
WOTSwana: A Generalized Sleeve Construction
for Multiple Proofs of Ownership

David Chaum1, Mario Larangeira2, and Mario Yaksetig1

1 xx network, Cayman Islands
{david, mario, will}@xx.network

2 Tokyo Institute of Technology and IOHK, Japan
mario@c.titech.ac.jp/mario.larangeira@iohk.io

Abstract. The Sleeve construction proposed by Chaum et al. (ACNS’21)
introduces an extra security layer for digital wallets by allowing users to
generate a “back up key” securely nested inside the secret key of a sig-
nature scheme, i.e., ECDSA. The “back up key”, which is secret, can
be used to issue a “proof of ownership”, i.e., only the real owner of this
secret key can generate a single proof, which is based on the WOTS+
signature scheme. The authors of Sleeve proposed the formal technique
for a single proof of ownership, and only informally outlined a construc-
tion to generalize it to multiple proofs. This work identifies that their
proposed construction presents drawbacks, i.e., varying of signature size
and signing/verifying computation complexity, limitation of linear con-
struction, etc. Therefore we introduce WOTSwana, a generalization of
Sleeve, which is, more concretely, a more general scheme, i.e. an ex-
tra security layer that generates multiple proofs of ownership, and put
forth a thorough formalization of two constructions: (1) one given by a
linear concatenation of numerous WOTS+ private/public keys, and (2)
a construction based on tree like structure, i.e., an underneath Merkle
tree whose leaves are WOTS+ private/public key pairs. Furthermore, we
present the security analysis for multiple proofs of ownership, showcasing
that this work addresses the early mentioned drawbacks of the original
construction. In particular, we extend the original security definition for
Sleeve. Finally, we illustrate an alternative application of our construc-
tion, by discussing the creation of an encrypted group chat messaging
application.

Keywords: Hash-based signatures · Post-quantum cryptography · ECDSA.

1 Introduction

The ECDSA based wallets have been target to intensive exposure given its wide
use in cryptopocurrencies, e.g., Bitcoin [21], Ethereum [24] and Ouroboros [2,12,16],
which has driven the research community to channel its efforts to propose new
attacks to the signature scheme/wallets [1,23]. The solution proposed by Chaum
et al. [7], i.e. Sleeve, is a signature based new cryptographic primitive designed
to mitigate damages during massive leaks of private information of wallets. In a



2 David Chaum et al.

nutshell, the construction in [7] allows the rightful user to prove its ownership in
the face of its secret key becoming public. Important to note, that proving the
knowledge of the correct secret key, via zero knowledge protocols for example,
is of no use as, potentially, anyone could generate such a proof during a massive
leak. The main technique of Sleeve is to leverage the regular ECDSA scheme by
having a nested “back up key” to generate the proof of ownership, or even to
fully discard the ECDSA scheme for a (post-quantum) signature scheme; a hash
based signature scheme.

The Single Proof of Ownership of Sleeve The most significant novelty of [7] is the
introduction of a second layer of security by allowing the user to verify the correct
ownership of the leaked keys, which would be impossible otherwise. However this
feature, as fully presented in [7], is rather limited given that only a single proof
can be issued. The main construction relies on a variant of the WOTS+ [15],
therefore it can be used only once. The authors of [7] mitigate it by presenting
the sketch of a general construction which concatenates several instances of
the WOTS+ like scheme in order to generate multiple proofs. Unfortunately,
the description is rather informal and the construction seemingly introduces
an unusual feature: the signature has varying size and sign/verification times
depending on how many proofs of ownership were previously issued.

By closer inspection of their described construction, one would realize that
the varying time and size of the proofs are due to the level of the linear sequence
of WOTS+ like ladders, i.e., sequence of hash function executions. Given that
each proof generation uses one instance of the signature, the issuer has to keep
the state, i.e. the “height” position, in the sequence of ladders and add it to the
signature. Moreover the presented security analysis does not cover the case that
the adversary can sample several proof of ownership in order to come up with a
forgery. Their security proofs focus on the single proof case.

Related Works. The work by Chaum et al. [7] seems to be unique in the sense
that introduces a novel strategy in adding extra layer of security to wallets. It,
for example, sharply contrasts with hot/cold wallet strategies used before, as for
example[11,14,9]. A follow up work by Chaum et al. [6] introduces a much more
robust security analysis. Whereas the original construction relies on the L-Tree
data structure, as it was introduced by Hülsing [15], the work in [6] updates the
original Sleeve construction to support Tweakable Hash functions as introduced
by Bernstein et al. [3]. The latter puts forth a more module design and therefore
it is more desirable approach, which is use in our constructions.

Our Contribution This work tackles the early mentioned limitations of [7]. That
is, we introduce the first generalization of Sleeve by proposing two construc-
tions for “multiple generations of proof of ownership”: the linear and the tree
constructions. The main difference between them is how the Sleeve back up key
is kept underneath the ECDSA secret key. We recall the Sleeve introduces an
extra key, the early mentioned “back up key”, in the key generation algorithm in
addition to the verification and secret keys. Whereas the verification and secret



WOTSwana: Multiple Proofs of Ownership 3

key are used as a regular signature key pair, the back up key remains secret and
is only used when issuing the proof of ownership.

Novel Constructions. The proof of ownership of the original Sleeve is a variant
of the WOTS+ signature scheme [15] by Hülsing, named Extended WOTS+
(eWOTS+). Briefly, the proof generated by [7] is an eWOTS+ signature, whose
the single respective private key is kept nested into the ECDSA secret key, i.e.,
thus used as the “back up key”. This work reviews this design and proposes
Wotswana with two constructions: (1) a linear construction, under a similar
design to the one outlined in [7], and (2) a tree based construction, i.e., the
nested key pairs are kept under a Merkle Tree nested inside the ECDSA secret
key. Both constructions rely on the regular WOTS+ signature scheme, instead
of the eWOTS+.

In our (1) linear construction, blocks of WOTS+ keys are concatenated lin-
early. Briefly, the “deepest” WOTS+ verification key is used to derive the next
WOTS+ secret key, up to the point that the uppermost WOTS+ verification
key is converted into the ECDSA secret/verification key pair. This construction
naturally extends the original [7] by adding more underlying WOTS+ key pairs
as the set of backup keys to be used to issue proofs of ownership. Providing vary-
ing verification/generation time complexity as the outlined construction of [7].
The (2) tree construction does not compose the early described “sequence” of
WOTS+ blocks. Instead, it organizes them as leaves of a Merkle Tree, such that
the root of the tree is converted into the ECDSA key pair. This design provides
the advantage that, although both constructions keep a state, i.e., the WOTS+
pair to be used for the proof of ownership, the tree construction does not re-
quire the verification routine to transverse the whole structure (as in (1) linear
construction). For comparison, we remark that while verifying the linear con-
struction proof of ownership, the routine transverses the linear structure from
the point in the structure upwards until the ECDSA verification key. The Merkle
Tree structure prevents that in the tree based construction. Furthermore, our
linear and tree based constructions rely on the original WOTS+ construction,
instead of eWOTS+ from [7], because they are based on Tweakable Hash Func-
tions (while [7] relies on L-Trees [10]). This brings the advantage of using a more
well established signature scheme.

