⋆ x1.

We emphasize that most results in group action-based cryptography have focused on regular
actions. As emphasized by [ADMP20], if a group action is regular, then for any x ∈ X, the map
fx : g 7→ g ⋆ x defines a bijection between G and X; in particular, if G (or X) is finite, then we must
have |G| = |X|.

57

In this paper, unless we specify otherwise, we will work with effective group actions (EGAs). An
effective group action (G,X, ⋆) is, informally speaking, a group action where all of the (well-defined)
group operations and group action operations are efficiently computable, there are efficient ways to
sample random group elements, and set elements have unique representation.

In this work we will also use the group action discrete logarithm problem.

Definition 12. (Group Action Discrete Logarithm) Given a group action (G,X, ⋆) and distributions
(DX ,DG), the group action discrete logarithm problem is defined as follows: sample g ← DG and
x← DX , compute y = g ⋆ x, and create the tuple T = (x, y). We say that an adversary solves the
group action discrete log problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs g.

E.1.1 A Generic Group Action Framework

In this section, we present the generic group action framework from [MZ22]. Their framework is
based on the generic group framework of Shoup [Sho97]. The following is taken mostly verbatim
from [MZ22].

Let G be a group of order n, let X be a set that is representable by bit strings of length m,
and let (G,X, ⋆) be a group action. We define additional sets SG and SX such that they have
cardinality of at least n and 2m, respectively. We define encoding functions of σG and σX on SG

and SX , respectively, to be injective maps of the form σG : G→ SG and σX : X → SX .
A generic algorithm A for (G,X, ⋆) on (SG, SX) is a probabilistic algorithm that behaves in the

following way. It takes as input two encoding lists (σG (g1) , ..., σG (gk)) and (σX (x1) , ..., σX (xk′))
where each gi ∈ G and xi ∈ X and where σG and σX are encoding functions of G on SG and X on
SX , respectively. As the algorithm executes, it may consult two oracles, OG and OX .

The oracle OG takes as input two strings y, z representing group elements and a sign “+” or
“–”, computes σG

(
σ−1

G (y)± σ−1
G (z)

)
. The oracle OX takes as input a string y representing a group

element and string z representing a set element, and computes σX

(
σ−1

G (y) ⋆ σ−1
X (z)

)
. As is typical

in the literature, we can force all queries to be on either the initial encoding lists or the results of
previous queries by making the string length m very long. We typically measure the running time
of the algorithm by the number of oracle queries.

It is also possible extend the generic group action model to the quantum setting, where we allow
quantum queries to the oracles. We model quantum queries in the usual way: OG

∑
y,z,±,w αy,z,±,w|y, z,±, w⟩ =∑

y,z,±,w αy,z,±,w|y, z,±, w ⊕ OG(y, z,±)⟩ and OX
∑

y,z,w αy,z,w|y, z, w⟩ =
∑

y,z,w αy,z,w|y, z, w ⊕
OX(y, z)⟩.

E.1.2 Post-Quantum Instatiation of Group Actions

Some isogeny based group actions are CSIDH [CLM+18], CSI-FiSh [BKV19] as well as its deriva-
tives/applications [DFM20]. We refer the readers to [AFMP20] for a detailed discussion on the
classification of various isogeny protocols into group action definitions.

Some other group actions as post-quantum candidates are not isogeny-based, for example
[JQSY19].

Remark 9. A few very recent works [CD22b, MM22b, Rob22] break SIDH by showing how to solve
the discrete log problem. However, the attack exploits certain extra points that are made public in

58

SIDH, and these points are exactly one of the reasons that SIDH is not a group action. In particular,
the attack does not seem to apply to CSI-FISH or CSIDH, the main instantiations of group actions.

E.2 The Oracles

We begin by defining some oracles that we will use.
Let n0, n1, n2 be positive integers. Let G be a prime-order cyclic group such that |G| >> n2, and

suppose we have a generic regular group action defined by (G,X, ⋆). We also require n0 >> n1 + |G|.
We work in the Generic Group Action framework defined in the previous section E.1.1. We will

sometimes assume that the oracles OG,OX are given implicitly.
To implement our invariant function. we first need a collision-resistant function(or a random

oracle):
H : {0, 1}n1 → {0, 1}n2

With this in mind, we can define other functions as well. We define a set of four functions as
follows. These will be our “setup” and “utility” oracles. We need |S| = 2n0 ; P,Q are bijective
funtions (we will generally model these as random oracles subject to certain constraints.).

