
Anonymous Tokens with Hidden Metadata Bit
from Algebraic MACs

Melissa Chase1, F. Betül Durak1, and Serge Vaudenay2

1 Microsoft Research
2 EPFL

Abstract. On the one hand, the web needs to be secured from malicious
activities such as bots or DoS attacks; on the other hand, such needs
ideally should not justify services tracking people’s activities on the web.
Anonymous tokens provide a nice tradeoff between allowing an issuer
to ensure that a user has been vetted and protecting the users’ privacy.
However, in some cases, whether or not a token is issued reveals a lot
of information to an adversary about the strategies used to distinguish
honest users from bots or attackers.

In this work, we focus on designing an anonymous token protocol be-
tween a client and an issuer (also a verifier) that enables the issuer to
support its fraud detection mechanisms while preserving users’ privacy.
This is done by allowing the issuer to embed a hidden (from the client)
metadata bit into the tokens. We first study an existing protocol from
CRYPTO 2020 which is an extension of Privacy Pass from PoPETs 2018;
that protocol aimed to provide support for a hidden metadata bit, but
provided a somewhat restricted security notion. We demonstrate a new
attack, showing that this is a weakness of the protocol, not just the
definition. In particular, the metadata bit hiding is weak in the setting
where the attacker can redeem some tokens and get feedback on what
bit is extracted.

We then revisit the formalism of anonymous tokens with private meta-
data bit, consider the more natural notion, and design a scheme which
achieves it. In order to design this new secure protocol, we base our con-
struction on algebraic MACs instead of PRFs. Our security definitions
capture a realistic threat model where adversaries could, through direct
feedback or side channels, learn the embedded bit when the token is
redeemed. Finally, we compare our protocol with one of the CRYPTO
2020 protocols which we obtain 20% more efficient implementation.

1 Introduction

There has been significant industry interest recently in anonymous tokens, in-
cluding Google’s Trust Tokens (TT) [1] and Cloudflare’s Privacy Pass (PP) [12].
These protocols are used to transfer trust signals without compromising users’
privacy. Anonymous tokens define a protocol between three types of parties: a
client, an issuer, and a redeemer. The client wishes to obtain tokens from an



issuer and then present them to a redeemer. The issuer determines the trust-
worthiness of clients and issues tokens; and the redeemer (a.k.a. the verifier)
verifies the tokens. These systems are anonymous in that the token issuance and
redemption are unlinkable, in the sense that the issuer and redeemer cannot tell
which of the issued tokens was used in any given redemption. In the above sys-
tems, we consider the issuer and the redeemer which are controlled by the same
entity, so these two parties are assumed to share a secret key.

In the case of PP, it is specifically designed in the context of CDNs to assess
the trustworthiness of a client at the edge before the client is granted (or denied)
access to a web server. In the typical use case, the client is required to solve a
CAPTCHA before it accesses a web server for the first time. If the CAPTCHA is
successfully solved, the client is given a set of tokens to redeem the next time it
visits the web server. At subsequent visits the server checks that the user’s token
is valid and has not previously been used, and if so allows the client to bypass the
CAPTCHA and directly access the content. This allows for a better experience
for the user since they only have to complete the CAPTCHA once, even if they
are accessing the webserver over Tor or a VPN. Because of the unlinkability, it
does so without helping the web server to track the user across different visits.

Even though CAPTCHA is one way to detect bad actors, there are more ad-
vanced techniques to assess how trustworthy the client is, for example based on
machine learning algorithms for fraud detection. Typically, such fraud detection
algorithms are run on the issuer side; when these algorithms determine that a
client is likely to be malicious, the issuer should refuse to issue it any tokens.
However, such feedback allows a fraudulent client to improve their methods to
bypass the fraud detection. Ideally the issuer would instead embed a bit (to indi-
cate if the client is malicious or trusted) inside the token which would be hidden
from the client and only recovered by the redeemer during the redemption. That
way, the malicious client would not find out that its fraudulent activity has been
detected until it tries to redeem the token. This would make this type of attack
on the fraud detection algorithms significantly more cumbersome.

Given the idea behind anonymous tokens with private metadata bit, there
are three desired security and privacy requirements: unforgeability (to prevent
malicious clients from forging valid tokens), unlinkability (to prevent a malicious
server and redeemer from linking the tokens they issued with those that are re-
deemed), and privacy of embedded metadata bit (to prevent the clients from
learning immediately if they were identified as malicious actors). More specifi-
cally, the metadata bit is a covert channel between issuer and redeemer, who as
described above will share a key. If this channel were allowed to convey unlimited
information, unlinkability would be meaningless, so the protocols must ensure
that the embedded signal is only a single bit and no more. Such covert channel
with one bit is used to communicate whether or not the issued token should be
accepted without revealing the decision to the client until it attempts to redeem.

The initial proposal for including a private metadata bit built directly on the
PP protocol where the client picks an arbitrary message t and masks it to hide
from the issuer (i.e., the issuer blindly “signs” the t), and then the client unmasks
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the signature on t. This idea naturally extends to support private metadata bits
with PP: the issuer would choose two PP issuing keys and generate a token
under one key or the other depending on the bit it wished to encode.

Because PP is based on an oblivious pseudo random function, a token gen-
erated under either key was indistinguishable from random so the client was
unable to determine the bit from looking at a correctly generated token. How-
ever, this protocol had significant weaknesses; a malicious client can easily make
malformed token requests (keep using the same message t), and then tell from
the responses whether the tokens issued encode the same metadata bit. This
means that the attacker has to make one request for which he can predict the
resulting bit (e.g. by using a genuine user device or by behaving badly enough
that it will be guaranteed to be detected as fraudulent), and then it can make
an incorrectly formed token request and directly tell from the (invalid) token it
receives whether the attacker was attempting to issue a token with metadata bit
0 or 1. This problem essentially comes from the fact that the PP allows the client
to pick the messages to be signed arbitrarily. In our design, messages generated
by both the client and the issuer guaranteeing the randomness of it.

Two recent papers [14,13] and [16] aim to address this problem and to for-
mally define and construct anonymous tokens with private metadata bit. The
latter is more generic version of the former where the protocols can accept public
metadata as well as the private metadata bit. The authors in these work identify
the problem as being that the tokens are deterministic; they propose new ran-
domized protocols. These proposals address the issues above and guarantee that
an adversary who can maliciously interact with the token issuing server cannot
learn anything about the private metadata bits encoded in the tokens it receives.

However, these schemes still have some counter intuitive properties. In par-
ticular, in their protocol, there are two notions for a token: “validity” where the
adversary gets the feedback if the token is verified correctly and “embedded bit”
where the adversary gets feedback if there is an embedded bit or not without
revealing the bit (if it exists). Their definition of privacy for the metadata bit
allows the adversary to learn at redemption whether a token is “valid”, but nei-
ther if there exists a bit nor the value of embedded bit. And this is not just
a property of the definition: we will show that the proposed schemes have the
property that if the redemption service reveals whether a bit is embedded during
the token redemption, the adversary can use only a few malicious interactions
with the issuing and redemption service to learn information about the hidden
bits embedded in a large batch of tokens.

This separation may make sense in some contexts, where we can guarantee
that the adversary gets no feedback at all from the redemption server on whether
it’s token was accepted and what the included bit was. In other cases however,
this seems to be a nontrivial weakness. For example, in the CDN application
above, the adversary will clearly get feedback on the bit if it used to determine
whether it will be allowed to access to the web content. A private metadata bit
protocol with this type of weakness would allow the adversary to make many
attempts to bypass the fraud detection and thus acquire many tokens, then
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make a few redemption requests and identify exactly which of the remaining
unredeemed tokens successfully avoided the fraud detection. Those tokens could
then be collected and, for example, used to mount a DDOS attack.

Thus, it is clear that in at least some settings, we would like a token system
which provides stronger guarantees. Moreover, identifying all sources of feedback
is challenging. It seems likely that if a new primitive for anonymous tokens is
released, it will at some point be used in settings where the adversary can get
feedback on the encoded bit, whether or not the security definition allows for
that. Thus, the best solution would be the one that provides the most natural
security guarantees - an adversary interacting with an issuer and a redeemer
may learn the bits encoded in the tokens it redeems, but nothing else.

That leaves us with the following questions: Is such a definition efficiently
realizable? What is the overhead as compared to the solutions described above?

Our Contributions. In the rest of the paper, we begin by summarizing the private
metadata bit proposals of [14,13], describing the known weakness in detail, and
explaining an additional attack. Then we present our more natural security defi-
nitions, which are based on the definitions from [14,13] but do not allow for such
weaknesses. Finally, we present a new construction for anonymous tokens with
private metadata bit which we show satisfies more natural security definitions.
We analyze the efficiency of our protocol in Section section 5 and show that,
surprisingly, our protocol is faster than the weaker proposals of [14,13] (1.3 ms
vs 1.6 ms). Finally, we show the flexibility of our approach by demonstrating
that it extends easily to allow for tokens including public metadata visible to
both issuer/redeemer and client.

Our Techniques. As mentioned above, the initial privacy pass protocol was based
around oblivious pseudorandom functions (OPRFs). The proposals of [14,13,16],
as described above, identify the problem as that OPRFs are deterministic, and
attempt to address it by making the protocol randomized. However, once we rec-
ognize that we do not in fact need a deterministic function, we can ask whether it
makes sense to base this primitive around OPRFs, whose defining characteristic
is that they are deterministic. Moreover, the obliviousness property of OPRFs
turns out to be not a very good fit for hiding the metadata bit.

This begs the question: Is there a better primitive to start from if we want
to encode hidden data in anonymous tokens?

For this, we turn to authentication primitives like MACs. Since we need
privacy, we look at the work on anonymous credentials, which allows issuers to
certify attributes which can later be presented unlinkably [10,3]. Specifically, we
will borrow from keyed verification anonymous credentials (KVAC)[6,7], where
the credential issuer and verifier share a secret key, and on constructions based
on algebraic MACs.

KVAC directly gives us a protocol for blindly issuing credentials, in which
an issuer issues a MAC on a set of attributes, some of which are only known to
the client. At a high level we can apply this as follows: in token issuance, the
client chooses a random nonce, and the issuer uses blind issuance to give a MAC
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on a pair of messages consisting of the nonce and the hidden bit. If we use the
first construction from [6], MACGGM, that gives a construction in elliptic curve
groups where tokens consist of the nonce and two additional group elements,
which is roughly comparable with PMBT, and only twice as long as PP. But, if
we consider the blind issuance protocol from [6], it would be roughly twice as
expensive as the issuance for PMBT, and 4 times the cost of PP. It also does not
directly provide metadata privacy as that is not a property generally considered
in the credentials setting. Technically then, we are left with two questions: 1)
Can we optimize the MACGGM based issuance protocol to the point where it is
competitive with PP or PMBT? and 2) If the client does not know one of the
attributes in the credential, do the protocols still work? Can we prove that this
attribute will not be leaked to the client?

We address the first of these questions with a very careful optimization of
the blind issuance protocol to get a result with comparable cost to PMBT. If
we wanted to directly reduce to MAC security, we would need the request to
include something from which we could extract the nonce in Zp which will be
the message for the MAC. Extracting messages in Zp is extremely expensive.3

Moreover, the blind issuance protocol in [6] has the client form an ElGamal
encryption of the message to be signed, which would result in a client-to-server
message twice as long as in PP or PMBT, even before the proofs are added.
Instead, we design an optimized blind issuance protocol and prove in the generic
group model that the resulting token scheme is unforgeable.

Unlinkability follows in a straightforward way from the privacy of the KVAC
scheme. Privacy of the metadata bit is more challenging, as there is no analog in
the KVAC context. First, we note that the blind issuance protocol works even
if the client does not know one of the messages, and the verifier (the issuance
server) can simply verify with both possible bit messages, and output the bit for
which the MAC verifies. Intuitively, we also might hope to get privacy for the
metadata bit because MACGGM has some pseudorandomness properties: the
basic MAC on a message pair (m0,m1) is (U, (x + ym0 + zm1)U), where U is
a random group element (x, y, z) are the secret key. DDH then guarantees that
this will look like a random pair of messages. However, proving that this satisfies
the metadata bit privacy property, where the adversary can interact maliciously
with issuance and redemption oracles is significantly more challenging. Here, we
again prove security in the generic group model.

Related Work. Beyond the works on anonymous tokens mentioned above, the
most closely related work is in anonymous credentials. While there are also works
based on RSA groups (beginning with [3,4]) and based on pairings, we focus
here on works that can be implemented in prime order elliptic curve groups,
since those provide the best efficiency. In that setting, besides MACGGM, there
is one other proposal for a MAC based anonymous credential scheme [8] which
is strictly more complex and more expensive than MACGGM.

3 [6] addresses this by making non-standard assumptions about the extraction prop-
erties of Fiat-Shamir.
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In addition, there are several anonymous credential constructions in elliptic
curve groups that take a blind-signature based approach [15,2,18].4 It is not clear
how to add private issuer values (like the metadata bit) in these schemes, but
even if we consider the simpler setting where the bit is known to the user, these
schemes have several downsides: First, token redemption is significantly more
expensive (4x for [15] or [18], and 8x for [2]). In a setting like the CDN application
where we will be using tokens to decrease spam/prevent DDOS attacks, we want
the cost to verify tokens to be as low as possible. Secondly, they all require a
multi-round issuance protocol, with two round trips between the user and issuer.
This requires that the token issuance server to be stateful, and in fact if the issuer
can be tricked into completing a protocol in two different ways, then his secret
key will be leaked. This means that implementing a token issuer requires careful
state management, including storage per client session. In a setting where there
are many many clients, many of which may be untrusted or on flaky connections,
this can be quite expensive.

2 PMBT: a Case Study

We start working with [14] (and its full version [13]) and investigate the short-
comings as well as a new attack. There are two main constructions in these
works called Private Metadata Bit Tokens (PMBT) and CMBT. For PMBT, the
authors state that Verify returning always true is not meaningful and then an-
nounced their new protocol named CMBT in the full version of their paper [13].
Before the description of protocols, we borrow the interface of anonymous tokens
(AT) with private metadata bit and its security and privacy requirements.

2.1 AT Interface and Security

- (crs, td)← AT.Setup(1λ), the protocol requires a set up with security param-
eter λ, and returns a common reference string crs and a trapdoor td.

- (pp, sk) ← AT.KeyGen(crs), the public parameters pp and a secret key sk is
generated with KeyGen algorithm which takes a crs as input.

- {σ,⊥} ← ⟨AT.Client(pp, t),AT.IssueToken(sk, b)⟩, the interactive token gen-
eration protocol runs between a client (also called a user) and the issuer.
The client inputs are a string t along with the issuer’s public parameters,
and the issuer inputs are the secret key sk and a metadata bit b. The protocol
outputs a token (also referred to as signature) σ for the client or ⊥.

- bool ← AT.Verify(sk, t, σ), the verification algorithm is run by the redeemer
(which is the issuer, or a related party holding sk). The inputs are sk and a
token (t, σ). It outputs a boolean value to indicate if the token was valid.

- ind ← AT.ReadBit(sk, t, σ), the metadata bit is extracted with the ReadBit
algorithm which takes the private key and a token (t, σ) as input. It outputs
an indicator ind ∈ {⊥, 0, 1}, with the value of b, or ⊥ if extraction failed.

4 All of these construction are multi-show in that many presentations/redemptions of
the same credential are clearly linkable.
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The issuance protocol is interactive between the user and the issuer. In [14], it
is assumed to be a user-to-issuer-to-user protocol (2-move, user-initiated).

Security properties of an AT scheme are unforgeability, unlinkability, and
privacy of the metadata bit. They are formally (re)defined in section 3.

1. Unforgeability implies that only the issuer can generate valid tokens. More
precisely, if the issuer is invoked n times, the adversary cannot exhibit n+1
valid tokens. The “validity” notion is crucial and discussed below. (This is
called one-more unforgeability.)

2. Unlinkability implies that redeemed tokens cannot be linked to issuing
sessions. More precisely, a malicious issuer who is engaging n signing ses-
sions and then given a shuffled list of (t, σ) tokens to redeem cannot link a
given token from the shuffled list to the corresponding issuing session with a
probability slightly less than 2/n. (This is called κ-unlinkability for κ = 2.)

3. Privacy of metadata means that no one but the redeemer learns the private
bit b which was inserted by the issuer. Tokens issued with b = 1 should
be indistinguishable from tokens with b = 0, even with access to an oracle
telling whether a token is valid. Again, the “validity” notion is crucial. It
may deviate from the validity notion in unforgeability.