Multiple Proofs and Fallback. Furthermore we extend the original proof
of ownership [7] security definition which is suitable for only a single proof.
Concretely, our proposed security definition allows the adversary to have access
to a “proof generation oracle”. Therefore, for a given Wotswana scheme with
capability of t proofs of ownership, the adversary can query the oracle for at
most t − 1 proofs, before attempting to generate a forgery of its own. Yet we
highlight that while the original constructions reveal the ECDSA secret in order
to prove ownership, our constructions keep the full secret-key undisclosed even
after numerous proofs of ownership generations.

Our construction does not rely on any type of publishing on public data
structures (e.g., a blockchain). This allows for a cleaner and more secure design
that takes place completely off-chain during the key generation phase of the



4 David Chaum et al.

users. For example, if users posted a signed hash of the secret key using the
fallback key instead, there is the risk of a block producer taking advantage of the
miner extractable value (MEV) and front-running these different transactions
and posting such data with a malicious signature instead. As a result, solutions
that rely on posting on a public board, require indistinguishability assumptions
of the underlying and potentially different post-quantum signature schemes. It is
a conservative approach to avoid that sort of additional assumption. We highlight
that our system is front-running resistant in a setting where there is an ongoing
proof-of-ownership stage (e.g., traditional transactions are halted). Therefore,
a miner extracting the user’s private key from a proof-of-ownership signature
should not be able to steal the user’s money.

The motivation for this design is to allow users to rollover to a quantum-
secure blockchain—using the fallback key—and then use the multiple proofs-
of-ownership as a main mechanism to perform transactions in the new chain.
Therefore, the construction can potentially act as a replacement for hash-based
signature schemes such as SPHINCS [3] or XMSS [5] as it results in constant-
sized signatures at the cost of linear verification time. The chain, however, can
feature potential improvements as it can act as a state-keeping layer.

We also carried out a formal method analysis of Wotswana using Verif-
pal [19,17]. Our formal analysis shows that our design preserves the confiden-
tiality of the underlying keys.

In summary our contributions are:

– Two Wotswana Constructions: Section 3 presents the two designs , the
linear and the tree constructions. Both keep a state, meaning how many
proofs of ownership were issued. However the main difference is how the
WOTS+ keys are kept internally. Namely, in linear or tree fashion;

– Security Analysis: Section 4 introduces the security analysis of our proto-
col with respect to the Key Derivation Function (KDF), the component used
in our construction to internally concatenate WOTS+ blocks, and our two
constructions for Wotswana;

– Formal Methods: Next, in Section 5, after a brief description of the main
tool used, i.e., Verifpal, we describe our proposed model for the Wotswana
Protocol. We end our formal methods approach by discussion the interpre-
tation of our results;

– Application: Finally, Section 6 discusses Encrypted Group Chat as an ap-
plication for Wotswana. In particular, we discuss the applicability of multiple
proofs of ownership.

2 Preliminaries

It is convenient to quickly review the WOTS+ signature construction from [15],
the Tweakable Hash proposal from [3], the original Sleeve definitions [7], and the
definitions for Key Derivation Function (KDF) [8,20] used in our constructions.
We also denote Probabilistic Polynomial Time algorithms as PPT.



WOTSwana: Multiple Proofs of Ownership 5

2.1 The WOTS+ Signature Scheme

Here we review the original WOTS+ signature scheme. The Wotswana later
constructions, linear and tree, rely on the standard WOTS+ construction.

Definition 1 (Family of Functions). Given the security and the Winternitz
parameters, respectively, λ ∈ N and w ∈ N, w > 1, let a family of functions Hλ
be {hk : {0, 1}λ → {0, 1}λ|k ∈ Kλ} with key space Kλ.

Definition 2 (Chaining Function). Given a family of functions Hλ, x ∈
{0, 1}λ, an iteration counter i ∈ N, a key k ∈ Kλ, for j λ−bit strings r =
(r1, . . . , rj) ∈ {0, 1}λ×j with j ≥ i, then we have the chaining function as follows

cik(r, x) =

{
hk(ci−1k (r, x)⊕ ri), 1 ≤ i ≤ j;
x, i = 0.

We rely on the same setting from [15], that is this work assumes the chaining
function uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|k ∈ Kn} with a
key space Kn. Additionally, we review the notation for the subset of randomness
vector r = (r1, . . . , r`), and denote by ra,b the subset of (ra, . . . , rb).

Definition 3 (W-OTS+). Given the security parameter λ, a chaining function
c, and k ← K from the key space K, the W-OTS+ signature scheme is the tuple
(GenW ,SignW ,VerifyW ), defined as in Table 1.

The Security of WOTS+. The standard security notion for digital signa-
ture schemes is existential unforgeability under adaptive chosen message attacks
(EU-CMA) which is defined using the following experiment. By DSS(1λ), we
denote the digital signature scheme (DSS) with security parameter λ, then we
model the security by defining the security experiment ExpEU-CMA

DSS(1λ)(A), as follows:

Experiment ExpEU-CMA
DSS(1λ)(A)

(sk, pk)←− keygen(1λ)
(M∗, σ∗)←− ASign(sk,·)(pk)
Let {Mi, σi}q1 be the query-answer pairs of Sign(sk, ·)
Return 1 iff Verify(pk,M∗, σ∗) = 1 and M∗ /∈ {Mi}1q

We define the success probability of the adversary A in the above EU-CMA
experiment as SuccEU-CMA

DSS(1λ)(A) = Pr[ExpEU-CMA
DSS(1λ)(A) = 1].

Definition 4 (EU-CMA). For a polynomial poly(·), let λ, t, q ∈ N, t, q =
poly(λ), DSS a digital signature scheme. It is said the DSS is EU-CMA-secure,
if the maximum success probability InSecEU-CMA(DSS(1λ); t, q) of all possibly
probabilistic adversaries A, running in time ≤ t, making at most q queries to
Sign in the above experiment, is negligible in λ, InSecEU-CMA(DSS(1λ); t, q) =
max {SuccEU-CMA

DSS(1λ)(A)} = negl(λ).