Q : {0, 1}n0 → S

Q−1 : S → {0, 1}n0

P : {0, 1}n1 ×X → S

P−1 : S → {0, 1}n1 ×X
We include a few extra restrictions. We first require that, for all tuples of bit strings x ∈ {0, 1}m
and elements g ∈ G, we have Q−1 (Q (x, g)) and P−1 (P (x, g)). Moreover, we require that the
output sets of P and Q be identical, although the mappings themselves are random subject to this
constraint (and thus, almost certainly different).

We next define our invariant oracle as follows. Let S be the set of bit strings in the output space
of P and Q.

I : S → {0, 1}n2

Note that we are assuming that I takes as input an element ex,x = P (x, x) of S and returns the
invariant H(x) computed in an output register. Note that we can instantiate oracle I as follows:
first apply P−1 on ex,x to get back to x||x, then apply the function H on x. Since I can only be
accessed as an oracle, functionality of P−1 is not given out.

Finally, we must define our “random walking” function R:

R : S ×G→ S

We define R’s functionality as: ∀x ∈ X,x ∈ {0, 1}n1 , g ∈ G : R (P (x, x) , g) = P (x, g ⋆ x). R
can be implemented using P−1 on element ex,x = P (x, x) to recover (x, x); then it calls the group
action oracle OG to apply g ⋆ x; finally it outputs the result by applying P on (x, g ⋆ x). Naturally,
to apply a reverse random walk, one would use g−1.

E.3 Quantum Money from Oracles and Group Actions

As before, the quantum money(lightning) scheme in this section follows from the framework of
walkable invariants in 8.1. We will define the scheme and then prove that it instantiates a secure
walkable invariant.

59

Setup the setup algorithm generates all of the oracles defined in the previous section. It then
publishes Q, Q−1, H, I and R, as well as a description of all the parameters and the relevant oracles
for the generic group action (G,X, ⋆). Note that P, P−1 are kept secret.

Minting First, prepare a uniform superposition over all strings of length n0, giving us the following:∑
s∈{0,1}n0 |s⟩.

• Compute the oblivious sampling function Q in an output register to obtain
∑

s∈{0,1}n0 |s⟩|Q(s)⟩.

• Use the inverse of the oblivious sampling function, Q−1 to remove the input registers∑
s∈{0,1}n0 |s⟩. This allows us to obtain a uniform superposition of all possible values∑
s∈{0,1}n0 |Q(s)⟩. Equivalently, we have obtained

∑
e∈S |e⟩ =

∑
x∈{0,1}n1 ,x∈X |P (x, x)⟩.

• Compute the invariant function I coherently on the state above, and then measure the output
register to obtain serial number y and money state:

|My⟩ := 1√
|My|

∑
x:H(x)=y;x

|P (x, x)⟩

where My is the set of pre-images of y.

Verification The verification procedure is straightforward and the same as the one in 8.1. Note
that this is even simpler than defined above because we required G to be a prime-order cyclic group.

Here, the permutation σ is the rerandomization oracle R specified by randomness g ∈ G. The
"orbit" Ox corresponds to all possible evaluations of P on a fixed bit string x.

E.4 Quantum Lightning Security

We also have a reasonably reliable hard problem to reduce our path-finding hardness to, namely,
the group action discrete log problem.

To prove security, we will first show that the Path-Finding hardness holds in the GGA framework.

Definition 13 (Path-Finding Game for Group Actions). Consider an adversary A playing the
following game:

• Give the adversary access to Q,Q−1, R, I (and the oracles in GGA framework).

• The adversary outputs an ex,x ∈ S.

• The challenger then computes a random ex,z ∈ Ox, where the "orbit" Ox corresponds to the
set of all possible evaluations of P on a fixed bit string x .

• The adversary wins if it can output a path p between ex,x to ex,z, where a path is a sequence
of classical queries to oracle R.

We next show that for all quantum polynomial-time adversaries A, the probability A wins in the
above game is negligible.

Lemma 21. Any adversary that breaks the Path-Finding game in 13 can be used to solve discrete
logarithm on (G,X, ⋆) (definition 12).

60

Proof. This is almost immediate due to the construction of our scheme. Suppose there exists an
adversary that outputs a path, i.e. a sequence of classical oracle queries made to R to get from ex,x

to ex,z, then one can output a sequence of group elements g1, · · · , gk such that z = (gk · · · g1)⋆x.

We give a variant for the Knowledge of Path assumption 2 in the generic group action framework:

Assumption 6. Let A be a quantum polynomial time adversary A that is unitary (in the above sense
where there are no measurements except the output registers), given oracle access to Q,Q−1, R, I.

Let E be a quantum polynomial time extractor that is given A’s final output as well as its final
state. Let (ex, ez) be the A’s output, and p be the output of E.

Let B be the event that (1) I(ex) = I(ez), but (2) p is not a path between x and z. In other
words, B is the event that A outputs two elements with the same invariant but E fails to find a
path between them.