Notice that there is a distinction between AT.Verify and AT.ReadBit algo-
rithms. Essentially for (one-more) unforgeability to work, the attacker should
pass two verification conditions: AT.Verify returns true and AT.ReadBit does not
return ⊥ as indicator. However, in the security games of privacy, the attacker is
given access to only AT.Verify algorithm not the AT.ReadBit algorithm. So, the
authors [14,13] freely make AT.Verify always return true and sweep everything
to AT.ReadBit algorithm, hence no real access for the attacker.

In [14], the unforgeability game declares a token valid if Verify is true and
ReadBit returns an element of {0, 1} (i.e. not ⊥). The unforgeability game does
not allow tokens in forgeries to share the same t value.

We recall the PMBT issuance protocol in Figure 1. As specified in [14], Verify
always returns true and ReadBit returns b ∈ {0, 1} such that W = xbHt(t)+ ybS
when it exists or ⊥ otherwise.

2.2 Potential Attack for PMBT

In this section, we describe two attacks on PMBT. Both attacks are possible
in real-world but not considered in the formal security definitions. Attack I is
acknowledged by the authors of PMBT [14], but Attack II is not considered and
can be used without the issuance servers detecting them.

Attack I: Since Verify is always true, the validity is defined with the condi-
tion that ReadBit does not return ⊥. However, what the user can do is to re-
quest tokens with (T ′

1, T
′
2, . . . , T

′
n) where T ′

i = r−1
i Ht(t) for i = 1, . . . , n and

a fixed t in order to prepare his attack. As a return, he gets many tokens
(s1,W

′
1), (s2,W

′
2), ..., (sn,W

′
n) where si’s are random and W ′

i = xbT
′
i + ybS

′
i

7



PMBT.Client(X0, X1, t) PMBT.IssueToken((x0, y0), (x1, y1), b)
input: (X0, X1, t) input: (x0, y0), (x1, y1), b
output: σ output: {}
r ←$ Z∗

p

T := Ht(t)
T ′ := r−1T

T ′

s←$ {0, 1}λ
S′ := Hs(T

′, s)
W ′ := xbT

′ + ybS
′

π ← Π.Prove((X0, X1, T
′, S′,W ′), (xb, yb))

(s,W ′, π)

S′ := Hs(T
′, s)

if not Π.Verify((X0, X1, T
′, S′,W ′), π) then return ⊥

S := rS′

W := rW ′

output: σ := (S,W )

Fig. 1. PMBT token issuance protocol as given in [14, Fig 8, p 325]

with S′
i = Hs(T

′
i ; si). The user gets these tokens and unblinds. As a result, it

gets (t, Si,Wi) verified with the secret by Wi = xbHt(t) + ybSi. From n linear
equationsWi = xbHt(t)+ybSi with the same bit b, the user can now take random
coefficients αi such that

∑
i αi = 1 and compute

∑
i

αiWi = xbHt(t) + yb

(∑
i

αiSi

)
(1)

W = xbHt(t) + ybS (2)

which makes the triplet (t, S,W ) pass verification. Thus, when n ≥ 2, a malicious
client can generate many valid tokens with same tag t and hiding the same bit b.
The unforgeability game does not take it as a forgery because the tokens share
the same t, so this attack is excluded by rule.

We can have an attack against the privacy of b by using the above way to
make forgeries. If all collected tokens use the same b, the forged token is valid.
However, if the equations do not use the same b, the above equation is not
satisfied so the triplet is not valid. This enables the attacker to apply “cut-and-
choose” to learn which tokens are valid and which are not without consuming
them. The attack assumes access to a validity oracle which can be expected with
a side-channel attack. This oracle would tell whether AT.ReadBit returns ⊥. In
the PMBT model, the adversary has only access to an AT.Verify oracle. As it
always return true, the adversary does not have this side channel by rule.

Attack II: In another attack, we consider an adversary who collected n tokens
with distinct ti’s, (t1, S1,W1), . . . (tn, Sn,Wn), satisfying Wi = xbiH(ti) + ybiSi.
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Assuming an oracle returning whether AT.ReadBit returns ⊥ or not, we describe
an attack allowing the adversary to check whether a subset of the collected tokens
hide the same bit or not. Let I be a subset of {1, . . . , n}. The adversary chooses a
random t∗ and runs the token request protocol one more time, but this time uses
T ∗ = H(t∗)−

∑
i∈I H(ti) instead of T ∗ = H(t∗), and obtains (S∗,W ∗) such that

W ∗ = xb∗T
∗ + yb∗S

∗. Now, the adversary attempts to redeem token (t∗, S∗ +∑
Si,W

∗+
∑

Wi). This will be a valid token iff all of the bi for i ∈ I are equal to
b∗. If AT.ReadBit does not return ⊥, the adversary deduces that all bi for i ∈ I are
equal. If AT.ReadBit returns ⊥, the adversary may try again, because it could still
be the case that all bi are equal but that b∗ was not. Eventually, the adversary
infers information and can apply a cut-and-choose strategy. Notice that this
attack would be impossible to detect: the protocol ensures that malicious token
to redeem is random. Furthermore, even if the redeem oracle checks for repeating
tags, our attack ensures that all redeem attempts have different tags so no such
countermeasure works.

As conclusion, the attack method does not violate the unforgeability game
by rule (that t’s must be different) and does not violate the privacy game by
rule (that there is no validity oracle). As acknowledged by the authors [14,
Section 6.1], having Verify returning always true and pushing the validity to
ReadBit not returning ⊥ is a bit cheating. They propose a way to enable token
verification in the CMBT scheme which is presented in the full version of the
paper [13, Appendix J].

2.3 The CMBT Fix

The CMBT protocol is presented in the eprint version of the paper [13]. We
summarize this protocol in Figure 2.

CMBT was updated5 on April 21, 2022 [13] as shown on Figure 2. A token
(S,W, W̃ ) is verified and reads bit b if W̃ = x̃Ht(t) + ỹS (verify part), W =
xbHt(t)+ybS and W ̸= x1−bHt(t)+y1−bS (read part). Unforgeability is enforced
by the security of previous constructions. However, the privacy of metadata bit
is still in question when we do not separate Verify and ReadBit as we will detail
next.

Clearly, a linear combination attack with tokens sharing the same t will forge
new tokens making AT.Verify true and AT.ReadBit returning the common bit to
all tokens or ⊥ if there is no unanimous bit b. Hence, privacy is broken with
access to an oracle telling whether a token is well formed.

As another attack, if a client engages in a protocol to issue three tokens
(ti, Si,Wi, W̃i), i = 1, 2, 3 with t1 = t2 and hidden metadata bits bi, respectively,
from the verification equations, the client can compute ∆S = S2 − S1, ∆W̃ =
W̃2 − W̃1 = ỹ∆S, and ∆W = W2 −W1. Let us now forge (t4, S4,W4, W̃4) =

5 In the January 13, 2021 version (20210113:200918) of the paper, W̃ ′ was returned
by the issuer without the π̃ proof, so a malicious issuer could hide a marker in it
and break unlinkability. The authors corrected the protocol on April 21, 2022 after
our disclosure.
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CMBT.Client(pp, t) CMBT.IssueToken(pp, sk, b)
input: (pp, t) input: pp, sk, b
output: σ output: {}
r ←$ Z∗

p

T := Ht(t)
T ′ := r−1T

T ′

(X0, X1, X̃) := pp
((x0, y0), (x1, y1), (x̃, ỹ)) := sk
s←$ {0, 1}λ, S′ := Hs(T

′, s)
W ′ := xbT

′ + ybS
′

W̃ ′ := x̃T ′ + ỹS′

π ← Π.Prove((X0, X1, T
′, S′,W ′), (b, xb, yb))

π̃ ← Π.Prove((X̃, T ′, S′, W̃ ′), (x̃, ỹ))

(s,W ′, W̃ ′, π, π̃)

(X0, X1, X̃) := pp
S′ := Hs(T

′, s)

if not Π.Verify((X0, X1, T
′, S′,W ′), π) or not Π.Verify((X̃, T ′, S′, W̃ ′), π̃) then return ⊥

S := rS′

W := rW ′, W̃ := rW̃ ′

output: σ := (S,W, W̃ )

Fig. 2. CMBT token issuance protocol as given in [13, Fig 22, p 55] (current version
20220421:171853).

(t3, S3+∆S,W3+∆W, W̃3+∆W̃ ). This is a token for which Verify returns true.
Note that this does not violate the unforgeability result because the security
game does not take as a valid forgery the creation of a new token with the same
tag t3 = t4. However, ReadBit returns a bit if and only if b1 = b2 = b3. In other
words, either this new token is taken as valid but returns no bit, or it is fully
valid and hides the same bit as all other tokens. Hence, having access to an oracle
telling whether a bit is returned or not breaks the privacy of the metadata bit.

We can draw the following conclusion: if a side channel attack gives access
to a validity oracle (i.e. whether AT.ReadBit returns ⊥ or not once it is known
that AT.Verify is true), we have an attack against the privacy of the metadata
bit b.

2.4 Anonymous Tokens with Public Metadata

Silde and Strand [16] design a protocol to add public metadata in Privacy Pass
while also extending it for a private metadata bit and for public verifiability of
the token. They consider a case study with the reporting phase in digital contact
tracing when a user reports proximity keys with an anonymous token from the
authority who has the positive test. To avoid changing credential secret keys
every day, they add the date in public metadata md of the token.

Their scheme with private metadata is adapted from CMBT. It has similar
problems as the ones we explained in the previous section. Moreover, the re-
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demption scheme verifies validity and reads the hidden bit at the same time.
However, given two tokens (Si,Wi) (i = 1, 2) with the same (t,md, b), a combi-
nation of the two tokens is a valid token for (t,md, b) as well while two tokens
with the same (t,md) and different b, a combination is a token which reads no
bit. The PMB game for the privacy of the metadata bit is specified with a Overify

oracle but it is not clear what this oracle answers for this scheme. If Overify al-
ways returns true, this attack does not contradict the security result. However,
if Overify returns whether the token reads any bit (as it should do) then PMB
security is broken.

3 Anonymous Tokens Revisited

3.1 AT Interface

We revisit the interface of AT and update the security notions as follows.

- (crs, td)← AT.Setup(1λ) the protocol requires a set up with security parame-
ter λ, and returns parameters common to all parties, denoted crs. Depending
on the scheme, this will contain a group description, the security parameter,
and could also contain a common reference string crs and a trapdoor td.

- (pp, sk)← AT.KeyGen(crs), the public parameters pp and a secret key sk are
generated by the token issuer with the KeyGen algorithm which takes crs as
input.

- ⟨t, σ,⊥⟩ ← ⟨AT.Client(pp,m),AT.IssueToken(sk, b,m)⟩, the interactive token
generation protocol runs between a client (also called a user) and an issuer.
The client input is the issuer’s public parameters and the public metadata
m. The issuer inputs are the secret key sk, a metadata bit b ∈ {0, 1}, and
a public metadata m. (Both participants are assumed to agree on m.) The
protocol outputs a token (t, σ) composed of a tag t, the public metadata m,
and a token σ for the client and nothing (⊥) for the issuer.
The elements m, b, and t are called attributes and can be optionally offered
by the protocol. The attribute t is a nonce; b is the issuer’s private metadata
bit; m is a public metadata (on which both participants must agree).
As we focus on a round-trip protocol which is initiated by the client (2-move,
client-initiated), we can specify it by three algorithms:
• AT.ClientQuery(pp,m)→ (query, st) //Client sends query to issuer
• AT.IssueToken(sk, b,m, query)→ resp //Server replies with resp
• AT.ClientFinal(st, resp)→ (t, σ) //Client locally computes token

- ind ← AT.ReadBit(sk,m, t, σ), the verification algorithm is run with inputs
of a secret key and a token σ with attributes (m, t). It outputs either a bit,
in which case we say the token is valid, or ⊥ in which case we say the token
is invalid.

We deviate from the previous definitions in three ways: first of all, there is a
unique AT.ReadBit algorithm (and no extra AT.Verify) which returns the hidden
bit or ⊥ if invalid. Second, the client no longer chooses the t input in the issuing
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protocol. Instead, a unique nonce t is returned to the client. Finally, we added
the optional public metadata m attribute. For protocols not allowing it, input
m is ignored in algorithms and games.

Security properties of an AT scheme are unforgeability, unlinkability, and
privacy of metadata bit.

1. Unforgeability implies that an adversary cannot create valid tokens with
modified attributes on an existing token. More precisely, if the issuer is in-
voked nb,m times for each attribute (b,m), then, for no (b, t) the adversary
can exhibit nb,m+1 valid tokens with pairwise different tags t. The adversary
has access to a ReadBit(sk, ·, ·) oracle and can choose the bit b to be hidden
in the token by the issuer.

2. Unlinkability implies that a malicious issuer cannot link a redeemed token
with one of the issuing sessions. The malicious issuer can maliciously set up
the public parameters.

3. Privacy of metadata means that a malicious client cannot guess the meta-
data bit hidden during a issuing session, even with access to an oracle for
checking if a token is valid (but without access to an oracle which extracts
the bit).

3.2 Unforgeability

The one-more unforgeability game (OMUF) is defined on Figure 3.6 This is the
same as in Kreuter et al. [14] except for a modification in the quantifiers7 and
for the modification in the interface: having the token verification and the bit
extraction in the same algorithm and oracle. Notably, (t, σ) making AT.Verify
return true and AT.ReadBit return ⊥ would not exist any more as there is no
AT.Verify.

Definition 1. In the OMUF game on Figure 3, we define the advantage of an
adversary A by

AdvOMUF
A (λ) = Pr[win]

We say that AT is OMUF-secure if for any PPT adversary A, the advantage is
a negligible function.

6 For protocols with no public metadata m, the variables nb,m in the game shall be
changed to nb.

7 In their OMUF security definition, the first condition says that both q0 ≤ ℓ AND
q1 ≤ ℓ where qb is the number of oracle queries with bit b. Suppose, the adversary
made 10 queries with b = 0 (q0 = 10) and 1000 queries with b = 1 (q1 = 1000). If
the adversary forges 11 tokens with b = 0, for this to succeed as a forgery, ℓ must be
at least 1000. If it is not, this does not succeed.
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Game OMUF(1λ):
1: AT.Setup(1λ)→ (crs, td)
2: AT.KeyGen(crs)→ (pp, sk)
3: initialize nb,m ← 0 for all (b,m)
4: AOsign,Oread(crs, pp)→ b,m, (ti, σi)
5: if #{ti} ≤ nb,m then abort
6: win iff AT.ReadBit(sk, ti,m, σi) = b for

all i

Oracle Osign(b,m, query):
7: increment nb,m

8: AT.IssueToken(sk, b,m, query)→ resp
9: return resp

Oracle Oread(m, t, σ)
10: return AT.ReadBit(sk,m, t, σ)

Fig. 3. One-More UnForgeability Game

3.3 Unlinkability

The unlinkability game (UNLINK) is defined on Figure 4. This is the same as
in Kreuter et al. [14] except for the modification in the interface: the tag t is
output instead of being a arbitrarily selected input by the client and the public
metadata m must be the same for all challenge tokens.

Definition 2. In the UNLINK game on Figure 4, we define the advantage of
an adversary A = (A1,A2,A3) for parameter n by

AdvUNLINKA,n (λ) = Pr[win]

We say that AT is κ-UNLINK-secure if for any PPT adversary A and any integer
n, the advantage bounded by κ

n plus a negligible function.

3.4 Privacy of the Metadata Bit

The privacy of the metadata bit game (PMB) is defined on Figure 5 with a chal-
lenge bit b∗. This is the same as in Kreuter et al. [14] except for the modification
in the interface: the verify oracle is implemented by checking if AT.ReadBit does
not return ⊥. We also modified to have a single access to Ochal and to give
access to Oread until the challenge is released. In the case of [14], the separa-
tion between AT.Verify and AT.ReadBit allowed Overify to return true although
AT.ReadBit would return ⊥. Our interface does not allow it any more so the
adversary has more information.