6 David Chaum et al.

GenkW (1λ) SignkW (m, sk)

Pick (`+ w − 1) λ-bit strings ri Compute m→ (m1, . . . ,m`1),
Set ski ← ri, for 1 ≤ i ≤ ` for mi ∈ {0, . . . , w − 1}
Set sk = (sk1, . . . , sk`) Compute checksum C =

∑`1
i=1(w − 1−mi),

Set r = (r`+1, . . . , r`+w−1) and its base w representation (C1, . . . , C`2),
Set vk0 = (r, k) for Ci ∈ {0, . . . , w − 1}
Set vki = cw−1

k (r, ski), 1 ≤ i ≤ ` Parse B = m‖C as (b1, . . . , b`1+`2)

Set vk = (vk0, vk1, . . . , vk`) Set σi = cbik (r, ski), for 1 ≤ i ≤ `1 + `2
Return (sk, vk) Return σ = (σ1, . . . , σ`1+`2)

VerifykW (m, vk,σ)

Compute m→ (m1, . . . ,m`1),
for mi ∈ {0, . . . , w − 1}

Compute checksum C =
∑`1
i=1(w − 1−mi),

and the base w representation (C1, . . . , C`2),
for Ci ∈ {0, . . . , w − 1}

Parse B = m||C as (b1, . . . , b`1+`2)
Return 1, if the following equations hold
vk0 = (r, k)

vki = cw−1−bi
k (rbi+1,w−1, σi) for 1 ≤ i ≤ `1 + `2

Table 1: The main idea of the W-OTS+ construction is to create “ladders” of
hash function executions, via the Chaining Function cik(·, ·), from the secret keys
ski to the verification keys vki.

2.2 Tweakable Hash Functions

Tweakable hash functions allow for a better abstraction of hash-based signature
scheme description. By decoupling the computations of hash chains, hash trees,
and nodes, protocol designers can separate the analysis of the high-level con-
struction from exactly how the computation is done. Therefore abstracting the
computation away in hash-based schemes only requires analyzing the hashing
construction. The standard definition is as follows.

Definition 5 (Tweakable Hash Function). For a security parameter λ and
a polynomial n(λ), a tweakable hash function has three inputs: a public parameter
P ∈ P, a tweak T ∈ T and a message M ∈ {0, 1}α. The hash produces an output
digest MD ∈ {0, 1}n(λ): Let P the public parameters space, T the tweak space,
and n, α ∈ N. A Tweakable Hash Function is an efficient function mapping an
α-bit message M to an n-bit hash value MD using a function key called public
parameter P ∈ P and a tweak T ∈ T . Therefore, we have Th : P×T ×{0, 1}α →
{0, 1}n(λ), MD← Th(P, T,M).

For later sections, we may omit the security parameter out of polynomial
n(λ).

A tweakable hash function takes public parameters P and context informa-
tion in the form of a tweak T in addition to the message. The public parameters



WOTSwana: Multiple Proofs of Ownership 7

might be thought of as a function key or index. The tweak might be interpreted
as a nonce. We use the term public parameter for the function key to emphasize
that it is intended to be public.

2.3 The Security of Sleeve

The Sleeve primitive is composed by the tuple (GenπS
leeve

,Sign, Verify, Proof,

Verify-Proof). The generation algorithm outputs the pairs of keys, vk and sk,
and the backup key bk. The first pair is the regular verification key, used for
verifying a signature, and the secret-key used for issuing a signature. While the
last key is used to issue the Proof of Ownership πSleeve

, with respect to vk as

follows.

Definition 6 (Sleeve [7]). A fallback scheme Sleeve = (GenπS
leeve

, Sign,Verify,

Proof, Verify-Proof) is a set of PPT algorithms:
– GenπS

leeve
(1λ) on input of a security parameter λ outputs a private signing

key sk, a public verification key vk and the back up key bk;

– Sign (sk,m) outputs a signature σ under sk for a message m using the desig-
nated main signature scheme, in our example this is an ECDSA signature;

– Verify (vk, σ,m) outputs 1 iff σ is a valid signature on m under vk;

– Proof(bk, c) on input of the backup information bk and the challenge c, it
outputs the ownership proof πSleeve

. In our example, this is a WOTS+ sig-

nature on the challenge c using the fallback key bk;

– Verify-Proof(vk, sk, πSleeve
, c) is a deterministic algorithm that on input of

a public-key vk, secret-key sk, a ownership proof πSleeve
and a challenge c,

it outputs either 0, for an invalid proof, or 1 for a valid one.

The two main security properties of Sleeve are (1) the capability of issuing
a proof to confirm the ownership of the secret key, even in the face of a massive
leakage, when the secret key becomes public, and (2) the capability to smoothly
switch to another signature scheme, namely a quantum resistant one. Briefly, we
formally review both properties.

Definition 7 (Single Proof of Ownership [7]). For any PPT algorithm A
and security parameter λ, it holds Pr[(vk,sk,bk)← GenπS

leeve
(1λ) : (c∗, π∗Sleeve

)←
A(sk, vk) ∧ Verify-Proof(vk, sk, π∗Sleeve

, c∗) = 1] < negl(λ) for all the probabili-

ties are computed over the random coins of the generation and proof verification
algorithms and the adversary.

Definition 8 (Fallback [7]). We say that the scheme (GenπS
leeve

,Sign, Verify),

with secret and verification key respectively sk and vk such that GenπS
leeve

(1λ)→
(vk, sk, bk), has fallback if there are sign and verification algorithms SignπS

leeve
and VerifyπS

leeve
such that sk and bk can be used as verification and secret



8 David Chaum et al.

keys respectively, along with SignπS
leeve

and VerifyπS
leeve

as fully independent

signature scheme.

2.4 Key Derivation Functions

The Key Derivation Function KDF [8,20] is a cryptographic component that takes
as input an initial source of entropy, or initial keying material, and allows for the
derivation of one (or more) cryptographically secure key values. This input is not
necessarily uniformly distributed and the adversary may have partial knowledge
of such input. The adversary, however, should not be able to distinguish an
output from a random uniform string of the same length, and a KDF output
should not leak information on any of the other generated bits. We note that
these KDF output values are not necessarily exclusive for secret key derivation
and may optionally be made public depending on the cryptographic use case.

Definition 9 (KDF [20]). A KDF accepts as input four arguments: a value
σ sampled from a source of keying material, a length value `, a salt value r
defined over a set of possible salt values, and a context variable c. The latter two
values are both optional. As a result, these values can either be null, or assigned
a constant value. In this setting, the source of keying material Σ is a two-valued
probability distribution (σ, α) generated by an efficient probabilistic algorithm.
The resulting KDF output is a string of ` bits.

In this model, the adversary A should be given the value pair (σ, α) to model
the “partial knowledge” of the input entropy. Later in our constructions we rely
on the use of KDF(σ, `, r, c), for fixed values of ` and c. In particular, we fix r =
null. Hence, we drop two arguments in the later descriptions of the Wotswana
by denoting the KDF as a two-value function KDF(σ, c) = KDF(σ, `fix, null, c),
for a fixed length `fix.