The knowledge of path assumption for group actions is that, for any quantum polynomial time
unitary A, there exists a quantum polynomial time E such that Pr[B] is negligible.

The above event B can again be divided into two cases: (1) A’s outputs ex, ez are in different
"orbits", i.e. ex = P (x1, x) and ez = P (x2, z) for some x1 ̸= x2, H(x1) = H(x2); (2) ex, ez are in the
same orbit. The first case is ruled out by the collision resistance of H. Thus we can modify the
above assumption into requiring that ex.ez are in the same orbit.

We can also analogously transform 3, 4 to the group action version.
Therefore, using the path-finding hardness for group actions shown above 21 together with the

above assumptions, the security proof will be almost identical to section 8.4, ruling out any quantum
lightning adversary.

.

F Instantiation Using Knots
The inspiration for our invariant scheme was the construction of quantum money from knots
in [FGH+12]. In this section, we explain how this construction can be modelled in our framework
and what assumptions on knots need to be true in order for our security proof to apply. While it’s
possible that their verification procedure may not satisfy correctness(the Markov chain does not
mix) and the security property is challenging to investigate, we believe an alternative view would
provide insight into proving/breaking their scheme.

On Knots. Recall that a knot is an embedding of the circle into three-dimensional Euclidean
space, or more informally, as the authors of [FGH+12] nicely put it, a loop of string in three
dimensions. Informally speaking, two knots are considered to be equivalent if they can be morphed
into each other without “cutting the string”. We say that a function is a knot invariant if it has the
same value on all equivalent knots.

Knots (of a certain maximum size) can be represented by planar grid diagrams, which are d× d
grids containing exactly d Xs and dOs such that each row and column of the grid have exactly one
X and one O, and there is no space in the grid with both an X and an O. Alternatively, knots can
be represented by a tuple of two disjoint permutations of size d. We note that knots with smaller
numbers of “elements” (i.e. with less than d Xs and Os) can be gracefully represented on d× d grids
by leaving certain columns and rows blank.

61

Reidemeister moves [Rei27] are three types of local moves that can be applied to a planar grid
diagram with the properties that any two knots that are reachable from each other by Reidemeister
moves are equivalent and that any two equivalent knots must be reachable by the application of a
finite number of Reidemeister moves (although the best bound on the minimum number of moves is
enormous [CL14]).

It will be useful to think of Reidemeister moves as a set R acting on the set of planar grid
diagrams of size d Sd. While each move r ∈ R has an inverse, it is unfortunately impossible to
model this interaction as a group action because the application of Reidemeister moves may not be
associative.

We defer a full description of knots, Reidemeister moves, and associated concepts to [FGH+12];
we will not need the full formalism to convey our ideas here.

F.1 A General Description of the [FGH+12] Scheme

We next provide a general description of the quantum money from knots scheme in [FGH+12]. We
omit some of the details of the scheme (some of which are important for its security) so we can
present the scheme in its most general form.

Minting. To mint a note, start by constructing a specific superposition over grid diagrams of
size d, which we refer to as |Sd⟩ over Sd. In particular, a uniform distribution over all possible
knots represented by d× d planar grid diagrams is not chosen for security reasons. Instead, knots
are weighted in the superposition based on the number of “elements” present in the grid diagram
representation according to a Gaussian distribution centered on d

2 .
After generating |Sd⟩, compute a knot invariant A on the superposition |Sd⟩, store it in an

adjacent register, and then measure it, getting some value y. The serial number is the value of this
invariant, and the money state becomes 1√

|
∑

A(Sd)=y
|

∑
A(Sd)=y |Sd⟩. In [FGH+12], the authors use

the Alexander polynomial as the knot invariant of choice.

Verification. To verify, a quantum verification procedure based on a classical Markov chain is
applied. Essentially, many randomly chosen Reidemeister moves are applied to the money state
superposition with the restriction that Reidemeister moves that would expand the planar grid
diagram beyond d dimensions are ignored. This (somewhat) simulates a (not necessarily uniform)
random walk on the graph of equivalent knots.

In other words, the verification procedure is almost identical to our process described in section 8.
The set of all Reidemeister moves on d × d grid diagrams form something very close to a set of
permutations σi : Sd → Sd; it turns out to be possible to construct permutations on grid diagrams
from Reidemeister moves such that the permutation set enables all possible Reidemeister moves.19

F.2 Correctness Properties

In order to fit in our quantum money framework, we require two essential properties of a scheme:
efficient generation of superpositions and mixing walks.

19To be precise, we just need to pair Reidemeister moves that increase the number of elements in the grid diagram
with a corresponding move that “undoes” the transformation, and choose which move we apply based on the number
of elements in the grid diagram.