Definition 3. In the PMB game on Figure 5, we define the advantage of an
adversary A by

AdvPMB
A (λ) = Pr[PMB1 → 1]− Pr[PMB0 → 1]

We say that AT is PMB-secure if for any PPT adversary A, the advantage
is a negligible function.
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Game UNLINKn(1
λ):

1: AT.Setup(1λ)→ (crs, td)
2: initialize Qquery,Qfinal ← ∅
3: A1(crs)→ (pp, state1)

4: AOquery,Ofinal
2 (state1)→

(Q, (respi)i∈Q), state2)
5: if Q ̸⊆ Qquery −Qfinal then abort
6: if #Q < n then abort
7: for all i ∈ Q do
8: outi ← AT.ClientFinal(sti, respi)
9: if outi = ⊥ then abort
10: parse (ti, σi)← outi
11: end for
12: if #{mi; i ∈ Q} > 1 then abort
13: i∗ ←$Q
14: pick a random permutation σ of Q
15: A3(state2, outi∗ , (outσ(i))i∈Q)→ i
16: win iff i = i∗

Oracle Oquery(i,m):
17: if i ∈ Qquery then return
18: insert i in Qquery

19: mi ← m
20: AT.ClientQuery(pp,mi)→ queryi, sti
21: return queryi

Oracle Ofinal(i, resp):
22: if i ∈ Qfinal or i ̸∈ Qquery then return
23: insert i in Qfinal

24: respi ← resp
25: return AT.ClientFinal(sti, respi)

Fig. 4. Unlinkability Game

Game PMBb∗(1
λ):

1: AT.Setup(1λ)→ (crs, td)
2: AT.KeyGen(crs)→ (pp, sk)
3: flag← false
4: return AOsign,Ochal,Oread,Ovalid(crs, pp)

Oracle Osign(b,m, query):
5: AT.IssueToken(sk, b,m, query)→ resp
6: return resp

Oracle Ochal(m, query):
7: if flag then return ⊥
8: flag← true
9: m∗ ← m
10: AT.IssueToken(sk, b∗,m∗, query) →

resp
11: return resp

Oracle Oread(m, t, σ):
12: if flag and m = m∗ then return ⊥
13: return AT.ReadBit(sk,m, t, σ)

Oracle Ovalid(m, t, σ)
14: return whether AT.ReadBit(sk,m, t, σ) ̸=
⊥

Fig. 5. Privacy of the Metadata Bit Game
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4 ATHM: Anonymous Token with Hidden Metadata

Instead of relying on a deterministic PRF, we construct a protocol which is
based on a randomized algebraic MAC. Our proposed protocol gets inspired
from previous works on algebraic MACs used in anonymous credentials [6,7] and
Signal’s private group management in group chats [8,9]. A valid MAC for an
input b with a nonce t and a secret key (x, y, z) is a pair σ = (P,Q) such that
Q = (x+ by + tz)P . The security assumptions for this MAC are detailed in the
next section. In our scheme, a token with a hidden bit b will be a pair (t, σ)
such that σ is a valid MAC for the attributes (b, t) with a secret key (x, y, z).
Several variants and extensions of ATHM are possible such as introducing public
metadata m or using another MAC algorithm. In this section, we focus on the
simplest options. The various options and the generalized protocol are presented
in appendix.

4.1 The ATHM Components

Our scheme uses as a building block a simulatable non-interactive proof Π2.

Setup algorithm. Setup is composed of four phases. The Setup1 algorithm gener-
ates an (additive) group, which is cyclic, of prime order p. The Setup2 algorithm
selects a group generator G. The Setup4 algorithm selects common parameters
for Π2 (typically, a second group generator H and its logarithm). The crs string
includes p, group parameters gp to be able to do operations in the group, the
generator G, and crs2.

Setup(1λ):
1: Setup1(1

λ)→ (gp, p) ▷ group setup
2: Setup2(gp, p)→ G ▷ generator setup
3: Setup4(gp, p,G)→ (crs2, td2) ▷ Π2 setup
4: crs← (gp, p,G, crs2)
5: td← td2

The KeyGen algorithm. Key generation is composed of several phases.

KeyGen(crs):
1: KeyGen0(crs)→ (pp0, sk0)
2: KeyGen2(crs, pp0, sk0)→ (pp2, sk2) ▷ Π2 key generation
3: pp← (pp0, pp2)
4: sk← (sk0, sk2)

In KeyGen0, the issuer selects three secrets sk0 = (x, y, z) with y, z ̸= 0, and sets
pp0 = Z = zG.

Our proposed Π2 scheme requires KeyGen2 to add in pp2 Pedersen commit-
ments Cx = xG+ rxH, Cy = yG+ ryH, together with a proof of knowledge of
(x, rx, y, ry). Clients are assumed to verify this proof before starting the issuance
protocol, but this is done only once for all.
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The token issuance protocol. The user has public parameters. The server’s input
is the secret (x, y, z) and a bit b to hide inside the token. The protocol works
as depicted on Figure 6: the client selects a random tag share tC and a random
mask r ∈ Zp and sends T = tCZ + rG to the issuer. The issuer selects a random
tag share tS and generates a pair (U, V ) such that (U, V − rU) is a valid MAC
for tag t = tC + tS and metadata b with key (x, y, z). For this, the issuer selects
U = dG for a random d ∈ Z∗

p and V = d(xG + byG + tSzG + T ). A proof
Π2 must prove that the (U, V, tS) triplet was correctly generated. Note that Π2

must prove that b is a bit. Then, (U, V, tS , π) is returned. The client computes
(U, V − rU). To make it unlinkable, the pair is multiplied by a random mask c
to obtain another pair σ = (P,Q).

ATHM.Client(G,Z) ATHM.IssueToken((x, y, z), b)
input: (G,Z) input: (x, y, z), b
tC , r ←$ Zp

T := tCZ + rG

T

tS ←$ Zp

d←$ Z∗
p

U := dG
V := d(xG+ byG+ tSzG+ T )

π ← Π2.Prove(b, d;U, V, tS , T, crs, pp, sk0, sk2)

(U, V, tS , π)

if not Π2.Verify(π, U, V, tS , T, crs, pp) then return ⊥
if U = 0 then return ⊥
c←$ Z∗

p

P := cU
Q := c(V − rU)
t := tC + tS
σ := (P,Q)
output: (t, σ)

Fig. 6. ATHM token issuance protocol.

The proof Π2 is a Fiat-Shamir transform of an OR proof of two Schnorr
proofs for b = 0 and b = 1. It is specified in subsection 4.3.

The ReadBit algorithm. The redemption of (t, P,Q) with (x, y, z) checks for
which b ∈ {0, 1}, the equality Q = (x+ by + tz)P is satisfied.

Rationales. We can first observe that it is necessary that the issuer has an
influence on the final t. If the client could decide t = tC , then PMB security
could be broken by getting a challenge with tag t∗ then issuing a token with
same tag t = t∗ and taking the linear combination of both with coefficient 1

2 and
1
2 . The obtained ticket is valid if and only if b∗ is equal to the bit b put in the
second token.
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We can also observe that it is necessary to have tC , r, and c. Without any
of them, the malicious issuer can easily link an issued token with a redeemed
token. The same goes with the proof π without which the issuer could change
the secret and use it as a marker.

Beware of double spending. Note that for this protocol, tag t needs to be a nonce
as in other protocols [13], [14] i.e. the redeemer should check against double-
spending of a token with the same t. Otherwise, it is easy to transform a valid
token with tag t into another valid token with the same tag t: let σ = (P,Q) be
a signature on t. Then the client can forge another signature σ′ = (P ′, Q′) on
t as follows: Client samples another c′ and computes P ′ := c′P and Q′ := c′Q.
The redeemer can check that Q′ = (x + by + tz)P ′ and take (t, σ′) as another
valid token.

4.2 The MAC Building Block

Our security results will be based on the security of an algebraic MAC. The
simplest one is the MACGGM algorithm [6] defined as follows: given a secret
(x, y, z) ∈ Z3

p, a valid authentication for (b, t) ∈ Z2
p is a pair σ = (P,Q) such

that Q = (x + by + tz)P . For this MAC to be secure, it is important that no
adversary can find any linear relation between the random values of P . Hence,
P is selected at random by the issuer.

The security of MACGGM was proven in the generic group model (GGM) [6].
So, we use the same model to prove the security of ATHM. However, our con-
struction generalizes to other MAC algorithms which can be proven in the stan-
dard model, and we use non-GGM security for this generalization, as shown in
appendix.

4.3 The Simulatable Proof Building Block

We assume that crs2 is a new generator H. The trapdoor td2 is the discrete
logarithm of H. We further assume that pp2 includes some commit Cx = xG+
rxH, Cy = yG + ryH together with a proof of knowledge of (x, y, rx, ry). The
issuer’s secret sk2 must keep rx and ry.

The proof π consists of first releasing a commit C = bCy+µH, proving (with
OR proof) that C either commits to 0 or to Cy, and proving (with Schnorr proof)
knowledge of (d′, ρ, w) such that −G = d′U , −(Cx +C + tSZ + T ) = d′V + ρH,
and −T = d′V + wG. The link with d is that d′ = − 1

d . Hence

∃(d′, ρ, w) d′

U
V
V

+ ρ

 0
H
0

+ w

 0
0
G

 = −

 G
Cx + C + tSZ + T

T

 (3)

where ρ = −(rx + bry + µ) and w = x + by + tSz. Note that the issuer already
computed tSZ in the protocol. However, the client would have to compute it.
This costs one multiplication by the client. In addition, the computation of C by
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the issuer costs one multiplication for µH (the bCy multiplication is free since
b = 0 or b = 1).

This proof consists of one OR proof and an independent AND proofs. Typi-
cally, we can merge them, but, for simplicity, we start with OR proof first and
merge them as one protocol later.

OR Proof. The server needs to prove knowledge of a µ such that C = bCy +µH
with b ∈ {0, 1}. It first picks a random rµ and commits to it with Cb = rµH.
Picks a random e1−b and a simulated response a1−b to get the alternate commit
C1−b = a1−bH − e1−b(C − (1 − b)Cy) for the flipped bit 1 − b. The commit
message is (C0, C1). Based on the challenge e, set eb = e−e1−b and compute the
response ab = rµ + ebµ for the real bit b. The answer is the message (e0, a0, a1).

The verifier receives (C0, C1, e0, a0, a1), computes e1 = e− e0, and checks

a0H == C0 + e0C and a1H == C1 + e1(C − Cy)

To formally define Prove, we merge this OR proof with the AND proofs with
statement given in Equation 3 and we transform into a non-interactive proof.
We formally define the algorithms in Π2 below.

Setup4. The algorithm Setup4(gp, p,G) first selects td2 ∈ Z∗
p and sets crs2 =

H = td2.G.

KeyGen2. The algorithm KeyGen2(crs, Z, sk0) parses crs = (gp, p,G, .,H) and
sk0 = (x, y, z), picks rx, ry ∈ Zp, and computes Cx = xG + rxH and Cy =
yG+ ryH. We have

sk2 = (rx, ry)

In the generic group model, an issuer who wants to maliciously register a
(Cx, Cy, Z) key must know how to express Cx, Cy, and Z in terms of the only
group elements which are available at setup, i.e. G and H. Hence, an extractor
for (x, y, rx, ry) is trivial. For Z, the only thing to prove is that the component
in H is zero. This can be done with a Schnorr proof: KeyGen2 picks a random
ρz, computes Γz = ρzG, ε = Hash(G,H,Z, Γz), az = ρz + εz, and adds (ε, az) in
pp2. We have

pp2 = (Cx, Cy, ε, az)

To verify the proof (this must be done at least once for all by ClientQuery), the
client computes Γz = azG− εZ and checks ε = Hash(G,H,Z, Γz).

The protocol imposes that Z and Γz must be known before hashing, hence
before ε is randomly selected by the hash function (otherwise, hashing gives an
incorrect ε, except with 1

p probability). In the generic group model, this implies
that the the expression of Z and Γz in terms of provided group elements is
known. Then, a solution az can be searched for the equation Γz = azG − εZ.
As explained in the next paragraph, the generic group model advocates that
finding a non-trivial linear relation between provided random group elements
can be done with probability bounded by AdvDLOG + 1

p , where AdvDLOG is the
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advantage of a discrete logarithm solver of similar complexity. Here, we have
k = 2 with G and H. Let Z = zG+ uH. Except with probability AdvDLOG + 1

p ,
the coefficients v of Γz in H must satisfy u = −ev, with u and v fixed before e is
picked. So, either the malicious issuer made a lucky selection (this can happen
with probability 1

p ), or u = v = 0, meaning Z = zG. Therefore, a straightline

extraction succeeds, except with probability AdvEXTRACT = AdvDLOG + 3
p .

In the generic group model, we may be interested in several linear combina-
tions of the provided group elements. By using the Ocmp oracle, we can see if
one linear combination vanishes. If any such situation occurs, a non-trivial linear
combination is found. Given sone DLOG input (X,Y ), we can simulate each of
the provided random elements by random linear combination of X and Y . A
non-trivial linear relation between them gives a linear relation between X and
Y . Except with probability 1

p , this yield the discrete logarithm of Y in basis X.

This is why we can have an advantage overhead of AdvEXTRACT and assume that
no nonzero linear combination of the provided elements vanishes.

Prove. The algorithm Prove(b, d;U, V, tS , T, crs, pp, sk0, sk2) parses different el-
ements, picks µ, sets C = bCy + µH, d′ = − 1

d , ρ = −(rx + bry + µ), and
w = x+ by + tSz.

The issuer (prover) picks e1−b, a1−b, rµ, rd, rρ, rw at random and computes
Cb = rµH, C1−b = a1−bH − e1−b(C − (1− b)Cy), Cd

Cρ

Cw

 = rd

U
V
V

+ rρ

 0
H
0

+ rw

 0
0
G


e = Hash(G,H,Cx, Cy, Z, U, V, tS , C, C0, C1, Cd, Cρ, Cw), eb = e − e1−b, ab =
rµ + ebµ, and (ad, aρ, aw) = (rd, rρ, rw) + e(d′, ρ, w). Finally, the output is

π = (C, e0, e1, a0, a1, ad, aρ, aw)

Verify. The algorithm Verify(π, U, V, tS , T, crs, pp) parses π, crs, and pp, computes
C0 = a0H − e0C, C1 = a1H − e1(C − Cy), e = e0 + e1, Cd

Cρ

Cw

 = ad

U
V
V

+ aρ

 0
H
0

+ aw

 0
0
G

+ e

 G
Cx + C + tSZ + T

T


then verifies e = Hash(G,H,Cx, Cy, Z, U, V, tS , C, C0, C1, Cd, Cρ, Cw).

SimKeyGen. The algorithm SimKeyGen(crs, Z) parses crs to retrieve G and H. It
picks a fully random pp2, computes Γx, Γy, Γz like in verification, then programs
the random oracle to have a consistent Hash. Since no hash is done before, the
simulation is perfect.
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Simulate. The algorithm Simulate(U, V, tS , T, crs, pp, td2) parses inputs. Then,
it picks a random proof π with same distribution, i.e. a group element C,
e0, e1, ad, a0, a1, aρ, aw ∈ Zp all uniform and independent. It can then proceed
as in Verify(π, U, V, tS , T, crs, pp) to compute C0, C1, Cd, Cρ, Cw, then the hash.
Then, the random oracle is programmed to output the correct hash e = e0 + e1.
Simulation fails if the random oracle cannot be programmed on the selected
hash input, which happens with probability bounded by qHash

p6 , where qHash is the
number of previous oracle calls to Hash. Otherwise, the simulation is perfect.

Straightline extraction. Extraction in the generic group model is straightline: the
malicious issuer must know how to express U, V,C,C0, C1, Cd, Cρ, Cw in terms of
provided group elements (i.e. G, H, T , and prior elements Ti provided by clients)
when they are presented to the random oracle, hence before knowing e, or fails
except with probability 1

p . This expression is extractable in the generic group
model. After e is known, the malicious issuer can adjust e0, a0, a1, ad, aρ, aw to
satisfy the equations. As mentioned before, finding a non-trivial linear combina-
tion of random provided group elements is limited to AdvDLOG+ 1

p . (As explained

before, the AdvDLOG + 1
p advantage overhead does not need to be counted mul-

tiple times.) We consider it for the 5 equations in C0, C1, Cd, Cρ, Cw and reduce
to equalities for each component.

We have C0+C1 = (a0+a1)H−eC+e1Cy. For the sum of components in T
and the Ti in C, we deduce that it is zero unless good luck (with probability 1

p ).
Looking at the equation in C0 and C1, this implies that the coefficients in T or
the Ti in C,C0, C1 are zero. Let α, β, and b (we do not know if b is a bit yet) be
the components of C0, C1, and C in G. We obtain α = −e0b and β = −e1(b−1).
Hence, (b − 1)α + bβ = −eb(b − 1). Since α, β, b are fixed before e is picked,
either there is good luck (this happens with probability 1

p ), or b(b−1) = 0 which
means that b is a bit. Hence, we can write C = bCy + µH.

For the sum of components in H, T and the Ti in U , the equation in Cd

shows that either there is a good luck (with probability 1
p ) or it is zero. Hence,

both Cd and U are multiple of G. We write U = dG. Similarly, the equation in
Cw shows no component in H or the Ti in V (unless good luck of 1

p ) and we can
write V = wG+ dT .