Definition 10 (KDF One-wayness). A KDF is (tA, q, ε)-one-way secure if
no adversary A running in time tA and making at most q queries produces the
input entropy Σ, when given the output value σ and the partial knowledge α,
with probability p > q

2n + ε, where n is the length of the input entropy |Σ|.

3 The WOTSwana Versions

We present two constructions; a linear and a tree based construction. While
the former the WOTS+ ladders are concatenated in a linear fashion. Each new
back up key has nested another one inside “deeper” in the linear structure. The
verification of each new signature includes the generation of the previous back
up key. The latter construction, i.e. the tree based, does not have this feature
as each new back up key is located in a different branch. Figure 1 illustrates a
simplified outline of both constructions.



WOTSwana: Multiple Proofs of Ownership 9

3.1 The Linear Construction

Here we introduce a construction for the generation of t proofs of ownership.
The main idea is to concatenate t blocks of a variant of the WOTS+ signature.
Additionally, we review the notation for the subset of the randomness vector r =
(r1, . . . , r`). We denote by ra,b the subset of (ra, . . . , rb), and our constructions
to be presented next rely on the KDF [8,20].
The Auxiliary Blocks: Ladder and Block. Given the security parameter
λ, a chaining function c, and k ← K from the key space K, Table 2 defines the
auxiliary procedures, namely Ladder and Block. The former is used to derive
the new internal “internal public key” (v0, v1, . . . , v`) from the “internal secret
key” (sk1, . . . , sk`). While the latter uses the former, as an internal routine, to
derive the secret key to the new “internal secret key”, i.e. the key one level above
in the linear structure. These auxiliary routines are used in the linear and tree
based constructions in further sections.

Ladderkw(sk1, . . . , sk`) BlockP,T,kw (sk1, . . . , sk`)

Set rp ← KDF(sk1|| . . . ||sk`, p), 1 ≤ p ≤ w − 1 Ladderkw(sk1, . . . , sk`)→ (v0, v1, . . . , v`)
Set r = (r1, . . . , rw−1) Set v ← (v0, v1, . . . , v`)
Set v0 = (r, k) Set seed = Th(P ||T ||v)
Set vi = cw−1

k (r, ski), 1 ≤ i ≤ ` Set sk′i ← KDF(seed, i), 1 ≤ i ≤ `
Return v = (v0, v1, . . . , v`) Return (sk′1, . . . , sk

′
`)

Table 2: The Ladder procedure performs the sequence of the hashes, i.e. the
“ladders”, from the secret key, in order to output a intermediate key, i.e. similar
to WOTS+ public key. The Block procedure concatenates each of the secret key
generation block to the next one.

From now we present the three main algorithms for key generation, and proof
generation and verification for both constructions: Linear-Gen, Linear-Proof, in
Table 3, and Linear-Verify-Proof in Table 4.



10 David Chaum et al.

Linear-Genk,tw (λ) Linear-Proofk,t,stw (c, bk)

Pick P
$← {0, 1}n(λ), X $← {0, 1}n(λ) Parse bk→ (T[st], bk

(t)
1 , . . . , bk

(t)
` )

Pick T[t]
$← {0, 1}n(λ), random value a Set rp ← KDF(bk

(t)
1 || . . . ||bk

(t)
` ||p), 1 ≤ p ≤ w − 1

Set bk
(t)
i

$← {0, 1}n(λ), 1 ≤ i ≤ ` Set r = (r1, . . . , rw−1)
For t ≥ i ≥ 2 For t ≥ i ≥ st

(bk
(i−1)
1 , . . . , bk

(i−1)
` ) T[i− 1]← KDF(T[i], i)

← Block
P,T[i],k
w (bk

(i)
1 , . . . , bk

(i)
` ) (bk

(i−1)
1 , . . . , bk

(i−1)
` )

T[i− 1]← KDF(T[i], i) ← Block
P,T[i],k
w (bk

(i)
1 , . . . , bk

(i)
` )

Set (bk
(1)
1 , . . . , bk

(1)
` ) Compute c→ (c1, . . . , c`1),

← Block
P,T[2],k
w (bk

(2)
1 , . . . , bk

(2)
` ) for ci ∈ {0, . . . , w − 1}

Set v(1) ← Ladder(bk
(1)
1 , . . . , bk

(1)
` ) Compute checksum C =

∑`1
i=1(w − 1− ci),

Set W = Th(P ||T[1]||v(1)) and its base w representation (C1, . . . , C`2)
Set sk = a · Th(P ||X ||W ) Parse B = c‖C as (b1, . . . , b`1+`2), ` = `1 + `2
Set vk ← gsk Set σi = cbik (r, ski), 1 ≤ i ≤ `
Set bk← (T[t], bk

(t)
1 , . . . , bk

(t)
` ) Set σ0 ← (T[st], st, r, k), h← ga

Return (bk, sk, vk) Return πSleeve
= (σ0, σ1, . . . , σ`, h)

Table 3: The generation procedure selects the random secret key (sk
(t)
1 , . . . , sk

(t)
` ),

and interactively, by executing Ladder andBlock algorithms, creates t signatures
while keeping the tweaks in the list T. The generation of the proofs works by
traversing the linear construction for each new proof of ownership from t to 1.

Linear-Verify-Proofk,t,stw (vk, πSleeve
, c)

Parse πSleeve
→ (T, st, r, k, σ1, . . . , σ`, h)

Compute c→ (c1, . . . , c`1), ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑`1
i=1(w − 1− ci),

and its base w representation (C1, . . . , C`2)
Parse B = c‖C as (b1, . . . , b`1+`2) and ` = `1 + `2
Set v0 = (r, k)

Set vi = cw−1−bi
k (σi, rbi+1,w−1), 1 ≤ i ≤ `

Set v = (v0, . . . , v`)
For st ≥ j > 1

W (j) = Th(P ||T ||v(j))
Set (bk

(j)
1 , . . . , bk

(j)
` )← KDF(W (j), i), 1 ≤ i ≤ `

Set T ← KDF(T, j)

Set v(j−1) ← Ladder(bk
(j)
1 , . . . , bk

(j)
` )

W (1) = Th(P ||T ||v(1))
sk′ = Th(P ||X ||W (1))

If vk = hsk′ : Output 1
Else: Output 0

Table 4: The intuition of the verification procedure is that given the state st, i.e.
the height in the linear structure, and execute the list of hashes and generation
through the ladders up until the verification key on the upmost position.