62

Efficient Generation of Superpositions. The authors of [FGH+12] show clearly how to generate
the appropriate superpositions. It is a slightly long presentation so we defer to their paper.

Mixing Walks. In the context of our framework, “orbits” are knots and “permutations” are Rei-
demeister moves. Our framework requires uniform superpositions over orbits, while the construction
in [FGH+12] uses non-uniform superpositions. However, if the mixing process preserves the starting
superposition as the authors of [FGH+12] conjecture, then their knot scheme could be fit into our
framework with relatively minor modifications to the framework.

However, a formal proof that mixing occurs would be quite difficult and likely involve solving
several longstanding open problems in knot theory. A uniform mixing process for knots could only
work in polynomial time if the number of Reidmeister moves between all equivalent knots of a certain
size were bounded. Unfortunately, the only known bound for the number of Reidemeister moves
between arbitrary knots invoves a “tower of exponentials” function [CL14]. While it is known that
the number of Reidemeister moves between unknot20 representations of a certain size is polynomially
bounded [Lac15], there are no known results for more general knots.

It may be the case that the restriction to d× d grids may make proving mixing easier, but we
could not effectively utilize this fact.

We emphasize that the lack of a good mixing algorithm may not constitute an attack: it could
still be the case that it is hard for an adversary to find a superposition that is unchanged by the
existing mixing algorithm. But these sorts of statements and proofs are outside of our framework.

F.3 Security Properties

If we want to build secure quantum lightning from knots using our framework, we would need to
show that two assumptions are true: the hardness of path-finding assumption and the knowledge of
path assumption.

Hardness of Path-finding. It has long been conjectured that the knot equivalence problem–in
other words, distinguishing whether or not two knots are equivalent or not–is hard [Dyn03]. The
hardness of path assumption in this scheme would correspond to actually finding the Reidemeister
move set necessary to transform one knot into another equivalent knot, and any efficient algorithm
for this would immediately imply an efficient algorithm for the knot recognition problem. It is
known that determining if two knots are equivalent or not is decidable [Lac16], but it is not even
known if the problem is in NP. Presumably if there were polynomial-length numbers of moves
between equivalent knots of certain sizes, the problem would be in NP, but this is not known.

On the other hand, Lackenby [Lac21] has recently announced a quasipolynomial algorithm for
recognizing the unknot. If this could be generalized to other knot equivalences (which may or may
not be possible), it would spell trouble for basing cryptographic primitives on the hardness of knot
equivalence.

Knowledge of Path Assumption. It is more difficult to assess the knowledge of path assumption
over knots. Intuitively, this asks whether or not it is possible to create two equivalent knots without
knowing a path between them (in particular, the path must only involve knots that fit on d × d

20The unknot is the simplest possible knot: just a circle.

63

planar grids). We certainly do not see an easy way to do this, but to our knowledge no one has ever
studied this problem.

64

	Introduction
	Motivation

	Our Results
	Technical Overview
	How to Not Build Quantum Money from Lattices
	Quantum Money from Walkable Invariants

	Related Work and Discussion
	Preliminaries
	Lattice Basics
	(Lattice-relevant) Quantum Facts
	Gaussian Superposition Preparation

	General LWE Definition
	The k-LWE Problem
	Quantum Money and Quantum Lightning

	The Flaw in KLS22 Lattice-Based Quantum Money
	Overview of KLS22
	An Alternate View of KLS22
	Summary of Alternate Minting Process
	The Flaw

	Our General Attack on a Class of Quantum Money
	The General Scheme
	Attacking the General Scheme
	Indistinguishability of |u'
	Constructing |u'
	Applying to KLS22

	Invariant Money
	Quantum Money from Walkable Invariants
	Approximate Verification
	Hardness Assumptions
	Security Proof for Invariant Money

	Additional Preliminaries
	On the Hardness of k-LWE
	Helpful LWE Lemmas
	Modulus Switching
	k-LWE for a Constant Number of Vectors Is Hard
	Putting It All Together

	Instantiation Using Elliptic Curves
	Functional Encryption-inspired Instantiation
	Re-randomizable Functional Encryption
	Quantum Money from Re-randomizable FE
	Candidate Construction for Re-randomizable FE

	Instantiation from Classical Oracles and Group Actions
	Preliminaries: Cryptographic Group Actions
	A Generic Group Action Framework
	Post-Quantum Instatiation of Group Actions

	The Oracles
	Quantum Money from Oracles and Group Actions
	Quantum Lightning Security

	Instantiation Using Knots
	A General Description of the ITCS:FGHLS12 Scheme
	Correctness Properties
	Security Properties