As V has no component in the Ti, this is the same for Cρ. Finally, in the
equation in Cρ we focus on the components in G and T . We let C ′

ρ be the sum of
these two components for Cρ. We obtain C ′

ρ = adV +e((x+by+tSz)G+T ). The
values C ′

ρ and V are fixed before e is picked. Except good luck (with probability
1
p ), we deduce V proportional to (x + by + tSz)G + T . Due to the expression

V = wG+dT , we deduce w = d(x+by+tSz). Hence, V = d(x+by+tSz)G+dT .
All in all, extraction works, except with probability AdvSOUND = AdvDLOG+ 7

p .

5 Performance

Implementation. We implemented our construction as given in Figure 6 in Rust
(version 1.66.0). We use the Ristretto group using curve25519-dalek library. We
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use RistrettoBasePointTable struct (which is a precomputed table for multi-
plications with the group generator G) to accelerate the scalar multiplications
(PMBT implementation does not use these tables). We use two of these tables:
one for G and one for H which requires 60 KB of memory for constant time
cryptography and up to 4 times speed up. For OR proofs and verification, we
did not rely on any external library, meaning we implemented it in pure Rust.
It is available at https://github.com/Microsoft/MacTok.

We benchmarked the implementation on a machine with Intel(R) i7-1185G7
3.00GHz CPU. Our benchmarks excludes the key generation (because it is gener-
ated only once for all). They include client blinded message generation, server’s
computation of MACs (blindly, along with the proof π), client’s unblinding
(along with the verification of π), and server’s redemption. It takes 1.3 ms
whereas PMBT takes 1.6 ms for the same operations 8. We note that we disabled
SIMD optimizations (which allows curve25519-dalek to run faster curve opera-
tions) in both ATHM and PMBT due to the unstable version (1.66.0-nightly) of
the Rust compiler that does not allow building PMBT. When we run our ATHM
protocol with SIMD optimization, we get 0.9 ms of running time.

Theoretical Complexity. We also computed the number of scalar multiplications
to compare ATHM with PMBT and observed that ATHM computes 29 scalar
multiplication whereas PMBT computes 31 multiplications in total, for bench-
marked operations (client and server side computations including redemption
along with the proof and verification).

In ATHM, the issuer computes 11 scalar multiplications during issuance (one
for C, 7 for the proof, and 3 for the ATHM protocol). The client computes 17
scalar multiplications (one for tSZ, 11 for the proof, and 5 for ATHM). The
total is 28 multiplications. 9 Furthermore, the number of transmission is of 4
group elements (C in the proof and (T,U, V ) in the proof) and 8 integers (tS in
ATHM and the 7 elements of π). The total is 12.10 For redeem, the number of
multiplications is 1 and the token length is 3 (t, P , and Q). For key generation,
the issuer computes 2 multiplications (1 for Z and 1 for pp2) and the client
computes 2 multiplications for the Π2 verification. The public key contains 5
elements (1 for Z and 4 for pp2).

As a comparison, in PMBT, for issuance, the issuer computes 12 multiplica-
tion in total and the client computes 15 multiplications. In total, the number
of multiplications is 27 for issuance. The number of transmissions is 2 group
elements and 7 scalars. The total is 9. The redemption needs 4 multiplication
with a token length 2 group elements. For key generation, the issuer computes
4 multiplication. The public key contains 4 elements.

8 PMBT code is available at https://github.com/mmaker/anonymous-tokens
9 In this count, we took the computation of (1− b)Cy as free. Furthermore, the com-
putation of rdV and adV are done twice but count for a single operation.

10 By setting tS = Hash(U), the issuer would not have to send tS any longer and save
the transmission of one Zp element.
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6 Security Proof for ATHM in the Generic Group Model

We consider ATHM as specified in section 4: with the MACGGM algorithm, no
Text, and with the nonce t and private metadata bit b attributes. Considering
more attributes would work the same. We prove OMUF and PMB security in the
generic group model. The options for Π2 do not play any role.

In the generic group model, all group operations are outsourced to an external
oracle which also keeps the group element values. Initially, the oracle has registers
set to the group elements from the initialization (such as G, other crs values, Z,
and other pp values). These registers are given an address that the adversary
or the game can use. The adversary uses addresses as references when a group
operation is requested but never sees the element value itself. The output of
the oracle is either the address where the result is stored or a numeric value.
Actually, the oracle only computes subtractions (from which we can do additions,
scalar multiplications, inversion, and get the neutral element) and comparisons
(whether or not the group elements referred to by two addresses are equal).

The property of the generic group model is that each address can be mapped
to a tuple of Zp elements such that the linear combination of the initial registers
with these coefficients is equal to the content of the referred register. The ad-
versary can keep track of these linear coefficients. When the operations are done
by the game with coefficients unknown by the adversary, the adversary can as-
sociate these coefficients with unknowns and express (typically) the coefficients
as polynomials in those unknowns.

6.1 OMUF Security

We consider an adversary A playing the OMUF game. Without loss of generality,
we assume that A either aborts, or returns (bj , tj , Pj , Qj) tuples which are all
valid, with pairwise different tj , same bj = b, and in number equal to nb + 1.
Following the generic group model, we further assume that all group operations
(selection of G, addition, scalar multiplication, comparison) which are done by
the adversary, the game or the oracles, are outsourced to the generic group
oracles. Only a register index for each group element is visible, as well as the
Boolean result of the comparison oracle.

We first reduce to a game Γ1 where the π proof in Π2 is generated by a
simulator using Π2.SimKeyGen and Π2.Simulate. For our choice of Π2 (see sub-
section 4.3), this simulation is almost perfect, so we have:

AdvOMUF ≤ AdvΓ1 +
qHash
p6

In the ith query to Osign, we let (b, query) = (bi, Ti) denote the input and
(Ui, Vi, tS,i) denote the output.

Thanks to the generic group model, we can assume that every time the
adversary A produces a group element (such as Ti, Pj , Qj or an input to Oread),
it comes with a representation as a linear combination of already seen group
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elements. These seen group elements consist of G, Z, H, and every Ui and Vi

which is returned by a previous Osign oracle call. (Cx and Cy are now simulated
by the adversary in Γ1.) Hence, for each group element A which is produced by
A, there is an extractor based on the view of A which outputs the scalars of the
following equation:

A = aG.G+ aZ .Z + aH .H +
∑
i

(aUi .Ui + aVi .Vi)

We write Ui and Vi in the form of a linear combination of G, Z, Ti with coeffi-
cients written as formal polynomials in the values di, x, y, z. I.e., we write

Ui = d̄i.G Vi = d̄i(x̄+ bȳ + tS,iz̄).G+ d̄i.Ti

where d̄i, x̄, ȳ, z̄ are the formal variables of the polynomial which express the
unknowns di, x, y, z respectively. They correspond to the values which are not
revealed. There is another variable t̄d2 corresponding to td2. (We recall that H =
td2.G.) The returned value tS,i is given in clear so considered as a scalar. Hence,
by induction, every group element A is expressed by a polynomial PolA(Val) mul-
tiplied by G, with Val = ((di)i, x, y, z, td2). We consider the formal polynomial
PolA(Var) with Var = ((d̄i)i, x̄, ȳ, z̄, t̄d2).

We prove by induction the following fact.

Fact 1 For each A produced by the adversary after q queries to Osign, the PolA
polynomial has total degree bounded by q + 1. Furthermore, every partial degree
is bounded by 1. Monomials are square-free.

Indeed, after q = 0 queries, the largest degree is for PolZ(Var) = z̄. Making a new
query to Osign multiplies PolTi

(Var) by a fresh d̄i and adds a degree-2 polynomial
d̄i.(x̄+ biȳ + tS,iz̄).

The values in Val are uniformly distributed and independent. In the generic
group model, the adversary knows every polynomial PolA but not the evaluations
PolA((di)i, x, y, z). The adversary can only know if two group elements are equal
by using the comparison oracle, thus deduce that two polynomials evaluate to
the same result. By using the Schwartz-Zippel lemma and the bound on the
degree of polynomials, we have the following fact.

Fact 2 Let q is the number of Osign queries before an input (A,B) is presented
for the first time to a comparison oracle. Except with a probability bounded by
q+2
p , we have A = B if and only if PolA = PolB.

If the call to the comparison oracle is made by the adversary, the polynomials
have degree bounded by q + 1 so we obtain the result. Otherwise, the call must
com from the usage of AT.ReadBit in either the game of the Oread oracle, which
multiply a degree-(q+1)-bounded polynomial by a degree-1 polynomial x̄+bȳ+
tz̄. So, the degree is bounded by q + 2.

The adversary, game, or Oread oracle can simulate that comparison oracle
by checking equality between PolA = PolB . Hence, by induction, using hybrids,
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we reduce to a game Γ2 where no access to the comparison oracle is made, and
for every final (b, t, P,Q) output, we have PolQ(Var) = (x̄ + bȳ + tz̄)PolP (Var)
(in winning cases). The total number of comparisons is bounded by 2(n + 1 +
qOread

) + qOcmp , where qOread
is the number of calls to Oread by the adversary and

qOcmp is the number of calls to the comparison by the adversary. We obtain

|AdvΓ1 − AdvΓ2 | ≤ (2(n+ 1 + qOread
) + qOcmp)×

n+ 2

p

We now focus on one of the n+1 final (b, t, P,Q) produced by A in winning
cases. We already assumed that PolQ(Var) = (x̄ + bȳ + tz̄)PolP (Var). A is only
making scalar linear combinations of G,Z,H, and the Ui and Vi. We write

P = aG.G+ aZ .Z + aH .H +
∑
i

(aUi
.Ui + aVi

.Vi)

Q = bG.G+ bZ .Z + bH .H +
∑
i

(bUi
.Ui + bVi

.Vi)

= (x+ by + tz)P

Given that the partial degree of PolQ in z̄ is bounded by 1, we can see from the
last equation PolQ = PolP × (x̄+ bȳ + tz̄)) that aZ = 0.

PolP has constant term aG. From the last equation, PolQ has aG as a coeffi-
cient of monomial x̄. However, no monomial x̄ can appear in the linear expression
of PolQ. (We have seen that bx = 0 and x̄ never stands alone outside PolCx

. For
instance, PolVi is always a multiple of d̄i.) Hence, aG = 0.

Similarly, x̄+ bȳ + tz̄ has no constant term so we must have bG = 0.
By inspecting the monomial z̄ we now obtain that bZ = 0.
Hence,

P =
∑
i

(aUi
.Ui + aVi

.Vi)

Q =
∑
i

(bUi
.Ui + bVi

.Vi)

= (x+ by + tz)P

Given a polynomial and a variable ū, we say that ū apears if the partial
degree in ū is at least 1. We have the following fact.

Fact 3 d̄i appears in PolP if and only if it appears in PolQ.

In the ith oracle call to Osign, we have

PolVi
= d̄i(x̄+ biȳ) + tS,id̄iz̄ + d̄i × PolTi

with tS,i sampled as a fresh uniform scalar. Note that d̄i cannot appear in PolTi

because it is formed before sampling di. PolTi
may have the monomial z̄ (it is

actually supposed to) but PolTi
is set before sampling tS,i. Hence, except with

probability 1
p , the d̄iz̄ monomial is present in PolVi

.
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Fact 4 For any i, the monomial d̄iz̄ has a nonzero coefficient in PolVi
, except

with probability 1
p .

We reduce to a game Γ3 where d̄iz̄ never has a zero coefficient in PolVi
for

every i. We have

|AdvΓ2 − AdvΓ3 | ≤ n

p

Fact 5 In Γ3, among all group elements given to A, the monomial d̄iz̄ has a
nonzero coefficient in PolVi and only in PolVi .

Indeed, even though it could be put in a PolTj
for j > i, the monomial would

be multiplied by d̄j and thus d̄iz̄ would not appear as a standalone monomial
in PolVj

. Coming back to the representation of a final P and Q, we deduce that
aVi = 0 for every i (as we cannot have d̄iz̄

2 in PolQ). By writing PolUi = d̄i,
PolP is linear in every d̄i. This implies that no monomial in a final PolQ can be
divisible by any d̄id̄i′ .

We have PolVi
= (x̄+ biȳ + tS,iz̄)d̄i + d̄iPolTi

. For every i such that bVi
̸= 0,

we deduce that no d̄i′ appear in PolTi
. The same holds for t̄d2. Hence, for every

i such that bVi ̸= 0, we have that Ti must be a known linear combination of G
and Z. We write Ti = tC,iZ + riG. Hence, PolVi = d̄i(x̄ + biȳ + (tC,i + tS,i)z̄).
By writing ti = tC,i + tS,i, we have

PolP =
∑
i

aUi .d̄i

PolQ =
∑
i

(bUi + bVi(x̄+ biȳ + tiz̄ + ri))d̄i

= PolP × (x̄+ bȳ + tz̄))

By inspecting d̄i we can further see that we must have bUi
= −bVi

ri and aUi
=

bVi
. Hence, P =

∑
i aUi

Ui and Q =
∑

i aUi
(Vi − riUi).

We say that the ith query is well formed if PolTi
is a linear combination of

PolG and PolZ (i.e. that PolTi is a polynomial in z̄ with degree bounded by 1:
PolTi = tC,iz̄ + ri). For each well formed query we can define ti = tC,i + tS,i.
It follows that for every i such that aUi

̸= 0, we have that the ith query is well
formed and that bi = b and ti = t. This proves that for any valid (b, t, P,Q),
(P,Q) is a known linear combination of all (Ui, Vi−riUi) for well-formed queries
satisfying (b, t) = (bi, ti). Since P is nonzero, there exists i such that the ith
query is well formed and (b, t) = (bi, ti). Hence, the number of pairwise different
t cannot exceed nb. We deduce there is no winning case in Γ3.

We can wrap up by collecting all Adv overheads to get an upper bound for
AdvOMUF.

Theorem 1. For every A playing OMUF in the generic group model and making
n oracle calls to Osign, if Π2 is perfectly simulatable, we have

AdvOMUF ≤ (2(n+ 1 + qOread
) + qOcmp)×

n+ 2

p
+

n

p
+

qHash
p6
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where qOread
, qOcmp , and qHash are the number of queries to Oread, Ocmp, and to

the random oracle.

One attack strategy to match this bound would be, for the adversary, to do
n/|Var| Osign queries with Ti result of previous queries, in order to make a large-
degree polynomial, then to make variations of this large degree polynomial by
adding small-degree ones, with available elements. This would generate many
large-degree polynomials. Doing qOcmp ∼ |Var| × p/n comparisons would eventu-
ally yield a non-trivial large degree polynomial with the secrets as root. Iterating
this attack |Var| times and solving the equations would yield the secrets and allow
to make forgeries. Hence, the result is tight.

6.2 Unlinkability

The role of Π2 is important as it makes sure that the issuer must use either b = 0
or b = 1 and therefore hides only one bit. Without Π2, the issuer could use more
than one bit with b and use this as a marker to link tokens to redeem to clients
requesting a token. So, the client must verify the π proof for unlinkability. The
client must also verify U ̸= 0, because U = 0 could be used by the issuer to mark
a token.

The issuer knows which bit is hidden during an issuing session and can extract
the hidden bit during redeem. Hence, we should only consider unlinkability when
the bits are the same.

Theorem 2. ATHM is 2-UNLINK-secure. More precisely, given an UNLINK-
adversary A making oracle calls to Oquery with index set Qquery, there exist a
DLOG-adversaries B such that

AdvUNLINKA ≤ 2

n
+

3

p
+

6

p
×#Qquery + AdvDLOG

B

The proof uses the fact that Π2 is sound. The dominant part of the bound is
2/n, which is tight.

Proof. We start with an adversaryA = (A1,A2,A3) playing the UNLINKn game.
We assume that AT.ClientQuery verifies pp, at least at the first time it is run.

Using the extractor of the proof of x, rx, y, ry, z in pp2 (having an advantage

overhead of 1
p + AdvDLOG for the discrete logarithm and of 2

p for the rest) and

the extractor of (bi, di) for all πi which are returned by an Oquery call (having an
extra advantage overhead of 6

p for each i, the discrete logarithm being already

covered), we reduce to a game Γ in which this extraction succeeds. We have

AdvUNLINKA ≤ AdvΓA +
3

p
+

6

p
×#Qquery + AdvDLOG

B

For every i, the (queryi, respi) pair, parsed as queryi = Ti and respi =
(Ui, Vi, ti,S , πi), we extract (bi, di) such that bi ∈ {0, 1}, Ui = diG, and Vi =
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di(x+ biy+ ti,Sz)G+ dTi. Note that (bi, di) is unique when it exists. We deduce
that Qi = (x+ biy + tiz)Pi with bi ∈ {0, 1} in the game Γ .