WOTSwana: Multiple Proofs of Ownership 11

3.2 The Tree Construction

The next construction (Tables 5 and 6) makes use of Merkle Tree, which is de-

scribed as (MT.Gen,MT.Proof,MT.Verify). That is, given 2t strings s(1), . . . , s(2
t),

the root generation is given by MT.Gen(s(1), . . . , s(2
t)) = M, such that for any

s(i), MT.Proof(M, s(i)) = π
(i)
M . The generated proof π(i), can be verified as the

verification MT.Verify(M, s(i), π
(i)
M ) = 1. The proof fails to verify if the output is

MT.Verify(M, s(i), π
(i)
M ) = 0.

Tree-Genk,tw (λ) Tree−Proofk,stw (c, bk)

Pick P
$← {0, 1}n(λ), random value a Parse bk→ (M, u, . . . , (bk

(st)
1 , . . . , bk

(st)
` ), . . . )

For 1 ≤ i ≤ t Set rp ← KDF(bk
(st)
1 || . . . ||bk

(st)
` , p), 1 ≤ p ≤ w − 1

Pick bk
(i)
j

$← {0, 1}n(λ), 1 ≤ j ≤ ` Set r = (r1, . . . , rw−1)

Set T ← KDF(bk
(i)
1 || . . . ||bk

(i)
` , i) Set (y

(st)
1 , . . . , y

(st)
` )← BlockP,T,kw (bk

(st)
1 , . . . , bk

(st)
` )

Set (y
(i)
1 , . . . , y

(i)
` ) Set v(st) ← Ladder(y

(st)
1 , . . . , y

(st)
` )

← BlockP,T,kw (bk
(i)
1 , . . . , bk

(i)
` ) Set T ← KDF(y

(st)
1 || . . . ||y

(st)
` , st)

Set v(i) ← Ladder(y
(i)
i , . . . , y

(i)
` ) Set W = Th(P ||T ||v(st))

Set W (i) = Th(P ||T ||v(i)) Set MT.Proof(W,M) = πM

Set M = MT.Gen(W (1), . . . ,W (t)) Compute c→ (c1, . . . , c`1), for ci ∈ {0, . . . , w − 1}
Pick u

$← {0, 1}n(λ) Compute checksum C =
∑`1
i=1(w − 1− ci)

Set sk ← a · Th(P ||M||u) and its base w representation (C1, . . . , C`2)

Set vk ← gsk Parse B = c‖C as (b1, . . . , b`1+`2) and ` = `1 + `2

Set bk← (M, u, (bk
(1)
1 , . . . , bk

(1)
` ), Set σi = cbik (r, bki), for 1 ≤ i ≤ `

. . . , (bk
(t)
1 , . . . , bk

(t)
` )) Set σ0 ← (M, u, πM, st, r, k), h← ga

Return (bk, sk, vk) Return πSleeve
= (σ0, σ1, . . . , σ`, h)

Table 5: Differently from the linear construction, the sets of values for each back

up key (bk
(i)
1 , . . . , bk

(i)
` ) in a Merkle Tree whose root is given by its root M. The

root of the Merkle-tree M is a component of the signature, therefore it is only
revealed when generating a proof of ownership. Namely, it is not disclosed while
using the ECDSA signature.

4 Security Analysis

We assume an adversary attempting to forge a single WOTSwana proof-
of-ownership, hence this section discusses the unforgeability of such proofs for
our linear and tree based constructions, respectively Sections 4.2 and 4.3. Given
that both constructions allow multiple proofs, we start by defining an extended
security game, in comparison to the one reviewed in Section 2.3, where we model



12 David Chaum et al.

Tree-Verify-Proofk,stw (vk, πSleeve
, c)

Parse πSleeve
→ (σ0, σ1, . . . , σ`, h)

Parse σ0 → (M, u, πM, st, r, k)
Compute c→ (c1, . . . , c`1), ci ∈ {0, . . . , w − 1}
Compute checksum C =

∑`1
i=1(w − 1− ci),

and its base w representation (C1, . . . , C`2)
Parse B = c‖C as (b1, . . . , b`1+`2) and ` = `1 + `2
Set yi = cw−1−bi

k (rbi+1,w−1, σi), 1 ≤ i ≤ `
Compute (v0, . . . , v`)← Ladder(y1, . . . , y`)
Set T ← KDF(v0|| . . . ||v`, st)
Compute W = Th(P ||T ||(v0, . . . , v`))
If the following equations hold, return 1
MT.Verify(M,W, πM) = 1

vk = hTh(P ||M||u)

Table 6: The verification of the proof of ownership πSleeve
depends directly on

a two-step verification: (1) the used back up key is part of the Merkle Tree given
in the proof, and (2) and the obtained public key vk is correct.

the adversary accessing multiple proofs before issuing its forgery. Next we prove
the security of our constructions in the light of such a security game.

4.1 The Extended Security Definition for WOTSwana

The next definition provide the adversary with access to the Ownership Proof
Oracle OProof(bk, ·), since the original scheme has the capacity of only a single
proof, extending it to multiple ones. The adversary can sample up to t−1 proofs
by querying the oracle with challenges ci of its choice, assuming the scheme with
capacity of t proofs of ownership.

Definition 11 (Multiple Proofs of Ownership). For any PPT A, which
can query the Ownership Proof Oracle OProof(bk, ·) for challenge-proofs pairs
(ci, π

i
Sleeve

), and a list of queried pairs C initially empty, on a polynomial number

of queries, it holds

Pr[(vk,sk,bk)← GenπS
leeve

(1λ) : (c∗, π∗Sleeve
)← AOProof(bk,·)(sk, vk)

∧(c∗, π∗Sleeve
) /∈ C ∧ Verify-Proof(vk,sk,π

∗
Sleeve

, c∗) = 1] < negl(λ)

for all the probabilities are computed over the random coins of the generation
and proof verification algorithms and the adversary.

4.2 The Unforgeability of the (Linear) Proof of Ownership

To produce a forgery and subvert the security of our construction, A may at-
tempt to explore different attack vectors. For example, A may attempt to invert



WOTSwana: Multiple Proofs of Ownership 13

Fig. 1: Outline of the linear (left) and the tree (right) based constructions of
WOTSwana. Note that the linear constructions back up key is the lowest part
of the data structure. Whereas the tree based construction, the back up key is
given by the Merkle Tree root M, the random value u and the each individual

WOTS+ key bk(i) = (bk
(i)
1 , . . . , bk

(i)
` ).

the used KDF, find a collision in the used tweakable hash function Th(·), break
the unforgeability of the used signature scheme (i.e., WOTS+), or even forge a
proof of inclusion for the Merkle tree used in the construction. These scenarios
represent the different attack vectors we identified and model in this section.