The rest of the proof is an information theoretic argument for which complex-
ities do not matter. Given (x, y, z, Ti, Ui, Vi, ti,S , πi) we can uniquely determine
bi. We observe that (ti, Pi)|(x, y, z, Ti, Ui, Vi, ti,S , πi) is uniformly distributed as
a pair composed of a scalar and a nonzero group element. Hence, whenever A2

returns Q and the list of respi, it determines the values of the bi but the (ti, Pi) to
be released are still uniform. After permutation, (tσ(i), Pσ(i), Qσ(i)) has a value
of Qσ(i) which is imposed by Qσ(i) = (x+ bσ(i)y + tσ(i)z)Pσ(i) so brings bσ(i) as
only information.

This reduces to the following game: the adversary chooses a list of bits (bi)i∈Q
with #Q ≥ n, the game selects a random i∗ and a random permutation σ then
provides bi∗ and (bσ(i))i∈Q to the adversary, and the adversary finally makes a
guess i and win if and only if i = i∗. If the adversary puts n0 zeros and n1

ones, the adversary can only win with probability 1
n0

when it is a zero (which

happens with probability n0

n0+n1
), and with probability 1

n1
when it is a one (which

happens with probability n1

n0+n1
). Overall, the adversary wins with probability

2
n0+n1

which is at most 2
n since n0 + n1 = #Q ≥ n. ⊓⊔

6.3 PMB Security

We now consider an adversary A playing the PMBb∗ game.
The only new element in the generic group model treatment is that there is

a new variable b̄∗ appearing in polynomials. This variable appears as soon as A
queries Ochal. It appears as a term of form PolVi∗ = (x̄+ b̄∗ȳ+ tS,i∗ z̄+PolTi∗ )d̄i∗ ,
where i∗ is the index number of the O query for the Ochal query.

We treat the variable b̄∗ differently than others from Var (as b̄∗ takes random
values in {0, 1} instead of random values in Zp like other variables.) For each
polynomial PolA(b̄

∗,Var) in which b̄∗ appears, we can make two partial evalu-
ations PolA(0,Var) and PolA(1,Var) corresponding to b̄∗ = 0 and b̄∗ = 1. We
obtain two polynomials with no b̄∗ variable. Hence, this increase the number of
polynomials by a factor at most 2.

We first proceed like for OMUF security with games Γ1 to have no π in
the return from the issuer. The transition to Γ2 to get rid of the Ocmp oracle
(and thus of the Oread and Ovalid oracles) is also using hybrid arguments but is
more complicated. Oracles are simulated in the order they are called. For the
simulation of Ocmp and Oread until the challenge is made, it works like for OMUF
security. After the challenge is made, the Ocmp(A,B) made by the adversary
are simulated by answering 1 if and only if there exists β ∈ {0, 1} such that
PolA−PolB vanishes in the partial evaluation b̄∗ = β. To simulate Ovalid(t, P,Q),
the answer is 1 if and only if there exists b, β{0, 1} such that PolQ − (x̄ + bȳ +
tz̄) × PolP vanishes in the partial evaluation b̄∗ = β. In the first case, we prove
the following variant of Fact 2.

Fact 6 Let q is the number of Osign queries (including Ochal) before an input
(A,B) is presented for the first time to the Ocmp oracle. We assume that the
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call is made by the adversary. Except with a probability bounded by q+2
p , we have

A = B if and only if PolA(0,Var) = PolB(0,Var) or PolA(1,Var) = PolB(1,Var).

The direct implication works like in Fact 2 as the match happens for b̄∗ = b∗. We
now want to show the converse implication: if PolA − PolB vanishes for b̄∗ = β
with β ∈ {0, 1}, then we have A = B.

Thanks to the generic group model, the adversary knows a linear combination
of provided group elements to obtain A−B. Let λi and µi be the coefficients of Ui

and Vi respectively. We let i be the largest index such that (λi, µi) ̸= (0, 0). The
partial derivative of PolA−B with respect to d̄i is λi + µi(x̄+ biȳ+ tS,iz̄+PolTi

)
(with bi replaced by b̄∗ in the i = i∗ case). Since PolA−B(β,Var) = 0, the partial
derivative vanishes for b̄∗ = β too. The adversary knows how to express Ti as a
linear combination of provided group elements. We notice that no group element
has any monomial b̄∗x̄. No group element has the monomial x̄, so there is no way
to make a Ti such that PolTi

(β,Var) has a monomial x̄. Hence, it cannot cancel x̄.
We deduce that A−B has no Ui and Vi as a component in the linear combination.
Hence, it does not depend on b∗ and the result is trivial: if PolA−PolB vanishes
for b̄∗ = β, it vanishes with the partial evaluation b̄∗ = b∗ too. Hence, we can
apply Fact 2 and conclude.

To simulate Ovalid, we use the following fact.

Fact 7 Let q is the number of Osign queries (including Ochal) before a Ovalid(t, P,Q)
call is made for the first time. We assume there is no Ocmp call before. Except
with a probability bounded by q+2

p , the oracle returns 1 if and only if there exists

b, β ∈ {0, 1} such that PolQ(β,Var) = (x̄+ bȳ + tz̄)PolP (β,Var).

The direct implication uses Fact 2 with β = b∗ and the right b which makes
(b, t, P,Q) valid. For the converse implication, we assume that the polynomial
equality is verified for a given (b, β) pair of bits.

We let aUi
, aVi

, bUi
, bVi

be the coefficients of Ui and Vi for Pi and of Ui and Vi

for Qi. Let λi = bUi− (x̄+bȳ+ tz̄)aUi and µi = bVi− (x̄+bȳ+ tz̄)aVi . Like in the
previous case, let i be the largest index such that (λi, µi) is nonzero. The partial
derivative of PolQ − (x̄+ bȳ + tz̄)PolP in terms of d̄i is again λi + µi(x̄+ biȳ +
tS,iz̄ + PolTi

) (with bi replaced by b̄∗ in the i = i∗ case). We know it vanishes
when evaluated on b̄∗ = β. Clearly, aVi

must be zero (otherwise, x̄2 appears and
cannot vanish). The same argument about the monomial x̄ and also about the
monomial ȳ implies that (x̄+ bȳ)aUi = (x̄+ biȳ)bVi . Hence,

∂PolA−B

∂d̄i
(b̄∗,Var) = bUi

+ bVi

(
(bi − b)ȳ + (tS,i − t)z̄ + PolTi

(b̄∗,Var)
)

The adversary also know a linear combination of Ti in terms of the provided
group elements. Let λ′

j and µ′
j be the coefficients of Uj and Vj and let j be the

largest index for which they are nonzero. The second partial derivative gives

∂2PolA−B

∂d̄j ∂d̄i
(b̄∗,Var) = bUi

(
λj + µj(x̄+ bj ȳ + tj z̄ + PolTj (b̄

∗,Var))
)
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which should vanish for b̄∗ = β. The same argument than before shows that x̄
cannot disappear. Hence, Ti cannot have components in Uj or Vj and does not
depend on b∗.

Knowing that Ti has no component is any previous Ui of Vi, we can go to the
second largest i such that (λi, µi) is nonzero and look at the partial derivative
with respect to d̄i (which we know does not appear in a subsequent Vi′). We
obtain the same result that Ti does not have any component in Uj or Vj . We
analyze like this all components in every (Ui, Vi) of PolQ − (x̄ + bȳ + tz̄)PolP .
Since it vanished on b̄∗ = β, we cannot have any other component. Hence

PolQ−(x̄+bȳ+tz̄)PolP =
∑
i

(
bUi

+ bVi

(
(bi − b)ȳ + (tS,i − t)z̄ + PolTi

(b̄∗,Var)
))

d̄i

with bi∗ to be replaced by b̄∗. For all indices i of nonzero terms, we deduce that
b = bi and Ti is or form Ti = tC,iZ + riG. This boils down to

PolQ − (x̄+ bȳ + tz̄)PolP = bVi∗ (b̄
∗ − b)ȳd̄i∗ +

∑
i̸=i∗

bVi(bi − b)ȳd̄i

If bVi∗ = 0, this vanishing for b̄∗ = β implies vanishing for b̄∗ = b∗ too, so we can
apply Fact 2 to deduce that Q = (x + by + tz)P most of the cases. If bVi∗ ̸= 0,
this vanishing for b̄∗ = β implies b = β. We can then see that it vanishes for
b̄∗ = b∗ and b = b∗ too. We apply Fact 2 to deduce that Q = (x + βy + tz)P
most of the cases.

Using hybrids, we obtain

|Pr[PMBb∗ → 1]− Pr[Γ2,b∗ → 1]| ≤ (2(n+ 1 + qOread
) + qOcmp)×

n+ 2

p
+

qHash
p6

In the game Γ2, the oracles Overify, Oread, and Ocmp are not used any more.

After getting rid of Overify and Oread, we obtain a game in which no informa-
tion about b∗ is given to the adversary. Thus,

Pr[Γ2,0 → 1] = Pr[Γ2,1 → 1]

Theorem 3. For every A playing PMB in the generic group model and making
n oracle calls to Osign, if Π2 is perfectly simulatable, we have

AdvPMB ≤ 2(2(n+ 1 + qOread
) + qOcmp)×

n+ 2

p
+

qHash
p6

where qOread
, qOcmp , and qHash are the number of queries to Oread, Ocmp, and to

the random oracle.

Again, the bound is tight.
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7 Conclusion

In our work, we studied the anonymous tokens with hidden metadata bit from
issuer to the verifier. We started our studies with a security weakness in a pro-
tocol from CRYPTO 2020 which is an extension of Privacy Pass from PoPETs
2018. The protocol is based on oblivious PRFs. We discussed the real-world im-
plications of the security notions defined in their protocol and showed that such
problems can be overcome with a new token protocol from algebraic MACs. We
defined the security with more realistic threat model. The security of our proto-
col relies on a extractable proof system which can be initialized in three ways:
(1) verifiable encryption relying on standard notions (2) knowledge-of-exponents
where its proof relies on generic group model (GGM) (3) with no extractable
proof where the security left as an open problem.

We believe algebraic MACs suit better in anonymous tokens with hidden bit
as a primitive. However, it is an open question to understand if there are other
OPRFs or another new primitive that would help designing anonymous tokens
with strong security and privacy guarantees.
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Additional Material

A ATHM: Anonymous Token with Hidden Metadata

The full version of ATHM includes several options. First of all, we add the public
metadata attribute m. It can, for instance, include a coarse expiration data. It
should be used carefully as it degrates unlinkability. A token with a hidden bit
b will be a tuple (t,m, σ) such that σ is a valid MAC for the attributes (b,m, t).

The objective of other options is to get rid of the dependency to the generic
group model and possibly have provable security in the standard model. For
that, one option is the choice of the MAC. A valid MAC for an input b, a public
metadata m, a nonce t, and a secret key (x⃗, y⃗, y⃗′, z⃗) is a pair σ = (P, Q⃗) such

that Q⃗ = (x⃗+ by⃗ +my⃗′ + tz⃗)P . As detailed below, several options can be made

for the MAC algorithm in which case the secrets x⃗, y⃗, y⃗′, and z⃗ will be vectors
of various dimension and structure with elements in Zp.

11

Finally, we also have options for the choice of proof schemes Π1 and Π2. The
proof Π1 is an extractable proof made by the client and Π2 is the simulatable
proof made by the issuer.

Options are summarized in Table 1.

Table 1. Options for the ATHM Protocol. Non-standard models for provable security
are indicated by either an ad-hoc assumption, or the random-oracle model (ROM),
or the generic group model (GGM). In the Attributes menu, several options can be
selected.

Attributes MAC Π1 (Text) Π2 (π)

– Issuer private
metadata bit b

– Public metadata
m

– Nonce t

– MAC-GGM
– MAC-DDH
– MAC3

– no Text (GGM)
– Knowledge-

of-Exponent
(Assumption 3
or GGM)

– MPC-in-the-
Head (ROM)

– Fiat-Shamir
(ROM)

– Homomorphic
encryption

A.1 The ATHM Components

Our scheme uses as a building block an extractable non-interactive proof Π1 and
a simulatable non-interactive proof Π2. Several options for Π1 and Π2 exist but
we focus on one in this section. They will be discussed in separate sections.

11 If we multiply a vector with elements in Zp by a group element, we obtain a vector
with elements in the group.
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Setup algorithm. Setup is composed of four phases. The Setup1 algorithm gener-
ates an (additive) group, which is cyclic, of prime order p. The Setup2 algorithm
selects a group generator G. The crs string includes p, group parameters gp to
be able to do operations in the group, and the generator G. It also includes pa-
rameters for a proof Π1 which are generated by Setup3 together with a trapdoor
td1 for extraction and parameters for Π2 which are generated by Setup4 together
with a trapdoor td2.

Setup(1λ):
1: Setup1(1

λ)→ (gp, p) ▷ group setup
2: Setup2(gp, p)→ G ▷ generator setup
3: Setup3(gp, p,G)→ (crs1, td1) ▷ Π1 setup
4: Setup4(gp, p,G)→ (crs2, td2) ▷ Π2 setup
5: crs← (gp, p,G, crs1, crs2)
6: td← (td1, td2)

The KeyGen algorithm. Key generation is composed of several phases.

KeyGen(crs):
1: KeyGen0(crs)→ (pp0, sk0)
2: KeyGen1(crs, pp0)→ (pp1, sk1) ▷ Π1 key generation
3: KeyGen2(crs, pp0, sk0)→ (pp2, sk2) ▷ Π2 key generation
4: pp← (pp0, pp1, pp2)
5: sk← (sk0, sk1, sk2)

In KeyGen0, the issuer selects four secrets sk0 = (x⃗, y⃗, y⃗′, z⃗) with y⃗, y⃗′, z⃗ ̸= 0, and

sets pp0 = Z⃗ = z⃗G. The structure of those secrets depends on the choice of the
MAC algorithm. We denote by Ex, Ey, Ey′ , and Ez the respective domains of x⃗,

y⃗, y⃗′, and z, depending on the choice of the MAC algorithm. We will also need
the span Ēz of Ez.

The token issuance protocol. The user has public parameters. The server’s input
is the secret (x⃗, y⃗, y⃗′, z⃗), a bit b to hide inside the token, and an agreed public
metadata m to embed. The protocol works as depicted on Figure 7: the client
selects a random tag share tC and a random mask r⃗ ∈ Ēz and sends T⃗ =
tCZ⃗ + r⃗G to the issuer. The client must also send an extractable proof Text for
T⃗ . The issuer selects a random tag share tS and generates a pair (U, V⃗ ) such

that (U, V⃗ − r⃗U) is a valid MAC for tag t = tC + tS and metadata (b,m) with

key (x⃗, y⃗, y⃗′, z⃗). For this, the issuer selects U = dG for a random d ∈ Z∗
p and

V⃗ = d(x⃗G + by⃗G + my⃗′G + tS z⃗G + T⃗ ). A NIZK proof Π2 must prove that

the (U, V⃗ , tS) triplet was correctly generated. Note that Π2 must prove that
b is a bit and that m was embedded. Both participants are assumed to have
agreed on m (alternately, one participant decides and sends m to the other).

Then, (U, V⃗ , tS , π) is returned. The client computes (U, V⃗ − r⃗U). To make it
unlinkable, the pair is multiplied by a random mask c to obtain another pair
σ = (P, Q⃗).
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ATHM.Client(G, Z⃗,m) ATHM.IssueToken((x⃗, y⃗, y⃗′, z⃗), b,m)

input: (G, Z⃗) input: (x⃗, y⃗, y⃗′, z⃗), b,m
tC ←$ Zp, r⃗ ←$ Ēz
T⃗ := tCZ⃗ + r⃗G[
T⃗ext := Π1.Prove(tC , r⃗; crs, pp, T⃗ )

]
T⃗
[
, T⃗ext

]
[if not Π1.Verify(T⃗ , T⃗ext, crs, pp, sk1) then return ⊥]

tS ←$ Zp, d←$ Z∗
p

U := dG

V⃗ := d(x⃗G+by⃗G+my⃗′G+tS z⃗G+T⃗ )

π ← Π2.Prove(b, d;U, V⃗ , tS ,m, T⃗ , crs, pp, sk0, sk2)

(U, V⃗ , tS , π)

if not Π2.Verify(π, U, V⃗ , tS ,m, T⃗ , crs, pp) then return ⊥
if U = 0 then return ⊥
c←$ Z∗

p

P := cU

Q⃗ := c(V⃗ − r⃗U)
t := tC + tS
σ := (P, Q⃗)
output: (t, σ)

Fig. 7. ATHM token issuance protocol.

About the extractable proof T⃗ext followingΠ1, there are several options which
are discussed in a subsequent section. The role of T⃗ext is to allow to formally prove
the security of ATHM without relying on the generic group model.

The NIZK proofΠ2 is a Fiat-Shamir transform of an OR proof of two Schnorr
proofs for b = 0 and b = 1. Variants without using a random oracle are possible
too.

The ReadBit algorithm. The redemption of (m, t, P, Q⃗) with (x⃗, y⃗, y⃗′, z⃗) checks

for which b ∈ {0, 1}, the equality Q⃗ = (x⃗+by⃗+my⃗′+ tz⃗)P is satisfied. Assuming
0 ̸∈ Ey ensures that b is unique. If b exists, it is returned. Otherwise, ⊥ is
returned.

Note that for this protocol, tag t needs to be a nonce as in other protocols
[13], [14] i.e. the redeemer should check against double-spending of a token with
the same t. Otherwise, it is easy to transform a valid token with attributes
(b,m, t) into another valid token with the same attributes: let σ = (P, Q⃗). Then

the client can forge another token σ′ = (P ′, Q⃗′) by taking σ′ = c′.σ for any
c′ ∈ Z∗

p.
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A.2 The MAC Building Block

Our security results will be based on the security of an algebraic MAC. The
simplest one is the MACGGM algorithm [6] defined as follows: given a secret
(x, y, y′, z) ∈ Z4

p, a valid authentication for (b,m, t) ∈ Z3
p is a pair σ = (P,Q)

such that Q = (x+ by+my′ + tz)P . For this MAC to be secure, it is important
that no adversary can find any linear relation between the random values of P .
Hence, P is selected at random by the issuer.

In MACDDH [6], we consider x⃗, y⃗, y⃗′, and z⃗ as vectors of a particular form:

x⃗ ∈ Ex = Z3
p, Ēz = {(α, β, 0);α, β ∈ Zp}, and y⃗, y⃗′, z⃗ ∈ Ey = Ey′ = Ez =

Ēz − {(0, 0, 0)}.
In general, we let x⃗ ∈ Ex, y⃗ ∈ Ey, y⃗′ ∈ Ey′ , z⃗ ∈ Ez. A MAC σ = (P, Q⃗) for

attributes (b,m, t) is valid if it satisfies Q⃗ = (x⃗+ by⃗ +my⃗′ + tz⃗)P .
We will assume that no adversary can forge a valid σ for a new (b, t,m) tuple

when given access to a MAC oracle and also that no adversary can distinguish
b ∈ {b0, b1} from a random valid tuple (t,m, σ) for this unknown b. The two
respective games are depicted on Figure 8 and Figure 9.

Game EF-CMA:
1: Setup1(1

λ)→ (gp, p)
2: pick x⃗ ←$ Ex, y⃗ ←$ Ey, y⃗′ ←$ Ey′ ,

z⃗ ←$ Ez
3: initialize i← 0
4: AOMAC,Overify(gp, p)→ (b,m, t, P, Q⃗)
5: if (b,m, t) is equal to some (bi,mi, ti)

then abort
6: win iff Overify(b,m, t, P, Q⃗)

Oracle OMAC(b,m, t):
7: increment i
8: set (bi,mi, ti)← (b,m, t)
9: pick a nonzero group element Pi

10: Q⃗i ← (x⃗+ biy⃗ +miy⃗′ + tiz⃗)Pi

11: return (Pi, Q⃗i)

Oracle Overify(b,m, t, P, Q⃗):
12: if P = 0 then return false
13: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Fig. 8. Forgeability Game for the MAC

We will make the two following assumptions. For MACGGM, they are proven
in the generic group model [6]. For MACDDH, they are proven under the DDH
assumption [6].

Assumption 1 In the EF-CMA game on Figure 8, we define the advantage of
an adversary A by

AdvEF-CMA
A (λ) = Pr[win]

We assume that for any PPT adversary A, the advantage is a negligible function.

Assumption 2 In the IND-CMA game on Figure 9, we define the advantage of
an adversary A by

AdvIND-CMA
A (λ) = Pr[IND-CMA1 → 1]− Pr[IND-CMA0 → 1]

We assume that for any PPT adversary A, the advantage is a negligible function.
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Game IND-CMAb∗ :
1: flag← false
2: initialize i← 0
3: m∗ ← ⊥
4: Setup1(1

λ)→ (gp, p)
5: pick x⃗ ←$ Ex, y⃗ ←$ Ey, y⃗′ ←$ Ey′ ,

z⃗ ←$ Ez
6: return AOMAC,Ochal,Overify,Ovalid(gp, p)

Oracle OMAC(b,m, t):
7: if flag and (b,m, t) ∈ {(b∗0,m∗, t∗),

(b∗1,m
∗, t∗)} then return ⊥

8: increment i
9: (bi,mi, ti)← (b,m, t)
10: pick a nonzero group element P
11: Q⃗← (x⃗+ by⃗ +my⃗′ + tz⃗)P
12: return (P, Q⃗)

Oracle Ochal(b, b
′,m, t):

13: if flag or ∃i (bi,mi, ti) ∈
{(b,m, t), (b′,m, t)} then return ⊥

14: (b∗0, b
∗
1,m

∗, t∗)← (b, b′,m, t)
15: flag← true
16: pick a nonzero group element P ∗

17: Q⃗∗ ← (x⃗+ b∗b∗ y⃗ +m∗y⃗′ + t∗z⃗)P ∗

18: return (P ∗, Q⃗∗)

Oracle Overify(b,m, t, P, Q⃗):
19: if flag and b ∈ {b∗0, b∗1} and (t,m) =

(t∗,m∗) then return ⊥
20: if P = 0 then return false
21: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Oracle Ovalid(b0, b1,m, t, P, Q⃗)
22: if ¬flag then return ⊥
23: if (t,m) = (t∗,m∗) and {b0, b1} ≠
{b∗0, b∗1} then return ⊥

24: if P = 0 then return false
25: if Q⃗ = (x⃗ + b0y⃗ + my⃗′ + tz⃗)P then

return true
26: if Q⃗ = (x⃗ + b1y⃗ + my⃗′ + tz⃗)P then

return true
27: return false

Fig. 9. Pseudorandomness Games for the MAC
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A.3 The Extractable Proof Building Block

The Π1 extractable proof is used in our analysis to formally prove security. We
require a straightline extraction of tC and r⃗ by using a trapdoor and a verification
algorithm which does not require the trapdoor. Namely, a dedicated algorithm
should be able to extract tC and r⃗ from a valid proof and the view of the client
and the issuer should be able to verify the proof. Furthermore, we need the
proof to be simulatable in a computationally indistinguishable manner by using
a trapdoor.

We propose several options for Π1.

– We use a construction from techniques of verifiable encryption, which has a
complexity cost but a security proven under standard assumptions. Namely,
we should encrypt the values tC and r⃗ with a public key, which can be
decrypted using a trapdoor only, and in a way that we can publicly verify
that it encrypts values satisfying T⃗ = tCZ⃗ + r⃗G.

– We use a simple Π1 scheme (i.e. the proof is computed and verified with a
very low complexity overhead) but an ad-hoc (non-standard) extractability
assumption.

– Use a trivial Π1 scheme (i.e. with a void Text and an always true verification)
and the generic group model.

Using verifiable encryption. Regarding the first approach, we can use the con-
struction by Takahashi and Zaverucha [17]. Namely, tC and r⃗ are shares among
several participants who run a multiparty computation protocol to compute
[tC ]Z⃗ + [r⃗]G, reveal it, and compare it to T⃗ . The execution is simulated. The
views are committed with an extractable commitment (for instance, a public-key
encryption scheme with a public key set up by Setup1 in the common reference
string crs1, extractable from the secret key in td1). Based on the commit values,
a challenge is computed using a random oracle. This challenge gives the index
of a participant whose view remains hidden but other commitments are opened.
The T⃗ext record consists of the commitments and the openings. Verification con-
sists of checking that the openings match their respective commit values, that
the opened views match and make their participant output true, and that the
missing view is the one corresponding to the hash of the commit values through
the random oracle.

To extract from T⃗ext, we use the trapdoor which allows to extract all views
from the commit values. The views include all shares of tC and r⃗ which can thus
be reconstructed.

To forge T⃗ext, we can program the random oracle to predict the view not
to be revealed and make the corresponding participant malicious so that others
would output true.

The proposed verifiable encryption construction from [17] is secure from any
MPC-in-the-head zero-knowledge proof and an IND-CPA cryptosystem which is
binding. This can be instantiated with quite standard assumptions.
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Using an ad-hoc knowledge-of exponent assumption. We consider a key genera-
tion KeyGen1 which sets an additional secret sk1 = θ for the issuer and reveals

pp1 = (Gext, Z⃗ext) to the client, with Gext = θG and Z⃗ext = θZ⃗. Then, we set

T⃗ext = tCZ⃗ext + r⃗Gext to be verified by T⃗ext = θT⃗ .
Simulating T⃗ext is trivial with the help of the trapdoor sk1 = θ.
For extraction, we need a knowledge-of-exponent-like assumption [11]: that

being able to make a valid (T⃗ , T⃗ext) pair with the knowledge of the client would

imply knowing a linear combination T⃗ = tCZ⃗ + r⃗G. In the standard knowledge-
of-exponent assumption, we do not have any oracle whereas in our case, we need
them. However, some oracles may break the knowledge-of-exponent assumption
as shown below. Thus, the difficulty is to show that our oracles do not break
this assumption. The oracle calls may help to provide other (T⃗ , T⃗ext) pairs to
the client, without the client knowing the linear combination. Our assumption
captures that the oracles somehow do not help for that. We formalize two types
of oracles.

An oracle is of Type I if there exists vectors of low-degree polynomials
f⃗1, . . . , f⃗n and scalars λ1, . . . , λn, for some integer n, such that the oracle is
defined as follows:

Oracle O(T⃗ , T⃗ext):

1: if T⃗ext ̸= θT⃗ then return ⊥
2: A⃗i ← f⃗i(aux)G+ λiT⃗ for i = 1, . . . , n
3: pick d←$ Zp at random

4: return (dA⃗1, . . . , dA⃗n)

The values θ and aux as well as the group parameters are used by the oracle.
What is crucial is that O is stateless, does not use θ or T⃗ext after Step 1, and
that it randomizes the output with a fresh d. Once the random coins for tS are
fixed, the issuer producing (U, V⃗ ) (without π) can be seen as a Type I oracle
which would represent Osign.

An oracle is of Type II if there exists a deterministic polynomially bounded
algorithm f⃗ returning a vector of scalars, such that the oracle is defined as
follows:

Oracle O(inp, P, Q⃗):

1: compute s⃗← f⃗(inp, aux)

2: return whether Q⃗ = s⃗P

The value aux and the group parameters are used by the oracle. One crucial
property is that the output of the oracle is independent from the group element
representation. The Overify oracle can be seen as a Type II oracle.

We can now define the following game with an adversary A and an extractor
Extract:

1: Setup1(1
λ)→ (gp, p) ▷ set up the group parameters

2: Setup2(gp, p)→ G ▷ select a group generator
3: pick aux1, aux2, . . .←$ Zp

4: Z⃗ ← G.L⃗(aux)
5: pick θ ←$ Z∗

p
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6: Gext ← θG, Z⃗ext ← θZ⃗
7: run A(gp, p,G,Gext, Z⃗, Z⃗ext)→ (T⃗ , T⃗ext) with access to oracles of Type I and

Type II
8: set View to the view of A ▷ including inputs, coins, and oracle answers
9: run Extract(View)→ (tC , r⃗)

10: return whether T⃗ext = θT⃗ and tCZ⃗ + r⃗G ̸= T⃗

The game includes a uniform vector aux of secrets from Zp and a linear function

L⃗ to define Z⃗.
Our assumption for the extraction which we will prove shortly is as follows:

Assumption 3 For every PPT A, every linear L⃗, and every set of oracles of
Type I and Type II, there exists a polynomially bounded extractor Extract such
that the above game returns 1 with negligible probability.

Hence, Extract can extract tC and r⃗ on the fly from the view of A whenever
(T⃗ , T⃗ext) are valid pairs. With such an assumption, we can extract without
rewinding and without the coins of the oracles. Note that the syntax for the
extractor Π1.Extract is a bit different from the CRS model here: instead of ex-
tracting with the help of a trapdoor td1, we extract from the view View of the
adversary.

To illustrate the difficulty, we stress that the assumption cannot generalize to
any oracle. For instance, the oracle which uses more T⃗ext by returning a random
d multiplied by (T⃗ , T⃗ext) would give to the client a valid pair for which he cannot
know the scalar d. The variant of this counterexample which returns a secret x
(from aux) multiplied by the (T⃗ , T⃗ext) pair follows the same argument (unless x

leaks). Consequently, the Boolean oracle defined by O(i, P, Q⃗) returning the ith

bit of (xP, xQ⃗) with a secret x from aux makes the assumption invalid too.
So far, it is unknown how to prove Assumption 3 in the standard model. To

convince ourselves that it is a reasonable assumption, we prove it in the generic
model. However, our later security proofs will be in the standard model with the
extra assumption that Assumption 3 is true.

Proof of Assumption 3 in the generic group model. We prove our assumption in
the generic group model. We assume that all group operations that an adversary
can make are only addition, subtractions, and comparison of previously obtained
group elements. They are externalized with the values of group elements hidden.

In this model, an algorithm who knows the view of the adversary and who
runs the adversary algorithm step by step to pay attention to every group op-
eration is able to express any group element issued by the adversary as a linear
combination of group elements which are in the view. These elements are G,
Gext, Z⃗, Z⃗ext, and the outputs from the Type I oracles.

We let Var be a set of formal variables which represent the values in aux. We
represent each group element A produced by the adversary as a formal polyno-
mial PolA(θ̄,Var, d̄1, . . . , d̄q) in terms of secrets θ, aux, and each di which is se-
lected by the Type I oracles. The polynomial is such thatA = PolA(θ, aux, d1, . . . , dq)G.

Hence, PolG = 1, PolGext = θ̄, for the ith components Zi and Zext,i of Z⃗ and Z⃗ext,
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we have PolZext,i = θ̄ × PolZi
. In the Type I oracles, we assume that the degree

of each fj is bounded by some δ. Each output Aj from the i-th oracle call can
be expressed as a polynomial which is multiple of d̄i. For this, we take the fj as
polynomials in Var (of degree bounded by δ).

By induction, every appearing group element is represented by a polynomial
of degree bounded by δ+qI , where qI is the number of queries to a Type I oracle.
Since aux is uniform, we notice that the probability that two group elements
which are represented by two different polynomials will match with a probability
bounded by δ+qI

p , due to the Schwartz-Zippel Lemma. As this is negligible, we
assume it does not occur. Hence two appearing group elements are equal if and
only if their polynomial representations are the same.

The first crucial observation is that the partial degree in θ of every polynomial
representation of any produced group element is bounded by 1. This is because
the known group elements are such that no fj uses θ. Since the polynomial

representation of T⃗ext has no θ2, to have the equation T⃗ext = θT⃗ satisfied, the
polynomial representation of T⃗ cannot have any θ. We thus assume that neither
the input T⃗ to oracle calls nor the final output T⃗ has any θ.

The second observation is that the outputs of the oracle calls have no θ
(since neither T⃗ nor fj has any) but are multiple of some di. The final T⃗ext must
be a linear combination of group elements in the view. Since none has any diθ
monomial, this means T⃗ must have no di inside. We know it must have no θ as
well. Hence, it is a linear combination of G and Z⃗ only. This linear combination
is T⃗ = tCZ⃗ + r⃗G.

By following step by step the group operations, and also doing the corre-
sponding polynomial operation, we obtain tC and r⃗. To lower the complexity of
extraction, we can even do operations modulo the monomials di that we know
will not appear in the end.

A.4 The Simulatable Proof Building Block

We adapt the Π2 proof here.

Setup4. First of all, Setup4(gp, p,G) first selects θ′ ∈ Z∗
p and sets H = θ′.G,

crs2 = xH, and td2 = θ′. The role of H is to do a Pedersen commitment.

KeyGen2. The algorithm KeyGen2(crs, Z⃗, sk0) parses crs = (gp, p,G, .,H) and

sk0 = (x⃗, y⃗, y⃗′, z⃗), picks r⃗x ∈ Ex, r⃗y ∈ Ey, r⃗y′ ∈ Ey′ , and computes C⃗x = x⃗G+r⃗xH,

C⃗y = y⃗G+ r⃗yH, and C⃗y′ = y⃗′G+ r⃗y′H.