Theorem 1. Consider the construction in Table 3, and assume a secure KDF,
as in Definition 10, is used as in the Block and Ladder routines, given by Table 2
with security parameter λ and a b-bit long string as seed, then a PPT adversary
A, with running in time at most tA, produces a forged proof of ownership for
any state st = j with success probability at most ε ≤ 1/2b by performing an
exhaustive search over all possible seed values.

Proof: (Sketch.) We consider that the security of a key derivation function
is measured by the amount of work required to distinguish the output of the
KDF from a truly uniformly distributed bit string of the same length, under
the assumption that the seed is the only unknown input to the KDF. We know
that the security upper bound for the subversion of the KDF is defined by the
exhaustive search over all the possible seed values, which can be recovered in (at
least) 2b attempts, where b is the bit-length of the seed. This bound holds if the
output key is sufficiently long (i.e., no less than b bits).



14 David Chaum et al.

This is true for our construction in an arbitrary state st = j, as the key
generation uses the WOTS+ of the level below as a secret seed to generate
the next upper level. From this seed, which has a total size of b bits, the KDF
produces a total of ` secret key values acting as the WOTS+ secret keys, each
with b bits. Therefore, since the output size of the KDF is a total of a bit stream
of size ` · b, the expected KDF security level is λ 6 b. �

Theorem 2. Consider the construction in Table 3. Given the consecutive public-

key pkj and σj, j ∈ {1, . . . , t−1} and pkj = (vk
(j)
1 , . . . , vk

(j)
` ), where t is the total

number of public-key levels ( i.e., states) of the linear construction. If Hn is the
function used in the chaining function, and Th is from a second preimage resis-
tant hash-function family, then an adversary A with running in time at most tA
has negligible success probability of producing a proof of ownership forgery for
any level j.

Proof: (Sketch.) In order to prove the theorem, consider a game between an
adversary A, and a challenger which provides access to a proof of ownership
oracle O. The oracle receives a challenge c and a state j such that j ∈ {1, . . . , t−
1}, and returns a proof of ownership πSleeve

and the WOTS+ verification key

internally generated by the Ladder procedure of Table 2, i.e. (vk0, vk1, . . . , vk`).
The adversary goal is to output a proof of ownership forgery π′Sleeve

for an

arbitrary challenge of its choice c′.

Since WOTS+ uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|k ∈
Kn} with a key space Kn, and we know from [15] that, to attack the EU-CMA
property, an adversary A must break the security level λ1, such that λ1 >
n− log2(w2`+ w), given the WOTS+ parameter w.

Assume A succeeds. Then A produces a forgery for the challenge c′ such
that c 6= c′, for previously queried challenges. Then A breaks the unforgeability
of the WOTS+ scheme, which is considered infeasible as long as the scheme is
instantiated with an appropriate security parameter.

Alternatively, A may attempt to subvert the underlying tweakable hash func-
tion Th used for public-key compression and find a different set of top ladder
values or verification keys that result in a public-key collision. Therefore, to
successfully perform this attack, A must find a colliding set of verification keys
(vk′1, . . . , vk

′
`) 6= (vk1, . . . , vk`) and a potentially different tweak T ′, such that

Th(P || T ′ || vk′1, . . . , vk
′
`) = Th(P || T || vk1, . . . , vk`). We know from [3] that to

find the described collision, A must break the second-preimage resistance prop-
erty of Th. This break corresponds to an amount of work of λ2 = 2n, where n is
the digest output of the used tweakable hash function. As a result, the security
level λ of our construction against an attacker attempting to produce a forgery
is equivalent to the attack that requires the less amount of work. Consequently,
λ = min{λ1, λ2}.

We note that, however, previous proofs-of-ownership are trivially forgeable,
as the public key of the level j is used as a seed for the secret key generation of
the level j − 1. �



WOTSwana: Multiple Proofs of Ownership 15

Theorem 3. The adversary A running in time at most tA, that issues arbi-
trary challenges cj, and receives consecutive public-key and proofs of ownership

(pkj , πSleeve
(j)), j ∈ {1, . . . , t − 1} and pkj = (vk

(j)
1 , . . . , vk

(j)
` ), has negligible

probability of producing a proof of ownership forgery for any of the unrevealed
levels j + δ, s.t. δ ≥ 1, if both Hn and Th are from a second preimage resistant
hash-function family.
Proof: (Sketch.) We start by highlighting that this proof is an extension of
the previous proof where A queries the oracle for a proof of ownership on an
arbitrary challenge using the key of index j ∈ {1, . . . , h}. In this setting, however,
the oracle O receives a set of consecutive index queries and challenge pairs (j, cj),

and releases the corresponding proofs π
(j)
Sleeve

for each of the queried levels. The

previous proof is easily applicable to this stronger adversarial setting, where A
starts by setting the index to query to the first level of the construction (j = 1),
creates a challenge of their choosing, and sends it to the oracle. Upon every
response from the oracle, A successively increments the index j by 1, creates a
new challenge for that index, and sends the challenge/index pair to the O. To
succeed, A must produce a forgery of the proof-of-ownership for level j + 1.

In this case, A must perform the exact same work and subvert the described
security level λ. Initially, the reader may expect that the release of different
key material associated with different indexes could provide A with additional
knowledge or even additional attack vectors (e.g., multi-target attacks). The
used primitives, however, are instantiated in a manner that is resistant against
multi-target attacks and therefore require the adversary to actually break the
second preimage of the used functions. �

4.3 Attacking the Tree Construction

The previous proofs are not exclusive to the linear construction and also apply
to the tree construction as the main introduction in the latter approach is the
use of a tree to aggregate string values. We now review the security of the added
data structure.

Theorem 4. Given a merkle root, a string, and a proof of inclusion (M, s(i), π
(i)
M )

for a specific level i ∈ {1, . . . , t}, the adversary has negligible probability of pro-

ducing a proof forgery π
′(i)
M for the tree construction, if the hash function used

for Merkle Tree generation is from a second preimage resistant hash function
family.

Proof: (Sketch.) In this setting, A attempts to prove inclusion of a value that
is not in the original Merkle tree data structure generated by the signer. Since

the algorithm MT.Verify(M, s(i), π
(i)
M ) = 0 if a proof π

(i)
M fails to verify, and the

value M is fixed upon the generation of the key material, A must produce a
value s′(i) 6= s(i) and use the algorithm MT.Proof(M, s(i)) to generate a colliding

π
(i)
M . Alternatively, A may attempt to generate a different tree with a different

set of values that results in a tree with the same Merkle root. Both settings are



16 David Chaum et al.

equivalent to finding a different second preimage, such that the malicious values
result in a collision with the initial signer generated values. �

5 Formal Methods Analysis

In this section, we define the Verifpal [19,17] model used to analyze Wotswana
along with the description of some of the technical challenges inherent to the
model development process. The purpose of this section is to confirm the early
analytical proofs of the construction and verify whether or not both approaches
for security analyses provide the same results.

5.1 Verifpal and Modeling Challenges

Verifpal is a software that allows for the verification of the security of crypto-
graphic protocols and is particularly oriented towards real-world practitioners
attempting to integrate formal verification into their line of work. Moreover, this
tool supports advanced security properties such as forward secrecy or key com-
promise impersonation. We note that Verifpal has been used to verify security
properties of widely deployed tools, such as Signal [18] and TLS 1.3 [4].

Challenges to Modelling Wotswana in Verifpal. Symbolic model protocol
verifiers, typically face a problem when analysing complex protocols: the space
of the user states and different combinations of variables the verifier must as-
sess, quickly becomes too large for the verifier to terminate in a reasonable time.
Verifpal attempts to optimize for this challenge by separating the analysis into
a number of stages in which it gradually allows the increasing modification of
states. The different variable combinations quickly becoming too large is a chal-
lenge we faced while a ladder, where each level contains a WOTS+ keypair, and
the tool constantly issued memory fault errors when starting to perform the hash
ladder iterations for the key generation processed. These memory errors resulted
in the stopping of the verification process in a faulty manner. Additionally, we
highlight the lack of existence of the XOR logical function in the verification
tool, which leads to initial design attempts with a slightly changed variant of
the chaining function used in WOTS+.

Verifpal Model of Wotswana. To avoid the memory fault issues derived from
iterating different attack scenarios involving a high number of hash function calls,
we model a simpler Lamport signature scheme instead of WOTS+. For simplicity
of the model and readability of the code, we simulate a setting with only two
ladder levels, each containing a hash-based key pair. This code, containing the
Verifpal model, is open-sourced and published in [25].

Participants. We model two participants: a signer and a verifier. The signer
generates an initial Lamport keypair (sk, pk) to sign a single bit b ∈ {0, 1}. Upon
generating this first hash-based key pair, the signer compresses the first pub-
lic key value using the tweakable hash function and then uses a hash-based
key derivation function (HKDF) to generate the second Lamport keypair. This
HKDF receives the first Lamport public key, now compressed into a single value,



WOTSwana: Multiple Proofs of Ownership 17

as key material to be expanded and outputs a second Lamport keypair. This sec-
ond public key is also compressed using a tweakable hash function. For consis-
tency with the protocol specification from this work, we compress the Lamport
public keys using a tweakable hash function. We note, however, that this step
is purely for readability as the main purpose of using tweakable hash functions
in Wotswana is to mitigate multi-target attacks, which are out of scope of the
results produced by the tool.

Attacker model and message flow. We assume the Dolev-Yao model [13]
where the adversary is in charge of delivering the messages. Therefore, all the
transmitted messages go through the adversary first or are in fact delivered by
A. In our model, the signer starts by sending to the verifier the following values:
a signature on a 1 bit from one level lower than the top one, and a public
key for verification. We note that all the public key values transmitted between
both parties are authenticated using the guarded constant feature from Verifpal,
which allows the model to ensure that the public key used to verify the signature
is authenticated. Therefore, man-in-the-middle or impersonation attacks are out
of the scope of the analysis. We consider this approach as the scheme is designed
to be used in a blockchain setting where the public keys are openly available on
the distributed ledger.

We assume that after signing a message, and submitting the signature to
the network, the signer exposes the next public key on the ladder to inform the
network of what the next verification key is. This exposure is achieved using
the leaks command present in the Verifpal tool, which fully exposes a variable
to the adversary. The goal of this step is to simulate the adversary A from the
security game described in the formal security proof, where A cannot invert a
hash function, yet is capable of looking at messages sent to the network before
anyone else.

5.2 Modelling Results

After performing these steps, we run four confidentiality queries and request
the tool to perform an analysis on whether or not the adversary can break the
confidentiality of the two individual Lamport secret keys (sk0, sk1) for each of
the ladder levels. The tool output a positive result for two of these confidentiality
queries. Therefore, the adversary can fully obtain the secret key values for the
top Lamport key pair and produce forgeries on additional messages. The lower
two secret values, however, remain confidential. Therefore, the adversary A is not
expected to be able to produce a forgery with the necessary key, which matches
our results obtained in the security proof.

In summary, Verifpal returned that there is no breach in the confidentiality
of any of the secret key variables that must remain private for the construction
to achieve its security goals, thus outputting a formal positive result about our
design. We note that this formal methods analysis does not find attacks involving
structural weaknesses of the used cryptographic primitives. For example, the use
of a hash function with a small security parameter is not in the scope of the



18 David Chaum et al.

attack model of the tool. Therefore, implementations of this construction must
take into account and appropriate choice of security parameters.

6 Use Case: Encrypted Group Chat

We now expose an alternative use-case for this work, namely an approach where
secure messaging apps can use our construction to achieve constant-sized mes-
saging in an encrypted group chat setting, while preserving fundamental security
properties for secure messaging (e.g., deniability). We start by exposing the main
existing approaches along with its associated communication complexity. Finally,
we showcase a Wotswana -based encrypted group chat.
Trivial Client fan-out. One scheme is for Bob to encrypt the message with
every participant’s key. In a group chat with 30 other participants, Bob sends
the message 30 times, encrypting each message for the intended reader. An
advantage of client-side fan-out is that it reuses the same protocol used for two-
person conversations. This approach, however, quickly becomes prohibitive if the
group is big or the network bandwidth is small.

Improved Client fan-out. Alternatively, Bob can encrypt a message for a
global group chat shared key and attach an authentication tag (i.e., MAC) for
each of the group participants. In a group chat with 30 other participants, Bob
sends one message and 30 tags for the intended readers. We call this scheme
“improved client fan-out” as it improves on the communication complexity of
the trivial fan-out approach. An advantage of this approach is the bandwidth
savings as this only results in the linearly increasing of the number of sent
authentication tags and constant-sized number of messages, which in this case
is only one.

Signed Server fan-out. A final possible approach is for Bob to encrypt a single
message for a global group chat shared key along with a digital signature. In a
group chat with 30 other participants, Bob sends a single message along with
one digital signature for the server, which then fans out the same message for the
total set of 30 participants. This scheme can be called “signed server fan-out”.
This approach can even feature an optimization where the server does not fan
out and instead simply relays the message to a message fetching service. Later
in time, clients in this group chat can contact this fetching service and obtain
the corresponding message(s) associated with this group chat.
FFS-based Encrypted Group Chat. We now discuss the approach that relies
on forward-forgeable signatures [22] to achieve linear complexity and preserve
deniability. Bob encrypts a single message for a global group chat shared key
and attaches a single forward-forgeable digital signature. In a group chat with 30
other participants, Bob sends a single message along with one FFS for the server,
which then fans out the same message for the total set of 30 participants. This
scheme can be called “FFS-based group chat” and features a potentially optimal
communication complexity as the sender simply sends a single message, regard-
less of the total number of participants in the group, which results in bandwidth
savings and, unlike the previous approach, preserves the deniability property



WOTSwana: Multiple Proofs of Ownership 19

as for each newly signed message or a specific time window, Bob removes the
non-repudiation property of the previously sent message. Therefore, Bob is able
to deny sending specific group messages. Table 7 illustrates a communication
complexity comparison of the different approaches.