Then, KeyGen2 computes a proof of knowledge for (x⃗, y⃗, z⃗, r⃗x, r⃗y). For this,
it picks random ρ⃗x, ρ⃗rx ∈ Ex, ρ⃗y, ρ⃗ry ∈ Ey, ρ⃗y′ , ρ⃗ry′ ∈ Ey′ , ρ⃗z ∈ Ez, computes

Γ⃗x = ρ⃗xG+ ρ⃗rxH, Γ⃗y = ρ⃗yG+ ρ⃗ryH, Γ⃗y′ = ρ⃗y′G+ ρ⃗ry′H, Γ⃗z = ρ⃗zG,

ε = Hash(G,H, C⃗x, C⃗y, C⃗y′ , Z⃗, Γ⃗x, Γ⃗y, Γ⃗y′ , Γ⃗z)
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(⃗ax, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ , a⃗z) = (ρ⃗x, ρ⃗ry , ρ⃗y, ρ⃗ry , ρ⃗y′ , ρ⃗ry′ , ρ⃗z)+ε(x⃗, r⃗x, y⃗, r⃗y, y⃗′, r⃗y′ , z⃗),
and the proof is (ε, a⃗x, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ , a⃗z). Finally,

pp2 = (C⃗x, C⃗y, C⃗y′ , ε, a⃗x, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ , a⃗z)

and sk2 = (r⃗x, r⃗y, r⃗y′) are the output of KeyGen2.
To verify the proof (this must be done at least once for all), the client com-

putes Γ⃗x = a⃗xG+a⃗rxH−εC⃗x, Γ⃗y = a⃗yG+a⃗ryH−εC⃗y, Γ⃗y′ = a⃗y′G+a⃗ry′H−εC⃗y′ ,

Γ⃗z = a⃗zG− εZ⃗, and checks ε = Hash(G,H, C⃗x, C⃗y, C⃗y′ , Z⃗, Γ⃗x, Γ⃗y, Γ⃗y′ , Γ⃗z).

Prove. The algorithm Prove(b, d;U, V⃗ , tS ,m, T⃗ , crs, pp, sk0, sk2) parses different
elements and picks µ⃗, a⃗1−b, r⃗µ ∈ Ēy, e1−b, rd ∈ Zp, r⃗ρ, r⃗w ∈ E at random. Then,

it sets d′ = − 1
d , ρ⃗ = −(r⃗x+br⃗y+mr⃗y′ + µ⃗), w⃗ = x⃗+by⃗+my⃗′+tS z⃗ and computes

C⃗ = b.C⃗y +H.µ⃗, C⃗b = H.r⃗µ, C⃗1−b = H.⃗a1−b − e1−b(C⃗ − (1− b)C⃗y), Cd

C⃗ρ

C⃗w

 = rd

U

V⃗

V⃗

+

0 · · · 0
H.I
0.I

 r⃗ρ +

0 · · · 0
0.I
G.I

 r⃗w

where I is the identity matrix,

e = Hash(G,H, C⃗x, C⃗y, Z⃗, U, V⃗ , tS ,m, C⃗, C⃗0, C⃗1, Cd, C⃗ρ, C⃗w)

eb = e− e1−b, a⃗b = r⃗µ + ebµ⃗, and (ad, a⃗ρ, a⃗w) = (rd, r⃗ρ, r⃗w) + e(d′, ρ⃗, w⃗). Finally,

π = (C⃗, e0, e1, a⃗0, a⃗1, ad, a⃗ρ, a⃗w)

Verify. The algorithm Verify(π, U, V⃗ , tS ,m, T⃗ , crs, pp) computes C⃗0 = H.⃗a0 −
e0.C⃗, C⃗1 = H.⃗a1 − e1.(C⃗ − C⃗y), e = e0 + e1, Cd

C⃗ρ

C⃗w

 = ad

U

V⃗

V⃗

+

0 · · · 0
H.I
0.I

 a⃗ρ+

0 · · · 0
0.I
G.I

 a⃗w+e

 G

C⃗x + C⃗ +mC⃗y′ + tS .Z⃗ + T⃗

T⃗


then verifies the e = Hash(G,H, C⃗x, C⃗y, Z⃗, U, V⃗ , tS ,m, C⃗, C⃗0, C⃗1, Cd, C⃗ρ, C⃗w).

SimKeyGen. The algorithm SimKeyGen(crs, Z⃗) parses crs to retrieve G and H.

It picks a fully random pp2, computes Γ⃗x, Γ⃗y, Γ⃗y′ , Γ⃗z like in verification, then
programs the random oracle to have a consistent Hash. The simulation is perfect.

Simulate. The algorithm Simulate(U, V⃗ , tS , T⃗ , crs, pp, td2) parses inputs. Then, it

picks a random proof π with same distribution, i.e. C⃗ ∈ G.Ēy, e0, e1, ad ∈ Zp,
a⃗0, a⃗1 ∈ Ēy a⃗ρ, a⃗w ∈ E all uniform and independent. It can then proceed as in

Verify(π, U, V⃗ , tS , T⃗ , crs, pp) to compute C⃗0, C⃗1, Cd, C⃗ρ, C⃗w, then the hash. Then,
the random oracle is programmed to output the correct hash e = e0 + e1.m
Programming may fail with probability at most qHash

p6 .
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Special soundness of pp2. We can extract from a process issuing a valid pp2 a

single (C⃗x, C⃗y, C⃗y′ , Γ⃗x, Γ⃗y, Γ⃗y′) and the answers (⃗ax, a⃗rx , a⃗y, a⃗ry , a⃗y′ , a⃗ry′ ) to two
different challenges ε and ε+∆ε. From the equations in verification, we can then
set x⃗ = 1

∆ε∆a⃗x, r⃗x = 1
∆ε∆a⃗rx , y⃗ = 1

∆ε∆a⃗y, r⃗y = 1
∆ε∆a⃗ry , y⃗

′ = 1
∆ε∆a⃗y′ , r⃗y′ =

1
∆ε∆a⃗ry′ , and obtain C⃗x = G.x⃗+H.r⃗x, C⃗y = G.y⃗+H.r⃗y, and C⃗y′ = G.y⃗′+H.r⃗y′ .

Ideally, we should have an adaptive extractable proof in pp2 to extract the
secrets. Since we only need this in unlinkability and we should extract from the
initialization adversary A1 who is only setting up pp2, we keep the proof as it
is for simplicity. An adversary A1 succeeding to build a valid pp2 without being
extractable would have a probability of success that we denote by AdvEXTRACTA1

.

Special soundness of π. We assume that the secrets x⃗, y⃗, y⃗′, z⃗, r⃗x, r⃗y, r⃗y′ have

been correctly extracted. We consider an issuer who responds with (U, V⃗ , tS , π)

to a request T⃗ with a proof π which verifies, with probability larger than 1
p .

Hence, there exists a single (U, V⃗ , tS , C⃗, C⃗0, C⃗1, Cd, C⃗ρ, C⃗w) and the valid answer
(e0, e1, a⃗0, a⃗1, ad, a⃗ρ, a⃗w) to two different challenges e and e+∆e.

Thanks to the equations in verification, we obtain H.∆a⃗0 = ∆e0.C⃗, H.∆a⃗1 =

∆e1.(C⃗ − C⃗y), so C⃗ = H.∆(a⃗0+a⃗1)
∆e + ∆e1

∆e C⃗y. We also obtain G = −∆ad

∆e U ,

−(C⃗x + C⃗ +mC⃗y′ + tSZ⃗ + T⃗ ) = ∆ad

∆e V⃗ + 1
∆eH.∆a⃗ρ, −T⃗ = ∆ad

∆e V⃗ + 1
∆eG.∆a⃗w.

As G ̸= 0, we can invert and multiply the last three equations by d = − ∆e
∆ad

.

If ∆e1
∆e ̸= 1, we have ∆e0 ̸= 0 so we obtain C⃗ = 1

∆e0
H.∆a⃗0. Otherwise, we

obtain C⃗ = C⃗y +
1
∆eH.∆(⃗a0 + a⃗1). In any case, we obtain b, µ⃗, d, ρ⃗, w⃗ such that

C⃗ = b.C⃗y+H.µ⃗, U = d.G, V⃗ = d(C⃗x+ C⃗+mC⃗y′ + tSZ⃗+ T⃗ )+H.ρ⃗ = G.w⃗+d.T⃗ .

Given that C⃗x = G.x⃗ + H.r⃗x, C⃗y = G.y⃗ + H.r⃗y, C⃗y′ = G.y⃗′ + H.r⃗y′ , and

Z⃗ = G.z⃗, the equations in V⃗ give (x⃗+by⃗+my⃗′+tS z⃗− 1
d .w⃗)G+(r⃗x+br⃗y+mr⃗y′ +

µ⃗+ 1
d .ρ⃗)H = 0. Unless the issuer can compute the discrete logarithm of H, this

implies that we have 1
d w⃗ = x⃗+by⃗+my⃗′+tS z⃗ and −µ⃗− 1

d ρ⃗ = r⃗x+br⃗y+mr⃗y′+tS z⃗′.

These equations imply U = d.G and V⃗ = d(Gx⃗+bGy⃗+my⃗′+tSGz⃗+ T⃗ ). Thus, if
no such (b, d) exist with b ∈ {0, 1}, the proof succeeds with probability bounded
by 1

p plus the advantage of a discrete logarithm adversary.

The solution (b, d) such that b ∈ {0, 1}, U = d.G, and V⃗ = d(Gx⃗ + bGy⃗ +

my⃗′ + tSGz⃗ + T⃗ ) is unique when it exists. We let AdvSOUND
A be the probability

that and adversary A succeeds to build a valid proof π when no solution exists.
Using the forking lemma, we obtain the answer to an alternate challenge with

probability
(AdvSOUND

A )2

4qHash
− 1

p . Using the above extraction method, we deduce the
discrete logarithm of H. This defines an adversary B such that

AdvSOUND
A ≤ 2

√
qHash

√
AdvDLOG

B +
1

p

Variant without ROM. The Fiat-Shamir relies on the random oracle model
(ROM). We can get rid of this assumption by following usual techniques [5]. For
instance, we can use an additive homomorphic encryption scheme. The client
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would generate a key pair and sends the encryption key pk together with the
encryption Encpk(e) of a random challenge e. Then, the server would do all op-
erations homomorphically to return and encrypted π. The client would decrypt
it.

A.5 Unforgeability

Theorem 4. Under Assumption 1, ATHM is OMUF-secure. More precisely,
given an OMUF-adversary A making q oracle calls to Osign and qHash calls to
the random oracle, there exists an EF-CMA-adversary B making q + 3 oracle
calls to OMAC such that

AdvOMUF
A ≤ AdvEF-CMA

B +
q + 1

p
+

qHash
p6

This result needs Π1.Extract to succeed if an only if Π1.Verify returns true
and Π2 to be perfectly simulatable with a trapdoor using Π2.SimKeyGen and
Π2.Simulate.

Proof. We start with an adversary A playing the one-more unforgerability game
against ATHM and we transform it into a sequence of adversaries playing other
games with the same success.

First of all, we change the game so that the issuer no longer sends a proof
π but rather make the adversary to set up Π2, generate the keys, and simulate
π perfectly. The simulation uses Π2.SimKeyGen and Π2.Simulate. We obtain an
adversary Adv0 playing a game Γ0 such that

AdvOMUF
A ≤ AdvΓ0

A0
+

qHash
p6

Then, we define a new adversary A1 who can use the extractable proof T⃗ext in
our scheme. Giving consistent T⃗ and T⃗ext proves the knowledge of tC and r⃗ with
a way to extract them. With a trapdoor td1 (in the CRS model), A1 can extract

(tC , r⃗) = Π1.Extract(td1, T⃗ext) (or (tC , r⃗) = Π1.Extract(View) with View being the
view of A in the model based on Assumption 3). Then, A1 can call a MAC oracle

to build (t, P, Q⃗) such that t and P are random and Q⃗ = (x⃗+ by⃗ +my⃗′ + tz⃗)P .

Then, A1 sets tS = t − tC , U = P , and V⃗ = Q⃗ + r⃗U to return to the client
as written on Figure 10. Note that this requires to simulate the proof π based
on the trapdoor θ′ from td2 (or programming the random oracle). This way, an
attacker for our scheme transforms into a attacker in the Γ1 game on Figure 10.

The extraction procedureΠ1.Extract(td1, T⃗ext) fails iffΠ1.Verify(T⃗ , T⃗ext, G, Z⃗)
is false. As forging π is perfectly simulatable, A1 playing Γ1 perfectly simulates
A playing OMUF. If A wins, there exists a bit b such that there are more tj with
bj = b than oracle calls to Osign with bit b. Hence, there must exist one for which
tj does not match any O call with the bit b. Therefore, (bj ,mj , tj , σj) is a valid
forgery. Therefore, we have

AdvΓ0

A0
≤ AdvΓ1

A1
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Adversary AO,Overify

1 (gp, p,G, Z⃗):
1: Setup3(gp, p,G)→ (crs1, td1)
2: Setup4(gp, p,G)→ (crs2, td2)
3: crs← (gp, p,G, crs1, crs2)
4: KeyGen1(crs, Z⃗)→ (pp1, sk1)
5: SimKeyGen(crs, Z⃗)→ pp2
6: pp← (crs, Z⃗, pp1, pp2)
7: run AOsign,Oread(crs, pp) →

(b,m, (t′j , σj)j)
8: find j such that for all i, (b,m, t′j) ̸=

(bi,mi, ti) (if none, return ⊥)
9: return (b,m, t′j , σj)

Subroutine Osign(b,m, query):
10: parse query→ (T⃗ , T⃗ext)
11: Π1.Extract(td1, sk1, T⃗ext)→ (tC , r⃗)
12: if extraction failed or T⃗ ̸= tCZ⃗ + r⃗G

then return ⊥
13: pick t←$ Zp

14: O(b,m, t)→ (P, Q⃗)
15: tS ← t− tC
16: U ← P
17: V⃗ ← Q⃗+ r⃗U
18: π ← Π2.Simulate(U, V⃗ , tS , crs, pp, td2)
19: return (U, V⃗ , tS , π)

Subroutine Oread(m, t, σ):
20: if Overify(0,m, t, σ) then return 0
21: if Overify(1,m, t, σ) then return 1
22: return ⊥

Game Γ1:
1: Setup1(1

λ)→ (gp, p)
2: Setup2(gp, p)→ G
3: pick x⃗ ←$ Ex, y ←$ Ey, y′ ←$ Ey′ ,

z ←$ Ez
4: set Z⃗ ← z⃗G
5: initialize i← 0
6: AO,Overify

1 (gp, p,G, Z⃗)→ (b,m, t, P, Q⃗)
7: if (b,m, t) is equal to some (bi,mi, ti)

then abort
8: win iff Overify(b,m, t, P, Q⃗)

Oracle O(b,m, t):
9: increment i
10: (bi,mi, ti)← (b,m, t)
11: pick a nonzero group element Pi

12: Q⃗i ← (x⃗+ biy⃗ +miy⃗′ + tiz⃗)Pi

13: return (Pi, Q⃗i)

Oracle Overify(b,m, t, P, Q⃗):
14: if P = 0 then return false
15: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Fig. 10. Unforgeability Step 1: A1 playing Γ1
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We now get rid of the selection of G and of the input Z⃗ to the adversary by a
change of variable G = PP0, Z⃗ = Q⃗Q0, x⃗ = x⃗x, y⃗ = y⃗y, y⃗′ = y⃗y′, z⃗ = x⃗x+ tt0.z⃗z,
which uses an initial MAC (bb0,mm0, tt0,PP0, Q⃗Q0) with secret (x⃗x, y⃗y, y⃗y′, z⃗z)
and input bb0 = 0, mm0 = 0, and tt0 = 1. We set bb = b

1+t , mm = m
1+t , tt =

t.tt0
1+t ,

PP = P and Q⃗Q = (1 + t)−1Q⃗ so that

x⃗x+ bb.y⃗y +mm.y⃗y′ + tt.z⃗z = (1 + t)−1(x⃗+ by⃗ +my⃗′ + tz⃗)

Thus, an adversaryA1 for Γ1 transforms into another adversary B in the EF-CMA
game as depicted on Figure 11.