Group Chat Approach Communication Complexity

Trivial Client fan-out O((N − 1) · (|m|+ |t|)
Improved Client fan-out O(|m|+ (N − 1) · |t|)

Signed Server fan-out O(|m|+ |σ|)
Wotswana-based [This Work] O(|m|+ |σ′|)

Table 7: Communication complexity comparison for the different approaches.
Where |σ|, |t| and |m| are the sizes of signatures, tags and message, and N is
the number of group participants.

7 Conclusion

The recently introduced Sleeve primitive adds an extra layer of security for
cryptocurrency wallets. It is specifically designed to provide means for the users
to assure the ownership of the cryptographic keys in the event of a massive leak.
A wallet with the Sleeve design provides the user with a back up key which can
be used to generate a single proof of ownership; a clear limitation of the original
design.

This work extends the security guarantees of Sleeve by introducing a new de-
sign named Wotswana, and its main feature is the capability of issuing multiples
proofs of ownership. This novel capability naturally extends the original security
definition for Sleeve. Furthermore, we propose two constructions for Wotswana
and in both cases the back up keys provided by the Sleeve design are kept two
types of data structures: (1) a linear and (2) a binary tree.

Finally, we prove the security of both constructions given an extended secu-
rity notion adapted from the single proof of ownership, i.e. multiple proofs of
ownership. Moreover we analyse the security of our constructions based on for-
mal methods, i.e. Verifpal. We introduced practical use cases for our design and
initiated the process of contacting development groups to analyze the possibility
of integrating this construction into some of their services. We hope this design
helps the community, and raises awareness about the importance of preparing for
the eventual integration of quantum secure solutions in commercial applications.

References

1. Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. Ladderleak: Breaking ecdsa with less than one bit of nonce
leakage. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’20, page 225–242, New York, NY, USA, 2020.
Association for Computing Machinery.



20 David Chaum et al.

2. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis
Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communica-
tions Security, pages 913–930, Toronto, ON, Canada, October 15–19, 2018. ACM
Press.

3. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019: 26th Conference on Computer and Communications Security, pages
2129–2146. ACM Press, November 11–15, 2019.

4. K. Bhargavan, B. Blanchet, and Nadim Kobeissi. Verified models and reference
implementations for the tls 1.3 standard candidate. 2017 IEEE Symposium on
Security and Privacy (SP), pages 483–502, 2017.

5. Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss - a practical
forward secure signature scheme based on minimal security assumptions. In Bo-
Yin Yang, editor, Post-Quantum Cryptography, pages 117–129, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

6. David Chaum, Mario Larangeira, and Mario Yaksetig. Tweakable sleeve: A novel
sleeve construction based on tweakable hash functions. The 3rd International Con-
ference on Mathematical Research for Blockchain Economy (MARBLE), 2022.

7. David Chaum, Mario Larangeira, Mario Yaksetig, and William Carter. Wots+
up my sleeve! a hidden secure fallback for cryptocurrency wallets. In Interna-
tional Conference on Applied Cryptography and Network Security, pages 195–219.
Springer, 2021.

8. Lily Chen. Recommendation for key derivation using pseudorandom functions-
revision 1. NIST special publication, 2021. Accessed: 2022-02-20.

9. Nicolas T. Courtois, Pinar Emirdag, and Filippo Valsorda. Private key recovery
combination attacks: On extreme fragility of popular bitcoin key management,
wallet and cold storage solutions in presence of poor RNG events. Cryptology
ePrint Archive, Report 2014/848, 2014. http://eprint.iacr.org/2014/848.

10. Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. Digital
signatures out of second-preimage resistant hash functions. In Johannes Buch-
mann and Jintai Ding, editors, Post-quantum cryptography, second international
workshop, PQCRYPTO 2008, pages 109–123, Cincinnati, Ohio, United States, Oc-
tober 17–19 2008. Springer, Heidelberg, Germany.

11. Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic
wallets. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019: 26th Conference on Computer and Communications
Security, pages 651–668. ACM Press, November 11–15, 2019.

12. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, Part II, volume 10821 of Lecture Notes in Computer Science, pages
66–98, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

13. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

14. Chun-I Fan, Yi-Fan Tseng, Hui-Po Su, Ruei-Hau Hsu, and Hiroaki Kikuchi. Se-
cure hierarchical bitcoin wallet scheme against privilege escalation attacks. Inter-
national Journal of Information Security, pages 1–11, 2019.

http://eprint.iacr.org/2014/848


WOTSwana: Multiple Proofs of Ownership 21

15. Andreas Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes.
In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors,
AFRICACRYPT 13: 6th International Conference on Cryptology in Africa, vol-
ume 7918 of Lecture Notes in Computer Science, pages 173–188, Cairo, Egypt,
June 22–24, 2013. Springer, Heidelberg, Germany.

16. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, vol-
ume 10401 of Lecture Notes in Computer Science, pages 357–388, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

17. Nadim Kobeissi. Verifpal: Cryptographic Protocol Analysis for Students and En-
gineers. https://verifpal.com, 2021. [Online; accessed 05-March-2022].

18. Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated verifi-
cation for secure messaging protocols and their implementations: A symbolic and
computational approach. In 2017 IEEE European Symposium on Security and
Privacy (EuroS P), pages 435–450, 2017.

19. Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. Verifpal: Cryptographic
protocol analysis for the real world. In Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop, CCSW’20, page 159, New
York, NY, USA, 2020. Association for Computing Machinery.

20. Hugo Krawczyk. Cryptographic extraction and key derivation: The hkdf scheme.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, pages 631–648,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

21. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
22. Michael A. Specter, Sunoo Park, and Matthew Green. Keyforge: Non-attributable

email from forward-forgeable signatures. In Michael Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, pages 1755–1773. USENIX Association, 2021.

23. Trinity attack incident part 1: Summary and next steps. https://blog.iota.org/
trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8.
Accessed: 2020-09-22.

24. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014.

25. xx network. Wotswana verifpal model. https://github.com/xx-labs/wotswana.

https://verifpal.com
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8
https://blog.iota.org/trinity-attack-incident-part-1-summary-and-next-steps-8c7ccc4d81e8
https://github.com/xx-labs/wotswana

	WOTSwana: A Generalized Sleeve Construction for Multiple Proofs of Ownership