Adversary BOMAC,Overify(gp, p):
1: bb0 ← 0
2: mm0 ← 0
3: tt0 ← 1
4: OMAC(bb0,mm0, tt0)→ (G, Z⃗)

5: run AO′,O′′

1 (gp, p,G, Z⃗) →
(b,m, t, P, Q⃗)

6: bb← b
1+t

7: mm← m
1+t

8: tt← t.tt0
1+t

9: PP← P
10: Q⃗Q← (1 + t)−1Q⃗

11: return (bb,mm, tt,PP, Q⃗Q)

Subroutine O′(b,m, t):
12: bb← b

1+t

13: mm← m
1+t

14: tt← t.tt0
1+t

15: OMAC(bb,mm, tt)→ (PP, Q⃗Q)
16: P ← PP
17: Q⃗← (1 + t)Q⃗Q
18: return (P, Q⃗)

Subroutine O′′(b,m, t, P, Q⃗):
19: bb← b

1+t

20: mm← m
1+t

21: tt← t.tt0
1+t

22: PP← P
23: Q⃗Q← (1 + t)−1Q⃗

24: return Overify(bb,mm, tt,PP, Q⃗Q)

Game EF-CMA:
1: Setup1(1

λ)→ (gp, p)
2: pick x⃗x ←$ Ex, y⃗y ←$ Ey, y⃗y′ ←$ Ey′ ,

z⃗z←$ Ez
3: initialize i← 0
4: BOMAC,Overify(gp, p)→ (bb,mm, tt,PP, Q⃗Q)
5: if (bb,mm, tt) is equal to some

(bbi,mmi, tti) then abort

6: win iff Overify(bb,mm, tt,PP, Q⃗Q)

Oracle OMAC(bb,mm, tt):
7: increment i
8: (bbi,mmi, tti)← (bb,mm, tt)
9: pick a nonzero group element PPi

10: Q⃗Qi ← (x⃗x + bbi.y⃗y + mmi.y⃗y′ +
tti.z⃗z)PPi

11: return (PPi, Q⃗Qi)

Oracle Overify(bb,mm, tt,PP, Q⃗Q):
12: if PP = 0 then return false
13: return whether Q⃗Q = (x⃗x + bb.y⃗y +

mm.y⃗y′ + tt.z⃗z)PP

Fig. 11. Unforgeability Step 2: B playing EF-CMA
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Some rare failure event may happen: during the selection of tt0, we may
obtain z⃗ = xx+tt0.z⃗z = 0 making an invalid z⃗. Furthermore, during the selection
of any t, we may obtain t = −1 making the change of variable fail. However, by
the difference Lemma, we have

AdvΓ1

A1
≤ AdvEF-CMA

B +
q + 1

p

⊓⊔

A.6 Unlinkability

The role of the NIZK is important as it makes sure that the issuer must use
either b = 0 or b = 1 and therefore hides only one bit. Without the NIZK, the
issuer could use more than one bit with b and use this as a marker to link tokens
to redeem to clients requesting a token. So, the client must verify the NIZK
proof for unlinkability. The client must also verify U ̸= 0, because U = 0 could
be used by the issuer to mark a token.

The issuer knows which bit is hidden during an issuing session and can extract
the hidden bit during redeem. Hence, we should only consider unlinkability when
the bits are the same.

Theorem 5. ATHM is 2-UNLINK-secure. More precisely, given an UNLINK-
adversary A making oracle calls to Oquery with index set Qquery, there exist an
adversary A′ making a valid pp2 without being extractable, #Qquery SOUND-
adversaries Bi against the NIZK and #Qquery distinguishers Di on Text such
that

AdvUNLINKA ≤ 2

n
+ AdvEXTRACTA′ +

∑
i∈Qquery

AdvSOUND
Bi

+
∑

i∈Qquery

AdvINDDi

The proof uses the fact that Π2 is sound and that Text can be simulated using a
trapdoor in a computationally indistinguishable manner.

Proof. We start with an adversaryA = (A1,A2,A3) playing the UNLINKn game.
We assume that AT.ClientQuery verifies pp, at least at the first time is it run.

Using the soundness of the proof of x⃗, r⃗x, y⃗, r⃗y, y⃗′, r⃗y′ in pp2 (based on that A1

is only running this unique proof), there is an extractor which extracts from
A′ those secrets, except with negligible probability AdvEXTRACTA′ . We reduce to a
game Γ0 in which this extraction succeeds. We have

AdvUNLINKA ≤ AdvΓ0

A + AdvEXTRACTA′

Second, we use the simulator of Π1 to simulate all T⃗ext and reduce to a
protocol using no T⃗ext. For that, we define distinguishers Di between a valid T⃗ext

and a simulated one. We obtain a game Γ1 with no Π1 and an adversary A0

such that
AdvΓ0

A ≤ AdvΓ1

A0
+

∑
i∈Qquery

AdvINDDi
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Then, we reduce to a game Γ in which for every i, the (mi, queryi, respi)

triplets, parsed as queryi = T⃗i and respi = (Ui, V⃗i, ti,S , πi), is such that there

exists (bi, di) such that bi ∈ {0, 1}, Ui = diG, and V⃗i = di(G.x⃗ + biG.y⃗ +

mi.y⃗′ + ti,SG.z⃗ + T⃗i). Note that (bi, di) is unique when it exists. Thanks to the
soundness of Π2, we have #Qquery adversaries Bi to build a valid proof when no
(bi, di) exists, such that

AdvΓ1

A0
≤ AdvΓA0

+
∑

i∈Qquery

AdvSOUND
Bi

We deduce that Q⃗i = (x⃗ + biy⃗ +miy⃗′ + tiz⃗)Pi with bi ∈ {0, 1} in the game Γ .
We also note that all mi (i ∈ Q) must be equal to a common m as required in
the UNLINK game.

The rest of the proof is an information theoretic argument for which complex-
ities do not matter. Given (x⃗, y⃗, y⃗′, z⃗, T⃗i, Ui, V⃗i, ti,S ,m, πi) we can uniquely de-

termine bi. We observe that (ti, Pi)|(x⃗, y⃗, y⃗′, z⃗, T⃗i, Ui, V⃗i, ti,S ,m, πi) is uniformly
distributed as a pair composed of a scalar and a nonzero group element. Hence,
whenever A2 returns Q and the list of respi, it determines the values of the bi but

the (ti, Pi) to be released are still uniform. After permutation, (tσ(i), Pσ(i), Q⃗σ(i))

has a value of Q⃗σ(i) which is imposed by Q⃗σ(i) = (x⃗+ bσ(i)y⃗+my⃗′ + tσ(i)z⃗)Pσ(i)

so brings bσ(i) as only information.
This reduces to the following game: the adversary chooses a list of bits (bi)i∈Q

with #Q ≥ n, the game selects a random i∗ and a random permutation σ then
provides bi∗ and (bσ(i))i∈Q to the adversary, and the adversary finally makes a
guess i and win if and only if i = i∗. If the adversary puts n0 zeros and n1

ones, the adversary can only win with probability 1
n0

when it is a zero (which

happens with probability n0

n0+n1
), and with probability 1

n1
when it is a one (which

happens with probability n1

n0+n1
). Overall, the adversary wins with probability

2
n0+n1

which is at most 2
n since n0 + n1 = #Q ≥ n. ⊓⊔

A.7 Privacy of Metadata

Theorem 6. Under Assumption 2, ATHM is PMB-secure. More precisely, given
an PMB-adversary A making q oracle calls to Osign and qHash calls to the random
oracle, there exists an IND-CMA-adversary B making q+3 oracle calls to OMAC

such that

AdvPMB
A ≤ AdvIND-CMA

B + 4
q + 1

p
+ 2

qHash
p6

This result needs Π1.Extract to be succeed if an only if Π1.Verify returns true
and Π2 to be perfectly simulatable with a trapdoor using Π2.SimKeyGen and
Π2.Simulate.

Proof. We start with an adversary A playing the PMB game against ATHM and
we transform it into a sequence of adversaries playing other games with same
success.
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We start by the same first step as in the proof of unforgeability. We define
an adversary A1 who runs A but simulates π in Π2. With a trapdoor td1 (in

the CRS model), A1 can also extract (tC , r⃗) = Π1.Extract(td1, T⃗ext). Then, A1

can call a MAC oracle to build (t, P, Q⃗) such that t and P are random and

Q⃗ = (x⃗+by⃗+my⃗′+ tz⃗)P . Then, A1 can set tS = t− tC , U = P , and V⃗ = Q⃗+ r⃗U
to return to A. More precisely, the adversary A1 is fully written on Figure 12.
This way, an adversary A for our scheme transforms into an adversary A1 in the
Γb∗ game on Figure 12.

The extraction procedure is such thatΠ1.Extract(td, T⃗ext) fails is equivalent to

Π1.Verify(T⃗ , T⃗ext, G, Z⃗) is false. As forging π is perfect, A1 playing Γb∗ perfectly
simulates A playing PMBb∗ .

AdvPMB
A ≤ AdvΓA1

+
qHash
p6

In the next step, we remove G, Z⃗, and pp2 as in the proof of unforgeability,
with the same change of variable. We define an adversary B plyaing the IND-CMA
game on Figure 13.

For B in IND-CMAb∗ to simulate A1 in Γb∗ , there are a few things which
can go wrong. Like in the previous proof, we can select the secrets such that
x⃗x + tt0.z⃗z = 0 or any t equal to −1 which make the change of variable fail.
This happens with probability at most q+1

p . We can also select t∗ = tt0 (with

probability 1
p ). Finally, any t in OMAC in Γb∗ can be selected equal to t∗ which

makes O′
MAC abort. This happens with probability at most q

p . By the difference
Lemma, we obtain

|Pr[Γb∗(A1)→ 1]− Pr[IND-CMAb∗(B)→ 1]| ≤ 2
q + 1

p

We deduce ∣∣∣AdvΓA1
− AdvIND-CMA

B

∣∣∣ ≤ 4
q + 1

p

⊓⊔

A.8 Extensions of ATHM

We could add public verifiability of tokens by using a pairing. This can only
be done with no private metadata (otherwise privacy is broken). We could also
consider batching too like in PMBT, so that the issuer could make a single
proof for a batch of responses. Clearly, algebraic MACs offer lots of flexibility
for extensions. This is left as future work.
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Adversary AOMAC,Ochal,Overify,Ovalid

1

(gp, p,G, Z):
1: Setup3(gp, p,G)→ (crs1, td1)
2: Setup4(gp, p,G)→ (crs2, td2)
3: crs← (gp, p,G, crs1, crs2)
4: KeyGen1(crs, Z⃗)→ (pp1, sk1)
5: Π2.SimKeyGen(crs, Z⃗)→ pp2
6: pp← (crs, Z, pp1, pp2)

7: return AOsign,O′
sign,Oread,Ovalid(crs, pp)

Subroutine Osign(b,m, query):
8: parse query = (T⃗ , T⃗ext)
9: Π1.Extract(td1, sk1, T⃗ext)→ (tC , r⃗)
10: if extraction failed or T⃗ ̸= tCZ⃗ + r⃗G

then return ⊥
11: pick t←$ Zp

12: OMAC(b,m, t)→ (P, Q⃗)
13: tS ← t− tC
14: U ← P
15: V⃗ ← Q⃗+ r⃗U
16: π ← Π2.Simulate(U, V⃗ , tS , crs, pp, td2)
17: return (U, V⃗ , tS , π)

Subroutine O′
sign(m, query):

18: parse query = (T⃗ , T⃗ext)
19: Extract(td1, sk1, T⃗ext)→ (tC , r⃗)
20: if extraction failed or T⃗ ̸= tCZ⃗ + r⃗G

then return ⊥
21: pick t←$ Zp

22: Ochal(m, t)→ (P, Q⃗)
23: tS ← t− tC
24: U ← P
25: V⃗ ← Q⃗+ r⃗U
26: π ← Π2.Simulate(U, V⃗ , tS , crs, pp, td2)
27: return (U, V⃗ , tS , π)

Subroutine Oread(m, t, σ):
28: if flag then return ⊥
29: if Overify(0,m, t, σ) then return 0
30: if Overify(1,m, t, σ) then return 1
31: return ⊥

Game Γb∗ :
1: Setup1(1

λ)→ (gp, p)
2: Setup2(gp, p)→ G
3: pick x⃗ ←$ Ex, y⃗ ←$ Ey, y⃗′ ←$ Ey′ ,

z⃗ ←$ Ez
4: set Z⃗ ← z⃗G
5: initialize i← 0, flag← false

6: return AOMAC,Ochal,Overify,Ovalid

1

(gp, p,G, Z⃗)

Oracle OMAC(b,m, t):
7: pick a nonzero group element P
8: Q⃗← (x⃗+ by⃗ +my⃗′ + tz⃗)P
9: return (P, Q⃗)

Oracle Ochal(m, t):
10: if flag then return ⊥
11: flag← true
12: (m∗, t∗)← (m, t)
13: OMAC(b

∗,m∗, t∗)→ (P ∗, Q⃗∗)
14: return (P ∗, Q⃗∗)

Oracle Overify(b,m, t, P, Q⃗):
15: if flag and b ∈ {0, 1} and (t,m) =

(t∗,m∗) then return ⊥
16: if P = 0 then return false
17: return whether Q⃗ = (x⃗+ by⃗ +my⃗′ +

tz⃗)P

Oracle Ovalid(t,m, P, Q⃗):
18: if P = 0 then return false
19: return whether ∃b ∈ {0, 1} Q⃗ =

(x⃗+ by⃗ +my⃗′ + tz⃗)P

Fig. 12. Privacy Step 1: A1 playing Γ
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Adversary BO′
MAC,O

′
chal,O

′
verify,O

′
valid(gp, p):

1: bb0 ← 0
2: mm0 ← 0
3: tt0 ← 1
4: O′

MAC(bb0,mm0, tt0)→ (G, Z⃗)

5: return AOMAC,Ochal,Overify,Ovalid

1

(gp, p,G, Z⃗)

Subroutine Overify(b,m, t, P, Q⃗):
6: bb← b

1+t
, mm← m

1+t
, tt← t.tt0

1+t

7: PP← P , Q⃗Q← (1 + t)−1Q⃗

8: return O′
verify(bb,mm, tt,PP, Q⃗Q)

Subroutine Ovalid(m, t, P, Q⃗):
9: bb← 0, bb′ ← 1

1+t

10: mm← m
1+t

, tt← t.tt0
1+t

11: PP← P , Q⃗Q← (1 + t)−1Q⃗

12: return O′
valid(bb, bb

′,mm, tt,PP, Q⃗Q)

Subroutine OMAC(b,m, t):
13: bb← b

1+t
, mm← m

1+t
, tt← t.tt0

1+t

14: O′
MAC(bb,mm, tt)→ (PP, Q⃗Q)

15: P ← PP, Q⃗← (1 + t)Q⃗Q
16: return (P, Q⃗)

Subroutine Ochal(m, t):
17: bb← 0, bb′ ← 1

1+t

18: mm← m
1+t

, tt← t.tt0
1+t

19: O′
chal(bb, bb

′,mm, tt)→ (PP, Q⃗Q)
20: P ← PP
21: Q⃗← (1 + t)Q⃗Q
22: return (P, Q⃗)

Game IND-CMAb∗ :
1: flag← false, mm∗ ← ⊥
2: Setup1(1

λ)→ (gp, p)
3: pick x⃗x ←$ Ex, y⃗y ←$ Ey, y⃗y′ ←$ Ey′ ,

z⃗z←$ Ez
4: return BO′

MAC,O
′
chal,O

′
verify,O

′
valid(gp, p)

Oracle O′
verify(bb,mm, tt,PP, Q⃗Q):

5: if flag and bb ∈ {bb∗0, bb∗1} and
(mm, tt) = (mm∗, tt∗) then return ⊥

6: if PP = 0 then return false
7: return whether Q⃗Q = (x⃗x + bb.y⃗y +

mm.y⃗y′ + tt.z⃗z)PP

Oracle O′
valid(bb0, bb1,mm, tt,PP, Q⃗Q):

8: if ¬flag then return ⊥
9: if (tt,mm) = (tt∗,mm∗) and
{bb0, bb1} ≠ {bb∗0, bb∗1} then return
⊥

10: if PP = 0 then return false
11: if Q⃗Q = (x⃗x + bb0.y⃗y + mm.y⃗y′ +

tt.z⃗z)PP then return true

12: if Q⃗Q = (x⃗x + bb1.y⃗y + mm.y⃗y′ +
tt.z⃗z)PP then return true

13: return false

Oracle O′
MAC(bb,mm, tt):

14: if flag and (bb,mm, tt) ∈
{(bb0,mm∗, tt∗), (bb1,mm∗, tt∗)} then
return ⊥

15: increment i
16: (bbi,mmi, tti)← (bb,mm, tt)
17: pick a nonzero group element PPi

18: Q⃗Qi ← (x⃗x + bbi.y⃗y + mmi.y⃗y′ +
tti.z⃗z)PPi

19: return (PPi, Q⃗Qi)

Oracle O′
chal(bb, bb

′,mm, tt):
20: if flag or ∃i (bbi,mmi, tti) ∈
{(bb,mm, tt), (bb′,mm, tt)} then re-
turn ⊥

21: (bb∗0, bb
∗
1,mm∗, tt∗)← (bb, bb′,mm, tt)

22: flag← true
23: pick a nonzero group element PP∗

24: ⃗QQ∗ ← (x⃗x + bb∗b∗ y⃗y + mm∗y⃗y′ +
tt∗z⃗z)PP∗

25: return (PP∗, ⃗QQ∗)

Fig. 13. Privacy Step 2: B playing IND-CMA
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